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1. . Introduction. .

In the following pages an investigation is given of the analytic
character of solutions (in the neighborhood of the singular point
x = ~) of the non-linear n-th order difference equation

w

where

and the function

That is,

w

1) The fraction - is in its lowest terms.
oc
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where

the series (4), (4a) being convergent for Ixl &#x3E; r (&#x3E;0) 2 ); moreover,
the series in the second member of (3b) converges for

The problem at hand has a significance in the theory of non-
linear difference equations somewhat analogous to that which
certain recent investigations due to Trjitzinsky 4) have in the
field of non-linear differential equations.

In a certain sense a non-linear difference system

is equivalent to a single difference equation of finite order. This
can be inferred with the aid of the following heuristic considera-
tions. Let Ao = Ao(x, yl, ... , Yn) be a function, for a moment
arbitrary, of the displayed variables. On letting

we have

Suppose

With the aid of (6) we then obtain the relation

In order to be able to obtain from (7) a succession of relations (8)
( v =1, 2, ... ), the function A0 must be chosen so that a transition
from (8) to (8a) should be possible for v = 0, 1, ... If, for

2) r is taken sufficiently great so that the circumference of the circle |x| = r
is interior the domain of analyticity of the corresponding functions.

3) e is taken sufficiently small so that the function (3b) is analytic in

z (= x1/03B1), yo, ..., yn-1 in the closed region defined by (5).
4) Analytic Theory of Non-linear Singular Differential Equations. This work

will appear in the Mémorial des Sciences Mathématiques, Paris; in the seqnel it

will be referred to as (T1).
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instance, A o is also so chosen that the Jacobian of A o, A i, ... ,An-1
with respect to yi, y2, ..., yn does not vanish in a suitable domain
W of the complex variables x, y1,..., yn, from (8; v=o, 1, ...,
n-1) it would be possible to obtain a set of relations

Substituting these in (8; v=n) we obtain an equation

(10) y(x+n) = A (x, y(x), y(x+1),..., y(x+n-1)) 5).
Given a system (6) it is always possible to obtain in a manner
outlined above, or by a slightly modified method, a single diffe-
rence equation of finite order so that, whenever solutions of the
latter are known, those of the system can be constructed. In
view of the facts outlined above the following can be observed.
From the results obtained for (A) conclusions of similar character
can be inferred regarding every system (6), zvhich at x = oo has a
singular point of the same type as that of (A) and for which
ai(x, 0, ..., 0) = 0 (i=1,..., n).
Of importance in the sequel will be the linear equation

zv

(B ) L(x,y(x))~y(x+n)-xw/03B103B11(x,y(x),y(x+1),..., y(x+n-1))=0
(cf. (3), (3a ), (4 ) ), related to the problem (A). This is the equation
to which (A) reduces when a2(x, yo,..., yn-1)~ o.

In the theory of linear difference equations of outstanding
importance are the fundamental developments of N. E. NÕrlund6).
These depend largely on the use of Laplace integrals and con-
vergent factorial series. Of other contributors we shall mention
R. D. Carmichael, J. Horn, G. D. Birkhoff and the present
author 7).

5) In practice one would of course choose A0 as simple as possible.
6) Cf., for instance, N. E. NÕRLUND, Lecons sur les équations linéaires aux

différences finies [Paris, 1929].
7) G. D. BIRKHOFF and TRJITZINSKY, Analytic Theory of Singular Difference

Equations [Acta Mathematica 60 (1932), 1-89] ; in the sequel referred to as (BT).
TRJITZINSKY, Analytic Theory of Linear q-difference Equations [Acta Mathe-

matica 61 (1933), 1-38].
TRJITZINSKY, Laplace Integrals and Factorial Series in the Theory of Linear

Differential and Linear Difference Equations [Trans. Amer. Math. Soc. 37 (1935),
80-146]; in the sequel referred to as (T2).

TRJITZINSKY, Linear Difference Equations Containing a Parameter [Annali di
Matematica 14 (1935/36), 181-214].
The above papers contain numerous references to the literature in the field of

linear difference equations.
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The equation (B) has been treated in (BT) from the point
of view of the asymptotic properties of solutions (in the neigh-
borhood of x = ~). In consequence of known investigations, due
to G. D. Birkhoff of the formal aspects of the theory of linear
difference equations 8) it can be said that, provided bo(x) (cf.
(3a)) is not identically zero, the equation (B) has a set of n
(formally linearly independent) formal solutions, each of the type

Here

and

where the je(x) are series, in general divergent, of the form

The integer p can be chosen the same for all series (11).
Throughout this work it will be understood that the following

assumption has been made.
HYPOTHESIS A. The linear equation (B), associated with the

problem (A), is effectively of order n; that is, bo(x) fl 0 (cf. (3a)).
Moreover, amongst the functions Q(x) (cf. (11a)), involved in the
full set of formal solutions (11) of the equation (B), there is at

least one for which

This hypothesis excludes precisely the case when every Q(x)
is of the form

where qo is a purely imaginary number.
The condition that the equation (B) should be effectively of

order n is made mainly for the sake of simplicity. In fact, from

8) G. D. BIRKHOFF, Formal Theory of Irregular Linear Difference Equations
[Acta Mathematica 54 (1930), 205-246].

1) Ra denotes the real part of a.
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the developments given in the sequel one could infer without
difficulty that results of essentially the same type, as those given
in the text, would hold if the linear equation (B) were allowed
to be of order less than the n-th. On the other hand, the condition
that at least one of the Q(x) should satisfy (13) is more essential.
This condition will enable construction of certain solutions of

(A), using a solution of (B) as a first approximation, when the
variable x is in a suitable region extending to infinity to the left
or to the right 10). Whenever all of the Q(x) are of the form
qox, with qo a purely imaginary number, substantially different
methods would have to be used.

The problem of n-th (n~2) order non-linear difference

equations has never been considered, before from the point of
view of the present work 11). On the other hand, the first order
problem (under various assumptions) has been treated by a
number of writers. Of the developments of the latter kind most
relevant, in so far as our present point of view is concerned, is a
succession of contributions due to J. Horn 12 ). This author ob-
tains formal solutions s(x; p(x)) as series in positive integral
powers of an arbitrary periodic function p(x) (of period unity).
The coefficients of the various powers of the periodic function
are functions which he expresses with the aid of convergent Laplace
integrals, leading to expressions involving convergent factorial
series (exponential summability of corresponding formal power
series 13 ) ) . On the other hand, the series s(x; p(x)), itself, is shown
to be convergent.
Now, with the problem f ormulated as it is in the present work,

results of the type of those obtained by Horn in general will not hold.
While we shall obtain formal solutions s(x; p1(x), P2(X), ...,pm(x))
(p1(x),..., pm(x) arbitrary functions of period unity) as series
in positive integral powers of p1(x),..., pm(x), in general it
will be impossible to express the coefficients of this series with the
aid of convergent factorial series. In fact, the linear problem (B)

10) Regions of this type will be defined more precisely in the sequel.
11) We might mention some developments regarding questions of stability

(a problem analogous to that in the theory of a type of non-linear differential
systems) in connection with certain difference systems: O. PERRON [Journ. reine
ang. Math. 161 (1929), 41-64]; TA LI [Acta Mathematica 63 (1934), 99-141].

12 ) For instance, Über nichtlineare Differenzengleichungen [Archiv der Math.
und Physik 25 (1916), 137-148]; Cher eine nichtlineare Differenzengleichung
[Jahresber. D. Math. Ver. 26 (1917), 230-251]; Zur Theorie der nichtlineareR
Differenzengleichungen [Math. Zeitschr. 1 (1918), 80-114].

13) These power series are in general divergent.
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is a special case of the problem (A); on the other hand, it has
been shown by Trjitzinsky (cf. (T2)) that the formal solutions
of an equation (B) are not always expressible with the aid of
convergent factorial series. Accordingly, asymptotic methods
will be used to investigate the character of the coefficients of the
various monomials

involved in s (x; pl(x), ... , p.(x». Moreover, convergence of the
series s(x; p1(x), ..., pm(x)) in general is not to be expected.
However, we shall construct "actual solutions" (analytic, for

x ~ oo, in certain regions extending to infinity) which in a
certain sense, to be specified precisely in the sequel, are asymp-
totic to the corresponding formal series.

Finally, it is to be noted that for n = 1 the results of the present
work will continue to relate to a problem heretofore not treated -
a problem to which the methods of Horn would continue to be
inapplicable, unless certain additional hypotheses were made.

2. Formal solutions. (Case I.)

Let p1(x) be an arbitrary function of period unity and consider
the series

Formally

In (3b; § 1) substitute yi = s(x+i) (i =0,1,..., n-1 ). It will

follow that

In the second member of (2) the expression following pm1(x)
can be arranged as a series

From (2) one can then obtain
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We now proceed to compute the
a development

where

It is possible then to write

Thus, in consequence of the definition of lçm, by (3) and by (6a)
it is inferred that

Substitution of (7) in (4) will yield

From (8), by virtue of (6a) and (5a), it is finally concluded that,
for j = 2, 3,....,

where



8

This is analogous to 2 formula given in (T1).
In particular

On taking account of (B; § 1), in view of (3; § 1), equation (A)
can be written in the form

Now L is a linear difference operator, while p1(x) in (1) is of

period one. Hence substitution of (1) into (14) will yield, in 

consequence of (2),

This leads to a succession of recursion difference equations

Examination of 03A8j(x), as given by (9), enables one to conclude
that 03A8j(x) is independent of yj(x), yj+1 (x), ... This fact will be
signified by writing

Accordingly, one may expect that with a proper choice of y1(x)
a sequence of functions yj(x) (j =1, 2, ... ) can be found so that
the equations (16) and (17) are all satisfied. Corresponding to
such a sequence there would be on hand a formal solution (1)
of the problem (A). We shall now proceed to find such a sequence.
A linear n-th order non-homogeneous difference equation

can be solved as follows. Let

constitute a full set of solutions of the homogeneous problenm
obtained by replacing 03B1(x) by zero. Let (ai,j)
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denote a matrix of n2 elements ai, j (i, j = 1,..., n), with il,,-, j
in the i-th row and j-th column. Moreover, let 

be the inverse of the matrix (ai, j). Now the zi(x) (i=1, ..., n)
form a full set of solutions. Accordingly, the determinant

is not identically zero. Thus, functions zi,j(x) (i, j = 1,..., n)
can be defined by the matrix relation

Then

(19a)

where

will constitute a solution of (19) provided that the operation of
summation, designated by S , can be carried out.

Thus, with

denoting a full set of solutions of (16) 14) and with the functions
1,;,i(u) (i, j = 1,..., n) defined by the matrix relation

(17) can be written in the form

DEFINITION 1. Let {x}v denote any expression (12; § 1), where
the j(2(x) (j=0, 1, ..., v) are series, possibly divergent, of the

form (12a; § 1) . Let K denote a region extending to infinity. The
symbol [,x]v will denote generically a function, defined in K (x =1= oo ),
such that

14) Such a set exists since by Hypothesis A (§1) (16) is effectively of order 12.
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1 n consequence of the developments given in (BT) there exists

a region K satisfying conditions (03B1), (03B2), (y), (03B4).
( oc ) When x is in K we havre |x| ~ ro (&#x3E;0) and x - 1 is also in K;

K contains the part of the negative axis of reals for which
|x| ~ ro (a portion of this axis may enter as a part of the boun-
dary of K).

(03B2) Part of the boundary of K consists of an arc of the circle
ixl = ro, while the rest of the boundary consists of two-non-inter-
secting curves, Bu, Bl, extending from the extremities of this
arc and possessing limiting directions at infinity; Bu in the second
quadrant and Bl in the third. Either, one of these curves is

coincident (for |x| ~ r0) with the negative axis of reals - in

which case the other curve recedes indefinitely from the axis -
or both curves Bu, BI recede indefinitely 16) from this axis.

(03B3) Consider the functions Q(x) (cf. (Ila; § 1 ) ), associated with
a full set of formal solutions (11; § 1) of the linear problem
(B; § 1). The functions RQ(1) (x) (=real part of Q(1)(x)) main-
tain the same ordering in K. As a matter of notation write

(ô) The problem (B; § 1) has a full set of solutions Y1:i(X)
(i=1, ..., n), analytic in K (x ~ ce), snch that (with the

notation of Def. 1) we have

In the sequel, unless stated otherwise, K will denote a region
satisfying the above conditions (oc), ..., (03B4). Henceforth, unless
stated to the contrary, the set of functions (21) involved in the
relations (22) will be the one referred to in these conditions.

DEFINITON 2. Let K be a region extending to infinity, but not

15) That is, [x]v = 0e(x)+1e(x) log x + ... + ve(x) 10gVae where the ie(x) are
functions correspondingly asymptotic (in K) to the series ie(x) (j = 0, 1, ..., v).

16) That is, if Bu for instance is such a curve, we have §$x (= imaginary part
of x) - col as x recedes to infinity along Bu.

17) The Qi(x) correspond to the formal solutions si(x) (= {x}v(i)xr exp Q(x);
i = 1, 2, ..., n). Here &#x3E; may become = along Bu or Bt.

18) That is, y1:i(x) ~ si(x) (i = 1, ..., n) in K.
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necessarily satisfying (ex),..., (03B4). A real function f(x) will be
said to be monotone in K to the left, provided

whenever Xl- and X2 are in K, while

When in (26)  is replaced by &#x3E; the function f(x) will be termed
monotone in K to the right.
With K denoting a region satisfying (03B1),......, (c5), it is concluded

that the functions

are all n2onotone in K to the left. In fact, whenever Xl and X2
satisfy the conditions of Def. 2, in view of (24) we shall have-

for u on the rectilinear segment (x1, x2). Hence

Accordingly RQ1,03BB(x) is monotone in K to the left. Whence the

same will be true for the function f1,03BB(x).
On writing 

(cf. (lia; § 1)) it is noted that (24) implies

This is a consequence of the following considerations. From (28)
we obtain

If RQi(1) (x) = RQj(1) (x) ( in K) then necessarily Ili = Il;; in fact,
it can be shown that we would then have
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If RQi(1) (x) &#x3E; RQj(1) (x) (in K ) necessarily fli ~ 03BCj. In fact, if we

had 03BCi - 03BCj  0 it would follow that the function defined by
(29a) would approach - oo, as |x| ~ oo (in K). This constitutes
a contradiction to our assumption

CASE 1. There exists a region K satisfying not only conditions
(03B1), (03B2), (03B3), (03B4) (cf. the text preceding Def. 2) but also the following.
The f unction

is monotone in K to the left (terminology of Def. 2) and

Now

Hence, whenever 03BC1~ 0, the dominant component of RQ1(x) is

provided x is in a sufficiently close neighborhood of the negative
axis of reals. Accordingly, case 1 cannot take place when pi  0,
as (30a) would not then hold. If 03BC1 = 0 and if, furthermore, we
have

condition (30a) could not be satisfied 20) in K. If ,ul &#x3E; 0 conside-

ration of (31) leads one to the conclusion that (30a ) will certainly
hold in every region 0393 defined by the inequalities

where e is a fixed positive number, howTever small. Now 1 exp Q1(x) |
is rrzonotone to the left in every region (extending to infinity to the
left) in which

This follows by a reasoning analogous to that previously employed

19) That is, exp Q1(x) ~ 0 + Ox-1 + 0x-2 + ... (in K). Here and throughout,
unless the contrary is stated, asymptotic relations are in the ordinary sense (i.e.,
to oo of tertns).

21D (30a) would fail along every line (in K) parallel to the axis of reals.
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in connection with (27). On writing

it is noted that |g1(x)| ~g1 (|x| ~ r0). Hence, when III &#x3E; 0,
(32) will be satisfied for 1 xi ~ r0 , provided ro has been chosen
suitably great 21). Thus (with pi &#x3E; 0) take a region satisfying
(03B1),..., (03B4). Consider the part common to such a region and to
F (cf. (31e» 22). Call this common part K. In the region K the
conditions of case 1 will hold. When 03BC1 = 0 and Ql(x) is not of
the form (31b) it may happen that for no region (of stated type
and extending to the left) are the conditions of case 1 all satisfied.
The following essential facts have been established.
If case I holds in a region K (satisfying «(X),..., (03B4)) neces-

sarily 03BC1 ~ 0 (also cf. (29)) and Q1(x) cannot be of the form (31b).
If 03BC1 &#x3E; 0 case I will certainly hold in some region K.
We shall now proceed to investigate, for the case I, the

character of the coefficients yj (x), involved in the formal solution
(1). With the y1:i(x) (i = 1, ..., n) denoting a set of solutions
of (B; § 1), referred to in connection with (25), the function
yl(x) (a solution of (16)) will be taken as

Here c2(x),..., c03B4(x) are arbitrary functions of period unity,
analytic 23) in K.

In consequence of (24)

Hence by (33) and (25), generically,

At this point it will be convenient to introduce the following
definition.

21) We make such a choice.

22) 0393 can be replaced by any more extensive region, confined to the second
and third quadrants, in which exp Ql(x) ~ 0.

23) Since, as stated in (f3), at least one of the curves Bu, Bi recedes indefinitely
from the axis of reals, the ci(x) will be analytic at least in a half plane bounded
by a line parallel to the axis of reals.
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DEFINITION 3. Let qi (i = 1, 2, ..., ô; q1 = 0) be real numbers
and let c2(x),...., cô(x) be arbitrary functions of period unity,
analytic (for x ~ ~) in a region K extending to infinity. Let

functions gi(x) (i = 1, ..., ô) be defined by (34). We then shall
write generically

where p is a positive integer and

T he corresponding formal expression will be designated as {x}pN .
Thus

In accordance with this notation

Before proceeding further the following Lemma will be stated.

LEMMA 1. Let K denote a region extending to infinity 25). Consider
a function

where

Then

provided Moreover, formally

when Il &#x3E; 0. On the other hand, when ,u  0 we shall have

24) N(1) is the greatest of the numbers v(1), v(2),..., v(03B4).
251 This region is to be exterior a circle lxl = r,, (&#x3E; 0).
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Whenever 03BC = 0

where h is a rational number, 0 ~ h  1. When Q(x)i 0 in the
last two members of (39) {x}N is sometimes replaced by {x}N+1 .
A determination of h more exact than that given above is

possible, but is not essential for our purposes. On the other hand,
employment of a more precise value of h would considerably
complicate the subsequent developments. The above Lemma can
be proved with the aid of certain considerations of a formal
character; it is essentially a consequence of Birkhoff’s work in
the theory of linear difference equations (formal aspects).
We shall now determine the character of the function 03A82 (x)

(cf. (13)). By (36), in consequence of Lemma 1, it follows that

Now

Consequeiitly

Thus, since in
ferred that

where

Now 03BC1 ~ 0 (cf. italics preceding (33)). Hence by (42a) il in
(42) can be replaced by 2(n-1). Since

from (13) we then can obtain the relation

The following notation will be introduced. Kl will denote the

region formed by translating the boundary of K to the left parallel
to the axis of reals through the distance n - 1.
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It is observed that (43) holds for x in K’.
Suppose now that K is a region with respect to which the

conditions (03B1),..., (03B4) hold. We shall substitute (25) in (22)
without, for a moment, assuming that the conditions of case 1 are
satisfied in K. With the aid of Lemma 1 a direct computation
will yield the result

where

Here m is a rational number (m ~0) 26).
We now assume case 1 and proceed to calculate Y2(X) with the

aid of (44; j = 2) and (43). The summand involved in (44a)
will be of the form

In view of Def. 3 (cf. (33a), (34)) from (45) we obtain

Here

where

In the function

we have

in consequence of (29) and in view of the italicized statement
preceding (33). We shall write

2 r, ) Neither the value of m nor those of the integers q(03BB) (03BB = 1, ..., n ) need

to be known precisely; m depends essentially on « (cf. (22)) and on the p i
a 

(i = 1, ..., n).
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In evaluating the "sums", here involved, the following method
will be used:

The applicability of this method is due to the fact that

is a product of two functions monotone in K’ to the left (cf.
Def. 2 and the statements in connection with (27) and (30)),
while in K’ the asymptotic relation (30a) is satisfied. The function

so defined in K’ will be analytic in K’ (x ~ ~). Moreover,
the asymptotic form of this function will be that indicated in
Lemma 1, namely

When III === 0 we may take h2 as a rational number h independent
of 03BB and such that 0  h  1 (cf. Lemma 1). On the other hand,
when pi &#x3E; 0 we let h2 = - pi 27 ). Thus, in view of (45e), (45b),
(45a), (45) and (44a), it is inferred that

w
Now by (17) L (x, Y2(ae)) = x03B1 P2(X); that is, by (B; § 1) and

by (3a ; § 1),

27) According to (38a) we could take h2 = - (203BC1- 03BC2). One then could write

xh2 = x -03BC1x - (03BC1 - 03BC03B3) = x -03BC1[x]0 , since the rational number 03BC1 - 03BC03BB ~ 0 
(Î, = 1,2,..., n ); h2 is independent of il , ... , 2a .

2
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where the bi (x) are given by (4; § 1). Whence

w

The leading term in x03B1 bi(x) is xci(ci ~ (n-i)03BC1). From (49a;
v =1 ) we find the form of Y2(x+l) inK’. Using (48) and substituting
the known form of y2 (x+1) in the second member of (49a; v = 2)
the character of y2(x+2) throughout K’ can be determined. We
then substitute the known forms of Y2(x+l), y2(x+2) in (49a;
v = 3) and with the aid of (48) establish the asymptotic character
of y2(x+3) (x in K’ ) . After a finite number of steps the asymp-
totic forms of the functions

are determined for x in K’. To carry this out at each step the
asymptotic form of 03A82 (x-n+v) (v = 0,1,..., n-1; x in K’ ) is em-
ployed. This form is known by (43) 28). Following these lines
it is shown that necessarily (48) holds for x in K 29). That is,

Assume now that, for x in K’ and a value of j(~3), we have

where

28) (43) holds for x in K’; on the other hand, when x is in K’ the points x-n + v
(v= 0,1,..., n-1) will also be in K’.

2") Cf. the statement subsequent to (43).
3°) This is the same number h as involved in the text subsequent to (46b).
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while, for 03BC1 = 0,

The relations (51),..., (52a) have been established for i = 3;
that is, for r = 1,2. We shall now carry out the induction. With
the aid of (51) the asymptotic form of 03A8j(x) can be inferred by
virtue of (9), (10), (11) and (12) (cf. (18)). On writing

it follows that

since, by (10), il + j2 -E- - - - + jiv = w- Now, in view of (51b )
and since by (52) and (52a) we have (XO + OC1 - oc2 = 0, it follows
that

It is noted that, subject to the condition that the xi (i=1, 2, ..., m)
be non-negative integers such that Xl + X2 -f - ... + ae m = K (~ 0),
the maximum value of xi + x2 + ... + xm will be K2. Accordingly,
in view of (10) and (53a) and provided oco ~ 0, it is immediately
inferred that

The two members in (53b) are rational numbers. Hence the
second member of (53) is of the form

where N Pu ,..., 03B2n-1 is the greatest of the numbers N (il, - - ., jiv) 31)
The summation (with respect to il, ..., ii ) of (10), extended
over (53), will accordingly yield a function F v of the form (54)
(x in K’; v = 0, 1,..., n-1).
Now, by (11) and (12) and in consequence of the italicized

statement subsequent to (53a),

31) with jl, , , ,, j2y subject to the conditions of (10).
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By (54) and (54a)

Thus, with N’’’i0,....,in-1 denoting the greatest of the numbers

N" o 5 it is observed that

(cf. (11)) is a function of the same form as the second member

of (55), except that N’’03B21,...., 03B2n-1 is replaced by N’’’i0,.....,in-1 Let kN
denote the greatest of the numbers N’’’i0,.....,in-1 (il,..., in-1
subject to the conditions of (12)). It is noted that

is a function whose asymptotic form for x in K’ is given by the
second member of (55) with Np1,...,Pn-1 replaced by kN. Let k(j)
be the greatest of the numbers kN (k = 2, ..., j). It is then

inferred that 32)

where Pj is the maximum of the numbers

When l’ll &#x3E; 0 the maximum of lj, le (k = 2, 3,..., i) is attained
for k = 2. Whence in consequence of (52) one may write

32 ) The precise nature of the dependence of k( j ) (of N(j), as well) on is not
essential for our purposes. In general, lim k(j) = oo and lim N(j) = oo, as j - ~ .
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The results (57), (57a) are precisely in agreement with what
becomes of the relations (51),..., (52a) when i is replaced by
j + 1. To complete the induction it remains to prove that (51)
holds when i is replaced by j + 1; that is, for r = j. For the
present we continue to assume that oc, ~ 0. To establish the form
of yj(x) use will be made of (44) where 03A8j(u) is given by (56).
On designating the summand involved in (44a) by jh03BB(u), it

will follow that

Furthermore

where

and the q (i1, ..., i03B4), r(i1,..., i03B4) are given by (45c), subject
to the conditions

Now

for the same reasons in consequence of which (45d ) holds. Moreover,

is monotone in K’ to the left (Def. 2). Thus, in view of (30a),
the various "sums" of the last member of (58a) can be evaluated
according to the method (46). The asymptotic form of the function
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so defined, would be that obtained by the corresponding formal
"summation" according to Lemma 1. Whence this form will be

Here h is independent of j and Â and is identical with the number
so denoted in the italics subsequent to (46b). When 03BC1 &#x3E; 0 it is

possible to take hj = 2014 (ift1 - 03BC03BB) (cf. Lemma 1). Now

since, by (59), 03BC1 201403BC03BB is a non-negative number. Also it is noted
that for some 03BB (03BB =1, certainly) iP1 - Pl = (j-1) 03BC1. Hence

we can take hj = - (j-1)03BC1 (for pi &#x3E; 0) - and this will entail
no loss of précision. Since (59b) has in K’ the form (59c), in
consequence of (58a) it is inferred that

where

where the numbers oco, C’l1’ 03B12 are defined by (52). when ,ul = 0
from (60a), (59d) and (57) it will follow that (60b) holds with
03B10, 03B11, 03B12 defined by (52a). The relations

can be proved with the aid of the equalities
w
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following the lines employed in the derivation of (50) with the
aid of (49a).

Thus, for the case when 03B10 ~ 0 (cf. (52)), the induction is

complete. The relations (51),..., (52a) hold (in this case) for all
values of i (i = 3, 4, ... ) .
The inequality (xo ~ 0 fails (with 03BC1~0) if and only if

Under (62) we obtain

With y1(x) = [x]10 exp Ql(x), it follows that 03A82(x) = a2(x)y21(x) 
is of the form [X]2 - exp 2Qi(x). For i = 2 the summand in (62b)
will be

Thus with the aid of Lemma 1 one can infer that the ,,sum’’
involved in (62b) is

Whence by (62b)

Thus the constants y,, y2, IF2 have the values

Assume that for x in K and a value of j(~ 3) we have

For j = 3 this has been established. The form of the function

33) When (62) holds w = 03BC1 and m = 0.
oc
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03A8j(x) can be derived with the aid of (65; r =1, 2, ..., i-1) and
(62a). We have

will possess the asymptotic form of the last member of (67). Since
the rational numbers - 03BC1(j-k) (k=2, ..., j) satisfy the inequa-
lities

with the equality sign taking place for k = j, in view of the

form of (67a) from (62a) one can infer that

In consequence of (67b) the summand involved in (62b) is seen
to have the form

As (j-1)Q1(u) = (j-1)03BCu log ,u + ..., it is observed that the
"sum" of (62b) is

Whence

Accordingly, for x in K, the relations (65), (65a), (66) hold for
all i (j = 3, 4, ... ) ; that is, they are valid for r = 1, 2, ...

LEMMA 2. Consider the problem (A; 9 1) under the Hypothesis
A (9 1). There exists then a region K (extending to the left) satisfying
the conditions (03B1), (p), (y), (03B4) (cf. text in connection with and

preceding to (24), (25)).
When case 1 is on hand (cf. italics in connection with (30), (30a)

and K denotes a region referred to in the formulation of this case,
the equation (A) will have a formal solution
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where Y1(X) is a solution of the linear problem (B; § 1) and is given
by (33), and the Yi (x) are of the form

In (68) and (68a.) Ô arbitrary functions

each of period unity, are involved. Moreover, the numbers Yi are
of the form

In (69), when n = 1 and

On the other hand, when III = 0 and rt &#x3E; 1,

Here the non-negative ration,al number m is the one involved in

(44a), and h is a rational number (independent of j) such that
0 ~h ~ 1.

3. Formal solutions. (Case II.)

In the last section formal solutions (generally divergent) were
obtained in a region K extending "to the left". In a linear problem
the corresponding results ,,on the right" could be inferred almost
immediately. This is not the case for the non-linear problem on
hand. In this section an analogue of Lemma 2 (§ 2) will be ob-
tained with K denoting a certain region extending to the right.
In view of the developments given in (BT) there exists a region

satisfying conditions (03B1), (03B2), (03B3), (b).
(03B1) When x is in K we have |x| ~ ra ( &#x3E; 0) and x -E- 1 is also

in K, K contains a part of the positive axis of reals 35).

34) In applying Def. (3) the numbers qi therein involved are those from (33a);
moreover, the region K is identical with the one so designated in our Lemma.

35) This part migbt be a component of the boundary of K.
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(03B2) The wording of this condition is the same as that of (03B2)
(§ 2), except that Bl is to be in the fourth quadrant and Bu in
the first and reference is made to the positive axis of reals.

(y) Consider the functions Q(x) (cf. (lia: § 1)), associated with
a full set of formal solutions (11 ; § 1) of the linear problem
(B ; § 1). The functions RQ(1) (x) maintain the same ordering in K.
As a matter of notation write

(x in K ; cf. foot-note in connection with (24; § 2)).
(03B4) The problem (B; § 1) has a full set of solutions Y1:i(x)

(i = 1,..., n) analytic in K (x ~ ~), such that

In consequence of (1) the functions

are all monotone in K to the right (Def. 2 (§ 2)). If we write

it is observed that necessarily

CASE II. There exists a region K satisfying the above conditions 
(0-C), ..., (03B4) as well as the following. The function

is monotone in K to the right (Def. 2 (§ 2)) and

By a reasoning analogous to that employed for a similar

purpose in § 2 the following is inferred.

If case II holds in a region K ( satisf ying (03B1), ..., (03B4)) necessarily
03BC1 ~ 0 and Q1(x) is not of the form q1,0x (Rq1,0 ==0)’

I f pi  0 case II will certainly hold in some region K.
We shall now give developments for the case II. Thus 03BC1 ~ 0.
The function yl(x) will be defined by (33; § 2), (34; § 2)

except, of course, K will be the region of case II. With
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in consequence of Lemma 1 (§ 2) it will follow that

On making use of (13; § 2) and on noting that

it is inferred that

When n = 1, i’ = 0. When n &#x3E; 1

where the equality sign is attained for io = 2, i1 = i2 = ... = in-1 = 0.
Whence the second member has the form

Accordingly, by (13; § 2) it follows that

where

On recalling that formulas (44; § 2), (44a; § 2) serve to determine
the yj(x) (j = 2, 3, ... ) not only for the case I, it is found possible
to compute y2(x) with the aid of (44; § 2) and (9). We have

where

(11 ) m = 0 (for n=1 ); rational m ~ 0 (for n&#x3E;1).
Now the function

is monotone in K to the right since it is a product of two functions
possessing such a property (cf. (6) and the statement in connection
with (3)). Moreover, by (6a) this function is asymptotic in K
to zero. Hence the "sum" involved in (10) can be evaluated
according to the formula
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This method of "summation" will be used throughout this section.
With the aid of Lemma 1 (§ 2) from (10) one can obtain

On writing ’,
inferred that in

The inequalities here involved follow from (5). Thus, we may take

This certainly will be the case when III ~ 0 and also when 03BC03BB~ 03BC1.
The alternative to (13) is

If for at least one value of 03BB (13a) holds the number h2, indepen-
dent of À, could be given as a certain rational number h’,

.If for no value of Â (13a) takes place, necessarily 03BC1 =1= 0 and h2
is defined, independently of Â, by (13) 37). In other words, when
03BC1 = 0 h2 will be given by (13b) and when fll =1= 0 it will be given
by (13). Whence, by (12) and (44; § 2),

In view of (9a) and (14a) and in consequence of the above defini-
tion of h2 it will follow that

Here, for n = 1, m may be replaced by zero. On using (9; i == 3;
§ 2), for n &#x3E; 1, and (62a; § 2 ), for n == 1, in view of the established
forms of y1(x) and y2(x) it is concluded that 03A83 = Y28 It also can
be shown that y, = 03A83 + iii + h3 where

36) ta’ is the greatest one of the several numbers (03BB=1, ...) of Lemma (§2).
37) Conversely, when pi ~ 0 (i.e. fl1  0) h2 is so defined.

38) For n = 1 the first line of (14b) reduces to Y2 = h’ = h (~ 0).
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Assume now that for x in K and a value of i (~ 3) we have

where

with

and

The above has been established previously for j = 3. Perform
now the substitution of (15) into (9 : § 2). We have

for x in K and v = 0 , 1....." n - 1. Thus, for x in K

Thus the second member of (17) is of the form

where NP1,...,fJn-1 is the greatest of the numbers N(il, ..., iiv). .
The function Fv, resulting from the extension of the summation
(10 ; § 2) over the left member of (17), will have the form (18).
Whence, by (11; § 2) and (12; § 2),

39 ) This can be established in a way analogous to that employed in prpving
(14a), (14b).
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where

Thus, since 03BC1 ~ 0, in (18a) f’ may be replaced by zero. According-
ly, it is inferred that

is a function of the form

-U’ ---, -n-i

Furthermore. it is observed that

has, in K, the asymptotic form (19) with N’’03B21,....,03B2n-1 replaced
by kN. Finally, it is inferred that 

where Pj is the greatest of the numbers

Now, by (16b) and (16c), b1 ~ 0. Thus

(cf. (16a)). This result implies validity of (16) for y=y.
With the aid of (20) the form of yj(x) can be found. By (44 ; § 2)

Since, by (6) and in view of the statement in connection with
(3), the functions

are monotone in K to the right, it is noted that

possesses the same property. By (6a) the function (21a) is asymp-
totic in K to zero. On taking account of the relationship between
the "actual" summation method of this section with the corres-

ponding formal situation and on noting that

40) For some terms the equality sign of (18b) actually takes place.



31

application of Lemma 1 (§2) enables one to infer that

(x in K) where hj can be selected independent of 03BB as follows:

Here h’ is independent of j. The reasoning in this connection
is precisely of the same type as that employed in the deter-
mination of h2 (cf. (13), (13b)). By (22) and (44; § 2) we ac-
cordingly have

where, by (20a),

Whence it is concluded that

where b1, b2 are given by (16b), if 03BC1 ~ 0, and by (16c), if 03BC1 = 0.
This completes the induction. The following Lemma can be now
formulated.

LEMMA 3. Consider the equation (A; 9 1) under the Hypothesis
A (9 1) . There exists then a region K ( extending to the right) satis-
fying the conditions (03B1), (03B2), (03B3), (03B4) ( cf . the beginning of this
section ).
When case II (italics in connection with (6) and (6a) ) is on

hand and K denotes a region referred to in the statement of this
case, the problem (A) will possess a formal solution

(25) s(x) = y1(x)p1(x) + y2(x)p21(x) + ... + yj(x)pj1(x) + ...
where y1(x) is a solution of the linear equation (B; 9 1) and is
given by (7), and the y1(x) are of the form

41) In applying Def. 3 (§ 2) it is noted that the involved constants are those

from the relations Qi(x) = Qi (x) + ~-1qix (ï=l, 2,..., ô; cf. (1) .
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In (25) and (25a) there enter 03B4 arbitrary functions of period unity,

The numbers Yj involved in (25a) are of the form

where

Here h’ is rational and 0 ç h’ ~ 1. The non-negative rational
number iii is the one involved in (44a; § 2) 42).

NOTE. In Lemma 2 (§ 2) and in the above Lemma the expres-
sion [x]jN(j) involves functions (analytic in K for x ~ ~) asymp-

1 2
totic in K to series of the form do + dlx Pj + d2x pj + ...
(pj integer). It is possible to have pj ~ ~ as j ~ ~.

4. Transformations.

Consider the formal solution (68; § 2) corresponding to the
Case 1 (§ 2). Let N be a positive integer, however large. Apply
the transformation

to the equation (A; § 1). Here e(x) is to be the new variable and

In (2) the yj(x) are the functions so denoted in Lemma 2 (§ 2).
They possess in K the asymptotic forms (68a; § 2).
On taking account of the statement in connection with (5 ; § 1)

it becomes manifest that the inequalities

should be satisfied for x in K at least sufficiently far from the
origin.
Now the q2, involved in [x]jN(j), are real. Hence by (35; § 2)

and (34; § 2), on writing x = u + ~-1v, it is inferred that

42) The formula (44a; § 2) referring, of course, to the region K now under coti-
sideration.
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By Def. 1 (§ 2)

where e can be taken as small as desired. Let

From (3) in view of (3a) it will follow that

Assume that the periodic functions

are analytic in K (x ~ oo ). Designate by f(v) a function for which
the inequalities

all hold for x in K (v = jx).
In the sequel it will be assumed that the above function f(v) is

such that

where the asymptotic relationship is with respect to, x. That is, (6) is
equivalent to the set of inequalities, valid for x in K,

It is clear that (6) will certainly hold in every subregion of
K*for which a ~ v ~ b ; this being so no matter what the function
f(v) is. It is to be noted that f(v) specifies the rate with which
the absolute values of the periodic functions (5) may vary away
from the axis of reals. It is not difficult to show that the variety
of analytic functions (5) for which (6) holds in a region K, of
the type stated before, is quite extensive.

In consequence of (4) and (5a)
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Whence, by (6a),

and, in view of

Let KA denote the part of K in which x I ~ 03BB.

The relationship (8) implies that (2a) holds in a region KÂ’
provided 03BB’ (depending on N) is chosen sufficiently great. The

inequality (2a) can be secured in the original region K = Kr 
0 

if
the function f(v), involved in (5a), is sufficiently small (depending
on N).

If the transformation (1) is now carried out it is observed that
the equation satisfied by e(x) in general would have a meaning
only when

where

With (2a) satisfied for x in K( = K03BB, or Kro) it follows that

Thus, whenever

that is whenever (9) holds in K, it is concluded that the series
in the second member of (10) is absolutely convergent for x -E-- n-1
in K. In view of (10a)
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the involved series being convergent for x + n - 1 in K. Conse-
quently with the aid of (8) one can infer that

while

Here the 03B2i0,...,in-1 (x ) are analytic for x + n - 1 in K(x ~ oo )
and, moreover,

With L denoting the linear operator of (B; § 1) consider the
function

which certainly is defined for x + n-1 in K( = KA, or Kr0).
If Y(x) were replaced by the formal (generally divergent) series
s(x) of Lemma 2 (§ 2) and the resulting expression were formally
expanded in powers of p1 (x ) we would obtain the series

where

(cf. (2; § 2), (9; § 2), (16; § 2), (17; § 2)) . Now Y(x) is s(x) with
the yj(x) (j = N, N + 1, ...) all replaced by zero. Thus

It is observed that 03A8j(x) is 03A8j(x) with yj(x) (j ~ N) replaced
by zero. Hence, since 03A8j(x) depends only on y1(x), ..., yj-1(x),
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For i &#x3E; N the 03A8j(x) have the asymptotic form of the corresponding
03A8j(x). By (15b), (16) and (14b)

Whence, in view of (15a), (17), (17a), (17b), from (15) one can
infer that the function FN (x ) is of the form

Now, in consequence of

Hence, on taking account of (6a) and of the satisfied conditions
of convergence of the series (18), it is concluded that

where

Of course, FN(x) is defined in x for x + n-1 in K (x ~ ~).
It is to be noted that, as can be seen from the developments
of § 2,

and

when n = 1 and 03BC1 = 0 or when n &#x3E; 1. 

Substitution of (1) into (A ; § 1) will yield, by (10),
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Thus, in consequence of (13)

Transposing the terms of the second member of (22), linear in
p(x), ..., e(x+n-1), to the left we obtain

where

and

Here, by (12a) and (12b),

when x + n - 1 is in K. Also it is to be recalled that FN(x) is a
function satisfying (20) and (20a). Moreover, 1H(x, e0, el, - - ., en-i)
is absolutely convergent when x + n - 1 is in K (= K03BB, or Kr0),
provided

Let tN denote a positive number, for the present not specified.
Consider

We have
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The further transformation

will be now applied to (23). By (24a) and (24b), in view of (23b),
it is inferred that

where

Since, with

and since

from (23a) it follows that

where

On taking account of the convergence properties of

- 
1H(x, e(x),....e(x+n-1) stated in connection with (23a),
(23d), in view of (6) and of the way the series (27a) was
derived, it is concluded that H’(x, 03B60,...., 03B6n-1) converges

absolutely and uniformly for x + n - 1 in K03BB(03BB ~ 03BB’ or 03BB~ ro,
as the case may be ) 44), provided

The essential fact is to be noted that

43) In this connection use has been made of the fact that, for the case now
under consideration, joi is rational and non-negative so that x-jN03BC1 = [x]0
(j=0, 1,..., n-1).

44) K03BB, if not coincident with K (which is Kg, or Kr0), is to be a subregion
of K. 
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That is, given a number 103B6, however large, there exists a value
03BB = 03BB(N, 1’) so that H’(x, 03B60,....., 03B6n-1) converges, when x + n-1
is in KÂ, for l’il I ~ le (i=0,..., n-1) .
It is also possible to secure convergence of H’(x, ’0’ ..., 03B6n-1) for

x+n-1 in the original region K and for l’il ~ 103B6 (i=0,..., n-1) ;
as great as desired), provided the function f(v), involved in the-
inequalities satisfied by the periodic functions, be sufficiently small
(depending on 103B6) .
By (20) and (24)

Hence, in view of (26) and (27), application of the transformation
(25) to (23) will yield

LEMMA 4. Consider case 1 (§ 2) and the formal solution of (A;
§ 1), relating to this case and specified in Lemma 2 (§ 2). Let N
be an integer, however large. Define the function Y(x) by (2). Let
the periodic function.s (5), involved in the formal solution, be subject
to the conditions stated in italics in connection with (5),..., (6a ).
Y(x) will satisfy (2a) and (8) for x in the region K (which is K03BB’
or Kr 

0 
of the italicized statement subsequent to (8)). The transfor-

mation 

will yield the equation (29), (29a). The series (27a) representing
H’ (x, 03B6(x)) satisfies the convergence conditions stated in connection
with (28), (28a) (also cf. the subsequent statement in italics).
An analogous Lemma, corresponding to the case II (9 3), will

be now established. The transformation will be

(cf. (25; § 3)). We again make the assumption stated in connection
with (5),..., (6a), with K having the new significance. Then (8)
and (2a) will be satisfied for x in K(= K03BB’ or K,,0; cf. the statement0

subsequent to (8)). The formulas (9), ..., (20a) will continue to
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hold provided that, throughout, the statement x + n-1 in

K be replaced by x in K. On taking account of section 3 it is

observed that the relations (21) and (21a) are to be replaced by
(32) 03A8j = yj (j=2,3,...;cf.(26;§3);(26a;§3);(26b;§3)). 
The relations (22),...,(25) (x in K ) will hold. Since in the case
II (§ 3) 03BC1 ~ 0, the result of the transformation (25) will be

different. The relation (26) will hold with

where

Since

by (23a)

where i’ = il + 2i2 + ... + (n -1 )in-1. It is to be noted that

i’ ~ 0 45). Since fl1( ~ 0) is rational, by (24b),

Hence

where

For x in K, the convergence properties of the series (34a) will
be of the same description as those stated for the series represen-
ting H’ (x, 03B6(x)) in the case I. Since

45) The equaiity sign is attained for in = m, il = i2 = ... = in-l = 0.
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(03A8N defined by (32)) , in view of (26) (with L’(03B6(x)) given by
(33), (33a) and (34)) , from (23) it is inferred that the transformed
equation is of the f orm (29), where L’ (03B6(x)) is given by (33) and
(33a), i’ is defined as in (29a) (with PN given by (32)), the function
GN (x) is subject to the inequality (20a) (x in K), and H’ (x, 03B6(x)) 
is defined by (34a), (34b); moreover,

LEMMA 5. Consider case II (§ 3) and the formal solution of
(A; § 1), relating to this case and specified in Lemma 3 (§ 3). Let
N be an integer, however large. Let Y(x) be the function of (31).
Let the periodic functions (5), involved in the formal solution, be
subject to the same conditions as stated in Lemma 4. For x in
K Y(x) will satisfy conditions analogous to those which were stated
with respect to the function Y(x) of Lemma 4. The transformation

will yield the equation (29), the expressions therein involved being
specified by the italicized statement preceding this Lemma. Moreover,
the series (34a) representing H’ (x, 03B6(x)) will have, for x in K,
the same convergence properties as the corresponding series (27a)
of Lemma 4.
The function HN (x) involved in Lemmas 4 and 5 contains

a positive number tN whose value will be specified more precisely
in the sequel.

5. Solutions for the case 1.

The transformation (30; § 4) applied to (A; 9 1) will yield,
when the case 1 (9 2) is on hand, the equation (29; § 4), (29a;
9 4) referred to in Lemma 4 (9 4). A solution of this equation
will be found in the form of a convergent series

On writing

the terms of the series (1) will be determined in succession with
the aid of the equations



42

Under appropriate convergence conditions, which will be proved
in the sequel, the series (1) will represent a solution of (29; § 4).
This can be inferred by adding the corresponding members of
the equations (2), (2a), (2b) ( j=2, 3, ... ).
The equation L’(,(x)) = 0 (cf. (26a ; § 4)) has solutions which,

in view of (26; § 4) and (25; § 4) are of the form

where e(x) satisfies L1(e(x)) = 0 (cf. (23b; § 4), (23c; § 4)). The
solutions of L1 (e(x)) = o are asymptotically the same as those
which one would obtain solving L(e(x)) = 0 46 ). This is a conse-
quence of the relations (23c; § 4).

Consider the equation

On multiplying the both members of (4) by HN (x) xnN03BC1 hn(x)
in view of (26; § 4) it is observed that (4) is equivalent to

It is to be noted that in section 2 the equation L(yj(x)) = x03B1 03A8j(x)
was solved with the aid of formulas (44; § 2), (44a; § 2). Thus,

w

on replacing yj(x) by é(r) and x03B1 03A8j(x) by the second member
of (4a), as well as recalling the statement subsequent to (3), it

is concluded that a solution of (4a) can be given by

where

Substitution of (24; § 4) into (5a) will yield, by (5b), the inequa-
lities

w

46 ) L(y(x» is the part of y(x+n)-x03B1 a (x, y(x)) (cf. (A; § 1)) linear in

y(x), y(x+1),...., y(x+n-1) (cf. (16; § 2)).
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provided that, with B03BB(u) denoting the "summand" displayed
in (6), the series

converges for x in K (03BB=1, ..., n ) 47).

If both members of (5) are multiplied by HN-1(x), in view of
(3) it is concluded that

constitutes a solution of (4), provided the series (6a) (03BB=1, 2,... )
converge. In consequence of (6), (5b) and (7) it is inferred that
the solutions of the equations (2), (2a), (2b) (j = 2, 3, ... ) satisfy
the ineq ualities

in any region in which the series

converge. Here

where ’ is defined by (6) and the tj(u) are determined in succes-
sion with the aid of (2), (2a), (2b) (j = 2, 3,....) .
The number tN involved in z’ (cf. (29; § 4)) can be chosen

suitably great so that equation (2) has a solution 03B60(x) such

that

The details of the proof of this fact will be omitted. However,
we shall note that for v = 0 (9) can be secured with

47) The "sums" are throughout evaluated by means of series.
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Here, as seen from the developments of section 2,

The inequalities (9) can be established in succession for

v = 1, 2,..., n - 1 with the aid of the equation (2) itself, pro-
vided we take

where oci (&#x3E; 0), a2 are suitable numbers. Moreover, to satisfy
(9) it is noted that 03BB’ can be selected independent of N when 03BC1 = 0
and also when n  2; 03BB’ may depend on N when 03BC1 ~ 0 and n &#x3E; 2.

Now the series H’(x, 003B6, ..., n-103B6) related to the transfor-
mation of Lemma 4 (§ 4) converges, as stated in section 4, provided
(28; § 4) holds. It is to be noted that 03B6’(= 03B6’(03BB’)) can be made
as great as desired by taking A’ sufficiently great or by taking f(v)
sufficiently small. Thus, by whichever device, the inequality

can certainly be secured.
We shall now proceed to show that the functions ’i(x) can

be determined in succession subject to the inequalities

If (14) were demonstrated the series (1) would be absolutely and
uniformly convergent and it would represent a solution 03B6(x) of

(29; § 4); moreover, zeae would have

In view of the charàcter of the series H’ (x, oz, z, . - ., n-1Z)
it is concluded that there exists a constant M such that, provided

necessarily
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Write Z-l(X) - 0. Then H’ (x, z-1(x)) = 0. Whence, in view of
(16), y (16a) and (9) (where 03B60(z)=z0(x)) it is concluded that

Write

Let w’’ be a positive number, to be specified more precisely in
the sequel. By (29a; § 4) and (24; § 4) we have, with C( ( &#x3E; 0)
assigned however small,

provided 03BB’ (depending on C) is sufficiently great; here 03BB’ can be

selected independent of N whenever 1JfN and w" are linear in N 48).
This follows by (6; § 4). By (2a), (17), (17a), (16b)

By (8b; y==l) and (18)

Choose Â’ sufficiently great so that, for x + n - 1 in K03BB’, the

functions B*03BB,1(x) (03BB=1, ..., n; cf. (19)) are monotone to the left 49) .
Such a choice is possible since the functions I exp Q1(x)l, , f1,03BB(x) 
(cf. (27; §2)) possess this property. It is again noted that A’ is

independent of N when 1Jf N is linear in N (provided M/ is linear
in N) 50). In consequence of the above italicized statement and
by (19)

48) By (12) and since 03C4" = w + (n-2)N03BC1 we then will have tN + 03C4’’ + w’’
03B1

linear in N. If w’’ is linear in N but 03A8N is quadratic then tN is given by (12), with

oeo ~ 0, and tN + t" -f- w’’ will contain the quadratic term 03B10N2.
49) It will be shown in the sequel that w’’ can be taken as the greater one of

the numbers 0 and H (cf. (20a)).
6°) The quadratic term in tpN’ tN (12), tN (6) is present or not simultaneously.

If present, it is 03B10N2. 00

51) Here 03C9 is from a special case of the inequality of Birkhoff, 03A3|x-v|-2  03C9x-1 .
1
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Thus, by (8 ; j = 1), (19a) and (19)

At this stage it will be convenient to prove the following
Lemma.

LEMMA 6. Consider the equation

where

is the difference polynomial involved in (2). Let t(x) be a function
such that

and let 03BB’ be a number satisfying the italicized statements subsequent
to (17a) and (19) . Then, provided the number zv" (independent of
t ) is sufficiently great, equation (21) will possess a solution C(x)
for which

where E is a constant depending only on the operator L’.
On taking account of how (20) was established as a consequence

of (18), when solving the equation L(C:1(x)) = t1(x), it is con-

cluded that (21), (21a), (21b) imply that

when x+n-1 is in KA,. Here H is given by (20a). Take w’’
so that

The equation (21) can be written in the form
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03BC’ &#x3E; 0) with N sufficiently great it will follow that w’ ~ 0.

Thus, in any case w’  0. By (21a)

Also, in view of (21b),

Thus, in consequence of (24)

By (23) and since

Thus, by (25; v=1) and (26) we have, for x + n - 1 in K03BB’,

It can be always supposed that |x| ~ 1. In view of (20a) and
(21a) it is observed that - 2 - w’ - H  0. Thus by (27) we
have, when x + n - 1 is in K03BB’ ,

This implies that (23) can be replaced by a more exact inequality,
whenever w’  0. For the purpose on hand the additional preci-
sion is not necessary. Accordingly, in view of (27a) and since
w’  0, we shall write

When n = 1 the Lemma is established in consequence of (23)
and since - K/’ + H  0. When n = 2 the truth of the Lemma
is inferred with the aid of (27b).

Consider the remaining case when n &#x3E; 2. Suppose that for some i

where
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The relations (28), (28a) have been previously established for

In consequence of

Accordingly, by induction it is inferred that

where En-1 is a number, depending only on L’ and determined
by means of the relations (28a; r = 1, 2 ,..., n-1) (cf. (23 )) .

Thus it is observed that the above Lemma holds with E = En-1
(cf. (30)) and w" equal to the greater one of the numbers 0 and H
(cf. (20a)). Consequently it is noted that w’’ can be taken in-

dependent of N, when pi = 0, and linear in N in the contrary case.
In consequence of Lemma 6 and of (18), (20) it is seen that the

equation (2a) has a solution 03B61(x) such that

where t1 = nMl0C. Now E is independent of C. As stated before,
C(&#x3E;0) can be chosen at Will 52). To achieve conformity with
(14; j=1) take C so that t1E ~ l02-1; that is,

We thus have (14) satisfied for j = 0 (cf. (9)) and for i = 1,
so that

52) In general 03BB’ increases as C is diminished (cf. (17a)).
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Whence, in view of the statement in connection with (16), (16a),

By (17), (2b; ?==2) and in consequence of (33)

Thus, by (17a) and (32),

when x + n - 1 is in K03BB’ . Lemma 6 (with t = t2) is applicable
to the equation (2b; j = 2). Hence this equation possesses a
solution 03B62(x) for which

This establishes (14; j = 2) .
Suppose now that (14) holds for j = 0, 1, ..., r --1 (r &#x3E; 3).

By (la) it is then inferred that, for x + n - 1 in K03BB’,

Thus, with the aid of the statement in connection with (16),
(16a) it is concluded that

Furthermore it will follow that

Whence, by virtue of (17a) and (32),

for x + n - 1 in KÂ,. Application of Lemma 6 to the equation
(2b; j = r) enables us to assert that
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Thus by induction (14) has been established for i = 0, 1, ...
(x+n-1 in K03BB,). The series (1) will accordingly possess the
properties stated in connection with (15). It will represent a
solution of the equation (29; § 4).

LEMMA 7. Consider case 1 (9 2) and let K be a corresponding
region. Let

be the formal solution of (A; 9 1) relating to this case (cf. Lemma
2 (9 2)) . The constants Yi = 03B10j2 + 03B11j - oc2 (j = 1, 2, ...) are

given by (69; § 2), (69a; § 2), (69b; § 2), (69c; § 2). Let Kr denote
the subset of K for which Ixl I &#x3E; r.

Given a positive integer N, however large, there exists a number
03BB’ which may depend on N when Yi is quadratic in i and which
is independent of N when Yi is linear in i so that, provided the
arbitrary periodic functions

involved in the formal solution are subject to the conditions stated
in connection with (5; § 4), (5a; § 4), (6; § 4), zve have a solution
y(x) of (A; § 1) such that

The asymptotic relation (39a) is in the following sense:

Here f(v) (v := J(x); cf. (5a; § 4)) is to be chosen sufficiently small
(depending on N), tN is given by (12) and 03B6(x) is a function such
that

The solution y(x) is analytic in every finite part of KA,. At x = oo
it has a singular point.
NOTE. The function f(v) of (5a; § 4) can be taken independent

of N in which case 03BB’, in general, would have to be chosen depending
on N even if Yi is linear in j. To take f(v) "sufficiently small"
merely means to take f(v) = c f1(v) where c is a sufficiently small
constant and f1(v) is a function such that

53) The asymptotic relation here is with respect to x.
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The choice of 03BB’ is conditioned by the several italicized state-
ments subsequent to (8; § 4), (12; § 5), in connection with (13;
§ 5) and subsequent to (17a), (19).

6. The existence theorem.

We shall now proceed to establish an analogue to Lemma 7
corresponding to case II (§ 3). We now have 03BC1~0.

It will be convenient to state briefly certain previously es-
tablished, but scattered in various places, facts relating to case II.
The constants yi involved in the coefficients of the formal solution
of (A; § 1) are

The transformation of Lemma 5 (§ 4) is

where tN(~ 0) is for the present undefined. The result of this
transformation is

The series (34a; § 4) representing H’ (x, 03B60, ..., Cn-l) converges
for x in K03BB’ provided

The number 03B6’ can be made as great as desired by suitable choice
of Â’ or f(v).
With the symbols involved possessing the meaning just in-

dicated we proceed as in case 1 up to and including formula
(5; § 5). The "sums" are now to be evaluated according to the
formula
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Finally, it can be shown that, for the case under consideration,
inequalities (8; § 5), (8b; § 5) hold wherever the series

converge.
In consequence of (2; § 5) and of (3b) and (3a) it is concluded

that, provided

where bi, b2 are suitable numbers (independent of N) 54), we
shall have

As in case 1 (cf. (13; § 5)), it is now arranged that 03B6’ &#x3E; 2l0 (03B6’
the number involved in (4)).

In order to obtain a bounded solution of (3 ) it will be sufficient
to secure the inequalities

Following the lines of the corresponding developments presen-
ted in section 5, these inequalities are proved. In carrying out
the details of this proof no Lemma of the type of Lemma 6 (§ 5)
is necessary; moreover, all the statements of the demonstration

are to be made for x in K03BB,.

LEMMA 8. Consider case II (§3) and let K be a corresponding
region. Let

be the formal solution of (A; § 1 ) (cf. Lemma 3 (§ 3 )) . The constants
Yi = bl; + b2, here involved, are given by (1a ), (1b).

Given a positive integer N, however large, a number A’ can be
fou/nd, independent of N, so that, with the 03B4 arbitrary periodic
functions involved in (10 ) subject to the conditions of the type im-
posed in Lemma 7, there is on hand a solution y(x) of the equation
(A; 9 1 ) such that

54) Such a choice can be made.

55) (6; § 5) implies (9; § 5) as relating to case II.
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The asymptotic relation ( 11 ) implies that y(x ) is of the form

where

Here f( v) (v = Jx) is the function involved in the inequalities satis-
fied by the periodic functions and (depending on N) is to be chosen
sufficiently small. The solution y(x) is analytic in KA, (x~ ~ ).

It is possible to take f(x) independent of N. But then 03BB’ may
have to depend on N.

It will be now proved that, under Hypothesis A (§ 1 ), either
case 1 (§ 2) or case II (§ 3) is certain to be on hand. For this

purpose the following Lemma will be essential.

LEMMA 9. Write x = O e#-1~. Suppose that no curve extending
to infinity and satisfying the equation

is coincident with, say, the raye = n. If, then, there exists an

infinite branch B satisfying (13) and having at infinity the limiting
direction n, necessarily B will recede indefinitely from this ray 56).

It is observed that (13) can be written in the form

Since there exists a curve B satisfying the conditions stated in
the Lemma necessarily

56) That is, along B, (2 sin (~-03C0) (or just e(0398-03C0)) will approach + o0

as e ~~.
/ r-i

(qi+ r - 1/p 03C0)57) In (15) the expressions cos 4i + r2013i/p 03C0) which correspond to qi = 0
B p )

are to be deleted.
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The equation of B is

To obtain more information regarding h(g) substitute (16) in

(14). Thus, in view of (15),

Whence on writing

where necessarily it follows that

where 03C9’(g)~0 as e ~ oo. Hence

Accordingly it is concluded that

Therefore
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as e ~ oo, since 1 - L &#x3E; 0. This establishes the Lemma. Fol-
p

lowing similar lines it is possible to extend this Lemma to include
cases when the ray 0 = 03C0 is replaced by any other ray 58).

If some of the numbers 03BC are positive the greatest 03BC can be

denoted as 03BC1. We then have case 1 (§ 2 ). If some of the numbers
fl are negative the least 03BC can be denoted as 03BC1. There is then

case II (§ 3) on hand.
When all the li’s are zero the Q (x ) are of the form

Here oc, P, ...03BB, are rational, and a ~ 0, if and only if P (x ) ~ 0.
On writing Qi (x ) = qix -E- Pi (x ) the subscript i will be attached
to the symbols

Whenever in some region, extending to infinity,

it necessarily follows that

In fact, (19) implies

that is,

This establishes the above italicized statement. Let, now, K
denote a region satisfying the conditions (cc), ..., (ô) of § 2.

Interior K

b8) The Lemma will in general break down when r &#x3E; p. A treatment of some

questions of this type is included in
W. J. TRJITZINSKY Analytic Theory of Linear Differential Equations [Acta

Mathematica 62 (1934), 167-226].
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Whence, with all the 03BCi; assumed zero, we have

If there exist some positive numbers q’, necessarily q ’i &#x3E; 0.

Hence, on noting that

it is observed that

for xl &#x3E; ro (ro sufficiently great). As a consequence of (21) it

is concluded that | exp Q1 (x ) | is monotone in K to the left. Let
R’ denote any one of the set of regions (extending to infinity)
in which RQ1(x)  0. The boundaries of 9î’ (extending to in-
finity) will be denoted by Br and B,. These curves satisfy the
equation

Their limiting directions, xr, Xi, are distinct and are found amongst
the values ài satisfying

that is, amongst the values

As a matter of notation, let B, denote the boundary of 8t’ with
the snialler limiting direction at infinity. It can be shown that

where K is an integer. Now, since ffiq1 == qi &#x3E; 0, there exists an

integer v so that

By (22b) and (23)

.. # ...

Thus the following is inferred. The curves B, and Bl have either
direction at infinity not coincident with those of either extremity
of the axis of reals. Br extends into the first or second quadrant,
while Bi extends into the third or fourth. The region R’ extends

to the left of the simple curve consisting of B,,, Bi and of an arc
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y of a circle |x| = ro. In 9î’ we hâve exp Q1(x)1  1. A subregion
? of 9î’ can be formed so that

while the boundary of R consists of a simple curve whose con-
stituent parts are: the arc y and curves B,, Bl, extending from
the extremities of this arc and possessing at infinity the limiting
directions of Br and Bl, respectively. Thus, it is observed that

when all theus are zero, while there exist sorrze positive q’(= Rq ),
there is case I on hand in a region R. The latter region can be
selected as the part common to the regions K (satisfying the
conditions (oc), ... , (03B4) of § 2) and N. Similarly, it is proved
that when all the ,u’s are zero, while there exist some negative q’,
we have case II (9 3) in a certain region extending to the right.

It remains to consider the situation when all the ,u’s and the
q"s are zero. All the Q (x ) are then of the form

As stated before, a =1=- 0 if and only if P (x ) fl 0. In consequence
of the Hypothesis A (§ 1) not all the P(x) are identically zero.

In the sequel it will be convenient to make use of the following
definition.

DEFINITION 4. Generically I=- T(03B8’, 0") is to denote a region
extending to infinity and bounded by a simple curve T. This curve
is to consist of an arc y of a circle Ixl = ro (ro sufficiently great)
and of two infinite branches,

extending from the extremities of y and possessing at infinity the
limiting directions 0" and 0", respectively. Here 0’  0". The

interior of T(03B8’, 0") is in the counter clockwise direction from
B (0’) to B (03B8" ) . The number 0 " - 03B8’ ’ is defined as the angle of
T(03B8’, 03B8"). .

Consider a particular P(x) for which a ~ 0. The relation

9îP(x)  0 is satisfied in a finite number of regions T’ of the form

Here 03B8’i, 03B8"i are the directions of the rays extending from the
origin and bounding a sector in which
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Thus one may take

The angle of T) is

Corresponding to every region hi a suitable subregion ri can
be found of the form

with boundaries Bi(= B (03B8’i)) and Bi" (= B (03B8"i)) such that

The angle of ri is of course given by (26b). Whenever

it follows that

Now 03C0  03C0/. Thus (29) implies that
03B1

and, in view of (29),

Hence, whenever (29) holds, the negative axis of reals (with the
direction n + 2 v03C0 ) is interior the region Ti, the limiting directions
at infinity of the boundaries B", Bi" of Fi being distinct from that
of the axis just referred to. The alternative to (29) is

Adding â to the first two members of (30) we obtain03B1

Whence, since - n + n &#x3E; 0, 2kn  03B8"i. In conjunction with (30)03B1 i

this signifies that

Thus, (30 ) implies that the positive axis of reals (with the direction
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2kn) is interior the region Ti. Moreover, the limiting directions
at infinity of the boundaries of li will be distinct from that of this
axis. The following has been established.
If P(x), a function involved in (25), is not identically zero then

exp P (x ) ~ 0 in a region Fi which either has the properties stated
subsequent to (29a ) or has the properties described following (30a).

Consequently it is concluded that the case when all the 03BC’s
and all the q"s are zero falls into two subcases.

SUBCASE A,. Amongst the functions P(x) involved in (25) there
is one for which (28 ) holds in a region Fi, satisfying the conditions
of the italicized statement subsequent to (29a).
SUBCASE A2. There exists a function P(x) for which (28 ) holds

in a region I’i subject to the conditions of the italics following (30a ).
Consider subcase A,. As stated in § 2 there exists a region K

satisfying the conditions (03B1), ..., (03B4 ) of § 2. This region can be
selected, for instance, so that its lower boundary consists of the
negative axis (sufficiently far out) and so that its upper boundary
is in the second quadrant. Moreover, K can be so selected that
the negative axis referred to in the preceding statement has the
direction 11; + 2vn, where v is the integer involved in (29a). Let
K1 denote the part common to K and Ti, where Fi is the region
mentioned in the formulation of the subcase Al. The upper
boundary of K1 will certainly recede indefinitely from the negative
axis. Interior K, and hence interior Kl,

since RQi(1)(x)=RPi(1)(x). If P1(x) ~ 0 consider the curves P1’
extending to infinity and satisfying the equation

If there are any curves Pi extending into the closed region Kl,
necessarily there could be only one such curve. This is a con-

sequence of the fact that the limiting directions of the curves
Pl 1 are roots of the equation cos (al + (,xl - 1 )x) = 0 and thus
differ from each other by at least (03C0/1-03B11) (&#x3E;03C0). If a curve Pi extends
into the closed region K1 either this curve is coincident with the
lower boundary of K1 (Le. the ray x = 03C0 -f - 2vn) or it is in the
second quadrant and necessarily indefinitely recedes from this
boundary (cf. (BT)). In any case there exists a subregion K2
of K1, which sometimes is coincident with Kl, such that
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the lower boundary of K2 being coincident with that of K1 and
the upper boundary receding indefinitely from the lower boun-
dary 59) .

If the function P(x), referred to in the formulation of subcase
Al, is coincident with Pi(x) the following facts can be observed.
Since in K2 we have exp P1(x) ~ 0, while (33) holds, necessarily

Now the number q1" occurring in the expression

is not defined for an additive term of the form 2nm where w is

any integer 60). Choose a) so that q1" ~ 0. Then

so that

Thus, in view of (34) and (35a), it is observed that, when
P (x ) = P1 (x ), case 1 (§ 2) will take place in K2.
Suppose now that P(x) ~ P1 ( x ), all of the Q(x) being of the

form (25). Then P(x) = Pq(x) (03B42~q~n). Consider curves P1,Q
satisfying the equation 

Since, by (31), R ( P1(1) ( x ) - Pq(1) ( x )) &#x3E; 0 (interior K1), it is pos-
sible to write 

q

wllere qo ~ 0. Then

The limiting directions at infinity of the curves P 1,q are roots
of the equation

59) The upper boundary is in the second quadrant; more precisely, in the sector
n.- + 2vn Ç x ~03C0 + 2vn.
-

6° ) In fact, if exp Q(x)xr{x}N, is a formal solution of the linear problem, exp
[Q(x) + 2nro #-1 x]xr{x}N will also be a solution, because exp (2nto
is a function of period unity.
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Consequently one can infer that only one curve Pl,q may extend
into the closed region K2. If the latter actually takes place,
either the curve in question is the ray x = + 2v03C0 or it is in
the second quadrant and is receding indefinitely from this ray.
Whence there exists a subregion K. of K2 (sometimes coincident
with K2 ) so that

or

Moreover, K3 can be so selected that its lower boundary is coin-
cident with the ray à5 = 03C0 -f- 2v03C0 (sufficiently far from the origin,
of course) while its upper boundary recedes indefinitely from
this ray. Since K3 is a subset of K2 and of K1, in view of (31)
and (33) we have

Moreover,

In examining the function H(|x|, x) the following situations
are seen to be possible:

Write

where x’ is on the boundary of K3’ It is noted that x is then in
Ka and v can be made to approach + ~ 62); moreover, (39)
implies that

61) These equalities are considered only corresponding to the non zero qi.
62 ) ) This is because the upper boundary of Ka certainly recedes indefinitely

away from the ray x = ra + 2vn into the second quadrant.
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where

When ( 1° ) takes place substitution of (39a) into (36b) will
yield

Hence with v positive and fixed the limit of H(|x|x,), when
x~~ (in K3), will be + o0 or - oo, depending on whether the
left member in ( 1° ) is positive or negative. Now, by (37), (37a),
H(|x|,x) does not change sign in K3. Thus, if Wo (cf. (1° )) is

positive, (37) necessarily takes place. When 03C9o  0 we have
(37a). In view of (38a) it is observed that H(|x|, x) diminishes
monotonically to the left along the line v = constant. Hence
Wo must be negative. Along the line v = constant, sufficiently
far to the left, we shall have H(|x|,x) ~0. Thus, when (1°)
takes place, necessarily (37a) will hold throughout K3. One
then has

so that, in view of (38b), it can be asserted that

Choosing the number q1, involved in (34a), so that q1"~ 0 the
relation

will be secured. In view of (41a) it is observed that (38) can
hold only with the symbols ~ 0. That is,

Whenever (1°) is on hand case 1 (9 2) will certainly take place
in a region K3 specified above.
When ( 2° ) is considered it is observed that H ( |x|,x) (36b))

is of the form
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where

as lxi ~ ~ (03BD &#x3E; 0; x in K3). Since 03B3 r p we have 03B3 - r  0
and 03B3 -p  0. Whence, by (43),

Applying a reasoning of the same type as previously employed
in proving the italicized statement subsequent to (42), it is now
established that case 1 (§ 2) is certain to take place in K3 whenever
(2° ) is on hand.
To complete the treatment of subcase A, it remains to con-

sider (3° ). The ray x = 03C0 + 2v03C0 is then a P1, q curve (cf. (36 )) 63 ).
If (37a) holds, (41) is obtained and, in view of (38b), it will

follow that (41a) holds. We can then secure ( 41 b ) . On the other
hand, (41a) would imply that (38) can hold (in K.) only with
the symbols ~ 0. Thus (42), and hence case 1 (§ 2), will be

certain to be on hand in the region K,,.
We are thus brought to the consideration of (3° ), when the

inequality (37) holds. Let x, u, v have the significance indicated
in the statement in connection with (39). In view of (39a) and (3° )

where

Thus, by (36b),

where h’ ( |x|) depends only on 1 x | and h’ ( |x|) ~ 0, as 1 x ~ oo -
Whence there exists a constant b, independent of v, so that

Consider a curve T, extending into the second quadrant and of

63) There arc no other curves extending into the closed région K3.
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the form

It recedes indefinitely from the negative axis of reals. Let K’
denote the region lying in the second quadrant and bounded by
the négative axis and by T,. Since in K’

it will follow that

Let K4 denote the region common to K3 and K’. In view of (44a)
and (45a)

The upper boundary of K4 has at infinity the limiting direction
of the ray x = 03C0 = 2 v03C0. This boundary recedes indefinitely from
the ray. By (46)

so that

Hence, by virtue of (38b),

By a suitable choice of q"" the relation (41b ) is now secured for
x in K4. In view of (47a) it is again concluded that, inasmuch
as (38) must hold throughout K4 either with the symbols &#x3E;
or , the first is necessarily the case. That is, (42) will hold in
K4. The preceding two italicized statements enable us to assert
that case 1 (§ 2) will take place in a region K4 whenever (3° )
and (37) hold.

Using lines of reasening analogous to those employed sub-
sequent to the statements formulating subcases Ai, A2 it can

be proved that, whenever subcase Ai is on hand, case 1 (§ 2)
is certain to take place in a region bounded by the negative
axis and extending into the third quadrant.

64) Throughout we keep ixl ~ ro. Choose c sufficiently small or ro sufficiently
__r

great so that cro p 03C0/2 . By a suitable choice of c and re Be can be made as
close as desired to c.
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Similarly, it is shown that case II (t 3) will occur in regions
extending into the second and in regions extending into the fourth
quadrants, whenever subcase A holds.

LEMMA 10. Under Hypothesis A (t 1 ), at least one of the cases 1
(t 2 ), II (t 3) is certain to take place. Moreover, whenever one of
these cases occurs, either (03B1’) the case will take place in a region
containing in its interior one of the extremities of the axis of reals
or ( oc" ) it will hold in two distinct regions - one extending from
the real axis upwards, the other downwards.

When (03B1’ ) holds, both boundaries of the region recede indefinitely
from that extremity of the axis of reals which is contained in the
region.

U7hen # holds, the boundary of the region in which case 1
(or ) holds contains an extremity of the axis of reals; moreover,
the boundary will contain a part receding indefinitely from this axis.
The following Existence Theorem has been established.
EXISTENCE THEOREM. Consider the non-linear difference equation

(A; § 1) under the Hypothesis A (t 1). Of the cases 1 (§ 2) and II
(§ 3) at least one is certain to occur (cf. Lemma 10). In the case 1
the equation (A) has formal solutions as specified in Lemma 2
(§ 2 ). In the case II there is a formal solution as stated in Lemma 3
(§ 3). There exist "actual" solutions analytic in every finite part
of the stated regions and involving a number of arbitrary periodic
functions. At infinity the "actual" solutions in general have a singular
point. They are asymptotically related in a certain sense, to the

formal solutions. Their analytic character is specified by the Lemma
7 (§ 5), in the case 1, and by the Lemma 8 (§ 6), in the case II.
For the involved regions at least one boundary recedes inde-

finitely from an extremity of the axis of reals. Whence it is

abserved that, with the aid of successive applications of the
equations (A; § 1), the analytic (asymptotic ) character of the
analytic continuations of the "actual" solutions can be always
inferred - at least in a half plane of the form Sx &#x3E; c and in
another half plane of the form Sx ç - c (c sufficiently great).
It is also to be noted that under some hypotheses, more restric-
tive than Hypothesis A (§ 1), the coefficients in the formal

solutions can be investigated with greater precision. Of signifi-
cance is the problem, for the present put aside, to determine

(1) Under what conditions are the coefficients of the formal
series representable along the lines of Nörlund’s methods (Laplace
integrals, convergent factorial series)?

5
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(2) Under what conditions is the formal series s(x) convergent?
When s(x) denotes a formal solution (cf. Lemmas 2 (§ 2), 3

(§ 3» and an "actual" solution y(x) is said to be asymptotic
to s(x), in the sense indicated in Lemmas 7 (§ 5) and 8 (§6),
the term "asymptotie" is justified for the following reasons. The
function y(x), on one hand, is well defined by a succession of
definite analytic processes. On the other hand, y(x) can be

represented by the first N -1 terms of the series s (x) (in general
divergent) with an error whose absolute value can be made as
small as desired either by subjecting the involved periodic
functions to suitable conditions (as stated in the text) or by
excluding the interior of a circle lael = ro where ro is sufficiently
great.
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