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Factorability of general symmetric matrices
by
Rufus Oldenburger
Chicago

1. Introduction. The well-known theorem that a quadratic
form Q = aywx; [a;;=a;] of rank r is equivalent to a form
A2+ Ays + ... + Ay% with diagonal matrix is the same as
the statement that the matrix 4 = (a;;) of Q can be ,,factored”
into B'DB, where D is the diagonal matrix

B’ denotes the transpose of B, and B is a matrix of rank r with
r rows. If we write B = (by;) = (by;), we have

r
A4 = ( Y }.abaibm.).
a=1
In the present paper we are concerned with the problem of ,, factor-
ability” of a general symmetric matriz (a;. . ) into a form

o
(Ll) ( pX Aabaibaj te bam)’
a=1

where ¢ is finite. If A factors as in (1.1) the associated form
Q.. o Xj++ - X, can be written as a linear combination of
powers of linear forms. Such linear combinations are useful in
treating some of the classical problems of algebra 1).

2. Definitions. We shall say that a matrix 4 = (a;, )
is p-way if it has p indices 4, 4, . . ., m. If each index ranges over
1,2,...,n, we say that A is of order n. In the introduction and
in what follows the term symmetric matrix refers to a matrix

1) R. OLDENBURGER, Representation and equivalence of forms [Proccedings
Nat. Acad. Sci. 24 (1938), 198—198].
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for which the values of the elements are unchanged under per-
mutation of the subscripts. If a matrix A can be written as (1.1)
with elements in a field K, we shall say that A is factorable with
respect to K.

3. Factorability. In the following theorem, the term ,,order”
of K refers to the number of elements in the field K.

THEOREM 8.1. The class of symmetric p-way matrices factorable
with respect to a field K is identical with the class of all symmetric
p-way matrices if and only if K is of order p or more.

We shall sketch the proof of Theorem 8.1 leaving out some
of the more complicated details.

A p-way matrix A = (a;. ,) of order nm is factorable if
and only if there exist elements A by [a=1,2,..., 03
1=1,2,...,n] such that the following equations are satisfied:
(3'1) Z }'ocboubou ° bocm = Qi ome

This is a system of linear equations in the A’s. Due to the sym-
metry of A many equations are repeated in (8.1). When we

expand (z;,+2,+ ... +a,)” we obtain a sum

N
§ 1fi( )

where the a; are integers, and the f; are distinct power products
of degree p in the #; [j=1,2,...,n]. We let b; denote the set
of elements (b, by, - . . b;,) for each 4 in the set 1,2,..., 0.
The system of equations (8.1) for ¢ = N is then equivalent to
the set

N
(8.2) EIfﬂ(ba)A“ = yp (=1, 2,...,N),
o=
where y,, ¥y, . . ., ¥, are equal in some order to the elements of 4.
We assume that (y,, ..., ¥,) is not the zero vector, since then

A is trivial. If we can prove that we can choose the b, in K so
that the determinant

| D] = fp(b)l

is not zero, there exist solutions for the A’s in (8.2), and A4 is
factorable.

We write the matrix D as the matrix (My,) [e=1,2,..., n;
=1, 2, ..., N] where M, is the minor of D composed of power
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products fg(b,) which contain b,, as a factor, and no b,, where
o > 9. The M,, are minors with one column only. We let t
denote the number of elements (rows) in M oar We construct
minors Ny of D [g, 0=1, 2, .. ., n] such that N, is the matrix
(M,y) composed of the columns M o,« Where « ranges over the
values g + 1,8, + 2, ..., 85,1, and g, is given by

o—1
g61=0; g, = Xt
=1

The matrix D is then given by (N,,) [¢, 0=1,2,...,n]. We
set by; =0 in D when o« is in the range g, + 1,4, +2,...,
gs+1> and ¢ in the range ¢ + 1,0 + 2,..., n. That is, we set
each by, equal to zero that occurs in Ngi1 6 Ngio g - Npg
and not in N,4 N,g, . . ., Ny so that we obtain

Ny Ny - 'Nl,n—lNln
D — o sz"'Nz,n—lNan
0 0--- 0 N,

The minor N,, is square and contains only elements b,;,
where A < ¢. We take b,, = 1 for aintherange g, +1, g, +2, .. .,
8541~ The minor N, is now, with possibly a rearrangement of
rows, of the form

legdy---fal (column index is &),
where h=1,2,...,1;, and g 7,...,s are ¢ — 1 non-negative
integral exponents satisfying the inequality
(3.3) g+r+--Fs=<p—1

It is understood that ¢$, dj, . . ., f5 denote 1 for each h. The distinct
sets of exponents (g, 7, ..., s) satisfying (3.3) are evidently in
1-1 correspondence with the integers in the range of h. We set

h in 1-1 correspondence with sets (¢,4,...,m) of ¢ —1 non-
negative integers 4, j, . . ., m subject to the restriction.
(8.4) t+j+... +tm=p—1

For each set (4,7, ..., m) and corresponding h we write

Ch = 0y, dh = aj,.- ”fh = Oy

where «;, oy, ..., o,_; are indeterminates over K and «p = 1.
By this choice of the ¢y, . . ., f; the minor N, takes on the form

(8.5) (xf of . . . 05,)s
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where the exponents satisfy (8.83) and (8.4). We remark that
the exponents in (8.5) form a multipartite row index of N,
and the subscripts form a multipartite column index of Ng,.
We shall need the following lemma.

LEMmMa 8.1. The matriz (8.5) is non-singular if og(=1), oy,
Ugs + s %y are distinct clements in K.

Lemma 8.1 can be proved by showing that the matrix (38.5)
is equivalent to a triangular matrix with diagonal minors of the
same form as (8.5) with p replaced by smaller integers. Since
(8.5) is non-singular if it is of order 1 [that is, p = 1 in (8.3)
and (8.4)], it follows by induction that Lemma 8.1 holds. Thus
A4 is factorable if K is of order p or more.

To complete the proof of the theorem we assume that K is
of order y < p. It is obviously necessary to consider only p-way
matrices where p = 8. We shall exhibit a p-way matrix A of
order two which is not factorable with respect to K. We define
A to be a p-way symmetric matrix (a; ) of order 2 whose
non vanishing elements are those which have exactly y subscripts
equal to 1; the non-vanishing elements of 4 are taken equal to
one. We let S denote the subset of the equations (8.1) for which
(4, J,..., m) range over the sets of values (2,2,..., 2), (2,2,...,2, 1),
22...,211),...,(22...,2,1,...,1), where there are
w I’s in the last set. If there is no solution for the A’s in the set
S there is no solution for the A’s in (8.1). We assume that there
is a positive integer o, and that there are values A, b,;, in K
so that S is satisfied. The matrix T = (by;by; - . . by,,) of coeffi-
cients of the A’s in S is the following (y~+1) by o rectangular
matrix:

bis b3 Tt bgs

T TP J

bip “bn bz~ boy

oy Vol by Yohy - bby Yolh,

Since K is of order v, it follows from the theory of Vandermonian
determinants that each possible (p+1)-st order minor of T
vanishes for each choice of the b’s. Thus for a choice of the b’s
the rank of T is r, where r << v + 1. The matrix

0
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obtained by adjoining the column of elements (a, ), (a3,  4),

. (ay 5. 1) of Aoccurring in S, is the augmented matrix
of the set S. Since r < vy, the rank of T is r 4 1. The ranks of
T and T’ are thus unequal. By the well-known theorem that a
system of linear equations has a solution if and only if the rank
of the matrix of coefficients equals the rank of the augmented
matrix, the set S has no solution for the A’s. Thus 4 is not fac-
torable. The proof of Theorem 3.1 is now complete.

4. Example. Let A = (a;;) be a symmetric matrix of order 2.
Equations (8.2) now become

3
2
X by = ayy,
a=1
3
z }”ocboclbaz = Oy9»
=1

3
2
2 Abh, = .
a=1

The matrix D is

bh by b3y
bi1 bz by byy by bz
bY by b3
Now
My My Mg
My Mgy My

b

-

where M,, = b} for ¢ =1, 2,8, and

by by
2

b;

M2i=‘

We write N, = M3 Ny = My, Ny = (M12M13), Ny = (M y3M o3),
whence

N. N.
D= ” 1n N
Nyy Ny

where Ny, N,, are square minors of orders 1 and 2, respectively.
Setting by, = 0, we get

N N:
D — ” 1n Vi
0 Noo

Taking by, = by, = by, = 1, we obtain
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0 0

o 1 c [2

Nll——-]., sz—— i i
1 o ¢ [

We write ¢; = o, ¢, = «;, whence the last matrix above becomes

0 0
&y 0y

1 1
xy %y

Taking «y = 1, and «; % 1, we arrive at a non-singular speciali-
zation of D.

5. Note on the matriz (8.5). The non-singularity of the matrix
(8.5) for distinct «’s may be used to give a new proof of the
following theorem. The proof is not shorter than existing proofs,
but is merely given to illustrate a use of (8.5).

THEOREM 5.1. Let P be a polynomial of degree p with coefficients
in a field K of order p + 1 or more. If P is zero for all values of
the variables in K, then P is identically zero (that is, all coefficients
of P vanish).

The polynomial P = P(a,y, ..., 2) can be written as
(5.1) % a, @y---d,

7,8 ...
where z, y, . . ., 3 are the variables in P, say 7n in all, and the
summation is over all admissible values of 7, s, . . ., t. Let oy = 1,
and «g, o3, ..., @, be p 4 1 distinct elements in K. Let the set
S = (a; &4 - + -, &) correspond to the term ay , a%yi---2™
in (5.1). This correspondence is unique. Substitute the sets of
values S for (2, y, . . ., 3) in the equation P = 0. We thus obtain
the set of linear equations

t
2 afs...:“f;“?"'“m—o
[ R
homogeneous in the a’s. Since by Lemma 8.1 the matrix
(afaf - - - af,) of coefficients is non-singular, the a’s vanish.
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