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On ordinary quantities and W-quantities
Classification and geometrical applications

by

J. A. Schouten and D. van Dantzig
Delft

1. Interior and exterior orientation.

We consider an En 1) in which an orientation (n-dimensional
screw-sense) is determined by an ordered sequence of n indepen-
dent directions each with a definite sense 2). Now suppose an
Ep, 0  p  n to be given in En. This E p in En determines
uniquely an En_p (not lying in En) in the following way: all

Ep’s totally parallel with the given one can be considered as
elements of a set, which is an (n-p)-dimensional plane manifold
in which an affine geometry is induced, i.e. an En_p. This. process
of obtaining the En_p is called "Zusammenlegung" by Weyl
(analogous to "stetige Zerlegung" in topology) and is also descri-
bed by saying that in each Ep all points are "identified".
Now we can either define a p-dimensional orientation in the

Ep or an (n-p )-dimensional orientation in the En-p. In the first
case we say that the Ep as well as its p-direction has got an
interior orientation, in the second case we say that it is provided
with an exterior orientation. The notions of interior and exterior

orientation were introduced by Veblen and Whitehead 3). For
p = 0 and p = n we define the orientation as follows:

The interior orientation of an Et, is a + or a --sign, the
exterior one is an ordinary orientation of the En. The interior
orientation of the En is just this ordinary orientation, the exterior
one is a -f-- or --sign.

1) En = n-dimensional space with ordinary affine geometry.
2) Comp. E. 1 (Einführung in die neueren Methoden der Differentialgeometrie

by J. A. SCHOUTEN and D. J. STRUIK, Vol I [Noordhoff 1935]), p. 16.
3) O. VEBLEN &#x26; J. H. C. WHITEHEAD, The foundations of differential geometry

[Cambr. Tracts in Math. 29 (1932)], 55, 56.
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2. Contra- and covariant p-vectors. 4)
be cartesian coordinates

in an En. Any other system 1’ (x’, Â’, ..., i’ = l’, ..., n’ ) of

cartesian coordinates in this En is connected with the first one
by equations of the form:

where the Ax and A ô are constants.
A contravariant p-vector V’X1... ’X 2) is defined by its transfor-

mation formula

and its property of being alternating with respect to all suffixes.
If it is simple (i.e. the alternated product of p vectors) it can
be represented by a (e.g. simply connected) part of an Ep with
an interior orientation. Two such parts determine the same

p-vector if and only if 1° the E. s are totally parallel, 2° the two
p-dimensional volumes are equal, 3° the orientations are the sanie.
The (ml, ..., xp)-component is determined by the projection of
the oriented part of the Ep upon the Ep of the contravariant

measuring vectors the (n-p)-direction in which the

4) The results of § 2 - 5 were first published in J. A. SCHOUTEN, Ü’ber die

geometrische Deutung von gewôhnlichen p-Vektoren und W-p-Vektoren und den

korrespondierenden Dichten. [Proc·. Amsterdam, 41 (1938), 709-716].
5) The orientation of the parallelogram on el, ex is the one belonging to el’eâ] .3 1 3 1
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projection is performed is the ( n - p )-direct,ion common to the

(n -1 )-directions of the covariant measuring vectors
The value of this (x1, ..., xp)-component is the p-dimensional
volume of the projection as measured by the p-dimensional
volume of the parallelotope with edges and provided
with a factor + 1 or - 1 if its orientation is the same or op-

posite as the orientation of ex, ..., ex in this order.xl xp

The projection of the orientation becomes undetermined if

and only if the Ep of V’X1." ’Xp has a direction in common with
the (n-p )-direction of the projection, in which case the volume
of the projection is zero.

A covariant p-vector wÂ1... Âp is defined by its transformation
formula

and its property of being alternating. If it is simple it can be
represented by a cylinder (the interior of which may be chosen
simply connected) consisting of ooP-1 (2 for p =1 ) totally parallel
En-p’s (the generators) with an exterior orientation of their

(n-p)-direction. Hence the set of ooP-1 En-p’s is oriented.
Two such cylinders determine the same p-vector if and only if
1° their (n-p )-directions are the same, 2° they intersect from

one (and then from every) Ep which has no direction in common
«Tith the (n -p )--direction, parts with equal p-dimensional volumes,

29
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and 30 the orientations are the same. The Â1... Ap-component
is the reciprocal value of the p-dimensional volume of the in-
tersection of the cylinder with the as measured

by the parallelotope of these vectors. It is positive or negative
if the orientation of W Âl o has the same or the opposite
sense resp. as the orientation of in this order.

3. Ordinary contra- and covariant p-vectordensities.
An ordinary contra- or covariant p-vectordensity of weight w

is defined by its transformation-formula

resp. and by its property of being alternating. For p - 0 we get
ordinary scalardensities of weight zou.

In an En three quantities are given a priori:
A. The unit affinor A"’ with the components

with respect to every system of coordinates.
B. The contravariant unit n-vectordensity

+ 1 defined by

with respect to every system of coordinates;
C. The covariant unit n-vectordensity

defined by

with respect to every system of coordinates.
Hence a one to one correspondence exists between the set of

all contravariant p-vectors and the set of all covariant (n-p)-
vectordensities of weight - 1 and also between the set of all
covariant p-vectors and the set of all contravariant (n-p)-
vectordensities of weight + 1:
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In particular with a scalar p correspond both a co- and a contra-
variant n-vectordensity

Of course the geometrical representations of corresponding
quantities are the same. For densities of other weights no such
simple geometrical representations exist.

Table 1 shows the quantities considered here for n = 3.

Table 1.

4. W-quantities.

Aside ordinary densities we can also consider densities, in the
transformation-formulae of which the absolute value 1 L11 ] is taken

instead of d itself. As they were introduced by H. Weyl 6) we
call them W-densities and distinguish them from ordinary
densities by a - above the central letter. If the weight is w,
their transformation formulae are

g) RZM, § 13, 4th Aufl., 98.
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For p - 0 we get W-scalardensities. As long as we consider
only (real) transformations with L1 &#x3E; 0, there is no difference

between W-densities and ordinary densities. But this restriction
is equivalent with giving an orientation in Xn, viz. the orientation
of e’, ..., el in this order 7). Hence the geometric interpretation1 n

of a W-density can only differ from the interpretation of a

corresponding ordinary density by the orientation. Hence it is

to be expected that we may, at least in the cases = + 1 resp.
w = - 1 where we have simple geometrical representations,
obtain W-densities from ordinary densities by interchanging
interior and exterior orientations.
Take for instance a part of an Ep with an exterior orientation

and fix the rules about equivalence and building of components
in the same way as for an ordinary p-vector, the (x1 ... xp)-
component being positive or negative if the projection of the
exterior orientation has the same or the opposite sense resp. as
the orientation of ex , ..., ex in this order, where x1, ..., xn is

Xp+1 xn
an even permutation of 1, ..., n. Hence, if the quantity thus defined,
which we denote by ’g’l « *"-,’has the same components as an
ordinary contravariant p-vector with respect to one system of
coordinates, this will be true also for all systems of coordinates
that can be deduced from the first one by transformations with
4 &#x3E; 0, but the sign changes if we take a transformation with

4  0. F’rom this follows the transformation-formula of V-"1..."’j)

and, if we define

also:

7) Cf. VEBLEN &#x26; WHITEHEAD l.e.
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is a covariant W-(n-p)-vectordensity of iveight - 1.

Accordingly the quantity v xl ’ ’ ’ xp will be called a contravariant

W-p-vector.
In the same way we define a covariant W-p-vector W;ol....Îop

by its transformation-formula

and its alternating property. This quantity is geometrically equi-
valent with the contravariant W-(n-p )-vectordensity

of weight + 1 and can, if it is simple, be represented by a cylinder
(the interior of which may be chosen simply connected ) consisting
of ooP-1 totally parallel En_p’s with an interior orientation of their
(n2013p)-direction. The rules for equivalence and the building of
components are the same as in the case of the ordinary covariant
p-vector; the component is positive or negative if the orientation
of WÂlo 00 Â1) has the same or the opposite sense resp. as the orien-

in this order, where Â1, ..., Ân is an even

permutation of 1, ..., n.
For p == 0 we get W-scalars with the transformation-formula

With F correspond both a co- and a contravariant W-n-vector-
density of weight - 1 and + 1 resp.:

Contrary to an ordinary scalar a W-scalar has an (n-dimensional)
orientation, viz. the orientation of the coordinate system with

respect to which p is positive. But a W-scalardensity of weight
+ 1 or - 1 has no orientation because it is equivalent with a
covariant or contravariànt W-n-vector resp. and is represented
by an n-dimensional volume without orientation.

Table 2 shows the W-quantities considered here for n, = 3.
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Table 2.

An example of a W-scalar is: p = + 1 for all right-handed
systems and p = - 1 for all left-handed systems. Quantities of
this kind are called sometimes "pseudoscalars" in physics.
W-vectors are occasionally used in physics but only after the
introduction of a metric 8). lklr. St. Golab 9) has proved by solving
a functional equation, that all geometric objects with only one
component, whose transformation depends on L1 only, can be
deduced from the four objects: scalars, W-scalars, ordinary
scalardensities and W-scalardensities. From this theorem follows
that the classification we have used here is really exhaustive.

5. Identification of quantities.

After introducing a unit of volume, a metric or an n-dimensional
orientation identifications arise between the different quantities
derived. We take the case n = 3 as an illustration, the generali-
sation being obvious. (Cf. table 3)
The four directed quantities occuring after introduction of

8) For applications without a metric comp. D. v. DANTZIG, On the phenome-
nological thermodynamics, [Physica 6 (1939), 673-704] ; On relativistic therrno-
dynamics, [Proc. Amsterdam, 42 (1939) 601-607] ; On relativistic gas theory,
(Le., 608-625].

9) ST. GOLAB, Über die Klassifikation der geometrischen Objekte [Math.
Zeitschr. 44 (1938) 104-114].
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a unit of volume, are known in litterature (from left to right)
as polar vector, polar bivector, axial bivector, axial vector.

After introduction of a metric the difference between polar and

Table 3.

axial and between scalars and W-scalars remains. This is the

point of view often found in publications on physics. After in-
troduction of a screw-sense and a metric (this includes 1, II,
III and IV) all differences between directed quantities and the
difference between scalars and W-scalars vanish.

6. Quantities in Xn.

We consider an n-dimensional differentiable manifold Xn.
Let el(m, Â, y, v, n, e, a, z =1, ..., rt) be a set of coordinates in
a sufficiently small part of this Xn and $’l’(x’, À’, ..., i’ = 1’, ..., n’ )
another set of coordinates with

It is well known that ivre define all quantities in the local En of
a point of Xn using in the formulae of transformation A;, O}. x’
in stead of the constants Al’ in (1). In this way we get in each
local En ordinary quantities and W-quantities.
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7. Imbedding of an Xm in an Xn. 1°)

If an Xm is imbedded in an Xn the following eight cases are
important. We ivrite k for n - ln and suppose lîa (a, b, ..., g =
= l, ..., m) to be coordinates in the X.. Further we denote

by Bg the unity-affinor in
unit-m-vectordensities in X m and by D the transformation-

modulus D = det (Bg’) in Xm.

CASE 1. Pure imbedding without any auxiliary assumption.
To every point qa of the X1n belongs one and only one point

of the Xn, given by equations of the form

In every point of the X1n two quantities exist:
1° the aff inor

a connecting quantity behaving like a system of m contravariant
vectors with respect to transformations in Xn and like a system
of n covariant vectors with respect to transformations in X m;

2° the simple k-vectordensity

a connecting quantity with the weights + 1 and - 1 with respect
to transformations in X m and Xn respectively:

Bb as well as t‘1, , , ak are geometrically represented by the

tangent Em in the local En. They are related by the identity

CASE l’. 1 rnbedding with exterior orientation.
The orientation is an exterior orientation of the tangent E,,

in every point of the Xm and can be given by any quantity w with
the absolute value + 1 and the transformation-formula

1°) The eight different cases of imbedding were first treated in J. A. SCHOUTEN,
Über die Beziehungen zwischen den geometrischen GrôBen in einer Xn und in

einer in der Xn eingebetteten X,,, [Proc. Amsterdam, 41 (1938) 568-575].
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In fact, because of (25), (27) the quantity rot).1 ... ).k has the trans-
formation-formula

and this is the same as that of a covariant k-vector except for
an always positive factor. Hence úJ tÂ1... Âk determines a k-

dimensional orientation in every Ek having no direction in

common with the tangent E,,,. If in any point of the Xm the

orientation gives the orientation of in this order,

then we choose in that point always
In each Ek having no direction in common with the tangent

Em in case l’ a contravariant alternating quantity n’)(t ... ’)(k with
the transformation-formula

satisfying the invariant condition

is determined except for a positive factor. Except for a factor
+ 1 this quantity transforms in the same way as a contravariant
k-vector. Hence it determines such a k-vector except for the
orientation. Now suppose a k-vector pxl ’ ’ ’ xk is given except
for a factor -4- 1. Then 1,-e can determine a quantity n’Xl... ’Xk

by the equation

(where sgn (z ) = 1: 1 for z # 0 and sgn (0) = 0). From this

follows, that the géométrie representation of a quantity with
the transformation (29) satisfying the condition (30) is a part
of an Ek having neither an interior nor an exterior orientation.

CASE 2. Rigged imbedding.
An Xm in an Xn is called "rigged" ( "eingespannt" ) if in every

point of Xm a k-direction is given, having no direction in common
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with the tangent E m. This k-direction can be given by an affinor
B’1 with the following properties: 10. its x-region consists of all
contravariant vectors of the local Em and its Â-region consists
of all covariant vectors whose (n -1 )-direction contains the k-
direction of the rigging, 2°:

From Bb and B’1 an aff inor Bi can be uniquely determined by
means of the equations

The Â-region of B1 is the same as the A-region of BQ . Bb and Bi
together determine B1 uniquely by (33b). The rigging determines
also uniquely and is determined by the simple k-vectordensity

a connecting quantity with the weights -1 and +1 with respect
to transformations in X m and Xn resp. and satisfying the relations

In the cases 1 and l’ BÂa can not be uniquely determined,
as then (34) fails, and the solutions of (33) alone contain arbitrary
parameters. But they determine Ba partly and well enough in order

if V"l... "1’ is a simple contra variant p-vector, p  m, parallel
to the tangent E 1n.
We often make use of a special system of coordinates for which

is rigged we choose the parameterlines of e-+l, ..., en in such a
way that they have in every point of the X m a direction lying

11 ) Coordinate systems of this kind are transformed into each other by trans-
formations of a group studied by A. KAWAGUCHI, The foundation of the theory
of displacements II [Proc. Imp. Academy 10 (1934), 45-48]. From this remark
follow the relations between our paper and the investigations of KA W AGUCHI,
S. HOKARI, Über die Übertragungen, die der erweiterten Transformationsgruppe
angehôren [Journ. Hokkaido Imp. Univ. 3 (1935), 15-26; 4 (1935) 14-50],
S. GOLAB, Über eine Art der Geometrie von Kawaguchi-Hokari [Ann. Soc. Polon.
biath. 16 (1937) 25-30], and the investigations of T. HosoKAwA, A. WUND-
HEILER, V. HLATATV, E. CARTAN, T. Y. THOMAS, J. A. SCHOUTEN and S. GOLAB,
quoted in this latter paper.
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in the k-direction of the rigging. If we use
as coordinates in the X. we have for that system

and all components of 
in this order determine the exterior

orientation of the tangent Em and - 1 in the other case.

CASE 2’. Rigged imbedding with exter2or orientation. This case is a combination of l’ and 2 and requires w as well
as B’1 to be given.
With respect to the special coordinate system mentioned above

the condition (30) for the non oriented quantity nml *’* "I is

and the equation (31) takes the form

CASE 3. I mbedding with normalisation and exterior orientation.
In every point of the X yn a simple covariant k-vector t,,... )Bok

is given whose m-direction lies in the tangent E rn. It determines
uniquely and is uniquely determined by the scalardensity

of weights - 1 and + 1 with respect to transformations in Xn
and Xm respectively. Obviously

In each Ek in the local En, having no direction in common
with the tangent E m , tÂ1... Âk determines (by section) uniquely
a contravariant k-vector pX1... "k satisfying the equation

With respect to the special coordinate system mentioned above
ive have tm+l,..., n - à-’ and all components with a suffix  ni

vanish. 

CASE 3’. 1 mbedding 1.vith normalisation without orientation.
We get this case by giving i b 1 instead of ô. Then instead

of t)., ...., only the quantity
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is determinéd, and v.v. Í Âl ... aLk determines 1 a 1. . The géométrie
representation is a cylinder consisting of OOk-1 (2 fork=1)
totally parallel E 1n’s, all parallel with the tangent E m, but

having neither interior nor exterior orientation. With respect
to the special system of coordinates mentioned before,

Ím+l, ..., ’It  ! S ! 1-1, and all components with a suffix  m vanish.
In each Ek, having no direction in common with the tangent Em,
ÍÂ1... i détermines a non oriented contravariant quantity as

considered under case l’ and determined by the equation

CASE 4. Rigged imbedding with normalisation and exterior
orientation.

This case is a combination of 2’ and 3 and requires Bx and a
to be given. In the k-direction of the rigging a simple contravariant
k-vector n’Xl... xk = à e’X1 ... 

’Xk exists, which is uniquely deter-
mined by the conditions

and for which the équation

holds. With respect to the special system of coordinates menti-
oned before nm+1 w’z -. a and all components with a suffix

ni vanish.

CASE 4’. Rigged imbedding with normalisation without orientation.
This case is a combination of 2 and 3’ and requires B1 and

1 à 1 to be given. In the k-direction of the rigging a non oriented

contravariant quantity vxl ’ ’ ’ xk = 1 a I e"1 ’ ’ ’ x exists, which is

uniquely determined by the conditions

and for which the equation

holds. With respect to the special system of coordinates men-
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tioned before Vm+1,..., n === 1 Õ ] and all components with a

suffix  m vanish.
The following table shows the different cases and the quan-

tities involved 12 ).
Table 4.

Fig. 3 shows the eight different cases for the imbedding of
an X2 in ordinary space.

Fig. 3.

12 ) The quantities with k indices are denoted by their central letter. Quantities
in brackets in the last row or column can be derived from the othcr quantities in
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8. Relations between quantities in Xm and Xn. 13)

A. Ordinary contravariant p-vectors.
A contravariant p-vector ’val...a’j) (p  m) in a point of

Xm détermines uniquely a contravariant p-vector ’V"l" . "fi in
the corresponding point of Xm according to the equation

Because of (26) we have

At the other hand each p-vector ’vx1 "’ x9 (p  ni) with respect
to transformations in Xn, defined in a point of X m and satis-
fying (51) 14) determines uniquely a p-vector ,Va, ’*’av defined
by (50) as these equations have a unique solution. It can be
written in the form

where is determined except for the product of an

arbitrary alternating quantity These

quantities can all be derived from

In case 2 (rigging; existence of BÂ) the solution has the form

i.e. a particular choice of Moreover

in this case an arbitrary p-vector defined in a point of
X m also détermines a p-vector m Xm according to

but is not itself uniquely determined by ’val... aZ, except for

the same row and column. + stands for "given", - for "not given". All cases

can be obtained by giving none, one, two or three of the three independent quan-
tities n, w and 1 ry 1, which determine independently the rigging the orientation and
the normalisation respectively.

13) The relations between ordinary quantities have been treated by J. A.
SCHOUTEN [I.c. in note 8)].

14) Such a p-vector in Xft is said to "lie in X m".
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p = 0, where (55) simply becomes ’v = v. ’val... afl can be called
the projection of V"l... » "P in the direction of the rigging upon the
local En tangent to Xm.
By means of (9) and the analogous equation in X m the equa-

tions corresponding with (50), (54) and (55) are found. They
contain a covariant (n-p)-vectordensity of weight - 1 in Xn
and a covariant (m-p)-vectordensity of weight + 1 in X m.

In case 3 (normalisation; existence of
still another quantity in Xm is determined by an arbitrary
p-vector

If is simple, thé (p2013k)-direction
and of "val...a’P-k is contained in the (p + m -n )-dimensional
intersection of the p-direction of v"1 ’ 

... xp and the local m-direc-

tion. By (56) el**’ml’ is not uniquely determined for a given

in case 3 for p = n ) each q-vector "Val... aq in X m determines

according to

which is uniquely determined by the solution of (57)
being

By means of (9) and the analogous equation in Xm the equations
corresponding with (56), (57) and (58) are found, containing a
covariant (n-p)-vectordensity of weight - 1 in Xn and a

covariant (n-p)-vectordensity of weight - 1 in Xm:

where 1 = n - p.
With respect to the special coordinate-system the equations

(55) and (56) take the very simple form
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The equations of the corresponding densities are (l=n-p,
k=n-m)

It is remarkable, that in case 4, if m &#x3E; p &#x3E; k == n - m (which
is only possible if m &#x3E; n) both quantities ’va1 ’ ’ ’ ap a,nd "val’" ap-k2

in X m exist and that these Two quantities together for m = n - 1
determine completely the p-vector v" xp in Xn as follows from
(62) and (63).

B. Ordinary2’ covariant p-vectors.
For p  m a covariant p-vector w,1¡... ,1p in Xn, defined in

a point of X m, always (i.e. in case 1) determines a covariant
p-vector in X m, viz.

If WÂ.1... J.p is simple this quantity is the intersection of w Â.1 ... Â.p
with the local Em. By equation (70) W;’l... Â.p is not uniquely
determined. In case 2 (rigging) however (and in case 1 for p=0)
each covariant p-vector ’Wb 1... b p in Xm determines such a quan-
tity in Xn according to 

which is uniquely determined by the solution of (71)
being

If 1 wb! ...6 is simplc, the (n-p)-direction of
and is composed of the (m-p )-direction of

contains

and th(
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(n-1n)-direction of the rigging. By means of (10) and the ana-
logous equations in X m the equations corresponding with (70),
(71) and (72) are found, containing a contravariant (n-p)-
vector-density of weight + 1 in Xn and a contravariant (m - p)-
vector-density of weight -E- 1 in Xm.

In case 3 (normalisation, existence of tÂ1... Âk) a covariant

q-vector "Wb1...ba in X m determines also a covariant (q+k)-
vector "W1 1B.1 ... IB.q+ 1 k in Xn, according to

as the alternated product of is not

affected by the ambiguity of

direction is the same as the (m-q)-direction of "U’bl". bq and is
contained in the local m-direction of X m.

In case 4 equations (73) have the solution

This solution however is valid already in case 3 though n,"1 ... 
x

is not uniquely determined then. In fact, as the ambiguity of
n"l." "k consists in alternated products containing a factor B,
and as the transvection of l’ZVÀI...Âq+k with q + 1 or more

factors B vanishes, this ambiguity bears no influence upon the
left side of (74). Hence in this case "’nyÂ,, ... Âq+k and "Wb1’" bQ can
be considered to represent the same object.
Moreover in case 4 an arbritrary covariant (q+k)-vector

W À1 ... Âq+k defined in a point of X m determines a covariant

q-vector in X m according to

but ev idcntly is not u niquely determined by it (except for
q = m, q + k = n). "wbl ... b, can be called the projection o f

wÀ1...).t1+k in the direction of the rigging upon the local Em
tangent to X m . If we take for m - n - 1 the special coordinate-
system mention ed above, the equation (75) takes the very

simple form



466

By means of (10) and the analogous equation in X m the
equations corresponding with (73), (74) and (75) are found,
containing a contravariant (n -p )-v ectordensity of weight + 1
in Xn and a contravariant (n - p )-vectordensity of weight + 1
in X.

With respect to the special coordinatesystem the equations
(70) and (75) get the very simple form

The equations of the corresponding densities are

f. i. for

It is remarkable, that in case 4, if m &#x3E; p &#x3E; k (only possible if
m &#x3E; 1 n ) both quantities ’wbl... b, and Wb1... bD-k in Xm exist and

1 D 1 D-k

that these tzto quantities together determine for m = n - 1

completely the p-vector W).l... )01) in Xn as follows from (80)
1 

and (81).
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We collect the results in the following table 15):

Table 5.

C. W-Quantities.
For W-p-vectors and their corresponding W-(n-p)-vector-den-

sities the equations are:
Contravariant W-p-vectors, p  m:

Contravariant W-p-vectors,

15) The arrows in the 2nd and 3rd column show which of the quantities in the
Ist and 4th column is determined by which, and analogously in the last four
columns. Near the arrows the quantities are written, used for the determination.
Quantifies, which are not uniquely determined but can be used because their

ambiguity does not affect the result, are written in brackets.
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Covariant W-(n-p)-vectordensities of weight

Contravariant W-p-vectors w.r. to special coordinatesystem:

Covariant W-(n-p)-vectordensities of weight - 1 w.r. to special
coordinatesystem :

Covariant W-p-vectors,

Covariant W-p-vectors,
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Contravariant W-(n-p)-vectordensities of weight

Covariant W-p-vectors w.r. to special coordinatesystem:

f.i. for m :

Contravariant W-(n-p)-vectordensities of weight + 1 w.r. to

special coordinatesystem:

and (81 W). All formulae differ from the corresponding ones
for ordinary quantities only by a factor m at the right. From
this follows that the cases 1’, 2’, 3’, 4’ play now the same role
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as the cases 1, 2, 3, 4 for ordinary quantities 16 ). We collect the
results in the following table:

Table 6.

From (64, 65, 68, 69, 82, 83, 86, 87) and (64W, 65W, 68W,
69W, 82W, 83W, 86W, 87W) it is easy to deduce the quantities
in X,,-, derived from an affinor or affinordensity in Xn, which
can be written as a sum of products of vectors and vectordensities
of suitable weighs. E.g. the W-affinordensity §jl? of weight + 1
can be written as a sum of products of a covariant vector and a
contravariant W-vectordensity of weight + 1 and therefore,
according to (82, 83, 86W, 87W) gives rise to the following
quantities in Xn-1:

16) But it must be remarked that 4’ does not include l’, 2’ and 3’ but only 1,
2 and 3’.
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9. Generalisation of Stokes formulae for ordinary quantities
and W-quantities.

In Xn we consider an orientable and closed Xm called Tm,

bounding a simply connected part ’ïm+l of an orientable Xm+1.
The m-dimensional element with an interior orientation be df" * * x’",
the (m-i-1 )-dimensional element with an interior orientation of

Xm+1 be dfxl." xm+1. The orientations are chosen in such a way
that the direction from an interior point of Í m+1 towards the

boundary followed by the orientation of d f"l’ * * ’- gives the
orientation of d f"I * * * ml+’. Be now vÂ1... Àm an m-vector field

that satisfies the ordinary conditions of continuity. Then in a
well known way we may derive 17)

If we introduce in this formula and

wt::: get, njnr other 1Ul"Illbl --)

l’) SCHOUTEN-STRUIK, Einführung I, p. 130; Ricci-Kalkül, p. 97, (204); earlier
literature is mentioned there. df"’i * ’ ’- and dJ’Xl’" ’Xm+l differ by a factor m! 
and (m + 1)! resp. from J’Xl’" ’Xm d Tm and J’Xl’" ’Xm+1 d Tm+1 used in R.K.

18) The formulae (90), (91) an (92) correspond with (211), (210) and (208)
in R.K. p. 98 where still multivectors in stead of multivectordensities were used.

(90) occurs for the special but typical case of Maxwell’s equations in D. VAN
DANTZIG, The fundamental equations of electromagnetism independent of metrical

geometry [Proc. Cambr. Phil. Soc. 30 (1934), 4212013427]. The formulae (89-93)
occur as (I), (II), (IV), (III’) and (III) in J. VAN BYEYSSENHOFF, Duale Größen,
GroBrotation, GroBdivergenz und die Stokes-GauBchen Sâtze in allgemeinen
Râumen [Ann. de la Soc. Pol. de Mat. 16 (1937), 127-144], 141, 142. In

III there is a misprint, the index x being not excluded from the alternation.
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The formulae (89) and (90) are valid for an X m in Xn with
an interior orientation. But they cannot be used in the case
more frequently occurring in physical applications of an Xm
with an exterior orientation (inducing also an exterior orientation
in -r m+l). In order to derive the formulae of Stokes for this case
we introduce the following W-quantities

where k is a W-scalar which has with respect to some given
coordinatesystem e.g. (u) the constant value + 1 and transforms
according to the formula

- I..,

Then we get

They evidently are independent of the choice of k and there-
fore invariant under arbitrary transformations of coordinates.
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If we consider only changes of the coordinatesystem for which
d in Ím+1 and on Ím has everywhere the same sign, also for-
mulae hold like

They express equalities between two W-scalars, which in this
special case can be defined for the whole region concerned.

(Received July 3rd, 1939.)


