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Transformation of a certain series of products of
confluent hypergeometric functions. Applications to

Laguerre and Charlier polynomials
by

A. Erdélyi
Edinburgh

1. In this note I propose to discuss some transformations of
a certain series of products of Kummer’s confluent hypergeometric
functions 1F1.
The generalized Laguerre polynomials being expressible in

terms of Kummer’s series 1F1, a corresponding transformation of
a certain series in products of Laguerre polynomials is readily
found. This transformation turns out to eonvert an infinite series
of products of Laguerre polynomials into a finite one, thus

expressing the sum of the infinite series in finite terms. The same
holds for the transformation of the corresponding series of products
of a generalized Laguerre polynomial with a general 1FI.
The Charlier polynomials occur, connected with Poisson’s

frequency function, in Mathematical Statistics of seldom events.
They are expressible in terms of particular cases of 1 F l’ and
also expressible in terms of generalized Laguerre polynomials.
It seems that this connection has been overlooked till now. The

application of the general transformation formula to Charlier

polynomials yields, among other results, the expansion of Wicksell
which was studied also in a recent paper of Meixner.

2. For the sake of brevity we put

We shall use the integral representation



341

valid provided that

This integral representation is easily checked expanding exp (ux)
on the right of (2) and integrating term by term.
Kummer’s transformation 1) of 1 F1 in our notations runs:

It can be derived from (2), replacing u by 1 - u on the right of
this equation.
For large positive values of r the asymptotic equations

and

hold for all fixed finite values of x, real or complex.
In that what follows, a and c - a are supposed not to be zero

or a negative integer. In section 4 these restrictions are removed.

3. Now we can begin with the transformation of the infinite
series

From (5) it is seen that (6) is equiconvergent with 2F2(a, b; c, d; z),
and therefore convergent for all finite values of z, y, z and the
parameters, with the only restriction that neither a nor b is

equal to 0 or to a negative integer. We shall transform (6) with
the preliminary restrictions

Later on these restrictions can be removed.
With the restrictions (7) the integral representations (2) for

the 0-functions in S are valid with any non-negative integer
value of r, and hence

I See e.g. E. T. WHITTAKER &#x26; G. N. WATSON, Modern Analysis [1927],
1 16.11 (1).
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Summation under the signs of integration is permissible by reason
of the absolute and uniform convergence of the infinite series
in the {... }, in the domain of integration.
Now,

and therefore, term by term integration being permissible by the
same reason as before,

according to (2). In (8) the usual notation

is used.

Comparing (8) with (6), the transformation formula

at once follows. The series on the right of this relation is, it is

seen from (4 ), absolutely convergent for all finite values of x, y, z
and the parameters, save non-positive integer values of a and b.
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With a slight modification of the notation we write instead of (9)

So far (10) has only been proved with the restrictions (7).
Now, both infinite series in (10) being absolutely convergent,
(10) is valid, by the theory of analytic continuation, with the
only restriction that neither a nor b is equal to a non-positive
integer.

4. Some other forms of (10) may be written out. Transforming
the left of (10) according to Kummer’s transformation (3), we
obtain

Using Kummer’s transformation on the right of (10) we get

In both the equations (11) and (12) the parameters are only
subject to the conditions expressed on the end of section 2.

Using Kummer’s transformation on both sides of (10), there
results a transformation formula which is, save for notation,
identical with (10).
Using Kummer’s transformation only for the first qJ-functions

on both sides of (10), we arrive at

With a slight change of notation we get the symmetrical form
of (10), viz.
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Some other forms of (10), evidently obtainable by similar
transformations, are left to the reader.
The restriction, that none of the quantities a, b, c - a, c - b

is allowed to be equal to zero or to a negative integer, can easily
be removed expressing the 0-functions, by means of (1), in terms
of 1F1 and then dividing the transformation formula by a suitable
product of Gamma-functions. Doing so with (10) [in this case we
must divide the whole equation by F(a)F(b)] we obtain

In this form our transformation formula is valid without any
restrictions.
A similar operation on (13) yields

5. In this section another transformation of the same series

may be obtained. For the sake of simplicity let us assume again
that the preliminary restrictions (7) are fulfilled. Being so, the
integral representation

obtained in section 3, is valid. In this integral representation
we put, supposing z * 0,
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and integrate term by term. This process is permissible by reason
of the absolute and uniform convergence of this series in the

domain of integration. Doing so, we obtain

The integrals occuring in this equation represent ordinary hyper-
geometric polynomials, being 2 )

Hence we obtain

This result is true, with the sole restriction z =A 0, for all values
of the variables and parameters.

It seems, perhaps, that x = 0 and y = 0 should also be excluded.
This is by no means true, because

and the similar limit for y - 0 yield finite values. For c or d
equal to 0 or to a negative integer the hypergeometric series
have no significance at all, but the limits

exist in each case.

Using Kummer’s transformation on the left hand side, and
some transformation formulae of Jacobi’s polynomials on the
right, other forms of (16) are obtainable.

2) Modern Analysis, § 14.6 Example 1.
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6. Some particular cases of the transformation formulae

obtained hitherto are of some importance. Merely to take a feu
examples let us put x = y - z in (14). There results

Thms ivre have expressed the sum of the infinite séries of products
of confluent hypergeometric functions in ternis of a generalised
hypergeometric series.
The assumption r = y = z in (15) yields

thus obtaining

a relation which is equivalent to (17).

7. Now we can proceed to applications of the results, ob-
tained in the previous sections, to transformations of certain
infinite series in products of Laguerre polynomials. ni and n

may be non negative integers throughout.
The generalized Laguerre polynomial

is usually defined by either of the two generating functions:

There is, however, a third generating function
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which deserves, in consideration of its simplicity, to be noticed.
Although 1 can not remember to have ever seen (22 ) explicitly,

this generating function can hardly be unknown, for it is closely
connected with the well-known expression

for Laguerre polynomials.
Finally the connection between Laguerre polynomials and

confluent hypergeometric functions must be mentioned. For the
purposes of the present article it is the best to write this connec-
tion in the form

This formula can easily be checked replacing Laguerre’s poly-
nomial by its explicite form (19).

8. Particular values of the parameters in the general trans-
formation formulae of sections 3-6 yield by means of (24) a
great number of transformations of finite and infinite series of
products of Laguerre polynomials. A few examples of such for-
mulae may be written out.

We begin putting a = - m, b = -- n,c=(x-)-l,d=-t-l
in (14). In consequence of these substitutions, the series on the
right of (14) becomes a terminating one, having only min (m, n) + 1
terms. [min (m, n) denotes the smallest of the non-negative
integers m, n. ] After sorne algebra we get

thus expressing the sum of the infinite series on the left in finite
terms.

We get another example with the same values of the parameters
in (15). In this case both the series terminate, yielding

This is an interesting equality which transforms a series of m
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ternis into a series of n terms. Putting = 0 in this formula
we obtain

The same values of a, b, c, d substituted into (17) yield

The hypergeometric series on the right of this equation is a

terminating one.
Mixed series, i. e. series of products of a confluent hypergeo-

metric function and a Laguerre polynomial are also obtainable
from our results. Let us put, for instance, b = - n, d = p + 1
in (14), thus getting

Some similar formulae, obtainable in the same manner, are
left to the reader.

9. In Mathematical Statistics of seldom events Poisson’s

frequency function 3)

very often occurs. Frequency distribution functions having not
exactly the shape of V(x; a) are, according to Tchébycheff 4)
and Charlier 5), to be represented 6) in terms of V(x; a ) and its
finite differences with respect to the non-negative integer x.

Thus functions 1jJn(ae; a) are defined by the equation

3) POISSON, Recherches sur la probalité des jugements [1837]. L. v. BORT-
KIEVICZ, Das Gesetz der großen Zahlen [1898].

4) TCHÉBYCHEFF [Bull. de l’Acad. Saint-Pétersbourg 1859].
à) C. V. CHARLIIER [Arkiv fôr Mat. 2 (1905/6), Nos 8 and 20].
6) See also H. POLLAczEK-GF-rRiNGER [Zeitschr. für angew. Math. und Mech.

8 (1926), 292-309].
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Jordan 7) has pointed out that the same set of functions can be
obtained differentiating VO(x; a) with respect to a, (31) being
equivalent to

A computation of 1fJn(0153; a ) by means of (31) of (32) shows that
1pn is a polynomial of degree n or x, whichever is the less, in 1 .a
For this reason it is usual to put

Here

is called Charlier’s polynomial.
Now, at the first glance it is seen frorri (34) that Charlier’s

polynomial is expressible in terms of the hypergeometric series
2F 0’ that is to say, in terms of Whittaker’s confluent hyper-
geometric f1.lnction VJI k,1n(Z). On the other hand we know 8) that
all solutions of Whittaker’s differential equation expressible in
finite terms must be connected with Laguerre polynomials.
Hence Charlier polynomials must be connected tvith Laguerre
polynomials,. Though this connection is a very simple one and
therefore unlikely to be perfectly unknown, I have not found

any référence to it 9).
The simplest expedient to find out this connection is Doetsch’s

generating function 1° )

7) CH. JORDAN [Bull. Soc. Math. de France 54 (1926), 101-137], 110.
8) A. ERDÉLYI [Monatshefte für Math. und Phys. 46 (1937), 1-9].
9) Since this paper was written, Dr. A. C. Aitken kindly pointed out to me,

that he was aware of the existence of the connection between these two systems
of polynomials too.

10) G. DOETSCH [Math. Annalen 109 (1933), 257-266], 260, equation (Co).
See also J. MEIXNER [Journal London Math. Soc. 9 (1934), 1-9]. This generating
function is only another expression for

which is a consequence of Taylor’s theorem.
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Comparing (35) with (22) and using (24) we at once obtain

This connection is of a certain importance, because it enables

us to write out almost the whole theory of Charlier polynomials
specialising some results relative to Laguerre polynomials and to
confluent hypergeometric functions.

10. 1 conclude writing out some particular cases of the

expansions obtained in section 8, which yield formulae with
Charlier polynomials. M and N denote- in this section non-

negative integers.
Putting ce = M - m, N - n in (25), we obtain after

some algebra

Hence we hawe expressed the sum of the infinite series on the
left of this equation in finite terms. A further simplification can
be attained, putting lll = N = 0. From (35) it is seen that

Thus (37) yields with M = N = 0:

This result was, according to Aitken and Gonin 11), proved by

11) A. C. AITKEN &#x26; H. T. GONIN [Proc. Royal Soc. Edinburgh 55 (1935),
1142013125], 115.



351

Wicksell 12 ) and Campbell 13). It has been recently rediscovered
by Meixner 14).
Now, let us put a = M - m, fi = N - n in (28). There occurs

This is obviously a generalisation of the relation expressing the
orthogonality of Charlier polynomials. Indeed, putting M=N=0
in (40), the first max (m, n) terms of the right of (40) vanish.
Now 2F2 has only min (m, n ) + 1 terms, and therefore all its

terms vanish if m &#x3E; n. only for m = n the (m + 1 )st terni of
2F2 remains, giving

Thus, the limiting form M -&#x3E; 0, N - 0 of (40) runs

ô.,, is Kronecker’s symbol, being equal to 0 if m &#x3E; n, and equal
to 1 if rn = n. The same relation can be obtained 15) as the limiting
form x = y -&#x3E; z of (39).
The same assumption, lX ==M -m and f3 =N-n in (26) yields

Putting M = N = 0 in this equation we obtain

Let us now put cz = M - 1n in (27), thus obtaining

12) S. D. WICbSELL [Svenska Aktuariefôreningens Tidskr. 1916,1652013213],192.
13) J. T. CAMPBELL [Proc. Edinburgh Math. Soc. (2) 4 (1932), 18-26], 20.
14) J. MEIXNER [Math. Zeitschrift 44 (1938), 5312013535], equation (14).
15) See e.g. J. MEIXNER [Math. Zeitschrift 44 (1938), 531-535], equation (16)-
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Another group of formulae, concerning series in products of
Charlier polynomials and Laguerre polynomials, or products of
Charlier polynomials and confluent hypergeometric functions is
also obtainable from the formulae of section 8.

Let us put P = N - n in (25) in order to obtain

a generalisation of (37). Again put fl = N - n in (29) thus
finding

a further generalisation of (45).
These few examples show clearly that formulae concerning

Charlier’s polynomials can easily be found by specialising para-
meters in formulae with Laguerre polynomials or with confluent
hypergeometric functions. 1 hope to have soon an opportunity
to point out that the whole theory of Charlier polynomials in-
cluding differential and finite difference equations, recurrence
formulae, generating functions and asymptotic expansions can
be derived from the theory of confluent hypergeometric functions.

(Received April 27th, 1939.)


