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On ordinary quantities and W-quantities
Classification and geometrical applications
by

J. A. Schouten and D. van Dantzig
Delft

1. Interior and exterior orientation.

We consider an E, 1) in which an orientation (n-dimensional
screw-sense) is determined by an ordered sequence of n indepen-
dent directions each with a definite sense 2). Now suppose an
E,, 0 <p <n to be given in E,. This E, in E, determines
uniquely an E,_, (not lying in E,) in the following way: all
E,’s totally parallel with the given one can be considered as
elements of a set, which is an (n—p)-dimensional plane manifold
in which an affine geometry is induced, i.e. an E,_,. This process
of obtaining the E,_, is called ,,Zusammenlegung” by Weyl
(analogous to ,,stetige Zerlegung” in topology) and is also descri-
bed by saying that in each E, all points are ,,identified”.

Now we can either define a p-dimensional orientation in the
E, or an (n—p)-dimensional orientation in the E,_,. In the first
case we say that the E, as well as its p-direction has got an
interior orientation, in the second case we say that it is provided
with an exterior orientation. The notions of interior and exterior
orientation were introduced by Veblen and Whitehead 3). For
p =0 and p = n we define the orientation as follows:

The interior orientation of an E; is a + or a —-sign, the
exterior one is an ordinary orientation of the E,. The interior
orientation of the E,, is just this ordinary orientation, the exterior
one is a + or —-sign.

1) E, = n-dimensional space with ordinary affine geometry.

2) Comp. E. I (Einfithrung in die neueren Methoden der Differentialgeometrie
by J. A. SceouTeN and D. J. Struik, Vol I [Noordhoff 1935]), p. 16.

3) O. VEBLEN & J. H. C. WHITEHEAD, The foundations of differential geometry
[Cambr. Tracts in Math. 29 (1932)], 55, 56.
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2. Contra- and covariant p-vectors. %)

Let o* (x, A, u, v, m, 0, 0, =1, ..., n) be cartesian coordinates
in an E,. Any other system ¥ (N, ., T'=1,...,n') of
cartesian coordinates in this E, is connected with the first one
by equations of the form:

(1) 7 = Af &+ A Det (4%) # 0
where the 4% and A% are constants.
A contravariant p-vector v*1-+%» is defined by its transfor-

mation formula

’

’ ’ ’
H,ooi oM X X Koo
1 P — 1... »p 1 »
(2) () A"1 Axpv

and its property of being alternating with respect to all suffixes.
If it is simple (i.e. the alternated product of p vectors) it can
be represented by a (e.g. simply connected) part of an E, with
an tnterior orientation. Two such parts determine the same
p-vector if and only if 1° the E’s are totally parallel, 2° the two
p-dimensional volumes are equal, 3% the orientations are the same.
The (%, ..., %,)-component is determined by the projection of
the oriented part of the E, upon the E, of the contravariant

Q)
N

Fig. 15).

measuring vectors €%, .. ., ¢¥; the (n—p)-direction in which the
e *

P

¢) The results of § 2 — 5 were first published in J. A. ScrouTeN, Uber die
geometrische Deutung von gewohnlichen p-Vektoren und W-p-Vektoren und den
korrespondierenden Dichten. [Proc. Amsterdam, 41 (1938), 709—716].

%) The orientation of the parallelogram on %", ?" is the one belonging to gf"%‘].
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projection is performed is the (n—p)-direction common to the

(n—1)-directions of the covariant measuring vectors ?;, cen ’;X
The value of this (%, ..., x,)-component is the p-dimensional
volume of the projection as measured by the p-dimensional
volume of the parallelotope with edges 5’1‘, ce E’: and provided

with a factor 4 1 or — 1 if its orientation is the same or op-
posite as the orientation of 5", cen S" in this order.
1 P

The projection of the orientation becomes undetermined if
and only if the E, of v*1--*s has a direction in common with
the (n—p)-direction of the projection, in which case the volume
of the projection is zero.

A covariant p-vector wy 3 is defined by its transformation
formula

A

Ay »
(3) Wy, = Ay Ay e,

and its property of being alternating. If it is simple it can be
represented by a cylinder (the interior of which may be chosen
simply connected) consisting of co?-1 (2 for p=1) totally parallel
E,_,’s (the generators) with an eaterior orientation of their
(n—p)-direction. Hence the set of oo?-1 E, _’s is oriented.
Two such cylinders determine the same p-vector if and only if
10 their (n—p)-directions are the same, 2° they intersect from

Fig. 29).
one (and then from every) E, which has no direction in common
with the (n—p)-direction, parts with equal p-dimensional volumes,

29
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and 8° the orientations are the same. The 2, ... 4,-component

is the reciprocal value of the p-dimensional volume of the in-

tersection of the cylinder with the E,, of i", ..., €%, as measured
1

?

by the parallelotope of these vectors. It is positive or negative
if the orientation of W, has the same or the opposite

sense resp. as the orientation of &%, ..., ¢* in this order.
2 »

3. Ordinary contra- and covariant p-vectordensities.

An ordinary contra- or covariant p-vectordensity of weight w
is defined by its transformation-formula

(4) t)”l"'x”-—_A_”’A:’---A:"bxl"'m; A = Det (A’;f,)
1 ?
A A
’ /= —w ; o e e ,
(5) ..., Ay oAy g,

resp. and by its property of being alternating. For p = 0 we get
ordinary scalardensities of weight .
In an E, three quantities are given a priori:

A. The unit affinor A% with the components
* 1, ® = A
(6) A)‘—{O,x#l’
with respect to every system of coordinates.

B. The contravariant unit n-vectordensity €™ ***" of weight
+ 1 defined by

(7) "= 41 R i

with respect to every system of coordinates;

C. The covariant unit n-vectordensity e,  , of weight — 1
defined by

(8) e7..n= 1+ 1; €y 2y = O A

with respect to every system of coordinates.

Hence a one to one correspondence exists between the set of
all contravariant p-vectors and the set of all covariant (n—p)-
vectordensities of weight — 1 and also between the set of all
covariant p-vectors and the set of all contravariant (n—p)-
vectordensities of weight + 1:

1

1
Hyeo Ky,  Hyeo X Ao FpmpHyes Xy
p’ vt ? @u n—p

1
(9) LR B Y SRR =) P s

1 3100 Hnp
; .

.. 1 Ay Apry...x
1 Xy .x,,_,_:___ 1 71 n=p. —_——
( 0) Y p,w/‘[l.,,lﬂg wll...}., (n_p)!e}.l‘..}.,,%l---%n—p
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In particular with a scalar p correspond both a co- and a contra-
variant m-vectordensity

’

’ _ . _ 1, 7Py
Yo =P s P=R =€

(11)

1
HyeooHn HyeeoHn, wlioon HyeooX
prtr=pCny p = =D ey -

Of course the geometrical representations of corresponding
quantities are the same. For densities of other weights no such
simple geometrical representations exist.

Table 1 shows the quantities considered here for n = 3.

Table 1.
Number
of inde- .
Figure Notation 1 Notation 2 pendent Om.m
compo- tation
nents
p;t;_“; cov. triv.dens. w = —1
none p; scalar , . 1 none
p*#; contr. triv. dens. w= +1
v*; contr.vect. | b;,; cov.biv.dens. w = —1 |8 (proj.)|interior

w;; cov. vect. 10%%; contr. biv. dens. w = +1 3( ! ) exterior

ROL\

inters.
f*; contr.biv. | f;; cov.vect.dens. w = —1 |3 (proj.)|interior
. 1 .
h;,,; cov.biv. §*; contr. vect. dens. w= +1|8 (M) exterior
P"l'u ; contr. triv.| p; scalardens. w = — 1 1 (vol.)
. : 1 screw
Quiss COV.triv. | g; scalardens. w = + 1 (W)

4. W-quantities.

Aside ordinary densities we can also consider densities, in the
transformation-formulae of which the absolute value | A | is taken
instead of A4 itself. As they were introduced by H. Weyl ¢) we
call them W-densities and distinguish them from ordinary
densities by a - above the central letter. If the weight is w,
their transformation formulae are

8) RZM, § 13, 4th Aufl, 98.
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’

Hy Ky —w % Kp =ty ..ok
(12) " _"IAI A%l...A’%ml »

’

w2 Ay =
L= Ay A gy,

-

(13) W,

For p = 0 we get W-scalardensities. As long as we consider

only (real) transformations with 4 > 0, there is no difference

between W-densities and ordinary densities. But this restriction

is equivalent with giving an orientation in X,, viz. the orientation

of ﬁ", ..., € in this order 7). Hence the geometric interpretation
n

of a W-density can only differ from the interpretation of a
corresponding ordinary density by the orientation. Hence it is
to be expected that we may, at least in the cases w = -+ 1 resp.
w = — 1 where we have simple geometrical representations,
obtain W-densities from ordinary densities by interchanging
interior and exterior orientations.

Take for instance a part of an E, with an exterior orientation
and fix the rules about equivalence and building of components
in the same way as for an ordinary p-vector, the (x; ... x,)-
component being positive or negative if the projection of the
exterior orientation has the same or the opposite sense resp. as

the orientation of €* , ..., ¢* in this order, where %, ..., %, is

% P+1 x

an even permutation of 1, ..., n. Hence, if the quantity thus defined,
which we denote by ©™*''”?, has the same components as an
ordinary contravariant p-vector with respect to one system of
coordinates, this will be true also for all systems of coordinates
that can be deduced from the first one by transformations with
A > 0, but the sign changes if we take a transformation with

A < 0. From this follows the transformation-formula of o7 *»

’

.x'lx;, . % Xp=sy. ..
(14) v =A|A[T A AT
and, if we define Fll...}.n_p by
(15) ) — L e
Movidamn pl A Aapity iy ’
also:
(16) v, o = |A| A Al
D hey 2 XL Y R

7) Cf. VEBLEN & WHITEHEAD l.c.
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5;11“. e is a covariant W-(n—p)-vectordensity of weight — 1.
Accordingly the quantity **"**» will be called a contravariant
W-p-vector.

In the same way we define a covariant W-p-vector E}.r... ;
by its transformation-formula

P

-

I 7y —
(17) wy g, = A AT Ay A Wy )

and its alternating property. This quantity is geometrically equi-
valent with the contravariant W-(n—p)-vectordensity

1 -
(18) ey = — W

Ageeihp ity . %,
P hyay, &1 ”

of weight 4 1 and ecan, if it is simple, be represented by a cylinder
(the interior of which may be chosen simply connected) consisting
of coP—1totally parallel E,_,’s with an interior orientation of their
(n—p)-direction. The rules for equivalence and the building of
components are the same as in the case of the ordinary covariant
p-vector; the component is positive or negative if the orientation
of Z‘BAI... Ph has the same or the opposite sense resp. as the orien-

tation of ¢*,..., ¢ in this order, where 4,,..., 4, is an even
P+1 n
permutation of 1,..., n.

For p = 0 we get W-scalars with the transformation-formula
(3)

% )
(19) p=4|4|"p.

With p correspond both a co- and a contravariant W-n-vector-
density of weight — 1 and + 1 resp.:

- - .- 1 - AreeAn

Yo =Pe 4P =Py
(20)

-x "y - Ky, = 1 =y Xy

P =p T p = ST,

Contrary to an ordinary scalar a W-scalar has an (n-dimensional)
orientation, viz. the orientation of the coordinate system with
respect to which p is positive. But a W-scalardensity of weight
+ 1 or — 1 has no orientation because it is equivalent with a
covariant or contravariant W-n-vector resp. and is represented
by an m-dimensional volume without orientation.

Table 2 shows the W-quantities considered here for n = 8.
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Table 2.
. . . Compo- | Orien-
Figure Notation 1 Notation 2 nents tation
- .
— ; cov. W-trivd.; w= —1
none p; W-scalar f”i"" o 1 screw
p¥+; contr. W-triv.d.; w= +1
X 0%; contr. W-vect. |0;,; cov. W-biv.d.; w = — 1|3 (proj.) outside

- - ) 1 ..
() w;; cov. W-vect. m"}'; contr. W-biv.d.; w = +1 3( ) inside

inters.

J‘c M; contr. W-biv. E_ ; cov. W-vect.d.; w = —1 (3 (proj.)| outside

% }Tlxi cov. W-biv. S"; contr. W-vect.d.; w = +1 3( ! ) inside

inters.
{ﬁxlﬂgcontr. W-triv.|p; W-dens.; w = —1 1 (vol.)

6”1,‘; cov. W-triv.|q; W-dens.; w = +1 1 ( ! )

vol.

none

An example of a W-scalar is: p = + 1 for all right-handed
systems and p = — 1 for all left-handed systems. Quantities of
this kind are called sometimes ,,pseudoscalars” in physics.
W-vectors are occasionally used in physics but only after the
introduction of a metric 8). Mr. St. Golab ?) has proved by solving
a functional equation, that all geometric objects with only one
component, whose transformation depends on 4 only, can be
deduced from the four objects: scalars, W-scalars, ordinary
scalardensities and W-scalardensities. From this theorem follows
that the classification we have used here is really exhaustive.

5. Identification of quantities.

After introducing a unit of volume, a metric or an n-dimensional
orientation identifications arise between the different quantities
derived. We take the case n = 8 as an illustration, the generali-
sation being obvious. (Cf. table 3)

The four directed quantities occuring after introduction of

8) For applications without a metric comp. D. v. DaNTzic, On the phenome-
nological thermodynamics, [Physica 6 (1939), 678—704]; On relativistic thermo-
dynamics, [Proc. Amsterdam, 42 (19839) 601—607]; On relativistic gas theory,
[l.c., 608—625].

) St. Goras, Uber die Klassifikation der geometrischen Objekte [Math.
Zeitschr. 44 (1938) 104—114].
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a unit of volume, are known in litterature (from left to right)
as polar vector, polar bivector, axial bivector, axial vector.

After introduction of a metric the difference between polar and

Table 8.
Z)z ui /XA ,{/\X ﬁx}’“ 5.2 ZZ;- /‘72* £Ax {ﬂ:xV‘
7 N 5 o 2,
WXA X /LLAZ 27) mib\ 3 /:’\t
gt A R 7%

After introduction
of .

/ﬂ@@.%

LUnit of volume

~ O &

[.Screwsense

5 5e O

M. Screwsense and
unit of volume

/ @@ / Scalar

IV Metric

K G s

% % / / Scalar

V Screwsense and
metric

/ / / / Scalar

/ / / / Scalar

axial and between scalars and W-scalars remains.

This is the

point of view often found in publications on physics. After in-
troduction of a screw-sense and a metric (this includes I, IT,
III and IV) all differences between directed quantities and the

difference between scalars and W-scalars vanish.

6. Quantities in X,,.

We consider an n-dimensional differentiable manifold X,.

Let &(x, A, u, v, m, 0,0, 1=1, ..

.,m) be a set of coordinates in

a sufficiently small part of this X, and &' (x', ', ..., '=1', ..., n)
another set of coordinates with

4 4 , d
(21) A =Det (A7) £ 0; A7 = 3, & % = 5

It is well known that we define all quantities in the local E, of
a point of X, using in the formulae of transformation A7 =08

in stead of the constants A’;‘,/ in (1). In this way we get in each
local E, ordinary quantities and W-quantities.
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7. Imbedding of an X, in an X,. 19)

If an X,, is imbedded in an X, the following eight cases are
important. We write & for n — m and supposc n* (a, b, ..., g =
=1,...,m) to be coordinates in the X,. Further we denote

by Bj the unity-affinor in X,, by €™ """ and ¢ , the

unit-m-vectordensities in X,, and by D the transformation-
modulus D = det (BY) in X,,.

Case 1. Pure imbedding without any auxiliary assumptions.

To every point 7 of the X, belongs one and only one point
of the X, given by equations of the form

(22) &=, ..., ™).
In every point of the X, two quantities exist:
19 the affinor

a 21
(28) )

b T

a connecting quantity behaving like a system of m contravariant

vectors with respect to transformations in X,, and like a system

of n covariant vectors with respect to transformations in X, ;
20 the simple k-vectordensity

1
— th. ... b
(24) By dy = o Ay xmB’;i - -BZ:: EP1reOm,y

a connecting quantity with the weights + 1 and — 1 with respect
to transformations in X, and X, respectively:

o a
(25) by o, =AD Ay Ayt g

1

BY as well as t; ... ; are geometrically represented by the

tangent E,, in the local E,. They are related by the identity

iy _
(26) B, 5 =0

k
Case 1'. Imbedding with exterior orientation.
The orientation is an exterior orientation of the tangent E,,

in every point of the X, and can be given by any quantity o with
the absolute value + 1 and the transformation-formula

10)  The eight different cases of imbedding were first treated in J. A. SCHOUTEN,
Uber die Beziehungen zwischen den geometrischen GroBen in einer X, und in
einer in der X, eingebetteten X, [Proc. Amsterdam, 41 (1938) 568—575].
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(27) (xé,oa'): A_1| A |D I D |—1 (x(,oa) )

In fact, because of (25), (27) the quantity wt; ..., has the trans-
formation-formula

ey Mg
(28) oty y=[A4]|D| A Ay oty
and this is the same as that of a covariant k-vector except for
an always positive factor. Hence oty determines a k-
dimensional orientation in every E, having no direction in
common with the tangent E,. If in any point of the X, the

orientation of e ..., ¢” in this order followed by the exterior
1 m

. . . . . b X oo. .
orientation gives the orientation of €,..n€ I this order,

n
. . (3,
then we choose in that point always o = 4+ 1.

In each E, having no direction in common with the tangent

E,, in case 1’ a contravariant alternating quantity =" ** with
the transformation-formula

, ,
M1 s ¥y

(29) =A“1|A l DlDrl A:l...Axkgznl"'xk

satisfying the invariant condition

(30) ARy >0,

is determined except for a posilive factor. Except for a factor
=+ 1 this quantity transforms in the same way as a contravariant
k-vector. Hence it determines such a k-vector except for the
orientation. Now suppose a k-vector p******* is given except
for a factor 4 1. Then we can determine a quantity #’ %
by the equation

Hyooo Moo X Hy oo
TEI k:wpl ksgn (wpl ktxl...xk)

31
( ) :pxl...xksgn (pkl...xktxl'”x’c),

(where sgn (z) = Ij_ZI for z 40 and sgn (0) = 0). From this
follows, that the geometric representation of a quantity with
the transformation (29) satisfying the condition (80) is a part
of an E, having neither an interior nor an exterior orientation.
CasE 2. Rigged imbedding.
An X, in an X, is called ,,rigged” (,,eingespannt’) if in every
point of X ,, a k-direction is given, having no direction in common
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with the tangent E . This k-direction can be given by an affinor
B} with the following properties: 1°. its x-region consists of all
contravariant vectors of the local E,, and its A-region consists

of all covariant vectors whose (n—1)-direction contains the k-
direction of the rigging, 2%

(82) Bz BS = B}.

From B¥ and Bj an affinor B} can be uniquely determined by
means of the equations

(33a) B} B} = B® — unitaffinor of the X,,.
(83b) B} By — Bj.

The A-region of Bj is the same as the A-region of B} . B}, and B}
together determine B7 uniquely by (33b). The rigging determines
also uniquely and is determined by the simple k-vectordensity

1 ’
(84a) e K — — @ll...lmxl...%k Bi’: . Bg:eal...a,,,’

a connecting quantity with the weights —1 and 41 with respect
to transformations in X,, and X, resp. and satisfying the relations

1
(34b) e "B, = 0; I;—!e"""”"txl...xk =1.
In the cases 1 and 1’ B} can not be uniquely determined,
as then (84) fails, and the solutions of (83) alone contain arbitrary

parameters. But they determine B} partly and well enough in order
that the expression BZi «oe By?v " be uniquely determined
?

if v*1---%» is a simple contravariant p-vector, p < m, parallel
to the tangent E,,.

We often make use of a special system of coordinates for which
in every point of the X, & =, ..., &m = ym11), If the X,,
is rigged we choose the parameterlines of &+, ..., &% in such a
way that they have in every point of the X,, a direction lying

11)  Coordinate systems of this kind are transformed into each other by trans-
formations of a group studied by A. KawacucHi, The foundation of the theory
of displacements II [Proc. Imp. Academy 10 (1934), 45—48]. From this remark
follow the relations between our paper and the investigations of KawacucsHi,
S. Hokari, Uber die Ubertragungen, die der erweiterten Transformationsgruppe
angehoren [Journ. Hokkaido Imp. Univ. 3 (1935), 15—26; 4 (1935) 14—50],
S. Goras, Uber eine Art der Geometrie von Kawaguchi-Hokari [Ann. Soc. Polon.
Math. 16 (1937) 25—30], and the investigations of T. Hosoxawa, A. WuND-
HEILER, V. HLATATY, E. CARTAN, T. Y. THOMAS, J. A. SCHOUTEN and S. GOLAB,
quoted in this latter paper.
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in the k-direction of the rigging. If we use &* («, ..., 0=1,...,m)
as coordinates in the X,, we have for that system

I =5 m+1l o
(35) Bﬁ—{o,a;ﬁﬂ B =...=Bj=0,
(36) b, om = 15 €mHan =1

and all components of b i and v 7%t with a suffix < m

vanish.w = 4 11if ¢ ,..., ¢ in this order determine the exterior

orientation of the "%;;gent nEm and — 1 in the other case.
CasE 2'. Rigged imbedding with exterior orientation.

This case is a combination of 1’ and 2 and requires w as well
v .
as B} to be given.

With respect to the special coordinate system mentioned above
the condition (30) for the non oriented quantity z**'*"** is
(37) n1+m,...,n >0
and the equation (81) takes the form

(38) n"x---"k — pxl...xk sign (pm-}‘l,...,n).

Case 8. Imbedding with normalisation and exterior orientation.
In every point of the X, a simple covariant k-vector s
is given whose m-direction lies in the tangent E,,. It determines
uniquely and is uniquely determined by the scalardensity
t
A
39 =
(39) § Loty

of weights — 1 and + 1 with respect to transformations in X,
and X, respectively. Obviously

(40)

%
0 == .
I3l
In each E, in the local E,, having no direction in common

with the tangent E, , byd determines (by section) uniquely
a contravariant k-vector p*i---* satisfying the equation

1 Dyeed
(41) Etll---lkpl k:1.

With respect to the special coordinate system mentioned above
we have ¢,., ., = 3" and all components with a suffix <m
vanish.

Caste 8'. Imbedding with normalisation without orientation.

We get this case by giving | 3| instead of . Then instead
of 7R only the quantity
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(42) T =0 =1

is determined, and v.v. 7;  , determines | 3]. The geometric
representation is a cylinder consisting of oo*-! (2 for k=1)
totally parallel E,’s, all parallel with the tangent E , but
having neither interior nor exterior orientation. With respect
to the special system of coordinates mentioned before,
Tmat,..on = | 3 |™", and all components with a suffix < m vanish.
In each E,, having no direction in common with the tangent E,,,
L7 determines a non oriented contravariant quantity as

considered under case 1’ and determined by the equation

1 Ar-e A
(43) T =1

CasE 4. Rigged imbedding with normalisation and exterior
orientation.

This case is a combination of 2’ and 8 and requires Bj and 3

to be given. In the k-direction of the rigging a simple contravariant

k-vector n1 ' ** — 3¢ exists, which is uniquely deter-
mined by the conditions
1 .. 1.
(44) Enl ktxl...%k_ ¥
(45) B;l WM = 0,

and for which the equation

HyooiHp By, .. %K), K A% D%
(46) 1y, =KL Cf e Oy O = Af — B

holds. With respect to the special system of coordinates menti-
oned before n™*1:-»" — 3 and all components with a suffix
< m vanish.

Cask 4'. Rigged imbedding with normalisation without orientation.

This case is a combination of 2 and 8’ and requires B} and
| 3] to be given. In the k-direction of the rigging a non oriented

contravariant quantity ™% = | 3| €™ " exists, which is
uniquely determined by the conditions
1

(47) Lo, =1
(48) B, va-% =0
and for which the equation

HyoooXp 7. [ 2]
(49) Tzl_uakvl k—-——Ih!C[}:' 'CA:]

holds. With respect to the special system of coordinates men-
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tioned before »™*1-»™ =] 3| and all components with a

suffix < m vanish.

The following table shows the different cases and the quan-

tities involved 12).

Table 4.
;Imbedding: 1|1 2 2’ 3 3 4 4 quantities occurring
. x

included cases: 1 1 1, 1,2 1 |1,1,8 1, 2,8 all besides B, and t
orientation: — | + — + — + — + w
rigging: —|—= + + — | = + + B3, (BY), (n)
!normalisation: —|— —_ — + + + =+ |31 (@)
{quantities t |t t t t, () |t (z, )] t, (2) t, (r, t)
"occuring n n m (¥ | n, (v n)
besides w w w w
B} sl |l ] 13l l41, ()

(B3, BY) | (B3, BY) (B3, B1) | (B}, B})

Fig. 8 shows the eight different cases for the imbedding of
an X, in ordinary space.

Fig. 8.

12) The quantities with k indices are denoted by their central letter. Quantities
in brackets in the last row or column can be derived from the other quantities in
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8. Relations between quantities in X; and X,.13)

A. Ordinary contravariant p-vectors.

A contravariant p-vector v*""® (p <m) in a point of

- . . HyeeoX. :
X,, determines uniquely a contravariant p-vector 0°*""** in

the corresponding point of X,, according to the equation
(50) Ky BZ: . B;c: ,val...aﬁ.

Because of (26) we have
HHy .o

’ .xp \
(51) v beg..2, = O

At the other hand each p-vector 1% (p < m) with respect

to transformations in X, defined in a point of X,, and satis-
fying (51)14) determines uniquely a p-vector ‘v™ "% defined
by (50) as these equations have a unique solution. It can be
written in the form

Qe @y 1_ ... Q 1Ky e X
(52) v 7= p! 'B .pxl...x,, v ’

where g% % J ..., is determined except for the product of an
A R

arbitrary alternating quantity w™ " % Aoraees dm yyith ¢ A,...A,. These

quantities can all be derived from ﬂa‘a"‘ Ao don? viz.
...y _ al...apbpﬂ...bm Hp41 , .. R¥%m
(53) ﬁ Ayl Ay . . ll...l,n,ﬂ_mxme,H Bb,,.’

In case 2 (rigging; existence of Bj) the solution has the form

54 ,Ual...ap:Bal...Bap,vxl...%,,
Xy *® ’

i.e. a particular choice of g% """ % is p! Bl% ... B%] Moreover
p A Y N SV N )

in this case an arbitrary p-vector v**'**» defined in a point of
X,, also determines a p-vector in X, according to

(55) 'va""a":BZiH'BZ:UxI'”x",
but is not itself uniquely determined by 0™ "% except for

the same row and column. + stands for ,,given’’, — for ,,not given”. All cases
can be obtained by giving none, one, two or three of the three independent quan-
tities n,  and |3|, which determine independently the rigging the orientation and
the normalisation respectively.

13) The relations between ordinary quantities have been treated by J. A.
ScHOUTEN [l.c. in note §)].

14) Such a p-vector in X, is said to ,lie in X .
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p = 0, where (55) simply becomes v = v. 'v™"""» can be called
the projection of v™*****® in the direction of the rigging upon the
local E, tangent to X,,.

By means of (9) and the analogous equation in X ,, the equa-
tions corresponding with (50), (54) and (55) are found. They
contain a covariant (n—p)-vectordensity of weight — 1 in X,
and a covariant (m—p)-vectordensity of weight 4 1 in X,,.

In case 8 (normalisation; existence of £y, ... lk) forp=zk=n—m

still another quantity in X,, is determined by an arbitrary
p-vector 17 | iz,

1
r e Gy 1 opay o pag gy
(56) v K Bxl Bk,_kv t"p—k+l“‘”ﬂ °

X celdy * 3 1 cen
If o™ is simple, the (p—Fk)-direction of v*1---%s tx,,_m... x,
and of "p™ "%-* js contained in the (p-+m—n)-dimensional

intersection of the p-direction of v™ **» and the local m-direc-
tion. By (56) v"**"**» is not uniquely determined for a given
"™ Yk (except for p=n, p—k=m). In case 4 however (and
in case 8 for p = n) each g-vector "v™ "% in X, determines
a (g+k)-vector ""v*1: ¥+ in X, = according to

k
(57) e Rk (‘I-ll; )”val e B B[;‘x cee B:u p¥ar - Harr] |
1

e

which is uniquely determined by ""v™ "%, the solution of (57)
being

1, 0.0 __L L N e Y
(58) v = k! B"l B"cv " t"q+1 R P
By means of (9) and the analogous equation in X, the equations
corresponding with (56), (57) and (58) are found, containing a
covariant (n—p)-vectordensity of weight — 1 in X, and a
covariant (n—p)-vectordensity of weight — 1 in X :

’" _1 RA A
(59) by ..o, = 51 Byl Bylv, a5 (case 3)
’" o b, pbia _
(60) b .2, =35 B B3 "0y ...p, | (case 4, for I =0
17, A }» r
(61) ..o, =8 By v B! by .2, also case 8)

where | = n — p.

With respect to the special coordinate-system the equations
(55) and (56) take the very simple form

(62) ‘o™ % =M% (p <m, case 2, for p = 0 also case 1)
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(63) ”val"'ap—k — 8__]_ val...a,,_k, m+1,...,n (pgk:n~m, case 3)’

eg. form=n—1, p=1, (k=1,¢=0), n =2:

(64) % = v%; (case 2) ' .
together valid only in case 4.

(65) v = 3710"; (case 8)

The equations of the corresponding densities are (I=n—p,
k=n—m)

(66) V8 B = OB Bins mALen
(67) "Og g, =87 g
eg.form=n—1, p=n—1, (k=1, I=1)
(68) ‘b =1,

(69) "o = 57

It is remarkable, that in case 4, if m = p =k = n — m (which
is only possible if m = —;«n) both quantities "v" " % and "' *** *»-*
in X, exist and that these two quantities together for m =mn — 1
determine completely the p-vector v " in X, as follows from
(62) and (63).

B. Ordinary covariant p-vectors.

For p =m a covariant p-vector w; 2, in X,, defined in
a point of X,, always (i.e. in case 1) determines a covariant
p-vector in X,, viz.

, A A,
(70) Wy, ..o, = Byl oo Bywy ;-

If W, is simple this quantity is the intersection of Wy g,
with the local E,,. By equation (70) W, ., is not uniquely
determined. In case 2 (rigging) however (and in case 1 for p=0)
each covariant p-vector ’wb1 ..b, in X,, determines such a quan-

tity in X, according to

(71) Wy, 5, = B B s
which is uniquely determined by Iwb,---b,,’ the solution of (71)
being
(72) Wy .y :Bti;l"'ng wy g
1 v 1 K4 1+ /p

If ’wbl"'by is simple, the (n—p)-dircction of lel---}-y contains
» and the

“ U

and is composed of the (m—p)-dircction of "z,
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(n—m)-direction of the rigging. By means of (10) and the ana-
logous equations in X, the equations corresponding with (70),
(71) and (72) are found, containing a contravariant (n—p)-
vector-density of weight 4+ 1 in X, and a contravariant (m—p)-
vector-density of weight + 1 in X .

In case 8 (normalisation, existence of th ... lk) a covariant

g-vector "w,  , in X, determines also a covariant (g+k)-

vector "w,; in X,, according to
Lo

<Ay

17 . q+k ’” bl...bq
(78) wzl...m—( k ) Woy ot B 0y A g B ?

by...b, . .
as the alternated product of """ M Ay with B s doen 1S not

affected by the ambiguity of ﬁ?lm.bq/ll...lq'

If "w, . ., is simple, "w, ;  also is;its (n—g—k)=(m—q)-
direction is the same as the (m—g)-direction of ""w, _, and is

.. b,

contained in the local m-direction of X,,.

In case 4 equations (73) have the solution

’” 1 52 Aorr Aggr--- A

(74) Wy, .0, = 37 Doy oo Byt "y g T
This solution however is valid already in case 8 though n** "
is not uniquely determined then. In fact, as the ambiguity of
#1:-% consists in alternated products containing a factor B,

n
and as the transvection of le . with ¢ + 1 or more
10 Aoy

factors B vanishes, this ambiguity bears no influence upon the
left side of (74). Hence in this case "wll”_ A
be considered to represent the same object.

Moreover in case 4 an arbitrary covariant (g-+k)-vector
Wi A defined in a point of X, determines a covariant
g-vector in X,, according to

and "w, , can
+k b ]

A y,
a+1: Mtk
n H

1 A A
r” e —— CEENY
(75) wbl Lob T k! Bb: Bb: wll ..

'3 N }'0+k

but evidently is not uniquely determined by it (except for
qgq=m, ¢+ k=mn). ”wblmbq can be called the projection of
Wi ek in the direction of the rigging upon the local E,,
tangent to X,, . If we take for m = n — 1 the special coordinate-
system mention ed above, the equation (75) takes the very
simple form

(76) "We e = B,y

30
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By means of (10) and the analogous equation in X,, the
equations corresponding with (78), (74) and (75) are found,
containing a contravariant (n—p)-vectordensity of weight + 1
in X, and a contravariant (n—p)-vectordensity of weight 4 1
in X,,

a

(17) "M = 58:::;2 W (case 4, for I =0 also in case 8)

cea Xy ”mal"'al

(78) " = gt B

T (case 8).

(79) nmal... a; — 5 B:i"".al ,,m

With respect to the special coordinatesystem the equations
(70) and (75) get the very simple form

(80) 'wﬁl...ﬂp:wﬂ,...ﬂ,; (p = m, case 1)
(81) "wg g = BWE B mir...
(p = k, case 4, for p = n also in case 3),
fi.form=n—1, p=1,n=2
(82) ’wﬁ = w,; (case 1)
(83) "w = jw,; (case 4).
The equations of the corresponding densities are (I=n—p)

(84) ;mal...a,_k:mal...o&l_k,m+1,...,n

(85) g ® g
fi.form =n—1, p=n —1

(86) = mw,

(87) "t = 5.

It is remarkable, that in case 4, if m = p = k (only possible if

1 . . .
m = 5n) both quantities ‘wy, ... and w, , in X, exist and
» Lo

that these two quantities together determine for m =n — 1

p—

completely the p-vector wy .., W X, as follows from (80)
and (81).
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We collect the results in the following table 15):

Table 5.
X, Case X, Case
= o >k Xm
p=m p=
1 2 3 4
v"l" %y B‘;. ’0“1“"’1) v"l""‘p (B;), t Bt;' s t ”v“l"'“r—k
~Zp=0 —_— —_ —_—
,
V3. Db by D34 "0p,.unby
L %y Bzg B: By By Ity Ay B:, (n) B:, n A R P
— == ZSp=n| &
’, a a ’. 10 a a 17,
03 ..., (B3) B; Vb eoibpp 03,2, (BS), t |BS, ¢ Vp, ...ty
3 * ’, * r3 ’7,
| W3,..., By B W, ...b, Wh, ..., ] B}, (n) Bb_,_)n W, by
<Zp=n
m"l xy ’m"i"'“m—y m"l""‘l (Bl;.)’ t ”m“l""’l
| a
a a
Wy, B; W, .5, w4, (B3), t | B%, t || "on,.n,,
<~—pn=20 <~ <~ <
—>P= —— — e
¥ ¥ B’; rp®1Cmep LR B’;, (n) B:, n P18

C. W-Quantities.

For W-p-vectors and their corresponding W-(n—p)-vector-den-
sities the equations are:

Contravariant W-p-vectors, p < m:

-, ... @
(507W) T o Bl BT
1 ?

o a o o o (case 1°).
(54W) T = Byl B T

(35W) 0% % =B .- B2 (case 2/, for p =0 also case 1');
1 ?

Contravariant W-p-vectors, p = k:

(56W) uzal-..a,,_.k — _L Bal . “Bap—k;xl'“x"[

case 38');
k! xy Hyp—k Hp—k41'** %p ( ),

15) The arrows in the 2nd and 8rd column show which of the quantities in the
Ist and 4th column is determined by which, and analogously in the last four
columns. Near the arrows the quantities are written, used for the determination.
Quantities, which are not uniquely determined but can be used because their
ambiguity does not affect the result, are written in brackets.
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(BTW) prrEe — (p\) 1t ek BE:‘ -+ Bk gk sl (case 4, for

k ok
p = n also
1 -,
etyeay 1 opa o opa, L e, case 8').
(58W) v = k!Bxl Bxp_k v T%ﬁ—kn cer ¥y )

Covariant W-(n—p)-vectordensities of weight — 1, p = k:
(59W) "B, 4 =|3| Byt ByB, . (case 3);
(60W) "F}.l...l, = 3] BZ: Tt B;: ”Fbl---b, (case 4, for =0
= |3 B;‘: .. 'Bz/}: ,,5'11” A also case 3').

RE42]

O1W) "B, .,
Contravariant W-p-vectors w.r. to special coordinatesystem:

(62W) ‘5% = wo %y (p < m, case 2’, for p=0 also case 1')

(68W) e = | 3]‘1'(1 o ML e 1 (p =k, case 8);

eg.form=n—1,p=1, n =2:

(64W) 7% = w?0'; (case 2) together valid only in case

(65W) "D =|3|-17"; (case 3') } 4 (not in case 4').

Covariant W-(n—p)-vectordensities of weight — 1 w.r. to special
coordinatesystem:

e = (p < m, case 2', for
(66W) Vg ., = VB .8, mtlesn { p — 0 also case 1)
(67W) "Fﬂl---ﬁz =31 Eﬂl--'ﬁz (p =k, case 8');
eg.form=n—1,p=n—1, n=2:

(68W) 0 =wb, (case 2'); together only valid in
(69W) "By —|3|% D (case 8');| case 4 (not in case 4').
Covamant W-p-vectors, p < m:
- . .
(70W) Wy ..o, = @ Bi‘i ces Bb:w/ll...l,, (case 1');
, b b=
(MIW) "wy g, =0 Biie B2y .y | (case 2/, for p =0
- V) Ay = also case 1’
(72W) wbl...b”:wBbi“'Bbp Wi 4, )
Covariant W-p-vectors, p = k:

(7o P),= p—k !
(718W) W = (k> Wy ...p BM1 B T n e ] (case 8')

-k
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- 1 -
(T4W) ", |, =g Bl By At h o (case 8)
o 1 e
(75W) Wy by = 1 Bﬁ' B"::: Wy i, ookt hs (case 4/, for

p = n also case 8’).
Contravariant W-(n—p)-vectordensities of weight + 1, p=k:

(TTW) " = | 3] B,‘:: e B:iﬁ"l'""‘ (case 4/, for 1 =0;

also case 8')

(78W) ,,ro-oxl...x,: | 81__1 BZ:"'B::”FD%“.“'
w ey ... a, P R (case 3 )

(79W) "w =|3IBx1“'Bx' o

Covariant W-p-vectors w.r. to special coordinatesystem:

(80W) 'E)ﬂl"_ﬁ’ = “’Eﬂl...ﬁ (p =< m, case 1');

(81W) ”;"ﬂl...ﬁﬁ_,‘ = |3l z"’/31...)‘.?,l,_,,rn+1, on (P =k, case &, for

p=n also in case 8');
fi.form=n—1,p=1,n=2

together valid only in case 4
(not in case 4').

(82W) ';6‘3 =wz'vﬁ; (case 1)
(83W) "w =|3|w,; (case 4')

Contravariant W-(n—p)-vectordensities of weight + 1 w.r. to
special coordinatesystem:

(84W) ,h')al...u,_,‘ =w6a""al" m+l,...,n; (p §m, P 1,)

—t e - ...a, | (p =k, case 4, for p=mn
(85W) " =30 { also case 8'),

fi.for m=n—1,p=n—1,n=2.
(86W) ‘b = wi" (case 1)
(87TW) " = | 3[5“ (case 4")

together valid only in case 4
(not case 4).

From (62W) and (68W) follows that for m = n — 1 the W -p-
vector U1 2 is comp]etely determined by ‘5™ % and "™ %1,
The same holds for wl A0 ’wb b, and ' wb b, in (80 W)
and (81 W). All formulae differ from the correspondmg ones

for ordinary quantities only by a factor o at the right. From
this follows that the cases 1’, 2’, 8’, 4’ play now the same role



470 J. A. Schouten and D. van Dantzig. [24]

as the cases 1, 2, 8, 4 for ordinary quantities 8). We collect the
results in the following table:

Table 6.

X, Case X, Case ‘

PR

—=p=0 B‘;’ w

’

1By

B,bt’ ® B:, o T e R 1oL Ry B:’ ) BZ’ v rry e —k
i“; «— =< p=n <~
a

p
Y ..

D
Ay byebpmp Ao Ay 1eeeby
W [0) b % "
by...b, bty || Bos ) By, v by by
By, w By, o TZp=n| —>
.71 —_ —_— ,Eal [ Tn-nl...nl (B;.)’ T ,,mal...a,
a % " a a 1,
-4, B;, @ byeeeby dyeeody (B%), = B, 7 Wi by
<~—pn =0 < < <~
—P i - —_—

,%al...am_” 1R B;;, (v) B*, » R

= <
BN

From (64, 65, 68, 69, 82, 83, 86, 87) and (64W, 651/, 68W,
69W, 82W, 83W, 86W, 87W) it is easy to deduce the quantities
in X, _; derived from an affinor or affinordensity in X, which
can be written as a sum of products of vectors and vectordensities
of suitable weighs. E.g. the W-affinordensity %’; of weight 4 1
can be written as a sum of products of a covariant vector and a
contravariant W-vectordensity of weight + 1 and therefore,
according to (82, 83, 86W, 87W) gives rise to the following
quantities in X, _,:

| 3] ‘,E; ; W-affinordensity of weight + 1, (82, 87W, case 4).
313 SJ'SZ ; contr. W-vectordensity of weight + 1, (83, 87W, case 4).

(88) z
) ‘B; ; cov. W-vectordensity of weight + 1, (82, 86W, case 1').

o 5|SE: ; W-density of weight -+ 1, (83, 86W, case 4).

16)  But it must be remarked that 4’ does not include 1’, 2" and 8’ but only 1,
2 and 38".




[25] On ordinary quantities and W-quantities. 471

9. Generalisation of Stokes formulae for ordinary quantities
and W-quantities.

In X, we consider an orientable and closed X, called 7,
bounding a simply connected part 7,,, of an orientable X ..
Them-dimensional element with an interior orientation be df* " %=,
the (m-+1)-dimensional element with an interior orientation of

X i1 be dft:-#m41, The orientations are chosen in such a way
that the direction from an interior point of 7,.; towards the

boundary followed by the orientation of d f** gives the
orientation of d f**"***m+1, Be now vy, .5 an m-vector field

that satisfies the ordinary conditions of continuity. Then in a
well known way we may derive 7)

(89) J‘(b/‘ vllw-lm) df'ull}"'” — J‘vll.“lmdfll...lm‘
Tm

Tm+1

If we introduce in this formula p*m+1---%n i . and
m+1°* " fon
.18
f,’[m e A, WE get four other forms: 18)
- By 1 PR
(90) Ffd fll"'}-nb,u D “(h—{—])! dfll...ﬂ.h_ub 1 h+1;
Tm+1 Tm h = n —m — 1

1 1
(91) mf(b[,,t Upy o a) A ey = mfvml...zmdfxl...xw]

Tmy1 Tm
(92) J‘df,u[;cl}.mb‘ubxlxh] :fdf[lllmt)%lxh]
Tm+l Tm

17) ScHOUTEN-STRUIK, Einfithrung I, p. 130; Ricci-Kalkiil, p. 97, (204); earlier
literature is mentioned there. df* "“m and df*1"***m+1 differ by a factor m!
and (m+1)! resp. from f*1:"*mdz_and f*1'* *m+1dg . used in R.K.

18) The formulae (90), (91) an (92) correspond with (211), (210) and (208)
in R.K. p. 98 where still multivectors in stead of multivectordensities were used.
(90) occurs for the special but typical case of Maxwell’s equations in D. vaN
DanTz1G, The fundamental equations of electromagnetism independent of metrical
geometry [Proc. Cambr. Phil. Soc. 30 (1934), 421—427]. The formulae (89—93)
occur as (I), (II), (IV), (III’) and (III) in J. vAN WEYSSENHOFF, Duale Grofen,
GrofBirotation, Grofidivergenz und die Stokes-GauBlchen Sitze in allgemeinen
Riumen [Ann. de la Soc. Pol. de Math. 16 (1937), 127—144], 141, 142. In
IIT there is a misprint, the index »x being not excluded from the alternation.
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(93) (mil) J\df[v}qlm b[u b“l"h]/“ — (:’1) fdfmll"' xl...x,,v],
Tm

Tm+1

The formulae (89) and (90) are valid for an X,, ‘n X, with
an interior orientation. But they cannot be used in the case
more frequently occurring in physical applications of an X,
with an exterior orientation (inducing also an exterior orientation
in 7,.). In order to derive the formulae of Stokes for this case
we introduce the following W-quantities

K1 Emga Ty p®1 Ky T 7

(94) df =kdf 5 df, ., =kdf,
bt 2R - Ky X, - -

(95) df = kdf s dfp e, = kAT

St Rk VE R szl R Y51

(96) v .2, =Fkvy 2.3 0 ,
where k is a W-scalar which has with respect to some given
coordinatesystem e.g. (») the constant value 4 1 and transforms
according to the formula

) o4 =
(97) k=1a7 k-
Then we get
- T A - Ty A
(98) .[(bz!vlz...gmﬁ)df ! “ZJUM"'M df™
Tm+1 Tm
1 (.= Ay A 1 - =y Ap
(99) h! J‘d fll"'lh b,"‘D B (h+1)! df’ll'“lhnn ' "
Tm+1 Tm
100) - (3, 7 df. 3 df,
(100) M ( [/ngl...zm) f,,l...x,_] :(h+l)!fv[,12...;,m fm---%»lt]
7m+l Tm

(101) fdj"/‘[lx v Am bﬂ“ﬁ"l <o %) — Jd?[ll v Pm 'B[”r'"‘h]
1m

Tm+1

o () a7 e

Tm+1 Tm

They evidently are independent of the choice of % and there-
fore invariant under arbitrary transformations of coordinates.
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If we consider only changes of the coordinatesystem for which

4in 7, and on 7, has everywhere the same sign, also for-
mulae hold like

1 - A "'lh”_ 1 < ll"'}'hl
(103) ﬁfdfll--.lhbub 1 RTTET A R W +,

Tm+1 Tm

They express equalities between two W-scalars, which in this
special case can be defined for the whole region concerned.

(Received July 8rd, 1939.)



