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§ 1. Introduction.
By the differential equation
u'’(z) + Au(z) =0 0=x=<n)
and the boundary conditions
#'(0) =0, w'(x)=0

a boundary value problem is defined. As well-known, the problem

has solutions, different from zero, only for the values 1, = n?

(n=0,1,2,...), called eigenvalues. These solutions, called eigen-

functions, are the functions u,(z) = cosnz (n=0,1,2,...).
For the boundary conditions

u(0) — u(x) =0, u'(0) —u'(x) =0

we find the eigenvalues 1, = (2n)®. Every one of them, except
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29 = 0, to which belongs uy(z) = 1, is double; that is to say, to
(2n)® belong the two eigenfunctions cos 2nx and sin 2nz (the
trigonometrical system; by putting 22 = y, so that 0 <y < 2=,
we get the usual notation).

By multiplying every w, (z) with a suitable constant, we obtain
that the integral of u?(x) over (0, n) is equal to 1. Then the
system {u, (@)} is orthonormal, which means that (u,,u,) =0
for m # n and = 1 for m = n, (f, g) being defined as the integral
of f(z) g(x) over (0, m).

Further {u,(z)} is complete, which means that from (f, u,) =0
(n=0, 1, 2, ...) for a Lebesgue-integrable f(z) follows that f(z)=0
(f(x) may differ from zero on a set with Lebesgue-measure zero,
but we consider such functions to be not different from f(2) = 0).

Putting

1

colx) = (l)%, c(@) = (%)g cos nx (n=1,2,...)

TT

we call the orthonormal complete system {c,(2)} the cosinesysiem,
the series X a,c,(x) a cosineseries. If a, = (f, ¢,) for an integrable
f(z) and for all n, then C(f)= X a,c,(x) is called the Fourier-
cosineseries of f(x).

We shall indicate the normalized trigonometrical system by
{t,()}. The series S(f) =X (f, t,) t,(2) is called the Fourierseries
of f(z) and there exists an extensive theory about the behaviour
of these series.

In the years 1908 —1912 E. W. Hobson and A. Haar considered
systems of eigenfunctions of more general problems (Sturm-
Liouville-problems), defined by

w'(z) + [Q(x) + AJu(z) =0 0 =2 < =),

{ 2y u(0) + a3 /(0) o,
Bs u(m) 4 Byu’(7) = 0,

where Q(z) is continuous in (0, ).

The system of normalized eigenfunctions {un(@)} is orthonormal
and complete and the series X(f, u, )4, () is indicated by SL(f).

The following theorems hold:

Equiconvergencetheorem of Haar. ')

If Q(x) is continuous and of bounded variation in (0, %), if oy
and B, are #0 and the partial sums of SL(f) and C(f) are s,(z)

1) A. Haar [Math. Annalen 69 (1910), 831—371], 355. °
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and sk (x), then
lim [5,(2) — s¥(2)] = 0

uniformly in (0, =).

We shall say that these series are wuniformly equiconvergent
in (0, 7).

Theorem of Du Bots-Reymond for SL-series. )

If, under the same conditions for Q(x), oy and B,, a SL-series
converges in the whole interval (0, ) to a finite, integrable f(z),
then this series is SL(f).

If a SL-series, converging everywhere in (0, ), except perhaps
on a set E, to a finite integrable f(x), is SL(f), then E is called
a set of uniqueness for SL-series. In 1980 A. Zygmund proved
the following theorem: 3)

Necessary and sufficient that the set E in (0, &) should be a set
of uniqueness for SL-scries is that it should be a set of unigqueness
for series X (a, cos nx+-b,, sin na).

The just mentioned theorem of Du Bois-Reymond follows
from this one.

All proofs rest on Hobson’s asymptotic formula ¢)

(1) U, () = ¢, (x) + 5(—:) sin na + a’;ff).

In the cases that the coefficients o, and f, are not both = 0,
similar theorems can be found.

In this paper we consider boundary value problems, given by
u"(z) + [Q(2) + Au(z) =0 (0 =2 = =),

{ocl u(0) + oy u'(0) + o5 u(w) + au’'(n) = 0,
B u(0) + B u'(0) + By u(w) + fyu'(w) = 0.

We shall restrict ourselves to the case that the system of
eigenfunctions is orthogonal and complete, which turns out to
be equivalent with o8, — @y = aafiy — o4f; (§§ 2, 11).

Formulae analogous to (1) are obtained, showing different
forms in different cases, according to the behaviour of the ex-
pressions a;f; — o«;f; (4, 7=1,2,8,4) (§§ 5, 6, 7, 8).

By these formulae it is possible then to prove theorems, cor-

%) A. Haar [Math. Annalen 71 (1912), 38—53].
%) A. Zvemunp [Studia Math. 2 (1930), 97—170].
‘) E. W. HossoN [Proc. of the London Math. Soc. (2) 6 (1908), 349—395].
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responding with those of Haar, Du Bois-Reymond and Zygmund
(§§ 9, 10, 12, 13).

§ 2. The general boundary value problem.

We shall consider problems, given by
2) w'(@) + [Q(@) + Au(@) =0 (0 Sz < =),
(3) { oy u(0) + a5 u'(0) + oy u(n) + o, u'(n) = 0,
(4) B u(0) + B u'(0) + Byu(w) + By u'(w) =0,
where Q(z) is continuous and of bounded variation (the bounded
variation is not vet used in this paragraph).

Putting

m; = By — ;i By (3,7=1, 2,8, 4)

we have the following theorem:

THEOREM 1.

Necessary and sufficient that the system of eigenfunctions should

be an orthogonal complete system is that m,, = 7.
The proof rests on several lemmas.

LEMMA 1.

Considering a set of solutions of (2), it is necessary and sufficient
for the orthogonality of every pair of them, not belonging to the
same 4, that every solution out of the set satisfies two different
boundary conditions (3) and (4), between the coefficients of
which exists the relation 7, = 74,.

Proof.

Necessity. If uw,(x) and u;(x) are two of the considered solutions
of (2), belonging to 4; and ;, then

(5) [us(@) wi(e) — uy(@) uj(@)]g -+ (As—25)(ws, u;) = 0.

So we see that if the condition of orthogonality is satisfied, the

second term of (5) is always zero. Now we distinguish between
two cases:

1°. There are two functions w,;(z) and u,(z) in the con-
sidered set, for which the rank of the matrix
(6) u,(0) “;(0) uy(7) u’ ()
u,(0) “;(0) Uy(7) u;(n)

is two. Let u(x) be an arbitrary function of the set. From (5)
follows

[u(@)uy(2) — w(xye' (2)]y =0,
[w(@)ug() — us(z)s’(2)]5 = 0,
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and these are two boundary conditions for u(z), different because
(6) has the rank two, while between the coefficients exists the
relation

(7) [y (@)ug(@) — uy(a)uy(2)]g = 0,
that iS 7t12 - 7[34.

20. For every pair u;(r) and uy(x) of the set the rank of (6)
is 1, so

(8)  u1(0)us(0) — uy(0)uy(0) = 1y (whun(w) — uy(m)uy() = 0.

By letting w,(22) run through all functions of the set, we see that
we have two Sturmian boundary conditions (one for # = 0 and
one for # = =) and such conditions always satisfy 7,5, = 73, = 0.

Sufficiency. Now we assume that every function of the set
satisfies two different boundary conditions (8) and (4) with
Tyg = Mgqe If 75 = mg, # 0 and u,(x) and u,(z) belong to the
set, we can express u;(n) and u;(n) in 1;(0) and w;(0) (=1, 2).
Using the identity 7,73, + 713740 + 7947723 = O we find then (7).
If, however, @, = @3, = 0, the conditions (8) and (4) are equi-
valent with two Sturmian conditions, so that we have (8), from
which follows (7). The orthogonality of wu;(x) and wu,(z) for
Ay # Ay is concluded from (5) and (7).

LEMmA 2. 5)

If the conditions (8) and (4) are equivalent with two Sturmian
conditions (so if m,=n3,=0), the problem defined by (2), (3)
and (4) has an enumerable number of eigenvalues 4, (1, = ).
If {A,} (n==0,1,2,...)isthesequence of eigenvalues (,<<4,,),
there belongs to every A, one eigenfunction with n zeros in
0 << 2 < @ (Sturmian oscillation theorem.)

LEMMa 8.

It is impossible that an orthogonal complete system of solutions
of (2) satisfies three independent boundary conditions. (The
completeness is essential here, for the orthogonal, incomplete
system {cos 2nz} satisfies

u”(@) + Au(z) = o,
w'(0) =0, w'(w) =0, u(0)— u(x)=20.)
Proof.

Assuming that the orthogonal complete system {u,(2)} of
solutions of (2) satisfies three independent boundary conditions,
the matrix of their coefficients has the rank 8 and we have four
possibilities:

%) See e.g. M. BoCcHER, Lecons sur les méthodes de Sturm, Ch. III.

17
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19 4/(0), u(w) and w'(n) can be expressed in u(0).

20, u(0), u(w) and u'(n) can be expressed in u’(0),
while 8% and 4° arise from 19 and 2° by changing 0 and =.

If we have 19, then

(9) w'(0) = au(o),
u() = bu(0),
w'(m) = ¢ u(0),
SO

(10) cu(n) = b u'(n).

We see that {un (a)} is a subset of the system of eigenfunctions
of the Sturm-Liouville-problem, defined by (2), (9) and (10).
From lemma 2 it follows that, if b 5 0, not for all these eigen-
functions u(z) = bu(0). So {u,(2)} is a rea) subset of this system
which is incompatible with the completeness. If b = 0, not all
eigenfunctions of the SL-problem can satisfy w'(%) = c #(0), so
again {u,(z)} would be a real subset.

In the other cases we arrive at a contradiction in a similar way.

Proof of Theorem 1.

Necessity. From lemma 1 it follows that the system of eigen-
functions satisfies two boundary conditions with 7, == 75,. From
lemma 3 we conclude that the original conditions (8) and (4)
depend on these new conditions so that for the coefficients of
(8) and (4) also 7y, == 7g,.

Sufficiency. To begin with, we have to prove the existence of
eigenfunctions. If n;, = 7y = 0, we refer to lemma 2. If
7y, = 73y 7~ 0, the proof was given by G. D. Birkhoff in 1909 ¢).
He considered besides the given problem a SL-problem, defined
by (2) and

{ocl u(0) + oy u'(0) =0,
ag u(m) + oy u' () = 0.

Calling the eigenvalues (in increasing order) of this problem [,
(n=0,1,2,...), he came to the conclusion that 1, , <1, <1,.
He also gave a calculation, in the assumption that =,, # 0, to
find out if there is still a 4, < [,. It is not difficult to see that a
similar reasoning holds for the case that m,, = 0 and the result
is that in both cases there exists a 4, <1,%%). The orthogonality of

$) G.D. BirgHOFF [Transactions of the Am. Math. Soc. 10 (1909), 259—270].

6s) For s1,,=0 this is only true if a,=2o,=0, and it is always possible to obtain
this by replacing if necessary the first boundary condition by a linear combination
of both conditions. We shall only need this particular case.
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u;(x) and u;(x) for A; % A; follows from lemma 1 and if there
are double eigenvalues (4,=I,=2,,,), we can choose u,(z) and
U,,41(2) out of the solutions of (2) for A = [, so as to be orthogonal.
As for the completeness, it seems necessary to use a theorem
about integral equations for the proof in the general case (in some
simple cases there are direct proofs, for the trigonometrical
system that of H. Lebesgue 7), for the system of eigenfunctions
of a SL-problem that of H. Priifer 8)). We shall not need the com-
pleteness before § 12 and for this reason we shall postpone the
proof until § 11.

§ 8. An asymplotic formula for the eigenfunctions.

In this paragraph we shall find an asymptotic formula for the
eigenfunctions u,(x) of a problem defined by (2), (3) and (4)
with 7, == 715,. By an asymptotic formula for »,(2) we understand
a formula from which we can read the behaviour of w,(2) for
large n. We shall not yet find its definite form here, for in different
subcases which we consider in the §§ 5, 6, 7, 8, this definite form
will be different.

It will be convenient to use Landau’s O-symbol, «, = O(8,,)
meaning that | «, | <k|pB,| for all n and «,(z) = O(B,) that
| a (@) | <k|B,| for all n, uniformly in .

As 1, > 0 for large n, we put 4 = 0% (¢ > 0). Further it is no
loss of generality to suppose that the integral of Q(z) over (0, 7)
disappears. We can reach this by adding a suitable constant to
Q(a), if Q(z) is then transformed into Q(z) + k, the eigenvalues
A, are transformed into 4, — k, but the eigenfunctions remain
the same.

Now we remark that if u(x) satisfies

w’(z) + [Q(x) + %] u(®) = 0,
then

(@) = u(z) + ¢ [ Q(t) ult) sin o(@—t)dt

satisfies ;' (2) + % () = 0, so that wu;(x) == A cos (pz—-7)
with — % <T= % Putting 4 = 1 because a constant factor is

of no importance, we find

7) See A. Zvemunp, Trigonometrical Series, 1.5. As we shall refer to this book
oftener, we shall indicate it by Tr. S.
8) H. PRUFER [Math. Annalen 95 (1926), 499—518].



260 A. C. Zaanen. [8]
(11)  wu(x) = cos (pz—7) — 0! r()(t)u(t) sin o(z—t)dt,
0

(12)  w(@) = — gsin (ew—17)— [ Qt)u(t) cos o(a—1)dt.
If U = max | u(z)| in (0, %), then
Us1+Uet[]00)]d
so that for ’
e=[1QW|dt+1=K

we find U £ K.
Substituting w,(t) == cos (¢,t—7,) + O(g,*!) in (11) and re-
marking that

= .
[ 0() oo 204t dt = 0(07),
0

because Q(z) is of bounded variation, we obtain

i ( v n) —
(18) up(@) = cos (ue—,) — 2 ["Q(t)dt + O(¢;?),
" 0
while substitution in (12) gives

cos (g,,w

(14) (@) = —n 8in (Qu2—7,) — ) f@(tdt+0< 1),

In all cases that will be treated in the §§ 5, 6, 7, 8, o0, and T,
will have the form

(15)  0p = 0p +a,0,;" + 0(0;%), 7, =7, +b,0:" + 0(e,%)

where @,, 7,, a,(=0(1)) and b,(=0(1)) depend on n in a simple

way. Then using Taylor’s formula we see that u,(z) takes the
form

(16) un(w)—__cos(énw—%n)_Sin(én‘r"—in)[(en—én)m_(Tn—'—’:n)]—
__sin (e,.w r..)f 0(t)dt + 0(0=2) —

= cos (enw—"n)+ﬁ "(2) 8, " sin (g,2—7,) + 0(e;?),
where

(17) i@ = —aw +b, — [ QW
0
In the same way we find

(18)  w,(@) = — B, sin (2,2—7,) + B(z) cos (g,2—7,) + O(0,").
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§ 4. Some preliminaries.

As the last part of the preceding paragraph shows, the only
thing that remains to be done in order to find the definite form
of the asymptotic formula for u,(z) is to prove that the formulae
(15) for g, and 7, exist and to calculate g,, 7,, @, and b, in them.
For our later purposes it is of importance to show that a, and b,
are independent of n or at most depend on n being even or odd.

Substitution in (8) and (4) of «(0) = cos 7, u’(0) = psin =
(resulting from (11) and (12)), wu(w) == cos (mg—7) + O(e~?),
w(7w) = — psin (mg—7) + O(p™?) (resulting from (13) and (14))
gives (omitting the indices n):

(19)  «, cos T+ay o sin 74z cos (mp—7) — %4 0 Sin (e —7) +
%30(07?) + «,0(¢7") = 0,
(20) By cos T+ fiz o sin v+ p; cos (mg—7) — B0 sin (me—7) +
B30(e72%) + B4 0(e7?) = .
LeMMA 4.

If the boundary conditions have the form

oy u(0) + ay u'(0) =0 (g # 0),
u(m) =0

and the eigenvalues are {ln} (n=0,1,2,...), then
i =n+t 4+ 0(n ).

Proof.
(19) and (20) take the form

oy 0 SIN T = — ®; COS T,
cos(mp—7) = 0(07?%),
)
(21) 7 = bo~1 4 0(g~?) with b = — ez ?,
7w — T = (n—}—%) x4 O(0~%) (n a natural number),
from which follows
(22) o=mn-+ ;« + b1t 4 O(o7%).

(21) and (22) can be written in the form (15) (with a,=bn"1,
b,=b), so we obtain from (16)

u(z) = cos (n—l—%) x + p*(x)o1 sin (n—l—%) @ 4 0(e~2).
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From this formula we see that the number of zeros of u(z) in
0 < <mismorn + 1 forlarge n; because u(x) = 0 this number
is . But then lemma 2 teaches us that the index of this u(x)
is » and (22) becomes

B =n 45 + 0@
LEMMA 5.
If the boundary conditions have the form
#(0) =0, u(n)=0
and the eigenvalues are {I,} (n=0,1,2,...), then
B =n+1+ 0m).
Proof.

The proof runs on the same lines as that of lemma 4, so that
we shall not repeat it.

After these simple cases we shall now proceed with the general
case. We have to distinguish between m,, £ 0 (§ 5) and my, = 0
(§§ 6, 7, 8).

§ 5. The definite form of the asymptotic formula in the case mwyq# 0.

From (19) and (20) follows
{ oy Sin T — «, sin (mg—7) = O(o71),
Bysin T — B, sin (mg—7) = O(e™),
so, because myy 7~ O:
sin T = O(p™!), sin (mp—7t) = O(0™1).

Remembering that — —Z— <T= %, we find

(28) cos T =14 0(07%), mo — v ==n+ O(p™?),

where n is a natural number. There are two subecases: n odd and
n even.

Calculation for odd n.

From (19) and (20) follows, using (28)

{ oy 0 Sin T — a4 o sin(mwp—1) = — (;—oag3) + O(p™2),
Bzesin T — By o sin(mg—7) = — (B,—F;) + O(e™),
S0

osin v = — ;g (m—7,) + O(07t) = by + O(p™?),

gsin(mg—1) = — ”2—41(7512_”32) + 0(e™) =¢;, + 0(9_1)’
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or

(24) T=0be + 0(e7?), mo — v =an —co™' + O(o72),
so that

(25) o =n 4+ an™?! + O(n~2) with a; = 7z1(b;—c,).

Now we have to find the index of this g. If the boundary con-
ditions are Sturmian (so if &,,=m,,=0) we can use again lemma 2.
As (24) and (25) can be written in the form (15), we obtain
for w(x):

u(x) = cos nx + BF(x) n~tsin nx + O(n-2).

This function has n zeros in 0 < # <z for large n, so it has the
index n. If the boundary conditions are not Sturmian we may
take m;, = 73, = 1. Then the eigenfunctions have to satisfy the
linear combination of (8) and (4)

714 %(0) + 724 w'(0) + u(mw) = 0.
Now we use Birkhoff’s result, already mentioned in the proof of
theorem 1. This asserts that calling the eigenvalues of the problem
with the boundary conditions
71 %(0) + 7pq u'(0) =0, u(x) =0

l, (n=0,1,2,...), the interval I, ; < 4 <[, contains 4,. But
lemma 4 gives lfb =n + -;— + O(n~1), so that in (25) ¢ = At
has the index n.

Both in the Sturmian and in the general case (24) and (25)
take therefore the form
(26) T, = bmn~t 4+ O(n~?), o, =n 4+ an=t + O(n2).
Calculation for even n.

In the same way as for odd n we find
(27) T, =bn ! + 0(n~%), g,=mn+ an!+ O(n?)
with
by = — M3y (1g+734)s @y = 77 (by+c;) Where ¢y = —m5" (715 755)-

Remark.

If the boundary conditions are Sturmian (so if m,=7n3,=0),
we see that b, = b, and a, = a,, so that we have no longer to
distinguish between odd and even n.
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THEOREM 2.

If Q(x) is of bounded variation in (0, ), 75 = 73y and 7y, # 0,
we have for the normalized eigenfunctions of the problem, defined
by (2), (8) and (4) the asympiotic formulae

[u2n—1('1') = Cgpy(@) + ﬂl( )

.32( )

sm (2n—1)z + O(n~2),
(28)
sin 2nx + O(n—2),

1”’211(””) - Czn(“') —l'

where fy(z) — (%)*(— aw+b— [ Qwd)  (i=1,2).

If 7y =ty = 0, then B,(x) = By(x) and we get back Hobson’s
formula (1).
Proof.
As (26) and (27) have the form (15) with g, = n and 7,, = 0,
substitution in (16) and (17) gives
U, (@) = cos na + B¥(z)n1sin nx + O(n-2)
with

Bho1(@) = BH@) = — awe + by — 5[ Q)L

Bh(@) = FR(2) = — agz + by — [ Q()dt

If we want to normalize u,(z) we have to multiply with (u,, un)"}

= (—721—)% + O(n-2) and the result is that we obtain (28).

If 7y, = 7y = 0, then a; == a, and b; = b, as we have already
remarked, so that f;(z) = B.(x).

§ 6. The definite form of the asymptotic formula in the case
Ty = Mg F 0, Ty = 0, 73, 7 7.

Whercas the case my, 7 0 still shows a great resemblance with
that treated by Hobson, the case 7y, = 0 differs much more from
it. We shall restrict ourselves to non-Sturmian boundary con-
ditions, so that m;, = 73, # 0. Furthermore we take =}, # n?,
in this paragraph. It is to be observed that m;4 = 0 because of
the identity i35y + 713740 + 7147103 = O.

We can suppose 7y, = 73, = 1 (so n?, 5 1) and we replace the
original boundary conditions by their linear combinations

74 u(0) + u(x) =0,
(29) { w'(0) + 75 u(w) + 74w/ () = 0,
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from which result by the substitutions

u(0) = cos T , u'(0)=psint
u(w) = cos(me—7) + O(e7%), w'(w) = — gsin(mg—7) + O(o™?)
the conditions
(30) 7y, €08 T 4 cos (mp—7) = O(p~2),
sin — Ty Sin (w9 —7) = —p 1 ;)5 cos (mp— 1) + O(0~2).
From
cos (mp—7) = — myy cos T + O(p™2),
sin (mg—7) = agtsin v 4- O(p™1)

follows by taking squares and adding

1 = 2, cos? 1 + 72 (1—cos? 7) + O(p™1),

so, because — —721 <T= —g—:
(31) cos T = (1+422,) % + 0(o™).

After this preliminary formula for cos v we shall now try to
find an asymptotic formula of the form (15) for p,. For this
purpose we write (30) as

(7144 cos m@) cos T + sin 7o sin T = 0(p72),
—my sin g cos v+ (147, cos o) sin v=p" w37y, cos T+ 0(p~2).

The determinant D of the coefficients of sin 7 and cos T on the
left hand side is D = 2x,, + (1+=%,) cos mp, so that

D cos v = — p~1 myymy, sin g cos v + O(p™2)
or

D ==2m, + (1+a2,) cos mp = — o~ Ymy3my, sin o + O(07?)
O(o—2
( @) — 0(e) by (31)), 50

COosST
Cos 7@ == —- 2”14(1‘!‘”%4)—1 - 9_17"137514(1‘*‘”%4)_1 sin g + O (072).

If p (0 <p < 1)is defined by cos pm = — 2m,(1+73,)"! and
¢ =2n + p (n a natural number), we have

COS 7Y = COS Mg — g"lnl?,:rtl,;(l—i—:nii)'1 sin 7g + O(g~2).

As cos mg #% + 1, we can use Taylor’s formula for arc cos z to
obtain mp itself. This gives
1 — My 8inmp 1

. ~ + 0(0™2),
g T . T 0™

me = (2n4-p)w + o M mgmyy(1+a,) ™ + O0(e™?).

e = mp +-
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Fo fix the index of this p, we again use Birkhoff’s results. Calling

the eigenvalues of the problem with the boundary conditions
u(0) =0, u(w)=20

I, (n=0,1,2,...),wehavel,_ , <i, <L, Buti =n+140(n?)
by lemma 5, so

. _ TT137014 . -2
Oan—1 =% 200 — P + w(tnt) 2m—p + O0(n~?),
(82)
O = 20 + p + o O(n-2).

a(l+a2) 2n+p

Our next task is to find an asymptotic formula for z,. We
shall repeat the calculation that led to (81) considering now also
the term O(p~1). Starting from

cos (mp—7) = — myy cos T + O(p72),
sin (mg—7) = ayg' sin 7 + o~lmmy,!t cos (mo—7) + O(072)
= 5t sin v — =1 7,5 cos T + O(p~2),
we obtain by taking squares and adding

1 =n3, cos? 7+n72(1—cos? 1) —20 Y 7vy;t sin 7 cos T+ 0(p~2),
a2, —1=(n3,—1) cos? v — 20~z 7, sin 7 cos 7 + O(p~2),

1 =(14n%,) cos? v + 2@*1n13n14(1—n§4)_1 sin Tcos T + O(p™2),
cos? 7 =(1+a2) " [1—2071 e, (1 —n2,) ™" sin 7 cos 7 + O(p~2)],
cos T =(1+a%) H1—o1 7y, (1—a2,) " sin 7 cos v + O(e~2)].

Now calling 7 the ,,principal” part of 7 (so cos 7 = (1 +n§4)—’1‘),
we have

cos T =1cos7 + p~1 AsinT 4 O(p2)
with 4 = — nmnu(l—nh)_l. So at last we obtain

A sin 7, T3 7'514

1—
14

(83) v, =%, +

+0(0,") =70+ +0( n):

— sin T,

To fix 7, we observe that all 7, have the same cosine, so 7,
can only take two values v and — 7. A simple reckoning shows
that from the first line of (80) follows

sin 7o, sin 7, = @, (1—a,)(1+a2,) " + 0(¢7),
SO

sin 79, sin 7, = my,(1—n3,)(1 ‘f“”ii)_%-
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As from cos g, = — 2m;,(1+22%,)"" and (32) results that
{ Sin 70,y = (1—a},)(1+a2,) ™ sgn (a2, —1),
Sin mpy, = (1—a3,)(1 +“§4)—1 sgn (1 —af,),
we find

{ sin 7y, ; = 7, (14+-22,) ¢ sgn (a2, —1),
. _ -1
SIn Ty, = my,(14-n3,)7% sgn (1—a3,).

So we can put

Top-1= T,
Ty = — T.
THEOREM 8.

1f Q(z) is of bounded variation in (0, ), 7wy = 73y = 1, 7,y = 0
and 7%, # 1, so that the boundary conditions can be written in the
Jorm (29), we have for the normalized eigenfunctions of the problem,
defined by (2) and (29) the asymptotic formulae

3
ugn_l(w)z(—z—) cos[(2n—p)a —r]—}- 1n[ 2n—plz—7]+0(n-2),
(34)

U, () :(;) cos[ (2n—+p)x+ ]—|— s1n[(2n+p)w+1]+0(n*2),

where p (0 < p <1) and 7 are defined by

cost= (14a2,)7},

(85) cos pw=—2m,,(1+a2) "
1 1 sint =, (1 +7t§4)_% sgn (73, —1),

and where
70137014 ﬂmnu 1
plz) = ( ) [—n(l+n ) T2 J. Q) dt:l
Proof.
As (32) and (38) have the form (15) with
O =20 — P, Ogp =20 + P, Top g =7, Tgp = — T,

substitution in (16) and (17) and normalizing gives the formu-
lae (34).

Remark.

In a certain respect the case m,, = 0 is more general than
7,47 0 as the asymptotic formulae obtained also show. By the
dominating role of «’(0) and «'() in the boundary conditions the
case my, # 0 is to a high degree equivalent with the simple case
u'(0) = 0, u'(x) = 0, whereas this equivalence disappears as
soon as my, = 0.
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§ 7. The definite form of the asympiotic formula in the case
Ty = Mgy 7# 0, My = 0, 73y = 73y, M3 # 0.

While in the preceding paragraph we supposed 3, # 73,,
we shall now discuss the case a2, = n2,. It will turn out that the
influence of 7;; and Q(«) becomes greater. We restrict ourselves
here to m;3 % 0 and it seems necessary to impose upon Q(z) a
heavier condition than in the preceding paragraphs to obtain
satisfactory asymptotic formulae. Again we can take 7,,=mn3,=1
without loss of generality and we shall prove the following
theorems:

THEOREM 4.

If Q(z) has a first derivative which is of bounded variation in
(0, @), myy = 73y = myy = 1, 7y, = 0, 7,5 % 0, s0 that the boundary
conditions can be written in the form

[ u(0) + u(x) —o0,
(86) | w(0) + msu(m) + w'(m) = o,

we have for the normalized eigenfunctions of the problem, defined
by (2) and (36) the asymptotic formulae

3
Ugp(X) = (—:—) cos (2n+1)z+; 32( %)

sin (2n+1)x + O(n-2),
(87)

3
Ugy (@)= (;) sin (2n+1)x —[— 7 €08 (2n+1)x + O(n—2),

with

ﬂz(w):(i)% [——?m Q(O) Q(n)—l— fQ(w) mdw——f o t)dt:l
mu~()F@:%M-jwmq

4z
THEOREM 5.
If Q(z) has a first derivative which is of bounded variation in

0,7), g =gy = —myy =1, @y, =0, 73 #0, so that the
boundary conditions can be written in the form

u(0) — u(x) —o,
(88) { W(0) + gy ) — /() = 0,

we have for the normalized eigenfunctions of the problem, defined
by (2) and (88) the asymplotic formulae
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3
Ugy (@) = (—i—) cos 2na + —— ﬁ‘( ) sin 2na + 0(n—2),

(39)

3
Ugp () = (;) sin 2nx + —— ﬂz( ) cos 2nz + O(n—2),

where By(z) and By(x) have a similar form as in theorem 4.

Proof.

We shall give the principal points of the proof of theorem 4,
that of theorem 5 will be omitted because it runs on the same lines.
The boundary conditions (86) can be written in the form

cos (mp—7) = —cos 7+ o1 fﬂQ(t)u(t) sin go(z—t)dt,
(40) ’ n
sin (wp—7) = sin r—p~1m,5cos T—Q—l'[ Q(t)u(t) cos p(m—t)dt,

which gives

(41) cos mp = — 1 4+ p~lmyy sin v cos 7 4+ O(p™2),
sin g = — 7lmy; cos? T + O(e~?).
If however sinzmp = O(p~!) then coszmg = — 1 + O(p~%), so

that sin 7 cos 7 = O(p~1), because ;3 # 0.
Now there are two possibilities:
I.  cos = O(p™).
II. sin 7 = O(p™?).

If we keep to our old agreement — T<r=2 5 it would be
impossible to decide in case I whether 7, = —-Z— or 7, =%.
T

Therefore we shall change the agreement and fix that 7, =5

In case IT we have 7, = 0, so always
(42) T, =T, + 0,'b,  with b, = O(1).

From (41) follows

sin 7p = O(0~?) in case I,
sinmp = — o lmyy + O(e~?) in case I,

)
@8) (&= o + 0(e,%) in case I,
0n = On + 0p gt + O(07%) in case II,

where g, is an odd natural number because cos g, = — 1. As
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(42) and (48) can be written in the form (15) we have

Uy () = cos (2,2—T,) + fn(2)e, " sin (2,2—7,) + O(e,?)
with

B (2) = bn““%ro(t)dt in case I,

inQ(t)dt in case II,

2

0
so in both cases g¥(z) = b, + y,(2).

What remains to be done is to see for which n occurs the case I
and for which n case II and to find out how b, depends on n.
Just to assure that b, only depends on I or II occurring, it seems
necessary to impose the already mentioned heavier condition
upon Q(z).

We have to consider the integrals in (40).

Omitting casy calculations we get

1—f Q(t)u, (t) sin g, (w—t)dt ;j Q(t)u, (t) sin gt dt + O(p2) =

Br@) = — a4+ b, —

= JaQ(t) cos (0,6 —7,,) sin g,t dt +
fn@ (t)BX(t) sin (gt —T,) sinp,tdt + O(p;?) =

Using that Q(x) has a first derivative which is of bounded
variation, it follows that

I, = (43,) ™ [Q(0) — Q(x)] cos T, + 0(e5?),
I, = (28,) cos %, [ Q1) y.(t)dt + O(o72).
SO ’
I = g;" cos 7, [ 1 (Q0)— Q) +5 [ Q0)7a(t)dt] + O(ez?) =

0
=0, P, cos 7, + 0(e,?),

where P, can only take the values P, (in case I) and P, (in case

II). In a similar way we can find

Ty = [[Q(t)u, (1) cos g (x—1)dt =

=g;%sin7, [ (0®)—000)) + & [[Q)ya(dr] + 0(e;®) =

=0, Q,sin T, + 0(0;?)-
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The boundary conditions (40) can be written now as

08 (mga—Tn) = — 05 T, + 532P, cos T, + 0(e?),

sin (g, —7,) = sin 7, — ¢, my; cos 7, — g, %Q, sin 7, + 0(e;?).
Taking squares and adding gives
— 29, %P, c0s® T, — 20,17, sin 7, cos 7, — 27,,%Q,, sin? %, = 0(o;?).

In case I (sin 7,=1, cos 7,,=0, sin 7,=1+4+0(p;?)) this takes the
form

08 7, = — gt Q) + 0(e,,2),
(44) To =3 + 8, 7 01 + 0(052),

where

0= 1106 —00) — 5 ["aw) [0t = - (0t — 000,

/4
for j dee - m)j Q(t)dt = 0 because _[Q )dz = 0.
Substltutlon of (43) and (44) in (16) and (17) gives

Uy, () = cos (énw——%) + B¥(xz)eo, ! sin (’énw—%) + 0(0;2%) =
= sin g,z — ff(z)g," cos g,z + 0(0,?)
with

pl(e) = S0 0 f 0(t) dr.

In the same way we find when II occurs

Uy (2) = cos g, + f3 () g, " sin g, + 0(e,?)
with

@) = — 22 — 9(0)4 Q‘”)+ fQ(m)mdx——J‘ 0(t) dt.

From Birkhoff’s results we conclude, using again lemma 5, that
Oan = Oant1 = 2 + 1. It is impossible that both for u,,(z) and
Ugpn11(2) case I oceurs, for that would be incompatible with their
being orthogonal to each other.

The same can be said about case II, so of uy,(x) and uyy, ;1 (2)
one has the ,,principal” term cos(2n + 1) and the other one
sin(2n+1)x. For that which follows it is of no importance how
we distribute the indices 2n and 2n +1 among them. After nor-
malizing them we obtain the formulae (87).
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§ 8. The definite form of the asymptotic formula in the still
remaining cases.

We still have to consider problems with boundary conditions
u(0) + u(x) =0, u'(0)+ w'(x) =0
or
u(0) — u(w) =0, %' (0) —u'(x) =0.

Here the influence of Q(x) is still greater than in the preceding
case. As an example we mention the following theorem that can
be proved with methods analogous to those used in § 7.
THEOREM 6.
If Q(x) has a second derivative which is of bounded variation in
(0, z) and Q(0) # Q(x), we have for the normalized eigenfunctions
of the problem, defined by (2) and

uw(0) + u(x) — 0, w(0) + w'(x) =0,
the asymptotic formulae

Ugy(2) = (%)%cos [(2n+1) ——] + — @) in [(2n—l—1)a:—%} +0(n-2),

2n+1

Ugpy 41(2)= (—;) cos [(271—[—1 ] +2ﬂ‘(+i sin [(2n+1)w—|—%] +0(n-2),
where f1(z) and Bs(x) have a similar form as in the cases already
treated.

If Q(0) = Q(x) we can obtain similar formulae under the
assumption that Q(z) has a third derivative which is of bounded
variation in (0, #) and that Q’(0) # Q'(x).

Probably it will be possible to find such formulae if
QM(0) = QW (x) (¢=0,1,...,n—1), Q™ (0) % Q™ (x) and if

Q2 () is of bounded variation in (0, 7).

§ 9. The behaviour of the ,,Fourierseries” SL(f) and the sets of
uniqueness in the case myy - 0.

As the problems with 7, % 0 show so much resemblance with
Sturm-Liouville problems it need not amaze us that the equi-
convergence theorem of Haar and the theorem of Zygmund
about the sets of uniqueness (both mentioned in the Introduc-
tion) remain valid without any difference. The proofs undergo
only slight changes, so we shall omit them here.
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§ 10. The behaviour of the ,,Fourierseries” SL(f) for the system
2

{(;)*cos [(2n 4+p) @ +7] } .

If we consider the simplest possible case of those treated in
§ 6, we have to take Q(2) = 0 and the boundary conditions

734 u(0) + u(s) =0,
{ 1 u’(O) + 7l14’l,lr’(7t) = 0. (nil F# 1)

The system of eigenfunctions is then
2}
{0a@) = (2)" cos (e — 7}

: Q21 = 20 — P, Ton-1 = T,
(45) with { Qan =20+ D, Tz = — 7T,
where p (0 <p < 1) and v are defined by (85).

We shall study the behaviour in (0, ») of the ,,Fourierseries’
SL(f) = X(f, v,)v,(z) of an integrable function f(z). For this
purpose we need some theorems about common Fourierseries.
(For the notations we refer to the Introduction.)

LEMMaA 6.°9)

If fi(x) = fo(x) in (a, b), then S(f;) and S(f,) are uniformly
equiconvergent in (a-t-¢, b—e¢).

LeMMmaA 7. 10)

If o(x) has the period # and satisfies a Lipschitz-condition of
order 1, then S(of) and o(2)S(f) are uniformly equiconvergent
in (0, 7).

LemMmaA 8.

S(cos pz - f(x)) and cos px S(f) are uniformly equiconvergent
in every interval (¢, —¢). The same holds good for S(sin pz - f(z))
and sin pz S(f).

Proof.

Consider a function o(z) of period =, satisfying a Lipschitz-

2
From lemma 6 follows that S(cos pz - f(z)) and S(o(z)f(z)) are
uniformly equiconvergent in (e, z—e) and from lemma 7 the
same for S(o(z)f(z)) and o(z)S(f) in (0,x). In (e 7w—e),
S(cos px - f(z)) is therefore uniformly equiconvergent with

a(2)S(f) = cos pz S(f)-

condition of order 1 and coinciding with cos pz in (%, n——e—).

%) Tr. S. 2.51.
1) Tr. S. 2.531.

18
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The second half of the lemma is proved in the same way.
Calling now sl,[f] the (2n+1)-th partial sum of SL(f) (so the
same notation as always used for trigonometrical series), we have

dolf] = = j”f(t) = cos (gr—my) cos (eud— Tt =

2n

= —j f(t) E {cos [op(@+1) — 27;] + cos gy(w—1t)}dL.

2n

Taking into consideration (45) and adding in 2 the terms with
0

indices k = 2] — 1 and k = 2l, we obtain

2

pq

stlf) = = [ ft) cos [p(a 1) +27] [ 5 + X cos 2l(a-+1) ] di +

0
T

+ E'f f(t) cos p(w—t)l}i— + i cos 2l(x—t):\dt =1, +1,
i i = 1

3 l

As we have for the (2n+1)-th partial sum of S(f):
2 JT 1 n . )
silfl == f f) [+ Zeos 2U(e—0)] d,
we see that

I, = cos pa - s, [cos px - f(x)] + sin pa - s, [sin pa - f(z)].

To obtain for I, a similar expression we remark that from (85)
follows

cos (pn+27) = 0, sin (pr+27) = sgn (1—ad,),

SO

=2 ffff(t) cos [p{t—(z—a)} + px + 27) [5 + 2": cos 20 {t—(n—)} | dt =

= —sgn (1—a?,) J. f(t) sin p{t— (m— x)}[—— 4 Zcos 2L {t—(n— a")}:I dt =
= sgn (a3, —1) {cos p(z—a)s,[sin p(r—a) f(m— m)] —
— sin p(n—a) s,[cos p(n—a) - f(r—a)] } =
= sgn (73,—1) {sin pa - s, [cos px - f(mn—a)] — cos pz - s,[sin pa - f(m—2z) ]}.
So
1, [f] = cos pa {s,[cos pa -f()] + sgn (1—2y)s,[sin pa -fln—a)] } +
(46) -+ sin pa {s; [sin pz - f(z)] + sgn (7}, —1)s, [cos px - f(n—2)] } =
= cos p -5, [¢1(2)] + sin pa - s,[ga(2)].
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THEOREM 7.

For an integrable f(z) the series SL(f) and S(f) are uniformly
equiconvergent in every interval (e, m—e).

Proof.

From (46) follows by lemma 8 that the difference of the
(2n+1)-th partial sums of SL(f) and S(f) converges to zero
uniformly in (e, z—¢). As the coefficients in SL(f) as well as in
S(f) converge to zero, we have the same for the difference of the
2n-th partial sums and the theorem is proved.

There can be no equiconvergence in the whole interval (0, x),
for all v, (x) satisly 7;,0,(0) + v,(%) = 0, so also 7, sl,[f(0)] +
+ sl,[f(=)] =0, whereas s,[f(0)] =s,[f(%)]. Should there be
equiconvergence e.g. at & = 0, then there would be no equi-
convergence at ¥ = m because m,; % — 1. We can prove something
about the behaviour of SL(f) in the whole interval (0, ) if f(x)
satisfies, together with some other condition, the boundary
condition 7, f(0) + f(r) =0, so one of those satisfied by the
eigenfunctions.

THEOREM 8.

If the continuous function f(x), satisfying w4 f(0) + f(z) == 0,
is of bounded variation in (0, w) or satisfies a Lipschitz-condition
of positive order there, then SL(f) converges to f(x) uniformly in
the whole interval (0, 7).

Proof.

If f(x) is continuous and of bounded variation in (0, =) or
satisfies a Lipschitz-condition of positive order there, the same
can be said of the functions @;(z) (¢=1,2) in (46). Now an
easy calculation shows that ¢,(0)=g;(7) because 7,4 f(0)+f(7)=0.
This leads to the result that s,[@;] converges to ¢;(@) uniformly
in (0, w) as follows from well-known theorems about Fourier-
series. So sl,[f] = cos px « s,[¢1] + sin px -5, [@,] converges to
cos px + gy() + sin pa - py(@) = f(z) uniformly in (0, z).

THEOREM 9.

The system {(%)E cos [(2n + p)x + r]} is complete.

Proof.

If (f, v,) = O for all n, the sum of SL(f) is identically zero, so
by theorem 7 S(f) converges to zero everywhere in (0, ),
except perhaps in 0 and 7. As the set consisting of the two points
0 and 7 is a set of uniqueness for trigonometrical series 11), f(2)=0.

1y Tr, S. 11.32.
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§ 11. The completeness of the system of eigenfunctions.

As already remarked in § 2 it seems inevitable to use a theorem
about integral equations if we want to prove the completeness of
the system of eigenfunctions in the general case.

LeEMMA 9.

If {un(m)} is the system of eigenfunctions of one of the problems
treated in the §§ 5, 6, 7, 8, this system is complete for the class
of continuous functions.

Proof.

It is no loss of generality to assume that 2 = 0 is not an eigen-
value of the considered problem. Now to this problem is adjoined
a function G(z,t) (Green’s function), having the properties:

a) If f(z) is continuous in (0, x),

u(@) = [ G(a, 1) f(t) de

0

satisfies

u"(2) + Qz)u(z) = — f(=).

b) Gz, t)= XA u,(z) u,(t). We remark that this series
0

converges uniformly in 2 and ¢ because ;' = O(n-2).
If now (f, u,) = 0 for a continuous f(z) and all n, by b)

0

u(@) = [ Gla, 0/ dt = T 17" u(@)(f, )=,

so by a):
fl@) = — [w"'(z) + Q@) u(@)] = 0.

LEMMA 10.

If f(x) is integrable there exists a h(z), continuous in (0, ),
with (f, u,)=(f+h, v,) for all n, where v,(z) is the ,,principal”
part of u,(z).

Proof.

(For the case treated in § 6, the proofs in the other cases running
on parallel lines.)

Omitting the indices n, we have

(f,u) = (fiv) + 7+ O(n~?),
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where

do(z) =

™ sin [(2n + p) @ + 7] _ (Tsin[(2n £ p)a £ 7]
r !f(fv)ﬁ(w) i p da = [ 2+ p

@(n) sin[(2n+p)n+ 7] + @(n) sin (pr+7)
- 2n L p _(¢’v):T—(¢’v)+0("_2)’

T
where @(z) = J f(t) B(t)dt is continuous. Because series with coef-

0
ficients O(n-2) are ,,Fourierseries” of continuous functions, it
remains to be proved that the same holds good for

(47) % 7)21;——1(“’) - vzn(w) .

1 2n

Defining the continuous function yp(2) by

") 9 .%
p@) =2 (;) n-1sin 2na for 0 < a < m,
1

p(0) = 9(0 +), w(7w) = y(z—),

it is a simple reckoning (using (46)) to prove that (47) is the
Fourierseries of sin (pz + 7)yp(x).

THEOREM 10.

If {u,(®)} is the system of eigenfunctions of one of the problems
treated in the §§ 5, 6, 7, 8, this system is complete for the class of
integrable functions.

Proof.

(For the case treated in § 6.)

If (f, u,) = 0 for an integrable f(z) and all n, by lemma 10
there is a continuous k(z) with (f, w,) = (f+h, v,,) = 0 for all n.
Because however {v,(z)} is complete (theorem 9), f(z) + h(z)=0,
so (f, u,) = (—h, u,)=0. But A(z) is continuous, so by lemma 9
h(xz) = 0. From f(z) 4+ h(z) = 0 follows then that also f(z) = 0.

§ 12. The behaviour of the ,,Fourierseries” SL(f) in the general case.

We shall again restrict ourselves to the case treated in § 6
and we shall prove the analogon of Haar’s equiconvergence
theorem, mentioned in the Introduction.

THEOREM 11.
The series X (f, u,)un(z) and X (f, v,)v,(2) are uniformly
equiconvergent in (0, ) for every integrable f(x).



278 A. C. Zaanen. [26]

Proof.

The proof is analogous to Hobson’s proof of Haar’s theorem.
At first it is shown that the difference of the partial sums of the
two considered series converges uniformly to a continuous h(z)
and then that h(z) = 0.

Writing (84) in the form

wn(@) = (2)" cos (0, 2—7,) + B(x) o sin (0, 2—7,) + O(n~2),

we obtain for the difference of the (2n-1)-th partial sums

(omitting the terms with index 0) an expression of the form
I, + I, + I;, where

Il = (;)%Jﬂf(t) ﬁ(m) 21"“1 QI:ISin (Qlcm_Tk) CcOS (th—‘[k)dt,

I, has a similar form and I; is a sum with terms O(k-?), con-
verging therefore to a continuous function. In I; we change
05" for k=2l —1 and k = 2l into (21)™}, this being allowed
because the difference is a series with terms O(k—2). Adding then
the terms with £ = 2] — 1 and & = 2] we find an expression
which can be split up into terms of the form

¢(@) fnt/)(t) 31 sin 2l(a & 1) dt =
0 1

n T n 4
=¢(w)[2 I-1sin 21z I y(t) cos 2lt dt + X 11 cos 2l f w(t) sin 20t dt].
1 0 1 0
Both sums occurring in the last bracket converge uniformly as
term by term integrated partial sums of common Fourierseries,

so the same holds good for I,. In a similar way this is proved
for I,, so

uniformly in .
To prove that h(xz) = 0 we remark that

(48) “2 (. 00)(& ) = (f: €)

for f(x) integrable and g(z) of bounded variation. This case of
Parseval’s theorem asserting that it is allowed to integrate
2(f, v, )vn(x) term by term, after having multiplied it with g(x),
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follows from the fact that this theorem holds good for common
Fourierseries 12) and from (46).
Now using (48) with f = f(x) and g = w;(x), we have

(h’ ul) = 2 [(f’ un)(um uz) - (f? 'U”)('L’.n, ui)] =
- (f’ ui) - Z(f’ vn)(ui’ 'U”) = (f, ui) - (f’ ui) =0

for every ¢. From the completeness of {un(a))} follows that i(x)=0.

The theorem just proved enables us to assert that the theorems 7
and 8 also hold good for the ,,Fourierseries” SL(f) considered in
this paragraph. Because of their importance we shall mention
them again.

THEOREM 12.
If {u,(x)} is the system of eigenfunctions of the problem defined by

w’(x) + [Q(x) + Alu(r) =0 0 =2 <a),
714 U(0) + u(x) =0, 2
{ w'(0) + @3 w(w) + myy w'(7) = 0, (7 # 1)

where Q(x) is continuous and of bounded variation, {t,(x)} is
1

1
the trigonometrical system {(tlr)?, (—i—V cos 2na, (721—)% sin 2nm} and
f(x) is integrable in (0, m), then the ,,Fourierseries”
2 (fs wy) wo(@) and X (f, t,)t,(x)

are uniformly equiconvergent in every interval (e, m—e).

If the continuous function f(x), satisfying m,,f(0) + f(z) =0,
is of bounded variation in (0, ) or satisfies a Lipschitz-condition
of positive order there, 2 (f, w,)u,(x) converges to f(x) uniformly
in the whole interval (0, x).

In the cases treated in the §§ 7, 8, similar theorems hold good and
for the system mentioned in theorem 5, the equiconvergence with
2(f, t )t (@) in (e, m—e) is even replaced by equiconvergence in (0, w).

§ 13. Sets of uniqueness.

In this paragraph we shall understand by a trigonometrical
series a series X (a, cos nx-+b, sin na) and by S(f) the Fourier-
series of f(x) in the usual meaning. Again {un(m)} is the system
of eigenfunctions of the problem treated in § 6.

12) Tr. S, 4.44.
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THEOREM 13.

If ¢,—0 there is a trigonometrical series % (a,, cos nx—+b, sin nz),
uniformly equiconvergent with X c, u,(z) in (0, 7).

The proof rests on several lemmas.

LrMma 11. 13)

If a, and b, >0 and S(g) has Fouriercoefficients O(n=3),
there is a trigonometrical series with coefficients converging to
zero, uniformly equiconvergent with g(z) X (a,, cos nz—+b,, sin nz)
in (—=, ®).

LemMa 12.

If ¢, —>0 there is a series 2(a, cos nz+b,sin nz) (a, and
b, —0), uniformly equiconvergent with X ¢,v,(z) in (0, w),
where v,(x) is the ,,principal” part of w,(z).

Proof.

The series X ¢, v,(2) can be written in the form

¥ {d, cos [(2n—p)x — 7] + e, cos [(2n+p)x + 7]} =
= cos (pz+7) X (d,+e,) cos 2nx + sin (px+7) X (d,—e,) sin 2na.

Defining g;(z) and gx(x) in (—=, #) in such a way that they
coincide with cos(pz+-7) resp. sin(pz+7) in (0, z) and have
Fouriercoefficients O(n-3), the proof follows immediately from
lemma 11.

LemMma 13. 14)

Writing the formulae (34) in the form

(49)  uy(2) = v, (@) + B(z) 0,7 sin (e,2—7,) + N2ty (@),

a(x) = e, n2a,(x) satisfies a Lipschitz-condition of positive
1

order.
Proof.

Differentiating (16) and comparing the result with (18) we
see that n2o (z) = O(n-1), so

,oc(az—{—h) - o‘(‘1'3')! = (% +V%1) Ic"l n=? , ap(@+h) — n(m)l =

N )
K| h|Ent+K,Zn? < K;|h|logN + K,N-1.
1 N+1

13) Tr. S. 11.42.
14)  See 3).
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Taking N = [| k|™'] we find
[w(@+h)—a(z)| < Ks|h|log|k|™ < K,|k|*

for every « in 0 <« <1 and | k| g%.

Proof of Theorem 13.
Applying the notation (49), by lemma 12 there is a trigono-

o
metrical series uniformly equiconvergent with Xe¢,v,(z) in

1
(0, =). It is not difficult to see that by the same method we can
find a trigonometrical series uniformly equiconvergent with

Ye,B(x) e, sin (¢,z—7,), while from lemma 13 follows that

1
C(co up(®)+o(x)) converges uniformly to ¢y uy(z) + o(x).

THEOREM 14.

Every set of uniqueness for trigonometrical series, lying in (0, x),
is also a set of uniqueness for series X c,u,(z) (c,—0).

Proof.

Let the set E in (0, ) be a set of uniqueness for trigonometrical
series and let X ¢, u,(z) converge to a finite integrable f(z) on
its complement CE. We have to prove that ¢, = (f, u,) for all n.

Calling X (a, cos nz+b, sin nz) (a, and b, —0) the trigo-
nometrical series uniformly equiconvergent with Xec,u,(z) in
(0, ), this series also converges to f(z) on CE. Then

2 [*(ay cos mt-+b, sinntydt = [ f(t)dt

%9 0
uniformly in (0, #) %), so also

> rcn u,(t)dt = fzf(t)df.

%9 0

uniformly in (0, z). From

N—>w

tim [ [% ¢, uy(t) — f(t)] dt—0

15) Tr. S. 11.47. In the last theorem of 11.47 it is allowed to replace the
words ,,an at most enumerable set E of points” by ,,a set of uniqueness E’.
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uniformly follows by the second mean-value theorem
n[ N
lim f [E ¢, U (t) ——f(t)] w,(t) dt =0
N—>w» o 0

for all k, so ¢, = (f, u,) for all k.
We remark that the theorem of Du Bois-Reymond for the
series 2 ¢, u,(z) follows from theorem 14.18)

(Received January 2nd, 1989.)

16) Tt is possible to give a direct proof of the theorem of Du Bois-Reyvmond
without having to refer to the deep-lying theorems in Tr. S. 11.42 and 11.47.



