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On the Cesàro and Riesz means of Fourier series 1)
by

Otto Szász

Cincinnati, Ohio 0

1. Let

be a Fourier series with the partial sums

and the Cesàro means of first order

It is well known that the series (1.1) represents the function
f(x) in the sense that Cn(1)(x ) converges to f(x) almost everywhere.
Only recently, Fejér discovered that the Cesàro means of higher
order follow the shape of the function even for every finite n.
To quote a particular result:
THEOREM I. Let f(x) be convex upward in the interval

(0, n), then the Cesàro means of third order of its sine series
are all convex. For the second order means this is not true in

general.
Adopting the device used by Fejér we get some further results.

For instance, in the case mentioned above, consider the Riesz
means of second order:

We find that under the assumption of theorem 1 the curves
y = Rn(2)(x) are all convex in the interval (0, n). From this result

1 ) (Presented to the American Mathematical Society, December 29, 1938.)
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theorem 1 follows easily. We shall extend similarly some other
results of Fejér.
We quote the following definitions:

Given an infinite series the Cesàro means (C, k ) of order

while the corresponding Riesz means (R, k) are (M. Riesz (5);
see the list of references at the end of this paper)

Putting

we have

Obviously

00

2. Denote by F(r) a formal power series 1 uvrv, not neces-
0

sarily convergent. Let

then, in the sense of formal Cauchy multiplication

and

On the other hand

and again by formal multiplication with the power series
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(2.1) and (2.2) yield

But

Whence from (1.8), (2.3) and (2.4)

We thus have the following identity, connecting the (C, 2)
and (R, 2) means

Note also that

Hence

and from (2.3)

Combining this with (1.8) and (2.4), we get

or

We now put

Hence
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To (2.2) now corresponds

Hence

Moreover, denoting

we have

We shall apply this result, using a device of Fejér, to prove
00

that the (R, 2) means of the series £ sin va sin vx are positive
o

Denote the partial sums of this series by Pn(a, x) and the

Obviously

Thus it is sufficient to prove our proposition in the triangle

But on the hypotenuse

Moreover, obviously

and by (2.7) this expression is positive inside the triangle (2.8).
Thus on every vertical line in this triangle (i.e., for fixed a) Qn(a, x)

2 ) For (C, 3) means, cf. Fejér [1,2].
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is monotonically increasing; hence in this triangle Qn(a, x) &#x3E; 0

for x &#x3E; 0. This yields

which proves our statement.

3. We shall now apply these results to Fourier sine
series. Let

Then from (2.7)

Hence the curves

are convex upwards for 0  x  n. For t(2) (x) itself this is no

longer true. For n &#x3E; 0, tn(x) are the partial sums of the series

and the (R, 2) means of this series are

It is known that tn(ae) &#x3E; 0 for 0  x  n, and

Suppose now

then

and
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If now then from (2.9)

where

This is the nth partial sum of the development

Thus the (R, 2) means of the series (3.2) lie below the cor-

responding means of the development

For Cesàro means of the third order the corresponding result
has been proved by Fejér (1, 2; cf. also 7, p. 57).

Summarizing, we have
THEOREM 1 then for the sine

series of f(x)

where Bn(0153) are the (R, 2) means of the series (3.3).

4. We shall now prove the result announced in the introduc-

tion. First we consider the "roof-function"

where

Denote the partial sums of this series by

and let
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Then, using (2.9)

for 0  a  ’Tl, 0  ae  n. Hence the (R, 2) means of the series
(4.1) are convex upwards for 0 C x  n.

The same is true for the limiting cases a - 0 and a - n. If
a - 0, then

If a - n, then

Now every polygon convex upwards and lying above the
axis of abscissae is expressible as a finite sum with positive
coefficients of roof functions, and every finite sum with positive
coefficients of functions convex upwards is again convex upwards.
Finally, functions positive in 0  x  n and convex upwards
can be approximated uniformly by the aforementionned polygons.
This gives
THEOREM 2. If f(x) &#x3E; 0 in 0  ae  n and is convex upwards,

then the ( R, 2) means of the sine series of f(x) are positive and
convex upwards in 0  x  n.

For the third Cesàro means cf. Fejér (1, 3, 4).

5. We now consider the cosine series of the step function

For the partial sums of this series we obviously have

Hence, using (2.9), the curves y = Rn2 (x) are monotone in-
creasing. Using now the same argument as Fejér (1) used for
the Cesàro means of third order we get
THEOREM 3. If f(x) is monotone in 0  x  71:, then the (R, 2 )

means of its cosine series are monotone in the same sense.
00

6. We now turn to power séries S a",z’" convergent for z)  1.
o

We shall prove
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THEOREM 4. Suppose the power series

is regular and univalent

then the polynomials of Riesz type of the second order W n(z) ==

For the proof we may assume without loss of generality that
the upper half of the circle 1 z 1  1 is mapped onto the upper
half of the image in the w-plane. If we write

then v (x ) is positive for 0  x C n and u(x) is decreasing in the
same interval. Hence by theorem 1 the (R, 2) means of the series
E a. sin vx are positive, and by theorem 3 the (R, 2) means of
the series  av cos vx are strictly increasing. Thus the curve

W n(eÍX) is a Jordan curve. This proves the theorem.

7. Formula (2.5) represents Rn(2) as an average of Cn2- 1 and
C(2) with positive weights of sum 1. Hence

More generally, the domain of oscillation. of the sequence
is contained in the domain of oscillation of the sequence
This is a special case of the "Kernsatz" of Knopp.
We can also express Cn(3) as an average of the Rn(2) with positive

weights. From (2.3)

hence if n is even, n = 2m,

and

3) That is, every parallel to the v-axis has at most two points in common with
the image curve. In particular, if the domain (finite or infinité) in which the unit
circle is mapped by f(z.) is convex in the usual sense, then our condition is satisfied.
For (C, 3) means cf. Fejér [1, 3, 4].
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thus

If n is odd,

hence

and

or

Now

and

hence

Also Hence the sum of the weights il

(7.1) and (7.2) is again 1. Finally

hence

This proves that the domain of oscillation of the sequence
is contained in the domain of oscillation of the sequence 
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In particular the results (2.7), (2.9) and the theorems 1, 2, 3, 4
yield the corresponding results of Fejér.

It is now obvious that the existence of the limit lim C(2) = ln-&#x3E; co
implies lim R (2) = l. That the converse is not true has been

n-&#x3E; ao
observed by M. Riesz (6). Formula (2.3) suggests a simple
example:

Let

then

Hence

But obviously oscillates.

In this connection it is interesting to observe that the two
methods are equivalent for Fourier series. This follows from

THEOREM 5. If 4vd u,, is summable (R, 2), then a necessary and
sufficient condition for its (C, 2) summability is

In particular un --&#x3E; 0 is a sufficient condition.
We have from (2.5)

and an easy calculation yields

Let and

Then from (7.4)

Again, from (2.5)
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hence

Since c &#x3E; c, we have u  0.
Thus c = Q = s if and only if u &#x3E; 0, and this, of course, actually
implies u = 0.

(Received February 13th, 1939.)
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