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Summation formulae and their relation to

Dirichlet’s series II

by

W. L. Ferrar

Oxford

1.1. It is well known that, subject to certain conditions

governing the behaviour of f(x),

cos 2n Jroe doe.

This ’summation formula’, wherein each f(n) on the left hand
side is multiplied by unity, corresponds to the Dirichlet’s series

wherein each n-s has the coefficient unity. Further,

the integral being taken along a line, parallel to the imaginary
axis, between = 2 and a = 1.

In the present paper we show that, under certain conditions,
there is, corresponding to the Dirichlet’s series

a summation formula which, for suitable functions f(x), relates

to a sum of the type

wherein
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the integral being taken along a line parallel to the imaginary
axis of s.
The investigation is closely allied to that of a previous paper 1 )

under the same title, but the two papers may be read indepen-
dently of each other.

1.2. By the methods of the former paper we were not able
to derive a general summation formula which corresponded
closely to (1 ): only formulae indirectly related to (1) were ob-
tained. In the present paper we derive a formula directiy analogous
to (1) containing it as a special case. This we are able to do
because we now confine oui attention to functions j(r) which
can be expressed in the form 2)

1.3. In § 2 we prove (1) in a manner which shows what
are the essential steps in the derivation of the general formula,
which is given in § 3. As a proof of (1) it is inferior to the known,
real variable proofs. On the other hand, it shows how (1) can
be modified so as to permit of its application to functions f(x)
for which f( +0) is infinite.

1.4. For convenience of printing we use

2. A proof of formula (1).

2.1. We base our proof of (1) on two things, the functional
equation of the zeta-function and Mellin transforms. In the

latter connection we use 3)
LFMMA 1. Let q(s) = q;(a+it) be regular and, moreover, let

1) Compositio Mathematica 1 (1935), 344-360.

2) This, in virtue of Mellin’s transform, includes a large class of functions.
3) S. BOCHNER, Vorlesungen über Fouriersche Integrale [Leipzig, 1932], 156,

Satz 47. It is sufficient for Bochner’s theorem that (2) be bounded in each closed
interval (Â1, Ill) of the open interval [Â, lil; we need only the, more crude, condition
of boundedness in the open interval [Â, MI.
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be bounded in the strip Â  a  p. Then, when Â  a  fi,

defines, for positive x, a unique function f(x) such that, within
the strip,

Moreover, the integral in (4) converges absolutely.
2.2. Let q(s ) be a function of s( =a+ it ) satisfying the following

conditions:

(I ) 99(s) is anal ytic, save possibly for poles, in a strip
-bal+c [b,c&#x3E;O];

(II) the only pole in this strip is a simple pole at s = 0, where
the residue is qo;

(III) we can determine M, f., and îl, with q &#x3E; max (b, c), so that

whenever 1 t ] &#x3E; to and - b :S a  1 + c.
We note that, of these conditions, (I) is essential, (II) can be

modified at the cost of further detail and modification of the final
formula (§ 2.5), while (III) is simply a condition that enables
us to carry out the subsequent transformations; a study of these
transformations will show just what is required of jlJ?(a+it)1
at each step.
With these conditions

defines, for any positive x, a unique function f(x). Also, as we
see by moving the path of integration to the right and to the
left respectively,

when x is large,
when x is small.

Hence the series lf(n) converges absolutely and

since both £ n-8 and f Ip{s)ds converge absolutely.
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The condition (III) enables us to move the path of integration
to the line J = - b. On using the functional equation

we then have

where Ro, R1 represent residues at s = 0, 1 respectively.
But, on using (III) again,

and so (by absolute convergence)

Hence, on moving the path of integration 4) to a = P, where
!  f1  l,

2.3. We now use Mellin’s transform. Let à be any positive
number less than P; then, if 5  (]  1,

where Kl, K2, and K are independent of a. Further, q;(s) is regular
in the strip ô  or  1, and, by Lemma 1,

4) j8 &#x3E; 0 would be enough for (6) and (7), but P &#x3E; 1- is necessary for the change
from (7) to (8).
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the integral being absolutely convergent. Accordingly,

In this repeated integral we can change the order of integration 5)
and so, after a simple calculation of residues, write it as

2.4. We have thus proved ; on combining (6), (7), and (8),
that

On evaluating the residues, we have

and, further, since f (x ) = Po + O(aeb) when x is small,

Hence our final result is

2.5. The modification of (1) when f( +o) is infinite.
Suppose that the conditions (1) and (III) of § 2.1 hold, but

that (II) is replaced by the following condition:

(II a) there is a strip Â  or  u, where 1  À  /1  1, within2
which 99(s) is regular. 

2

This condition permits of poles of cp(s) in - b  a 1 + c

5) The proof of this statement is a matter of some detail. One proof depends
on an integration by parts which exploits the oscillatory character of the leading
term in the asymptotic expansion
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other than a simple pole at s = 0, and the following modi-
fications are to be made in our previous work.

(A) In (5), RI represents, as before, the residue of q;(s)C(s)
at s = l, but Ro now represents the sum of the residues of
q;(s)C(s) at poles other than s = 1.

(B) In (6) we need Â  fi ,u in order that we may, when
a = {3, have

which is necessary to the derivation of (7).
Accordingly, the integral

in (6) must be replaced by

where Sn is the contribution from the poles passed over in the
passage from Q = - b to a = f3; that is, Sn is the sum of the
residues of

at its poles in the strip - b  a  Â .

With these conventions, the final result is that, if

where 99(s) satisfies the conditions (I), (II a), and (III), then

2.51. By giving p(s) suitable values we can give f (x ) singu-
larities of a given type at x = 0. For example,
will give f(x) a logarithmic singularity at x = 0, while

where 0  oc  1, will give f(x) an

algebraic singularity [f(x) = 0(x-1)] at x = 0.
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2.52. We conclude with a simple example of (9), namely,

This formula, first proved by Watson 6) is obtained from our
results by using the fact that

In this example tp(s) has a double pole at s = 0 and Sn=  n-l.2
3. The general formula.

3.1. Hypotheses concerning the Dirichlet’s series. We suppose
that the series

converges absolutely for a &#x3E; 1 and defines a function y(s). We
make the following hypotheses concerning this function:

(I) There is a positive number b such that some process of analytic
continuation defines y (s) over the strip - b  a  1, and the only
singularities of y(s) in this strip are poles, finite in number, none
of which lie in the strip - b  a  0.

( II ) The function y(s) is of finite order in a &#x3E; - b; that is,
for some to and some K,

We now define A (s ) by means of the equation

and make the following hypotheses concerning A (s ) :
(III) There are positive numbers ô and al such that

A(s) has no pole in - b  J  à

and, for large values of ]t [ ,

where q &#x3E; 0.

6) G. N. WATSON [Quart. J. of Math. (Oxford) 2 (1931)], 301 (6).
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(IV) The function A(s) is of finite order in - b  J  al; that

is, for some to and some B,

If these hypotheses are satisfied, then the originating Dirichlet’s
series has a corresponding summation formula. This summation
formula is not, of course, applicable to all functions f (x ), but
only to those which behave suitably. In § 3.2 we give a set of
conditions which are sufficient to ensure that the summation

formula shall be applicable.

3.11. It may be remarked that the preceding hypotheses are
satisfied by any function whose general behaviour follows that
of the zeta-function sufficiently closely. For example, in view
of the known properties of the functions ,(s) and r(s), derived from

respectively, the hypotheses (I)-(IV) are satisfied by any fune-
tion of the form (Ç(s)) (q(s)), where a, b &#x3E; 0.

3.2. Conditions that the summation formula be applicable to a
function f(x).

As in § 2.2, we impose conditions on the function q(s) used
in the definition of f(x), rather than upon f(x) itself.

Let T(s) be a function of s which satisfies the following con-
ditions :

( I ) q(s) is analytic, save possibly for poles, in a strip
- b  a  1 + c, where b, c &#x3E; 0 and 1 + c &#x3E; (JI ;

(II) the only pole in this strip is a simple pole at s = 0, where
the residue is qo ;

(III ) in the strip - b  a  1 + c

where À &#x3E; max (1, K, B) ;
(IV) IA(-b+it)q;(-b+it)1 is integrable in (- oo, oo).
Under these conditions 7),

7) The condition (II), like (II) of § 2.2, may be relaxed at the cost of a
suitable modification of the resulting formula. Further, (III), like (III) of § 2.2, is
an ad hoc condition that enables the subsequent transformations to be carried
out.
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defines, for any positive 1t, a unique function f(x) such that

when x is large,
when x is small.

Further, as in § 2.3,

3.3. The same sequence of transformations as that used in

§ 2 now gives

where Ro, (R) represent residues at s = 0 and at poles of 1p(s)
other than s = 0.

But, on using the absolutely convergent series

where 0. is the sum of residues at the poles of A (s ) in (ô, al ).
[By hypothesis, A (s ) is regular in (-b, ô).]
Further,
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the change of order 8) being justified by absolute convergence.
Hence, on using the fact that

and defining the function f3(y) by means of the equation

we see that

3.4. This general formula admits of considerable simplifi-
cation in most of the special cases that have been investigated.
Examples of such simplification are given below.

(a) In some cases, e.g. 1jJ(s) = (s),

(b) If the abscissa of convergence of y(s) is less than unity, e.g.

then

and the term - 990A (0) L annw on the one side of equation (10)
merely cancels the term -1J’(0). J( +0) on the other.

(c) If there is a number or3l less than al, such that

when a3  l1  a1 and 1 tu is large, then it is possible to absorb
all terms of 0. that arise from poles of A (8) in (dr3l a1) into
the integral term of (10).
What happens is sufficiently shown by considering the simple

case y(s) = (s). Here

8 ) In the corresponding work of § 2.3 we did not introduce l; we there had
only conditional convergence.
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and we take [cf. § 3.1 (III)], where E is small. Further,
we take 1 The expression

of (10) is, in this particular case,

cos 2nnx dx .

The arithmetical details when A (s ) has double poles, for example
when 1jJ(s) = {C(S)}2, are rather more tedious, but present no
serious difficulty.

3.5. Finally, formula (10) may be modified so as to permit
of its application to certain functions f(x) derived from functions
99(s) which do not satisfy condition (II) of § 3.2. The sort of
modification that will be necessary is shown by § 2.5, where the
special case 1jJ(s) = C(s) is considered.

4. The Dirichlet’s series considered by Hecke.

A further extension of (1) arises in the following way. Consider
the Dirichlet’s series

which are such that (s - k) y (s) is an integral function and, further,
are such that

where

and Â, k are positive numbers. Such series have recently been
studied by Hecke 9 ).

9) E. HECKE, Über die Bestimmung Dirichletscher Reihen durch ihre Funk-
tionalgleichung [Math. Ann. 112 (1936), 664----699].
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The work of § 3 can be modified to prove the existence of a
summation formula that corresponds to each such Dirichlet’s
series. The definition of the function A (s ) in § 3.1 must be

replaced by 

and the other modifications are of an equally simple character.
We shall not develop the details.

Actually, the basis of Hecke’s interesting paper, the trans-
ference of his problem to the field of automorphic functions,
(vide § 2 of that paper) is effected by considering the Mellin
integral

The proof of the summation formula corresponding to the Dirich-
let’s series is effected by considering, as in the earlier sections
of the present paper,

where c is such that 1 lanln-c is convergent and p(s) is a function
which permits the transformations.

(Received, October 15th, 1936.)


