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The Cayley-Spottiswoode coordinates of a conic
in 3-space.
by

H. S. Ruse
Edinburgh

If a conic in a three-dimensional projective space is defined
by the quadratic complex of lines which meet it, the coefficients
in the equation of the complex may be regarded as coordinates
of the conic. The coordinates thus defined, analogous to the
Pliicker coordinates of a line, are due essentially to Cayley 1), but
were defined independently and differently by Spottiswoode 2).
They were employed recently by J. A. Todd %) to represent the
conics of 8-space by points of 19-space, for which purpose he
introduced a symmetrical and concise notation which, with
certain modifications, is used in the present paper. Each conic
has twenty-one distinct homogeneous coordinates which satisfy
certain identical relations; these are obtained below by a method
which shows that the symbolic calculus 4) employed by Todd
admits of a geometrical interpretation. A variety of other formulae
are also established, expressing the condition that two conies
should intersect, that they should be coplanar, and so on.

Todd’s notation is extended so as to be brought into confor-
mity with that of tensor, or rather of spinor, analysis. The theory
of four-component spinors 5) is really that of three-dimensional
projective geometry, and the associated calculus has a power and
conciseness which makes it a valuable instrument in the analy-
tical treatment of ordinary projective geometry. It may however
be added that the present paper is not concerned with the dif-

1) CavrEY [Quart. J. of Math. 3 (1860), 225].

?) SporTiswooDE [Proc. London Math. Soc. (1) 10 (1879), 185].

3) Toop [Proc. London Math. Soc. 36 (1933), 172].

4) See Grace and Young, Algebra of Invariants (Cambridge 1903).

5) The theory of four-component spinors, and the notation adopted in this
paper, is outlined in a series of papers by VEBLEN and others in Proc. Nat. Acad.
Sci. 19 (1933) and 20 (1934).



[2] The Cayley-Spottiswoode coordinates of a conic in 8-space. 439

ferential aspects of the spinor theory, since it deals with a single
8-space and not with the infinity of such spaces (each associated
with a point of an ‘“‘underlying space’) which appear in spin-
geometry proper.

§ 1. Notation and preliminaries.

The points of the projective 8-space are represented, in a given
system of reference, by four homogeneous coordinates
X4 = (X1, X2, X3, X4). Capital letters 4, B, C, ... used as suf-
fixes will always take the values 1, 2, 8, 4, and the summation
convention for repeated suffixes will be employed throughout.
A transformation of coordinates (or, alternatively, a collineation)
is given by a linear relation of the type.

o X' = T4X5, (1.1)

where g is an arbitrary factor of homogeneity and T% is a square
matrix of rank 4. ¢ will be used generally to denote an arbitrary
factor, and will not necessarily be the same from formula to
formula.

A plane whose equation in the first system of coordinates is
@4 X4 =0 transforms into ¢, X4 =0, where

0P4 = tiPs (1.2)
t7 being the matrix reciprocal to T4, so that
taTE = &L (1.8)

Here 6% is the Kronecker symbol having the value unity when
A = C and zero when A # C. The coordinates of a point are there-
fore represented by a central letter with a single upper (contra-
variant) suffix, and those of a plane by a central letter bearing
a single lower (covariant) suffix.

If X4, Y4 are two points of the space, the Pliicker coordinates
p*® of the line joining them are defined by

/opif = XAYB — XBY4 (1.4)

If 94, v, are any two distinct planes through this line, the dual
set of Pliicker coordinates is given by

0Pap = Pa¥s — PBYa- (1.5)

Of course p*?= —p® and p,z= — pps. The two sets of
Pliicker coordinates are connected by the relation

@Pan =5ABCDPCDs (1.6)
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where ¢,5cp 1s defined to have the value 1 or — 1 if ABCD is
respectively an even or odd permutation of 1284, and to be
zero if two or more suffixes are equal; e?5°C, ysed below, is defined
in the same way. Both e-symbols are therefore skew-symmetric
for an interchange of any pair of suffixes.

Under the transformation (1.1), p“® becomes p’4®, where
op' 8 =T THp ", and p,p transforms into p/z, where op) =
tit2pcp- In general the mode in which the various quantities
transform will be indicated by the position of their suffixes, the
matrix 7% being used with contravariant and the matrix ¢4 with

covariant. So for example e, transforms according to

0€4pcp = Eprontitatets
=teypep
where ¢ is the determinant |¢%|. If the arbitrary factor g is
chosen 8) to be equal to t, we obtain &, zcp = €45cp> S0 that &,4p0p
may be said to transform into itself; similarly ¢*2°? transforms
into itself.

In the theory of spinors the two sets of Pliicker coordinates
of a line are normalized in terms of one another (that is, a parti-
cular choice is made of their factors of proportionality) according
to the formula

pAB = %EABCDPCD , (1.7)
from which it at once follows that
Pap = }e4pcoP"- (1.8)

This normalization renders definite in any given coordinate system
the operations of raising and lowering pairs of skew-symmetric
suffixes, these operations being in fact defined by (1.7) and (1.8)
respectively.

With this notation, the identical relation satisfied by the
Pliicker coordinates of a line may be written in any of the forms 7)

=0, g4BCD

@11)  e,50,p" PP PasPcp =0, p*Ppp=0. (1.9)

¢

6) This choice of the arbitrary factor g is equivalent to attaching a “weight”’
to the “spinor’ ¢ 4 gcp. For present purposes this, like the normalization defined
by (1.7) and (1.8), is not really necessary, but it seemed desirable that the notation
of this paper should be kept as consistent as possible with that of Veblen. The
normalizations introduced in §§ 2, 3 are however made for the purpose of adding
conciseness to the algebra. They do not affect the homogeneity of the formulae,
and therefore do not destroy the projective character of the geometry. (But see
Note 12 below.)

7)  Small numbers to the left of formulae in this paper refer to the corresponding
formulae of Topp’s paper (Note 3 above.)
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The condition that two lines p*?, ¢*% should intersect is
p*?q45 =0 or pypg’® =0. (1.10)

The point where a plane ¢, meets a line p*®? has coordinates
p*®e,, and the plane through a point X“ and a line p,p has
coordinates p X 5. The plane ¢, passes through the line p,p if

pAB(pB = 05 (1’11)
and the point X* lies on it if
PABXB =0 (1.12)

and conversely.

The line whose Pliicker coordinates are p,; (or p*?) will be
referred to as the line p. Also it will be convenient later to use
the notation (pq) for the inner product p,z¢*? of the coordinates
of two lines. So

(P9) =p49*" = (qp)- (1.13)

The following simple theorems will be of frequent usc:
THEOREM L. If h,p, k,; are any pair of square skew-symmetric
maitrices of order 4, not necessarily satisfying (1.9) or (1.10), then 8)

b gk®C + k, ghPC = — Lhy k564, (1.14)
The proof consists of writing the relations (1.14) in full, giving
the free suffixes A, C particular values.
If p, q are lines which intersect, (1.10) and (1.14) give
Pard"C + 95" =0, (1.15)

which is therefore an equivalent form of the condition (1.10).
Putting ¢ = p in the last equation, we at once obtain the identity
(1.9) satisfied by the coordinates of a line, but in a slightly
different form, namely

PasP”° =0. (1.16)

TaeoreMm II. If p, q are two lines, and

Pap9"C =0, (1.17)
the lines coincide.

For if (1.17) is true, then
P4sq  Pc=0 (1.18)
for all planes g.. But ¢" ¢, is the point where the plane ¢, meets

8) Cf Werrzensock, Komplex-Symbolik [Leipzig 1908], 8.
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the line ¢, and (1.18) states that this point lies on the line p
(Cf (1.12)). Since ¢ is any plane, this means that all points on ¢
lie on p. Hence p, q are the same line.

THEOREM III. The necessary and sufficient conditions that three
lines p, q, v should be concurrent are

pABqBCTCD =0, QABTBCPCD =0, TABPBCQCD =0. (1.19)

The conditions are necessary. For suppose that the lines meet
in the point X“. Then ¢®¢ is given by

qBC — XBQC - XCQB
where Q* is any other point on the line q. Hence

Papd” Tcp = Pap(XPQ° — XQP)rcp
=0
since X“ lies on both lines p, r and consequently p,zX® and
rcpX ¢ are both zero. So the first of equations (1.19) is satisfied,
and similarly the others.

To establish the sufficiency of the conditions, suppose that
P, g, r are three lines satisfying (1.19), and assume for the moment
that ¢, r do not coincide. Let X* be any point. Then the first
of the equations (1.19) gives

P 4575 pXP = 0. (1.20)

But 7.,X” is the plane through the point X“ and the line 7;
q%r.pX"? is the point where this plane meets ¢, and by (1.20)
this point lies on p. Since X“ is any point, this means that p, q
meet on all planes through r. Hence either (I) p, ¢, r are con-
current; or (II) p, r coincide and ¢ meets them; or (III) p, ¢
coincide but do not necessarily meet r. If (I) or (II) is true, the
theorem is proved. If (III) is true, it quickly follows from the
second of equations (1.19) (using (1.14) and (1.16)) that the
coincident lines p, ¢ do meet r. Similarly in the hitherto excluded
case when ¢, r coincide, the fact that p meets them is an almost
immediate consequence of the third equation (1.19).

COROLLARY a. If two lines p*®, q*Z intersect, and if p 4 5q°“rcp=0,
then the line q passes through their point of intersection.

CoRrOLLARY b. If two lines p, q intersect, then p,3¢"*“pcp =0,
q45P"°qer = 0. Conversely, if either of these relations is satisfied
by two lines, they intersect.

THEOREM IV. The necessary and sufficient conditions that three
lines p, q, r should be coplanar are

pAB‘IBcTCD =0, qA BTBCPCD =0, r* BchqCD =0. (1.21)
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This is the dual of Theorem III.

COROLLARY a. If the two lines p, r intersect and p*®qpcr®® =0
then q lies in their plane.

CoroLLARY b. If two lines p, q intersect, then pA8qpcp®° =0,
q*Pppcg®® = 0. Conversely, if either of these relations is satisfied
by two lines, then they intersect.

§ 2. The coordinates of a conic.
Let now
(2.21) d 4 5cpp?pP =0 (2.1)

be the equation of the quadratic complex of lines which meet a
given conic. Since p*”® is skew-symmetrical in its suffixes, the
coefficients d,p., may be defined as skew-symmetrical in 4, B
and also in C, D. That is,

dABCD = - dBACD = dBADC = - dABDC' (2'2)

Also, since the left-hand side of (2.1) may be written d¢p,zp“ P,
we may take

dcpas = Aapcp- (2.3)
So d4pcp is skew-symmetrical in the first pair and in the last pair
of suffixes, but is symmetrical for an interchange of these pairs.
Todd indicates this by placing a comma between the pairs in
question, thus d,; .p, but it is more convenient for present
purposes to omit the comma.

On account of (1.9) it may be assumed that d,pcp satisfies
the linear identity

(2.22) e*BPq  pen =0. (2.4)
Further, from (2.2), (2.8), (2.4), we have
dapcp + Qacps + dappc =0, (2.5)
which may also be written
e8P pep = 0. (2.5a)

The coefficients d,zcp thus defined are the Cayley-Spottis-
woode coordinates of the conic. Because of (2.2) and (2.8) only
twenty-one of them are distinct, and these satisfy the identity
(2.4). As remarked by Todd °), d,pzcp has the properties of sym-

?) Tobpb, loec. cit., 205.



444 H. S. Ruse. M

metry and skew-symmetry with regard to its suffixes possessed
by the curvature tensor R, z.p of Riemannian geometry.
Spottiswoode defined the conic as the intersection of a quadrie

(2.81) g5 X X% =0 (2.6)
and a plane
(2.82) XA =0, (2.7)

and defined the coordinates of the conic by formulae equivalent
to

233)  dypop = gacrsrp + €spAratc — BapArAc — gpchadps  (2.8)
or dypcp = 045 (€echrrp — 8epAric)s (2.8a)

where 6%% is the generalised Kronecker symbol equal to
0% 6% — 0E6%. The coefficients g, are of course assumed to be
symmetrical in the suffixes, so g,p = gp4- The d 5., of (2.8)
are easily 1) shown to be the same as those previously defined.

We shall in general suppose that the quadric g, is non-dege-
nerate, so that the determinant g= | 845| is not zero. Let g”
be the matrix reciprocal to g,5, so that

g*P gpc = 0c. (2.9)

Then of course g?”¢, @z =0 is the tangential equation of the
quadric.

If ¢, is a plane, its pole with respect to the quadric has coor-
dinates

¢t =g""pp (2.10)

and if X* is a point, its polar plane with respect to the quadric
has coordinates
X, =gapX". (2.11)

¢* and X, could of course be multipied by any factor, but it
is convenient to normalize them in relation to ¢, and X“, and
also in relation to the coefficients g,5, according to the last two
formulae; these formulae then give a method of raising and
lowering single suffixes belonging to symbols representing planes
and points. It is perhaps not altogether desirable to introduce
a method of raising and lowering suffixes in addition to that
defined by (1.7) and (1.8), but the possibility of confusion to
which it leads is small, while the gain in conciseness is great.

10)  Topp, loc. cit., 183.
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It should be noted that a conic may be defined by its plane
(2.7) and any quadric (2.6) which passes through it. But in any
given problem it will be assumed that a definite quadric is chosen,
so that the process of raising and lowering suffixes is unambiguous.

If p,5 is a line, its polar line with respect to the quadric has
coordinates g*°g®’p.p. This may not be denoted by p“?, since
in accordance with (1.7) the latter symbol represents the dual
coordinates of the same line p,5 Wwhich does not in general
coincide with its polar. Similarly the dual coordinates g,;g R

of the polar line may not be denoted by p,p.

§ 3. Special forms for the coordinates of a conic.

For the moment it will be assumed that the conic is non-
degenerate, and that it is defined as the intersection of a plane
A4 and a non-degenerate quadric g,g.

Let his = (B, k), by, () be the vertices of any tetrahedron
which is self-polar with respect to the quadric. The ordinal

(scalar) suffixes (P), (Q), (R), ..., which are bracketed to
distinguish them from the coordinate (tensor) suffixes A, B,
C, ..., take the values 1, .., 4 and, when repeated, imply a

summation. Then with a proper choice of the unit point, the
equation of the quadric with h{; as tetrahedron of reference

1s (X(l))Z -+ (X(2))2 -+ (X(3))2 + (X(4))2 =0
or 5(}))(0) XA xO — 0,

where 65, is a Kronecker delta and the coordinates X* are
connected with the original system by the formula

X4 = hip XD, (8.1)

if the h{y are properly normalized. Hence
8a5h{p hig) = O(r)(0 (8.2)

which may be written

hip higra = Oipy (o) (8-3)
The matrices h{p), k. are therefore reciprocal to one another, so
Wil = 34 (8.4)
(summation with respect to (P)). Lowering the suffix 4, we get

(2.41) hipyahip)p = 84 p- (3.5)
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The coefficients kp, for (P) =1, 2, 8, 4 are of course the (nor-
malized) coordinates of the faces of the tetrahedron, since k),
is the polar plane of h{y. The above analysis may be compared
with that belonging to the theory of orthogonal ennuples in
Riemannian geometry.

Equation (8.5) corresponds to the symbolic equation (2.41)
of Todd’s paper. Symbolically g,z = 1,1z, so it is evident that,
in order to pass from the symbolic treatment of the subject to
one in which the algebraic operations admit of a geometrical
interpretation, it is merely necessary to replace I by A and to
allow a repetition of the subscript (P) to imply a summation
from 1 to 4. So instead of writing g,p=1l lz=mmg=...
in the manner of Todd, I write g,5 = k(p)s b(p)p = Rigyalis =+ - - -

That h{; are the vertices of any self-polar tetrahedron means
that h{; are replaceable by h(#), where

14 A
kp) = k(p)olig) (8.6)

the coefficients kp,, being such that

kpyokpyr) = O0)(r)* (8.7)

It is however convenient to limit the choice of the self-polar
tetrahedron by requiring that the plane of the conic shall be one
of its faces. So we write

haya= 24 (8.8)

and denote k4 Pioyas Pya BY hgq (@ =1, 2, 8). Then (8.5)
becomes

84 = hashas + 24 Ap. (8.9)
The ordinal suffixes a, b, ... will run from 1 to 8 and, when

repeated, will sum over that range.
By (8.8) and (3.4) we get

ki hyy = 04, (8.10)
ki2, =0, (8.11)
Mhy, =0, (8.12)
Mis =1, (8.18)
Wih, g+ A4 Ay = 64, (8.14)

Hence, raising the suffix B in the last equation,
RI BB 4 2428 = g45, (8.15)

The hZ, (a =1, 2, 8), are the vertices of a triangle self-polar with
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respect to the conic, and (3.11) states that each of these lies in
the plane 1,. The point 14 is the pole of 1, with respect to the
quadric, and (8.12) states that this lies on each of the planes
h,4, which are planes through the respective sides of the self-
polar triangle. ‘

Substitute from (8.9) in (2.8). We get

(2:43) dABCD = }“aAB)‘aCD ’ (3-16)
where
(242) Auan = Aghop — Aghy,. (8.17)

The 2,,5 are the normalized coordinates of the sides of any
triangle self-polar with respect to the conic, and (8.16) is an
expression for the coordinates of the conic in terms of the sides
of such a triangle.

The line 4,,5 is the side of the triangle joining the points
ki, ki, where a b #c. So

}.23 ABCDA

I

1
2€ aCD

=m(hih? — hERY), (a #£b #c),

where m is some number. Actually it can be shown that, with
the normalizations already adopted, m = 4/g. The last relation
may therefore be written

2" = Vg eadihs, (8.18)

where ¢,,,==1 or — 1 according as abc is an even or odd per-
mutation of 128, and is zero otherwise.
The following relations will be useful. By (8.17), (8.13) and (8.12),

P dyup = — 3 dypg = — hya. (8.19)
By (3.17), (8.10) and (3.11),

hg hoap = —hg dyps = Ogp Ay (8.20)
Consequently, by (3.16),

hg dapcp =hgdcpap = AaAacp- (8.20a)
Since the line 4,,5 lies in the plane 1,

A 288 =0. (8.21)
By (38.18), (3.10),

AgBth =4/ é Eadcabdhf’
whence

AoPhyy = — Aofhyy = /g e kL. (8.22)
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We shall write in accordance with the notation described in § 1,

d;p? =16 ppr = ;'aAB}“gD’ (8.28)
a*%cp = 36" PP dppep = 23Phacp = dip??, (3.24)
dABCD _ %EABEFchGHdEFGH — ﬂgBlgD. (8.25)

Obviously d*ZCP has properties of symmetry and skew-symmetry
similar to those defined by (2.2) and (2.8) for d, ¢y, and satisfies
the identity

dABCD + dACDB + dADBC =0 (3.26)

similar to (2.5).
From (8.18) it follows that
d4BeP — ggabcgadehghfhgkf
= g(abdéce_abeécd )h;thhSkf
by a well-known property of the e-symbols 1), so that
dABP — g(hARCHER, — hihyhPh) (8.27)
or by (3.15),
(4.41) dABCD — g[(gAc—lAZC)(gBD—lBlD) _
— (g"P—212P)(gBC—2P2%)]  (8.28)
or, more concisely,
dABP — g 4B yECYTD, (8.29)
where pAB = giB _ 342B, (8.80)
Now the equation of the cone having A* as vertex and touching

the quadric g,z where it is met by the plane 1, is, according to
the usual formula,

(245X X5)(gcpA°2) — (gusX ' #°)2 =0,

or by (8.18) and the fact that g,zA% = 1,,

gap XA XP — (4 X7 =0,
that is,

(84— Aadp) X' XP = 0. (8.81)
The polar of this cone with respect to the quadric is the conic
itself; by (8.81) this has the tangential equation

yBX , Xy =0. (8.82)

11) See, e.g., VEBLEN, Invariants of Quadratic Differential Forms (Cambridge
Tract 24) Ch. I, equations (8.4) and (8.3).



[12] The Cayley-Spottiswoode coordinates of a conic in 3-space. 449

So (8.28) or (8.29) gives the coordinates of the conic in terms
of the coefficients of its tangential equation, and shows how the
conic, regarded as a degenerate quadric envelope, is related to
the conic defined in terms of the quadratic complex of lines
which meet it.

Until now the conic has been assumed to be non-degenerate.
The degenerate cases can be included in the formula (8.16) if
certain restrictions are made. Thus if the range of the subscript
a is limited to @ =1, 2 (that is, if we make A3,5 = 0), the conic
is a pair of lines harmonically conjugate with respect to the two
lines 4,,5. If we also make 4,,5 =0, then d,zcp = 41454100, and
the conic reduces to a repeated line. There are no other degene-
rate forms of the conic as defined by (2.1) or (2.8).

For a pair of distinet lines equations (8.19), (8.20) and (3.20a)
remain true (¢ = 1,2); in this case h, 4, by, are any planes through
the lines Ay,p A,,p respectively, hj, h? are respectively any
points upon them, and A* is any point on the line of intersection
of hyy, hyy (other than the point of intersection of this line with
the plane 1,).

One other form of the coordinates d, ., will be of use. Let
the lines 1,5, m,p be two tangents to the conic, and let n,, be
the chord of contact. Through 1,5, m,; n,; draw any three
planes 1,, m,, n, respectively. Then the equation of any cone
touching l,, m, along the lines where they are met by n, is of
the form

20(l, X*)(mpX?®) + a(n,X*)2 =0,
where the parameter p/o defines the particular cone. That is,
(20l mp+on,ny)X4XE =o,
or
g pX*X% =0,
where
84 = 8pa = o(Lymp+lgm,) + onynp.

Of course g, is now of determinant zero, so there is no reciprocal
matrix g*”. The conic is the intersection of one such cone and the
plane 4,; suppose that this is the cone p/s. Substituting in (2.8),
we get

12) The non-homogeneous appearance of equations (3.238), (3.30) is due to the

normalization of /4 (i.e., 74/, = 1). They may be rendered homogeneous in the
gs and A's by writing 948 = g4B;C) . __ )A;B,

29
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dpcp = 0(Lygmep + lepmyg) + onygncp, (3.88)

since of course l,; = A,z — Agl,, with similar formulae for
m,p and n,5. In dealing with any particular conic touching the
lines I, m where they are met by n, we can absorb the factors ¢
and o in the coordinates I 5z, m g, 7,5 so that (8.88) assumes
the simple normalized form

d4pcp = bagMmep + lepMap + nyphico- (3.84)

If the conic is the pair of lines I, m, we may put n,; =0, and
obtain

dapcp = lugMep + lopm g (8.85)

If the conic is a repeated line we may put m,, = 1,5 Doing so,
and dividing by 2, we get

dABCD = lA BlCD' (3-36)

Other forms for the coordinates d ¢, can easily be found. For
instance, they can be expressed in terms of the sides of triangles
inscribed or circumscribed to the conic. In all cases d,g.p has
the form g,,0,45lycps Where 1,5 (@ =1, 2, 8) are the sides of the
triangle and g, are coefficients depending on the nature of the
triangle and on the normalizations.

§ 4. Identities.
We take the coordinates of the conic in the form (8.16). Since
each of the lines 1,,; meets the other two, we have by (1.15),
AgBZbAC + Aaacky®? =0. (4.1)

Putting C = B and summing, the two terms become the same.
Then putting a =0b, we get
dt%,5=0, (4.2)
which is the linear identity (2.4) already given. Multiplying by
APE } 6 (and of course summing with respect to the repeated
indices), we obtain a quadratic identity:
d*PPEdycpe + d;c PEdY P i = 0. (4.3)
If in this we put C = B, the two terms become the same, and
we obtain the quadratic identity in the form given by Todd, viz.
(2.45) d*BPEG , pre = 0. (4.4)

Since the lines 4,45 are coplanar, it follows from Theorem IV
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of § 1 that
Ao 45l =0. (4.5)
Multiplying by AE" 2,:,A5%, we get the cubic identity
dACEFdABGHdBDKL =0. (4:.6)

Some of these equations must be independent of the linear and
quadratic identities, since the latter were deduced from the fact
that the lines 4,,; meet two by two (which is true of concurrent
as well as of coplaner lines), while (4.6) was deduced from the
fact that the lines are coplanar. It may however be noticed that
if for example we put £E=G, F=H in (4.6), we obtain an
identity which is a consequence of (4.4).

It is easy to show that, if in (4.6) we take only those equations for
which the suffixes C, D have equal values, we obtain the cubic
identities given by Todd (his formula (2.47)). The cubic
identities given by him do not therefore by themselves form
a covariantive set, but are part of the larger set (4.6) which
is completely covariantive.

It may be remarked that the quadratic identity obtainable
from (4.5) by putting b = ¢ and multiplying by AZ” is deducible
from the linear identity (2.5a).

A set of quartic identities satisfied by d 5., may be obtained
by eliminating 4, in all possible ways from four of the equations
2,45 =0, which express the fact that the lines 127 all lie in
the plane 1,. Since however we have already used the fact that
the lines are coplanar, it is to be expected that these quartic
identities will be deducible from the identities already obtained,
and so contain nothing essentially new (cf. Todd, loc. cit., page 186).

§ 5. Degenerate conics.

The present and subsequent sections of this paper contain a
series of theorems on conics as defined by their Cayley-Spottis-
woode coordinates, many of these theorems being interpretable
in terms of the 19-dimensional representation of Todd.

THEOREM 1. The necessary and sufficient condition that the
conic d,pcp should be a pair of lines is

dACEFdABGHdBDKL = 0. (5-1)

The condition is necessary. For if the conic is a pair of lines, then

dACEF = j'aAC)‘aEIH (5-2)
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the summation with respect to a being from 1 to 2. Now by
(1.16) and Theorem III (§ 1) Cor. b,

laACll?BAcBD =0 (53)

since the suffixes a, b, ¢, which take the values 1, 2 only, cannot
all be different. Multiply by A,z 72, and we obtain (5.1).

To prove the sufficiency, we assume that (5.1) is true for d
given by (5.2), where the suffix a sums from 1 to 8; that is, we
assume that the conic may be of a general form. Lowering the
suffixes GH in (5.1), multiplying by AZh{'hl and using (8.20a),
we quickly get (5.8), (a, b, ¢ =1, 2, 8). So by Theorem III the
three lines 4, are concurrent as well as coplanar. Consequently
Asqp is of the form pA,,p + q4,,5 and d is of the form

d4pcp = Mashicop + Aoaphacp + (PAias + 9A2a8) (P A1cp + 9 o)
It is easy to show that this is reducible to
dA BCD — l;AB}‘;CD + A;A B;iécm

’ 7 . . . .
where 41,5, A5 are linear combinations of 1,5, 45,5 The conic

is therefore a pair of lines.
THEOREM 2. The necessary and sufficient condition that the

conic d should be a repeated line is

dpcpd?EFC = 0. (5.4)

For, if the conic is a repeated line, say 4,5 then

d45cp = AapAcp
Since i,5A*F = 0 by (1.16), the necessity of (5.4) at once follows.
The condition is certainly not true if the conic is of a more
general form, as may be seen by substituting from (3.85) in
(5.4) and using (1.16) and (1.15); we get
Lism™E (1 mep — Lo pm™©) = 0,
which is not a true relation if I and m are different.
An equivalent form of the condition is 13)
d4pcp@eren = QapcndE Fep- (5.4a)

§ 6. Relations between points, lines, planes and conics.

The condition that a line p, should meet the conic d 5., has
already been given in (2.1).

13) I owe to Dr. Topp the remark that (5.4a) is an alternative form of the

condition (5.4).
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TueoREM 3. The necessary and sufficient condition that a point
X4 should lie in the plane of the conic d is 14)

dapcpd?FFCXE = 0. (6.1)

The condition is necessary. For, if X* lies in the plane of the
conic, then 2,3 X”, which is the plane through the point X* and
the line 1,45, and is therefore itself the plane of the conic, contains
the line 4,". So 2,,, X% 145 — 0. Multiplying by A,cpA; ¢, we get
(6.1).

To establish the sufficiency, assume the truth of (6.1). Lower
the suffixes FG, multiply by h2hY and use (8.20a). On dividing
by Acir we get 2,,pAEX"% —=0; that is, the plane A,,5X*
through X* and any one of the lines 1, contains all the lines 4.
So X4 is in the plane of the conic.

THEOREM 4. The necessary and sufficient condition that two
points X4, Y4 should be conjugate with respect to the conic is

dypepX?Y¢=0. (6.2)
Take the conic in the form (8.84), and let I, m be the tangents
from X4 to the conic. Then if X4, Y4 are conjugate, n passes

through Y“. The necessity of (6.2) follows at once from (1.12).
The condition is also sufficient. For (6.2) may be written

Aauphacp XA YC =0, (6.3)

so, assuming for the moment that the conic is non-degenerate,
we get on multiplying by A% A” and using (3.19), (3.9),

(84c — A4hc)X Y =0,

so the points are conjugate with respect to the cone (38.31).
Multiply (6.8) by h;h2 and use (8.20). We get

Suphaduchc XAYE =0,

so either 1,X4 =0 or A.Y®=0, that is, either X* or Y* lies
in the plane of the conic. Suppose X4 does so. Multiplying (6.3)
by A%h;, using (3.19) and (8.20), we obtain h,, 0, XY’ =0.
So either Ay, X4=0 or 4. Y°=0. The former equation would
require X to lie in all three of planes h,, and therefore coincide
with 24, which is not the case since it lies in the plane of the
conic. So the latter is true and Y also lies in the plane of the conic.

14) The condition (6.1) for a point to lie in the plane of a conic is due to Dr. Topb,
who derived it by use of the symbolic calculus and communicated it to me. I had
previously obtained the condition in the form dABCDdA.E.kLXDXL:O, which,
though not linear in X4, appears to be equally correct.
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It is easy to show that the theorem is still true if the conic
is a pair of lines.

CoroLLARY. The necessary and sufficient condition that a point
X“* should lie on the conic is

d pep XA X =0. (6.4)

THEOREM 5. The necessary and ' sufficient condition that the
point X* should be the pole with respect to the conic of the line p*® is

dapcp X pF =0. (6.5)

The proof is similar to that of Theorem 4.
TueoreM 6. If p*Z is a line such that

dypcpp® =0, (6.6)

then, if the conic d is mon-degenerate, p lies in its plane; but if d
is a pair of lines, p either lies in their plane or passes through their
point of intersection, or both.

For multiplying (6.6) by k2, using (8.20a) and dividing by 4,
we get A,.pp“” =0. So p meets each of the lines 1,. Hence if
the conic is non-degenerate, (¢ = 1, 2, 8), p lies in its plane.
If the conic is a pair of lines, (@ = 1, 2), the line p may be either
concurrent or coplanar with the lines 1,, and hence with the lines
which constitute the conic; or it may be both concurrent and
coplanar.

If d is a repeated line, p intersects it.

It is easy to see by the use of (1.15) and Theorem IV, Cor. b
that alternative forms of the condition are

dABCDpDE + dziizl.)}.EPCD =0, (6.7)
dABCDpCEpDF = 0. (6.8)

THEOREM 7. The necessary and sufficient condition that the
line p*® should lie in the plane of the conic is

dABCDdEFGHpAE —0. (6.9)

For, if p*% lies in the plane of the conic, the lines 4, p are
coplanar. Hence by Theorem IV, 14%p,;2;" = 0. Multiply by
AP A5H, and the necessity of (6.9) follows at once.

To prove the sufficiency, assume the truth of (6.9). Lower the
suffixes CD and GH, multiply by kSk; and use (8.20a). On
dividing by A,4; we get A2%p, . AfF =0. Since 2% and A
intersect, p lies in their plane by Theorem IV, Cor. a. Hence p
lies in the plane of the conic.
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If the conic is a repeated line, p intersects it.
THEOREM 8. If p, q are lines such that

dABCDdEFGHpAEqCG 0, (6.10)

then one lies in the plane of the conic and the other passes through
its pole with respect to the comic.

Hence, if they both lie in the plane of the conic, they are
conjugate lines.

Suppose first that the conic is non-degenerate. By (6.10) and
(8.16) we have

Aaashacohvr rhocup?¢°¢ = 0, (6.11)

where @, b sum from 1 to 8. Multiplying by h2A°A7R]] and using
(8.19), (3. 20), we quickly get 2 hccthZGpAE CG——O whence
either A,k :p*f = 0 or Agh.q° ¢ — 0; that is, either A, p** =0
or A,.:¢°¢ =0. Hence either p or ¢ meets all the lines 4, so
that either p or ¢ lies in the plane of the conic. Suppose that p
does so. Multiplying (6.11) by A?2°A"A" and using (8.19) and
(8.9), we get
(84c — Aahc)(grc — Apde)p? P4 =

That is, the polar line of p with respect to the cone (8.81) (which
line is unique since p does not pass through the vertex), meets g.
So the pole of p with respect to the conic lies on g¢.

If the conic is a pair of lines, it is easily shown that (6.10)
means that either p or ¢ passes through their point of inter-
section; and if a repeated line, that either p or ¢ meets it.

CoroLLARY. The necessary and sufficient condition that the
line p should touch the conic d is

@4 pcplrrenp” p° = 0. (6.12)

If d is a pair of lines, this means that p passes through their
point of intersection. If d is a repeated line, p meets it.
THEOREM 9. If A, is the plane of the conic d, then

d4BP 3, =0, (6.18)

and conversely.
The proof of this follows easily from (1.11), (8.16) and (8.20a).
THEOREM 10. If a plane ¢, touches the conic d, then

d**Pdgpprpapc =0, (6.14)
and conversely.
Assume first that the conic is non-degenerate. Let ¢, cut the
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plane of the conic in the line I 5, so that I, is a tangent. Let
m,p be any other tangent, and let n,,; be the chord of contact.
Then

dABCD — lA B,mCD + lCDmAB _l_ ’ﬂABnCD,

dA BCD

whence pa9c =n"Pp,nPo.

since ¢, contains the line I. But n*®¢, is the point where the
plane ¢, meets the line n, that is, it is the point of contact of
the line I, and therefore lies on the coniec. Using (6.4) we get (6.14).

If d is a line-pair, and ¢, ‘“touches” d, that is, if ¢, passes
through the point of intersection of the lines d, it is easily shown
that (6.14) is satisfied. If d is a repeated line, (6.14) is an identity
by (5.4). )

To prove the converse, assume (6.14) to be true for a plane ¢,
and suppose for the moment that d is non-degenerate. By (3.16)
and (8.17) we may write (6.14) in the form

0 = (Agher — lEhaB)/lgB(ZDhaF - }-FhaD)ZgD‘PA‘Pc
= lEthuB}'gBkaDlIfD(pA¢C
by (8.21). Dividing by 4,4 and using (8.22), we get
e acly Eapalta®a®c =0
or, since e, .empq = 20,4, We get by (8.15) the equation
(g — 2 2% @ 9c = 0.

That is, the plane ¢, touches the cone (8.32) and hence also
touches the conic.

If d is a pair of distinct lines /, m, it may be expressed in the
form (8.85). Substituting in (6.14) and using (1.16) and (1.15),
we quickly deduce that either ¢, *®m,, =0 or p.mPl,, = 0.
The former equation means that the point ¢,I*? in which ¢,
meets [ lies on m, and the latter that the point in which ¢, meets
m lies on I. So ¢, passes through the point of intersection of I, m.

§ 7. Relations between two conics.

In the present section certain invariant relations are found
between two conics d and d’. For d we take the general forms
(8.16), (8.88), and for d’ the corresponding formulae

’

’ r’
dABCD = }'aABz'aCD s

deBCD = Ql(l;BméD'i—lt’:Dm:iB) + G,n;an"CD . (7.2)

(7.1)
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It is implicitly assumed in (7.1) that the triangle 1) self-polar
with respect to d' is not the same as the triangle 1, self-polar
with respect to d. In dealing with coplanar conics it is of course
possible to refer them to a common self-polar triangle, in which
case, if (8.16) were taken for d, it would be necessary to take d’
in the form g, 4,,54,.,, where the g, are numbers such that
gsp = 0 when a £ b.

Symbols such as h;A used below bear to d’ the same relation
as the corresponding unaccented symbols bear to d.

An identity.

If d, d’ are any two conics, then

dypepd 456 4 gAE o d T = 1dygopd FEFOOE (7.8)
For by (1.14),

'AE AE 'HK SE
2aanh®® + 2 My ap = Shauxty 05

for any two lines 4,, 4;. Multiplying by A,cpA,"° the identity
follows at once.

THEOREM 11. If d, d’ are two conics such that

di5 deppr =0, (7.4)
then either they are coplanar or they are pairs of lines meeting in
the same point; and conversely.

Suppose first that neither conic is a repeated line. Multiply
(7.4) by hlh," and use (8.20a), and we quickly obtain A4 ., = 0;
so each of the lines A, meets each of the lines 2. Hence, unless
both conics are degenerate, they are coplanar. If both are dege-
nerate, the four lines 4,, 4, may be coplanar or concurrent, and
hence also the four lines which constitute the two conies.

If either conic is a repeated line, it follows at once from (6.1)
that the conics are coplanar.

The converse easily follows from (1.10) and (3.16).

For non-degenerate conics, (7.4) is evidently a necessary and
sufficient condition that they should be coplanar.

THEOREM 12. The necessary and sufficient condition that two
conics d, d' should be coplanar s

JABCDGEFGHG 1 =0 (7.5)
or d/ABCDd/EFGHdAEKL = 0. (7.53,)

If either of the relations (7.5), (7.5a) is true, then also is the
other. S
Condition (7.5) is necessary. For if d’ lies in the plane of d, so
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does each of the lines 1, to which d’ is referred. Hence by

Theorem 7,

ABCD JEFGH 9/
dABCPGEFGH 31

4t = 0. (7.6)

Multiplying by 2., we get (7.5).

To establish the sufficiency assume that (7.5) is true. If d’
is a repeated line, it follows at once from Theorem 7 that this
line lies in the plane of d. If d’ is not a repeated line, multiply
(7.5) by k)’ and use (8.20a). We get (7.6), which means that
each line 4/ lies in the plane of d. Hence the conics are coplanar.

Interchanging d, d’, it is evident that the condition (7.5a) is
equivalent to (7.5), and that the one relation must be deducible
from the other.

THEOREM 18. If d, d' are two conics such that 1°)

d*5Pd pep =0, (7.7)

then either (I) they are coplanar, or (11) they are non-coplanar and
cut the line of intersection of their planes in harmonically conjugate
points, or (11I) one conic is a pair of lines of which one lies in the
plane of the other conic.

Special cases of (II), for which the theorem is conventionally
true, are: (IV) one of the conics touching the line of intersection
of their planes and the other passing through the point of contact;
(V) one of the conics a pair of lines meeting on the other conic;
(VI) one of them a repeated line intersecting the other conic.

Possibility (I) follows at once from (7.4) by raising the suffixes
A B and changing them into E F, which gives (7.7).

Suppose then that the conics are not coplanar. Assume for the
moment that neither touches the line of intersection of their
planes, that neither is a repeated line, and that, if either is a
pair of distinect lines, then neither of these lines lies in the plane
of the other conic. Then if n, is the line of intersection of their
planes, we may take d in the form

dABCD — lABmCD _+_ lCDmAB + nABnCD’
with the last term absent if d is a line-pair. We refer d’ to a self-
polar triangle. Take n to be one of its sides, choose a second,
u say, to pass through the intersection of m and =, and let 4
be the third side. Then by (8.16),

d:wcz) = Agphcp + MBaptcp + MagNops

15) Cf Topbp, loc. cit., 190; also R. A. JounsoN [Trans. Amer. Math. Soc. 15
(1914), 354].
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with the last term absent if d’ is a line-pair. Now since n is com-
mon to both planes it meets all the other lines, and by supposition
1 meets m. Hence by (1.10) and (7.7),

0 = d*PPd pcp, = 2(Al)(Am)

in the notation of (1.18). So either (1l) = 0 or (Am) = O or both;
that is, 4 meets either I or m or both. If 4 meets I but not m,
then, since the triangle (Aun) is self-polar with respect to the
conic d’ (or since A, u separate the lines d’ harmonically when
d’ is a line-pair), the conics cut » in harmonically conjugate
points; for it will be remembered that d passes through the inter-
sections of I, m with n. If however 1 meets m, then since p also
meets it, we obtain (V); and if 2 meets both I and m we get
(V) again.

It is easy to prove that the only remaining possibilities are
(III), (IV) and (VI), the last being indeed obvious from (2.1).
It is also easy to prove the converse, namely that conics satis-
fying any one of the conditions (I)—(VI) satisfy (7.7).

Before proceeding further, it will be convenient to introduce
an abbreviated notation for certain expressions which occur in
the following theorems. If d, d' are two conics, we write

(p/c‘g = d*?*Fdypep (7.8)
O = 45 =d""Pd pcp. (7.9)

Since @4F is introduced purely as an abbreviation, its lack of
symmetry as between the two conics is of no consequence. It
could be made symmetrical if desired by lowering the upper
pair of suffixes. The invariant defined by (7.9) is the well-known
invariant @ of two quadrics (in this case degenerate).

With this notation, the conditions (7.4), (7.7) may be written
DLE =0, D =0.

THEOREM 14. The necessary and sufficient condition that the
two conics d, d' should intersect is

DD = 1. (7.10)

The necessity of the' condition is easily proved: if the conics are
coplanar, (7.10) follows at once from (7.4). If they are not copla-

nar, but meet in a point P on the Kne of intersection n of their

planes, then, provided that neither touches n, they may be taken
in the forms

d4BEF — o(IBmEF | [EFqAB) 4 GpABEF (7.11)

d,EFCD = Ql(l'EFmICD + l'CDmIEF) ~+ o'ngncp, (7.12)
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and we may assume that [, I’ meet in P. From this and the fact
that n meets all the other lines, (7.10) follows from (1.10). If
either conic touches 7, a similar proof shows that (7.10) still
holds provided that the conics intersect.

To establish the sufficiency of the condition, we assume that
(7.10) is true. Then obviously d, d’ may be coplanar, and if so
intersect. Suppose however that they are not coplanar and that
neither touches the line of intersection n of their planes. Then
we may take d, d' in the forms (7.11), (7.12), where n meets [,
U, m, m’. Using (1.10), we get

Dp = ee'[MFPmep(l'm) + 1%y (mm) +
+ m*Pmep (W) +m*Plep(lm’)],  (7.18)
whence D = 200'[ (W) (mm’) + (Im’)(I'm)] (7.14)
and
@ep Py = 202" *[ ()2 (mm/)? + (Im/)*(I'm)? +-
+ 6 )(mm')(Im")(I'm)], (7.15)
so by (7.10),
¢ o3 (W) (mm) (Im") ('m) = 0.
Hence at least one of the following equations is true: ¢ = 0, ¢’ = 0,
W)=0, (mm') =0, (Im') =0, (I'm)=0. If it is remembered
that the vanishing of the inner product of the coordinates of
two lines means that the lines intersect, it is at once evident
that the conics d, d’ must meet in at least one point. A similar
proof holds if either conic touches the line of intersection of their

planes.
THEOREM 15. The mnecessary and sufficient condition that the

conics d, d' should meet in at least two points is
BLE DD — 4D DEL. (7.16)
This is easily proved by methods similar to those adopted
above. The two points of intersection may of course be coincident.
THEOREM 16. If
Dfp Dip = D2, (7.17)

*»
then either the conics are coplanar or one at least touches the line

of intersection of their planes; and conversely %).

1%) That the condition (7.17) might have the meaning stated was suggested to
me by Dr. Todd.
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(A line-pair “‘touches” a given line if the three lines are con-
current.)

That the conics may be coplanar is obvious from (7.4). Suppose
that they lie in different planes, and that one, say d, meets the
line of intersection » of their planes in distinct points P, Q. Let
I, m be the tangents to it at these points. Then

dABEF — lABmEF + lEFmAB + ,nABnEF

with the last term absent if d is a line-pair. For d’ take

dzrep = Uprmep + lopMer + Mg 5Meps

where I, m’ meet in P and n' is the polar of P with respect to d’.
Then 7 meets all the other lines and I meets I, m’. Hence
@ =2(In')(mn’') and DL; DT = 4(ln')2[(mn')2 + (mm')(I'm)], so
(7.17) gives (In')2(mm’)(I'm) = 0. Hence at least one of the
following statements is true: (I) »’ meets [, (II) m’ meets m,
(III) I meets m. If (I) is true, d' is a pair of lines meeting on n.
In case (II), m’ coincides with n so n touches d’, and similarly
in case (III).

Other cases not included in the above proof are: d’ a general
conic passing through P; d’ a line-pair meeting on n but not at P.
These may be treated separately.

The proof of the converse presents no difficulty.

§ 8. Conclusion.

Every theorem given above has a dual, so that a similar theory
of cones in 3-space is easily deducible. Both theories may be
included in a more general one, namely that of quadrics in 3-space,
a quadric being definable in terms of the quadratic complex of
lines which touch it.

This remark explains some peculiarities which appear in the
present paper. It might have been expected, for example, that
any covariantive relation expressing a geometrical relationship
between two non-degenerate conics would have the same meaning
for degenerate conics. This however is not always the case: thus
in Theorem 11 a condition that a pair of non-degenerate conics
should be coplanar means, when the conics are both degenerate,
that they are either coplanar or possess a common point of inter-
section. This is due to the fact that, from the point of view of

the present paper, a pair of lines is a degenerate cone as well
as a degenerate conic.
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Consideration of the present theory from the more general
standpoint will be deferred to a later paper. It seemed advisable
to begin with the special case of conics for two reasons: first,
that the generalised theory of quadrics is thereby rendered more
illuminating, and secondly, that conies (and cones) have many
properties not possessed by proper quadrics, so that it is desirable
to consider such special properties before treating conics and
cones merely as degenerate quadrics.

(Received November 15th, 1934.)



