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On Some Arithmetical Results in the Geometry of
Numbers

by

L. J. Mordell

Manchester

Let a function f (x1, 312’ ..., xn ) , or say f for brevity, of the n
variables xi, X2, ..., aen, be defined for all real xl , x2 , ... , xn, ,
and have the following properties:

(A). For all real t &#x3E; 0,

where 5 &#x3E; 0 is a constant independent of the x’s and t, and the
positive arithmetical value of tÓ is taken.

where k &#x3E; 0 is a constant independent of the x’s and y’s.

(C). The number, N, of lattice points, that is, sets of integers
lti, , x 2 , - .. , xn, such that

where G &#x3E; 0 is sufficiently large, satisfies the inequality

where J &#x3E; 0 is independent of G.
Then integer values of the x’s not all zero exist such that

It may be supposed in (C) that N is finite for bounded G.
When the hypersolid S defined by

has a volume V &#x3E; 0, (and Minkowski has considered the
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question of the existence of V subject to conditions of the
type (A) and (B)), it is clear by taking hypercubes, centres
at the lattice points and sides of length unity, that as G ---&#x3E; oo,

Hence if G is large, (5) holds for J  V, and then also for
J = V. For on making J -&#x3E; V, at least one and at most a finite
number of sets of values of the x’s exist satisfying (5). Hence
on taking the limit of both sides of (5), it follows that for at
least one of these sets,

The last result is of a well known type, which in the case
ô=k=l, with slightly different conditions was introduced by
Minkowski 1 ) into the theory of numbers in which it is known

to be of great importance.
My proof is completely arithmetical and even simpler than

Minkowski’s geometric proof. It has its origin in my 2) recent
arithmetical demonstration of Minkowski’s theorem for linear

homogeneous forms.
It is an immediate consequence of the obvious fact that if M

is any positive integer, there exists only Mn sets of incongruent
residues for a set of n integers X1’ x2 , ..., xn. For the hypersolid,

will for sufficiently large g and M contain at least Mn+1 lattice
points. From (4), it suffices to take g such that

or

For two of these, say the sets

and

where X1’ x2 , ..., xn are integers whieh are not all zero.
From (B)

1 ) Geometrie der Zahlen (1910), 76.
2) Journal London Math. Soeiety 8 (1933), 179-182.
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and so from (11), (10), (1), (9)

This gives (5) with J-r5/n replaced by g. By making g - J-r5/n ,
it is clear by the argument following (7), that (5) follows

immediately.
The proof shows that if S, instead of being given by

f (x,, x2, ..., xn)  1, is defined by any number of inequalities,

where c,. is 0 or + 1, and each f satisfies (A), (B), and (C) with
(3), (6) replaced by

respectively, then (5), (8) still hold.
It is also clear that if q($, y ) is a function of the real variables

e, q satisfying the conditions

for t &#x3E; 0, and

for

the condition (B) can be replaced by

and then 2k in (5), (8) must be replaced by tp(l, 1).
The conditions (A), (B) are really different from those of

Minkowski. He assumes first that the solid S has a centre, i. e.,

By including in (12) inequalities such as :1: XÔ  0, (e. g., when
rt = 3, and ô is an odd integer &#x3E; 0, the inequalities xâ  0,
x2  0, xâ  0, mean that S will lie in one octant), this is seen
not to be necessary, but no essentially new results arise.
He assumes next that the hypersolid S is convex, and then

proves that if a convex n dimensional solid has centre at the

origin 0, and has a volume &#x3E; 2n, then at least one lattice point
in addition to O must lie within S, i. e. , be an interior or boundary
point of S. The convexity condition really means that if P, Q,
are two points within S, then P + Q lies within 2S, i.e. the point
whose coordinates are the sum of those of P and Q lies within
the solid derived from S by increasing the coordinates of all its
points in the ratio 2 : 1.
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Suppose, however, S is a semi-convex solid, that is, a constant
k exists such that P+ Q lies within kS, so that k &#x3E; 2 is a sort of
measure of the lack of convexity of S. Then my theorem includes
the result, that if S has a centre at 0 and a volume V &#x3E; kn, it

contains within it at least one lattice point in addition to the
origin. 1 give the proof 3 ) ab initio.

MS
If M is any positive integer, the hypersolid MS has a volumek

and so as M - oo, N the number of lattice points within

satisfies

if Tl &#x3E; kn. Hence two of these lattice points, say P, Q will have
coordinates which are unequal and congruent mod M. Hence,

since P - Q is P + ’ where ’ is the image of Q in 0, p M QQ Q Q’ is the image
is a lattice point lying within k (M) S or S. This proves the

result for V &#x3E; kn. It follows for V = kn by the argument leading
to (5).
My form also simplifies some of the applications.
Thus take

then (A ), (B) are satisfied with ô = k = 1, since

also

taken over

Thus if all the a’s are real, on putting

3 ) The theorem and method of proof still hold if S has no centre and

P - Q lies within kS.



252

then

Hence the well known result,

where xl, x2 , ... , aen are integers not all zero.
Again suppose that p is any number &#x3E; 1, and that

are any given integers &#x3E; 0 whose sum is n.

Take

say,

etc., where eï etc. denote the positive values.
Then (A), (B) are satisfied with ô = p, h; = 2P-1, as is clear

since

Also

is easily evaluated for the general case of complex a’l’8 when in

each f, complex linear forms occur in conjugate pairs.
When all the a’s are real,

where

etc.

These are Dirichlet’s integrals, whence
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Hence integer values of the x’s not all zero exist such that

etc., where the coefficients of the linear forms f, are all real,
and oc, fJ, y, ... are any integers &#x3E; 0, with sum n.
When ex. = n, p == y == ... = 0, this becomes Minkowski’s result

The proof of this by his theorem requires the consideration of

and his now well known inequality

for positive but which is not so simple as

used above.

(Received, November 2nd, 1933.)


