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On regular closed curves in the plane
by

Hassler Whitney
Cambridge, Mass.

We consider in this note closed curves with continuously turning
tangent, with any singularities. To each such curve may be
assigned a "rotation number" y, the total angle through which
the tangent turns while traversing the curve. (For a simple
closed curve, -y = ± 2n.) Our object is two-fold; to show that
two curves with the same rotation number may be deformed
into each other,4) and to give a method of determining the
rotation number by counting the algebraic number of times
that the curve cuts itself (if the curve has only simple singula-
rities, - see Lemma 2).

This paper may be considered as a continuation of a paper
of H. Hopf 2); we assume a knowledge of the first part of his
paper.

1. Regular closed curves.

Ordinarily, a curve in the plane is defined as a point set with
certain properties; but when we allow singularities, this mode

of definition cannot be used. (See footnote 3).) Our first purpose
is therefore to define a regular closed curve.
Let E be the Euclidean plane. Let E’ be the vector plane

(which we might let coincide with E), with origin 0. Let I be
the closed interval (0, 1). Any differentiable function f(t) with
values in E has, as its derivative, a function f’(t) = dt with
values in E’. By a parametrized regular closed curve, or para-
metrized curve for short, we shall mean a differentiable function
f(t) defined in I and with values in E, such that

1) Presented to the American Mathematical Society, Sept., 1936.
2) HEINz HoPF, Über die Drehung der Tangenten und Sehnen ebener Kurven

[Compositio Math. 2 (1935), 50--62].
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The first two conditions are the conditions for the curve to be

closed; the last condition makes t a "regular parameter". To
any such f there corresponds a unique differentiable function
f defined in ( - oo, oo), such that

and conversely.
It is natural to call two parametrized curves equivalent if one

can be obtained from the other by a change of parameter (pre-
serving orientation). The exact definition is : f and g are equivalent
( f ·v g) if there exists a funetion I(t) in (- 00, oo ) whose first
derivative is continuous and positive, and is such that

Obviously f - f, 1 rooJ g implies g - f, and f - g and g - h
imply f - h. Hence the parametrized curves fall into classes;
we call each of these a regular closed curve, or curve for short.
With any curve C is associates many (equivalent) parametri-
zations f. Let C be the corresponding set of points in the plane
E (all points f (t)) . C is by no means determined by C 3).

Given any C, a parametrization g may be chosen so that Ig’(t)1
is constant, that is, so that the parameter is a constant times
the arc length.
To prove this, set

L = L (C) is the length of C. As f ’(t) *- 0, L (t ) is a differentiable
increasing function; hence we may solve L. 8 = L (t) for t, giving
t --=:= il (s). The derivative il’(s) is continuous and positive. As f is
periodic,

hence 1](8+1) == 1](8) + 1. Therefore

3) Let C be the unit circle in E ; then for each integer n 0 there is a corres-
ponding curve Cn with Cn = C, determined by letting f(t) traverse C in the po-
sitive sense n times while t runs over I. Again, if we take an ellipse and pull the
ends of the minor axis together till they are tangent, then there are four cor-
responding curves, in each of which the corresponding f(t) traverses each point
but one of the ellipse only once.
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is a parametrization of C. Moreover,

If h is any parametrization with 1 h’(t)1 = k, then k = L and
h(t) = g(t-f-a) for some constant a. 

-

First, as h,-....J g, there is an q such that h(t) = fl(q(t)) . As

we have

and k - L. Hence q’(1) = 1, and 7î(t) = t + a.
Let fo and f, be parametrized curves. We say one may be

deformed into the other if fu(t) may be defined for 0  u  1

such that it is continuous in both variables for 0  t  1,
o u  1, and each f u is a parametrized curve.

If fo and f1 are parametrizations of C, then one may be deformed
into the other within C, that is, we can make each lu a parametri-
zation of C.
To prove this, say fl(t) ==fo(,q(t». Set

for 0  u  1. Then rJo(t) = t, rJ1(t) = q(t ), so that 10 and fi
bear the proper relation to fo and fI. As

each f u is a parametrized curve equivalent to fo.
We say C may be deformed into C’ if some parametrization

of C may be deformed into one of C’. By the above statement,
this is independent of the parametrizations chosen.

2. The deformation theorem.

The following lemma is fundamental in this section.
LEMMA 1. Let f’(t) be a continuous vector function in I, such

that f’(t) # 0. If p is a point of E, then
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is a parametrized curve if and only if

This is obvious. The last relation may be stated as follows:

The average value of f’(s) is O.
Given any parametrized curve f, we define its rotation number

y(f) as the total angle through which f’(t) turns as t traverses I.

The function f*(t) = If’(t) is a map of I into the unit circle;
I f’(t) 1 

y(f) is 2n times the degree of this map. (See Hopf. loc. cit., le,
and our equation (11).)

If f may be deformed into g, then y(f) = y(g).
For y(f.) is continuous in u, and is an integral multiple of

2n; hence it is constant. Hence, by 1, we may define y(C) for
a curve C as y(f} for any parametrization f of C.
THEOREM 1 4). The curves Co and CI may be deformed into each

other if and only if y(Co) = y(C1).
One half of the theorem was proved above. Suppose now that

y(Co} = y ( C1 ) = y. Let go and fi be parametrizations of Co and
Cl such that

Set

this deforms the parametrized curve go into one gl. Set f o = gl;
then 1 f 0 ’l I = I g Ll. We must deform fo into fi .
The proof runs as follows. We consider the maps fô and f, of I

into the circle K of radius LI. They are both of degree 2013 ; hence
one map may be deformed into the other, say by the maps hu.
We alter each h. by a translation to obtain a map fû whose
average lies at 0; these functions then define the required
deformation, at least if y # 0.
We begin by defining the vector function

this gives an angular coordinate t in K. Suppose first that y 0.
By rotations in the plane E we may alter fo and f, so that

4) This theorem, together with a straightforward proof, was suggested to me
by W. C. GRAUSTEIN.
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f§ (o ) = f§ (o ) = 0(o ). As f[(t) lies on K, we may give it an angular
measure F(t):

(See Hopf., loc. cit., la.) Then, by definition of y,

Set

It is clear that

is an integral multiple of 2n,

Finally, as y :É 0 and hence hu(t) passes over all of K, its average
value lies interior to K; therefore for no t does hu(t ) equal the
average, and J’(t) *’ 0. This proves that each lu is a regular
closed curve. As f.(t) is continuous in both variables, and it

reduces to fo and fi for u = 0 and u = 1, it is a deformation
of fo into f 1, as required.

Suppose now that y = 0. If we alter Fu(t) so that it is constant
for no u, then again J’(t) =F 0, and the above proof will hold.
Choose a to for which F1(tO) =F 0, and deform Fo(t) in a small
neighborhood of to into F1(t) in this neighborhood; now deform
the new Fo into Fi by the process given above. Then

(as Fu(O) == 0) no F. is constant.

3. Crossing points of curves.

Let f( t) be a parametrized curve. Let p be a point of the plane.
If there are exactly two numbers tl, t2, such that

and if f" (t,) and f’(t,) are independent vectors, we call p a (simple )
crossing point of the eurve. This is evidently independent of the
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parametrization. If the curve has no singularities other than a
finite number of simple crossing points, we say the curve is

normal.
LEMMA 2. Any curve may be made normal by an arbitrarily

small deformation.
Given e &#x3E; 0, cut I into intervals Il, ..., Iv so small that each

corresponding arc Ai = f (Ii) is of diameter  c, and the tangents
at different points of Ai differ by at most 8. By a small defor-
mation we may clearly obtain arcs A’. such that neither end of
any A’ touches other points of the curve. Now for any i and
it is easy to replace A by an arc A’.’ arbitrarily near it and with
the same ends so that A;’ cuts Ai in simple crossing points only5).
Alter thus A’ in relation to A"; then A 3 in relation to A i; then A 3
in relation to A 2, altering it so slightly that its relation to A 1 is
not impaired, etc.

Let f be a parametrized curve, and let C be the corresponding
set of points f(t) in the plane. We say f has an outside start1np,
point. if there is a line of support to C 6) containing f( 0).

Let f( t1) = f(t2), 11  t2, be a crossing point. If the vectors

f’(tl) and f’{t2) are oriented relative to each other in the opposite
manner to the (fixed) x- and y-axes, we say the crossing point
is positive; otherwise, negative 1). If we set g{t) = f(t+ -r) with
tl  7: t2, then the above crossing point changes its type.
Corresponding to any normal parametrized curve are the numbers

These may be found by following the curve from its starting
point, and watching the intersections with the part of the curve
already traversed.
THEOREM 2. If f is a normal parametrized curve with an outside

starting point, then

I f the axes are moved so that the x-axis is the line of support at

5) The proof is shnplified by first replacing f(t) by a function g(t) 1;ith con-
tinuous second derivatives. The lemma is contained in Theorem 2 of H.WHITNEY,
Differentiable manifolds [Annals of Math. 37 (1936)]. (ive replaee I by the unit
circle M and use (b) of the theorem. ) 

6) That is, a straight line touching C and having each point of C on it or on
a single side of it.

7) An example of a positive crossing point is giyen in Fig. 2.
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f( 0) and the curve is on the sa1ne side of this line as the positive
y-axis, then ,u = + 1 or - 1 according’ as f’ (0 ) is in the positive
or negative x-direction.

In particular, if the curve has no singu-
larities, then y = rb 2Jc, which is the ,,Um-
laufsatz".

Let T be the triangle of all pairs of
numbers

Let l(t1, t2) be the smaller of t2 - t1 and

(1 + il) - t2 - Set

y is continuous in T, and is 0 at (t1, t2 ) if and only if tl  t2
(but not t1 = 0, t2 = 1), and f (t1 ) = f (t2 ), i.e. if and only if f{tl)
is a crossing point 8).

Fig. 2. Fig. 3.

Take any crossing point p = f(SI) = f(s,); suppose it is positive.
As 81  82’ P = (si, 82) is not on the hypothenuse of T. As f(o)
is an outside point, it is obviously not a crossing point; hence
j(O) *’I(t) for 0  t  1, and P is on neither side of T. As

P -# (0,1), it follows that P is interior to T. Choose numbers

t1, ti very close to si, and t2, t2 very close to s2, so that

8) This function replaces the function /(SI’ 82) of Hopf (p. 54). It will be seen
that _BT = ¿BT+ - A’’ is the algebraic number of times that T covers 0 under iy
(see footnote 10».
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and 

f{t1), f(t’), f(t2)1 f(t§) are equidistant from p.
Let Q be the rectangle in T containing P, with coordinates
(tl, t2), etc. It is easily seen that if we run around Q once in the
positive sense, the corresponding y runs around 0 once in the
positive sense. For running around each side of Q turns the

vector 1p through an angle of approximately 2 (see the diagram);
hence it turns, in all, approximately 2n; but it turns an integral
multiple of 2yr, and hence exactly 2n 9). If the crossing point is
negative, the result is obviously - 2n.

Let Pi, ..., Pm be the points of T corresponding to crossing
points, and let QI’ ..., Q m be corresponding rectangles enclosing
them, no two of which have common points. Cut the rest of T
into triangles Q m+Í’ ..., Qr. If we run around the boundary of
any Qm+Í’ 1p runs around 0 zero times 1°). To show this, consider

the vector 1J!* = 1:1. This is defined throughout Qm+i’ and itslvi 
values are on the unit circle. Hence an angular coordinate may
be defined, giving the position of y* throughout Qm+i (see Hopf,
loc. cit., lb ). If we run around the boundary of Qm+i, the angular
coordinate comes back to its original value, and hence y has
turned around zero times.

Let Cl1’...’ Cll be all sides of triangles or rectangles in T.

Let Cl1’ ..., Clk be those lying on the boundary B of T, oriented
the same as T ; the remaining oci are oriented arbitrarily. With
each oc2 we associate a number 99(oci), the angle through which
y turns when oci is traversed in the positive direction. Let qq(Qi)
be the angle through which turns when the boundary of Qi
is traversed in the positive direction; similarly for qJ(T). Now

For each lp(Qi) may be expressed as a sum (i) :!: q;{(Xj), summing
over the boundary lines of Qi ; when these sums are added, the
two terms corresponding to each aj interior to T cancel, and we
are left with the sum over the oej on the boundary of T.

1) By choosing the proper degree of approximation, it is easy to make this

reasoning rigorous.
10) Hence, in all cases, cp( Qi) (see below) is the algebraic number of times

that the map y of Qj covers 0.
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We have seen above that

Suppose u - 1. If Si, S2 and H are the positively oriented sides
and hypotenuse of T (see Fig. 1), it is easily seen that

(See Hopf, pp. 54-55. The change in sign is caused by the dif-
ference in orientation of S1 and S, from that used by Hopf.)
Hence, using (17) and (18),

which gives (15). If fi = - 1, the only change is that

P(Sl) = P(S2) == n, and (15) again follows.

(Received December 21th, 1936.)


