COMPOSITIO MATHEMATICA ## WILFRID WILSON On ε-nets in a complex Compositio Mathematica, tome 4 (1937), p. 287-293 http://www.numdam.org/item?id=CM 1937 4 287 0> © Foundation Compositio Mathematica, 1937, tous droits réservés. L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ## On ε -nets in a complex by ## Wilfrid Wilson Urbana, Illinois § 1. Let F be a compact metric space or a closed subset of such a space. A finite subset A of F is called an ε -net in F if $\rho(x, A) < \varepsilon$ for any point x of F. 1) The point x of F is said to be of order λ with respect to the net A if there are exactly λ points $x_1, x_2, \ldots, x_{\lambda}$ of A for which $\rho(x, x_i) = \rho(x, A), (i = 1, 2, \ldots, \lambda)$. Alexandroff has then stated the problem 2): Is it possible, for any λ -dimensional closed set F and for any ε , to find an ε -net so that no point of F has an order $> \lambda + 1$ with respect to the net? The object of this paper is to prove that to any n-dimensional complex K there is a homeomorphic metric space K' for which the answer to Alexandroff's question is in the affirmative. Let K be a finite, connected, n-dimensional complex which we imagine to be topologically immersed in the Euclidean R_{2n+1} so that the metric in K may be taken as the metric of R_{2n+1} i.e. the distance between two points of K is their distance in R_{2n+1} . Consider the infinite sequence of complexes K_0 , K_1 , K_2 , ... in which K_0 is the complex K and K_{i+1} is a regular subdivision 3) of K_i such that the new vertices introduced are centres 4) of simplexes of K_i . Let the vertices of K_i be $x_{i,1}, x_{i,2}, \ldots, x_{i-\alpha_i}$ and those of K_{i+1} be $x_{i+1,1}, x_{i+1,2}, \ldots, x_{i+1,\alpha_i}, x_{i+1,\alpha_{i+1}}, \ldots, x_{i+1,\alpha_{i+1}}$ where $x_{i+1,j} = x_{i,j}$ $(j = 1, 2, \ldots, \alpha_i)$. The set $\{x_{i,j}\}$ of all vertices $x_{i,j}$ $(i = 0, 1, 2, \ldots; j = 1, 2, \ldots, \alpha_i)$ is dense in K. ¹⁾ P. Alexandroff, Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension [Annals of Math. (2) 30 (1928), 123]. ²) P. Alexandroff l.c. ¹) 125. ³⁾ O. Veblen, Colloquium Lectures on Analysis Situs (1922). ⁴⁾ By the centre of a simplex is understood that point whose barycentric coordinates with respect to the vertices are all equal. - § 2. Introduction of the new metric in K. By a path in K_i joining vertices x and y of K_i is understood a 1-chain $x_{i,1}x_{i,2}+x_{i,2}x_{i,3}+\ldots+x_{i,l}x_{i,l+1}$ where $x_{i,1}=x$ and $x_{i,l+1}=y$; then (2.1) the length of this path is defined to be $\frac{l}{2^i}$. Of the finite number of paths in K_i which join vertices $x_{i,s}$ and $x_{i,l}$ of K_i there are one or more whose lengths as above defined have the minimum possible value such a path is called a minimum path in K_i . We now define: - (2.2) The distance $\varrho(x_{i,s}, x_{i,t})$ is the length of a minimum path in K_i joining $x_{i,s}$ and $x_{i,t}$, $(i=0,1,2,\ldots)$. We then have - (2.3) $\varrho(x_{i,r}, x_{i,s}) + \varrho(x_{i,s}, x_{i,t}) \geq \varrho(x_{i,r}, x_{i,t}), \quad (i = 0, 1, 2, \ldots);$ for otherwise a path in K_i from $x_{i,r}$ to $x_{i,t}$ via $x_{i,s}$ would have a length $\langle \varrho(x_{i,r}, x_{i,t}) \rangle$ contrary to the definition (2.2). Let a minimum path L_i in K_i joining $x_{i,s}$ and $x_{i,t}$ consist of l_i 1-cells of K_i , (i = 0, 1, 2, ...). (2.4) No two 1-cells of L_i belong to the same simplex E of K_i , (i = 0, 1, ...); for otherwise two or more 1-cells of L_i could be replaced by a single 1-cell of E, thus replacing L_i by a shorter path in K_i contrary to hypothesis. Let the upper index α indicate that the vertex x^{α} of K_{i+1} is the centre of an α -simplex of K_i . We then have: (2.5) A minimum path L_{i+1} of K_{i+1} joining $x_{i,s} = x_{i+1,s}$ and $x_{i,t} = x_{i+1,t}$ has the form $$x_1^{\alpha_1}x_2^{\alpha_2} + x_2^{\alpha_2}x_3^{\alpha_3} + \ldots + x_{l_{i+1}}^{\alpha_{l_{i+1}}}x_{l_{i+1}+1}^{\alpha_{l_{i+1}+1}},$$ where $\alpha_1 = \alpha_{l_{i+1}+1} = 0$, $\alpha_{2m-1} < \alpha_{2m} > \alpha_{2m+1}$, $l_{i+1} = 2h$ and $\alpha_{2m-1}^{\alpha_{2m-1}} \alpha_{2m}^{\alpha_{2m}} + \alpha_{2m}^{\alpha_{2m}} \alpha_{2m+1}^{\alpha_{2m}}$ is in the subdivision of a simplex E_m of K_i , $(m = 1, 2, \ldots, h)$. - (a) $\alpha_1 = \alpha_{l_{i+1}+1} = 0$, since $x_1^{\alpha_1}$ and $x_{l_{i+1}+1}^{\alpha_{l_{i+1}+1}}$ are the vertices $x_{i,s}$ and $x_{i,t}$ of K_i . - (b) Assume $\alpha_{2m-1} < \alpha_{2m}$; then $x_{2m-1}^{\alpha_{2m-1}} x_{2m}^{\alpha_{2m}}$ is in the subdivision of an α_{2m} -simplex E_m of K_i of centre $x_{2m}^{\alpha_{2m}}$; if $\alpha_{2m} < \alpha_{2m+1}$, then $x_{2m+1}^{\alpha_{2m+1}}$ would be the centre of an α_{2m+1} -simplex of K_i having E_m in its boundary and $x_{2m-1}^{\alpha_{2m-1}} x_{2m}^{\alpha_{2m}} x_{2m+1}^{\alpha_{2m+1}}$ would be a 2-simplex of K_{i+1} contrary to (2.4), hence $\alpha_{2m} > \alpha_{2m+1}$, hence $x_{2m+1}^{\alpha_{2m}}$ is the centre of a face of E_m and $x_{2m-1}^{\alpha_{2m-1}} x_{2m}^{\alpha_{2m}} + x_{2m}^{\alpha_{2m}} x_{2m+1}^{\alpha_{2m}}$ is in the sub- division of E_m . Similarly if $\alpha_{2m+1} > \alpha_{2m+2}$, $x_{2m}^{\alpha_{2m}} x_{2m+1}^{\alpha_{2m+1}} x_{2m+2}^{\alpha_{2m+2}}$ would be a 2-simplex of K_{i+1} contrary to (2.4), hence $\alpha_{2m+1} < \alpha_{2m+2}$ i.e. $\alpha_{2(m+1)-1} < \alpha_{2(m+1)}$. From (a) and (b), (2.5) follows by induction (to prove that $l_{i+1} = 2h$ we merely note that when $\alpha_j > \alpha_{j+1}$, j is even, and since $\alpha_{l_{i+1}} > \alpha_{l_{i+1}+1} = 0$, $\alpha_{l_{i+1}}$ is even). From (2.5) $x_{i,s}$ and $x_{i,t}$ can be joined by the path $L'_i = E'_1 + E'_2 + \ldots + E'_h$ in K_i where E'_m is a 1-simplex of the simplex E_m of K_i and $h = \frac{1}{2}l_{i+1}$. Since L_i is a minimum path in K_i joining $x_{i,s}$ and $x_{i,t}$ we have (c) length $L_i \leq \text{length } L_i' = \frac{\frac{1}{2}l_{i+1}}{2^i} = \frac{l_{i+1}}{2^{i+1}} = \text{length } L_{i+1}$. But by a regular subdivision of L_i we obtain a path L_{i+1}' in K_{i+1} joining $x_{i+1,s} = x_{i,s}$ and $x_{i+1,t} = x_{i,t}$ and composed of $2l_i$ 1-simplexes of K_{i+1} ; hence length $L_{i+1}' = \frac{2l_i}{2^{i+1}} = \frac{l_i}{2^i} = \text{length } L_i$. Since L_{i+1} is a minimum path in K_{i+1} , length $L_{i+1}' \geq \text{length } L_{i+1}$, hence (d) length $L_i \geq \text{length } L_{i+1}$. From (c) and (d) we have length $L_i = \text{length } L_{i+1}$, hence (2.6) $$\varrho(x_{i,s}, x_{i,t}) = \varrho(x_{i+1,s}, x_{i+1,t}), \quad (i = 0, 1, 2, \ldots)$$ Let $x_{i,r}, x_{j,s}$ and $x_{k,t}$ be any three vertices of $\{x_{i,j}\}$ $(i = 0, 1, 2, \ldots; j = 1, 2, \ldots, \alpha_i)$, then (2.7) $$\varrho(x_{i,r}, x_{j,s}) + \varrho(x_{j,s}, x_{k,t}) \ge \varrho(x_{i,r}, x_{k,t});$$ for let m be an integer greater than i, j and k, such that $x_{i,r} = x_{m,r}$, $x_{j,s} = x_{m,s}$ and $x_{k,t} = x_{m,t}$, then by (2.3) we have $$\varrho(x_{m,r}, x_{m,s}) + \varrho(x_{m,s}, x_{m,t}) \ge \varrho(x_{m,r}, x_{m,t})$$ from which, using (2.6), we obtain (2.7). Let now x and y be any points of K and x_{i,r_i} and x_{i,s_i} vertices of K_i such that the sequences $x_{1,r_1}, x_{2,r_2}, \ldots$ and $x_{1,s_1}, x_{2,s_2}, \ldots$ converge to x and y respectively in R_{2n+1} ; we then make the definition (2.8) $$\varrho(x,y) = \lim_{i \to \infty} \varrho(x_{i, r_i}, x_{i, s_i}).$$ (2.9) From (2.2) and (2.7) it follows that the metric thus introduced satisfies the usual axioms $$\left\{ egin{array}{l} arrho(x,\,x) = 0, \ arrho(x,\,y) = arrho(y,\,x), \ arrho(x,\,y) + \, arrho(y,\,z) \geqq arrho(x,\,z). \end{array} ight.$$ The points of K with the new metric thus constitute a metric space K'. § 3. (3.1) The distance in K' from a vertex of a simplex of K_i to a point of the opposite face is $\leq \frac{1}{2^i}$. Let x_0 be a vertex of an h-dimensional simplex $$x_0 E_0 = x_0 x_1 \dots x_h$$ of K_i , $(h = 1, 2, \dots, n)$, E_0 being the face opposite x_0 ; let y be any point of E_0 , E_{m+1} that simplex of K_{i+m+1} in the subdivision of E_m which contains y, $(m=0,1,\ldots)$, and x_{m+1} the centre of $x_m E_m$; then $$\varrho(x_0, y) \leq \sum_{m=0, 1, \dots, \infty} \varrho(x_m, x_{m+1}) = \sum_{j=1, 2, \dots, \infty} \frac{1}{2^{i+j}} = \frac{1}{2^i}.$$ A similar proof gives: - (3.2) The distance in K' from a vertex of a simplex of K_i to any point of the simplex or its boundary is $\leq \frac{1}{2^i}$. - (3.3) The distance in K' from a vertex of a simplex of K_i to a point of the opposite face is $\frac{1}{2^i}$. Let x_1 and x_2 be vertices of a simplex E of K_{i-1} , x_1E' and x_2E' simplexes of K_i in the subdivision of E having a common face E', and g any point of E'; then by (3.1) $$\varrho(x_1, y) \leq \frac{1}{2^i}$$ and $\varrho(x_2, y) \leq \frac{1}{2^i}$, hence if $\varrho(x_1, y) < \frac{1}{2^i}$ we should have $$\varrho(x_1, x_2) \leq \varrho(x_1, y) + \varrho(y, x_2) < \frac{1}{2^{i-1}};$$ but by (2.1), $\varrho(x_1, x_2) = \frac{1}{2^{i-1}}$ since x_1 and x_2 are vertices of the simplex E of K_{i-1} ; from this contradiction we have $\varrho(x_1, y) = \frac{1}{2^i}$; the theorem (3.3) is thus true for the vertex x_1 and face E' of x_1E' ; but from definitions (2.1) and (2.2) the distance from a vertex of a simplex of K_i to a point of the opposite face is a function of i only $(i = 0, 1, \ldots)$, so that (3.3) holds for all simplexes of K_i . From (3.3) we have: (3.4) The distance in K' from the centre of a simplex star of K_i to a point of its boundary 5) is $\frac{1}{2^i}$, (i = 0, 1, ...,). From (2.2), (2.8) and (3.4) we have: (3.5) The distance in K' from the centre of a simplex star of K_i to a point of K_i neither in the interior 5) nor boundary of the star is $> \frac{1}{2^i}$, (i = 0, 1, ...). From (3.2) we have: - (3.6) The vertices of K_i constitute a $\frac{1}{2^{i+1}}$ -net in K', $(i=0,1,\ldots)$. - § 4. Let $E = x_1 x_2 \dots x_{h+1}$ be any simplex of K_i of centre c, then from (3.4) $$\varrho(c, x_j) = \frac{1}{2^{i+1}}, \ (j = 1, 2, \ldots, h+1; \ i = 0, 1, \ldots),$$ hence: (4.1) The order of c with respect to the net of the vertices of E is h + 1. Let x be an inner point of E other than c, then there are vertices x_j and x_k of E such that x is in the interior or boundary of the star of K_{i+1} of centre x_j but neither in the interior nor boundary of the star of K_{i+1} of centre x_k ; hence from (3.2) and (3.5) we have: - (4.2) $\varrho(x, x_j) \leq \frac{1}{2^{i+1}}, \ \varrho(x, x_k) > \frac{1}{2^{i+1}}, \ \text{thus} \ \varrho(x, x_j) < \varrho(x, x_k);$ hence: - (4.3) The order of x with respect to the net of the vertices of E is < h + 1. - (4.4) The order of an inner point x of E with respect to the net of all vertices of K_i is equal to its order with respect to the net of vertices of E. For let y be any vertex of K_i other than a vertex of E; if $yx_1 x_2 \ldots x_{h+1}$ is a simplex of K_i then by (3.1) $\varrho(x,y) = \frac{1}{2^i}$; if $yx_1 x_2 \ldots x_{h+1}$ is not a simplex of K_i then $\varrho(x,y) > \frac{1}{2^i}$, thus in all cases $\varrho(x,y) \ge \frac{1}{2^i}$; but by (3.4) if x = c or by (4.2) if $x \ne c$, ⁵) Those simplexes of K_i having a common vertex constitute a simplex star whose centre is this vertex; the points of those simplexes of the star of which the centre is not a vertex constitute the boundary of the star and the remaining points of the star constitute its interior. there is a vertex x_j of E such that $\varrho(x, x_j) \leq \frac{1}{2^{i+1}} < \varrho(x, y)$, so that the order of x with respect to the net $y, x_1, x_2, \ldots, x_{h+1}$ is equal to its order with respect to the net $x_1, x_2, \ldots, x_{h+1}$. From (4.1), (4.3) and (4.4): (4.5) An inner point of an h-dimensional simplex E of K_i , $(h=1, 2, \ldots, n; i=0, 1, \ldots)$, is of order h+1 or < h+1 with respect to the vertices of K_i according as it is or is not, respectively, the centre of E. An immediate consequence is: - (4.6) The order of any point of K' with respect to the net of vertices of K_i is $\leq n+1$. - § 5. Let D_i (i=0,1,...) be the maximum of the diameters, in K, of the simplexes of K_i , then: - (5.1) $D_i \leq \left(\frac{n}{n+1}\right)^i D_0$, hence $\lim_{i \to \infty} D_i = 0$. From (3.3) we have: - (5.2) The diameter in K' of a simplex star Δ_i of K_i is $\frac{2}{2^i}$, thus $\lim_{i\to\infty} (\text{diam. } \Delta_i \text{ in } K') = 0.$ - (5.3) If x be an arbitrary point of K there is a sequence Δ_i , $(i=0,1,\ldots)$, of simplex stars such that Δ_i is a star of K_i containing x in its interior, $\Delta_{i+1} \subset \Delta_i$ and, K being closed and compact, $x = \prod_{i=0,1,\ldots,\infty} \Delta_i$. The proof is sufficiently obvious to be omitted. - (5.4) Let $\overline{\Delta}_i$ represent Δ_i together with those simplexes of K_i having vertices in common with Δ_i , then: - (a) Diam. \overline{A}_i in $K' = \frac{4}{2^i}$, by (3.3) and (5.2); - (b) Diam. \overline{A}_i in $K \leq 4 \left(\frac{n}{n+1}\right)^i D_0$, by (5.1); - (c) $\overline{\Delta}_i \supset \Delta_i \supset x$ and - (d) $\varrho(x, K-\overline{\Delta}_i) \geq \frac{1}{2^i}$ Let S(x, r) be the spherical region of R_{2n+1} of centre x and radius r, then: (5.5) We can choose r so small that for arbitrary i $S(x, r)K \subset \Delta_i$; further, from (5.4b) and (5.4c), for arbitrary r we can choose i so great that $S(x, r) \supset \overline{\Delta}_i$. Let x_1, x_2, \ldots converge to x in K; then each S(x, r) contains almost all the x_j , hence by (5.5) each Δ_i contains almost all the x_j , hence by (5.2) and (5.3), x_1, x_2, \ldots converges to x in K'. Let x_i, x_2, \ldots converge to x in K'; then by (5.4d) each $\overline{\Delta}_i$ contains almost all the x_j , hence by (5.5) each S(x, r) contains almost all the x_j , hence x_1, x_2, \ldots converges to x in K. Thus K and K' are continuous images of each other and since each point corresponds to itself we have: (5.6) K and K' are homeomorphic. From (4.6) and (5.6) we have: (5.7) To any finite *n*-dimensional complex K there can be constructed a homeomorphic metric space K' in which, for arbitrary ε , an ε -net can be constructed such that the order of any point of K' with respect to the net is $\leq n+1$. (Received June 20th, 1936.)