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The topological structure of a variety defined
by an equation1)

by

Wilfred Kaplan
Scituate Ctr., Mass.

§ 1. Introduction.

1. We consider the following problem:
Let there be given an explicit equation

(1) f(Xi, X2’ ..., Xn) = 0

determining a certain configuration S in Euclidean n-dimen-
sional space; in what cases and by what methods can one pass
from the equation to the topological structure of S?
For example, consider the equation

How can one discover practically the topology, connectivities,
Betti numbers etc. of the configuration thereby determined?
More generally we can consider the case of a system of such

equations, e.g.:

Again the question is the same, of a practical analysis of the
topology of the locus.

It is possible to consider certain special cases of the above
where a geometric interpretation is possible. Thus, the system (3)
can be regarded as representing the space of all directed tangents
to the 3-dimensional sphere-surface

1 ) 1 should like to acknowledge my appreciation to Professor H. HOPF for his
friendly advice and encouragement in this work.
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Then various geometrical tools can be brought into play to find
the topology. The recent work of Ehresmann is in this direction 2 ).

There was also a considerable interest in this problem in the
early days of topology. Dyck 3) made investigations concerning
the characteristic of certain manifolds defined by equations,
though his methods are complicated and his results difficult to
understand. Iironeeker’s work 4) on systems of equations may
also be considered as related. Poincaré, in his first approach to
topology 5 ), seems to have exactly our problem in mind. In his
later developments 6) of the theory, he returns again to specif ic
equations and seems to regard their topological analysis as a
fundamental goal of the combinatorial theory he had developed.

2. In the following paragraphs we shall explain a natural
and simple method by which, for a certain large class of examples,
the problem can be fully solved. Moreover this method can be
generalized to a much larger body of cases; but in the present
note, which we regard as a first attempt at the problem, we
restrict the exposition to the most simple examples. W’e plan, at
some future date, to present the generalizations in similar detail;
at present we content ourselves with a sketch of them at the end
of this paper (§ 3).

Specifically, we give in full detail here the method in the case
of equations of form

The essentiel stcp is the "linearization" of the functions qJi,

2) C. J:4:HRESMANX, Sur la topologie de certains espaces homogènes [Ann. of
Math. (2) 35 (1934), 396-443]; Sur la topologie de certaines variétés algébriques
réelles [Journ. Math. Pures Appl. (9) 1 (1937), 69-100].

3) Beitrâge zur Analysis Situs. 1 [Math. Ann. 32 (1888), 457-512] ; II [Math.
Ann. 37 (1890), 273-316].

4) LTber Systeme von Funktionen mehrerer 1°ariabeIn [Monatsberichte Berl.
Akad. 1869, 159-193, 688-G98].

5) Analysis Situs [Journ. Ecole Polytechn. (2) 1 (1895), 1-121]. Note es-

pecially the approach to the theory in the first few sections.

6) 3e Complément à l’Analysis Situs [Bull. Soc. Math. France 30 (1902),
49-70]. Note especially the problem stated on page 49.

4e Complément [Journ. Math. Pures Appl. (5) 8 (1902), 169-214].
5e Complément [Rend. Cire. Mat. Palermo 18 (1904), 45-110]. Note especially

p. 50, the study of the topological structure of the n-dimensional cône. See below
in this paper, Theorem 1, 3; also 4, where the derived non-homogeneous équation
is treated.
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by replacing them by piecewise linear functions with corners at
the extrema of the qui. We are then able to picture the configuration
as composed of hyperplanar pieces (which are convex cells), whose
incidences can be directly determined. From this picture it is

then easy to give a representation as a finite or infinite cell-

complex whose incidence matrices are fully known. We next give
some applications to illustrate the method and also point out its
significance with regard to singularities of the locus (see 6,
Theorem IV).

In the following section (§ 3) we consider without detail the

generalization of the method to equations of form

though the limitations to effective use of the method become
very great. Here the essential step is again a ,linearization" of
the pi, to piecewise planar functions. The topological structure is
then given as before by hyperplanar pieces (convex cells) whose
incidences are known.

Finally we consider briefly the general case of an equation (1)
and point out the profound difficulties. We consider also the
case of a system of equations, which we reduce to the previous
case of a single equation.

§ 2. Séparation of variables.

3. We consider first a single equation of the form

where the qqi are real functions of real xi. ’l’he equation is of

"separated" type (by analogy with differential equations), a

special case, but of importance.
We assume the qJi satisfy the conditions:
(ce) They are defined and continuous for - oo  xi  + ce.

(p) They are piecewise strictly monotone or constant; i.e.

the xi-axis can be divided into intervals in each of which the
function qJi is either strictly monotone or else a constant.

There are of course several possibilities in (fJ) as to the number
of intervals. We choose the lengths as large as possible. There
may be then a finite number of intervals, corresponding to division
points - oo, ai, ..., as, -t-oo; or there may be infinitely many
in one direction, e.g. with division points - 00, al, ..., as, ...;
or there may be infinitely many in both directions, with division
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points..., a_s, ..., ao, ..., at, ... We shall consider only the last
case, the others being easily derived from it. (We leave the
derivation to the reader.)

Suppose further that we know the functions CPi well, in the

following sense:
( y ) We know the exact subdivision points ai of the xi axis

as in (fl); we know the exact values of CPi(Xi) at these subdivision
points.
THEOREM I. Let q,(x,), (i = 1, 2, ..., n), be real functions of

real xi satisfying the conditions ( ce ), (fl), (y). Then the full topological
structure of the variety V defined by

can be determined.

By "can be determined" we mean a representation as described
in 2; i.e. we give a homeomorphic representation of Tj as a linear
cell-complex in n-dimensional Euclidean space; we then give the
full incidence matrices.

Proof of Theorem I. The following two facts are evident:
Firstly, let

be a topological transformation, for each i, of the xi-axis onto
the x2-axis; then the transformation

of Rn onto R’’t is topological and V is transformed topologically
onto V’.

Secondly, let I ( a  Xi  b) be an interval of the given sub-
division of the xi-axis ; let I’ (a’ x’ b’) be an interval of the
x. axis; then the interval I can be mapped topologically onto the
interval I’ in such a way that q,(x,(r[) ) « y,(x[) is linear in the
interval l’. If lJ?i(Xi) is strictly monotone in I, the transformation
is given explicitly by

If qJi(Xi) is constant in I, the transformation becomes

(In the case of an infinite interval, such as a  0153 ; + oo the
transformation is simply
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Now suppose that, corresponding to the given subdivision of
the xi-axis, we have made a similar subdivision, arbitrarily
chosen, of the xz-axis. We can then, by means of the above trans-
formation, map the intervals I of the xi-axis onto the corres-
ponding intervals I’ of the X’ « . We clearly obtain thereby
a topological transformation of the x2-axis onto the xz-axis,
representable by x[ == fi(Xi)’ (i =1, 2, ..., n). According to our
first remark above, we now have a topological transformation
of V onto V’.
Let us number the intervals of the xi-axis by the index pji

and the corresponding ones of the xi-axis by the index q{i. Thus
let p{i represent b{i  xi  bii+1 and qii represent aii  xi Ç a{i+l
(ii==O, + 1 , + 2 , ... ) . We then have an enumeration (q{l, q(z, ..., qn i.
of the n-dimensional intervals of a subdivision of (x’l, ..., xn)
space.
But in this space V’ is given by the équation

where y,( Xi ’) = 13iix" i + nP,.»i, lii i and m2i constants, in the interval

qji. That is, V’ is given by

in the n-dimensional interval (qil, ..., q/n ). V’ is thus composed
of hyperplanar pieces of  (n-1 ) dimensions. (Exceptionally, if
all l2i = 0, the piece may be the whole interval, i.e. n-dimensional.)
A hyperplane (5) may of course intersect an interval (qil q j")
in a variety of ways, some of them degenerate.
Next let us remark that each such hyperplanar piece is a

convex cell. (The convexity follows from that of the cube; that
it is a cell follows from the fact that it is bounded by the  (n-1)-
dimensional planar pieces in which the plane (5) meets the

boundary of the cube.) Its faces are precisely the intersections
of (5) with the faces of the cube. If we show that any two such
cells meet in a common face, then ive know that V’ is a cell-

complex.
If two cells meet, they must clearly lie in cubes which have a

k-dimensional face in common, 0  k  (n-l). Thus suppose
(5) meets the locus in the cube

In this cube the locus is
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This meets thc common face in the locus

But the continuity of Vi (x’) gives

Hence (6) can be rewritten as

which is precisely the intersection of (5) with the common face.
That is, the loci in two adjacent cubes meet precisely in their
common face in the common face of the two cubes. Hence V’
is a cell-complex.

Finally, our assumption (y) that we know the functions pi
well means clearly that we know explicitly all the coefficients
ll,»i and npii of the function yi(xï) (after the subdivision q4, has
been chosen). This implies further that we can actually list the
hyperplanar pièces (5) of V’ in their different intervals. We

can then compute directly all incidences between the cells, as
in the preceding paragraph. Thus the full incidence matrices of
V’ can be formed. This concludes the proof of the theorem.
Remark 1. We have left a certain freedom above in the choice

of the intervals qr3,i. They can of course be chosen simply as the
pii, in which case the transformation can be pictured as a simple
joining of the successive extrema of the graph of 9?i(xi) by straight
lines. The graph is thus flattened out to a broken line. We can
also take the qi= as the intervals determined by the integers:
x2 == 0, 1, + 2, ... This offers a certain convenience for
notation.

Remark II. Obviously the method applies equally weil when
some of the qJi are defined only in a part of the xi-axis. In this
case we obtain a part of such a complex as V’.

4. Let us now apply our method to some simple cases. Con-
sider first an equation
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where a1, ..., ar+1 are constants, none equal to zero, and nl, ..., nr
are positive integers or even positive rational numbers of the

form s , where s and t are integers.2t+l

Case I. Suppose some ni, n1 for example, is either an odd

number or the ratio of two odd numbers.
Then we simply rewrite (7) as

Since n1 is of the given form, the ni root always exists, and
we simply have an equation

where X is defined and continuous everywhere. This means clearly
that the locus is equivalent to (X2’...’ xr) space, i.e. to RI*-’.

The analysis is therefore trivial.

Case II. No ni is an odd integer or the ratio of two odd
integers.

In this case we cannot extract the root as above. A glance
at the functions qqi involved shows us at once that the topology
is equivalent to that of

(This results from the fact that aixi z and A,i xi increase and
decrease together; the intervals of subdivision for both are

- 00  Xi  0 and 0  Xi  + 00.)
The intervals (plt,..., prr ) in r-dimensional space are now

precisely the 2’’ regions determined by the (r-1 )-dimensional
coordinate hyperplanes Xi == 0, (i =1, ..., r). Take the q2i as
the pil. Then in each of the 2’’ regions in ( xi, ..., xr ) space, the
locus is given by

If Â1 = Â2 = ... = Â,,, then the locus is degenerate, reducing
to the point (0, ..., 0). Otherwise there is a locus in every region,
composed of part of an (r-1 )-dimensional hyperplane. The

only remaining question is that of identifications. When they are
listed, a simplicial subdivision of the locus can then be given if
desired. We do not go further with the computation here, though
this would be interesting in itself. Indeed a systematic treatise
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on the topology of the n-dimensional "conic"

would prove of value in many branches of mathematics (see
above, footnote 5).

Remark. It is worth noting that Case 1 can be generalized as
follows:

THEOREM II. Let q;(x1:) be continuous and strictly monotone ,for
, . , , - , - ........,

be defined and continuous everywhere ; then the variety determined
by the equation

is topologically equivalent to (n-l )-dimensional Euclidean space.
For under the hypotheses, g&#x3E;(X1) = y has an inverse Xl = y(y)

for all y, and the equation is equivalent to

. , _. ,

whence the above result. (Example : 1, equation (2).)

5. Consider now, as a second example, an equation in two
variables :

Here we suppose that the qqi satisfy, besides (oc), ((3), (y), the
further condition:

(0) The (pi are constant in no interval, and hence alternately
increase and decrease in successive intervals.
We now carry out the linearization, choosing as intervals qii

those determined by the integers, ji  0153  ji + 1. The functions
V,(x’) , are then simply infinite polygons of form

The continuity of Vi (x’) gives

Our locus V’ is now given by

It is thus a graph composed of line segments lying in the
different squares (Ql1, q¿2 ). By condition (b) no ai2 = 0 and the
line segment (10) is not parallel to the xi- or x2-axis.
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Suppose that in the square (q/i , q(2) there is a locus, i.e. that

the line (10) - meets its square. The line cannot coincide with

any side, for then it would be parallel to a coordinate axis.

Suppose then that (10) meets the side x1 === il + 1, j, : - X*2  j2 + 1.
There are then three possibilities:

a) It meets the side in a point (il +1, x" ) with i2  X’  i2 +
The locus must then necessarily pass into the interior of the
square ( q/i, q42).

b) It meets the side in a vertex, say (11 + l, 12+ 1) and passes
into the interior of the square.

c) It meets the side in a vertex, say (il+" h+I) and fails
to pass into the interior of the square. The vertex is then the
only point of intersection of the line with the square.

Consider the case a. The value of x’ at the intersection is

given by

But the locus in the adjacent square (q{l + 1, q§2) is given by

which meets the line xi = il + 1 in a point x’ satisfying

It follows from (9) that ( 11 ) and (13) are ide11tical, Le. that
the locus in ( q11 +1, q£2 ) also meets the side x’ =j + i , j j’ j + i
in the point (ji+1, 1§), which is not a vertex of the square

(ql1+1, qj2). The line (12) must then also pass into the interior
of its square. The same reasoning holds for the other sides of the
square jq/1, qj2). Hence, if the locus line meets a side of its square
in a point not a vertex, the locus is continïted into the square ad-
j acent to that si de. (See F’ig. 1. )
We note also that, by condition (0), aii and a{i+l have opposite

signs, which means that the sign of the slope of (12) is opposite
to that of (10); in general the slopes alternate in successive

squares (as on a checkerboard).
Now consider case b. "Ve find, as in case a, that the locus

line in the adjacent square (q/1+, q42) also passes through the
vertex (j1+1, j2+1). Moreover the condition that (10) passes
into the interior of its square means that the slope of (10) is

positive. Hence the slope of (12) is negative, and the line (12)
which passes through the vertex, must also pass into the interior
of its square (qf1+1, q (2 ) . But we can apply the same reasoning to
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the other two squares meeting at the vertex (jl+l, j,+1). Thus
in (qf1+1, j2+1) the slope is positive aiid the locus passes through

1

Fig. 1.

the vertex (j,+I, j,+I); hence it must pass into the interior

of (qIl + 1, q22+’- ) . The same holds for the fourth square (q[l, qj2+1

Fig. 2.

In all then, the locus in the four squares consists of four segments
meeting at the common vertex. (See Fig. 2. )
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Finally we have case c. Here the slope of (10) must be negative.
Accordingly that of ( 12 ) is positive. But, as in case a, (12) must
go through the vertex (i1+1, i2+1) and hence can meet the
square (qfl + 1, q§2 ) only in the vertex. The same reasoning applies
to the other two squares meeting at the vertex. That is, the

vertex is an isolated point of the locus.
We have now classified all the local possibilities. It is then

easy to see what happens in the large. If we start in a square
in which there is a locus segment, we can follow the locus on a
broken line in both directions indefinitely unless we corne to a
singular point, i.e. a vertex of a square. Otherwise, if it meets

no vertex, the broken line must form a simple closed path or go
to infinity in both directions. Spirals are obviously excluded.
We summarize our results as follows:

The locus is a graph composed of line segments lying in the

different squares (qfl, q£2) and a certain set of isolated points lying
at vertices of the squares;

the only singularities are the isolated points and branch-points,
at vertices, at which four segments meet; through all other points of
the locus exactly one broken line path passes; there are no

,,frce ends";
the locus consists of bi-oken lines from singular branch point

to singular branch point, or from singular branch point to

infinity, or from infinity to infinity, or else forming a closed
path.

It is worth studying the singular points a bit further. They
occur only at vertices of the squares, hence only at points x’, x’
where V,(x"), V2(X’2) respectively have corners. The singular point
is an isolated point if these corners are extrema of same type of
Vl(Xï)l V2(X"2)1 (i.e., bôth maximum or both minimum). For if

we take the vertex as at (il + l, j2+1) and refer to the above
discussion, we see that the slope of (10 ) in (qi 1, q’2)must then be
negative; i.e., the locus meets only the vertex of the square.
Otherwise the singular point is a branch point. For if the extrema

are of opposite type then the slope of (10) is positive and the
locus passes into the interior of the square, which implies a branch-
point. We can now state these results in terms of our original
non-linear equation (7).
THEOREM III. Let CP1(X1)’ CP2(X2) be real functions of real xi

satisfying conditions ( a ), (p), (y), ( b ) . Then the equation
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determines a locus in the (Xl, X2) plane satisfying the following
conditions:

( * ) The locus is formed of simple Jordan curve-arcs and a certain
set of isolated points.

(**) The only topological singularities are the isolated points
and branch points at which four curve-arcs meet, having the singu-
larity as common end-point; through all other points of the locus
exactly one curve passes (so that the point is interior to the curve ) ;
there are no " free ends".

(***) The singularities occur at the points ( x1, X2) satisfying (8)
and such that qi, qJ2 both have extrema at xl, X2 respectively; if the
extrema are of opposite types (one maximum, one minimum), then
four branches of the locus meet at the point; if the extrema are of
the same type then the singular point is an isolated point of the
locus.

(****) The locus consists of simple Jordan curve-arcs from
branch-point to singular branch-point, or from singular branch-
point to infinity, or from infinity to infinity, or forming closed
paths. It is topologically a one-dimensional curved complex.

6. We can now carry through a similar analysis for the

generalization to n dimensions, i.e., to

where we make the same additional assumption (ô) on the gg,.
We first linearize our functions q, to the functions ’lpi with

corners at the integral points = ii (fi - 0, :f: 1, + 2, ...) of
the x2-axis. We obtain the new equation

where (’) = i.’ + bii in qli : i, ’ . + 1wh ere "Pi Xi = aitxi it ln qit .Ji = Xi  Ji + 1.
The locus is therefore given by 

in (q [l, ..., 9é/") .
The assumption (à) implies that a{i # 0 (i == l, ..., n) and

that ali and a(+ have opposite signs.
The continuity of y,(X§) gives
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We have thus to consider a locus composed of various hyper-
planar pieces lying in the cubes (qil , ..., q(n). The pieces are
convex cells and are incident in common faces. It remains to

discuss how each cell lies in its cube and how exactly it is incident
with other cells.

I. Consider the first question. Suppose the plane (16)
actually meets its cube at a point P not a vertex. If P is in-
terior to the cube, then the cell is (n-1)-dimensional. Let us

show that:
Even if P is on the boundary of the cube, then the plane (16)

must pass into the interior and thits determine an (n-1 )-dimen-
sional convex cell.

Thus, we assume P lies on a face F: x’ + 1, ji x ji + 1
(i = 2, ..., n ), and wish to détermine a second point S of (16)
in the cube with ji  xz  ji + 1.
For n = 2 we have seen the proposition to be true; i.e., if the

line (16) meets its square in a point other than a vertex, then it
passes into the interior. Let us assume this true for dimension

(n-1 ); hence we can assume for purpose of induction that the
point P itself is interior to the face F (relative to the plane
Xï = il + i).
The plane (16) cannot be parallel to the plane Xi by

condition ((5), hence meets it. Let Q (x§ il, x’ -’) be a point
of the intersection. The line QP then lies wholly in the plane (16).
But on the line QP x1 passes continuously and monotonely from
the value jl to + 1, xi from 0153 to values xi at P satisfying
 ’  ji + 1. At some point S on QP we must then clearly
have ji  x’  + 1 (i = 1, ..., n). Hence (16 ) must pass
into the interior of the cube. Hence by induction the proposition
is proved.

II. But the proposition implies more. For let P be any point
not a vertex on a k-dimensional face (0  k  n - 1 ) of the cell
R determined by (16) in its cube C; that is, we take R to be
(n-1 )-dimensional and P on its intersection with some k-face
G of C. Let D be any other cube of which G is a face. We have

seen that the locus in D meets that in C on G, precisely in the
intersection of R with G. Hence P is also part of the locus in D.
Therefore by the above proposition the locus in D is also a convex
ce]] of (n-1 ) dimensions.

III. Let us now go further and consider all the convex cells

meeting in P (which we choose as in II, not a vertex). They are
evidently all (n-1 )-dimensional, lying one in each cube which
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has G as face, and all have a common (k-1 )-dimensional face
H in G (0 k n-l). What is the structure of this sub-complex
of cells about H? We shall establish that at the point P the locus
cells fit together to form an (n-1 )-dimensional Euclidean neigh-
borhood of the point P.
For simplicity, take G as

The cubes with G as face are then given by

where for each t we choose one of the inequalities. P is then a
point Xl’...’ "0 0, ..., 0 ), where, since P is not a vertex,
we can assume for example

Consider one of the cubes meeting at G, for example:

The locus therein we write simply as

Since a1 * 0 if we project this locus onto the plane xi = 0,
we determine a topological transformation of the locus onto a
certain set in the xi-plane. The image set is given by

The point P itself proj ects onto the point Q : (0, v’20, ..., xIO, ..., 0).
The point Q must be interior to the strip R:

For, since P is on the locus,
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By the same reasoning it follows that Q is interior to the

région R":

corresponding to the projection on xi = 0 of the locus in each
cube Ca. having G as a face. This projection is clearly topological
on the set of the sum of the different loci. There is now clearly
a neighborhood U(Q ) in the plane xi = 0 and lying in all ROE.

We can also take U(Q) so small as to be in

Also the part of U(Q) lying in the face x’ - 0 of a cube C°‘
is clearly a part of the projection onto xi = 0 of the locus in that
cube. U(Q), being a sum of such parts, is thus itself part of the
image under the projection. But the projection is a homeomor-
phism. Hence the point P also possesses a neighborhood U(P),
which must be homeomorphic to U(Q), that is, (n-i )-diiuen-
sional and Euclidean. This proves our assertion.

IV. It remains to consider what happens when (16) passes
through a vertex of C. Here it will be simplest to take C as
0  ’  1 and (16) as

passing through the vertex at the origin. There are now two
possibilities: that (16*) meet C only in the vertex; or that (16*)
passes into the interior of C. The first case occurs if ai &#x3E; 0

(i == l, ..., n) or if ai  0, (i = 1, ..., n). Otherwise the second
occurs.

Consider the locus in an adjacent quadrant, for example in

where ai-1) and a, have opposite signs. Here the first case occurs
if - a(-l) a2’ ..., an are all &#x3E; 0 or are all  0. Since al and

ai-l) have opposite signs, this condition is equivalent to the above
one; i.e., if the locus exists in one quadrant, it exists in an ad-
jacent one. Proceeding thus through all quadrants, we conclude
that either there is a locus in the interior of each of the
2’z quadrants or else the vertex at the origin is an isolated point
of the locus.
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What are the possible incidences of the cells in the case when
there is one in each quadrant? It is easy to see that they are
precisely those of

That is, it is only the sign of the ai which matters. For example,
consider the locus (16*) in the quadrant

and that in

By condition (17) we find as before that the incidence is

precisely that of (16*) with the plane x’=X - 0 = 0.
This intersection is

The locus is either an (n-k-1)-dimensional convex cell or the
origin according as the aq all have the same sign or not. That is,
the signs of the ai in (16* ) determine fully the nature of the
incidences about the origin.
We remark again that the case when all ai are of the same

sign corresponds to the case of extrema of the same type for
all1Jli at the origin. The proportion of maxima and minima among
the 1Jli determines the type of incidences in case not all ai are
of one sign.
We summarize our results as follows :

THEOREM IV. The variety determined by the equation (14) can
be represented as a cell-complex Tr’ satisfying the conditions:

(*) V’ is composed of (n-1 )-dimensional convex cells lying in
the different cubes ( q(i, ..., qnn ) and a certain set of isolated points
lying at the vertices of the cubes.

( * * ) The only topological singularities are the isolated points and
branch-points, at vertices, at which 2n convex cells meet. The nature
of the singularity is the same as that of

at the origin, for different values of Âi.
(***) The locus is composed of (n-1)-dimensional sheets pieeed

together from the convex cells; those sheets zvhich do not pass through
branch points are (n-1)-dimensional manifolds.
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(****) The singularities of the equation ( 14 ) occur at the points
(Xl’ ..., xn ) satisfying it, and such that P1(X1)’ ..., Pn(aen) are
extrema. The singularity is an isolated point of the locus when the
extrema are all of the same type (all maxima or all minima). The
various other types are given b y equation (18).

7. It is possible to attempt to apply our method of 3 to the
following very general case:

Here we have replaced the operation of summation on the
gai by a general function F, continuous and defined everywhere.

If we now linearize the CPi as before, we reduce the equation
to the form

in the interval (il, - - ., in).
It is obvious that this is in general a simplification of the

problem of determining the topological structure. If the function

F is not too complicated, the actual structure may even be

found.
For example, consider

Here a linearization leads us to consider in each interval a

surface

Because of its simplicity this surface can be plotted for each
interval and all identifications can be found. With the original
equation almost nothing could be done.

§ 3. Pairwise séparation of variables.

8. We now consider, without details of proof, the possibility
of generalizing our method of Theorem 1 to the following case:

(19) Pl (Xl’ ’x2) + P2(X3’ X4) + ... + 9?n(X2n-l’ X2n) = O. .

Here we replace our functions CfJi(Xi) by functions 9?i(X2i-l’ X2i)
of two variables, and want somehow to generalize our original
linearization to these more general functions.
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We want therefore to formulate a generalized "subdivision of
the axis" (as in condition (fl» for each function fPi(X2t-l’ X2i)
so that in each ,,interval of the axis" pi is "strictly monotone or
constant". We then ,join thé end-points of the curve q, in the
interval" by "straight lines" so that rp i becomes ,piecewise
linear".

Actually we are led to choose as "interval of the axis" a curved
triangle ABC of the following type: fPi(01532t-1’ x2i) is constant on

the arc i-B; CPt is strictly monotone on the arcs 4-c and BC;
the triangle A BC can be mapped topologically onto a linear
triangle A’ B’C’ in the (Y2i-l’ Y2i )-plane so that the level curves
of the new function

Y(Y2i-11 y2i) CPi( X2i-l (Y2i-l’ Y2i)’ Q’2i(y2i-1, ,lJ2i ) )
in the triangle A’ B’C’ are the line A ’B’ and the lines parall el to it.
By a "subdivision of the axis" we now mean a curved triangu-

lation of the (X2i-11 x2i)-plane, whereby the triangles are all of
the type of A BC of the preceding paragraph.
Our fundamental hypothesis, corresponding to (fJ) of Theorem 1,

is then that for each function f{Jt(X2i-l’ X2i) the (X2i-1, x2i )-plane
admits the described curved triangulation.
Under this assumption it is then easy to show that fPi can be

reduced to a piecewise planar- function. Also all the information
needed for constructing the new function is the set of values

of pi at the vertices of the triangulation.
Once we have linearized the functions cpi, we have a represen-

tation of the locus (19) as a cell-complex in a certain m-dimen-
sional Euclidean space. We thus arrive at the same result as in

Theorem I. We are again able to give the full topological structure
of the variety.

It may be asked, what class of functions satisfy the hypothesis
above? The answer here must be given in terms of the structure,
both local, and in the large, of the family of level curves of the
function. Without giving details here, let us say for the present
that a very large class of functions, especially the ones of common
practice, have level curves of the desired structure.

Further, we believe it is possible to generalize our type of
subdivision of the (X2i-1’ X2i)-plane to include what might be
called ,infinité triangles" of the type of ABC, and thereby,
by the same method as before, to extend our results to a much
larger class of functions pi on whose level curves only local

assumptions of regularity are made. This ive present merely
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as an intuition whieh we hope to develop rigorously at a later
date.

9. Applications. It seems probable that the Theorem IV of
6 can be generalized to an equation of type (19) under the hypo-
thesis of section 8. The essential difference would be more

general structures at the critical points. This also we shall

develop later.

10. Generalization to functions 0.11nore than two variables. We
believe our method can be extended, at least in theory, to the
general equation

where hypotheses are made concerning the family of level sur-
faces of the qqi. It is well-known, however, that to détermine the
structure of level surfaces for even a function of two variables
is very difficult, for a function of more than two variables in-
comparably more difficult. Thus in practice the generalization
to equation (20) would be used very little. Yet theoretically we
find it significant in that it reduces the topological problem to
one of the level surfaces of the individual functions. This reduction

we believe to be basic in the practical analysis of the topological
structure of a variety defined by an equation.

11. Case of a systern of equations. We consider a variety
defined by a set of equations

A very simple device brings us back to an equation of the type
of equation (20). For the locus (21) is equivalent to the locus

defined by a single equation. We now combine terms as much
as possible in (22) to reduce it to as simple a form (20) as we
can find. We then proceed as originally with equation (20).
Far from trivial, we believe this device to be an important

practical method of finding the topological structure of (21).
Indeed, it is the only way we know of even starting to analyse
a variety defined by a system of equations. (We are of course
omitting certain special or trivial cases for which the method of
analysis is obvious.)
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12. Conclusion. In this section we have indicated a program
of work which we hope to complete at some later date. The result
of 8 we have already been able to establish, but shall complete
it and indicate its full significance before publishing. The ideas
of 9 and 10 are in a more tentative state, but their présentation
here may be of use even before their completion in rigorous form.
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