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On the Cesaro and Riesz means of Fourier series?)
by
Otto Szasz
Cincinnati, Ohio

1. Let
(1.1) fl@) ~ le + X (a, cos vx+b, sin rx)
v=1

be a Fourier series with the partial sums

a, n
(1.2)  so= —20—, sp(2) = % + 2 (a, cos va-+b, sin vz),
v=1

n=123,...

and the Cesaro means of first order

(1.3) CW(z) = s"—% n=0,1,2,...

It is well known that the series (1.1) represents the function
f(z) in the sense that C!V(x) converges to f(z) almost everywhere.
Only recently, Fejér discovered that the Cesaro means of higher
order follow the shape of the function even for every finite n.
To quote a particular result:

THEOREM I. Let f(z) be convex upward in the interval
(0, =), then the Cesaro means of third order of its sine series
are all convex. For the second order means this is not true in
general.

Adopting the device used by Fejér we get some further results.

For instance, in the case mentioned above, consider the Riesz
means of second order:

(1.4) R®(z) = (n41)"" ) (n—v+41)*(b, sin va).
=1

We find that under the assumption of theorem I the curves
y = RP(z) are all convex in the interval (0, 7). From this result

1) (Presented to the American Mathematical Society, December 29, 1938.)
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theorem I follows easily. We shall extend similarly some other
results of Fejér.

We quote the following definitions:

[* <]
Given an infinite series X u,, the Cesaro means (C, k) of order

=0
k (k=0,1,2,...) are

s = () {0+ () m (Qul)

while the corresponding Riesz means (R, k) are (M. Riesz (5);
see the list of references at the end of this paper)

(1.6) R® = (n+1)""{(n41)uq + nkuy + + -+ + 14w, }.
Putting

(1.7) (1) uy + nhuy + - -+ 4 1u, = 0¥,

we have

(1.8) RW — (n4+1)*e®, n k=0,1,2,....
Obviously

k k)
R = ot = Cf = uo

2. Denote by F(r) a formal power series 2 u,”, not neces-
0
sarily convergent. Let

2, =v, =0, S, —vp, Sop v, Sop =,
then, in the sense of formal Cauchy multiplication
(1—r)* 1 F(r) = S Ul k=0,1,2,
and "
(2.1) (14r)Q—r)2F(r) = up + % (UR,4+UP .
On the other hand
14r)1—r)" = izr% (1) (r+2) = % (1) 7,

and again by formal multiplication with the power series

F(r) = E} u, 1’
0
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(2.2) (14+r)1—r)2F(r) = E‘. o2 1.
0
(2.1) and (2.2) yield

(2.8)| o =wuy B=U2,4+UP, n=1,28,...

But
@4)  UP=("uo+ (Tt o+ Gun = ("]7) 2.
Whence from (1.8), (2.83) and (2.4)

R® — (n+1)'2{"("2+” co 4 m“""“’cg)}.

We thus have the following identity, connecting the (C, 2)
and (R, 2) means

(2) (2)
nC," 2)C
(2.5)| R® = c@, R® = "n lz‘:n(:;) nop=1,2,....

Note also that
U‘,}’=U(,f’—Uf)_1, n=1,2,8,....
Hence

U(,f) (2) L+ U(l) n=1,2,8,...

and from (2.3)
o =202 +UY, n=1238,...
Combining this with (1.8) and (2.4), we get

R® = (n+1)‘2{ ("“) c® ., + (n+1)c‘”},

or
(2) (1)
nCp 1+ Cp,
(2.6) R® — n1+1 , n=1,2,8,....
We now put
u, = v sin v, y=0,1,2,....
Hence

@

. . 1—17
F(r) = X w”sinve = rsin e
0

(1—27 cos w+r’)” :
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To (2.2) now corresponds

® _ 2 2
Z 0¥ (z) 7" = rsin w{ 1o }
0

(1—1‘)2 (1—2r cos z+12)

. x\ 2 2
d sm(v—}—l)?
= rsin a E _ ) r? .
. X
0 Sln?

Hence

oB(@)=0for 0 <2<z »=0,1,2,....

sin (v-+1)=\*
Moreover, denoting — by k,(z), v=0,1,2,...
sin 5

we have

) S ?)
(2.7) Qn+1(w) sm z % kv(w) kn—v(m) > 0 .

for 0 < & < m, n=0,1,2,...

We shall apply this result, using a device of Fejér, to prove
®
that the (R, 2) means of the series X sin va sin a2 are positive

0
foro<a<azm 0<a<<m.

Denote the partial sums of this series by P,(a, ) and the

(R, 2) means by (n+1)72 Q. (a, x), n=0,1,2,....
Obviously

Qnla, 2) = Qyu(2, a), Oulr—a, n—z) = Qu(a, ).
Thus it is sufficient to prove our proposition in the triangle
(2.8) 0s=a+a=n 0a—a<a.
But on the hypotenuse 2 =0, 0 <a <=
Q.(a, 0) = 0.
Moreover, obviously

%Qn(a’ z) :%{95@2)(“-{-&2) + o®(a—a)},

and by (2.7) this expression is positive inside the triangle (2.8).
Thus on every vertical line in this triangle (i.e., for fixed a) Q,(a, z)

2) For (C, 3) means, cf. Fejér [1,2].
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is monotonically increasing; hence in this triangle Q,(a, z) > 0
for # > 0. This yields

(2.9)] Qn(@a,x)>0 for O<a<m O<z<m n=1,2,8,...

which proves our statement.

3. We shall now apply these results to Fourier sine
series. Let

sm yr

ty=0, t,(z) = ﬂx)—Zg@)Mm) Z P ().
1 0
Then from (2.7)
M{W () + tP(2)} <0 for 0<az<m, n=123,...
Hence the curves

(8.1) y =t () + t¥(z), n=1,23,...

are convex upwards for 0 < z < z. For #? () itself this is no
longer true. For n = 0, t,(x) are the partial sums of the series

sin v

——(n——x) —-0—{—2

and the (R, 2) means of this series are

o, (@) = (n+1) {2 (z) + P (2)}, n=1,2,3,...
It is known that t,(x) > 0 for 0 < 2 <<z, and

0 < (n+1)" P (@) < 5 (a—2), 0 <& < .

Suppose now

M = f(z) =0 for 0 < <=, f(—2) = — f(z), f(z) # 0, and
(3.2) f(x) ~ E] b, sin va;

1
then s, = 0,

n . 2 7 n
sp(2) = ? b, sinve = ;J- f(@) (21 sin v ¢ sin vm)dt
0

== [ 1Pt ),
0

and
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s@ (@) + sP(x) = (n+1)* R®(2) = %fnf(t)Qn(t, z)dt.

If now 0 = f(z) = M for 0 < & < =, then from (2.9)

2M

0 < RY(z) < [ out, o)t

n(n+1)" 0
where

2 7T 2 T n . . n (—1YY
——f pP,(t, w)dt:—f (Z sin ¢ sin vaz) dt=— 317D G
4 ° T 0 1 4 1 14

This is the n'® partial sum of the development

2 2 p+ sin v
1 ——7:?{1—(——1)} T 0<z<am
Thus the (R, 2) means of the series (8.2) lie below the cor-
responding means of the development

(8.8) M-_—-__ 2{1__( 1) }Smm—()—l——Slnm—{-O—I—ﬂ sin 82

Feee

For Cesaro means of the third order the corresponding result
has been proved by Fejér (1, 2; cf. also 7, p. 57).
Summarizing, we have
TueoreM 1. If 0 < f(z) = M for 0 < @ < =, then for the sine
series of f(z)
0 < R(x) < B, ()

where B,(z) are the (R, 2) means of the series (8.8).

4. We shall now prove the result announced in the introduc-
tion. First we consider the ,,roof-function”

b
[;mfor0§w§a

2b % sin va sin yx

(1) 0+

! ” lbn—wfora<m<n

where 0 <a <am, 0 <b.
Denote the partial sums of this series by

2b X2 sinvasinwx
170 =0, 7,(2)=

aln—a) = pry s n=1238,...

and let
n n
T'(nl)(m) = zorv(w)a T(nz)(w) = 20 ""Ll)(w)'
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Then, using (2.9)
{1(2) () + 72 (2)} = — Qu(a,2) <O

for 0 < a <7, 0 <@ < n. Hence the (R, 2) means of the series
(4.1) are convex upwards for 0 < & < .

The same is true for the limiting cases a - 0 and a — n. If
a — 0, then

2b sin v 2b
n(w)ﬁ—;? " =7tn(@“)-
If a — n, then
sinyz  2b 2 siny(m—ax) 2b
n(m)—>—>3 (—1)" — — I =—t,(v—a)
1

Now every polygon convex upwards and lying above the
axis of abscissae is expressible as a finite sum with positive
coefficients of roof functions, and every finite sum with positive
coefficients of functions convex upwards is again convex upwards.
Finally, functions positive in 0 < 2 < # and convex upwards
can be approximated uniformly by the aforementionned polygons.
This gives

THEOREM 2. If f(z) > 0 in 0 < @ < 7 and is convex upwards,
then the (R, 2) means of the sine series of f(x) are positive and
convex upwards in 0 < x < m.

For the third Cesaro means cf. Fejér (1, 3, 4).

5. We now consider the cosine series of the step function

20 | —a %sinvacosm oOforo0sez=<a
7 2 —1 » “Ybfora<a<n
where 0 <a <m, b > 0.

For the partial sums of this series we obviously have

b o, . b
sp(x) = — 2 sin va sin vy = — Py(a, 2).
1

Hence, using (2.9), the curves y = R®(z) are monotone in-
creasing. Using now the same argument as Fejér (1) used for
the Cesaro means of third order we get

THEOREM 8. If f(z) is monotone in 0 < x < m, then the (R, 2)
means of its cosine series are monotone in the same sense.

o]
6. We now turn to power series X a,2" convergent for |z| <1
)

We shall prove
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THEOREM 4. Suppose the power series X a,2” = f(2) =w=u-+v
0

is regular and univalent (i.e., f(z,) # f(2,) for 2, # %) in | 2| <1
and all a, are real. Suppose further that the images K, of the circles
| 2| =r are convex for 0 <r <1 in the direction of the v-axis 3).

Let A,(z) = f} a2, AW(z) = Z A,(), AD(z) = ﬁ AW (2),

then the polynommls of Riesz type of the second order W () =
(n+1)"2{A®_, (2) + AP (2)} are univalent for | z| < 1.

For the proof we may assume without loss of generality that
the upper half of the circle | 2| < 1 is mapped onto the upper
half of the image in the w-plane. If we write

o0

w(e™®) = u(z) + iv(x) ~ % a, cos v& + ¢ X a, sin v,
0 0

then v(2) is positive for 0 < 2 < & and u(x) is decreasing in the
same interval. Hence by theorem 1 the (R, 2) means of the series
2 a, sin vz are positive, and by theorem 8 the (R, 2) means of
the series X g, cos vz are strictly increasing. Thus the curve
W, (e*) is a Jordan curve. This proves the theorem.

7. Formula (2.5) represents R? as an average of C!?_, and
C® with positive weights of sum 1. Hence
lim inf C® < lim inf R® < lim sup R® < lim sup C2.
n—>o n—>®o n—>®% n—>0
More generally, the domain of oscillation of the sequence {R®}
is contained in the domain of oscillation of the sequence {C!¥}.
This is a special case of the ,,Kernsatz”’ of Knopp.

We can also express C® as an average of the R'? with positive
weights. From (2.8)

Q,(,?)—U,n —U(3) 2+U(3) U‘E'Ls)—le(:” U’ﬁ'?)2 n=2939"-9
hence if n is even, n = 2m, m =1,

2) __ 3 3
ot = U — U,

2m — 2
and

m
2 9(2) =U@P-UB, or UP) =X 9(%,),

V=

3) That is, every parallel to the v-axis has at most two points in common with
the image curve. In particular, if the domain (finite or infinite) in which the unit
circle is mapped by f(2) is convex in the usual sense, then our condition is satisfied.

For (C, 8) means cf. Fejér [1, 8, 4].
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thus

@ — ()7 5 PRE, m=1,2,8
(r1) @ =(""? % (1) R, m=1,2,8,. ...

If nisodd, n =2m + 1, m =1,

2 . 3 (3)
Qérr)t+1 = U;rr)t+1 — Usm-1

hence
m
pY ng)+1 = U;?;r)wl —UP = Ué?;r):+1 - U:)m - Uiz)’
1
and
m
U1 = ?’ (SR
—-1m 2 4 -1 m+1 o
Broa= (") Tt R, = () Terrg,
0
or
(3) am+2\7N S o 12 p) y
(r2)  c@_,=("}F?) Z (@) Ry, m=273,...
Now
G 1)@2n+1) & 2
32 = 20EHD S (20)? = Zam41)E@n+1) = (),
" 6 1 3 3
and
n 1
2 (@410 =217 @nt1)(2nt8) = (™ FF),
0
hence
—1m
(") T Z @1t =1,
0
—1m
Also (2m3+2) 2 (2v)? =1. Hence the sum of the weights in
1

(7.1) and (7.2) is again 1. Finally

4\ "1 1
CP = RY, CP =(g) UP =4 (UP+UP);

3
1 1
hence CP) = 2o = RP; CP =X UP
0

o e 4r® 4 16r{
T 20 20 ’

This proves that the domain of oscillation of the sequence {C'¥}
is contained in the domain of oscillation of the sequence {R!¥}.
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In particular the results (2.7), (2.9) and the theorems 1, 2, 3, 4
yield the corresponding results of Fejér.

It is now obvious that the existence of the limit lim C{» =]
n—> o
implies lim R» = I. That the converse is not true has been
n—> o

observed by M. Riesz (6). Formula (2.83) suggests a simple
example:
Let US) — (_1)" (n4+1)(n+2), n=20,1,2,..
then
o = (—1)" (n+1)(n42—n) = (—1)*2(n41).
Hence

R® = 2(—1)" (n41)1— 0 as n — oo.

-1
But C? = (";2) U® obviously oscillates.

In this connection it is interesting to observe that the two
methods are equivalent for Fourier series. This follows from

TueorEM 5. If X u, is summable (R, 2), then a necessary and
sufficient condition for its (C, 2) summability is

n
(7.3) lim inf n=3 X (n—v-41)»vu, = 0.
n—>w =0
In particular w, — 0 is a sufficient condition.
We have from (2.5)

(7.4) R® = C» — —Cc®

{c®
2(n4+1) * " n=1p

and an easy calculation yields

n

% {CP —CP\} = 2 (n—v+1)vu,.

n(n+l)(n+2)
Let R® — s, and

. (2) . - . .
limsup €' =v¢, liminfC® =,
n—> w n—> o

lim inf n-3 Z (n—v4+1)ru, = u.
n—> o

Then from (7.4)

n
I
»

+
IR

Again, from (2.5)
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R(2) — C(2) 1 4+ — {C(z) Cg)_l}’

2(n+1)

hence

ol

=8 — U.

Since ¢ gg, we have u < 0.
Thus ¢ = ¢ = s if and only if w = 0, and this, of course, actually

(Received February 13th, 1939.)
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