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On some orthogonal systems of functions
by

A. C. Zaanen

Rotterdam

§ 1. Introduction.

By the differential equation

and the boundary conditions

a boundary value problem is defined. As well-known, the problem
has solutions, different from zero, only for the values = n2
(n=0, 1, 2, ... ), called eigenvalues. These solutions, called eigen-
funetions, are the functions un(ae) = cos nx (n = 0, 1, 2, ... ).

For the boundary conditions

we find the eigenvalues 03BBn = (2n )2. Every one of them, except
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ao = 0, to which belongs uo(x) = 1, is double; that is to say, to

(2n)2 belong the two eigenfunctions cos 2nx and sin 2nx (the
trigonometricccl system ; by putting 2x =:: y, so that 0  y  2n,
"BBTe get the usual notation).
By multiplying every un (x ) with a suitable constant, we obtain

that the intégral of cn (x) over (0, n) is equal to 1. Then the

system {’uJn(0153)} is orthonormal, which means that (n;n, un) = 0
for m -=1= n and == 1 for m = n, ( f, g) being defined as the integral
of f(x) g(x ) over (0, n).

Further {u,,(x)l is complete, which means that from (f, un) = 0
(n = o, 1, 2, ... ) for a Lebesgue-integrable f(x) follows that f(x ) = 0
(f(te) may differ from zero on a. set with Lebesgue-measure zero,
but we consider such functions to be not different from f(x) = 0).

Putting

we call the orthonormal complete system {cn(x)} the cosinesy,8tenl,
the séries S ancn{x) a cosÍneseries. If an = ( f, cn) for an integrable
f(x) and for all n, then C(,f) :-.= 1: ancn(ae) is called the Fourier-

cosineseries of f (x).
We shall indicate the normalized trigonometricial system by

{ tn (0153 ) }. The series S(f) =:=E ( f , tn ) ln (0153) is called the F o’ltrierseries
of f (x) and there exists an extensive theory about the behaviour
of these series.

In the years 1908-1912 E. W. Hobson and A. Haar considered

systems of eigenfunctions of more général problems (Sturm-
Liouville -problems), defined by

where Q(x) is continuous in (0, n).
The system of iiormalized eigenfunctions {un (x) } is orthonormal

and complete and the series Xl( f, 1tn)Un(ae) is indicated by SL(f).
The followiiig theorems hold:
Equiconverge’ncetheoTcm of Haa-r. 1)
If Q(x) 1S continuous and of bounded variation in (0, n), if oc2

and (34 are :f=- 0 and the partial sums of SL( f ) and C( f) are Sn(X)

1) A. HAAR [Math. Annalen 69 (1910), 331-371], 355.
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and s* (x), then

uniformly in (0, n).
We shall say that these series are uniformly equiconvergent

in (0, n).
Theorem of Du Bois-Reymond for SL-series . 2)
If, under the sanie conditions for Q(x), oc, and f34’ a SL-series

converges in the whole interval (0, n) to a finite, integrable f(x),
then this series is SL(f).

If a SL-series, converging everywhere in (0, n), except perhaps
on a set E, to a finite integrable f(x), is SL(f), then E is called
a set of uniqueness for SL-series. In 1930 A. Zygmund proved
the following theorem: 3)

Necessary an,d sufficient that the set E in (0, n) should be a set
of uniqueness for SL-scries is that it should be a set of uîtiqîteness
for series E (an cos ?ix fl, bn sin nx).
The just mentioned theorem of Du Bois-Reymond follows

from this one.

All proofs rest on Hobson’s asymptotic formula 4)

In the cases that the coefficients (X2 and P4 are not both "* 0,
similar theorems can be found.

In this paper we consider boundary value problems, given by

ivre shall restrict ourselves to the case that the system of

eigenfunctions is orthogonal and complete, which turns out to
be equivalent with rJ.l{32 - CI-2fll =: Cl..3fJ4 - O"4fl3 (§§ 9-1 11).
Formulae analogous to (1) are obtained, showing different

forms in different cases, according to the behaviour of the ex-
pressions (Xi{3; - rx;f3i (1, j=1, 2, 3, 4) (§§ 5, 6, 7, 8).
By these formulae it is possible then to prove theorems, cor-

2) A. HAAR [Math. Annalen 71 (1912), 38-53].
3) A. ZYGMUND [Studia Mat. 2 (1930), 97-170].
4) E. W. HoBsoN [Proc. of the London Math. Soc. (2) 6 (1908), 349-395 ].
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responding with those of Haar, Du Bois-Reymond and Zygmund
(§§ 9, 10, 12, 13).

§ 2. The general boundary value problem.

We shall consider problems, given by

where Q (x) is continuous and of bounded variation (the bounded
variation is not yet used in this paragraph).

Putting

we have the following theorem:
THEOREM 1.

N ecessary and sufficient that the system of eigenfunctions should
be an orthogonal coniplete system is that Jt12 == :1l3.t.
The proof rests on several lemmas.

LEMMA 1.

Considering a set of solutions of (2), it is necessary and sufficient
for the orthogonality of every pair of them, not belonging to the
same Â, that every solution out of the set satisfies two different
boundary conditions (3) and (4), between the coefficients of

which exists the relation nl2 --- Jl34.

P,roof.
Necessity. If ui (x ) and uj(ae) are two of the considered solutions

of (2), belonging to Âi and Âj, then

So we see that if the condition of orthogonality is satisfied, the
second term of (5) is always zero. Now we distinguish between
two cases:

1°. There are two functions ui(x) and U2(X) in the con-

sidered set, for which the rank of the matrix

is two. Let it(x) be an arbitrary function of the set. From (5)
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.a.nd these are two boundary conditions for u(x), different because
(6) has the rank two, while between the coefficients exists the
relation

that is n12 = n34.
2°. For every pair ul(x) and u2(ae) of the set the rank of (6)

is 1, so

(8) u (0 )u2 ( 0) - Ul(O)U"(0) = U’(n)U2(’-r) - u1 (n )u (n) -" 0.

By letting u2(ae) run through all functions of the set, we see that
we have two Sturmian boundary conditions (one for x = 0 and
one for x = n) and such conditions always satisfy n12 -- JT34 = 0-

Sufficiency. Now we assume that every function of the set
satisfies two different boundary conditions (3) and (4) with
912 = n34- If Jt12 - n34 *- 0 and ul(x) and u2(x) belong to the
set, we can express ’ui(n) and u(n) initi(0) and ’ui(0) (i -1, 2 ).
Using the identity n12n34 + nl3n42 + Jt14Jt23 = 0 we find then (7).
If, however, n12 = n34 = 0, the conditions (3) and (4) are equi-
valent with two Sturmian conditions, so that we have (8), from
which follows (7). The orthogonality of u,.(x) and u2(x) for

Âl ::j:: Â2 is concluded from (5) and (7).
LEMMA 2. 5)
If the conditions (3) and (4) are equivalent with two Sturmian

conditions (so if nl2::=n34=0)1 the problem defined by (2), (3)
and (4) has an enumerable number of eigenvalues Â. (Ân -&#x3E; co).
If {Ân} (n -o, 1, 2, ...) is the sequence of eigenvalues (Ân Ân+1)’
there belongs to every A,, one eigenfunction with n zeros in

0  x  n. (Sturmian oscillation theorem.)
LEMMA 3.

It is impossible that an orthogonal complete system of solutions
of (2) satisfies three independent boundary conditions. (The
completeness is essential here, for the orthogonal, incomplete
system {cos 2nx} satisfies

Proof.
Assuming that the orthogonal complete system {u,,(x)} of

solutions of (2) satisfies three independent boundary conditions,
the matrix of their coefficients has the rank 3 and we have four

possibilities:
51 See e.g. 1B1. BÔCHER, Leçons sur les méthodes de Sturm, Ch. III.

17
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1°. u’(0), u(n) and u’(n) can be expressed in u(0).
2°. u(o), u(n) and u’(n) can be expressed in u’(o),

while 3° and 4° arise from 1° and 2° by cha,nging 0 and 7t.

If we have 1°, then

We see that {un(0153)} is a subset of the system of eigenfunctions
of the Sturm-Liouville-problem, defined by (2), (9) and (10).
From lemma 2 it follows that, if b =1=- 0, not for all these eigen-
functions u(n) =- bu(o). So {’ltn(0153)} is a real subset of this system
which is incompatible with the completeness. If b == 0, not all
eigenfunctions of the SL-problem can satisfy u’(n’) c it(O), sot

again {un(0153)} would be a real subset.
In the other cases we arrive at a contradiction in a similar way.

Proof of Theorem 1.

Necessity. From lemma 1 it follows that the system of eigen-
functions satisfies two boundary conditions with zl, =-= 7l34. From
lemma 3 we conclude that the original conditions (3) and (4)
depend on these new conditions so that for the coefficients of
(3) and (4) also Jt12 ==:: 7l34.

Siifficiency. To begin with, we have to prove the existence of
eigenfunctions. If ’-tl2 =-: 7134 = 0, we refer to lemma 2. If

n]2 = Jt34 =1- 0, the proof was given by G. D. Birkhoff ils 1909 6).
He considered besides the given problem a SL-problem, defined
by (2) and

Calling the eigenvalues (in increasing order) of this problem 1,,
(n=o, 1, 2, ... ), he came to the conclusion that ln-1  Ân  ln.
He also gave a calculation, in the assumption that n24 =1- 0, to
find out if there is still a Âo  lo. It is not difficult to see that a
similar reasoning holds for the case that n24 = 0 and the result
is that in both cases there exists a Ào  10 6a). The orthogonality of

6) G. D. BIRKHOFF [Transactions of the Am. Wath. Soc. 10 (1909), 259-270].
sa) For JbZ4 =0 this is only true if CX2 = cx( =0, and it is always possible to obtain

this by replacing if necessary the first boundary condition by a linear combination
of both conditions. «’e shall only need this particular case.
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ui(x) and uj(x) for Âi =A Âj follows from lemma 1 and if there
are double eigenvalues (Ân===ln==Ân+1)’ we can choose un(ae) and
Un+1(0153) out of the solutions of (2) for À = 1,, so as to be orthogonal.
As for the completeness, it seems necessary to use a theorem
about integral equations for the proof in the general case (in some
simple cases there are direct proofs, for the trigonometrical
system that of H. Lebesgue 7)@ for the system of eigenfunctions
of a ,SL-problem that of H. Prüfer 8)) . Wé shall not need the com-
pleteness before § 12 and for this reason we shall postpone the
proof until § 11.

§ 3. An asymptotic formula for the eigeibfunctions.

In this paragraph we shall find an asymptotic formula for the
eigenfunctions un(0153) of a problem defined by (2), (3) and (4)
with Jr12 === n34- By an asymptotic formula for un(x) we understand
a formula from which we can read the behaviour of un(ae) for
large n. We shall not yet find its definite form here, for in different
subcases which we consider in the §§ 5, 6, 7, 8, this definite form
will be different.

It will be convenaient to use Landau’s 0-symbol, rJ..n = 0(p.)
meaning that oc,, 1  k ! 1 P,,, for all n and oc.(x) = 0(p.) that
1 an(0153) 1 C k 1 f3n 1 for all n,, uniformly in x.
As Â. &#x3E; 0 for large n, ive put = e2 (e &#x3E; 0). Further it is no

loss of generality to suppose that the integral of Q(x) over (0, n)
disappears. We can reach this by adding a suitable constant to
Q (x ), if Q(x) is then transformed into Q(x) + IL, the eigenvalues
Ân are transformed into Ân - k, but the eigenfunctions remain
the same.
Now we remark that if u(x) satisfies

then

satisfies U"(X) + e2’Ul (0153) - 0, so that ul(x) - A cos ((!X--1’)

with - 2  T £ n . Putting A = 1 because a constant factor is
of no importance, we find

7) See A. ZYGMUND, Trigonometrical Series, 1.5. As we shall refer to this book
oftener, we shall indicate it by Tr. S.

8) H. PRUFER [Math. Annalen 95 (1926), 499-518].
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If U = max 1 u(x) 1 in (0, n), then

so that for

we find U  K.

Substituting 
marking that

because Q(x) is of bounded variation, we obtain

while substitution in (12) gives

In all cases that will be treated in the §§ 5, 6, 7, 8, en and Ín
will have the form

where ê., zn, an( =0(1)) and bn( ==0(1)) depend on 91 in a simple
way. Then using Taylor’s formula we see that un(0153) takes the
form

where

In the same way we find
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§ 4. Some preliminaries.
As the last part of the preceding paragraph shows, the only

thing that remains to be done in order to find the definite form
of the asymptotic formula for u.(x) is to prove that the formulae
(15) for en and n exist and to calculate ën’ Tn, an and bn in them.
For our later purposes it is of importance to show that an and bn
are independent of n or at most depend on n being even or odd.

Substitution in (3) and (4) of u(0) = cos r, u’ (0 ) = e sin z
(resulting from (11) and (12)), u(n) - cos (ne--r) + 0(e-2),
u’(:n;) = - e sin (ne--r) + O(Q-1) (resulting’from (13) and (14))
gives (omitting the indices n):

LEMMA 4.
If the boundary conditions have the form

and the eigenvalues are {Zn} (n=0, 1, 2, ... ), then

Proof.
(19) and (20) take the form

so

from w hich follows

(21) and (22) can be written in the form (15) (with an=bn-l,
bn=b), so we obtain from (16)
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From this formula we see that the number of zeros of u(x) in
0  x  n is n or n + 1 for large n ; because u(n) = 0 this number
is n. But then len1ma 2 teaches us that the index of this u (x )
is n and (22) becomes

LEMMA 5.

If the boundary conditions have the form

and the eigenvalues are «

Proof.. 
The proof runs on the same lines as that of lemma 4, so that

we shall not repeat it.

After these simple cases we shall now proceed with the general
case. We hante to distinguish between Jl24 -=1- 0 (§ 5) and n24 = 0
(§§ 6, 7, 8).

§ 5. The def inite f orm of the asymptotic formula in the case n24 # o.

From (19) and (20) follows

so, because n24 zA 0:

Remembering that

where n is a natiiral number. There are two subcases : n odd and
n even.

Calculation for odd n.
From (19) and (20) follows, using (23) 

so
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or

so that

Now we have to find the index of this e. If the boundary con-
ditions are Sturmian (so if n12==n34==0) "Te can use again lemma 2.
As (24) and (25) can be wri tten in the form (15), we obtain
for u (x):

This function has n zeros in 0  x  n for large n, so it has the
index n. If the boundary conditions are not Sturmian we may
take n12 = n34 = 1. Then the eigenfunctions have to satisfy the
linear combination of (3) and (4)

Now we use Birkhoff’s result, already mentioned in the proof of
theorem 1. This asserts that calling the eigenvalues of the problem
with the boundary conditions

the interval ln-l  À  ln contains Ân. But
1

has the index n.
Both in the Sturmian and in the general case (24) and (25)

take therefore the form

Calculation , f or even 1¿.

In the same way as for odd n we find

with

Remark.
If the boundary conditions are Sturmian (so if nllz=n34=(»,

we see that bl = b2 and al = a2, so that we have no longer to
distinguish between odd and even n.
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THEOR,EM 2.

If Q (x) is of bounded variation in (0, n), Jll2 -== Jl34 and n24 7-A 0,
we have for the normalized eigertfunctions of the problerm, defined
by (2), (3) and (4) the asintptotic formulae

where
Il

if n12 === Jl34 = 0, then fli(x) -- f32(ae) and zce get back Hobson’s
formula (1).

Proof.
As (26) and (27) have the form (15) with en = n and zn = 0,

substitution in (16) and (17) gives

with

If we want to normal ize Un(0153) we have to multiply with (un, Un)-t

= (: r 1 + 0(w2) and the result is that we obtain (28).
n

If Jrl2 == T34 = 0, then a1 = a2 and hl == b2 as we have already
remarked, so that Pl(x) = fl,(x).

§ 6. The definite form o f the asyrnptolic formula in the case

Whereas the case n24 * 0 still shows a great resemblance with
that treated by Hobson, the case n24 = 0 differs much more from
it. We shall restrict ourselves to non-Sturmian boundary con-
ditions, so that 12 = n34 =1=- 0. Furthermore we take ni4 =1=- n2 12
in this paragraph. It is to be observed that nl4 :A 0 because of
the identity Jl12Jl34 + Jll3Jl42 + 7rl4n23 = W
We can suppose nl2 = Jl34 = 1 (so 14 1) and we replace the

original boundary conditions by their linear combinations
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from which result by the substitutions

the conditions

From

follows by taking squares and adding

so, because

After this preliminary formula for cos Í we shall now try to
find an asymptotic formula of the form (15) for en. For this

purpose we write (30) as

The determinant D of the coefficients of sin T and cos T on the
left hand side is D = 2nl4 + (1+ni4) cos ne, so that

or

cos

cos ne = cos

As cos né =A + 1, we can use Taylor’s formula for arc eos x to
obtain ne itself. This gives
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To fix the index of this e, we again use Birkhoff’s results. Calling
the eigenvalues of the problem with the boundary conditions

by lemma 5, so

Our next task is to find an asymptotic formula for Tn. We

shall repeat the calculation that led to (31) considering now also
the term O(Q-1). Starting from

we obtain by taking squares and adding

Now calling i tbe "principal" part of z
we have

To fix zn we observe that all Tn have the same cosine, so zn
can only take two values i and - T. A simple reckoning shows
that from the first line of (30) follows

so
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As from cors results that

we find

So we can put

THEOREM 3.

I f Q (x ) is of bounded variation in (0, n), n12 = n34 = 15 n24 = 0
and n2 14 # 1, so that the boundary conditions can be zearitten in the
form (29), we have for the normalized eigenfunctions of the problem,
defined by (2) and (29) the asymptotic formulae

where p (0  p  1) and 7: are defined by

and where

Proof.
As (32) and (33) have the form (15) with

substitution in (16) and (17) and normalizing gives the formu-
lae (34).

Remark.
In a certain respect the case n24 = 0 is more general than

n24=F 0 as the asymptotic formulae obtained also show. By the
dominating rôle of u’(O) and u’(n) in the boundary conditions the
case n24 -::F 0 is to a high degree equivalent with the simple case
u’(O) = 0, u’(n) = 0, whereas this equivalence disappears as

soon as n24 = 0.
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§ 7. The definite form of the asymptotic formula in the case

While in the preceding paragraph we supposed nî4::/= nî2’
we shall now discuss the case ni4 :::;:: n,2,. It will turn out that the
influence of n13 and Q(x) becomes greater. We restrict ourselves
here to nl3 :A 0 and it seems necessary to impose upon Q (x ) a
heavier condition than in the preceding paragraphs to obtain
satisfactory asymptotic formulae. Again we can take nl2=a34=:’
without loss of generality and we shall prove the following
theorems:

THEOREM 4.

If Q(x) has a first derivative which is of bounded variation in
(0, n), n12 - ?L34 = nl4 = 1, n24 = 0, nl3 z:A 0, so that the boundary
conditions can be written in the f orm

zve have for the normalized eigenfunctions of the problem, defined
by (2) and (36) the asymptotic formulae

THEOREM 5.

If Q(x) has a first derivative which is of bounded variation in
(0, n), nl2 = J734 = - nl4 = 1, n24 - 0, nl3 -=F 0, so that the

boundary conditions can be zcaritten in the form

me have for the normalized eigenfunctions of the problem, defined
by (2) and (38) the asymptotic formulae
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where Pl(ae) and P2(m) have a similar form as in theorem 4.

Proof.
We shall give the principal points of the proof of theorem 4,

that of theorem 5 will be omitted because it runs on the same lines.
The boundary conditions (36) can be written in the fortn

which gives

If however sin ne = O(e-1) then cos ne = - 1 + O(e-2), so

that sin 7: cos = O(e-1), because 7rl3 =1=- 0-
Now there are two possibilities:

If yve keep to our old agreement - 1  7:  n/2 it would be

impossible to decide in case 1 whether

Therefore we shall change the agreement and fix that

In case II we have i. = 0, so always

From (41) follows

so

where -,, is an odd natural number because cos
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(42) and (43) can be written in the form (15) we have

with

so in both cases ,
What remains to be done is to see for which n occurs the case 1

and for whieh n case II and to find out how bn depends on n.
Just to assure that bn only depends on 1 or II occurring, it seems
necessary to impose the already mentioned heavier condition
upon Q (x).
We have to consider the integrals in (40).
Omitting easy calculations we get

Using that Q(x) has a first derivative which is of bounded

variation, it follows that

so

were Pn can only take the values P1 (in case I ) and P2 (in case
II). In a similar way ivre can find
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The boundary conditions (40) can be written now as

Taking squares and adding gives

In case 1 (sin zn =1, cos Tn=O, sin Tn=1+0(e;2)) this takes the
form

where

Il Il

Substitution of (43) and (44) in (16) and (17) gives

with

In the same way we find when II occurs

with

From Birkhoff’s results we conclude, using again lemma 5, that
e2n = e2n+1 = 2n + 1. It is impossible that both for u2n(x) and
U2n+l(0153) case 1 occurs, for that would be incompatible with their
being orthogonal to each other.
The same can be said about case II, so of u2n(x) and U2n+l(X)

one has the "principal" term cos(2n + l)0153 and the other one
sin(2n+l)x. For that which follows it is of no importance how
we distribute the indices 2n and 211 + 1 among them. After nor-

malizing them we obtain the formulae (37).
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t 8. The definite form of the asymptotic furmula in the still

remaining cases.

We still have to consider problems with boundary conditions

or

Here the influence of Q (x ) is still greater than in the preceding
case. As an example we mention the following theorem that can
be proved with methods analogous to those used in § 7.
THEOREM 6.

If Q(x) has a second derivative which is of bounded variation in
(0, n) and Q(0) :A Q(z), we have for the normalized eigenfunctions
of the problem, defined by (2) and

the asymptotic formulae

where fli(x) and P2(X) have a similar form as in the cases already
treated.

If Q(O) = Q(n) we can obtain similar formulae under the

assumption that Q(x) has a third derivative which is of bounded
variation in (0, n) and that Q/(O) "* Q/(n).

Probably it will be possible to find such formulae if

Q(i)(O) = Q(i)(n) (i=o, 1, ..., n-1), Q(n&#x3E;(o) ’* Q(n)(n) and if

Q(n+2)(X) is of bounded variation in (0, n).

§ 9. T he behaviour of the "Fourierseries" SL(f) and the sets of
uniqueness in the case n24 # o.

As the problems with n24 =1=- 0 show so much resemblance with
Sturm-Liouville problems it need not amaze us that the equi-
convergence theorem of Haar and the theorem of Zygmund
about the sets of uniqueness (both mentioned in the Introduc-
tion) remain valid without any difference. The proofs undergo
only slight changes, so we shall omit them here.
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§ 10. The behaviour of the "Fourierseries" SL(f) for the system

If we consider the simplest possible case of those treated in
§ 6, we have to take Q (x ) i 0 and the boundary conditions

The system of eigenfunctions is then

where p (0  p C 1) and are defined by (35).
We shall study the behaviour in (0, n) of the "Fourierseries"

SL(f) = L(f, vn)vn(0153) of an integrable function f (x ). For this
purpose we need some theorems about common Fourierseries.

(For the notations we refer to the Introduction.)
LEMMA 6. 9)
If f, (x) =f2(ae) in (a, b), then 5(f1) and S (f2) are uniformly

equiconvergent in (a + e, b - e).
LEMMA 7. 10)
If or(x) has the period n and satisfies a Lipschitz-condition of

order 1, then S(af ) and (x)S{ f ) are uniformly equiconvergent
in (0, n).
LEMMA 8.

S(cos p0153 . f(0153)) and cos px S (f) are uniformly equiconvergent
in every interval (s, n-e). The same holds good for S(sin p0153 . · f (x) )
and sin px S( f ).

Proof.
Consider a function a(x) of period x, satisfying a Lipschitz-

condition of order 1 and coinciding with cos px in (2 , n 2
From lemma 6 follows that S(cospx.f(0153)) and S ( a (x ) f ( x ) ) are
uniformly equiconvergent in (8, n-8) and from lemma 7 the
same for S(a(ae)J{0153)) and a(0153)S(f) in (0, n). In (e, n-s),
S(cos p0153 . f(0153)) is therefore uniformly equiconvergent with

«(x )S( f) = cos px S(f).

9) Tr. S. 2.51.

1:) Tr. S. 2.531.

18
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The second half of the lemma is proved in the same way..
Calling now sln[fJ the (2n+1 )-th partial sum of SL(f) (so the

same notation as always used for trigonometrical séries), we have

2n

Taking into considération (45) and adding in E the terms with
o

indices k - 21 - 1 and k = 2l, we obtain

As wc have for the (2n+1 )-th partial sum of S(f):

we see that

I2 = cos p0153 . Sn [ cos 1&#x3E;at . f(x )] + sin px . sn [sin px . f(x)] .
To obtain for lIa similar expression wc remark that from (35)
follows

cos (pyr+2T) - 0, sin (pn+2i) - sgn (1-nî4)’
so

So



275

THEOREM 7.

For an integrable f(x) the series SL( f) and S( f ) are uniformly
equiconvergent in every interval (e, n-ë).

Proof.
From (46) follows by lemma 8 that the difference of the

(2n+l)-th partial sums of SL(f) and S(f) converges to zero

uniforml y in (e, n-e). As the coefficients in 5L(f) as well as in
S(f) converge to zero, we have the same for the difference of the
2n-th partial sums and the theorem is proved.

There can be no equiconvergencc in the whole interval (0, n),
for all vn{0153) satisfy n14 vn(O) + vn(n) - 0, so also nI4Sln[f(0)] +
+ sl, [f(,)] = 0, whereas s, [f(O) ] - s,, [f(,-r) ]. Should there be

equiconvergence e.g. at x = 0, then there would be no equi-
conv ergence at x = ce because 1-114 ::A - 1. Vue can prove something
about the behaviour of 5L(f) in the whole interval (0, n) if f(x)
satisfies, together with some other condition, the boundary
condition nI4f(0) + f(rr) = 0, so one of those satisfied by the

eigenfunctions.

THEOREM 8.

If the continuous f u nction f(x), satisfying n14f(0) + f(n) 01
is of bounded zwriatiorz in (Q, n) or satisfies a Lipschitz- condition
of positive order theTe, then SL(f) coiîverles to f(x) uniformly in
the whole interval (0, 7r).

Proof.
If f(x) is continuous and of bounded variation in (0,7r) or

satisfies a Lipschitz-condition of positive order there, the same
can be said of the functions cp2 (x ) (i =1, 2 ) in (46). Now an
easy calculation shows that ggi(O)=:ggi(n) because n14f(0)+f(n)==0.
This leads to the result that Sn[Pi] converges to Pi(X) uniformly
in (0, n) as follows from well-known theorems about Fourier-
series. So sln[f] - cos px - Sn[PI] + sin px Sn[P2] converges to

cos px. P1(X) + sin px ’ P2(0153) P f(r) uniformly in (0, n).

THEOREM 9.

The system-  2 cos [(2n + p)x ± TJ} is complete.
Proof.
If (,f, Vn) = 0 for all n, the sum of SL (f) is identically zero, so

by theorem 7 5(f) converges to zero everywhere in (0, n),
except perhaps in 0 and yr. As the set consisting of the two points
0 and n is a set of uniqueness for trigonometrical series Il),f(ae)==0.

11) Tr. S. 11.32.
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§ 11. The completeness of the system of eigenfunctions.

As already remarked in § 2 it seems inevitable to use a theorem
about integral equations if we want to prove the completeness of
the system of eigenfunctions in the general case.

LEMMA 9.
If {un(ae)} is the system of eigenfunctions of one of the problems

treated in the §§ 5, 6, 7, 8, this system is complete for the class
of continuous functions.

Proof.
It is no loss of generality to assume that Â = 0 is not an eigen-

value of the considered problem. Now to this problem is adjoined
a function G (x, t) (Green’s function), having the properties:

a) If f(x) is continuous in (0, n),

satisfies

b) G(x, t) = E Â;lUn(0153) un(t). We remark that this series
o

converges uniformly in x and t because Â;l = 0(n-2).
If now ( f, un) = 0 for a continuous f(x) and all n, by b)

so by a):

LEMMA 10.

If f(x) is integrable there exists a h (x ), continuous in (0, n),
with ( f, u.) = (f+ h, vn ) for all n, where vn(0153) is the "principal"
part of un(x).

Proof.
(For the case treated in § 6, the proofs in the other cases running

on parallel lines.)
Omitting the indices n, we have
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where cp(ae) = f(t) P(t)dt is continuous. Because series with coef-
o

ficients 0(n-2) are "Fourierseries" of continuous functions, it
remains to be proved that the same holds good for

Defining the continuous function ip(x) by

it is a simple reckoning (using (46)) to prove that (47) is the
Fourierseries of sin (px + i)y(x).

THEOREM 10.

If {un(0153)} is the system of eigenfunctions of one of the problems
treated in the §§ 5, 6, 7, 8, this system is complete for the class of
integrable functions.

Proof.
(For the case treated in § 6.)
If ( f, un) = 0 for an integrable f(x) and all n, by lemma 10

there is a continuous h(x) with ( f , un) = ( f+h, Vn) = 0 for all n.
Because however {v.(x)l is complete (theorem 9), f (x ) -f - h(x)=0,
so ( f , un) = ( - h, un ) = 0. But h(x) is continuous, so by lemma 9
h(x) = 0. From f(x) -I- h(x) = 0 follows then that also f(x) = 0.

§ 12. The behaviour of the "Fourierseries" SL ( f) in the general case.

We shall again restrict ourselves to the case treated in § 6
and we shall prove the analogon of Haar’s equiconvergence
theorem, mentioned in the Introduction.

THEOR,EM 11.

The series Y, ( f, un) un(x) and Y’ ( f, vn) vn(ae) are uniformly
equiconvergent in (0, n) for every integrable f (x).
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Proof.
The proof is analogous to Hobson’s proof of Haar’s theorem.

At first it is shown that the difference of the partial sums of the
two considered series converges uniformly to a continuous h(x)
and then that h (x ) =: 0.

Writing (34) in the form

we obtain for the difference of the (2n+ 1 )-th partial sums
(omitting the terms with index 0) an expression of the form
il + 12 + 13, where

I, has a similar form and I3 is a sum with terms O(k-2), con-
verging therefore to a continuous function. In I, we change
ok’ for k = 21 - 1 and = 21 into (2l)-1, this being allowed
because the difference is a series with terms 0(k-2). Adding then
the terms with h; = 21 - 1 and k = 21 we find an expression
which can be split up into terms of the form

Both sums occurring in the last bracket converge uniformly as
term by term integrated partial sums of common Fourierseries,
so the same holds good for Il. In a similar way this is proved
for 12, so

uniformly in x.

To prove that h(x) =:-= 0 we remark that

for f (x ) integrable and g (x ) of bounded variation. This case of
Parseval’s theorem asserting that it is allowed to integrate
1(f, vn)vn(0153) term by term, after having multiplied it with g(0153),
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follows froni the fact that this theorem holds good for common
Fourierseries 12) and froni (46).

for every i. From the completeness of {un(0153)} follows that h(,1.1)=0.
The theorem just proved enables us to assert that the theorems 7

and 8 also hold good for the "Fourierseries" SL(f) considered in
this paragraph. Because of their importance we shall mention
them again.

THEOREM 12.

If {un(0153)} is the systern of eigen.function,s of the problem defined by

where Q(ét) is continuous und of bounded variation, {tn(ae)} is

f(x) is integrable in (0, n), then the "Fourierscries"

are uniformly equiconvergent in every interval (e, n-£).
If the continuous function f(x), satisfying nl4f(o) + f(l - 0,

is of bounded variation in (0, n) or satisfies a Lipschitz- condition
of positive order there, L ( f, u,,) u,,(x) converges to f(x) -iiniformly
in the whole interval (0, n).

I n the cases treated in the §§ 7, 8, sirnilar theorems hold good and
for the system mentioned in theorenl 5, the equiconveî,gence with
Àl ( f, tn)tn(x) in (E, n-£) is even replaced by equ iconverlen ce in (0, n).

§ 13. Sets of uniqueness.

In this paragraph we shall understand by a trigonometrical
series a series M (an cos nx+bn sin nx) and by S(f) the Fourier-
series of f(x) in the usual mea11ing. Again {un(x)} is the system
of eigenfunetions of the problem treated in § 6.

12) Tr. S. 4.44.
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THEOREM 13.

If c,,-&#x3E; 0 there is a trigonometrical series 1 (an cos nx+ bn sin nae),
uniformly equiconvergent with L en u.(x) in (0, n).
The proof rests on several lemmas.

LEMMA 11. 13)
If an and bn -&#x3E; 0 and S(g) has Fouriercoefficients 0(n-3)@

there is a trigonometrical series with coefficients converging to
zero, uniformly equiconvergent with g(x) Xl (an cos nx + b. sin nx)
in (-n, n).
LEMMA 12.

If c. -&#x3E; 0 there is a series L(an cos n0153+bn’sin nae) (an and
b. ---&#x3E; 0), uniformly equiconvergent with L en vn(0153) in (0, n),
where vn(0153) is the "principal" part of un(ae).

Proof.
The series L en vn(ae) can be written in the form

Defining gl(0153) and g2(0153) in (-n, n) in such a way that they
coincide with cos(px+-r) resp. sin(px+r) in (0, n) and have
Fouriercoefficients 0 (n-3 ), the proof follows immediately from
lemma 11.

LEMMA 13. 14)
Writing the formulae (34) in the form

satisfies a Lipschitz-condition of positive
order.

Proof.
Differentiating (16) and comparing the result with (18) we

see that n-2oc’(x) - O(n-1), so

13) Tr. S. 11.42.

14) See 3).
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Taking we find

for every a in

Proof of Theorem 13. 
Applying the notation (49), by lemma 12 there is a trigono-

metrical series uniformly equiconvergent with in
1

(0, n). It is not difficult to see that by the same method we can
find a trigonometrical series uniformly equiconvergent with

while from lemma 13 follows that

converges uniformly to

THEOREM 14.

Every set of uniqueness for trigonometrical series, lying in (0, n ),
is also a set of uniqueness for series Xl Cn 2Ln(x) (c. -&#x3E; 0).

Proof.
Let the set E in (0, n) be a set of uniqueness for trigonometrical

series and let 1 c. u. (x) converge to a finite integrable f (x ) on
its complement CE. We have to prove that cn = ( f, un ) for all n.

Calling 1 (a. cos nx +b. sin nx) (an and b. -&#x3E; 0) the trigo-
nometrical series uniformly equiconvergent with cnun(ae) in
(0, n), this series also converges to f (x ) on CE. Then

uniformly in (0, n) 15), so also

uniformly in (0, n). From

15) Tr. S. 11.47. In the last theorem of 11.47 it is allowed to replace the
words "an at most enumerable set E of points" by "a set of uniqueness E".
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uniformly follows by the seconde mean-value theorem

for all k, so Ck = ( f, Uk) for all k.

We remark that the theorem of Du Bois-Reymond for the
series cn un(ae) follows from theorem 14.16)

(Reeeived January 2nd, 1939.)

ls) It is possible to give a direct proof of the theoretn of Du Bois-Reymond
without having to refer to the deep-lying theorems in Tr. S. 11.42 and 11.47.


