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On enets in a complex
by
Wilfrid Wilson
Urbana, 1llinois

§ 1. Let F be a compact metric space or a closed subset of
such a space. A finite subset 4 of F is called an e-netin F if
o(z, A) < e for any point 2 of F.1)

The point 2 of F is said to be of order A with respect to the
net A4 if there are exactly 4 points 2, @,, . . ., @, of A for which
o(x, 2;) = oz, 4), (1=1,2,...,4).1)

Alexandroff has then stated the problem 2):

Is it possible, for any A-dimensional closed set F and for any
g, to find an e-net so that no point of F has an order > 1 +1
with respect to the net?

The object of this paper is to prove that to any n-dimensional
complex K there is a homeomorphic metric space K’ for which
the answer to Alexandroff’s question is in the affirmative.

Let K be a finite, connected, n-dimensional complex which
we imagine to be topologically immersed in the Euclidean Ry,
so that the metric in K may be taken as the metric of R,,.;
i.e. the distance between two points of K is their distance
In Ry

Consider the infinite sequence of complexes K, K;, K,, . .. in
which K, is the complex K and K;,; is a regular subdivision 3)
of K, such that the new vertices introduced are centres?) of
simplexes of K. Let the vertices of K; be @; 1, ®; 5. . . ., ¥, 4, and
those of K;i; be @115 Tina,25 -+ o5 Tigrap Litta410 + * +2 PitkLotiny
where 2;,, j=;; j=1,2,..., ). The set {x; ;} of all ver-
tices @; ; (1=0,1,2,...; 7=1,2,..., ;) is dense in K.

') P. ALEXANDROFF, Untersuchungen iiber Gestalt und Lage abgeschlossener
Mengen beliebiger Dimension [Annals of Math. (2) 30 (1928), 123].

?) P. ALEXANDROFF lec.1) 125.

3) O. VEBLEN, Colloquium Lectures on Analysis Situs (1922).

‘) By the centre of a simplex is understood that point whose barycentric
coordinates with respect to the vertices are all equal.
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§ 2. Introduction of the new metric in K. By a path in
K, joining vertices z and y of K, is understood a 1-chain
@i 150 + @y 0%, 5+ - oo+ @124 49 Where 2,y =@ and 2; 4, =¥

l ..
then (2.1) the length of this path is defined to be — . Of the finite

number of paths in K,; which join vertices z; , and z; , of K;

1, 8
there are one or more whose lengths as above defined have the
minimum possible value — such a path is called a minimum

path in K,. We now define:

(2.2) The distance o(; ¢, @;,¢) is the length of a minimum path
in K; joining 2; s and @, ;,, ({=0, 1, 2,...). We then have

(2.3) Q(wi,rs mi,s) + Q(wi,w mz‘,t) = O(wi,'r’ wi,t): (t=0,1,2,...);
for otherwise a path in K; from #; , to a, , via ; , would
have a length <o(«,,,, ®; ;) contrary to the definition (2.2).

Let a minimum path L; in K, joining @; , and ; ; consist of
l; 1-cells of K;, (1=0,1,2,...).

(2.4) No two 1-cells of L; belong to the same simplex E of K,
(1=0,1,...); for otherwise two or more 1-cells of L,
could be replaced by a single 1-cell of E, thus replacing
L; by a shorter path in K, contrary to hypothesis.

Let the upper index o indicate that the vertex a* of K,,, is
the centre of an «-simplex of K,. We then have:

(2.5) A minimum path L;,, of K;,, joining x; ;= x;,; , and
@; ;= %;;1,; has the form
o o
®y 0 %o 0 @ ’i+1az I+l
@yt ey’ e liv1 Lin1+?’
where o, = o, 41 =0, tyy_1 <o > tapir, Ly = 2k and

Oom—1 0 Oam ,Kom+1 ja 1 1visi i lex
aSimtahim - gptmaiir s in the subdivision of a simple
E

of K;, (m=1,2,...,h).

m
o
_ — ; %1 Lin+l gre th rtices a;
(a) o= %, 1= 0, since x* and xli+l+1 e the ve is

and z; , of K;.

o o e o
(b) Assume oy, ; < g then 253 @52 is in the subdivision

. Lom, :
of an o,,-simplex E, of K; of centre ayi; if a5, < tgp41, then
#Bm would be the centre of an dsy,.y-simplex of K; having

- gy om0 . .
E,, in its boundary and 235 agrasiyy would be a 2-simplex of

. .
K,., contrary to (2.4), hence oy, > %, hence agims is the

Com—1 A0 Com %2 P _
centre of a face of E,, and al2riayir + ittt is in the sub
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division of E,,. Similarly if oy,,,; > 00319, Zpiraiintiadz™2 would
be a 2-simplex of K,,; contrary to (2.4), hence agpiy < Xapmie
ie. dypmin—1 < dgmin- From (a) and (b), (2.5) follows by in-
duction (to prove that [,,, =2h we merely note that when
®; >, ] Is even, and since oy >0y =0, a is even).

From (2.5) ;s and a;, can be joined by the path
L;—E! 4+ Ey+...+ E; in K, where E, isa 1-simplex of the
simplex E, of K; and h = }l,,,.

Since L; is a minimum path in K; joining ; ; and z; , we have

lz+ Ly
(¢) length L; <length L;= How _ Lin = length L, ,. But by a

T o

regular subdivision of L; we obtaln a path L; , in K, joining
and @;,1,¢= ;; and composed of 2I; 1-simplexes

’ 2l; L . .
of K;,; hence length L; , = = = length L,. Since L, is

2i+1

Liv1,6 = Xy,

a minimum path in K,,,, length L}, =length L, hence (d)
length L, =length L;,,. From (c) and (d) we have length L;
= length L;,;, hence

(2.6) Q(wi,s’ wi,l) = Q(‘Zi+1,s’ wi+1,t)’ (t=0,1,2,.. -)

Let ;,, a;, and @, be any three vertices of {; ;}
(:7=0,1,2,...57=1,2,..., ), then

(2.7) 0(@;,r» i) + (@), 55 i, t) = 0(X4,r5 T 1)
for let m be an integer greater than 4, § and k, such that
Dy = Ty gy Tj s =&y o and x, ;= a, then by (2.3)
we have
@(mm,r’ xm,s) + Q(wm,s’ mm,t) g @(wm,n wm,l)
from which, using (2.6), we obtain (2.7).

Let now z and y be any points of K and #; ,, and @; , vertices
of K; such that the sequences Ly s Lo, gy - - AN By g5 T g, -
converge to x and y respectively in R,,.;; we then make the
definition
(2.8) oz, y) = lim o(a;, = wi,si) .

i—>©
(2.9) From (2.2) and (2.7) it follows that the metric thus in-
troduced satisfies the usual axioms

ola, &) == 0,
o(@, y) = o(y, x),
e, y) + oy, 2) = o(, 2).
19
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The points of K with the new metric thus constitute a metric
space K'.

§ 3. (8.1) The distance in K’ from a vertex of a simplex of

K; to a point of the opposite face is g—%;.

Let z, be a vertex of an h-dimensional simplex
2oEg=xg2y ... 25 of K;, (h=1,2,...,n), E,

being the face opposite z,; let y be any point of E,, E, ., that
simplex of K4 in the subdivision of E,, which contains y,
(m=o0,1,...), and @,,, the centre of z,E,; then

0@ NS D 0 T) = D o=

2t 21
m=0,1,...,® ji=1,2,..,,0

A similar proof gives:

(8.2) The distance in K’ from a vertex of a simplex of K, to

any point of the simplex or its boundary is g%.

(8.8) The distance in K' from a vertex of a simplex of K, to

a point of the opposite face is %

Let #; and x, be vertices of a simplex E of K, ;, #;E’ and

z,E’ simplexes of K, in the subdivision of E having a common
face E’, and y any point of E’; then by (3.1)

1 1
Q(wl, y) ég and 9(»’”2’ y) é?’

1

hence if o(zy, y) < 50

we should have

1
0@y, ) = o(@y, y) + 0(y, @) <353

but by (2.1), o(zy, @) = 2}—_1 since z; and a, are vertices of the

simplex E of K;_;; from this contradiction we have o(2,, y) = %;
the theorem (8.8) is thus true for the vertex ; and face E’ of
2z, E’; but from definitions (2.1) and (2.2) the distance from a
vertex of a simplex of K; to a point of the opposite face is a
function of ¢ only (¢=0,1,...), so that (8.8) holds for all
simplexes of K.

From (8.3) we have:

(8.4) The distance in K’ from the centre of a simplex star of

K, to a point of its boundary %) is %, (#=0,1,...,).
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From (2.2), (2.8) and (8.4) we have:
(8.5) The distance in K’ from the centre of a simplex star of
K, to a point of K neither in the interior ) nor boundary

of the star is >2,, (z=0,1,...).

From (8.2) we have:

(8.6) The vertices of K; constitute a L -net in K,

2‘+l
(i=0,1,...).
§ 4. Let E =ax,...x,,; be any simplex of K, of centre c,
then from (8.4)
1 . .
g(c,wj)zzﬁ, G=1,2,..., h+1;t=0,1,...),

hence:

(4.1) The order of ¢ with respect to the net of the vertices
of Eis h+1.

Let « be an inner point of E other than ¢, then there are vertices
2; and x;, of E such that 2 is in the interior or boundary of the
star of K, of centre @; but neither in the interior nor boundary
of the star of K;,, of centre a;; hence from (8.2) and (8.5) we
have:

1 1
(4.2)  o@ @) =5, 0@ @) > 5, thus (2, 7;) <e(, z);

hence:

(4.8) The order of # with respect to the net of the vertices
of Eis <h-+1.

(4.4) The order of an inner point & of E with respect to the
net of all vertices of K; is equal to its order with respect
to the net of vertices of E.

For let y be any vertex of K; other than a vertex of E ; if
Y&y Xy . . . Ty, is a simplex of K, then by (8.1) o(z, y) =3 if

Y&y Ty . . . B4y is not a simplex of K, then o(z, y) > —; thus in

2"
all cases o(a, )_ 2i5 but by (8.4)if z=c or by (4.2) if # # ¢,

5) Those simplexes of K; having a common vertex constitute a simplex star
whose centre is this vertex; the points of those simplexes of the star of which the

centre is not a vertex constitute the boundary of the star and the remaining points
of the star constitute its interior.
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. 1
there is a vertex z; of E such that go(a, @;) =5 < 0@, ¥),

so that the order of x with respect to the net y, ;, @5, - . -, Tpiq
is equal to its order with respect to the net x;, @y, ..., @y
From (4.1), (4.8) and (4.4):

(4.5) An inner point of an h-dimensional simplex E of K,
(h=1,2,...,m; 1=0,1,...),is of order h+1or <h+1
with respect to the vertices of K, according as it is or is
not, respectively, the centre of E.

An immediate consequence is:

(4.6) The order of any point of K’ with respect to the net of
vertices of K; is =< n 4 1.

§ 5. Let D; ({=0,1,...) be the maximum of the diameters,
in K, of the simplexes of K,, then:

n \¢ .
(5.1) D, = (m) D,, henceilir)r:o D,=0.

From (8.8) we have:

(5.2) The diameter in K’ of a simplex star 4, of K, is %, thus
lim (diam. 4;in K') = 0.
T—> 0

(5.8) If « be an arbitrary point of K there is a sequence 4,,
(¢=0,1,...), of simplex stars such that 4; is a star of
K, containing z in its interior, 4,,,C4,; and, K being
closed and compact, x = [I 4

1=0,1,...,%

The proof is sufficiently obvious to be omitted.

i

(5.4) Let A4, represent 4, together with those simplexes of K;
having vertices in common with 4;, then:

(a) Diam. 4, in K' =, by (3.3) and (5.2);
» —_— . i

(b) Diam. Z; in K §4(n—:1) D,, by (5.1);

(¢) 4,24,Dx and

(d) ole, K—4,) =4

=§'
Let S(a, r) be the spherical region of R,,., of centre # and

radius 7, then:

(5.5) We can choose r so small that for arbitrary ¢ S(z, r)K CA4;;
further, from (5.4b) and (5.4c), for arbitrary r we can
choose i so great that S(z, r)D4;.
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Let @, 5, . . . converge to @ in K; then each S(z, r) contains
almost all the z;, hence by (5.5) each 4; contains almost all the
x;, hence by (5.2) and (5.8), @, @, . . . converges to z in K'.

Let @;, 2;, ... converge to # in K’; then by (5.4d) each 4,
contains almost all the x;, hence by (5.5) each S(a, r) contains
almost all the a;, hence @, x,, ... converges to @ in K.

Thus K and K’ are continuous images of each other and since
each point corresponds to itself we have:

(5.6) K and K’ are homeomorphic.
From (4.6) and (5.6) we have:

(5.7) To any finite n-dimensional complex K there can be
constructed a homeomorphic metric space K’ in which,
for arbitrary ¢, an e-net can be constructed such that the
order of any point of K’ with respect to the netis <n + 1.

(Received June 20th, 1936.)



