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1. Introduction.

In the following pages an investigation is given of the analytic
character of solutions (in the neighborhood of the singular point
&= ) of the non-linear n-th order difference equation

w

(A) y(@+n)= waa(w, y(x)) (integers w, a; a =1)1),
where

1) a(z, y(z)) = a(z, y(z), y(z+1), . .., y(z+n—1))

1
and the function a(, Yo Yys - « +» Yp—1) 8 analytic in z(:w“),

Yor Yis + « o Yny @t (=00, Yo =141 = ... =Y,y =0) while
(2) a(z,0,0,...,0)=0.
That is,

’(3) a(m9 Yo, yl? cce yn—l):al(‘r9 Yos «+ 5 yn—l)_l_az(w’ Yo - « +» yn—l)’
(8a) ay(@, Yo+« > Y1) = bo(@) Yo + b1(@) Y1 + - - - + by 1 (@) Yy,

Qo

(3b) a2(m9 Yor o+ o yn—-l) =X X a;

1:0 il “ee in—l
" 1,...,iﬂ_l(w)yo Yo "Y1
m=2 i0+...+in_l=m

(9> Tys « "in—lgo{(\”\' b E rj s
\“‘—\ ‘

w
1)  The fraction — is in its lowest terms.
o
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where

® _y
(4) bi(z)= X b,z *

y=0

o _y
(42) Wiyooi, (@)= X @ i T %,

=0

I

the series (4), (4a) being convergent for |z| = r(>0) 2); moreover,
the series in the second member of (8b) converges for

(5) ‘w‘@r; lyl<e (e>0;i=0,1,...,2—1)3).

The problem at hand has a significance in the theory of non-
linear difference equations somewhat analogous to that which
certain recent investigations due to Trjitzinsky 4) have in the
field of non-linear differential equations.

In a certain sense a non-linear difference system

(6) y@+1)=a;(@, 41(2), . . ., yo(@))  (G=1,2,...,m)
is equivalent to a single difference equation of finite order. This
can be inferred with the aid of the following heuristic considera-

tions. Let Ay = A, Y1, - - .» Y¥,) be a function, for a moment
arbitrary, of the displayed variables. On letting

(7) y(.’L’) = Ao(m’ yl(w)’ L] yn(w))
we have
y(m+1 = Ao(m—*—l’ yl(w+1)a ooy yn(w+l))
= Ag(@+1, ay, . . ., a,) = A (2, yy(@), . . ., Yo ().
Suppose

(8) Y@+v)=A4,(2, yi(2), . . ., yu(x)) (fixed »=1).
With the aid of (6) we then obtain the relation

(8a) yet+v+1)=4, (2, 1(@), . - ., Ya(@)).
In order to be able to obtain from (7) a succession of relations (8)

(»=1, 2, ...), the function 4, must be chosen so that a transition
from (8) to (8a) should be possible for » =0, 1,... If, for

2) r is taken sufficiently great so that the circumference of the circle || = 4
is interior the domain of analyticity of the corresponding functions.

3) p is taken sufficiently small so that the function (8b) is analytic in
1

z(zmg), Yos + + 5 Yny in the closed region defined by (5).

4) Analytic Theory of Non-linear Singular Differential Equations. This work
will appear in the Mémorial des Sciences Mathématiques, Paris; in the sequel it
will be referred to as (T,).
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instance, 4, is also so chosen that the Jacobian of 4y, 4,, ...,4,_,
with respect to y;, ¥, - - ., ¥, does not vanish in a suitable domain
W of the complex variables @, ¥, - - -, Yy, from (8; v=0,1, ...,
n—1) it would be possible to obtain a set of relations

9) y5(@) = by, y(@), y(@+1), - . ., y(@+n—1))
‘ (j=12,...,n).

Substituting these in (8; »=n) we obtain an equation
(10) Yy(@+n) = A(w’ y(z), y(w+1)’ ) y(w_“n"l)) %).
Given a system (6) it is always possible to obtain in a manner
outlined above, or by a slightly modified method, a single diffe-
rence equation of finite order so that, whenever solutions of the
latter are known, those of the system can be constructed. In
view of the facts outlined above the following can be observed.
From the results obtained for (A) conclusions of similar character
can be inferred regarding every system (6), which at x = oo has a
singular point of the same type as that of (A) and for which
a;(z,0,...,0)=0 (i=1,...,n).

Of importance in the sequel will be the linear equation

(B) L(=, y(w))sy(w-{—n)—w“al(w,y(m),y(m—l—l ). y(@+n—1 )) =0
(cf. (3), (3a), (4)), related to the problem (A). This is the equation
to which (A) reduces when ay(z, ¥, - - ., ¥,-1)=0.

In the theory of linear difference equations of outstanding
importance are the fundamental developments of N. E. Nérlund®).
These depend largely on the use of Laplace integrals and con-
vergent factorial series. Of other contributors we shall mention
R. D. Carmichael, J. Horn, G. D. Birkhoff and the present
author 7).

%) In practice one would of course choose 4, as simple as possible.

6) Cf., for instance, N. E. NOorLUND, Lecons sur les équations linéaires aux
différences finies [Paris, 1929].

7) G. D. BirxknorF and TrJiTzINsKY, Analytic Theory of Singular Difference
Equations [Acta Mathematica 60 (1932), 1—89]; in the sequel referred to as (BT).

TrJyrTzINSKY, Analytic Theory of Linear g-difference Equations [Acta Mathe-
matica 61 (1933), 1—38].

TrJITZINSKY, Laplace Integrals and Factorial Series in the Theory of Linear
Differential and Linear Difference Equations [Trans. Amer. Math. Soc. 37 (1935),
80—146]; in the sequel referred to as (T,).

TrJ1TzINSKY, Linear Difference Equations Containing a Parameter [Annali di
Matematica 14 (1935/36), 181—214].

The above papers contain numerous references to the literature in the field of
linear difference equations.
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The equation (B) has been treated in (BT) from the point
of view of the asymptotic properties of solutions (in the neigh-
borhood of # =c0). In consequence of known investigations, due
to G. D. Birkhoff of the formal aspects of the theory of linear
difference equations®) it can be said that, provided by(z) (cf.
(8a)) is not identically zero, the equation (B) has a set of n
(formally linearly independent) formal solutions, each of the type

(11) s(@) = e¥@gr {2},
Here

p—1 1

(11a) Q@) —paloge+ g +qe? +...+g, 2"
l
e 7 . >
(,u—p, integers I, p; p_l)
and

(12) {z}, = o0(@) + 10(x) log 2 + . . . + ,0(2) log =
where the ;o(z) are series, in general divergent, of the form

o

¥
(12a) jo@)= X 02 ? (G=0,1,...,).

The integer p can be chosen the same for all series (11).

Throughout this work it will be understood that the following
assumption has been made.

Hyproruesis A. The linear equation (B), associated with the
problem (A), is effectively of order n; that is, by(xz) £ 0 (cf. (3a)).
Moreover, amongst the functions Q(x) (cf. (11a)), involved in the
Sull set of formal solutions (11) of the equation (B), there is at
least one for which

(13) ROW () # 09).

This hypothesis excludes precisely the case when every Q(z)
is of the form

(14) Q@) = gor
where ¢, is a purely imaginary number.

The condition that the equation (B) should be effectively of
order n is made mainly for the sake of simplicity. In fact, from

8) G. D. BirgHOFF, Formal Theory of Irregular Linear Difference Equations
[Acta Mathematica 54 (1930), 205—246].
?) Ra denotes the real part of a.
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the developments given in the sequel one could infer without
difficulty that results of essentially the same type, as those given
in the text, would hold if the linear equation (B) were allowed
to be of order less than the n-th. On the other hand, the condition
that at least one of the Q(z) should satisfy (18) is more essential.
This condition will enable construction of certain solutions of
(A), using a solution of (B) as a first approximation, when the
variable @ is in a suitable region extending to infinity to the left
or to the right 1%). Whenever all of the Q(z) are of the form
¢o%s With ¢, a purely imaginary number, substantially different
methods would have to be used.

The problem of n-th (n=2) order non-linear difference
equations has never been considered before from the point of
view of the present work 1!). On the other hand, the first order
problem (under various assumptions) has been treated by a
number of writers. Of the developments of the latter kind most
relevant, in so far as our present point of view is concerned, is a
succession of contributions due to J. Horn 12). This author ob-
tains formal solutions s(z; p(x)) as series in positive integral
powers of an arbitrary periodic function p(z) (of period unity).
The coefficients of the various powers of the periodic function
are functions which he expresses with the aid of convergent Laplace
integrals, leading to expressions involving convergent factorial
series (exponential summability of corresponding formal power
series 13)). On the other hand, the series s(z; p()), itself, is shown
to be convergent.

Now, with the problem formulated as it is in the present work,
results of the type of those obtained by Horn in general will not hold.
While we shall obtain formal solutions s(x; py(2), py(2), . . . ,p(2))
(p1(@), . - ., p(x) arbitrary functions of period unity) as series
in positive integral powers of py(z), ..., p,(x), in general it
will be impossible to express the coefficients of this series with the
aid of convergent factorial series. In fact, the linear problem (B)

10) Regions of this type will be defined more precisely in the sequel.

11)  We might mention some developments regarding questions of stability
(a problem analogous to that in the theory of a type of non-linear differential
systems) in connection with certain difference systems: O. PERrRON [Journ. reine
ang. Math. 161 (1929), 41—64]; Ta L1 [Acta Mathematica 63 (1934), 99—141].

12)  For instance, Uber nichtlineare Differenzengleichungen [Archiv der Math.
und Physik 25 (1916), 187—148]; Uber eine nichtlineare Differenzengleichung
[Jahresber. D. Math. Ver. 26 (1917), 230—251]; Zur Theorie der nichtlinearen
Differenzengleichungen [Math. Zeitschr. 1 (1918), 80—114].

12) These power series are in general divergent.
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is a special case of the problem (A); on the other hand, it has
been shown by Trjitzinsky (cf. (T,)) that the formal solutions
of an equation (B) are not always expressible with the aid of
convergent factorial series. Accordingly, asymptotic methods

will be used to investigate the character of the coefficients of the
various monomials

P (a)pix() - - - pm(2)

involved in s(@; py(2), . . ., p,(x)). Moreover, convergence of the
series s(z; py(x), - - ., Pp(®)) In general is not to be expected.
However, we shall construct “actual solutions” (analytic, for
& # o0, in certain regions extending to infinity) which in a
certain sense, to be specified precisely in the sequel, are asymp-
totic to the corresponding formal series.

Finally, it is to be noted that for #n = 1 the results of the present
work will continue to relate to a problem heretofore not treated —
a problem to which the methods of Horn would continue to be
inapplicable, unless certain additional hypotheses were made.

2. Formal solutions. (Case I.)

Let p;(2) be an arbitrary function of period unity and consider
the series

(1) s(@) =y, (2)py(@) + yo(@)pe(@) + - . . +yy(@)Pi(®) + - - -
Formally

) . iy
(1a) st (@-+v) = pi (@) (Elyj(erv)pi“(w)) .

In (8b; § 1) substitute y; = s(z+i) (=0,1,...,n—1). It will
follow that

(2) ay(@, s(z), s(x+1), ..., s(@+n—1)) =
£pr@ = L@ (Zy,(w+v)p; (@)
m=2 io+...+in_1=m
= Vy(@)pi(x) + Pa(@)pd(@) + . .. (o .- tna Z0)-

In the second member of (2) the expression following P1"(Z)
can be arranged as a series

(8) F, = mo(@) + ¥, 1(”)}’1(5”) + ¥, 2(@)pi(z) +

From (2) one can then obtain
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j
(4) Yi(z) = kz A ) (j=2,8,...).
-2

We now proceed to compute the ¥, (z) (m=2;y=0). There is
a development

(5) (J_{:oy,-+1(w+v>pi<w>) = 2 gu,ple-+ o)
where

(5a) ‘Pi,,;ﬂ(w‘l"’) =2 Y+ 1(w+”)yj2+ W@+v)--- yji,,+ 1z4-»)

(jly .o -5ji,‘,20;j1+j2+ oo +jiv=ﬁ)'
It is possible then to write

o

n—1 o iy
© T (et @) = 2 0400, @),
j=1 0

=0 \j= =

(62) ;... (@)= Z‘Pio;ﬂo(w)‘l’il; pl@+1)-9; .p (z+n—1)
Bos Brs - - -5 Ba1=205 Bo+Bit - o ABu1=¥)-

Thus, in consequence of the definition of F,, by (3) and by (6a)
it is inferred that

(7) Yo p(@) = 2 @ iy.i, (@)@, ..., (@)
(Bgdigt « « « +iny=M; G0y gy - « + gy 20).

Substitution of (7) in (4) will yield

1

j
(8) ¥y(z) = 152 ) Wiy (@) kP, i, (@)
(to+ - - - +in—1=k; io’ L] in—lgo)'

From (8), by virtue of (6a) and (5a), it is finally concluded that,
for j=2,8,...,

® @)= 3 e . (@)

k=2

Z:l_i: 'Y @) Y a (@) - gy (@)
where
(10) X' =X (fdg -+ o5 5,205 1tdat - T, =5
(1) Z" =2 (Bo Bu--> Bu-1=0; fotbit... +By1=7i—k),
(12) X=X (s B1s o + o5 Bp1 =205 Goti1+ « o o +1,1=F).
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This is analogous to 2 formula given in (T,).
In particular
Yy(z) = W0 (2) =
=Xa; in_l(w)yi“(w)ylll(m—l—l)---yi"“(m—l—n—l)

(Bos Tgs o~ o9 p 1 203 0t o oo iy =2).

(18)

On taking account of (B; § 1), in view of (3; § 1), equation (A)
can be written in the form

(14) Lz, y(@)) = 2%ay(a, y(a), y(@-+1), . . ., y(@+n—1)).

Now L is a linear difference operator, while p;(z) in (1) is of
period one. Hence substitution of (1) into (14) will yield, in
consequence of (2),

(15) 2 pl(@)L (2, yy(@)) =2* I pi(a)¥j(@).
i=1 j=2
This leads to a succession of recursion difference equations
(16) L(z, y(x)) =0,
(17) L(, y;(x)) = *¥j(x) (=2,3,...).

Examination of ¥;(z), as given by (9), enables one to conclude
that ¥,(z) is independent of y;(z), y;41(2), . . . This fact will be
signified by writing

(18) Tf(m) = Wj(m; yl(m)’ yz(v’”), LS ] yj—l(w) (j=21 3,.. )

Accordingly, one may expect that with a proper choice of y,(x)
a sequence of functions y;(z) (j=1, 2, ...) can be found so that
the equations (16) and (17) are all satisfied. Corresponding to
such a sequence there would be on hand a formal solution (1)
of the problem (A). We shall now proceed to find such a sequence.
A linear n-th order non-homogeneous difference equation
(19) 2(x+n) + a(x)z(x+n—1) + . .. + a,(2)3(z) = a(x)
(@n(x)7#0)

can be solved as follows. Let

21(2), 22(2)s -« -, 2y (@)

constitute a full set of solutions of the homogeneous problem
obtained by replacing a(z) by zero. Let (a, ;)
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denote a matrix of n® elements a; ; (i,j=1,...,n), with a, ;
in the ¢-th row and j-th column. Moreover, let

(@,5)71

be the inverse of the matrix (a; ;). Now the z;(z) (i=1,...,n)
form a full set of solutions. Accordingly, the determinant

| (z:(z+7))|

is not identically zero. Thus, functions %; ;(z) (¢,7=1,...,n)
can be defined by the matrix relation

(215 (2) = (zl@+7)) 7"

Then

(19a) 3(x) = % 2 (z) S a(u)z, j(w).
A=1 u=x

where

(20) S h(u) — S h(u)=h(z)

u=z+1 uU=x

will constitute a solution of (19) provided that the operation of

summation, designated by 8 , can be carried out.
U=

Thus, with
(21) yl:l(w)’ ylzz(m)’ MR yl:n(x)

denoting a full set of solutions of (16) 1) and with the functions
7s,5(w) (¢,7=1,...,n) defined by the matrix relation

(Fs,5(w)) = (yr:s(ut5)

(17) can be written in the form

w

(22) wi(w) = Z y(@) 8 UV (), 5 () (=28, ..).
=1 uU=x

DeFiNITION 1. Let {2}, denote any expression (12; § 1), where
the ;o(x) (j=0,1,...,») are series, possibly divergent, of the
Jorm (12a; § 1). Let K denote a region extending to infinity. The
symbol [x], will denote generically a function, defined in K (x5 o),
such that

14) Such a set exists since by Hypothesis A (§ 1) (16) is effectively of order n.
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(28) [z], ~ {2}, (z in K)15).

In consequence of the developments given in (BT) there exists
a region K satisfying conditions (), (f), (v), ().

(o) When z is in K we have |z| = 7, (>0) and # — 11is also in K;
K contains the part of the negative axis of reals for which
|z| = 7, (a portion of this axis may enter as a part of the boun-
dary of K).

(B) Part of the boundary of K consists of an arc of the circle
|| = 7o, while the rest of the boundary consists of two-non-inter-
secting curves, B,, B;, extending from the extremities of this
arc and possessing limiting directions at infinity; B, in the second
quadrant and B, in the third. Either, one of these curves is
coincident (for |#| =7,) with the negative axis of reals — in
which case the other curve recedes indefinitely from the axis —
or both curves B,, B, recede indefinitely 1¢) from this axis.

() Consider the functions Q(x) (cf. (11a; § 1)), associated with
a full set of formal solutions (11; § 1) of the linear problem
(B; § 1). The functions RQD () (= real part of QV(z)) main-
tain the same ordering in K. As a matter of notation write

(24) ROV = ROW(z) =...=
= ROP (@) > ROP1(2) = RO, (@) = . . . = ROV (2)

(z in K) 1),

(8) The problem (B; § 1) has a full set of solutions ¥,;(x)
(¢=1,...,n), analytic in K (@ 5% o), such that (with the
notation of Def. 1) we have

(25) yl:i(w) == eoi(x)wri[wjv(i) (1‘: 1! BTN (291 in K) 18)’

In the sequel, unless stated otherwise, K will denote a region
satisfying the above conditions (a), ..., (§). Henceforth, unless
stated to the contrary, the set of functions (21) involved in the
relations (22) will be the one referred to in these conditions.

DEeFINITON 2. Let K be a region extending to infinity, but not

1) That is, [2], = o0(®)+10(x)loga + ... + ,o(x) log¥z where the ,o(z) are
functions correspondingly asymptotic (in K) to the series ,0(@) (j =0,1,..., ).

16) That is, if B, for instance is such a curve, we have Jz (= imaginary part
of ) — oo, as @ recedes to infinity along B,.

17)  The Q(z) correspond to the formal solutions s;(z) (={m},,(i)w"‘ exp Q(x);
i=1,2,...,n). Here > may become = along B, or B

18) That is, y,.(x)cosi(x) (1 =1,...,n) in K.
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necessarily satisfying (), ...,(8). A real function f(x) will be
said to be monotone in K to the left, provided

(26) flay) = f(w,)
whenever xp and z, are in K, while
(262) Sy =S, Sy < R

When in (26) < is replaced by = the function f(x) will be termed
monotone in K to the right.

With K denoting a region satisfying («), . . ., (), it is concluded
that the functions
(27) Si,(@) = leol’;'(z)l (Ql}(“’) = Qy(z) — Q}.(w))
are all monotone in K to the left. In fact, whenever x;, and z,
satisfy the conditions of Def. 2, in view of (24) we shall have

ROV, (w)du =0

-

for w on the rectilinear segment (z;, #,). Hence
RO, 1(3)— s, a(20)] = | RO ()i = 0.
Ty
Accordingly RQ, ;(z) is monotone in K to the left. Whence the
same will be true for the function f; ;(@).
On writing

p-1 1

(28) Qi@)=pmwloge +q; @ +q @ 7 + .o+ G p-1@”
(i=1,2,...,n)

(ef. (11a; § 1)) ¢t is noted that (24) implies
(29) P =y ==y = g = Mohr = v = e

This is a consequence of the following considerations. From (28)
we obtain

ROW (x) = ps(1+1og |2|) + gi(@),
where g;(z) is real and |g;(z)| is bounded in K. Thus,
(29a) ROP () — ROW (@) = (u;—p;) (1+1og |2]) + g, ;(2)
(g:,;(®) real; |g; ;(z)] bounded in K).

If ROP () = ROP(x) (in K) then necessarily u; = u;; in fact,
it can be shown that we would then have

Qs(x) — Qs(x) = g, ;2 (Re;; =0).



12 W. J. Trjitzinsky. [12]1

If ROP (x) > ROP(x) (in K) necessarily p; = p;. In fact, if we
had p; — p; <0 it would follow that the function defined by
(29a) would approach — oo, as |z| — co (in K). This constitutes
a contradiction to our assumption

ROP (z) — ROP(z) >0 (in K).

CasE 1. There exists a region K satisfying not only conditions

(), (B)> (), (8) (cf. the teat preceding Def. 2) but also the following.
The function

(80) | @@

is monotone in K to the left (terminology of Def. 2) and

(30a) 4@ ~0  (in K)®),
Now
(81) R log 2 = |2| [cos T log |z] — Zsin Z] (T=angle of =).

Hence, whenever u; 5 0, the dominant component of RQ,(z) is
(81a) — || log ||,

provided z is in a sufficiently close neighborhood of the negative
axis of reals. Accordingly, case I cannot take place when u, <0,
as (80a) would not then hold. If y; = 0 and if, furthermore, we
have

(81b) (@) =g o (Rgy,0=0)

condition (80a) could not be satisfied #) in K. If u, > 0 conside-
ration of (81) leads one to the conclusion that (80a) will certainly
hold in every region I' defined by the inequalities

(81c) g—+s§:ﬁ§?—’g—s (|2 = 7o)

where ¢ is a fixed positive number, however small. Now |exp Ql(m)|
is monotone to the left in every region (extending to infinity to the
left) in which

(32) ROW(2) = 0.

This follows by a reasoning analogous to that previously employed

19) That is, exp Q4(z) ~ 0 4 Ox~! 4 0z~% 4 ... (in K). Here and throughout,
unless the contrary is stated, asymptotic relations are in the ordinary sense (i.e.,
to oo of terms).

20y (30a) would fail along every line (in K) parallel to the axis of reals.
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in connection with (27). On writing

ROP (@) = (1 + log |w|) +g1(z)

it is noted that |g,(z)| <g, (|#| =r,). Hence, when g, >0,
(82) will be satisfied for || = r,, provided 7, has been chosen
suitably great 2!). Thus (with u; > 0) take a region satisfying
(), ..., (0). Consider the part common to such a region and to
I' (cf. (81c))22). Call this common part K. In the region K the
conditions of case I will hold. When x4, =0 and Q,(«) is not of
the form (81b) it may happen that for no region (of stated type
and extending to the left) are the conditions of case I all satisfied.

The following essential facts have been established.

If case I holds in a region K (satisfying («), ..., (8)) meces-
sarily u, =0 (also cf. (29)) and Q,(z) cannot be of the form (31Db).

If py >0 case I will certainly hold in some region K.

We shall now proceed to investigate, for the case I, the
character of the coefficients y;(z), involved in the formal solution
(1). With the y,,(z) (¢=1,...,n) denoting a set of solutions
of (B; § 1), referred to in connection with (25), the function
y1(2) (a solution of (16)) will be taken as

(88) Y1(@) = Y1.4(2) + ca(@)Yy0() + . . . + cs(@)yy5(2)

Here cy(2), ..., cs(x) are arbitrary functions of period unity,
analytic #) in K.
In consequence of (24)

(83a) Qi) = Qy(2) + V—1qz (realq;i=1,2,...,0).
Hence by (88) and (25), generically,

(83b)  yy(2) = €% (g (@)@ + &(@) @]y + - + gs(@) [@]y(s))

(z in K; cf. Def. 1) where

(84)  g@) =ci@)eY 1= (i=1,...,8; c(x)=1; ¢, =0).

At this point it will be convenient to introduce the following
definition.

21)  We make such a choice.
22) I" can be replaced by any more extensive region, confined to the second
and third quadrants, in which exp Q () ~ 0.

2)  Since, as stated in (f), at least one of the curves B,, B, recedes indefinitely
from the axis of reals, the ¢;(z) will be analytic at least in a half plane bounded
by a line parallel to the axis of reals.
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DerintTION 8. Let q; (1=1,2, ..., 8; g, = 0) be real numbers
and let cy(x), ..., cs(x) be arbitrary functions of period umity,
analytic (for x5 o0) in a region K extending to infinity. Let
functions g;(x) (i=1,...,0) be defined by (84). We then shall
write generically
(85) [2]f = Z g (@)g(@) - - - 8°(@)fy 4, .. 1 (@)

(ilsiza---,idgo;i1+iz+ e +i6=p; w’l:’nK),
where p is a positive integer and

(85a) fil, Gy i (2) = [z]ly  (xin K; cf. Def. 1).

The corresponding formal expression will be designated as {x}% .
Thus

(85b) [21% ~ @}y = D gi (@) -+~ & (@) {a)
(Fgy o oes 25 =0; 33+ ... +i5=p; & in K; c¢f. Def. 1).
In accordance with this notation
(36) (@) =19 alyy (@ in K)®).
Before proceeding further the following Lemma will be stated.
LeEMMA 1. Let K denote a region extending to infinity 25). Consider
a function

(87) f(@) =e?@a]y (@ in K; cf. Def. 8),

where
1 1

(87a) Q(x) = uxlog z + g + lqml_ P4+ p_lqazZ
(p rational).

Then
(88) fle+v) = @l [z]h  =0,1,...,n—1)

provided @ +n — 1 is in K. Moreover, formally

(88a) S Q0 {g}y = @R}y
t=x
when u > 0. On the other hand, when pu << 0 we shall have
(38b) S 201}y = 2@t {a}y .
t=x
24) N(1) is the greatest of the numbers »(1), »(2), ..., »(J).

) This region is to be exterior a circle |z| = r, (> 0).
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Whenever =0

(39) 8 20pr{tty = ?@art g}y = QW) ,
t=x

where h is a rational number, 0 <h <1. When Q(z)=0 in the
last two members of (89) {x}y is sometimes replaced by {@}y,,.

A determination of h more exact than that given above is
possible, but is not essential for our purposes. On the other hand,
employment of a more precise value of 2 would considerably
complicate the subsequent developments. The above Lemma can
be proved with the aid of certain considerations of a formal
character; it is essentially a consequence of Birkhoff’s work in
the theory of linear difference equations (formal aspects).

We shall now determine the character of the function ¥,(z)
(cf. (18)). By (86), in consequence of Lemma 1, it follows that

(40) Yy(@+v) = eol(x)wm‘[w]vu)

(r=0,1,...,n—1;2+n—11in K).

Now
(41) [e]y 2] = (2l
Consequently

Y (2+v) = ei”ol(x)wwvﬂl[m]g::v(l) :

Thus, since in (18) ¢g+ ... +t,1=2 (%, - - ., 6,1 =0), it is in-
ferred that

n—1
(42) yP (24v) = 9@ats? )8y, (@ +n—1inK)
where
(4‘23,) i1:i1+2i2+ .o +(n_"‘1)7/n 1f2(n 1)

Now u; =0 (cf. italics preceding (33)). Hence by (42a) ¢! in
(42) can be replaced by 2(n—1). Since

G, ... (@)= 2], (in K),
from (18) we then can obtain the relation
(48) Vy(z) = 2@ 2Dty [p)20 ) (@ +n—1 in K).

The following notation will be introduced. K' will denote the
region formed by translating the boundary of K to the left parallel
to the axis of reals through the distance n — 1.
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It is observed that (43) holds for # in K'.

Suppose now that K is a region with respect to which the
conditions (a), ..., () hold. We shall substitute (25) in (22)
without, for a moment, assuming that the conditions of case 1 are
satisfied in K. With the aid of Lemma 1 a direct computation
will yield the result

(a4 w(o) = = S el ) G0
where
(44a) S7(¥;(u)) = S Py(w)e™ %Myt u], ).

Here m is a rational number (m=0) 26).

We now assume case I and proceed to calculate y,(x) with the
aid of (44; §j=2) and (48). The summand involved in (44a)
will be of the form
(45) ghy(u) = FON =BT B (uin K.

In view of Def. 8 (cf. (88a), (84)) from (45) we obtain
(45a) 2hl(u)zzBil,”_’i6(u) (G + ... +ig=2; 1g, ..., 0 =0).
Here

(45b) B () = ¢ (u) - - - cgl’(u) 2000 =0, (W) + vV =Tug(iy, .. h dg)

Tpyenns iy

A (7] ORI (T L W )

where
(450) q(il, .oy /1.5) - ilql + 'l.gqg + oo + /idqé;
T(il, “ e e, '1:6) = 7:17'1 + 7:27'2 + PN + 7:67'6.
In the function
Q(u) =20, (u) — Q(u) + V —1ug(iy, . . ., is) = pulogu+. ..

we have

(45d) o =2uy —py=py + (1 — py) =2 (20) (G=1L2,....n)

in consequence of (29) and in view of the italicized statement
preceding (88). We shall write

26) Neither the value of m nor those of the integers g(1) (A =1, ..., n) need

to be known precisely; m depends essentially on 2 (cf. (22)) and on the u,
o

(i=1,...,n).
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(45¢) S ) =% 8 B, () (zinK).

U=x

In evaluating the “sums”, here involved, the following method
will be used:

(46) S B(u)= B(z—1) + B(x—2) 4+ ... (z in K').

&

The applicability of this method is due to the fact that
| 294000260 | — | 030 | @yt =00

is a product of two functions monotone in K’ to the left (cf.
Def. 2 and the statements in connection with (27) and (80)),
while in K’ the asymptotic relation (80a) is satisfied. The function
(46a) S Bil,..., i(@)
u=x

so defined in K’ will be analytic in K’ (2 # o). Moreover,
the asymptotic form of this function will be that indicated in
Lemma 1, namely

(46b) c‘il(w) ... C? (w)ewlm—Q,l(ac)+\/f1'xq(i1, cniy)

o . (zin K').
g2 Dp — At mtr(, .. 16)wh2[m]

2N(1) +a(A)

When u, =0 we may take hy as a rational number h independent
of A and such that 0 < h <1 (cf. Lemma 1). On the other hand,
when u; > 0 we let hy = — p, ¥). Thus, in view of (45e), (45b),
(45a), (45) and (44a), it is inferred that

(47)  Si(Pa(w)) = U@ =@ 2D T E MR (]2 0 L)
(zin K'; A=1,...,n). Whence by (44)
(48) Ya(@) = #A@atela]} ) (xinK'),

{48a) Yo = 2(n—1)uy +m + hy.

Now by (17) L(, yy(z)) = a* W,(z); that is, by (B; § 1) and
by (3a; § 1),

(49)  yo(z+n) =

w

= 2% [by(@)ya(@) + - . . + by_y(2) Yol +n—1)] 4+ 2> Py(2)

") According to (38a) we could take hy = — (2u;,—pu,). One then could write

hy _ =t —(y— — . .
P P M112),, since the rational number Hr—py 20
(A=1,2,...,n); h, is independent of i,,..., 5.

2
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where the b;(z) are given by (4; § 1). Whence
(492)  yyl@+v) =

== (zrz—n—|—v)E [bo(z—n—+v) y(x—n+7) +
w 4 ooi + by y(@—n4v) y(+r—1)]
+ (@—n+v)* ¥y xz—n+v) (»=0,1,...,n—1),

The leading term in 2% b,(z) is 2% (¢; < (n—14)y,). From (49a;
v=1) we find the form of y,(x+1) inK'. Using (48) and substituting
the known form of y,(z+1) in the second member of (49a; y=2)
the character of y,(z+2) throughout K’ can be determined. We
then substitute the known forms of y,(z41), y,(z+2) in (49a;
y=38) and with the aid of (48) establish the asymptotic character
of y,(2+8) (z in K’). After a finite number of steps the asymp-
totic forms of the functions

Yo(z+7) »=0,1,...,n—1)
are determined for z in K’. To carry this out at each step the
asymptotic form of ¥y(x—n—+7») (»=0,1,...,n—1; 2in K’) is em-
ployed. This form is known by (43)2). Following these lines
it is shown that necessarily (48) holds for # in K?). That is,
(50) Yo (x+v) = AP gtat Wil [""]12\7(2)
(»=0,1,...,n—1;  in K').

Assume now that, for x in K’ and a value of j(=8), we have

(51) Yp(@+v) = @l 2] )
»=0,1,...,n—1;7r=1,2,...,j—1),

(51a) P, (x) = @ [2]; r=12,....5—1),

where

(51b) Y=Y, + M+ h, = ag® + oy — o,

(51c) h,=h (for uy=0),®) h,=— (r—1)u, (for u>0)
and, for u, >0,

(52)  a=®—2) u=nt 4@, ay= (1) +m

28)  (43) holds for z in K’; on the other hand, when z is in K’ the points 2 —n + »
(»=0,1,...,n—1) will also be in K"

29) Cf. the statement subsequent to (43).

30) This is the same number h as involved in the text subsequent to (4Gb).
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while, for p, =0,
(52a) otg=0, oy=m-+h, op=1+h.

The relations (51), ..., (52a) have been established for j = 8;
that is, for r = 1,2. We shall now carry out the induction. With
the aid of (51) the asymptotic form of ¥;(z) can be inferred by
virtue of (9), (10), (11) and (12) (cf. (18)). On writing

j+1 +0U,+1 j,+1
ItV Vit O, )W'[w]jlx'l(j +1)
T

?/j,+1(m +7) =
it follows that

i
(53) IT ?/j,-l—l(w‘l"’) =
r=1
. O 2 . +- .
___e(ﬁv*"‘v) 1(w)x Yj,+1t (By+iy) viy [w]gv(;fzz’ i)
since, by (10), j; + 72+ ... + 745 = B,- Now, in view of (51b)

and since by (52) and (52a) we have «y + a; — o, = 0, it follows
that

(53a) Yj+1~ %ofz + (2og+21)7, -

It is noted that, subject to the condition that the z; (i=1,2,...,m)
be non-negative integers such that z, +x, + ... + 2, =K (=0),
the maximum value of 2% + a2 + ... + a2, will be K2. Accordingly,

in view of (10) and (58a) and provided «, = 0, it is immediately
inferred that

(53b) z Yj+1 = %ﬂfy + (2094-24)B, -

The two members in (58b) are rational numbers. Hence the
second member of (53) is of the form

(54) BTG @ byt oot ) Byt Byt i)y Byriy

NBys s B
where N;f}l,..., B.. 1s the greatest of the numbers N(jy, ..., 7; ) *')
The summation (with respect to j;,...,7; ) of (10), extended
over (58), will accordingly yield a function F, of the form (54)
(zin K'; v=0,1,...,n—1).

Now, by (11) and (12) and in consequence of the italicized
statement subsequent to (53a),

31)  with j,,.. "jiy subject to the conditions of (10).
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Gla) T B —i—k Si,—k BBk
0

0 0
n—1 . .
2 #(B,+i,) = (n—1).
0
By (54) and (54a)
(55) nﬁva — ea‘Ql(w)woco(j—k)2+(2oco+ocl) (G—k)+n=Dju, ,

=0

Rt _
[w]Nﬂl’ see /37;—1 Fﬂl’ tee ﬂn—l :
Thus, with N ;" B denoting the greatest of the numbers

Nﬂx' oo By’

A

it is observed that
’" . Ty eees in—
Z Fﬂv e ﬂ = F% 1

n—1

(ef. (11)) is a function of the same form as the second member
of (55), except that Ng oo B is replaced by N;;' R Let N

1’ sty

denote the greatest of the numbers N;;' A (PP S

s eees By

subject to the conditions of (12)). It is noted that

kF _ Zlnaio, . ) (w) Fio’ veey ":n_l (Cf- (12))

w7

is a function whose asymptotic form for # in K’ is given by the
second member of (55) with N,’sll,..., g,_, replaced by ,N. Let k(j)

be the greatest of the numbers N (k=2,...,7). It is then
inferred that 32)

J .
(56) Vi(z) = kZ WF = ea@a¥ilzll (z in K'),
=2

where ¥, is the maximum of the numbers

(56a) L= ao(f—k)? + (2ag+0oq)(f—k) + (n—1)ju,
(k=2,8,...,7).

When u; =0, by (52a), l; , =o,(j—k) (k=2,...,7). Thus,
(57) W, = (@ + h)(—2)  (for u—0),

When y; >0 the maximum of I; ,, (k=2,8,...,j) is attained
for k = 2. Whence in consequence of (52) one may write

32) The precise nature of the dependence of k(j) (of N(j), as well) on is not
essential for our purposes. In general, lim k(j) = co and lim N(j) = o0, as j — oo.
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(57a) P = o + (pa+nl )i — 20,
= agf® + (a1 +p1)] — 204 (for p, > 0).

The results (57), (57a) are precisely in agreement with what
becomes of the relations (51), ..., (52a) when j is replaced by
7+ 1. To complete the induction it remains to prove that (51)
holds when j§ is replaced by j + 1; that is, for r =4. For the
present we continue to assume that «, = 0. To establish the form
of y;(#) use will be made of (44) where ¥;(u) is given by (56).
On designating the summand involved in (44a) by ,hy(u), it
will follow that

0, (1) -0 —Ttm o N
(58) jhl(u) — (@) a(u)u% T, +m [u]i;(j)_;_q(l) (win K').
Furthermore

(58a) uijhz(u) =S§(¥;(u)) =% 8 B; . (w)

(":1,--.,1.(5;0; @1—{— . e —}—26:?')
where
(58b)  B; ;. (w)=

3 1 Q(u T AT (g eens
= cli(u) -+ o (w)e? W (61> -2 3g) (%)) 4 a0y’

(58¢) Q(u) = jQy(u) — Qz(u) + V —luq(iy, . . ., i5) =
= (jua—pp)ulogu + ...

and the q(%y, . .., %), 7(i3, ..., 1%5) are given by (45¢c), subject
to the conditions

Ty o v es by =05 &+ .0 15 =17.
Now

(59)  p=1guy —py = G—1)puy + (p1—py) = (G—1)uy(=0)
A=1,...,7)

for the same reasons in consequence of which (45d)holds. Moreover,

o i—1 _
(592) |e]Q‘ (U)—Q;_(u)l _ Ite (u)|] ‘601 (u)-9, (U)l
is monotone in K’ to the left (Def. 2). Thus, in view of (30a),
the various ,,sums”’ of the last member of (58a) can be evaluated
according to the method (46). The asymptotic form of the function



22 W. J. Trjitzinsky. [22]

(59b) S Bil,...,id(u) (z in K'),

U=
so defined, would be that obtained by the corresponding formal
“summation” according to Lemma 1. Whence this form will be

(89¢) (@) - - 3P (@)e" @i Tat AT Bl ),y iy
(cf. (58b), (58¢c)), where
(59d) h; =h (for u; =0); hj= — (j—1)u; (for u; >0).

Here h is independent of § and A and is identical with the number
so denoted in the italics subsequent to (46b). When u; >0 it is
possible to take h; = — (ju; — u;) (cf. Lemma 1). Now

m—(j,ul—.u;_) — w“(j—])ﬂlw“(ﬂl —i;) — d')_(j_l)”l[w]o

since, by (59), u; — u; is a non-negative number. Also it is noted
that for some 1 (A=1, certainly) ju, —pu; = (j—1)u,. Hence
we can take h; = — (j—1)u, (for u#; > 0) — and this will entail
no loss of precision. Since (59b) has in K’ the form (59¢), in
consequence of (58a) it is inferred that

x Oy () — ~r,+m +h j
(59¢)  SE(¥j(u)) = U %@ pimTam @Yy e

(z in K';s A=1,...,n). Whence, by (44),

(60) y;(@) = %Pan e, (@ in K,
where

When y, >0, by (60a), (59d) and (57a) we obtain
(60b) Y5 = ogf® + o] — o

where the numbers o, o, a, are defined by (52). When uy, =0
from (60a), (59d) and (57) it will follow that (60b) holds with
ogs %y, oy defined by (52a). The relations

(60c) yj(m_!_,,) — ein(x)wv,+:ivyl[w]g'v(j)
(»=0,1,...,n—1; 2 in K')
can be proved with the aid of the equalities

(61) y;(@+7) = (@—n+v)*[by(e—n—+v)y(@—n+»)+ . ..

+ b,y (@—n+2)y (@ 4+r—1)] + (@—n+2)* P (@—n-+v)

w=0,1,...,n—1)
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following the lines employed in the derivation of (50) with the
aid of (49a).

Thus, for the case when «; =0 (cf. (52)), the induction is
complete. The relations (51), ..., (52a) hold (in this case) for all
values of § (1=38,4,...).

The inequality oy = 0 fails (with x,=0) if and only if

(62) #y >0, n=1.
Under (62) we obtain

62)  ¥@) = 2 a@) Sy 0@l n@) - vyn(a)

o oo G201+ - oo +i=7—k)
for j =2, 8, ... Moreover %),

(62b) y;(@) = e9@an[z], 8 e”AMun[u]W;(u) (=28,...).

u=x

With y,(z) = [z]} - exp Q,(2), it follows that Vy(z)= a,(z)y:(z)
is of the form [z]3 - exp 2Q,(x). For j = 2 the summand in (62b)
will be

(63) AWy [y)k.

Thus with the aid of Lemma 1 one can infer that the ,,sum”
involved in (62b) is

AT [2]2 .
Whence by (62b)
(63a) Yo(@) = 9@z~ [2]2.
Thus the constants y;, ¥, ¥, have the values
(64) Yy1=0, yp,=—pu; ¥=0.

Assume that for x in K and a value of j(= 8) we have

(65) y(x) = €@ g¥- (2]} r=1,2,...,j—1),
(65a) P (2) = GO T [2],  (r=2,...,5—1),
where

(66) Yr = — 1" + g, ¥, =0.

For j = 3 this has been established. The form of the function

33) When (62) holds 1;’— =y, and 7 = 0.
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¥,(z) can be derived with the aid of (65; r=1,2,...,7—1) and
(62a). We have

k k
Hy,- +1(w) = JI et +00, @) =44, [m](’)'
(67) r=1"" r=1

= Q@) g 0=R) [p]i—k (z in K)

since §; + ...+ 7, =7 —k (by (62a)). The function
K
(67a) ap(@) Z11 ?/j,+1(w)
r=1

(?199?7'20371_'_"{"7]0:7*"1‘:)

will possess the asymptotic form of the last member of (67). Since
the rational numbers — u,(j—Fk) (k=2, . . ., j) satisfy the inequa-
lities

—m(j—k) =0,

with the equality sign taking place for &k =74, in view of the
form of (67a) from (62a) one can infer that

(67b) Y (x) = /4@ [2]] (zin K).
In consequence of (67b) the summand involved in (62b) is seen
to have the form

e=10, () 4 =7y [44]7 (v in K).
As (j—1)Q;(u) = (j—1)uuwlog u + . . ., it is observed that the
“sum’ of (62b) is

=10, (@ p—r— -1, [m]{, (@ in K).
Whence
y;(@) = 9@ =ikt i [2]] (zin K).

Accordingly, for « in K, the relations (65), (65a), (66) hold for
all § (j=8, 4,...); that is, they are valid for r=1,2,...

LemMMmA 2. Consider the problem (A; § 1) under the Hypothesis
A (§ 1). There exists then a region K (extending to the left) satisfying
the conditions («), (), (y), (9) (¢f. teat in comnection with and
preceding to (24), (25)).

When case 1 is on hand (cf. italics in connection with (80), (30a)
and K denotes a region referred to in the formulation of this case,
the equation (A) will have a formal solution

(68) s(z) =y, (x)py(2) + yo(@)Pi(@) + . . . + y;(@)pi(2) + . . .,
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where y,(x) is a solution of the linear problem (B; § 1) and is given
by (88), and the y;(x) are of the form

y;(x) = 7l g [w]g;l(j)

684
(652) (j=1,2,...; @ in K; cf. Def. 3)3).

In (68) and (68a) 0 arbitrary functions

pl(w)9 Cz(aj), 03(«2','), R ] cé(w) s

each of period unity, are involved. Moreover, the numbers y; are
of the form

(69) Y= og)? + o] — .
In (69), when n=1 and p, #0 (i.e. uy > 0),

(69a) =0, o= —py, owy=—py-
When n =2 and py #0 (i.e. pu; >0)

(69b) oy = (’n——2)ﬁ23, oy = n%i +m, oy = (n—1)u, +m
On the other hand, when u, =0 and n =1,

(69¢) g =0, ay=m-+h, oay=m-+h.

Here the non-negative rational number m is the one involved in
(44a), and h is a rational number (independent of j) such that
0<h<1.

3. Formal solutions. (Case II.)

In the last section formal solutions (generally divergent) were
obtained in a region K extending ,,to the left”. In a linear problem
the corresponding results ,,on the right” could be inferred almost
immediately. This is not the case for the non-linear problem on
hand. In this section an analogue of Lemma 2 (§ 2) will be ob-
tained with K denoting a certain region extending to the right.

In view of the developments given in (BT) there exists a region
satisfying conditions (%), (B), (¥), (9).

() When 2 is in K we have || =r,(>0) and 2+ 1 is also
in K, K contains a part of the positive axis of reals 3%).

34) 1In applying Def. (3) the numbers ¢, therein involved are those from (83a);
moreover, the region K is identical with the one so designated in our Lemma.

3%) This part might be a component of the boundary of K.
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(B) The wording of this condition is the same as that of (B)
(§ 2), except that B; is to be in the fourth quadrant and B, in
the first and reference is made to the positive axis of reals.

(7) Consider the functions Q(x) (cf. (11a: § 1)), associated with
a full set of formal solutions (11; § 1) of the linear problem
(B; § 1). The functions RQ™ (z) maintain the same ordering in K.
As a matter of notation write

ROP(z) = ROP(z) = ... =
= ROP (z) < ROTL1(2) £ ROMp(x) < ... < ROV (@)

(z in K; cf. foot-note in connection with (24; § 2)).
(8) The problem (B; § 1) has a full set of solutions y,.,(z)
((=1,...,n) analytic in K (x 5% o), such that

(1)

(2) Yr(@) = %9 am[2], 0 (i=1,...,n; @ in K).
In consequence of (1) the functions
3) fua(@) = [4® =) (A=1,...,n)

are all monotone in K to the right (Def. 2 (§ 2)). If we write

p—1 1

(4)  Qu@) = mwlog @+ qiya + qraw * .o+ Grpan?
it is observed that necessarily
(5) Py =g = =l = flog1 S Mo =0 0 = e
Case II. There exists a region K satisfying the above conditions
(@), ..., (6) as well as the following. The function
(6) ||
is monotone in K to the right (Def. 2 (§ 2)) and
(6a) Q@ ~ 0 (in K).

By a reasoning analogous to that employed for a similar
purpose in § 2 the following is inferred.

If case 11 holds in a region K (satisfying (%), . . ., (8)) necessarily
#1 =0 and Q,(x) ts not of the form q, @ (Rgyo,=0).

If u; < 0 case II will certainly hold in some region K.

We shall now give developments for the case IL. Thus y; =0.

The function y;(x) will be defined by (388; § 2), (34; § 2)
except, of course, K will be the region of case II. With

(7) Yi(@) = €A g% [m]}m) (z in K5 y, =0),
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in consequence of Lemma 1 (§ 2) it will follow that
(7a) Yi(@+v) = @’ =]y
( in K; v=0,1,...,n—1).
On making use of (13; § 2) and on noting that
Tgs oo os 1 =03 t9+...+10,_,=2

it is inferred that

(7b) nﬁzyiv (@+v) = %@ 247 [22y,  @inK),
y=

(7c) =10+ 2+...+ (n—1),_,.

When n =1, ¢'" =0. When n >1

(7d) =0

where the equality sign is attained for 1 =2,4, =i, = ... =1,_, =0.

Whence the second member has the form

(8) 0@ [2 ]y (zin K).

Accordingly, by (18; § 2) it follows that

(9) Py(z) = 9@ 222, (zin K)

where

(9a) Y, =0.

On recalling that formulas (44; § 2), (44a; § 2) serve to determine
the y;(z) (j =2, 8, ...) not only for the case I, it is found possible
to compute y,(x) with the aid of (44; § 2) and (9). We have

(10) Si(Pa(w)) = 8 @UW=W oy Firt Ry o)
u=x

where
(11) m =0 (for n=1); rational m =0 (for n>1).
Now the function

| 2010 =07 (W] — | (@] | 0 =0y ]
is monotone in K to the right since it is a product of two functions
possessing such a property (cf. (6) and the statement in connection
with (8)). Moreover, by (6a) this function is asymptotic in K

to zero. Hence the ,,sum” involved in (10) can be evaluated
according to the formula
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S B(u)= — B(u) — B(u+1) — B(u+2) —....

U=x

This method of ,,summation” will be used throughout this section.
With the aid of Lemma 1 (§ 2) from (10) one can obtain

12 S5 (Wy(u)) = 2@~ @ ¥y —r;+mthy 572 zin K).
2 K(2)+q(2)

On writing 2Q,(z) — Q;(x) = pxloge + ... (u=2u; — ;) it is
inferred that in (12)

(12a) 0= —m=—p=p —2un.
The inequalities here involved follow from (5). Thus, we may take
(13) he=0  (if uy— 2u, #0).

This certainly will be the case when u; # 0 and also when u; # y,.
The alternative to (18) is

(13a) =y = 0.

If for at least one value of 4 (18a) holds the number %,, indepen-
dent of A, could be given as a certain rational number A/,

(18b) 0=<hy,="h' <13%),
If for mo value of A (18a) takes place, necessarily p, %0 and hy
is defined, independently of 4, by (18)%). In other words, when

U1 =0 hy, will be given by (18b) and when p, + 0 it will be given
by (18). Whence, by (12) and (44; § 2),

(14) Yp(@) = %@ a2 [2]%,) (@ in K),
(14a) Yo = ¥y + M + hy.

In view of (9a) and (14a) and in consequence of the above defini-
tion of h, it will follow that

Yo =m + h' (=0) (for py =0)3%),
yo=m  (20)  (for p, #0).

Here, for n =1, m may be replaced by zero. On using (9; j = 8;
§ 2), for n > 1, and (62a; § 2), for n = 1, in view of the established
forms of y,(x) and y,(x) it is concluded that ¥,; = y,. It also can
be shown that y; = ¥; + 7 + h; where

(14b)

36) R’ is the greatest one of the several numbers A (A=1,...) of Lemmal (§2).
37)  Conversely, when u, %0 (i.e. u; < 0) h, is so defined.
28) TFor n = 1 the first line of (14b) reduces to y, =h' =h (= 0).
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hy=0  (if py£0), hy =k (0<K'<1; if u,=0)3).

Assume now that for @ in K and a value of 7 (= 8) we. have

(15) Ypla) = ea@atifaly, =151,
(15a) Y (2) =A@ 2 [, (r=2,...5—1)
where

(16) Y. =9y, (r=28,...,j—1),
(16a) Y, =br+b, (=1,...,5—1),
with

(16b) b=, by——m  (if u #0),

and

(16¢) b=m AW, by=—m— k' (if u=0).

The above has been established previously for j = 3. Perform
now the substitution of (15) into (9; § 2). We have

Up+D01@) Y p1+ Get DV - o5 41
e ar [m]N(er)

yjr+1(w+7’):
for x in K and »=0,1,...,n — 1. Thus, for z in K

W . , , .
I A R L P A
since f; + 7+ ...+ fi,, = p, (10; § 2). Here
(17a) Yy = 2 Yj 1= b, P (7,4+1) + by = byB,.

Thus the second member of (17) is of the form

(18) e(ﬁv*’iv)Ql(w) mblﬂv+1’(ﬂv+iv),u1 [m]ﬂv+iv
NI
BieeesBuy
where N/Igl’_”’ﬁ . is the greatest of the numbers N(j;, ..., 7; ).

The function F,, resulting from the extension of the summation
(10; § 2) over the left member of (17), will have the form (18).
Whence, by (11; § 2) and (12; § 2),

n—1 .
(18a) Fp 5 =11 F, =@ ght-R+ri o]y
1 -1 y=0 ﬁl,-o-yﬂ,,_l

(z in K)

3%) This can be established in a way analogous to that employed in prpving
(14a), (14b).
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where
(18b) £ =SB, +i) =0
=0

V=

(under (11; § 2), (12; § 2)) *°).

Thus, since u; = 0, in (18a) f’ may be replaced by zeto. According-
ly, it is inferred that

T Fpp, = Foh (of (115§ 2))
1s a function of the form
(19) £10,(@) b, G—k) [f”]jv’." _ (@ in K).

02002 Ty

Furthermore, it is observed that
F =Xy, @) Fletes (e (12 §2)

has, in K, the asymptotic form (19) with NEI----’ﬂ . replaced
by .N. Finally, it is inferred that

j
(20) Yi(x) = X ,F =e?%D2¥i[2])l, (2 in K)

k=2

where ¥, is the greatest of the numbers

b(j—k) k=2,...,5).
Now, by (16b) and (16¢), b, =0. Thus
(20a) Y =b,(j—2) =b,(G—1) + by =y;
(cf. (16a)). This result implies validity of (16) for » = j.
With the aid of (20) the form of y;(z) can be found. By (44; § 2)

(21) Si(Pi(w)) = 8 UG GF it U -

u=x
Since, by (6) and in view of the statement in connection with
(8), the functions

|e@0], |0 =000

are monotone in K to the right, it is noted that
(21a) | €190 =010 — |eol(u)|f-1 | 0160 =00 |

possesses the same property. By (6a) the function (21a) is asymp-
totic in K to zero. On taking account of the relationship between
the ,,actual’’ summation method of this section with the corres-
ponding formal situation and on noting that

40)  For some terms the equality sign of (18b) actually takes place.
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O (u) — Q;(u) = pulog u+ ... (= ju, —py),
application of Lemma 1 (§ 2) enables one to infer that
(22) Si(¥y(w)) = U0~ GFimra ¥t (g )
(z in K) where h; can be selected independent of 4 as follows:
(22a) ;=0 (if uy #0),
(22b) h; =h' 0=h"<1; if y; =0).

Here R’ is independent of j. The reasoning in this connection
is precisely of the same type as that employed in the deter-
mination of k, (cf. (18), (18b)). By (22) and (44; § 2) we ac-
cordingly have

(23) yi(x) = 9D ai [l ) (® in K)

where, by (20a),

(24) yi=¥;+m+h; =y, +m+h;.
Whence it is concluded that
Y; =byj + by

where b,, b, are given by (16b), if u; # 0, and by (16c), if 4, = 0.
This completes the induction. The following Lemma can be now
formulated.

LEmma 8. Consider the equation (A; § 1) under the Hypothesis
A (§ 1). There exists then a region K (extending to the right) satis-
fying the conditions (z), (B), (%), (8) (cf. the beginning of this
section).

When case 11 (italics in connection with (6) and (6a)) is on
hand and K denotes a region referred to in the statement of this
case, the problem (A) will possess a formal solution

(25)  s(2) =y (@)ps(2) + Ya(@)pi(@) + . . . + ys(@)pi(2) + . ..
where y,(x) is a solution of the linear equation (B; § 1) and is
given by (7), and the y,(x) are of the form
(25a) ys(x) = %@ o [m]{V\j)

(j=1,2,...;  in K; cf. Def. 8 (§ 2))*).

41) TIn applying Def. 8 (§ 2) it is noted that the involved constants are those
from the relations Q,(z) = Q;(x) + V—lgu (i=1,2,...,8; cf. (1)).



32 W. J. Trjitzinsky. [32]

In (25) and (25a) there enter & arbitrary functions of period unity,

P1(m), cz(a:), ] cd(w) .

The numbers y; involved in (25a) are of the form

(26) Y; =byj + by (G=1,2,...)
where

(26a) b, =m, by= —m (if uy #0),
(26b) by=m+h', by=— (m+h") (if u;=0).

Here b’ is rational and 0 < h' <1. The non-negative rational
number M is the one involved in (44a; § 2)42).
Note. In Lemma 2 (§ 2) and in the above Lemma the expres-
sion [2]}; involves functions (analytic in K for & #c0) asymp-
1 2
totic in K to series of the form d, + dx ?i —|—d2w_ A
(p; integer). It is possible to have p; -0 as j— 0.

4. Transformations.

Consider the formal solution (68; § 2) corresponding to the
Case I (§ 2). Let N be a positive integer, however large. Apply
the transformation

(1) y(x) = Y(2) + o()
to the equation (A; § 1). Here o(2) is to be the new variable and

N-1 X
(2) Y(z) = E Yi(@)pi() -

In (2) the y;(z) are the functions so denoted in Lemma 2 (§ 2).
They possess in K the asymptotic forms (68a; § 2).

On taking account of the statement in connection with (5; § 1)
it becomes manifest that the inequalities

(2a) V(@) =o' <o
should be satisfied for « in K at least sufficiently far from the
origin.

Now the ¢;, involved in [w]f\v(j), are real. Hence by (35; § 2)
and (34; § 2), on writing # =% + VvV —1v, it is inferred that

42) The formula (44a; § 2) referring, of course, to the region K now under con-
sideration.
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(3) 2] < |t (a)--- 0 (a)] et - +is29)0.
. iwi11‘1+... +i6r6[ l[w]N(j)|
(B v vy 85 =05 43+ ... +15=17).
By Def. 1 (§ 2)
(82) [l2lvg| <byglel”  (e>0; 2 in K)
where ¢ can be taken as small as desired. Let
(8b) r’ = max (Rry, Rry, . .., Rrg).
From (8) in view of (8a) it will follow that
() |[eley] <G| TEZ e U0ey(@)| - - - e ey ()% .
Assume that the periodic functions
(5) Pi(2), &5(2), . . ., cs(@)

are analytic in K (x #0). Designate by f(v) a function for which
the inequalities

(52) Ip1(2)] = f(0); [pr(@)es(@)| 7% = f(v) (=2,...,0).

all hold for x in K (v=Ga).
In the sequel it will be assumed that the above function f(v) is
such that

(6) A f(0)~0  (zinK),

where the asymptotic relationship is with respect to, x. That is, (6) is
equivalent to the set of inequalities, valid for x in K,

(6a) %@ o) < Apla|™ m=12,....

It is clear that (6) will certainly hold in every subregion of
K for which a < v < b; this being so no matter what the function
f(v) is. It is to be noted that f(v) specifies the rate with which
the absolute values of the periodic functions (5) may vary away
from the axis of reals. It is not difficult to show that the variety
of analytic functions (5) for which (6) holds in a region K, of
the type stated before, is quite extensive.

In consequence of (4) and (5a)

|y (2)pi(2)| = |74 ¥ [2], ;) pi(a)|
<b"(j) [¢4@ fo)) 2] T (¢ in K).

(7)



34 W. J. Trjitzinsky. [84]

Whence, by (6a),

(7a) y;(@)pi(x) ~ 0 (z in K)
and, in view of (2),

(8) Y(@)~0 (z in K).

Let K, denote the part of K in which |x| = A.

The relationship (8) implies that (2a) holds in a region K,,
provided A’ (depending on N) is chosen sufficiently great. The
inequality (2a) can be secured in the original region K = K if

the function f(v), involved in (5a), is sufficiently small (dependmg
on N).

If the transformation (1) is now carried out it is observed that

the equation satisfied by ¢(z) in general would have a meaning
only when

(9) le(z)| < o (o' + 0"’ = ¢; @ in K).
We have, for 2 +n —1 in K,

ay(z, Y(z) + o(@), . . ., Y(z+n—1) + g(@+n—1))
= ay(z, Y (@), - Y(w+n—1)) +

(o) +Z“ i, (@)05(@) <+ - gbr (2 +n—1)
(fod -+ iy =154 ..., n1—0 cf. (8b; § 1)),
where
1 Bin+“'+in—1a2

(10a) oo Gol e v dyg! Y. Dyt

Wo=Y (@), y;=Y(@+1),...,9,=Y(@+n—1)).
With (2a) satisfied for # in K( = K}, or K,,) it follows that
(10b) |Y(z+i)| <o’ ((=0,1,...,n—1; 2 +n—1 in K).
Thus, whenever
(10c) le(@+i)| =" (i=0,1,...,n—1; 2 +n—1 in K),

that is whenever (9) holds in K, it is concluded that the series
in the second member of (10) is absolutely convergent forz 4 n —1
in K. In view of (10a)

(11) %, (@) =
by (@)Cietho ci-"j”"* V(). Y (a4m—
(Jo + - + o1 22— (lo+ - -+ tn-1)i Jos - o5 Jn1 = 0),
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the involved series being convergent for x 4+ n — 1 in K. Conse-
quently with the aid of (8) one can infer that

(12) %, @) =@y (X)) + Biy...rs,_, (@)
(Bgr « v oy =05 Gg - ... 44, =2),
while
(12a) %o, (@) =Py o (x) (Whenidg+... 44, ,=1).

n
Here the ﬂio
and, moreover,

.....

i (@) are analytic for 2 +n —1 in K(z # o)

(12b) Bi,..., in_l(w)~0 (@+n—1inK; i+ ... +14,_, =1).

With L denoting the linear operator of (B; § 1) consider the
function

w

(18) — Fy(z) = L(Y(2)) — 2% ay(, Y(2), . . ., Y(z+1—n)),

which certainly is defined for # +n—1 in K(= K, or K,o).
If Y () were replaced by the formal (generally divergent) series
s(x) of Lemma 2 (§ 2) and the resulting expression were formally
expanded in powers of p,(z) we would obtain the series

(145) E‘.l]"j(w; yl(m), v e ey yj-—l(w)) pi (m)9
where
(14a) Fl(W; h(@), .- . yj—l(w)) = L(m, 3/1(“7)) =0,

(14b) Ty(, yy(@),- .-, y;2(2)) = L(, y;(@)) —2® P;(z) =0
(G=28,...)

(cf. (2; § 2), (95 § 2), (165 §2), (17; § 2)). Now Y(2) is s(z) with

the y,(z) (j=N,N +1,...) all replaced by zero. Thus

(15) — F(2) = 2 Tj@)pl(@),
(15a) I'(z) =L(z, y, (z)) =0,
(15b) Ty(a)=L(z, y;(z)) —2*P,(z)

(1=2,8,...; y(®)=0 (j =N)).

It is observed that P,(z) is ¥;(z) with y,;(z) (j = N) replaced
by zero. Hence, since ¥;(z) depends only on y,(2), .. ., y;(z),
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(16) Px) =Pi(x) (G=23,...,N).

Forj > N the 7,(z) have the asymptotic form of the corresponding
¥,(z). By (15b), (16) and (14b)

) Tiz)=0 (j=23,...,N—1),
(17a) Ty(2) = —2* ¥y(a),
(17b) T@) = —2*Pyx)  (G=N+LN+2,...).

Whence, in view of (15a), (17), (17a), (17b), from (15) one can
infer that the function Fy(x) is of the form

18)  Fu@)=o* 2T,@pie)

= w—{.?Ne"Ql(“" 2 [@1l ;) Pl(2) (x+n—1in K).
1=

Now, in consequence of (5a),
(19) @) {2l | <Ryl f (o).

Hence, on taking account of (6a) and of the satisfied conditions
of convergence of the series (18), it is concluded that

L' v+ 2 te
(20) Fy(e) = %@ @)z * % Gy(a)
where
(20a) |Gy(2)| = Gy (x+n—1in K).

Of course, Fy(z) is defined in « for z +n —1 in K (2 7% 0).
It is to be noted that, as can be seen from the developments
of § 2,
(21) Y,=0 (if n=1 and pu,; #0 (i.e. p;>0))
and
(21a) ¥y = agf? + jlog+py) — 204 (Cf- (52; § 2), (52a; § 2)),
when n =1 and y; =0 or when n > 1. '

Substitution of (1) into (A; § 1) will yield, by (10),

L(Y(2)) + L(e(z)) =

w w

2% ay(z, Y(2) +2* oy, (2)e%(@) - - - glos(2+n—1)

(Gg+ vt oyg =15 4., ipq =0).
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Thus, in consequence of (18)

(22) L(e(z)) = Fy(x) + PLD % i, (@)o%o(z) -+ - o'nr(x +n —1)
(lo+ -+ o+ iy =1).

Transposing the terms of the second member of (22), linear in
o(x), ..., o(x+n—1), to the left we obtain

(28)  Ly(o(z) = Fy(2) + 2% H(z, o(@), - . -, o(z+n—1))
where
(28a) H(z, o(z), ..., 0(@+n—1)) =
2 sty (@) (@) - - - g1 (z+n—1)
(fo4 oo+ 8125 4o .n,tyy 20; cf. (12), (12b))
and
(28b) Ly(e(e)) =

o(@+n) — 2% [ba(@)e(@+n—1) + . . . + bo(@)e(@)]-
Here, by (12a) and (12b),
(28¢) 1bs(®) — by(z) ~ 0
(t=0,1,...,n—1; cf. (3a; §1), (4; § 1))

when ¢ +n — 1 is in K. Also it is to be recalled that Fy(z) is a
function satisfying (20) and (20a). Moreover, \H (2, 0q, 015+ + +» On—1)
s absolutely convergent when @ +n —1 is in K (=K or K;,),
provided

(28d) lo)] <0” (i=0,1,...,n—1;cf. (9)).

Let ty denote a positive number, for the present not specified.
Consider

(24) Hy(z) = "%@ fY(v)aty (v =3Jz).

We have

(24a) Hy(z+1) = Hy(z)a®™Mhy(z)  (i=0,1,...,n)
where

(24b) hi(@) = [2os 5 = [olo-
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The further transformation

(25) e(z) = Hy(z)l(z)

will be now applied to (23). By (24a) and (24b), in view of (23b),
it is inferred that

(26) Ly(e(2)) = Hy(x)a" b, (2) L' (L (@) ,

(26a) L’(C(m)) ={(z+n) — x® "Z—;);(w)C(w—l—i) ,
i=0

where

(26b) @ =2 —Np,, bye)=[z], (a+n—L.in K)*).

Since, with 4y, ...,%, ;=0 and 44+ ...+ 4, y=m (m=0),
w(1'1+2zz+ et m—1)i, INp, — pmn—1DNu, [w]o
and since

o™ (w+v) = HyY (@)™ B (2) % 2+ )
from (28a) it follows that
(27) 1H(z, o(@), ..., 0(@+n—1)) = H¥(x)a*"-DNu H'(z, {(2)) ,
(27a) H’(w, C(w)) — § H;vn—z(m)w(m—z)(n—l)Nyl .

m=2

S e (@)C(@)- - Cena(@tn—1)
foteti, =m n—1

where

(27b) 1% L(@=[z], (z+n—1inK).

On taking account of the convergence properties of
H(a, (), . . .o(@ +n—1) stated in connection with (23a),

(28d), in view of (6) and of the way the series (27a) was
derived, it is concluded that H'(z, ¢, ..., {,_1) converges
absolutely and uniformly for # +n —1 in K;(A=4" or 1 =1,
as the case may be) %), provided

Tyre e

(28) Icilég’zc_ﬁ'(z) (t=0,1,...,n—1).
The essential fact is to be moted that
(28a) lim ¢’(4) = co.

A—>®

43) TIn this connection use has been made of the fact that, for the case now
under consideration, y, is rational and non-negative so that x—JNH, = [z],
(j=0,1,...,n—1).

#) K,, if not coincident with K (which is K;/ or K"o)’ is to be a subregion
of K.
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That is, given a number ,{, however large, there exists a value
A=AMN, () sothat H'(z, {¢g, . . ., {,_,) converges, when z +n —1
is in K, for |{| <& (=0,...,0—1).

It is also possible to secure convergence of H'(x, Cy, . . ., £, ;) for
z+n—1 in the original region K and for |{;| <, (i=0,...,n—1);
£ as great as desired), provided the function f(v), tnvolved in the-
inequalities satisfied by the periodic functions, be sufficiently small
(depending on (7).

By (20) and (24)

Yy+Nr

Fy(@) = Hy@a ¥ = NG (@).

Hence, in view of (26) and (27), application of the transformation
(25) to (28) will yield
1

(29)  L'(@) =" 5 Gul@) + o s Hylo) H (@, L(@)),

(29) ' =Wy+ N+ +e—ty—nNp, v'== +(n—2)Npy
(cf. (26), (26a), (26b), (24b), (20a), (24), (27a).

LemMMA 4. Consider case 1 (§ 2) and the formal solution of (A;
§ 1), relating to this case and specified in Lemma 2 (§ 2). Let N
be an integer, however large. Define the function Y (z) by (2). Let
the periodic functions (5), involved in the formal solution, be subject
to the conditions stated in italics in connection with (5), ..., (6a).
Y (z) will satisfy (2a) and (8) for x in the region K (which is Ky
or K,.o of the italicized statement subsequent to (8)). The transfor-
mation '

(30) y(@) =Y (z) + Hy(@)l(x) (cf. (24), (52))

will yield the equation (29), (29a). The series (27a) representing
H'(z,{(x)) satisfies the convergence conditions stated in connection
with (28), (28a) (also cf. the subsequent statement in italics).

An analogous Lemma, corresponding to the case II (§ 3), will
be now established. The transformation will be

N—1

(81) y@)=Y(z) + e(z), Y(z)= Elyj(w)Pi(w)

(cf. (25; § 8)). We again make the assumption stated in connection
with (5), ..., (6a), with K having the new significance. Then (8)
and (2a) will be satisfied for 2z in K(=K,, or K,.o; cf. the statement

subsequent to (8)). The formulas (9), . . ., (20a) will continue to
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hold provided that, throughout, the statement z 4+ n—1 in
K be replaced by 2 in K. On taking account of section 8 it is
observed that the relations (21) and (21a) are to be replaced by
(82) ¥, =y; (j=2,8,...;cf. (26;§8); (26a; §3); (26b; § 3)).
The relations (22), . ..,(25) (z in K) will hold. Since in the case
II (§ 8) p; =0, the result of the transformation (25) will be
different. The relation (26) will hold with
= nl hy(z)

(83)  L'(b@) =C(a+n)—a® T by(a)a” " L(ati)

=0

— totn)—a* T B (@) (@)
i=0

where
(83a) w =2 —aNp, b@)=[], (vin K).
Since

o(@+v) = Hy(e)e™" h,(2)t(x+v) #=0,...,n—1),
by (28a)
H{(e, @(w»:miff?(w)iﬁmin _ Fet @) ()

M () (1) - - - E (@ dm—1)

where @' =14; +2i,4+... + (n—1)i,_,. It is to be noted that
¢’ = 0%%). Since u,( =0) is rational, by (24b),

he(@) - - + ki (@)@ =[]
Hence

(84)  H(w o), ..., o(@+n—1)) = HY(2)H' (2, {(2)),
(84a)  H'(z, L(2)) =

— ¥ Hpe) X Wiyors_ (@) (@) - E (@b —1)

m=2 gttt _=m
where
(84D) 1%,,..., in_l(w) = [z], (z in K).

For z in K, the convergence properties of the series (84a) will
be of the same description as those stated for the series represen-
ting H'(z, {(z)) in the case I. Since

W+ N+ L;—-!—e—tN

Fy(2) = Hy(z)2 Gy(2)

45) The equality sign is attained for i,=m, i, =i,= ... =17,_,=0.
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(Py defined by (82)), in view of (26) (with L'({(z)) given by
(83), (83a) and (84)), from (28) it is inferred that the transformed
equation is of the form (29), where L'(((z)) ts given by (33) and
(88a), 7’ is defined as in (29a) (with ¥y given by (82)), the function
Gy(x) is subject to the inequality (20a) (x in K), and H'(z, ()
is defined by (84a), (84b); moreover,
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LeMMA 5. Consider case I1 (§8) and the formal solution of
(A; §°1), relating to this case and specified in Lemma 8 (§ 8). Let
N be an integer, however large. Let Y (x) be the function of (81).
Let the periodic functions (5), involved in the formal solution, be
subject to the same conditions as stated in Lemma 4. For x in
K Y(z) will satisfy conditions analogous to those which were stated
with respect to the function Y (x) of Lemma 4. The transformation

(85) y(z) =Y(z) + Hy(@)l(x)  (cf. (81), (24))

will yield the equation (29), the expressions therein involved being
specified by the italicized statement preceding this Lemma. Moreover,
the series (34a) representing H'(x, {(x)) will have, for x in K,
the same convergence properties as the corresponding series (27a)
of Lemma 4.

The function Hy(x) involved in Lemmas 4 and 5 contains
a positive number ¢, whose value will be specified more precisely
in the sequel.

5. Solutions for the case I.

The transformation (80; § 4) applied to (A; § 1) will yield,
when the case I (§ 2) is on hand, the equation (29; § 4), (29a;
§ 4) referred to in Lemma 4 (§ 4). A solution of this equation
will be found in the form of a convergent series

(1) {(x) =Col@) + Cu(@)+ - - .
On writing
(1a) gi(x) = Co(@) + Cy(@) + . . . + () (j=0,1,...)

the terms of the series (1) will be determined in succession with
the aid of the equations

(2)  L'(Co(@)) = to(a) = 2" h; ()G (),
(2a) L'(6y(@)) = ty(2) = 2™ h; (@) Hy(2)H' (2, 20()),
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(2b) L'(¢;(2)) =t;(@) =
= 2""h; (2)Hy(2) (H' (2, 23j1(2)) — H' (2, 2-5(2)))
(j=2,8,...)

Under appropriate convergence conditions, which will be proved
in the sequel, the series (1) will represent a solution of (29; § 4).
This can be inferred by adding the corresponding members of
the equations (2), (2a), (2b) (i=2,8,...).

The equation L'((x)) =0 (cf. (26a; § 4)) has solutions which,
in view of (26; § 4) and (25; § 4) are of the form

3) {(z) = Hy'(z)e(2)
where o(z) satisfies L,(o(z)) =0 (cf. (28b; § 4), (23c; § 4)). The
solutions of L,(¢(z)) = 0 are asymptotically the same as those
which one would obtain solving L(o(z)) = 0 ). This is a conse-
quence of the relations (23c; § 4).

Consider the equation
(4) L'(E()) = t()-
On multiplying the both members of (4) by H N(m)mnN” thy(2)
in view of (26; § 4) it is observed that (4) is equivalent to
(4a) Ly(e(@)) = Hy()a" "hy(a)t(x) (cf. (3)).

It is to be noted that in section 2 the equation L(y;(z)) =% Py(x)
was solved with the aid of formulas (44; § 2), (44a; § 2). Thus,

on replacing y;(z) by e(x) and wE‘If,-(w) by the second member
of (4a), as well as recalling the statement subsequent to (8), it
is concluded that a solution of (4a) can be given by

(5) ela) = B 5aligy(a) I5(u),
=1

(5a)  Ti(tw) = S Hy(w)e @™ g, (u)i(u)

where

(5b) @,1(“3) = [w]v(/'l)’ 5,1(5'3) = [w]qup

le(@)], |ga(@)| <hy|2|® (e>0; A=1,...,n; @ in K).
Substitution of (24; § 4) into (5a) will yield, by (5b), the inequa-
lities

%) L(y(z)) is the part of y(@+n)—z a(z, y(x)) (cf. (A; § 1)) linear in
y@), y@+1),...,y@@+n—1) (cf. (16; § 2)).
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6)  |T5(tw)|<hy M (0) 8 V%= | [o(w)|

U=x
(t;v:tAY-FnNyl—l—'rﬁ—% +eé& A=1,...,n; zin K)

provided that, with B;(u) denoting the ‘“summand” displayed
in (6), the series

(6a) S Bj(u) = B(z—1) + B(z—2) + ...

converges for # in K (A=1,...,n)%).

If both members of (5) are multiplied by Hy(z), in view of
(8) it is concluded that

(7) C(w) =1§1601 (m)—Nol(w)muf—N( ’U) C(»'_tNQl (EL‘)F}, (t(u))

constitutes a solution of (4), provided the series (6a) (A=1,2,...)
converge. In consequence of (6), (5b) and (7) it is inferred that
the solutions of the equations (2), (2a), (2b) (j=2, 8, ...) satisfy
the inequalities

n 7
(8) ICJ(LU)I < h%;¥1|eo,1(m)~l\01(w) w’rll lml—tN+8 S B;_’,(u)

U=

(j=0,1,...)
in any region in which the series

(8a) S B; ;(u) =2 B, ;(z—v) (A=1,...,n)
u=x v=1

converge. Here

(8b) B; ;(u) = [eN0®) =%y =7a| |u|™ |t;(w)|

where ty is defined by (6) and the #;(u) are determined in succes-
sion with the aid of (2), (2a), (2b) (i=2,3,...).
The number Zy involved in 7’ (cf. (29; § 4)) can be chosen

suitably great so that equation (2) has a solution (y(z) such
that

(9) [Co(z+2)| <l (»=0,1,...,n—1; zin K;’).

The details of the proof of this fact will be omitted. However,
we shall note that for » =0 (9) can be secured with

(10) ty =¥y +Nr' + 1 + 8¢ +1.

47) The ,,sums” are throughout evaluated by means of series.
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Here, as seen from the developments of section 2,
U
(11) Py = ooN? + (ay+p) N — 204, o= (n—2);
(when u,; #£0 and n > 1),
(11a) Yy =N(@n+h) —2(m+h) (when u; =0),
(11b) Yy=0 (when p; #0 and n =1).
The inequalities (9) can be established in succession for
vy=1,2,...,n—1 with the aid of the equation (2) itself, pro-
vided we take
(12) ty = ogN? + auN + o}
where o; (>0), o, are suitable numbers. Moreover, to satisfy
(9) it is noted that 1’ can be selected independent of N when pu, =0
and also when n < 2; 1’ may depend on N when p, #0 and n> 2.
Now the series H'(x, o, ..., ,_1{) related to the transfor-
mation of Lemma 4 (§ 4) converges, as stated in section 4, provided
(28; § 4) holds. It is to be noted that '(={'(1")) can be made
as great as desired by taking 1’ sufficiently great or by taking f(v)
sufficiently small. Thus, by whichever device, the tnequality
(18) &' > 2l,
can certainly be secured.
We shall now proceed to show that the functions (;(z) can
be determined in succession subject to the inequalities
(14) | (@) | < 127
(»=0,1,...,m—1; j=1,2,..;2+n—1in Kj).
If (14) were demonstrated the series (1) would be absolutely and
uniformly convergent and it would represent a solution ((x) of
(29; § 4); moreover, we would have
(15) |C(z+v)|<2l, (<)
»=0,1,...,n—1; 2 +n—1in Ky).
In view of the character of the series H'(, o3, 12, - « -» n-1%)
it is concluded that there exists a constant M such that, provided
(16) 2| = 2, |,354] = 21, #=0,...,n—1)
necessarily
(16a) |H (@, 02js « + -5 no1%j) — H' (@, %j-15 + « -» n—1%j-1)|
<M[|o&|+ 128l + -+ - +|amilil]  (@+n—1in Ky)

where ,{; = ,3; — y%;-1-
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Write z_;(z)=0. Then H'(z, z_,(z))=0. Whence, in view of
(16), (16a) and (9) (where ((2)==zy(z)) it is concluded that

(16b) |H'(2,20(@))| < M[|Co(@)] +|Col@+ 1) |+ ... + |So(@+n—1)|]
< nMl, (x+n—1in Ky).
Write

(17) W(2)=a""h, (x)Hy(z).

Let w"’ be a positive number, to be specified more precisely in
the sequel. By (29a; § 4) and (24; § 4) we have, with C( > 0)
assigned however small,

(7a) - [W@) =" fo) Jol v @) <l C
(w in KA’) .
provided A’ (depending on C) is sufficiently great; here A’ can be

selected independent of N whenever ¥y and w'’ are linear in N 8).
This follows by (6; § 4). By (2a), (17), (17a), (16b)

(18) ty(@)] <nMI,C|2| ™ * (@+n—1inKy).
By (8b; §=1) and (18)
(19)  B; (@) < nMI,C |V 0@ %@ 57| |2V g 72
= Bii(a)|2]*  (z+n—1 in Ky).

Choose ' sufficiently_ great so that, for x+mn—1 in K, the
Sfunctions Bil(w) (A=1, ..., n; ¢f. (19)) are monotone to the left*°).
Such a choice is possible since the functions |exp Q,(z)|, fy ()
(cf. (27; §2)) possess this property. It is again noted that 1’ is
independent of N when ¥y is linear in N (provided %’ is linear

in N)%). In consequence of the above italicized statement and
by (19)

(19a) S B ,(u) =3 By ,(a—) < T B} ,(z—»)|a—|
u=x =1 r=1

< B} (#) X |e—+| " <wBjf,(@)|a|" (z+n—1in Ky) ).
y=1

48) By (12) and since 77’ = %—}— (n—2)Ny,; we then will have fy 47" + w”

linear in N. If w” is linear in N but Yy is quadratic then ¢y is given by (12), with
oy 7% 0, and #y + 1”7 + w” will contain the quadratic term o,N2.
49) It will be shown in the sequel that w’ can be taken as the greater one of
the numbers 0 and H (cf. (20a)).
50) The quadratic term in ¥y, ty (12), {5 (6) is present or not simultaneously.
If present, it is o N2. "
51) Here w is from a special case of the inequality of Birkhoff, 2 |z—»|?<wz™.
1
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Thus, by (8; 7=1), (19a) and (19)

(20) |tu(@)] < Bn2oMI,Cle ™ " (z4n—1in Ky).
(20a) H=nNp, +m — =+ 2 — 1.

At this stage it will be convenient to prove the following
Lemma.

Lemma 6. Consider the equation

(21) L'(¢(2)) = tz),

where

(21a) L’(C(m)) ={(x+mn) —m""nilb;(m)&‘(az—l—i)
i=0

(' =2 — Npuys bj(a) = [z], (@+n—1inK); cf. (26a; §4))

is the difference polynomial involved in (2). Let t(z) be a function
such that

(21b) lt@)| <t|a] ™" (@+n—1inKy)

and let 2’ be a number satisfying the italicized statements subsequent
to (17a) and (19). Then, provided the number w'' (independent of
t) s sufficiently great, equation (21) will possess a solution (z)
for which

(22) |C(@+v)| <tE (v=0,1,...,n—1; 2+n—1inKy)

where E is a constant depending only on the operator L’.

On taking account of how (20) was established as a consequence
of (18), when solving the equation L({,(z)) = t,(2), it is con-
cluded that (21), (21a), (21b) imply that

(23) |E(@)| < tE|a| ™" ", E, = hno

when +n—1 is in K;,. Here H is given by (20a). Take w"
so that

(23a) w' =0, w' = H.

The equation (21) can be written in the form

, v—1
(24) C(@4v)=(z—n+»)" T by, (@—n+»)l(z+r)+t(z—nt+»).

w

When p; =0 we have —=0 so that w' =0. If u, £0 (ie.
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u' > 0) with N sufficiently great it will follow that =»’ <o0.
Thus, in any case w’ << 0. By (21a)
(24a) |64 u(@—1A9) (@ —n )| < ||

(z4+n—1in K; v=0,1,...,n—1).
Also, in view of (21b),

(24b) |tH(@—n—+v)| < tlavl_w”_2

(@+n—1in Ky; v=0, ..., n—1).
Thus, in consequence of (24)
25) |C(@tv)|<b|a]” jil ¢ ()| + 2]~

r(;:—n'n —1in K;;; v=0,...,n—1).
By (28) and since —w"' + H <0
(26) |C(@4-r)| < tEo|a| T

(x+n—11in Ky; n=1—n, 2—n, ..., 0).

Thus, by (25; »=1) and (26) we have, for z +n —1 in K,
(27) |C@+1)| < t[nb Egla|™ ™ " 4 || "7,

It can be always supposed that |z|=1. In view of (20a) and
(21a) it is observed that — 2 — w’ — H< 0. Thus by (27) we
have, when 4 n —1 is in Ky,

(27a) |C(@+1)| < tE|a|” """, E, =nb'Eq+1.

This implies that (23) can be replaced by a more exact inequality,
whenever w’ << 0. For the purpose on hand the additional preci-
sion is not necessary. Accordingly, in view of (27a) and since
w <0, we shall write

(27b) |C@+1)| <tEila| ™" (@+n—1inKy).

When n =1 the Lemma is established in consequence of (23)
and since —w'’ 4+ H < 0. When n = 2 the truth of the Lemma
is inferred with the aid of (27b).

Consider the remaining case when n > 2. Suppose that for some ¢
2<=iz=n—1)
(28) |C(@+r)| < tE, || "

(r=0,1,...,i—1; z4+n—1in Ky’)

where

(28a) E.=nbE,_;+1 (r=1,...,i—1).
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The relations (28), (28a) have been previously established for

t=2. Since —w"” + H <0 and |z| =1 it follows that (with

Re <0) |w—ll_wﬂ_H < ‘wrw””l whenever 1 =>0. Hence the

particular inequality (28; r =14 — 1) will imply

(28b) |C(x+1)| < tEiﬁ1|x|_w”+H
r=i—1,i—2,...,0,—1,...; (z+n—1in Ky).

In consequence of (28b) and (25; »=1)

(29) |C(@+3)| < t[nb'E,_y |2 ™ 4 |27
(r+n—1inKy).
Since —2 —uw’' — H <0 and w’ <0 it follows that
(29a) |E (@) <tEg|a|” " <tE |7
(E;j=nb"E;;+1; a+n—1in Ky).
Accordingly, by induction it is inferred that

(30) |C@42)| <tE,yla| ™"
(»=0,1,...,n—1; 24+n—1in K;’)

where E,_; is a number, depending only on L’ and determined
by means of the relations (28a; r=1,2,...,n—1) (cf. (23)).

Thus it is observed that the above Lemma holds with E = E,_,
(¢f. (80)) and w'’ equal to the greater one of the numbers 0 and H
(¢f- (20a)). Consequently it is noted that w’’ can be taken in-
dependent of N, when yx; = 0, and linear in N in the contrary case.

In consequence of Lemma 6 and of (18), (20) it is seen that the
equation (2a) has a solution Z,(z) such that

(81) |Cy(@+9)|<tH,E (v=0,...,n—1; 2+n—1in Kj)
where ¢, = nMI,C. Now E s independent of C. As stated before,
C(>0) can be chosen at will 32). To achieve conformity with
(14; j=1) take C so that ;£ <1[;27'; that is,

1
@2) C S gz

We thus have (14) satisfied for j =0 (cf. (9)) and for j =1,
so that

|zo(z+)| < 2y, |z(z+v)| <2l
(»=0,...,n—1; z+n—1in Ky; cf. (1a)).

52) In general ' increases as C is diminished (cf. (17a)).
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Whence, in view of the statement in connection with (16), (16a),

(83) |H'(@, 2,(2)) —H'(, 20(2)) | < M[|Cy(2)| + ... + ¢y (@+n—1)|]
<nMl,27! (x+n—1in K;).

By (17), (2b; j =2) and in consequence of (33)

(84) |to(2)| <|W(2)| nM,27" (z4+n—1in Ky).

Thus, by (17a) and (382),

(34a) |ta(@)] < to|a] ™"

(t, =1, E-12-2)
when 2 +n —1 is in K. Lemma 6 (with £{=1,) is applicable
to the equation (2b; § =2). Hence this equation possesses a
solution y(«) for which
(85) Co(w+v) < t, E =1,272
(»=0,1,....,n—1; z+n—1in K;) ..
This establishes (14; 7=2).
Suppose now that (14) holds for j=0,1,...,7r—1 (r = 38).
By (1a) it is then inferred that, for  +-n —1 in K,
5 @+9)] = |o(eto)] + ..+ [ (e0)
< L1427 4 ...+ 277) < 2],
»=0,...,n—1;j=0,...,r—1).
Thus, with the aid of the statement in connection with (16),
(16a) it is concluded that
(36) |H,(w’ zr—l(m)) - Hl(w, Z7‘—2(‘%)”
<M[|t,q(@)| + .- -+ |Gra(@+n—1)|]
<nMl2- "1 (@+n—1in Ky).
Furthermore it will follow that
|t(@)] <|W ()| nM12~ Y (2+4+n—1in Kj)
(cf. (2b; 7 =1)).
Whence, by virtue of (17a) and (82),
(37) |t (@)] < t,la]

for # +n —1 in K;. Application of Lemma 6 to the equation
(2b; § =r1) enables us to assert that
(38) |C(@+)| <t E =1,27"
(r=0,...,n—1; 2+n—1 in Kj/).
4

2

(t, =l E~1277)
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Thus by induction (14) has been established for j=0,1, ...
(x4+mn—1 in K;/). The series (1) will accordingly possess the
properties stated in connection with (15). It will represent a
solution of the equation (29; § 4).

LeMMaA 7. Consider case 1 (§ 2) and let K be a corresponding
region. Let

3) 5@ =Sy @p@) (@) = SOy o inK)

be the formal solution of (A; § 1) relating to this case (cf. Lemma
2 (§ 2)). The constants y; = o2 + af —ay (j=1,2,...) are
given by (69; § 2), (69a; § 2), (69b; § 2), (69c; § 2). Let K, denote
the subset of K for which |z| =r.

Given a positive integer N, however large, there exists a number
A" which may depend on N when y; is quadratic in § and which
is independent of N when y; is linear in j so that, provided the
arbitrary periodic functons

pl(m)s cz(w)s LR cd(w)
tnvolved in the formal solution are subject to the conditions stated
in connection with (5; § 4), (5a; § 4), (6; § 4), we have a solution
y(x) of (A; § 1) such that
(39a) y(x) ~ s(zx) (xin Kj).

The asymptotic relation (39a) is in the following sense:
N-1

(40) y(@) = Zy,(@)pi(@) + 9D M)V e(@)  (of (12)).
j=1

Here f(v) (v=33(x); cf. (5a; §4)) is to be chosen sufficiently small
(depending on N), ty is given by (12) and {(x) is a function such
that
(41) [C(@+v)| <21,

(ef. (15); »=0,1,...,n—1; 2 +n —1in K;’).
The solution y(x) is analytic in every finite part of K. At x = oo
it has a singular point.

NotE. The function f(v) of (5a; § 4) can be taken independent
of N in which case 1, in general, would have to be chosen depending
on N even if y; is linear in j. To take f(v) “sufficiently small”
merely means to take f(v) = c f;(v) where ¢ is a sufficiently small
constant and f;(v) is a function such that

€@ f(v) ~ 0 (zin K)%3).

53) The asymptotic relation here is with respect to .
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The choice of 1’ is conditioned by the several italicized state-
ments subsequent to (8; § 4), (12; § 5), in connection with (18;
§ 5) and subsequent to (17a), (19).

6. The existence theorem.

We shall now proceed to establish an analogue to Lemma 7
corresponding to case II (§ 8). We now have p; =0.

It will be convenient to state briefly certain previously es-
tablished, but scattered in various places, facts relating to case II.
The constants y; involved in the coefficients of the formal solution
of (A; § 1) are

(1) yj:b1j+b2 (7=1,2,...),
(1a) by =1, by=—m (1 <0),
(1b) by=1 +h,  by=— (W+h')  (u,=0).

The transformation of Lemma 5 (§ 4) is

N-1
(2) y(@) =Y(2) + Hy(z){(2), Y(z) = Elyj(w)Pi(w),
(22)  Hy(x) = "% Y (0)a'¥

where #y(=0) is for the present undefined. The result of this
transformation is

8)  L'((a)) = a7k (@) Gyle) + W(a) H (2, () ,

(8a) v =yy_1 + N+ e —ty —nNpy,

(8b) |Gy(2)| <Gy (xin K),

(3¢) W(2) =a® hy'@)Hy(2) (o =" —nNy,).

The series (34a; § 4) representing H'(x, ¢, . . ., {,-1) converges
for 2 in Kj’, provided

(4) g = ¢’ (i=0,...,n—1).

The number ¢’ can be made as great as desired by suitable choice
of 2 or f(v).

With the symbols involved possessing the meaning just in-
dicated we proceed as in case I up to and including formula
(5; § 5). The ,,sums” are now to be evaluated according to the
formula
(5) S Y(u)=—Yx) — ¥Ye@+1) —... (z in K).

u=x
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Finally, it can be shown that, for the case under consideration,
inequalities (8; § 5), (8b; § 5) hold wherever the series

(6) 2 By(@+v)  G=1,...m
=0

converge.

In consequence of (2; § 5) and of (8b) and (8a) it is concluded
that, provided

(7) ty = BN + b,

where b;, b, are suitable numbers (independent of N)54), we
shall have

(8) Go(@)| <l (2 in Ky) ).

As in case I (cf. (18; § 5)), it is now arranged that ¢’ > 21, (¢’
the number involved in (4)).

In order to obtain a bounded solution of (8) it will be sufficient
to secure the inequalities

(9) |CJ(AZ’)I <l02‘j (j=1,2,...; xin Kﬂ.')'

Following the lines of the corresponding developments presen-
ted in section 5, these inequalities are proved. In carrying out
the details of this proof no Lemma of the type of Lemma 6 (§ 5)
is mecessary; moreover, all the statements of the demonstration
are to be made for 2 in Kj.

LemmA 8. Consider case 11 (§ 8) and let K be a corresponding
region. Let

(10)  s(@) = B yapl@) (@) = oty @ in K)

7

be the formal solution of (A;§1) (cf. Lemma 8 (§8)). The constants
y; = by + by, here involved, are given by (la), (1b).

Given a positive integer N, however large, a number A’ can be
found, independent of N, so that, with the 6 arbitrary periodic
functions involved in (10) subject to the conditions of the type im-
posed in Lemma 7, there is on hand a solution y(x) of the equation
(A; § 1) such that

(11) y(z) ~ s(x) (z in Kjy).

54) Such a choice can be made.
55) (6; § 5) implies (9; § 5) as relating to case II.
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The asymptotic relation (11) implies that y(x) is of the form

N-1
(12) y(@) = ?31 y;(@)pi(x) + %@ N )aNe(@)  (ef. (7))
where ’
(12a) |2(z)|< 21, (x in Ky).

Here f(v) (v=_3x) is the function involved in the inequalities satis-
fied by the periodic functions and (depending on N) is to be chosen
sufficiently small. The solution y(x) is analytic in Ky (2 0).

It is possible to take f(z) independent of N. But then 4’ may
have to depend on N.

It will be now proved that, under Hypothesis A (§ 1), either
case I (§ 2) or case Il (§ 8) is certain to be on hand. For this
purpose the following Lemma will be essential.

LeMMA 9. Write x = @e‘/__‘@. Suppose that no curve extending

to infinity and satisfying the equation
L r-1 1
(13) %[qow” +qz? 4. +qr-1w”]=0
(integer p 215 1=7 < p; gy #05 ;= |g;le¥ 71 %)

is coincident with, say, the ray © = m. If, then, there exists an
infinite branch B satisfying (18) and having at infinity the limiting
direction 7, necessarily B will recede indefinitely from this ray °6).

It is observed that (18) can be written in the form

r—1

r—1 r—2 .
(14)  0=H(e, O)= X |gfe * cos (@iﬂ‘r“p_l @)'
i=0

Since there exists a curve B satisfying the conditions stated in
the Lemma necessarily

I

- T _ —1
(15) cos(qo—]—;n):cos (ql_l_fp n):..
_—_cos('y_l—l—r_;—i-ln)zo,

cos (cjy—{— T%yn) #0 (I1=y=r—1; qy?eo)m)_

%) That is, along B, g sin (@—am) (or just o(@—m)) will approach + «
as g —> ®.

rT—1

57) In (15) the expressions cos (21‘,- + n) which correspond to q; = 0

are to be deleted.
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The equation of B is
(16) O =m + k(o) (h(g) =0 as ¢ — o).

To obtain more information regarding h(g) substitute (16) in
(14). Thus, in view of (15),

-1 1—_1, r—i
0—H(e.0) =% alafe? sin (5 he))
i=0
r—1 r—t r—i
FE lale ™ cos |6t mrhe) | =t
Whence on writing

r—14
p

sin| = h(o)| =oule) S A0 =0, p

where necessarily w;(¢) —1 as g — oo, it follows that

- y=-1 — 2
CFHe0) =3 ouolade” () o)

=0
_r ey ,
+e ” [qul cos qy+7“) +o (9)] =0
where w’(g) -0 as ¢ — co. Hence
an) k)| dladl -+ 00|+
_r oy
+o P [|qy| cos (qy—|—7n) + w’(g)] =0
(w''(e) =0 as g — ).

Accordingly it is concluded that

_r
(17a) h(e) =¢ * (ko+a@(e))
where @(¢) —0, as ¢ - o0, and
— |g,| cos (q‘y—l—r—;i} n)
(17b) ko= - £0, % oo,
AolQol P

Therefore

_r
sin (0 —n) = sin h(g) =¢ ? (ko+w1(9))
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(wy(0) =0, as p — o0) and
v

1__
osin(@—n)=¢ P (kotwi(e)) -
as ¢ — oo, since 1 — —Z— > 0. This establishes the Lemma. Fol-

lowing similar lines it is possible to extend this Lemma to include
cases when the ray 0 = n is replaced by any other ray ).

If some of the numbers u are positive the greatest u can be
denoted as u;. We then have case I (§ 2). If some of the numbers
u are negative the least u can be denoted as yg,. There is then

case II (§ 8) on hand.
When all the u’s are zero the Q(x) are of the form

(18) Q@) =gz + Px) (¢=¢'+V —1¢"),
(18a) P(z) =aa® +baf + ... + It
I>a>p>...>4>0; La=a& /b=b,..., L 1=]).

Here «, 8, . . ., A are rational, and a@ # 0, if and only if P(z) 0.
On writing Q;(z) = q;# + P;(z) the subscript ¢ will be attached
to the symbols

g, q"';a, b,...,0 0 B,..., A

Whenever in some region, extending to infinity,

(19) RO (2) = ROP (2)
it mecessarily follows that
(19a) q; = g;-

In fact, (19) implies
q; + “i|a¢| |w|a‘_l cos (@; + (¢, —1)2) + ... = 9;' +
+ oylay||2|™ 7 cos (B + (;—1)&) + ... (F=/La);
that is,
g — G =fi;@)  (fi;(2) >0 as |a| > ).

This establishes the above italicized statement. Let, now, K
denote a region satisfying the conditions («), ..., (8) of § 2.
Interior K

58) The Lemma will in general break down when r > p. A treatment of some
questions of this type is included in

W. J. TrarrziNsky, Analytic Theory of Linear Differential Equations [Acta
Mathematica 62 (1934), 167—226].



56 W. J. Trjitzinsky. [56]

(200 ROP(2) =...=ROP (2) > ROP,(2) = . .. = ROV (2).
Whence, with all the u; assumed zero, we have
Q=== = =g,

If there exist some positive numbers ¢’, necessarily g¢; > 0.
Hence, on noting that

S%Qil)lwl =g+ oclla1||m|“’_l cos (@;+ (o, —1)Z) + .+ - -
it is observed that
(21) ROP (2) >0

for |z| =7, (r, sufficiently great). As a consequence of (21) it
is concluded that | exp Q,(2)| is monotone in K to the left. Let
R’ denote any one of the set of regions (extending to infinity)
in which RQ,(z) < 0. The boundaries of R’ (extending to in-
finity) will be denoted by B, and B, These curves satisfy the
equation

RO, () = |qu| |2| cos (§1+E) + |ay]|2|™ eos (@+u,®) + ... =0.

Their limiting directions, 7,, Z;, are distinct and are found amongst
the values & satisfying

(22) cos (g, +&) = O,
that is, amongst the values
(22a) g™ =3 +mr—¢ (m=0,+1,+2,...).

As a matter of notation, let B, denote the boundary of R’ with
the smaller limiting direction at infinity. It can be shown that

(22b) 7, = (3+2k) 7 — @, & =, + 7

where K is an integer. Now, since g, = ¢; > 0, there exists an
integer » so that

(28) 2r—dn< L gy = < (2v+3)m.
By (22b) and (23)
(28b) [2(K—») +1]n >, > 2(K—»)x.

Thus the following is inferred. The curves B, and B; have either
direction at infinity not coincident with those of either extremity
of the axis of reals. B, extends into the first or second quadrant,
while B, extends into the third or fourth. The region R’ extends
to the left of the simple curve consisting of B,, B; and of an arc
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y of a circle |#|=r,. In R’ we have |exp Q,(2)| =< 1. A subregion

R of RN’ can be formed so that
(24) eh@~0 (2in R),

while the boundary of R consists of a simple curve whose con-
stituent parts are: the arc y and curves B,, B;, extending from
the extremities of this arc and possessing at infinity the limiting
directions of B, and B,, respectively. Thus, it is observed that
when all the u's are zero, while there exist some positive ¢'(= Rq),
there is case I on hand in a region K. The latter region can be
selected as the part common to the regions K (satisfying the
conditions (a), ..., () of § 2) and R. Similarly, it is proved
that when all the ©’s are zero, while there exist some megative ¢,
we have case 11 (§ 8) in a certain region extending to the right.

It remains to consider the situation when all the u’s and the
q’s are zero. All the Q(x) are then of the form

(25) Qz) =V —1¢"z + P(a), P(a) = ar* + ... + I
(real ¢"; 1 >a>...>1>0).

As stated before, @ 7 0 if and only if P(x)== 0. In consequence
of the Hypothesis A (§ 1) not all the P(x) are identically zero.

In the sequel it will be convenient to make use of the following
definition.

DerFiNITION 4. Generically I'= I'(¢', 0"') is to denote a region
extending to infinity and bounded by a simple curve T. This curve
is 1o consist of an arc y of a circle |x| =1, (ry sufficiently great)
and of two infinite branches,

B'= B(0"), B"” = B(0"),
extending from the extremities of y and possessing at infinity the
limiting directions 0’ and 0", respectively. Here 0’ << 0. The
interior of I'(6°,0"") is in the counter clockwise direction from
B(0") to B(0"). The number 0" — 6 is defined as the angle of
re,o).

Consider a particular P(z) for which @ 0. The relation
RP(x) < 0 is satisfied in a finite number of regions I"; of the form

(26) I, =1(0,0;).

Here 0), 0, are the directions of the rays extending from the
origin and bounding a sector in which

cos (@+at) <0 (A= /La;T= /).
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Thus one may take

(26a) 0, = %[ﬂ(% + 2i) —al; o7 — [n(% i 2,-) _~‘]

=0, £1, £2,...).
The angle of I} is
(26b) 0 —0;=—>a.

Corresponding to every region I'; a suitable subregion I’; can
be found of the form

(27) Iy =1I(0; 07),
with boundaries B;(= B(f;)) and B; (= B(6;')), such that
(28) e’@® ~0 (xinI7).

The angle of I'; is of course given by (26b). Whenever
(29) 2y <0, <m+ 2w (van integer)
it follows that

2y + %Z— <6;.
Now n <%. Thus (29) implies that

7+ 2y < 6
and, in view of (29),
(292) 0; <z + 2vm < 6.

Hence, whenever (29) holds, the negative axis of reals (with the
direction m + 2vm) is interior the region I';, the limiting directions
at infinity of the boundaries B, B; of I'; being distinct from that
of the axis just referred to. The alternative to (29) is

(80) 2kn — 7 < 0; < 2knx  (k an integer).
Adding % to the first two members of (30) we obtain

2kn + > — 7 < 07.
Whence, since — 7 + % >0, 2kn < 6;. In conjunction with (30)
this signifies that
(80a) 0; < 2kn <0 .

Thus, (80) implies that the positive axis of reals (with the direction
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2kn) is interior the region I;. Moreover, the limiting directions
at infinity of the boundaries of I'; will be distinct from that of this
axis. The following has been established.

If P(z), a function involved in (25), is not identically zero then
exp P(xz) ~ 0 in a region I'; which either has the properties stated
subsequent to (29a) or has the properties described following (30a).

Consequently it is concluded that the case when all the u’s
and all the ¢”s are zero falls into two subcases.

SUBCASE A;. Amongst the functions P(x) involved in (25) there
is one for which (28) holds in a region I';, satisfying the conditions
of the italicized statement subsequent to (29a).

SuBcASE A,. There exists a function P(z) for which (28) holds
in a region I'; subject to the conditions of the italics following (30a).

Consider subcase A;. As stated in § 2 there exists a region K
satisfying the conditions («), ..., (6) of § 2. This region can be
selected, for instance, so that its lower boundary consists of the
negative axis (sufficiently far out) and so that its upper boundary
is in the second quadrant. Moreover, K can be so selected that
the negative axis referred to in the preceding statement has the
direction = + 2vz, where v is the integer involved in (29a). Let
K, denote the part common to K and I';, where I’; is the region
mentioned in the formulation of the subcase A;. The upper
boundary of K; will certainly recede indefinitely from the negative
axis. Interior K, and hence interior K,,

(81) RPY(z)=...=RPP(z) > RPY,(z)=... = RPY(2)

since ROW (x) = RPW(z). If Py(z)3~ 0 consider the curves P;
extending to infinity and satisfying the equation

(82) RPY (z) = 0.

If there are any curves P; extending into the closed region K,,
necessarily there could be only one such curve. This is a con-
sequence of the fact that the limiting directions of the curves
P, are roots of the equation cos (@, + (¢; — 1)Z) =0 and thus

differ from each other by at least (TnTc) (>m). If a curve P; extends
— %

into the closed region K, either this curve is coincident with the

lower boundary of K, (i.e. the ray & == + 2vx) or it is in the

second quadrant and necessarily indefinitely recedes from this

boundary (cf. (BT)). In any case there exists a subregion K,

of K;, which sometimes is coincident with K,, such that

(38) RPP(z) =0 or RPPV(2) <0 (zinK,),
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the lower boundary of K, being coincident with that of K; and
the upper boundary receding indefinitely from the lower boun-
dary %).

If the function P(z), referred to in the formulation of subcase
A,, is coincident with P,(x) the following facts can be observed.
Since in K, we have exp P;(z) ~ 0, while (83) holds, necessarily

(34) RPY (z) = ROW(z) =0 (zinK,).
Now the number ¢;’, occurring in the expression
(34a) Qi) =V —1gqjz + Py(z),

1s not defined for an additive term of the form 27w where w is
any integer ®). Choose » so that g, = 0. Then

) 6407] = e7aF o] <
(x in Ky v=3{x)

so that

(85a) %@ ~ 0 (@ in K,).

Thus, in view of (84) and (85a), it is observed that, when
P(x)= P,(z), case T (§ 2) will take place in K,.

Suppose now that P(z)=£ P,(z), all of the Q(z) being of the
form (25). Then P(2) = P,(z) (6<<¢=n). Consider curves P, ,
satisfying the equation

R(Py(z)—P(z)) =H(|z|, Z) =0 (=L ).

Since, by (81), R(P{®(2)— P (x)) >0 (interior K,), it is pos-
sible to write

(86a) Py(x) — Py(x)= X q;a®  (integer p=2; 1 <r<p)
where ¢, % 0. Then
(36b)  H(ja|, &) = >3  Ja 2] 7 cos (6:+57°7)  (@=La0.

The limiting directions at infinity of the curves P
of the equation

1,4 are roots

_ = T
cos (q0+1—w) =0 (0<——< 1) .
r p
59) The upper boundary is in the second quadrant; more precisely, in the sector
g~+2m§5§n + 2vm.

%) In fact, if exp Q(z)x{x}, is a formal solution of the linear problem, exp

[Q(z) + 270 v x)ar{x}, will also be a solution, because exp (2w Vv :m)
is a function of period unity.
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Consequently one can infer that only one curve P, , may extend
into the closed region K,. If the latter actually takes place,
either the curve in question is the ray & =z + 2vx or it is in
the second quadrant and is receding indefinitely from this ray.
Whence there exists a subregion K; of K, (sometimes coincident
with K,) so that

(87) R(Py(@)—Py(2)) =0 (2 in Ky)
or
(37a) R(Py(x)—P,(x)) <0  (z in Ky).

Moreover, K, can be so selected that its lower boundary is coin-
cident with the ray & = n + 2vxn (sufficiently far from the origin,
of course) while its upper boundary recedes indefinitely from
this ray. Since K, is a subset of K, and of K,, in view of (31)
and (33) we have

(38) RPV(z) =0 or RPV(z) =0 (z in K,),
(38a) R(PP (x) — PP (x)) >0 (z interior K).
Moreover,

(88b) efd® ~0  (x in Kj).

In examining the function H(|z|, Z) the following situations
are seen to be possible:

(1) 1wy = cos (Jo+ = (w+2vm)) # 05
(2) w;=cos (f;+ =" (m+2vm)) =0
(i=0,...,y—1 1=y=r—1)%),
w, = cos (g, + = (1+20m)) #£0 (g, 0);
(3%) cos (q,.+'—;" (n+2v:rz)) =0 (i=0,1,...,7r—1).
Write
{39) z=u-+vV — 1o, 2 =u +V —10, (v>0; u=u")

where x' is on the boundary of K,. It is noted that z is then in
K; and v can be made to approach -+ oo %2); moreover, (89)
implies that

1) These equalities are considered only corresponding to the non zero g,.
2) This is because the upper boundary of K; certainly recedes indefinitely
away from the ray @ = = + 2vx into the second quadrant.
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(89a)  F=n+ 2w —h(v, |2|), k(v |2|) = sin—l('%') (= L)

where 0< h(s, |al) §%'

When (1°) takes place substitution of (89a) into (86b) will
yield

(40) H(|z|,z)=a” l:|qo‘ cos ({70 + —%— (n+2vn)) + 04(||, v)]

(04(|z|, v) =0 as |z| — o0).
Hence with v positive and fixed the limit of H(|z|, Z), when
z — oo (in Kj), will be 4+ 00 or — o0, depending on whether the
left member in (1°) is positive or negative. Now, by (87), (87a),
H(|z|, Z) does not change sign in K. Thus, if w, (cf. (1°)) is
positive, (87) necessarily takes place. When w,<<0 we have
(87a). In view of (88a) it is observed that H(|z|,Z) diminishes
monotonically to the left along the line v = constant. Hence
w, must be negative. Along the line v = constant, sufficiently
far to the left, we shall have H(|z|, ) <0. Thus, when (19)
takes place, necessarily (87a) will hold throughout K;. One
then has

(41) [eF1@] < |ef@| (2 in Kj)
so that, in view of (88b), it can be asserted that
(41a) ehH@ ~ 0 (z in Kj).

Choosing the number g;’, involved in (84a), so that ¢;' = 0 the
relation
(41b) eh®@ ~ 0 (x in Kj)
will be secured. In view of (4la) it is observed that (38) can
hold only with the symbols = 0. That is,
(42) RPP () = ROP(2) 20 (w in Ky).
Whenever (1°) is on hand case 1 (§ 2) will certainly take place
in a region K, specified above.
When (2°) is considered it is observed that H(|z|, &) (cf. (36b))
is of the form

(43) H(|e|, 2) = £~ |gol o] * (1-+0y(]a], v)

r—7
r—

-+ !,,;IT [qu| cos ((iy + pp (‘Zv—}-l)n) + 05(||, v)]
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where

0s(|z|, v) =0, o04(|2], v) >0,

as |z| = oo (v>0; @ in K3). Since y<<r<<p we have y —r<0
and y — p< 0. Whence, by (43),
r—p
(48a) H(|z|, &) = |a| ¥ [w,+ 04(||, 0)]
(04(|z], ) >0 as || — o0 in Kz v >0; w, #0).

Applying a reasoning of the same type as previously employed
in proving the italicized statement subsequent to (42), it is now
established that case 1 (§ 2) ¢s certain to take place in K, whenever
(20) is on hand.

To complete the treatment of subcase A, it remains to con-
sider (8°). The ray # = 7 + 2»7 is then a P, , curve (cf. (36)) ).
If (87a) holds, (41) is obtained and, in view of (88b), it will
follow that (41a) holds. We can then secure (41b). On the other
hand, (41a) would imply that (38) can hold (in K;) only with
the symbols = 0. Thus (42), and hence case I (§ 2), will be
certain to be on hand in the region Kj.

We are thus brought to the consideration of (8°), when the
inequality (87) holds. Let @, u, v have the significance indicated
in the statement in connection with (89). In view of (89a) and (8°)

cos (q'i —}—?i) = A; by, 4, = sin (q'i+£;—i (7 —{—21»71)) =41
where

0< h; = sin (? h(v, |x|))<

r—1

> (o, Ja]) <~ tg
(i:O,...,r—l).

T

v
X

Thus, by (86b),

r—1 _ L
(44) H(|a|,2) < X |g| || #» ki< .
i=0

X

ol 7 () e

i=

-
= || ? tg

0
x

(=l +#(2)) (5 la]>0)

where &'(|z|) depends only on |z| and h'(|z|) -0, as || — .
Whence there exists a constant b, independent of v, so that

(44) 0= H(ja], ) < bla]” tg| % (@ in Ky).
Consider a curve T, extending into the second quadrant and of

83) There arc no other curves extending into the closed region K,.
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the form

p—r
(45) v=c|a| ? (¢>0).
It recedes indefinitely from the negative axis of reals. Let K’
denote the region lying in the second quadrant and bounded by
the negative axis and by T,. Since in K’

p—r
v=cl|z| P

it will follow that

(45a) tg lg' <tg (c[w|“77)< BJjz| (x in K')®).
Let K, denote the region common to K; and K'. In view of (44a)
and (45a)

(46) H(lz|,&) <bB,=b" (xin K,).

The upper boundary of K, has at infinity the limiting direction
of the ray # =z = 2vn. This boundary recedes indefinitely from
the ray. By (46)

|ePa @)~ Fo)| — gHllaba) - b — ¢ (@ in K,)
so that
) P < e (@ in K.
Hence, by virtue of (38b),
(47a) P @ 0 (@ in K,).

By a suitable choice of q; the relation (41b) is now secured for
x in K,. In view of (47a) it is again concluded that, inasmuch
as (88) must hold throughout K, either with the symbols =
or <, the first is necessarily the case. That is, (42) will hold in
K,. The preceding two italicized statements enable us to assert
that case I (§ 2) will take place in a region K, whenever (3%)
and (87) hold.

Using lines of reasening analogous to those employed sub-
sequent to the statements formulating subcases A;, A, it can
be proved that, whenever subcase A; is on hand, case I (§ 2)
is certain to take place in a region bounded by the negative
axis and extending into the third quadrant.

84) Throughout we keep [z| = r,. Choose ¢ sufficiently small or r, sufficiently

great so that cro_; <%. By a suitable choice of ¢ and r, B, can be made as

close as desired to c.



[65] Non-linear difference equations. 65

Similarly, it is shown that case II (§ 8) will occur in regions
extending into the second and in regions extending into the fourth
quadrants, whenever subcase A, holds.

LevmA 10. Under Hypothesis A (§ 1), at least one of the cases 1
(§ 2), II (§ 8) is certain to take place. Moreover, whenever one of
these cases occurs, either (o) the case will take place in a region
containing in ils interior one of the extremities of the axis of reals
or (a'") it will hold in two distinct regions — one extending from
the real axis wpwards, the other downwards.

When (') holds, both boundaries of the region recede indefinitely
from that extremity of the axis of reals which is contained in the
region.

When (o'’) holds, the boundary of the region in which case 1
(or II) holds contains an extremity of the axis of reals; moreover,
the boundary will contain a part receding indefinitely from this axis.

The following Existence Theorem has been established.

Ex1sTENCE THEOREM. Consider the non-linear difference equation
(A; § 1) under the Hypothesis A (§ 1). Of the cases 1 (§ 2) and 11
(§ 8) at least one is certain to occur (c¢f. Lemma 10). In the case 1
the equation (A) has formal solutions as specified in Lemma 2
(§ 2). In the case 11 there is a formal solution as stated in Lemma 3
(§ 8). There exist ,,actual” solutions analytic in every finite part
of the stated regions and involving a number of arbitrary periodic
Sunctions. At infinity the ,,actual’ solutions in general have a singular
point. They are asymptotically related in a certain sense, to the
formal solutions. Their analytic character is specified by the Lemma
7 (§ 5), in the case I, and by the Lemma 8 (§ 6), in the case 1I.

For the involved regions at least one boundary recedes inde-
finitely from an extremity of the axis of reals. Whence it is
observed that, with the aid of successive applications of the
equations (A; § 1), the analytic (asymptotic) character of the
analytic continuations of the ,,actual” solutions can be always
inferred — at least in a half plane of the form §z = ¢ and in
another half plane of the form Jz < — ¢ (¢ sufficiently great).
It is also to be noted that under some hypotheses, more restric-
tive than Hypothesis A (§ 1), the coefficients in the formal
solutions can be investigated with greater precision. Of signifi-
cance is the problem, for the present put aside, to determine

(1) Under what conditions are the coefficients of the formal
series representable along the lines of Nirlund’s methods (Laplace
integrals, convergent factorial series)?
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(2) Under what conditions is the formal series s(x) convergent?

When s(z) denotes a formal solution (cf. Lemmas 2 (§ 2), 8
(§ 8)) and an ,,actual” solution y(z) is said to be asymptotic
to s(z), in the sense indicated in Lemmas 7 (§ 5) and 8 (§6),
the term ,,asymptotic” is justified for the following reasons. The
function y(z), on one hand, is well defined by a succession of
definite analytic processes. On the other hand, y(z) can be
represented by the first N —1 terms of the series s(x) (in general
divergent) with an error whose absolute value can be made as
small as desired either by subjecting the involved periodic
functions to suitable conditions (as stated in the text) or by
excluding the interior of a circle |z| = ry where r, is sufficiently
great.
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