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Factorability of general symmetric matrices
by

Rufus Oldenburger
Chicago

1. Introduction. The well-known theorem that a quadratic
form Q = aijxixj [aij=aji] of rank r is equivalent to a form
Â lyl 2 + Â 2e2 + - - - + ÂrY; with diagonal matrix is the same as

the statement that the matrix A = (a;;) of Q can be "factored"
into B’DB, where D is the diagonal matrix

B denotes the transpose of B, and B is a matrix of rank r with
r rows. If we write B = (boci) = (ba.j)’ we have

In the present paper we are concerned with the problem of "factor-
ability" of a general symmetric matrix (aij... m) into a form

where a is finite. If A factors as in (1.1) the associated form

aii...m xixj - - - xm can be written as a linear combination of

powers of linear forms. Such linear combinations are useful in

treating some of the classical problems of algebra 1).

2. Definitions. We shall say that a matrix A = (aij...m)
is p-way if it has p indices i, j, ..., m. If each index ranges over
1, 2, ..., n, we say that A is of order n. In the introduction and
in what follows the term symmetric matrix refers to a matrix

1) R. OLDENBURGER, Representation and equivalence of forms [Proccedings
Nat. Acad. Sci. 24 (1938), 193-198].
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for which the values of the elements are unchanged under per-
mutation of the subscripts. If a matrix A can be written as (1.1)
with elements in a field K, we shall say that A is factorable with
respect to K.

3. Factorability. In the following theorem, the term "order"
of K refers to the number of elements in the field K.

THEOR,EM 3.1. The class of symmetric p-way matrices factorable
with respect to a field K is identical with the class of all symmetric
p-way matrices if and only if K is of order p or more.
We shall sketch the proof of Theorem 3.1 leaving out some

of the more complicated details.
A p-way matrix A = (aij...m) of order n is factorable if

and only if there exist elements Â!X, bai [a = 1, 2, ..., a;
i = 1, 2, ..., n] such that the following equations are satisfied:

This is a system of linear equations in the Â,’s. Due to the sym-
metry of A many equations are repeated in (3.1). When we

expand (X1+X2+ - - - +Xn)p we obtain a sum

where the ai are integers, and the fi are distinct power products
of degree p in the xj [j =: 1, 2, ..., nJ. We let bi denote the set
of elements (bi1’ bi2, . - ., bin) for each i in the set 1, 2, ..., cr.

The system of equations (3.1) for or = N is then equivalent to
the set

where Y1’ y2, ..., y. are equal in some order to the elements of A.
We assume that (y,, - - ., Yn) is not the zero vector, since then
A is trivial. If we can prove that we can choose the boc in K so
that the determinant

is not zero, there exist solutions for the Â’s in (3.2), and A is

factorable.

We write the matrix D as the matrix (Mo«) [Q==1, 2, ..., n;
ce=1, 2, ..., N] where M., is the minor of D composed of power
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products fp(baJ which contain btXe as a factor, and no brxa where
a &#x3E; (2. The Merx are minors with one column only. We let te
denote the number of elements (rows) in Merx- We construct
minors Noj of D [e, a=lg 29 ..., n] such that N,,, is the matrix
(Merx) composed of the columns Me,rx where cc ranges over the
values ga + 1, g, + 2, ..., ga+l’ and g, is given by

The matrix D is then given by (NLocr) [e, or=l&#x3E; 2, ..., n]. We
set b«i = 0 in D when a is in the range g(1 + 1, g6 -f- 2, ...,

gO’+l’ and i in the range a + 1, a +- 2, ..., n. That is, we set
each brxi equal to zero that occurs in N (1+I,(1’ N (1+2,(1’ ..., N n(1
and not in N1a, N2,,. - ., N(1(1’ so that we obtain

The minor N aa is square and contains only elements bCtÂ’
where Â  J. We take br:xa = 1 for oc in the range g, +1, g, + 2, ...,
ga+1. The minor Njj is now, with possibly a rearrangement of
rows, of the form

where h = 1, 2, ..., tj, and g, r, ..., s are or - 1 non-negative
integral exponents satisfying the inequality

It is understood that co, d0h, ..., f0h denote 1 for each h. The distinct
sets of exponents (g, r, ..., s ) satisfying (3.3) are evidently in
1-1 correspondence with the integers in the range of h. We set
h in 1-1 correspondence with sets (i, j, ..., m ) of or-1 non-
negative integers i, j, ..., m subject to the restriction.

For each set (i, j, ..., m) and corresponding h we write

where al, a2, ..., (Xp-1 are indeterminates over .K and (xo = 1.
By this choice of the ch, ..., Jh the minor Njj takes on the form
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were the exponents satisfy (3.3) and (3.4). ive remark that
the exponents in (3.5) form a multipartite row index of Naa,
and the subscripts form a multipartite column index of N aa.
We shall need the following lemma.

LEMMA 3.1. The matrix (3.5) is non-singl11ar if uo(=1), (Xl’
rl2’ ..., rl.1J-1 are distinct eleinents in K.
Lemma 3.1 can be proved by showing that the J11atrix (3.5)

is équivalent to a triangular matrix with diagonal minors of the
same form as (3.5) with p replaced by smaller integers. Since
(3.5) is non-singular if it is of order 1 [that is, p = 1 in (3.3)
and (3.4)], it follows by induction that Lemma 3.1 hold. Thus
A is factorable if K is of order p or more.

To completc the proof of the theorem wc assume that K is
of order y  p. It is obviously necessary to considcr only p-way
matrices ivhere p a 3. We shall exhibit a p-way matrix A of
order two which is not factorable with respect to K. We define
A to be a p-way symmetric matrix (aij... M) of order 2 whose
non vanishing éléments are those which have exactly subscripts
equal to 1; the non-vanishing elements of A are taken equal to
one. We let S denote the subset of the equations (3.1) for which
(i, j,..., m) range over the sets of values (2,2,..., 2), (2,2,...,2, 1),
(2, 2, ..., 2, 1, 1), ..., (2, 2, ..., 2, 1, ..., 1), where there are

1JJ l’s in the last set. If there is no solution for the Â’s in the set
S there is no solution for the À’s in (3.1). We assume that there
is a positive integer a, and that there are valus )"Cl’ ba.i’ in K
so that S is satisfied. The matrix T = (ba.iba.j ... ba.rn) of coeffi-
cients of the Â’s in S is the following (y+1 ) by a rectangular
matrix:

Since K is of order ’lp, it follows from the theory of Vandermonian
determinants that each possible (V+I)-st order minor of T

vanishes for each choice of the b’s. Thus for a choice of the b’s
the rank of T is r, where r  y + 1. The matrix
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obtained by adjoining the column of elements (a2... 2)’ (a2... 21)?
...., (a2... 21... i ) of A occurring in S, is the augmented matrix
of the set S. Since r  y, the rank of T is r + 1. The ranks of
T and T’ are thus unequal. By the well-known theorem that a
system of linear equations has a solution if and only if the rank
of the matrix of coefficients equals the rank of the augmented
matrix, the set S has no solution for the Â’s. Thus A is not fac-
torable. The proof of Theorem 3.1 is now complete.

4. Example. Let A = (aij) be a symmetric matrix of order 2.
Equations (3.2) now become

The matrix D is

Now

where

We write 1

whence

where Nll, N22 are square minors of orders 1 and 2, respectively.
Setting b12 = 0, we get

Taking b11 = b22 = b32 = 1 , we obtain
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We write el = ao, c2 = a1, whence the last matrix above becomes

Taking ao = 1, and al =F 1, we arrive at a non-singular speciali-
zation of D.

5. Note on the matrix (3.5). The non-singularity of the matrix
(3.5) for distinct oc’s may be used to give a new proof of the
following theorem. The proof is not shorter than existing proofs,
but is merely given to illustrate a use of (3.5).
THEOREM 5.1. Let P be a polynomial of degree p with coef ficients

in a field K of order p --¢- 1 or more. If P is zero for all values of
the variables in K, then P is identically zero (that is, all coefficients
of P vanish).
The polynomial P = P(x, y, ..., z) can be written as

where x, y, ..., z are the variables in P, say n in all, and the
summation is over all admissible values of r, s, ..., t. Let ao = 1,
and oco, oei, ..., ap be p + 1 distinct elements in K. Let the set
S = (oci, ce,, ..., am) correspond to the term aii... m xiyi ... z
in (5.1). This correspondence is unique. Substitute the sets of
values S for (x, y, ..., z) in the equation P = 0. We thus obtain
the set of linear equations

homogeneous in the a’s. Since by Lemma 3.1 the matrix

(ei dj - - - ai.) of coefficients is non-singular, the a’s vanish.
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