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Abstract differential geometry
by

Michael Kerner

1. Introduction. When building a differential geometry one
starts usually with the conception of an "arithmetic" space of
n dimensions whose properties are presumed to be known. The
géométrie manifold is then n-dimensional.

Recently were also published some papers, as these of Michal,
Kawaguchi, Conforto and others 1), which have replaced the
arithmetic space by particular functional spaces.
A farther step in this direction leads to the investigation of

the differential geometry built upon an abstract space. To this
problem is devoted the present paper. We transplant the géométrie
research to a space of type (B) as basis. This space is also known
as Banach space. It is a linear, normed and complete space 2)
which embraces the n-dimensional space, the Hilbert space and

many others as special cases.
We attempt to build a géométrie (in general an affine) manifold

on an underlying space of type (B) with the tendency to get a
perfect conformity with differential geometry of n dimensions
in the sense, that our theory must become identical with the
former when the abstract space is taken in particular as n-

dimensional. On account of this tendency one can consider our
theory as a didactically new representation of the classical

differential geometry which avoids the employing of coordinate
and the flood of indices. The new representation yields of course
also some inconveniences peculiar to it, and it were scarcely
worth the trouble to introduce the new apparatus only for the
sake of notation simplicity.

1) A detailed bibliography one can find in STRUIx’S Theory of Linear Connec-
tions [Berlin 1934] and KAWAGUCHI’S paper [Journ. Hokkaido Imp. Univ. (1)
3 (1935), 103-106].

2) Cf. BANACH, Théorie des opérations linéaires [warszawa 1932], 53.
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In one regard only we decided in favour of a diversion from the
classical theory. We defined the tangent spaces of a manifold
and the vectors and tensors in such a manner that they do not
undergo any transformations. It is done without any deep-
seated artifice and allows us to return easily in the case of n
dimensions to the classical treatment. We wished to consider
the tangent spaces as something absolute, and to submit to trans-
formations only the representation of their connection.
When passing to a more general ground one must renounce

some notions and some properties of the examined object. The
most important is that there are in an abstract géométrie manifold
no tensors of contravariant order greater than one. It seems,

however, that these play no natural role in geometry, and the
absence of them corresponds somewhat to the essential circum-
stances. The analogy between covariant and contravariant

quantities is to be lost of course.
In the general case we call the object of investigation the

"manifold" and not the ,space,", because it is composed itself
of spaces (namely the tangent spaces). Moreover, as to termino-
logy, we follow the classical one though it is not well adapted to
our purposes. We do it in order to facilitate the understanding of
our notation which is not accepted in geometry. We shall use the
word ,,function" in a general sense replacing by it the words

"functional" and "operation". The géométrie word "represen-
tation" will be also often employed in this aim.

Part I.

Linear spaces.

2. Vectors in the affine linear space. We consider an abstract
space of type (B), that is a linear, normed and complete space.
We assume that the norm can be replaced by another one with
the condition that both norms lead to the same determination
of the limit. Hence it follows that both spaces (with two different
allowable norms) are isomorphic 3) as spaces of type (B), the

isomorphism being determined by the linear operation which
associâtes every element with itself. The ratio of norms in both

spaces is uniformly limited for all elements from above as from
below.

3) Cf. BANACH, loc. cit., 180.
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Such a space # with not completely defined norm we shall
call an affine linear space.
The capitals will denote the elements of the space F, and

the small letters the real numbers.

We call every point (element) A of the space # a contra-

variant vector of this space. The notion of a contravariant vector
is not new (it was also called a vector), y but the new term is

introduced for distinction from a covariant vector. We stress

especially that the notion of a contravariant vector is com-

pletely independent of any coordinate transformations.
We call every linear (additive and continuous) functional f(X}

in the space f3 a covariant vector of this space. Therein X denotes
an indefinite variable which can run all over the space Z -
We do not deal here with the numerical value of the functional,
but with the functional itself, as an operation. We shall often
denote the covariant vectors also by the symbol f(.).
The covariant vectors are elements of the space #f conjugate

to &#x26;2 4 ). This space (that is the space of linear functionals ) is also
normed, but, like in f3 , the norm is therein not completely
determined.
When given a covariant vector f(.) and a contravariant vector A,

we call the numerical value f(A}, taken by the functional f(. ) for
the element A, the inner (scalar) product of f(.) and A.

If the inner product vanishes,

the covariant vector f(. ) and the contravariant vector A are called
orthogonal one to another. This notion is not new 5).

If two spaces # and e"’ of type (B) are isomorphic, we
shall call also the corresponding affine linear spaces isomorphic.
Because of the allowed change of the norm in such spa-
ces there is no notion of equivalence of spaces 6), the latter

being not distinguished among the isomorphisms. As an example
of isomorphic spaces one can consider a space, vectors of which
are forces, and the ordinary configuration space.
One can build inner products of covariant and contravariant

vectors which belong to isomorphic spaces. One must only replace

4) Cf. BANACH, loc. cit., 188.

s) Cf. BANACH, loc. cit., 59.

6) Cf. BANACH, loc. cit., 180.
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the contravariant vector of one space by the corresponding vector
of the other, the isomorphism being uniquely determined of course.

3. Tensors in the affine linear space. We use the word "tensor"
in a general sense without any symmetry restrictions.
We define no contravariant tensors of order greater than one.

This is the most important difference we meet with when dealing
with the abstract geometry.
We call every n-linear functional f(Xi, X 2, ..., Xn ) in the

space 7ff a covariant tensor of order n of this space. We write also
f(. , . .. , , . .), but this kind of notation is inconvenient, if the

numerical value of n is not given. We remember that n-linear
functionals are functionals linear relative to each their argument.
A covariant tensor is said to be symmetric (resp. alternating),

if the n-linear functionalf(X1, X 2, ..., Xn) has the same property.
The inner (scalar ) product of a covariant tensor f(Xi, X 2, ... ,Xn)

of order n and contravariant vectors Al, A 2, ..., is to be defined
in like manner as for covariant vectors. If the number of vectors

A 1, A2, ..., An equals to the order n of the tensor, the inner
product f(A1’ A 2, ... , An ) is the numerical value of the mul-

tilinear functional, when for all its arguments are substituted

succesively the vectors Al, A 2, ..., An. The order of these vectors
is to be respected. Only in the case of symmetric tensors it is

indifferent. In general there are on the contrary n ! different

products.
If on the other hand the number m of vectors A l’ A 2, ... , A m

is less than the order n of the tensor, the different inner products
are covariant tensors of order (n -m ), for instance

In general there are (n ’n1 m) 1 product formations, which becomeg 
n--n&#x3E;t 1 

p

identical, if the tensor is symmetric.
We call every n-linear operation F(X1, X2, ..., Xn) which

associates with the elements Xl, X2, ..., Xn of the space 7ff an
element of the same space, a mixed tensor of contravariant order one
and covariant order n of this space (also of total order n + 1). It
can be also written F(.,., ... , . ).
The real numbers, the covariant and contravariant vectors,

the covariant and mixed tensors are called all together quantities.
A mixed tensor is said to be symmetric (resp. alternating), if

the n-linear operation F(X1, X2, ..., Xn ) has the same property.
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These terms refer only to the covariant behaviour of a mixed
tensor.

As to the inner product there are n ! different products by n
contravariant vectors A 1, A 2, ... , An, as for instance F (A i, A 2, ..., A n) .
These are themselves contravariant vectors (as elements of the

n!

space E ). In the case of m vectors there are (n-m)! products,(n-m) . 
as for instance F(A1, A2, ..., Am’ Xm+1’ ..., Xn), which are

mixed tensors of covariant order (n -m ) (we shall for mixed
tensors declare only the covariant order). All these products
become identical, if the original mixed tensor is symmetric.

In particular, the product of a mixed tensor F(.) of total order
two by a contravariant vector A is a contravariant vector F(A ).
We have yet to define the outer product. It is identical with the

ordinary product, and may be defined only when at least one of
two quantities is purely covariant. In other words, the outer product
of tzvo covariant tensors f(Xi, X 2, ..., Xn ) and g(X1, X 2, ..., ’ X m )
of order n and m Tespectively is the covariant tensor

h(Xl, X2, ..., X.1m) = f(Xl, X2, ..., Xn) . g(Xn+1’ Xn+2’ ..., Xn+m)

of order (n + m); the outer product of a covariant tensor

f(X1, X2, ..., Xn ) of order n by a mixed tensor F(X1, X 2, ..., Xm)
of covariant order m is the mixed tensor

G(X1, X2, ..., Xn+m) === f(X1, X2, ..., Xn) . F(X.+15 Xn+2’...’ Xn+m)

of covariant order (n+m).
One defines likewise the outer product of a mixed tensor by a

covariant one. The definitions embrace also the case of vectors,
because the contravariant vector is a special case of mixed tensor
(of covariant order zero), and the covariant vector is a special
case of covariant tensor (of order one). The outer product is not
permutable.

4. Metric linear space. We introduce in an affine linear space
a quadratic metric by defining a covariant fundamental tensor
g(X, Y) of order two. We assume that

1. the tensor g(X, Y) is symmetric,

2. there is such a positive number l that

for every X (the metric is "uniformly" positive definite).
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The second condition is independent on eventual allowable
change of norm.
An affine linear space with a metric which satisfies both enumerated

conditions is called a metric linear space.
The following inequality is true

where m is an appropriate positive number 1). Hence we obtain
in particular the inequality.

analogous to (4.2).
If -97 is a metric linear space, every contra variant vector A

has an absolute value equal to ilg(A, A).
The inequalities (4.2) and (4.4) allow us to prove that the

square g(X, X) of the absolute value of X is an allowable norm.
We omit this easy demonstration.

In a metric linear space R to each contravariant vector A
corresponds a covariant vector

which is to be denoted by the same letter as the former (but
small, of course). We call a (X) the covariant vector conjugate to
A. It is an element of the space .5fl conjugate to R , that is,
of the space of linear functionals in 572: . However the corres-
pondence

is in general not reversible for every a(X). It carries the whole

space £3i into a linear set 3- of the conjugate space R .
The operation (4.6), where a(X) is defined by (4.5), admits

a uniquely determined inverse operation in Y, and both opera-
tions are linear.

Indeed, if there were two contravariant vectors A and B,
for which

it would follow for every X

’1) See KERNER, Die Differentiale in der allgemeinen Analysis [Ann. of Math.
(2) 34 (1933), 548].
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and in particular

contradicting to (4.2 ), when A and B are not equal. The inversion
of (4.6) is thus uniquely determined. As to linearity, both opera-
tions are obviously additive. There remains the continuity proof.
It follows from (4.3) that

and hence, according to the definition of the functional’s norm,

The direct operation is thereby continuous. On the other hand,
it follows from (4.2) that

and hence

Thus, the inverse operation is continuous, too.

It follows from this continuity that the linear set T of the
space R is closed. We wish to observe that 3 is total 8).

For, if A is such an element that

for every functional f ( X ) of the set .!7, we have in particular

or

whence, according to (4.2), it follows

The most important is the case when the set 5 coincides

with the whole space R . In other words, the correspondence
(4.6) is then reversible for every a(X). To each covariant vector
a(X) there corresponds a contravariant vector A, for which

8) Cf. BANACH, loc. cit., 42.
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In such a case we call the metric spanning (because the conjugate
covariant vectors relative to this metric span the conjugate
space R ).

If the metric is spanning, the space !7l is isomorphic with
the conjugate space j3!f . Since this property is attributed to

spaces only exceptionally, one cannot in general introduce a
spanning metric into a space. We shall soon see that not only a
spanning metric, but also an ordinary (positive definite) metric
cannot be introduced in general.
We turn now to the special case of separable space. According

to what was said above we can take the square g(X, X) of the
absolute value as norm of X. Then it is easy to see that for our

space ÉÙ are satisfied all the axioms which characterize the real
Hilbert space, when regarding the bilinear functional g(X, Y)
as the inner product in this space 9). This conception of Hilbert
space embraces also the case of the euclidean space of a finite

number of dimensions.

Hence, if the original space of type (B) is separable, it must

be isomorphic to Hilbert space. Thus, not into every space can
one introduce a quadratic positive definite metric, if no restrictions
about spanning are made.
We return to the separable metric linear space R . If normed

by g(X, X) it is a Hilbert space. In such a space every linear
functional can be represented by g(X, A ), where, as said, g(X, A )
denotes the inner product of X by A, and A is an appropriate
element of the space R . Therefore every covariant vector is

conjugated to a contra variant one. We have to note an important
theorem:

In a separable space each quadratic positive definite metric is

spanning.

5. l’ectors and tensors in the metric linear space. In a metric

linear space we can define the inner product of two contravariant
vectors A and B. It is equal to the inner product of the covariant
vector a(X) conjugate to A by the second contravariant vector
B, that is, to a(B). The inner product is permutable, since

9) See NEUMAAN, Mathematische Grundlagen der Quantenmechanik [Berlin
1932], 19-24. The axioms are built for complex Hilbert space.



316

In a separable space it is identical with the inner product in the
isomorphic Hilbert space.

If the metric is spanning, the inner product of two covariant
vectors a(X) and b(X) can be defined. It is equal to the inner
product of one vector a(X) by the contravariant vector B, to
which b(X) is conjugate, that is, to a(B). It is permutable, too,
because of the same equalities (5.1).
When the metric is not spanning, the last definition is of value

only if at least one of the covariant vectors a(X) and b(X) belongs
to the set T of the conjugate space .9l .

If the inner product of two covariant or contravariant vectors

vanishes, these are called orthogonal one to another.

To each mixed tensor A (Y, Z, ... ) in the space L91 corres-
ponds a conjugated covariant tensor g[X, A ( Y, Z, ...)] of

the same total order (the process leading from the former to the
latter is analogous to the usual lowering of a contravariant index).

If the metric is spanning, the inverse process to the former
can be defined. Let a(X, Y, Z, ...) to be a covariant tensor.
We wish, for instance, to "bring up the first index" which corres-
ponds to the variable X. We must for this purpose determine
a mixed tensor A (Y, Z, ... ), for which

We have to solve for fixed Y, Z,... the equation

relative to U. This equation has a unique solution U which
depends on Y, Z,... We ought to prove that this solution is

a multilinear operation (mixed tensor). The additiveness of this
operation is obvious on account of the unicity of solution of
(5.3). We yet must still prove that U is a continuous function
of Y for given Z, ... The proof for the remaining variables is

the same. Let the values of Z, ... to be fixed. We have then the

inequality.

for an appropriate positive number k. Hence, on account of (5.3),

We put here
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and conclude from (4.2)

or

whence the continuity relative to Y follows. Conclusively, the
solution of (5.3) is a mixed tensor A (Y, Z, ... ) which satis-

fies (5.2).
When wishing to "bring up the second index", which corres-

ponds to Y, one must determine a mixed tensor A (X, Z, ... )
from the equation

If the original covariant tensor a(X, Y, Z, ... ) is symmetric,
all mixed tensors obtained in such a manner are identical.
The notion of inner product of tensors can be also generalized.

In a metric linear space with a spanning metric one can for instance
obtain the inner product of a covariant tensor a(X, Y) by covariant
vectors b (X ) and c(X), when forming the inner product a(B, C)
of a(X, Y) by the contravariant vectors B and C, to which b(X)
and c(X ) are conjugate. It is not worth the trouble to enumerate

all the possible cases on this account.

Part II.

Général manifolds.

6. Bare manifolds. Let I be a space of type (B). We call
it a substratum (underlying space). We suppose that to ev ery
point P of the substratum 9 or of a region !fJ of the space
57 there corresponds an affine linear space !7; which is

isomorphic to the substratum as a space of type (B). This
space .3; we call the tangent space at point P. The tangent
spaces at different points of gare therefore isomorphic to

each other. The totality of tangent spaces under their connection
with the substratum, which will be stated beneath, is called a

bare (geometric) manifold and denoted by X.
Because of the isomorphism of all tangent spaces Tp we

can represent them all on an arbitrarily chosen tangent space.
There are of course many ways of such a representation. We
choose fixed linear transformations of all tangent spaces into one
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of them, and decide to denote by the same letter, say X, the
elements of different spaces, associated one to another by these
transformations. The tangent spaces being affine linear, we replace
the norms therein by the norm in the distinguished tangent space.
In such a manner all the tangent spaces Tp- become identical,
and we can speak of a unique tangent space Y. The way of
transforming all the spaces into one of them does not play any
geometric role and can be replaced by another one. But for
continuity and differentiation considerations one must choose a
fixed transformation and conserve it during all the investigations.
Now we formulate two conditions defining bare manifolds :

the connection between the tangent spaces and the substratum,
and the allowable substratum changes.

1. The condition of connection between the tangent spaces
and the substratum. For every point P of the substratum I
(resp. of a region B there is given a one to one linear transfor-
mation of the space .57 into the whole tangent space 5 (or
p ). This transformation and its inverse are continuous func-
tions of the point P.
We denote the direct linear transformation (function) by

liere Q is an element of the space iI, and X one of the space
y. The dependence on the point P is marked by an index. The
inverse function is also linear 1°) and will be denoted by

Both functions (6.1) and (6.2) are continuous with respect to P.
It is interesting that the continuity of (6.1) does not imply that
of (6.2) 11).

10) See BANACH, loc. cit., 41.

11 ) ii"e wish to show it on an example. Let P, Q, X to be elements of the Hilbert

space formed by sequences: pi, p2, ... ; ql, q2, · · .; x1, x2, ... ; let us denote by

the greatest integer contained in . Then let us define the function

( 6.1 ) as follows :

when P t 0:

when P = 0:

One can prove that the function is continuous in respect to P for P = 0, while

the inverse function is not (it is easy to see the last fact when putting Xi = . 1 ).
i

The discontinuities on the spheres IBP il= n (n integer) can be easily smoothed.
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If the preliminary transformation of all tangent spaces into
one of them were changed, then the function (6.1) would alter.
But now this change should be restricted to be continuous with
respect to P. Otherwise the altered function Fp(Q) would cease
to be continuous.

In order to understand better the first condition one can

imagine the elements Q as ,infinitésimal displacements" at the
point of the substratum, and the elements X as something similar
in the tangent space. We reject the usual identification of the
neighbourhood of a point in the substratum and in the tangent
space.

2. The condition of allowable substratum changes. It is allowed
to transform the region B of the spaces I one to one into a

region B’ of another space I’ of type (B) isomorphie to I,
by means of a function

This function and the inverse function

must be continuous and must have the continuous first differentials

The space I’ is then a new substratum under the condition that
the function X = Fp(Q) will be replaced by

When changing the substratum 9, we consider the point P
and the corresponding point P’ of 1’ as the same point of the
manifold. One can say that the function Fp(Q ) is transformed by
the linear function tangent to Pp,.
The tangent space stays invariable! The substratum change

induces only the mutual correspondence between the substratum
and the tangent space. The situation is the same as in the case
of parametric representation of a curve. The substratum plays
the role of a parameter. The change of substratum corresponds
with the change of the parameter. We shall not have to deal
at all with transformation of tangent spaces.
The changes of substratum form of course a group of trans-

formations.
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The totality of all tangent spaces with their connection with the
substratum (condition 1 ) under admission of allowable substratum
changes (condition 2) is called a bare (geometric ) manifold of class one.
The manifold X is of class two, if the functions Fp(Q) and

Op(X) have the continuotis first differentials

and the allowable functions Pp, and Pp the continuous second
differentials

and so on. The differentials (6.5) are both symmetric 12).
It follows from the identity

by differentiating

The formula (6.4) implies

and

whence

or, on account of (6.6),

If the manifold X is of class two, we can differentiate the
identity

getting thus

or, by substituting

12) See KERNER, Ioe. cit. in footnote 7, 549.
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We denote by Tp(X, Y) the function obtained from (6.9) by
alternating, that is

One can prove that the symmetry of (6.9) [or the vanishing
of Tp(X, Y ) ] is a necessary and sufficient condition that the

tangent space (already transformed, of course) can be chosen
in some sense itself as a particular substratum. The correspondence
(6.1) becomes than a simple translation. We omit these con-
siderations, because they have no significance for us, the pre-
liminary transformation of tangent spaces into one of them [which
influences the function Fp(Q)] having been taken accidentally.

7. Vectors -and tensors in the bare manifold. If for each point
P of a region ..9J of the substratum / is defined a geometric
quantity in the tangent space, and if this quantity is a continuous
function of the point P, we speak of a geometric quantity in the
manifold X. Properly spoken, we have to deal with a field of
quantities. Thus we can consider in the manifold X scalars
(that is real numbers depending on the point P), contravariant
and covariant vectors, covariant and mixed tensors.
The geometric quantities are quantities in tangent spaces, which

do not depend on the substratum choice. Only when the definition
of a function of proper type is bound to the substratum, one must
prove the independence of this function on the substratum in
order to know it to be a quantity.
The quantities shall be denoted by ap (scalars), AP (contra-

variant vectors), ap (X ) (covariant vectors), ap(X, Y), Ap(X),
and so on, the dependence on the point P being brought into
evidence by a subscript. But we shall often omit this subscript.
When the symbols with a "prime" are attached to the changed

substratum I’, the following conditions must hold for quantities

and so on.

A process which leads from geometric quantities to other ones is
called invariantive.
To each quantity corresponds in every substratum a function
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of P which arises by representing the quantity on the substratum
by means of the transformation Fp(Q), resp. f/&#x3E;p(X). Thus,
there corresponds to a contravariant vector A p the element
OEp (A p ), to a covariant vector ap(X)the linear functional ap [Fp (Q)],
to a mixed tensor Ap(X) the linear operation f/&#x3E;p{Ap[Fp(Q)J},
and so on. We shall denote these functions by dashed letters,
as A p, îip(Q), A p( Q). They depend on the substratum choice and
coincide in a n-dimensional manifold with the quantities in the
usual sense.

In the last paragraph we have introduced for a manifold of
class two the function T p(X, Y), the definition of which has
been attached to the substratum. Nevertheless, we shall now

prove that it is a mixed tensor of covariant order two.

We differentiate the identity (6.4)

and alternate, having regard to the symmetry of the second
differential d2Pp, (Q’, R’ ),

Now we put here

and obtain with respect to (6.7), according to the definition (6.10),

whence it follows that Tp(X, Y) is a tensor.

8. Tangent differentials. We shall introduce in a manifold of
class two a process which will be called tangent differentiation.

According to what was mentioned above each quantity can
be represented on the substratum by a function which is obtained
by transforming this quantity by means of FP(Q ) or 0,(X). We
form the differential of this function, and transform it backwards
to the tangent space. The function obtained in such a manner
we call the tangent differential and denote by the sign o. In

some sense we have a formal relation

We shall explain it better by discussing several special cases.
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Let fp be a scalar which has the continuous first differential

dfp(Q). It is not necessary to transform it to the substratum.

Then, we must differentiate it, getting dfp(Q), and transform
this to the tangent space, obtaining

We wish to prove that this tangent differential of a scalar is
a covariant tensor. Indeed, when effecting the change Pp, of
substratum, we put

whence it follows by differentiating that

Putting

we obtain

or, by virtue of

that is

In such a manner, tangent differentiating of a scalar is an invariantive
process. The covariant vector (8.1) is called the gradient of the
scalar fp.
Now let Ap be a contravariant vector which has the continuous

first differential dA p(Q ). To get its tangent differential, we trans-
form it into tPp(Ap), belonging to the substratum I, then

differentiate

and at last represent the obtained function backwards by

The first term of the right member does not depend on the
substratum; but the second term, involving the operation
dq)p(Q; R), does. Thus, the tangent differentiating of a contra-
variant vector is not invariantive; no more is it so in general.
We alternate (8.2), after having put X = Bp, and respecting

(6.10),
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The right member does not depend on the substratum, and we
see that the left member is a contra variant tensor.

Now we pass to the covariant vector ap(X) which has the
continuous first differential dap(X; Q). The first transformation
leads to ap[Fp(Q)], the differentiation to

and then the inverse transformation yields

Also here the last term destroys the invariance.
By alternating (8.4), having respect to (6.10), we get

whence it follows that the left member is a covariant alternating
tensor of order two. This tensor is called the rotation of the co-
variant vector ap(X).

These examples show how to form the tangent differential of
quantities. It is in some sense a representation of the differentia-
tion in the substratum on the tangent space. The tangent differen-
tials obey the same formal rules as the ordinary differential.

If ap(X) is itself a tangent differential of a scalar fp, it follows
from the way of forming the tangent differential that

Thus, if the scalar fp has the continuous second differential

d2fp(Q, R), its second tangent differential -b2fp(X, Y) is symmetric.
It is evident that the symmetry of oap(X; Y) is also a sufficient
condition that ap(X) is a gradient.
The analogous consideration for a contravariant vector Ap

shows that
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whence it follows that Z2Ap(X, Y) is symmetric, if A p has the
continuous second differential.

9. Affine connection. We turn now to the principal object of
the present paper. We shall define in a bare manifold X of
class two the covariant differential. This determines in the manifold
the affine connection. A manifold with an affine connection is

called an affine manifold and is denoted by -Z.
We define the covariant differential by the following five

assumptions:
1. The covariant differential of a quantity is a quantity whose

covariant order is one greater than that of the given quantity.
2. The covariant differential of a scalar is equal to its tangent

differential.
3. The covariant differential is a linear function of the quantity

and its tangent differential, taken together.
4. The covariant differential of the outer product of two quan-

tities obeys the same rule as the ordinary differential.
5. The covariant differential of the inner product of tzvo quan-

tities obeys the same rule as the ordinary differential 13) .
We shall denote the covariant differential by ô. The covariant

differentials of a, A, a(X), A(X) are according to 1. ôa(X),
ôA (X), ôa (X ; Y), ôA (X; Y) (we omit from now the subscript P).
By virtue of 2. we have for a scalar f

We pass now to the covariant differential bA (X) of a contra-
variant vector A. The assumption 3. means that ôA (X) is a

linear function W of the pair [A, ZA (X)] ,

When putting here

we get

13) One can make assumptions involving much less than ours, but it were too
long to derive the constitution of the covariant differential from them.
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This equality is not quite explicit, since the function 1JI can

depend also on the element X. By changing of notation and putting
this dependence in evidence we can write

where A and jT are linear functions of their first arguments. Now
we must apply the last formula to the contravariant vector

equal to the outer product f A, having regard to the assumption
4. and to (9.1),

whence

for every A. In other words, A denotes the function independent
of X and equal to the first argument A. Thus (9.2) becomes

From the assumption 1. it follows that bA (X) must be a linear
function of X, so that the covariant differential of the contra-
variant vector A is given by (9.3), where r(A, X ) is a bilinear
operation of both arguments A and X.

Every linear operation T(X, Y) [exactly -P,(X, Y)], which as-
sociates with X, Y, belonging to the tangent space, an element of
the same space, de termines an affine connection and can be called
also the affine connection. We shall see that it is not a mixed

tensor. That T(X, Y ) can be taken arbitrary, follows from the
fact that the covariant differential (9.3) and those determined
beneath satisfy the assumptions 1-5. It is supposed of course
tha,t, when changing the substratum, T(X, Y ) is transformed in

such manner that the covariant differential rests unaltered (is
a quantity).
The next step is to determine the covariant differential ba(X; Y )

of a covariant vector a(X). We choose an arbitrary contra variant
vector A and form the inner product a(A ). The covariant differen-
tial of this product (which is a scalar) is equal to

We apply on the other hand to a(A ) the rule 5. for obtaining
the same differential
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When comparing both expressions, we get with regard to (9.3)

The vector A being taken arbitrary, it follows from this equality
that

that is the rule of covariant differentiating a covariant vector.
To obtain the covariant differential ôA (X ; Y ) of a mixed tensor

A (X), we form the inner product A (B) by an arbitrary contra-
variant vector B and apply to it (9.3)

and on the other hand the rule 5.

The comparison of both expressions yields the covariant differen-
tial of a mixed tensor of total order two

As last example we determine the covariant differential

ôa(X, Y ; Z) of a covariant tensor a(X, Y). We form the inner
product a(A, Y), which is a covariant vector, and apply to it (9.4)

and on the other hand by the rule 5.

The comparison of both expressions gives the covariant differen-
tial of the covariant tensor of order two

The structure of the formulae (9.1), (9.3), (9.4), (9.5), (9.6)
shows how to proceed in the general case of a tensor. It is for
instance for a mixed tensor A(X, Y) of covariant order two
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10. Torsion. Let us consider the formula (9.3), that is

According to the assumption 1. of the last paragraph ôA (X) is

a mixed tensor, that is a function which does not depend on the
substratum choice. Since ôA (X), determined by (8.2), has not
the same property, the operation F(X, Y) is not a tensor; it

depends on the substratum choice. The process ô is invariantive,
while the process determined by F(. , X) is not.

It follows from (8.2) that

does not depend on the substratum. Hence one can derive the
rule of transformation of h(X, Y). We omit this matter.
The invariance of (10.1) implies that of the alternated form

[see the definition (6.10) of T(X, Y)]

Since T(X, Y) is a tensor, we conclude that

is a tensor, too. This alternating mixed tensor of covariant order two
we call the torsion of the affine manifold.

In case the torsion S(X, Y) vanishes, that is, of

we call the affine manifold symmetric and denote by A. If

again

where s(X) is a covariant vector, we call the manifold semi-

symmetric.
According to (9.4) the rotation (8.5) of a covariant vector a(X )

is equal in a general affine manifold to

in a semisymmetric manifold to

and in a symmetric manifold to
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11. Parallel displacement. Let g to be an affine manifold
of class two. To the covariant differential bA (X) there corresponds
in every substratum the function

where, according to paragraph 8,

Let OE to be a curve of class one, represented by the function

P(t), which admits the continuous first derivative dp - P. If
dt

the contravariant vector has the continuous first differential,
we set Q = P in (11.1) and form the corresponding function in
the tangent space

We call this expression the covariant derivative of A along the
curve Ë. It is equal to

One can call F p( P) the tangent derivative, denote it by 1 and) g y dt

prove that it is a contravariant vector.
The same reasonning yields the covariant derivative of a

covariant vector

All properties of the covariant differential, such as the rule of
differentiating outer and inner products, can be transported to
the covariant derivative.

If, in particular, the covariant derivative of a quantity vanishes,
this quantity is said to be suhmitted to a parallel displacement
along the curve. According to (11.3) the equation determining the
parallel displacement of a contravariant vector is

or, if we pass to the substratum,
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This equation can be written, when putting

in the form

That is a linear differential equation relative to the function
A (t) 14). It is equivalent to the equation

relative to the vector A ( t ) itself.
If the value A of A (t ) for a given t, say t = 0, is determined,

there is just one solution of (11.6), equal to A for t = 0. For a

fixed t this solution depends linearly on the initial value A.
Since the right member of (11.5) or (11.6) is linear relative to

P, this equation is invariant under some change of the variable t.
The solution A (t) at a determined point P of the manifold
depends therefore only on the curve Ë, but not on its parametric
representation, and rests also unaltered, when changing the sense
of the curve. Thus, if Pl and P2 are two points of the curve 0152,
to each vector at one point is associated a vector at the other,
and vice-versa. This is a linear one to one correspondence of two
tangent spaces at Pl and at P2. When transported parallelly the
tangent space undergoes a linear transformation which is a con-
tinuous function of the parameter t.

The relation (11.4) leads to the following differential equation,
determining the parallel displacement of a covariant vector

a(X) [or a(X ; t), when bringing in evidence its dependence on t]

which is of more complicated type. We can avoid the discussion
of this equation, when reducing the investigation of a covariant
vector to that of a contravariant one. This can be done by virtue
of the fact that the inner product of a(X ) by an arbitrary contra-
variant vector A is invariant under parallel displacement. In other

14) As to the theory of differential equation in abstract spaces, cf. KERNER,
Gewöhnliche Differentialgleichungen der allgemeinen Analysis [Prace mat. fiz.
40 (1932), 47201367].
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words, the covariant vectors undergo, when displaced parallelly,
a transformation which is conjugate to that of contravariant
vectors.

The same reasonning allows to determine parallel displacement
of other quantities.

12. Pseudometric. For the sake of some specializations it is

convenient to introduce, if possible, a covariant symmetric
tensor of order two, g(X, Y) or gp(X, Y), which satisfies all

assumptions of paragraph 4. Since this tensor does not play in
all cases the role of metric, we shall call it pseudometric. We
suppose in particular it to be spanning.
We denote by q(X, Y, Z) the covariant differential of the

pseudometric

or

We effect therein two permutations of X, Y, Z.

We add the second and the third equation and subtract from the
result the first one, having regard to the definition (10.2) of the
torsion and to the symmetry of g(X, Y),

If we denote the left member, which depends on g, q, S, in short
by u(X, Y, Z), we get

Since the pseudometric g(X, Y) is spanning, the equation
(12.3) determines in a unique way the function r(X, Y) for each
X, Y. Its linearity is obvious. The affine connectio-n is therefore
uniquely defined by means of the pseudometric g(X, Y), its covariant
differential q(X, Y, Z) and the torsion S(X, Y).
The first term (12.2) may be called the three-index symbol of
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Christoffel of first kind, and will be denoted in short by c(X, Y, Z).
The unique solution relative to C(X, Y) of the equation

g[z, C(X, Y)] = c(X, Y, Z)
may be called the three-index symbol of Christoffel of second kind.

If the pseudometric g(X, Y) is not spanning, the resolution
of (12.2) is possible only for certain determinations of the tensor
q(X, Y, Z). Namely for these ones, for which the left member
of (12.2), as functional of Z, belongs for each X, Y to the part
y- of the space conjugate to the tangent space, according to
the results of paragraph 4.

13. Different specializations of the affine manifold. If, in parti-
cular,

where q(Z) is a covariant vector, we get the conf ormal connection.
It follows for such a manifold from (13.1) when putting

that

Therefore, when transporting parallelly two contravariant vectors
along a curve, the ratio of their absolute values (defined by means
of the pseudometric) rests invariant. Also their angle, defined by

is unchanged.
A symmetric and conformal connection is called a Weyl con-

nection. The equation (12.2) takes in this case the form

When denoting by Q(X, Y) the solution of the equation

it follows from (13.2)
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If in the place of (13.1) we assume that

the connection is called metric. From (13.3) it follows that, when
transporting parallelly a contravariant vector along a curve, its
absolute value is constant. In a metric manifold the pseudometric
g(X, Y) is called the metric of the manifold. Each tangent space
of such a manifold is metric linear.
A symmetric and metric connection is called a riernannian

connection. We have in this case

The function T(X, Y) is identical with the three-index symbol of
the second kind.
For a curve OE of class one represented by P(t) [t1 tt2] in

a riemannian manifold the length is defined by the integral

or

It is obviously a scalar (does not depend on the substratum
choice).
An example of riemannian manifold with a Hilbert’s substratum

is given by the so-called "Riemann-Hilbert space" 15).

14. Geodesics. Let 0152 to be a curve of class two represented by
P(t) in an affine manifold L of class three. To P corresponds
in the tangent space Tp the contravariant vector

This vector determines in the tangent space the direction of the
curve OE. If the covariant derivative of Z(t) along the curve @
has in each point the direction of Z(t) itself, the curve OE is called
a geodesic of the manifold L . To find geodesics one must solve
the equation

15) See KERNER, Extremum dans l’espace hilbertien [Annali di mat. (4) 10
(1932), 1198-202].
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or, according to (11.3),

where k (t ) is an arbitrary continuous numerical function of t.
The fact that Z(t) is defined only along OE can be easily removed.
We shall transform the equation (14.2), that is

to the substratum

where F(Q, Q ) is defined by (11.2). The first term is equal to the
second derivative P of P(t), and the equation takes the form

Let Po to be a fixed point of / and A a vector at this point.
Then Op(A) is the corresponding element of the substratum.
According to the general theory of differential equations 14) the
equation (14.3) has (we assume for an affine manifold of class
three that T(X, Y) has a continuous first differential) just one
solution P(t) in the neighbourhood of Po, for which

Thus, in each direction through a point Po there is a unique
geodesic.

If we put

by using the new parameter u we reduce the equation (14.3) to

and

The geodesics therefore do not depend on the arbitrar function k( t) .
Because of the structure of their equation they depend only
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on the symmetric part of T(X, Y ) and do not alter when changing
the torsion S(X, Y).

In the case of a riemannian connection (14.5) takes the form

which can be also written

or, according to the definition of c(X, Y, Z),

We transform this equation to the substratum

where Q is an arbitrary element. This can be also derived from
(14.4) by means of transforming to I the definition equations
of C(X, Y) and c(X, Y, Z).
We shall prove that the geodesics of a riemannian manifold

are extremals of the integral (13.5) or (13.4), which defines the
length. The theory of extremals is till now developed only in the
special case of Hilbert space 16), but it is easy to generalize it

to arbitrary spaces of type ( B ) by means of the integral notion.
If we put

the integral (13.4) becomes

and its extremals are defined by the Euler equation

where Q is arbitrary. We specialize the parameter t by the condition

Then we have

16) See KER1B4’"ER, Ioc. cit. in footnote 15, 183-202,
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The Euler equation (14.7) takes the form

or

equivalent to (14.6).

15. Curvature tensor. We suppose the affine manifold L to
be of class three and the contravariant vector A to have a con-

tinuous second differential. We form the iteration ô2A (X, Y) and
alternate it, getting the tensor

From

it follows, according to (9.5), that

The term ()2A(X, Y) is symmetric by virtue of (8.6). By alter-
nating we get

We introduce the notation

The formula (15.1) becomes

The function R(X, Y, Z) is therefore a mixed tensor of covariant
order two alternating in regard to both last variables Y, Z. We
call it the curvature tensor of the affine manifold L .

All the identities which are usually derived for the curvature
tensor can be proved also in our general case.
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16. Teleparallelism. If two points Po and Pi are joined by
two curves @i and 01522 the parallel displacement of a vector

A at Po along both curves leads in general to different vectors
B1 and B2 at P. If,, on the contrary, the vectors at P do not depend
on the joining curve 0152, at least in a neighbourhood of Po, we
say that in the affine. manifold L there is a teleparallelism.
We wish to find necessary and sufficient conditions for

teleparallelism.
Let A o to be an arbitrary contravariant vector at Po, the

manifold if being of class three. The necessary and sufficient
condition for teleparallelism is, that for each A o there exists in
the neighbourhood of Po a vector A, for which the right member
of (11.3) vanishes along each curve. This is equivalent to the

condition

for each X. Thûs, the integrability of (16.1) is the necessary and
sufficient condition for teleparallelism.
From (16.1) it follows by tangent differentiating that

or

On account of (16.1)

and by alternating we get a tensorial relation

This necessary condition leads by virtue of (15.3) to

and since the point Po and the value Ao were arbitrary, to

Thus, the vanishing of the curvature tensor is a necessary condition
for teleparallelism.

Before we prove that it is also sufficient, we must formulate
the following theorem about the partial differential equations in
the space of type (B): 

Let Y[H, As E] be a function which associates with each II



338

in neighbourhood of IIo in H-space, each A in neighbourhood of
Ilo in A-space and each E of H-space an element of A-space.
Let Y have continuous second differentials relative to II and A,
and let it be linear relative to E.
Then a necessary and sufficient condition that the equation

relative to the unknown function A(II), have in some neighbour-
hood of IIo just one solution Il (II ), for which

consists in
the symmetry of

relative to E, H.
We do not prove this theorem, since it can be done in a like

manner as for the theory of differentials 17). It seems that even
the assumption about the existence of the second differential
of "tJf(II, A, E) is superfluous.
Now we turn to the proof that (16.2) is a sufficient condition

for teleparallelism. On account of what was assumed about the
second differential in the last theorem we must suppose the affine

manifold -9"to be of class four, but this could probably be

avoided.

The equation (16.1), that is

is equivalent to the equation

in the substratum. But (16.6) is of the form (16.3), where the
point P is to be put in the place of II. The expression (16.5)
becomes

to which corresponds in the tangent space the function

And the symmetry of (16.5) is equiiralent to that of (16.7),

17) Cf. KERNER, loc. cit. in footnote 7, 5462013557.
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which is on its part equivalent to the vanishing of R (X, Y, Z).
Thus is proved again the necessity and also the sufficiency of the
condition (16.2).

17. Euclidean manifolds. We call an affine manifold g affine
euclidean, if there exists such a substratum I0 that, when
transporting parallelly a contravariant vector A, the corresponding
element A = q)p(A) of this substratum is constant. In an affine
euclidean manifold we have therefore for the substratum I0

and for every substratum I(because the torsion is a tensor)

There exists obviously in such a manifold teleparallelism, and in
virtue of what was said in the last paragraph we have

We wish to prove that the necessary conditions (17.1) and (17.2)
for an affine euclidean manifold are also sufficient.

Indeed, if (17.2) is satisfied, we have teleparallelism, and the
equation (16.6) has just one solution A p, for which in a fixed
point Po

R being an arbitrary element of the substratum I. We denote
A p by A p ( R ), bringing in evidence its dependency on R. According
to what was said in paragraph 11 about parallel displacement
Ap(R) is a linear function of R and has a uniquely determined
inverse relative to R.

After having defined Ap(R), we form the equation

which is also of type (16.3). The unknown function Pp. associates
with P’ belonging to 57 points of the same space. The condition
of integrability (16.5) takes here the form

or, according to (16.6),
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This equality is satisfied by virtue of (17.1). The equation (17.3)
is therefore integrable.
The function Pp,, which is defined by (17.3) with the initial

condition

can be taken to be a substratum change. It transforms the
substratum ,-CÇ7 into a new substratum I’ which is formed

by the same abstract space, but with another correspondence to
tangent spaces. To show that PP. is a substratum change we ought
to determine also its inverse Pp. This latter can be defined by
the equation

where Bp(Q ) is the inverse function of Ap(R), with the initial
condition

From the identity

we get by differentiating

whence, on account of (17.4), there follows the symmetry of

dBp(Q; R ), and from it the integrability of (17.6). The uniquely
determined functions Pp, and Pp are in virtue of (17.5) and (17.7)
inverses one of another.

Thus, we change the substratum from .9 to :7’ by effecting
the transformation Pp,. To the contravariant vector A p there
corresponds in I a new element A p,, for which

or

On comparing this with (17.3), we get

whence it follows, dP,(R) admitting a unique inverse, that

We see that the vector Ap, arisen from a vector Fpo(R) by
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parallel displacement, has in the substratum I’ a representing
element A’, (R) which does not depend on the point P’. To vectors
at different points, parallel by teleparallelism, corresponds in

57 the same element. Thus -9 ’ is the preferred substratum
for affine euclidean manifold, and g is such a manifold.

If the -affine euclidean manifold is metric (and consequently
also riemannian), it is called metric euclidean. For the preferred
substratum 57 in such a manifold the transform of metric

g(X, Y) to 9, that is g(Q, R), does not depend on the point P.
The length of straight line segment P = Pi + (P2-P1)t
[Otl] is then equal to

We content ourselves with these introductory developements
hoping to have shown clearly enough how to transport geometric
research on the basis of abstract spaces.

(Received, May 18th, 1936.)


