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HOLONOMY INVARIANCE: ROUGH REGULARITY A N D 
APPLICATIONS TO LYAPUNOV EXPONENTS 

by 

Artur Avila, Jimmy Santamaria & Marcelo Viana 

Abstract. — Un cocycle lisse est un produit gauche qui agit par des difféomorphismes 
dans les fibres. Si les exposants de Lyapounov extremaux du cocycle coincident alors 
les fibres possèdent certaines structures qui sont invariantes, à la fois, par la dy­
namique et par un pseudo-groupe canonique de transformations d'holonomie. Nous 
démontrons ce principe d'invariance pour les cocycles lisses au dessus des difféomor­
phismes conservatifs partiellement hyperboliques, et nous en donnons des applications 
aux cocycles linéaires et aux dynamiques partiellement hyperboliques. 
Résumé. — Skew-products that act by diffeomorphisms on the fibers are called smooth 
cocycles. If the extremal Lyapunov exponents of a smooth cocycle coincide then the 
fibers carry quite a lot of structure that is invariant under the dynamics and under 
a canonical pseudo-group of holonomy maps. We state and prove this invariance 
principle for cocycles over partially hyperbolic volume preserving diffeomorphisms. It 
has several applications, e.g., to linear cocycles and to partially hyperbolic dynamics. 

1. Introduction 

Lyapunov exponents measure the asymptotic rates of contraction and expansion, 
in different directions, of smooth dynamical systems such as diffeomorphisms, co-
cycles, or their continuous-time counterparts. These numbers are well defined on a 
full measure subset of phase-space, relative to any finite invariant measure. Systems 
whose Lyapunov exponents are distinct/non-vanishing exhibit a wealth of geometric 
and dynamical structure (invariant laminations, entropy formula, abundance of peri­
odic orbits, dimension of invariant measures) on which one can build to describe their 
evolution. The main theme we are interested in is that systems for which the Lya­
punov exponents are not distinct are also special, in that they satisfy a very strong 
invariance principle. Thus, a detailed theory can be achieved also in this case, if only 
using very different ingredients. 
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14 A. AVILA, J. SANTAMARIA & M. VIANA 

In the special case of linear systems, the invariance principle can be traced back 
to the classical results on random matrices by Furstenberg [12], Ledrappier [19], and 
others. Moreover, it has been refined in more recent works by Bonatti, Gomez-Mont, 
Viana [7], Bonatti, Viana [8], Viana [25] and Avila, Viana [1, 2]. An explicit and 
much more general formulation, that applies to smooth (possibly non-linear) systems, 
is proposed in Avila, Viana [3] and the present paper: while [3] deals with extensions 
of hyperbolic transformations, here we handle the case when the base dynamics is just 
partially hyperbolic and volume preserving. The two papers are contemporary and 
closely related: in particular, Theorem A of [3] relies on a version of the invariance 
principle proved in here, more precisely, Theorem B below. 

As an illustration of the reach of our methods, let us state the following appli­
cation in the realm of partially hyperbolic dynamics (for details, see Remark 2.9). 
Let / : M —> M be a C2 partially hyperbolic, dynamically coherent, volume pre­
serving, accessible diffeomorphism satisfying a suitable center bunching condition. If 
the center bundle Ec has dimension 2 and the center Lyapunov exponents coincide 
almost everywhere then / admits 

(a) either an invariant continuous field of directions r C Ec, 
(b) or an invariant continuous field of pairs of directions r\ U T2 C Ec, 
(c) or an invariant continuous conformai structure on Ec. 

Sometimes, one can exclude all three alternatives a priori. That is the case, for in­
stance, if / is known to have periodic points p and q that are, respectively, elliptic 
and hyperbolic along the center bundle Ec, in the following sense: the center eigenval­
ues of p are neither real nor pure imaginary, and the center eigenvalues of q are real 
and distinct. Then it follows that the center Lyapunov exponents are distinct and, 
in particular, at least one is non-zero. If / is symplectic then both center Lyapunov 
exponents are different from zero; compare Theorem A in [3]. 

Precise statements of our results, including the definitions of the objects involved, 
will appear in the next section. Right now, let us observe that important applications 
of the methods developed in here have been obtained by several authors: a Livsic 
theory of partially hyperbolic diffeomorphism, by Wilkinson [27]; existence and prop­
erties of physical measures, by Viana, Yang [26]; construction of measures of maximal 
entropy, by Hertz, Hertz, Tahzibi, Ures [22]. 

2. Preliminaries and statements 
2.1. Partially hyperbolic diffeomorphisms. — Throughout the paper, unless 
stated otherwise, / : M —> M is a partially hyperbolic diffeomorphism on a compact 
manifold M and fi is a probability measure in the Lebesgue class of M. In this section 
we define these and other related notions. See [9, 15, 16, 24] for more information. 

A diffeomorphism / : M —• M of a compact manifold M is partially hyperbolic if 
there exists a nontrivial splitting of the tangent bundle 
(2.1) TM = ES ®EC®EU 
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HOLONOMY INVARIANCE 15 

invariant under the derivative Df, a Riemannian metric || • || on M, and positive 
continuous functions ù, 7, 7 with v, ù < 1 and v < 7 < 7-1 < z>_1 such that, for 
any unit vector v G TPM, 

(2.2) P/(pWI < *(p) i f^e^s(p) , 

(2.3) 7(p) <\\Df(p)v\\ < Jip)'1 if 1; G Ec(p), 

(2.4) ^(p)-1 <||23/(p)t;|| if v e Eu(p). 

(Equivalently, one could ask these conditions for some iterate; see Gourmelon [14].) 
All three subbundles Es, Ec, Eu are assumed to have positive dimension. However, in 
some cases (cf. Remarks 3.12 and 4.2) one may let either dimEs = 0 or dimEu = 0. 

We take M to be endowed with the distance dist associated to such a Riemannian 
structure. The Lebesgue class is the measure class of the volume induced by this (or 
any other) Riemannian metric on M. These notions extend to any submanifold of M, 
just considering the restriction of the Riemannian metric to the submanifold. We say 
that / is volume preserving if it preserves some probability measure in the Lebesgue 
class of M. 

Suppose that / : M —» M is partially hyperbolic. The stable and unstable bundles 
Es and Eu are uniquely integrable and their integral manifolds form two transverse 
continuous foliations Vs and <WU, whose leaves are immersed submanifolds of the 
same class of differentiability as / . These foliations are referred to as the strong-stable 
and strong-unstable foliations. They are invariant under / , in the sense that 

f{<W\x)) = <Ws{f{x)) and / ( V » ) = V(/(aO), 

where Vs (x) and Vs (x) denote the leaves of Vs and CWU, respectively, passing 
through any x G M. These foliations are, usually, not transversely smooth: the holon­
omy maps between any pair of cross-sections are not even Lipschitz continuous, in 
general, although they are always 7-Holder continuous for some 7 > 0. Moreover, if 
/ is C2 then these foliations are absolutely continuous, meaning that the holonomy 
maps preserve the class of zero Lebesgue measure sets. Let us explain this key fact 
more precisely. 

Let d = dim M and 57" be a continuous foliation of M with fc-dimensional smooth 
leaves, 0 < k < d. Let J7(p) be the leaf through a point p 6 M and 57(p, R) c 57(p) 
be the neighborhood of radius R > 0 around p, relative to the distance denned by the 
Riemannian metric restricted to 57(p). A foliation box for 57 at p is the image of an 
embedding 

<S>:&(p,R)xRd~k 

such that $(-,0) = id, every $(-,2/) is a diffeomorphism from 57(p, R) to some sub­
set of a leaf of 57 (we call the image a horizontal slice), and these diffeomorphisms 
vary continuously with y G Rd_fc. Foliation boxes exist at every p G M, by defini­
tion of continuous foliation with smooth leaves. A cross-section to 57 is a smooth 
codimension-A: disk inside a foliation box that intersects each horizontal slice exactly 
once, transversely and with angle uniformly bounded from zero. 
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16 A. AVILA, J. SANTAMARIA & M. VIANA 

Then, for any pair of cross-sections £ and £', there is a well defined holonomy 
map £ —> £', assigning to each x G S the unique point of intersection of £' with the 
horizontal slice through x. The foliation is absolutely continuous if all these home-
omorphisms map zero Lebesgue measure sets to zero Lebesgue measure sets. That 
holds, in particular, for the strong-stable and strong-unstable foliations of partially 
hyperbolic C2 diffeomorphisms and, in fact, the Jacobians of all holonomy maps are 
bounded by a uniform constant. 

A measurable subset of M is s-saturated (or CWS -saturated) if it is a union of 
entire strong-stable leaves, u-saturated (or Vu-saturated) if it is a union of entire 
strong-unstable leaves, and bi-saturated if it is both s-saturated and ^-saturated. We 
say that / is accessible if 0 and M are the only bi-saturated sets, and essentially 
accessible if every bi-saturated set has either zero or full measure, relative to any 
probability measure in the Lebesgue class. A measurable set X C M is essentially 
s-saturated if there exists an s-saturated set Xs C M such that XAXS has measure 
zero, for any probability measure in the Lebesgue class. Essentially u-saturated sets 
are defined analogously. Moreover, X is bi-essentially saturated if it is both essentially 
s-saturated and essentially ^-saturated. 

Pugh, Shub conjectured in [20] that essential accessibility implies ergodicity, for a 
C2 partially hyperbolic, volume preserving diffeomorphism. In [21] they showed that 
this does hold under a few additional assumptions, called dynamical coherence and 
center bunching. To date, the best result in this direction is due to Burns, Wilkin­
son [10], who proved the Pugh-Shub conjecture assuming only the following mild form 
of center bunching: 

Definition 2.1. — A C2 partially hyperbolic diffeomorphism is center bunched if the 
functions v, z>, 7, 7 in (2.2)-(2.4) may be chosen to satisfy 

(2.5) v < 77 and ù < 77. 

When the diffeomorphism is just C1+Q:, for some a > 0, the arguments of Burns, 
Wilkinson [10] can still be carried out, as long as one assumes what they call strong 
center bunching (see [10, Theorem 0.3]). All our results extend to this setting. 

2.2. Fiber bundles. — In this paper we deal with a few different types of fiber 
bundles over the manifold M. The more general type we consider are continuous fiber 
bundles TT : & —> M modeled on some topological space N. By this we mean that 6 
is a topological space and there is a family of homeomorphisms (local charts) 

(2.6) foiUx N^TT-^U), 

indexed by the elements U of some finite open cover ÎI of M, such that 7r o is the 
canonical projection U x N —• U for every U e ÎI. Then each (f>u,x * £ <t>u(x,0 is 
a homeomorphism between N and the fiber Sx = 7r_1(x). 

An important role will be played by the class of fiber bundles with smooth fibers, 
that is, continuous fiber bundles whose fibers are manifolds endowed with a contin­
uous Riemannian metric. More precisely, take AT to be a Riemannian manifold, not 
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HOLONOMY INVARIANCE 17 

necessarily complete, and assume that all coordinate changes (fry1 o <pu have the form 

(2.7) «/y1 o cfru : (U H V) x N - (tf H V) x JV, 0 ^ (x, 

where: 

(i) gx : N —> N is a C1 diffeomorphism and the map # i—• gx is continuous, relative 
to the uniform C1 distance on Diff^iV) (the uniform C1 distance is defined 
by distCiGfc,0y) = sup{|^(0 -jy(0l \\Dgx(0 - Dgy(Z)\\ : £ 6 iV}); 

(ii) the derivatives Dgx(Ç) are Dg'1^) are uniformly continuous and uniformly 
bounded in norm. 

Endow each Sx with the manifold structure that makes <j>ujX a diffeomorphism. 
Condition (i) ensures that this does not depend on the choice of U G îl containing x. 
Moreover, consider on each Sx the Riemannian metric ^x = Ylueîi Pu(%)lu,x, where 
^u,x is the Riemannian metric transported from N by the diffeomorphism <f)u,x and 
{pu : U G îl} is a partition of unit subordinate to îl. It is clear that 7X depends 
continuously on x. Condition (ii) ensures that different choices of the partition of unit 
give rise to Riemannian metrics ^x that differ by a bounded factor only. 

Restricting even further, we call 7r : & —> M a continuous vector bundle of dimen­
sion d > 1 if N = Kd, with K = R or K = C, and every gx is a linear isomorphism, 
depending continuously on x and such that H^1]! are uniformly bounded. Then each 
fiber Sx is isomorphic to Kd and is equipped with a scalar product (and, hence, a 
norm) which is canonical up to a bounded factor. 

We also need to consider more regular vector bundles. Given r G {0,1,...,&,...} 
and a G [0,1], we say that n : S —• M is a Cr,a vector bundle if, for any U, V G îl 
with non-empty intersection, the map 

(2.8) UHV-+GL(d,K), x ^ gx 

is of class Cr'Ci, that is, it is r times differentiable and the derivative of order r is 
a-Hôlder continuous. 

2.3. Linear cocycles. — Let n : V —• M be a continuous vector bundle of di­
mension d > 1. A linear cocycle over / : M —• M is a continuous transformation 
F : V —• y satisfying noF = fo-rr and acting by linear isomorphisms Fx : Vx —• V/(x) 
on the fibers. By Furstenberg, Kesten [13], the extremal Lyapunov exponents 

\+(F,x)= lim -log||Fxn|| and A_(F,s) = lim — log || (^T)_1 II_1 
n—>oo 72 n—>oo 77, 

exist at ^-almost every x G M, relative to any /-invariant probability measure /i. 
If (/,//) is ergodic then they are constant on a full /i-measure set. It is clear that 
X-(F,x) < \+(F,x) whenever they are defined. We study conditions under which 
these two numbers coincide. 

Suppose that n : V —> M is a Cr,a vector bundle, for some fixed r and a, and / is 
also of class Cr'a (this is contained in our standing assumptions if r + a < 2). Then 
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18 A. AVILA, J. SANTAMARIA & M. VIANA 

we call F : V —» V a Cr'a linear cocycle if its expression in local coordinates 

(2.9) <fcl o F o (j)Uo : (U0 H rHUi)) xK^^x Kd, (x, v) » (/(*), A(x)v) 

is such that the function x i—• A(x) is r times differentiable and the derivative of order 
r is bounded and a-Holder continuous. The assumption on the vector bundle ensures 
that this condition does not depend on the choice of local charts. 

The set ^'"(V, / ) of all Cr'a linear cocycles F : V V over / : M -> M is a 
K-vector space and carries a natural Cr'a norm: 

(2.10) sup 
D+R 

sup 
k0<i<r£CGC/n/-1(y) 

SUD ||DVL(z)||+sup 
\\DrA(x)-DrA(y)f 

dist(#, y)a 

(for a = 0 one may omit the last term). We always assume that r + a > 0. Then 
every F G ^'"(V, / ) is /̂ -Holder continuous, with 

(2.11) DR 
a if r = 0 
1 i f r > l . 

Definition 2.2. — We say that a cocycle F G ^r'a( V, / ) is /ï&er bunched if 

(2.12) U - F x I M K ^ r M K ^ l and ||Fx|| | |(Fx)-1|l^)/î<l, 

for every x G M, where /3 > 0 is given by (2.11) and z/, v are functions as in (2.2)-(2.4), 
fixed once and for all. 

Remark 2.3. — This notion appeared in [7, 8, 25], where it was called domination. 
The present terminology seems preferable, on more than one account. To begin with, 
there is the analogy with the notion of center bunching in Definition 2.1. Perhaps more 
important, the natural notion of domination for smooth cocycles, that we are going to 
introduce in Definition 3.9, corresponds to a rather different condition. The relation 
between the two is explained in Remark 3.13: if a linear cocycle is fiber bunched then 
the associated projective cocycle is dominated. Finally, a notion of fiber bunching can 
be defined for smooth cocycles as well (see [3]), similar to (2.12) and stronger than 
domination. 

Theorem A. — Let f : M —* M be a C2 partially hyperbolic, volume preserving, 
center bunched, accessible diffeomorphism and let \i be an invariant probability in the 
Lebesgue class. Assume that F G ^r'a(V,/) is fiber bunched. 

Then F is approximated, in the Cr,a norm, by open sets of cocycles G G 
J?r'a(V,/) such that \-(G,x) < \+(G,x) almost everywhere. Moreover, the set 
of F G ^r'a( V, / ) for which the extremal Lyapunov exponents do coincide has infinité 
codimension in the fiber bunched domain: locally, it is contained in finite unions of 
closed submanifolds with arbitrarily high codimension. 

Notice that the Lyapunov exponents are constant on a full measure subset of M, 
because (cf. [10]) the hypothesis implies that / is ergodic. 
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There is an analogous statement in the space of SL(d, K)-cocycles, that is, such 
that the functions x \-+ gx and x i—• A(x) in (2.8) and (2.9), respectively, take values 
in SL(d, K). In fact, our proof of Theorem A deals with the projectivization of the 
cocycle, and so it treats both cases, GL(d, K) and SL(d,K), on the same footing. It 
would be interesting to investigate the case of G-valued cocycles for more general 
subgroups of GL(d,K), for instance the symplectic group. 

2.4. Smooth cocycles - invariant holonomies. — Let 7r : 6 —• M be a fiber 
bundle with smooth fibers modeled on some Riemannian manifold N. A smooth cocy­
cle over / : M —• M is a continuous transformation $ : & —» & such that nog = f on, 
every $x : 6X —> &j{x) is a C1 diffeomorphism depending continuously on x, relative 
to the uniform C1 distance in the space of C1 diffeomorphisms on the fibers, and the 
norms of the derivative D$x(£) and its inverse are uniformly bounded. In particular, 
the functions 

( s ,0 ~ log 11^(011 and (*,0 h- log p&fé)""1!! 

are bounded. Then (Kingman [18]), given any ^-invariant probability m on S, the 
extremal Lyapunov exponents of # 

X+(d,x,0= lim -log||i>3î(0|| and \_($,x,Z) = lim - log IWK)-1!!"1-
n—>-oo fi n—>oo ft 

are well defined at m-almost every (x, £) G &. Clearly, A_(Sr, x, £) < A+(#, a;, £). Notice 
that if m is ^-invariant then its projection \i = 7r*ra is /-invariant. Most of the times 
we will be interested in measures m for which the projection is in the Lebesgue class 
of M. 

Let R > 0 be fixed. The local strong-stable leaf Vfoc(p) of a point p G M is 
the neighborhood of radius i2 around p inside *W (p). The local strong-unstable leaf 
^ïoÀP)1S defined analogously. The choice of R is very much arbitrary, but in Section 5 
we will be a bit more specific. 
Definition 2.4. — We call invariant stable holonomy for # a family Hs of homeomor-
phisms H^.y : 6X —» <§y, defined for all x and 2/ in the same strong-stable leaf of / 
and satisfying 

(a) H^z o H'x>y = H'Xtt and H'x>x = id; 

(b) Sv°#l ,v = #/(*>,/(,,) ° 3*; 
(c) (#,y,£) i-> H*jy(£) is continuous when varies in the set of pairs of points 

in the same local strong-stable leaf; 
(d) there are C > 0 and 7 > 0 such that H^y is (C, 7)-Holder continuous for every 

x and y in the same local strong-stable leaf. 
Invariant unstable holonomy is defined analogously, for pairs of points in the same 
strong-unstable leaf. 

Condition (c) in Definition 2.4 means that, given any e > 0 and any (x,y,£) 
with y G Vfoc(a?), there exists 5 > 0 such that dist(iI*)3/(£), < e for every 
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20 A. AVILA, J. SANTAMARIA & M. VIANA 

y', £') with yf G W?oc(a?') and dist(x, x') < (5 and dist(y, */') < ô and dist(£, £') < <5; 
for this to make sense, take the fiber bundle to be trivialized in the neighborhoods 
of ôx and 6y. Condition (d), together with the invariance property (b), implies that 
Hxy is 7-Holder continuous for every x and y in the same strong-stable leaf (the 
multiplicative Holder constant C may not be uniform over global leaves). 

Remark 2.5. — Uniformity of the multiplicative Holder constant C on local strong-
stable leaves is missing in the related definition in [3, Section 2.4], but is assumed in 
[3, Section 4.4] when arguing that the transformation G is a deformation of G. 

Example 2.6. — The projective bundle associated to a vector bundle V —» M is the 
continuous fiber bundle P(V) —• M whose fibers are the projective quotients of the 
fibers of V. Clearly, this is a fiber bundle with smooth leaves modeled on N — P(Kd). 
The projective cocycle associated to a linear cocycle F : V —• V is the smooth cocycle 
# : P(V) -* P(V) whose action $X:F(VX) -+ P(V/(X)) on the fibers is given by the 
projectivization of Fx : °\/x —• Vf(xy-

î x (0 = 
S+S+E 

\\FM)\\ 
for each £ € P(fx) and x € M 

(on the right hand side of the equality, think of £ as a unit vector in Kd). Then 
5 ï ( 0 = Fx(0/\\Fx(0\\ for every £, x and n. It follows that, 

+Qsss+s5e+s5e 
p r o w } Q D + + D 

11^(011 
where proj,,, v = v — w(w • v)/(w • w) is the projection of a vector v to the orthogonal 
complement of w. This implies that 

(2.13) W 0 = Fx(0/\\Fx(0 < \\K\\\\F2(Œ < \\F? F " r 1 

for every £, a; and n. Analogously, replacing each F by its inverse, 

(2.14) TC(o-i<iira-iiraSD+RD 

for every £, x and n. These two inequalities imply 

A+ (ff, x, 0 < A+ (F, a?) - A_ (F, a) and A_ (& x, 0 > A_ (F, a?) - A+ (F, x) 

whenever these exponents are defined. We will observe in Remark 3.13 that if F is 
fiber bunched then both F and $ admit invariant stable and unstable holonomies. 

Example 2.7. — Suppose that the partially hyperbolic diffeomorphism / : M —• M 
is dynamically coherent, that is, there exist invariant foliations Vcs and (WCU with 
smooth leaves tangent to Ec 0 Es and Ec 0 Fu, respectively. Intersecting the leaves 
of Ve5 and Vcu one obtains a center foliation Ve whose leaves are tangent to the 
center subbundle Ec at every point. Let S be the disjoint union of the leaves of °WC. 
In many cases (see Avila, Viana, Wilkinson [4]), the natural projection TT : 6 —> M 
given by TT | Ve(x) = x is a fiber bundle with smooth fibers. Also, the map / induces 
a smooth cocycle # : S —> <§, mapping each y G Vc(x) to /(y) G V°(/(x)). Moreover, 
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HOLONOMY INVARIANCE 21 

the cocycle # admits invariant stable and unstable holonomies: for x close to y the 
image is the point where the local strong-stable leaf through £ G cWc{x) 
intersects the center leaf cW°{y)-) and analogously for the unstable holonomy. This 
kind of construction, combined with Theorem 6.1 below, is used by Wilkinson [27] in 
her recent development of a Livsic theory for partially hyperbolic diffeomorphisms. 

2.5. Lyapunov exponents and rigidity. — Theorem A will be deduced, in Sec­
tion 8, from certain perturbation arguments together with an invariance principle for 
cocycles whose extremal Lyapunov exponents coincide. Here we state this invariance 
principle. 

Let $ : & —> 6 be a smooth cocycle that admits invariant stable holonomy. Let m be 
a probability measure on £, let // = 7r*ra be its projection, and let {mx : x G M} be a 
disintegration of m into conditional probabilities along the fibers, that is, a measurable 
family of probability measures {mx : x G M} such that mx(6x) = 1 for //-almost every 
x G M and 

m(U) = mx(6x n U)dfi(x) 

for every measurable set U C &. Such a family exists and is essentially unique, meaning 
that any two coincide on a full measure subset. See Rokhlin [23]. 

Definition 2.8. — A disintegration {mx : x G M} is s-invariant if 

(2.15) {H^y)*mx = my for every x and y in the same strong-stable leaf. 

One speaks of essential s-invariance if this holds for x and y in some full //-measure 
subset of M. The definitions of u-invariance and essential u-invariance are analogous. 
The disintegration is bi-invariant if it is both s-invariant and w-invariant and we call it 
bi-essentially invariant if it is both essentially s-invariant and essentially it-invariant. 

First, we state the invariance principle in the special case of linear cocycles: 

TheoremB. — Let f : M —> M be a C2 partially hyperbolic, volume preserving, 
center bunched diffeomorphism and // be an invariant probability in the Lebesgue class. 
Let F G ^r'a(V, / ) be fiber bunched and suppose that X-(F, x) = A+(F, x) at ^-almost 
every point. 

Then every F(F)-invariant probability m on the projective fiber bundle P(V) with 
7r*ra = // admits a disintegration {fhx : x G M} along the fibers such that 

(a) the disintegration is bi-invariant over a full measure bi-saturated set Mp C M; 
(b) if f is accessible then Mp = M and the conditional probabilities rhx depend 

continuously on the base point x G M, relative to the weak* topology. 

Invariant probability measures m that project down to // always exist in this setting, 
because P(F) is continuous and the domain P(V) is compact. 
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22 A. AVILA, J. SANTAMARIA & M. VIANA 

Remark 2.9. — If / : M —> M is a C2 partially hyperbolic diffeomorphism then 
(see [9, Corollary 2.1] and [15, Theorem 6.4]) the invariant vector bundles Es, Eu 
and Ec are Holder continuous. Indeed, if a > 0 is close enough to zero that 

(2.16) {yhWr^W" < 1 and (̂ /£>)||£»/|r < 1 

then the center bundle Ec is a-Hôlder continuous. The derivative of / induces a C°'a 
linear cocycle F : Ec -> Ec given by Fx = Df \ E%. Clearly, \FX\ < ^(x)'1 and 
IIF"1!! < 7(x)_1 for every Hence, F is fiber bunched whenever 

(2.17) i/a < 77 and i>a < 77. 

Notice that this is compatible with (2.16). Moreover, (2.17) implies that / is center 
bunched, that is, v < 77 and ù < 77. Suppose that / is also dynamically coherent, 
volume preserving and accessible. 

Now, assume that dim Ec — 2 and the two center Lyapunov exponents of / coincide 
//-almost everywhere. Let m be any ^-invariant probability that projects down to 
Lebesgue measure fi. Then, as observed in Example 2.6, the Lyapunov exponents of # 
vanish m-almost everywhere. By Theorem B, it follows that m admits a continuous, 
bi-invariant disintegration {mx : x G M}. Keep in mind that each mx is a probability 
measure on the projective space F(E^). Continuity, together with the assumption that 
m is invariant, implies that 

mf(x) = (dx)*fnx = Df(x)*mx for every x G M. 

Suppose first that mx admits some atom with mass > 1/2, for some x G M. Since / is 
accessible, bi-invariance implies that the same holds for every x G M. Clearly, either 
such an atom is unique or there exist exactly two of them. In the first case, we obtain a 
continuous map assigning to each point in M a point in F(EC); moreover, this contin­
uous field of directions is invariant under the derivative. The second case is analogous, 
except that one gets a continuous field of pairs of directions. Now, suppose that every 
mx admits no atom with mass > 1/2. Then, by Douady, Earle [11, Section 2], the 
conditional measure mx has a well defined conformai barycenter £(x) G D and, con­
sequently, it defines a conformai structure on E%\ moreover, this conformai structure 
depends continuously on x and is invariant under the derivative. This completes the 
proof of the alternative (a)-(c) in the Introduction. 

Next, assume that / is known to have periodic points p and q that are, respectively, 
elliptic (eigenvalues neither real nor pure imaginary) and hyperbolic (eigenvalues real 
and distinct) along the center bundle E°. On the one hand, the presence of p is 
an obstruction to / having an invariant field of directions or of pairs of directions. 
On the other hand, the presence of q ensures that there is no continuous invariant 
conformai structure. In this way we have excluded all three possibilities (a)-(c). This 
contradiction means that the center Lyapunov exponents of / must be distinct. In 
particular, at least one of them is non-zero. When / is symplectic, the center Lyapunov 
exponents are symmetric (see Bochi, Viana [6]); in this case, the previous conclusion 
means that all Lyapunov exponents of / are non-zero. 
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The statement of Theorem B extends to smooth cocycles: 

Theorem C. — Let f : M —> M be a C2 partially hyperbolic, volume preserving, 
center bunched diffeomorphism and /x be an invariant probability in the Lebesgue class. 
Let S be a smooth cocycle over f admitting invariant stable and unstable holonomies. 
Let m be an 5-invariant probability measure on & with 7r*ra = \x, and suppose that 
A_(#, £,£) = 0 = A + ( 3 r , a t m-almost every point. 

Then m admits a disintegration {rhx : x G M} into conditional probabilities along 
the fibers such that 

(a) the disintegration is bi-invariant over a full measure bi-saturated set M$ C M; 
(b) if f is accessible then M$ = M and the conditional probabilities mx depend 

continuously on the base point x G M, relative to the weak* topology. 

It is clear from the observations in Example 2.6 that Theorem B is contained in 
Theorem C. The proof of Theorem C is given in Sections 4 through 7. There are two 
main stages. 

The first one, that will be stated as Theorem 4.1, is to show that every disinte­
gration of m is essentially s-invariant and essentially ^-invariant. This is based on 
a non-linear extension of an abstract criterion of Ledrappier [19] for linear cocycles, 
proposed in Avila, Viana [3] and quoted here as Theorem 4.4. At this stage we only 
need / to be a C1 partially hyperbolic diffeomorphism (volume preserving, center 
bunching and accessibility are not needed) and \i can be any invariant probability, 
not necessarily in the Lebesgue class. 

The second stage, that we state in Theorem D below, is to prove that any disin­
tegration essentially s-invariant and essentially ^-invariant is, in fact, fully invariant 
under both the stable holonomy and the unstable holonomy; moreover, it is contin­
uous if / is accessible. This is a different kind of argument, that is more suitably 
presented in the following framework. 

2.6. Sections of continuous fiber bundles. — Let TT : % —> M be a continuous 
fiber bundle with fibers modeled on some topological space P. The next definition 
refers to the strong-stable and strong-unstable foliations of the partially hyperbolic 
diffeomorphism / : M —> M. 

Definition 2.10. — A stable holonomy on % is a family hsxy : %x —• %y of 7-Holder 
homeomorphisms, with uniform Holder constant 7 > 0, defined for all x, y in the 
same strong-stable leaf and satisfying 

(a) h^z o h8Xiy = hsxz and hsxx = id 
(P) the map (x,y,£) *-> hxy(£) is continuous when (x,y) varies in the set of pairs 

of points in the same local strong-stable leaf. 

Unstable holonomy is defined analogously, for pairs of points in the same strong-
unstable leaf. 
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The special case we have in mind are the invariant stable and unstable holonomies 
of smooth cocycles on fiber bundles with smooth leaves. Clearly, conditions (a) and 
(P) in Definition 2.10 correspond to conditions (a) and (c) in Definition 2.4. Notice, 
however, that there is no analogue to the invariance condition (b); indeed, cocycles 
are not mentioned at all in this section. We also have no analogue to condition (d) in 
Definition 2.4. 

In what follows fi is a probability measure in the Lebesgue class of M, not neces­
sarily invariant under / : here we do not assume / to be volume preserving. The next 
definition is a straightforward extension of Definition 2.8 to the present setting: 

Definition 2.11. — Let n : % —> P be a continuous fiber bundle admitting stable 
holonomy. A measurable section \I> : M —> % is s-invariant if 

hsxy(^(x)) = ^(y) for every x, y in the same strong-stable leaf 
and essentially s-invariant if this relation holds restricted to some full ji-measure sub­
set. The definitions of u-invariant and essentially u-invariant functions are analogous, 
assuming that TT : % —» M admits unstable holonomy and considering strong-unstable 
leaves instead. We call \I> bi-invariant if it is both s-invariant and u-invariant, and 
we call it bi-essentially invariant if it is both essentially s-invariant and essentially 
u-invariant. 

These notions extend, immediately, to measurable sections of % whose domain is 
just a bi-saturated subset of M. A measurable section \I> is essentially bi-invariant if it 
coincides almost everywhere with a bi-invariant section defined on some full measure 
bi-saturated set. 

Definition 2.12. — A (Hausdorff) topological space P is refinable if there exists an 
increasing sequence of finite or countable partitions Qx -< • • • -< Qn -< • • • into Borel 
subsets such that any sequence (Qn)n with Qn G Qn for every n and nnQn ^ 0 
converges to some point rj G P, in the sense that every neighborhood of rj contains 
Qn for all large n. (Then, clearly, r\ is unique and C\nQn = {rj}.) 

Notice that every Hausdorff space with a countable basis {Un : n G N} of open sets 
is refinable: just take Qn to be the partition generated by {Ui,..., Un}. 

Theorem D. — Let f : M —> M be a C2 partially hyperbolic, center bunched diffeo­
morphism and fi be any probability measure in the Lebesgue class. Let n : % —> M 
be a continuous fiber bundle with stable and unstable holonomies and assume that the 
fiber P is refinable. Then, 

(a) every bi-essentially invariant section ^ : M —> % coincides ^-almost everywhere 
with a bi-invariant section ^ defined on a full measure bi-saturated set My C M; 

(b) if f is accessible then My = M and ̂  is continuous. 

The proof of part (a) is given in Section 6 (see Theorem 6.1), based on ideas of 
Burns, Wilkinson [10] that we recall in Section 5 (see Proposition 5.13). Concerning 
part (b), we should point out that the measure ji plays no role in it: if / is accessible 
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then any non-empty bi-saturated set coincides with M and then one only has to check 
that bi-invariance implies continuity. That is done in Section 7 and uses neither center 
bunching nor refinability. 

Actually, in Section 7 we prove a stronger fact: bi-continuity implies continuity, 
when / is accessible. The notion of bi-continuity is defined as follows: 

Definition 2.13. — A measurable section \£ : M —> % of the continuous fiber bundle 
7T : % —• M is s-continuous if the map (x,y,^(x)) i—• W(y) is continuous on the set of 
pairs of points (x, y) in the same local strong-stable leaf. The notion of u-continuity 
is analogous, considering strong-unstable leaves instead. Finally, \I> is bi-continuous if 
it is both s-continuous and ix-continuous. 

More explicitly, a measurable section \I> is s-continuous if for every e > 0 and 
every (x,y) with y G V/Soc(x) there exists ô > 0 such that dist(\P(2/), ̂ (y')) < e 
for every (x',yf) with yf G W*oc(xf) and dist(x,x/) < S and dist(y,2/') < ô and 
dist(\I>(#), ̂ f(xf)) < ô; it is implicit in this formulation that the fiber bundle has been 
trivialized in the neighborhoods of the fibers %x and %y. 

Remark 2.14. — If a section \I> : M —• % is s-invariant then it is s-continuous: 

(x,y,*(x))i^*(y) = /i'iy(*(x)) 

is continuous on the set of pairs of points in the same local strong-stable leaf. Moreover, 
5-continuity ensures that the section \I> is continuous on every strong-stable leaf: taking 
x = x' = y in the definition, we get that dist(\P(y), ̂ (yf)) < e for every y' G Vfoc(y) 
with dist(2/,2/7) < 5. Analogously, u-invariance implies ^-continuity and that implies 
continuity on every strong-unstable leaf. 

Thus, part (b) of Theorem D is a direct consequence of the following result: 

Theorem E. — Let f : M —> M be a C1 partially hyperbolic, accessible diffeomor­
phism. Let 7T : % —> M be a continuous fiber bundle. Then every bi-continuous section 
\£ : M —> % is continuous in M. 

The proof of this theorem is given in Section 7. Notice that we make no assumptions 
on the continuous fiber bundle: at this stage we do not need stable and unstable 
holonomies, and the fibers need not be refinable either. 

The logical connections between our main results can be summarized as follows: 

Prop. 8.2 

1 
Thm. A 

Rmk. 2.9 

Thm. B 

\ 

Thm. C(a) 

Î 

Thm. 4.1 

1 
Thm. C(b) 

Thm. D(a) 

Thm. 4.4 

Thm. D(b) 

Thm. 6.1 

Î 
Prop. 5.13 

Thm. E 
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3. Cocycles with holonomies 

First, we explore the notions of domination and fiber bunching for linear cocycles. 
In Section 3.1 we prove that if a linear cocycle is fiber bunched then it admits in­
variant stable and unstable holonomies, and so does its projectivization. Moreover, in 
Section 3.2 we check that these invariant holonomies depend smoothly on the cocycle. 
Then, in Section 3.3, we discuss corresponding facts for smooth cocycles. 

We will often use the following notational convention: given a continuous function 
r : M —> R+, we denote 

rn(p) = r(p)r(f(p)) • • • r t f ^ f o ) ) for any n > 1. 

3.1. Fiber bunched linear cocycles. — For simplicity of the presentation, we will 
focus on the case when the vector bundle 7r : V —> M is trivial, that is, V = M x Kd 
and 7T : M x Kd —• M is the canonical projection. The general case is treated in the 
same way, using local charts (but the notations become rather cumbersome). 

In the trivial bundle case, every linear cocycle F : V —» V may be written in the 
form F(x,v) = (f(x),A(x)v) for some continuous A : M —* GL(d, K). Notice that 
Fn(x1v) = (fn(x),An(x)v) for each n G Z, with 

An(x) = A(fn-\x))...A(x) and A~n(x) = Atf-^x))-1 • • • A(fn (x))"1 

for n ^ 0 and A°(x) = id. Notice also that F G ^r,a(V,/) if, and only, if A be­
longs to the space ^r'a(M,d,K) of Cr'a maps from M to GL(d,K). The Cr^ norm 
in ^r'a(M,d,K) is defined by 

(3.1) ||A|La = sup sup IIDMOr)!! -hsup 
0<i<rxeM 

\\DrA(x)-DrA(y)\\ 
dist(x, y)a 

Recall that we assume that r + a > 0 and take (3 = a if r = 0 and (3 = 1 if r > 1. 
Then every A G @r,a(M,dK) is /3-Holder continuous. By the Definition (2.12), the 
cocycle F is fiber bunched if 

(3.2) WAWWWAixr^MxyKl and ||A(x)|| v{xf < 1 

for every x in M. In this case we also say that the function A is fiber bunched. 
Up to suitable adjustments, all our arguments in the sequel hold under the weaker 
assumption that (3.2) holds for some power A£, £ > 1. 
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Notice that fiber bunching is an open condition: if A is fiber bunched then so is every 
B i n a neighborhood, just because M is compact. Even more, still by compactness, if 
A is fiber bunched then there exists m < 1 such that 

(3.3) | |B(x)||| |B(x)-1||i/Wm<l and ||B(x)|| I IB^)"1^^)^ < 1 

for every x G M and every B in a C° neighborhood of A. It is in this form that the 
definition will be used in the proofs. 

Lemma 3.1. — Suppose that A G $r,a(M, d, K) is fiber bunched. Then there is C > 0 
such that 

\\An(y)\\ \\An{z)-l\\<Cun{x)-^ 

for all y, z G Vfoc(x), x G M, and n > 1. Moreover, the constant C may be taken 
uniform on a neighborhood of A. 

Proof — Since A G î^r'a(M, d, K) is /̂ -Holder continuous, there exists L\ > 0 such 
that 

\\A(f(y))\\/\\A(f(x))\\ < expCLidist^Cx), / '^) 

< exp(Li^'(x)^dist(x,j/)/3) 

and similarly for ^A{f^{z)) 1||/||A(/-7(x)) By sub-multiplicativity of the norm 

||An(ï,)|| WM-HK 
n-l 

3=0 
\\A(fj(y))\\ WAifiz))-^ 

In view of the previous observations, the right hand side is bounded by 

exp \L\ 
n-l 

3=0 

^'(^(distOr,^ + distOr,*)^ 
n-l 

3=0 
\A(f(x))\\ WAifix))-^ 

Since v(-) is bounded away from 1, the first factor is bounded by some C > 0. By 
fiber bunching (3.3), the second factor is bounded by z/n(#)-/3m. It is clear from the 
construction that L\ and C may be chosen uniform on a neighborhood. • 

Proposition 3.2. — Suppose that A G î̂ r,a(M, d, K) is fiber bunched. Then there is 
L > 0 such that for every pair of points x, y in the same leaf of the strong-stable 
foliation Vs, 

(a) H*y = lim^oo An{y)~1 An{x) exists (a linear isomorphism ofKd) 

(b) Hh{x),p{y) = AJM ° Ha*# ° Aj^~l f°r every i ^1 

(c) H'x%x = id and HitV = H^y o Hs^z 

(d) \\H^y - id II < Ldist^,^)^ whenever y G W\oc(x). 

(e) Given a > 0 there is T(a) > 0 such that \\H* \\ < T(a) for any x, y G M with 
y G Vs(x) and dist^s (#,?/) < a. 

Moreover, L and the function T(-) may be taken uniform on a neighborhood of A. 
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Proof. — In order to prove claim (a), it is sufficient to consider the case y G Vfoc(x) 
because An+* (y)'1 An+* (x) = A^(y)~lAn(P{y))~lAn(p''(x))A>\x). Furthermore, 
once this is done, claim (2) follows immediately from this same relation. Each 
difference \\An+l(y)-1 An+l(x) - An(y)~1An(x)\\ is bounded by 

ll^fo)-1!! P ( r ( y ) ) - ^ ( / n ( x ) ) - id || \\An(x)\\. 
Since A is /3-Holder continuous, there is L2 > 0 such that the middle factor in this 
expression is bounded by 

L2dist(r(x),/"(y))'3 < L2[un(x)diSt(x,y)]/}. 
Using Lemma 3.1 to bound the product of the other factors, we obtain 

(3.4) \\An+\y)-1A^\x)-An{y)-lAn{x)\\ < CL2 [un(x)^~^ dist(x,y)]*. 
The sequence vn(#)^1_m) is uniformly summable, since v{-) is bounded away from 1. 
Let K > 0 be an upper bound for the sum. It follows that An(y)~1An(x) is a Cauchy 
sequence, and so it does converge. This finishes the proof of claims (a) and (b). Claim 
(c) is a direct consequence. 

Moreover, adding the last inequality over all n, we get \\H* — id || < Ldist(#, y)& 
with L = CL2K. This proves claim (d). As a consequence, we also get that there 
exists 7 > 0 such that ||#J)2/|| < 7 for any points x, y in the same local strong-stable 
leaf. To deduce claim (e), notice that for any x, y in the same (global) strong-stable 
leaf there exist points zo, ..., zn, where n depends only on an upper bound for the 
distance between x and y along the leaf, such that zq — x, zn = y, and each zi belongs 
to the local strong-stable leaf of Zi-\ for every i = 1,... ,n. Together with (c), this 
implies \\H* y\\ < 771. It is clear from the construction that L2 and T() may be taken 
uniform on a neighborhood. The proof of the proposition is complete. • 

To show that the family of maps Hxy given by this proposition is an invariant 
stable holonomy for F (we also say that it is an invariant stable holonomy for 4̂) we 
also need to check that these maps vary continuously with the base points. That is a 
consequence of the next proposition: 

Proposition 3.3. — Suppose that A G Cr'a(M, d, K) is fiber bunched. Then the map 
(x,y)»HZiy 

is continuous on = {{x,y) G M x M : fN(y) G Vfoc(/N(#))}, for every N > 0. 

Proof. — Notice that dist(x,y) < 2R for ail (x,y) G Wjf, by our definition of local 
strong-stable leaves. So, the Cauchy estimate in (3.4) 

(3.5)\\An+\y)-lAn+\x) - An{y)-1An{x)\\ < CL2 [^(x)^ dist(x,y)]P. 
< CL2{2Rfvn{x)^1-rn) 

is uniform on Wq. This implies that the limit in part (a) of Proposition 3.2 is uniform 
on Wq. That implies case N = 0 of the present proposition. The general case follows 
immediately, using property (b) in Proposition 3.2. • 
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Remark 3.4. — Since the constants C and L2 are uniform on some neighborhood of A, 
the Cauchy estimate (3.5) is also locally uniform on A. Thus, the limit in part (a) of 
Proposition 3.2 is locally uniform on A as well. Consequently, the stable holonomy 
also depends continuously on the cocycle, in the sense that 

(A, x, y) i-» HSA is continuous on @R,A(M, d, K) x WQ. 

Using property (b) in Proposition 3.2 we may even replace WQ by any W^. 

Dually, one finds an invariant unstable holonomy (x,y) i—• Hxy for A (or the 
cocycle F), given by 

m = lim An(v)~1An(x) 
n—> —oo 

whenever x and y are on the same strong-unstable leaf, and it is continuous on Wjy = 
{(x,y) G M x M : f~N(y) G cWSioc(f~N(x))}i for everY N > °- Even more> 

(A, x, y) i-> -ffJJ ^ is continuous on every $R,A(M, d, K) x WĴ . 

3.2. Differentiability of holonomies. — Now we study the differentiability of 
stable holonomies HsAxy as functions of A G |f 'a(M, d, K). Notice that @r,a(M, d, K) 
is an open subset of the Banach space of Cr,a maps from M to the space of all d x d 
matrices and so the tangent space at each point of ^r,a (M, d, K) is naturally identified 
with that Banach space. The next proposition is similar to Lemma 2.9 in [25], but 
our proof is neater: the previous argument used a stronger fiber bunching condition. 

Proposition 3.5. — Suppose that A G $r,a (M, d, K) is fiber bunched. Then there exists 
a neighborhood îl C $r,0i(M, d, K) of A such that, for any x G M and any y, z G 
Vs{x), the map B i—> is of class C1 on il, with derivative 

(3.6) « , , 2 : B k 
OO 

i=Q 
B'izr^j^j^Bifiy^ÈiS+S+ZS+S+fiv)) 

-B{fi(z))-lÈ(fi(z))H%Ji{SS+S+SSv)tfl{^Bi{y). 

Proof. — There are three main steps. Recall that fiber bunching is an open condition 
and the constants in Lemma 3.1 and Proposition 3.2 may be taken uniform on some 
neighborhood ÎI of A. First, we suppose that y, z are in the local strong-stable leaf 
of x, and prove that the expression 3BHQ Z B is well defined for every B G îl and 
every B in ^ ^ ' " ( M , d, K). Next, still in the local case, we show that this expression 
indeed gives the derivative of our map with respect to the cocycle. Finally, we extend 
the conclusion to arbitrary points on the global strong-stable leaf of x. 

Step 1. For each i > 0, write 

(3.7) ^l,/.(v),/'WB(/<(l'))"lé(/i(»))--B(/<(i!))~lé(/<('8!))ffB,/'(»),/'W 
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as the following sum 

(ffB,/.(v),/'(.) - id)S(f DD+D+R(1/)) + B(f (z))-lÈ(f (z))(id -H%Ji(y)Ji(z)) 

+ [B(f (y))-1^/ '(y)) - B(/'(z))-1B(/i(z))]. 

By property (d) in Proposition 3.2, the first term is bounded by 

(3.8) L | |B(f (y))"1!! \\B(f(y))\\ dist(f(y),f(z)f 

< L \\B-%i0 ||B||o,0 ["'(x) dist(y, z)f 

and analogously for the second one. The third term may be written as 

#(/%))-W (2/) ) - B(f(z))] + [Bifiy))-1 - B(f(z))-i}è(f(z)). 

Using the triangle inequality, we conclude that this is bounded by 

(3.9) (\\B(f (y))"1!! Hfi(È) + H^B'1) \\È(f(z))\\) dist(/*(y), f(z)f. 

< HB-^lo^HBllo^ p(x)dist(2/,^)]^, 

where Hp((f)) means the smallest C > 0 such that \\4>(z) — (/>(w)\\ < Cdist(z, w)P for 
all z, w G M. Notice, from the Definition (3.1), that 

(3.10) |M|o,o + H0((/>) = \\(f>\\o,p < U\\r,a for any function 0. 

Let Ci = sup {||5_1||o,/3 : B G Replacing (3.8) and (3.9) in the expression pre­
ceding them, we find that the norm of (3.7) is bounded by 

(2L + l ) d ^(x^dist^^HBHo^ 

Hence, the norm of the it h term in the expression of ÔbHb B is bounded by 

(3.11) 2(L + l ) d u'ixfWB^z)-^ ||B%)|| dist^^HBHo,/, 

< C2vi{xf{-1-^ di8t(j,,*y»||S||o,/9 

where Ci = 2C(L + \)C\ and C is the constant in Lemma 3.1. In this way we find, 

oo 
(3.12) \\dBH'B^(B)\\ < C2 £ v\x)^-^ dist(y, zf\\B\\^ 

i=0 

for any x G M and y, z G Vfoc(a;). This shows that the series defining dBHsByz(B) 
does converge at such points. 

Step 2. By part (a) of Proposition 3.2 together with Remark 3.4, the map HsByz 
is the uniform limit HByz = Bn(z)~1Bn(y) when n —• oo. Clearly, every HByz is a 
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differentiable function of B, with derivative 

dBHi^z{È) = 
n-1 

2=0 
B\z)-l[Hl-ji{y)Ji(z)B{f\yDD+D))-lÈ{f\y)) 

-B{f\z))-*È{f\z))Hl-}i(y)DD+Dfi^B\y). 

So, to prove that 9BHB Y Z is indeed the derivative of the holonomy with respect to B, 
it suffices to show that dHByz converges uniformly to dHB y z when n —> oo. 

Write 1 — m = 2r. Prom (3.4) and the fact that v(-) is strictly smaller than 1, 

\\HB,y,z ~ HB,y,z\\ ^ CL2 
oo 

j—n 
Z'A(O,xU),O,J3%>C(O 

< C^n{x)2^ràist{y,zf < C3vn(x)PTdist(y,zf 

for some uniform constant C3 (the last inequality is trivial, but it will allow us to 
come out with a positive exponent for vl{x) in (3.13) below). More generally, and for 
the same reasons, 

\\HBJUv)JHz) HB,f*(y)Ji(z)\\ < C^Wx))*- dist(r (y), f(z)f 

< C3un-i(fi(x)frui(xf dist(2/, zf 

= Czvn{xfTv\xf^-r) dist(y, zf 

for all 0 < i < n, and ally, z in the same local strong-stable leaf. It follows, using also 
Lemma 3.1, that the norm of the difference between the ith terms in the expressions 
of ÔBHQ and dsHB z is bounded by 

(3.13) C^ixf^Hxf^Hi^zf^D+D+D+DBHzyH ||B%)|| 

< CC3vn(xfTvHxfT &st(y,zf. 

Combining this with (3.11), we find that \\dsHg z — 6BHB Z\\ is bounded by 

CC3 
n-l 

i=0 

v\xfTvn(xfT dist(y, zf + C2 
oo 

i=n 
i/(z)2/3r àbtfazf. 

Since vl{x) is bounded away from 1, the sum is bounded by C±vn{xfT d\st{y,zf, 
for some uniform constant C4. This latter expression tends to zero uniformly when 
n —» 00, and so the argument is complete. 

Step 3. Prom property (b) in Proposition 3.2, we find that if HSB ^ is differ­
entiable on B then so is HSB Z and the derivative is determined by 

(3.14) Ê(z) H'BtV. + B(z) • dBH'BtVJÈ) = H'BiVt, • B{y) + dBH'„vJÈ) • B(y). 

Combining this observation with the previous two steps, we conclude that HB y z 
is differentiable on B for any pair of points y, z in the same (global) strong-stable 
leaf: just note that fn(y), fn(z) are in the same local strong-stable leaf for large n. 
Moreover, a straightforward calculation shows that the expression in (3.6) satisfies 
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the relation (3.14). Therefore, (3.6) is the expression of the derivative for all points y, 
z in the same strong-stable leaf. The proof of the proposition is now complete. • 

Corollary 3.6. — Suppose that A G $r'a(M,d,K) is fiber bunched. Then there exists 
6 < 1 and a neighborhood ÎI of A and, for each a > 0, there exists C$(a) > 0 such 
that 

(3.15) II 
OO 

i=k 
; b'(Z)-1 FEJI(Y)I/I(Z)B(/I(Î/))-IJB(r (»)) 

- B{f{z))-xÈ{f{z))HsBJi(y)Ji(2) B\y)\\<Cb{a)ek \\è\\o,0 

for any B G ïl, k > 0, x G M, and y, z G Vs(x) with dist^(2/, z) < a. 

Proof — Let 6 < 1 be an upper bound for i/(-)/3^1-m\ Begin by supposing that 
distw*(y, z) < R. Then y, z are in the same local strong-stable leaf, and we may use 
(3.11) to get that the expression in (3.15) is bounded above by 

c2 
OO 

i=k 
^(^(l-mJdiBt^^HBHo,/, < C'5ek \\B\\0,P 

for some uniform constant C'b. This settles the case a < R, with C^(a) — C5. 
In general, there is I > 0 such that dist^3(y, z) < a implies dist^(/z(y), fl(z)) < 

R. Suppose first that k > I. Clearly, the expression in (3.15) does not change if we 
replace y, z by fl(y), fl{z) and replace k by k — I. Then, by the previous special case, 
(3.15) is bounded above by 

C5ek~l \\È\\o,P 

and so it suffices to choose C^(a) > C'b6~l. If k < I then begin by splitting (3.15) 
into two sums, respectively, over k < i < I and over i > I. The first sum is bounded 
by C5 (a) II#||0,0 for some constant C5 (a) > 0 that depends only on a (and /, which is 
itself a function of a). The second one is bounded by C'b ||l?||o,/3, as we have just seen. 
The conclusion follows, assuming we choose C^(a) > C'56~l + C'^{a)6~l. • 

For future reference, let us state the analogues of Proposition 3.5 and Corollary 3.6 
for invariant unstable holonomies: 

Proposition 3.7. — Suppose that A G $r,a (M, d, K) is fiber bunched. Then there exists 
a neighborhood ïl C $r,a(M, d, K) of A such that, for any x G M and any y,z G 
cWu{x), the map B \-> Hg v z is of class C1 on ÎI with derivative 

(3.16) dBHuB^z:È^ 
00 

2=1 
B-\z)-*\H»BJ-i{y)J-uz)BU '{y)) *B{J \V)) 

-Bu-Kz^ÈirKmQQ+Q+Q+Qij-^j-^B-Kv) 
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Corollarv 3.8. — In the same settinq as Proposition 3.7, 

(3.17) || 
OO 

i=k 
B-iW-1taf/-.(y)>/-.wB(/-*(y))-1B(/-*(y)) 

-JB(/-W)-1E(/-(z))^J_i(y)) /_i( , )" B'i(y)\\<Cb(a)ek \\È\\o,f>. 

for any B G îl, k > 0, x G M, and y, z e ^(x) with distc^y,z) < a 

3.3. Dominated smooth cocycles. — Now we introduce a concept of domination 
for smooth cocycles, related to the notion of fiber bunching in the linear setting. 
We observe that dominated smooth cocycles admit invariant stable and unstable 
holonomies, and these holonomies vary continuously with the cocycle. These facts are 
included to make the analogy to the linear case more apparent but, otherwise, they 
are not used in the present paper: whenever dealing with smooth cocycles we just 
assume that invariant stable and unstable holonomies do exist. In this section we do 
not consider any invariant measure. 

Let (3 > 0 be fixed. A fiber bundle with smooth leaves ir : S —> M is called /3-Holder 
if there exists C > 0 such that the coordinate changes (2.7) satisfy 

(3.18) d i s t c i ^ 1 , ^ 1 ) < Cdist(x,2/)/3 for every x and y. 

Then we say that a smooth cocycle # : 6 —> 6 is /̂ -Holder if its local expressions 
0-1 o£o cf>Uo : (U0 O rHUi)) xN^UtxN, (*,£) ~ (/(*), ff£(0) satisfy 

(3.19) distCi($x,$y) < Cudist(x,y)p for some Cu > 0 and every x and y. 

This does not depend on the choice of the local charts. Indeed, any other local ex­
pression has the form $x = o o g~l on the intersection of the domains of 
definition. Then, a straightforward use of the triangle inequality gives 

distCi ÇSxiSy) < Cy dist(x, y)0 for every x and y, 

where Cy depends on /?, C, Cu and upper bounds for the norms of Dg^, Dgfy, Dg~x 
and Df. 

Definition 3.9. — Denote by 6) the space of cocycles $ that are /3-Holder con­
tinuous. A cocvcle ï? G ë̂ f/*, S) is s-dominated if there is 6 < 1 such that 

(3.20) WDSJtyH v(x)P < 6 for all (<r,0 G & 

and it is u-dominated if there is 6 < 1 such that 

(3.21) P&n(OII H*)* < e for a11 (*>0 e S. 
We say that F is dominated if it is both s-dominated and it-dominated. 

In geometric terms, (3.20) means that the contractions of $ along the fibers are 
strictly weaker than the contractions of / along strong-stable leaves and (3.21) ex­
presses a similar property for the expansions of These conditions are designed so 
that the usual graph transform argument yields a "strong-stable" lamination and a 
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"strong-unstable" lamination for the map as we are going to see. Then the holon­
omy maps for these laminations constitute invariant stable and unstable holonomies 
for the cocycle. 

Observe that both conditions (3.20)-(3.21) become stronger as /? decreases to zero; 
this may be seen as a sort of compensation for the decreasing regularity (Holder 
continuity) of the cocycle. The observations that follow extend, up to straightforward 
adjustments, to the case when these conditions hold for some iterate £ > 1. 

Proposition 3.10. — Let # £ ë^(/>£) be s-dominated. Then there exists a unique 
partition Vs = {Vs(x,^) : (x,£) G S} of 6 and there exists C > 0 such that 

(a) every Vs(#,£) is a (C, (3)-Holder continuous graph over Vs (x); 
(b) the partition is invariant: #( Vs(#,£)) C V5(#(#,£)) for all (#,£) G &. 

Consider the family of maps Hxy : Sx —• Sy defined by (y,Hxy(^)) G <Ws(x,^) for 
each y G Vs (x). Then, for every x, y and z in the same strong-stable leaf, 

(c) H°,z o H'x,y = Hx>z and = id 
(d) 3voHly = H»nx)J(u)o!gx 

(e) H* : Sx —» 6y is the uniform limit of (3^)_1 o #™ as n —> oo; 

(f) H* : &x —> Sy is ^-Holder continuous, where 7 > 0 depends only on and 
Hx is (C, 7) -Holder continuous if x and y are in the same strong-stable leaf; 

(g) (x,y,£) 1—• H* (£) is continuous when (x,y) varies in the set of pairs of points 
in the same local strong-stable leaf. 

Moreover, there are dual statements for strong-unstable leaves, assuming that # is 
u-dominated. 

Outline of the proof. — This follows from the same normal hyperbolicity methods 
(Hirsch, Pugh, Shub [16]) that were used in the previous section for linear cocycles. 
Existence (a) and invariance (b) of the family (Jl/S follow from a standard application 
of the graph transform argument (see Chapter 5 of [24]). The pseudo-group property 
(c) is a direct consequence of the definition of Hx . The invariance property (d) is a 
restatement of (b). To prove (e), notice that 

Hx,y = (#y ) 1 ° Hh{*)Jn(v) ° 

because the lamination Vs is invariant under Also, by (a), the uniform C° distance 
from Hfn(x) fn(y) to the identity is bounded by 

Cdist(/n(x),/n(y)^ < C[*/"(*) dist(x,y)f. 

Putting these two observations together, we find that 

d i s t c o ^ , ^ ) - 1 orx) < L ip(^) -1) distco(ff;„(l)i/»(tf),id) 

< C sup UDS^r1 II vn(xf dist(:r, yf. 
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So, by the domination condition (3.20), 

(3.22) distco(Jff',y, (S?)"1 o Tx) < C0N dist(x, . 

This proves (e). For pairs (x,y) in the same local strong-stable leaf, the right hand 
side of (3.22) is uniformly bounded by CR^6n. Since this converges to zero, we also 
get that the limit map (x,y,Ç) H*jy(£) is continuous, as stated in (g). 

The Holder continuity property is another by-product of normal hyperbolicity the­
ory. In this instance it can be derived as follows. In view of the invariance property (d), 
it suffices to consider the case when x and y are in the same local strong-stable leaf. 
Given nearby points £, rj G 6X, let r\' be their images under the holonomy map Hxy. 
The domination Hypothesis (3.20) ensures that there exists n < — c\ logdist(£', rjf) 
(where C\ > 0 is a uniform constant) such that the distance dist(/n(x), fn(y)) be­
tween the fibers is much smaller than the distance dist(3^(£'), $x(r)f)) along the fiber, 
in such a way that, 

dist(£J(0.3Sfa))> 
i 
2 dist(3£(£ ') ,W)). 

Let c2 > 0 be an upper bound for log II^S^1!! over all w G M. Then 

distféW) 

d i s t ( £ , 7 7 ) 
d+r+d dta t (3? (0 ,W)) 

dist(32(0,3£fa)) 
<2e2c2n<2d(^r/)~2ciC2. 

This gives dist (£',?/) < 27 dist(£,r?)7 with 7 = 1/(1 + 2cic2). 

Next, let 2) (/, (5) C *6 (/, 5) be the subset of s-dominated cocycles. It is clear 
from the definition that 2)s,/3(/, S) is an open subset, relative to the uniform C1 
distance 

distCi 0) = sup{distCi (&., <ÔX) : x e M}. 
We are going to see that invariant stable holonomies vary continuously with the 
cocycle inside 2)s,^(/, <S), relative to this distance. Analogously, invariant unstable 
holonomies vary continuously with the cocycle inside the subset 2)n'^(/, 6) C ë^(/, 6) 
of ^-dominated cocycles. We also denote by 2)^(/, 6) C ë^(/, (§) the (open) subset 
of dominated cocycles. 

Let Vs(0) = {Vs(($,:r,£) : (#,£) G S} denote the strong-stable lamination of a 
dominated cocycle (5, as in Proposition 3.10, and H# = H®,x^y be the corresponding 
stable holonomy: 

(3.23) (v,HixJÇ))e Ws(<S,x,0. 

Recall that Vs(<S,x,£) is a graph over Vs(z). We also denote by 1*^(0, the 
subset of points (y,H£iXiy(Ç)) with y G K c W -

Proposition 3.11. — Let ($k)k be a sequence of cocycles converging to $ in the space 
2>S,/V, &). Then, for every x G M, y G cWs(x), and £ E 6X, 

(a) W8Ç&k,x,Ç) is a /3-Hôlder graph; restricted to local strong-stable leaves, the 
multiplicative Holder constant is uniform on (fc,x,£); 
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(b) the sequence (uk)k of functions defined by Vfoc (#&,#, £) = graphic converges 
uniformly to the function u defined by T̂ foc(ff, = graphs; this convergence 
is uniform on 

(c) HgkXy converges uniformly to H^xy; this convergence is uniform on (x,y), 
restricted to the set of pairs of points in the same local strong-stable leaf 

Moreover, there are dual statements for invariant unstable holonomies, in the space 
of u-dominated cocycles. 

Outline of the proof. — This is another standard consequence of the graph transform 
argument [16]. Indeed, the assumptions imply that the graph transform of con­
verges to the graph transform of $ in an appropriate sense, so that the corresponding 
fixed points converge as well. This yields (a) and (b). When y G Wioc(x), claim (c) is 
a direct consequence of (b) and the Definition (3.23). The general statement follows, 
usine; the invariance property in Proposition 3.10: 

H$k,x,y = (Sk,y) ° H$k,fn(x)J"(y) ° $k,x' 

Related facts were proved in [25, Section 4] for linear cocycles, along these lines. • 

Remark 3.12. — The previous observations do not need the full strength of partial 
hyperbolicity. Indeed, the definition of s-dominated cocycle still makes sense if one 
allows the subbundle Eu in (2.1) to have dimension zero; moreover, all the statements 
about invariant stable holonomies in Propositions 3.10 and 3.11 remain valid in this 
case. Analogously, for defining w-domination and for the statements about invariant 
unstable holonomies one may allow Es to have dimension zero. 

Remark 3.13. — It follows from (2.13)-(2.14) that if a linear cocycle F is fiber bunched 
then the associated projective cocycle # = F(F) is dominated. Thus, we could use 
Proposition 3.10 to conclude that # admits invariant stable and unstable holonomies. 
On the other hand, it is easy to exhibit these holonomies explicitly: if Hxy and Hxy 
are invariant holonomies for F then F(H* y) and P(H% ) are invariant holonomies 
for y. 

4. Invariant measures of smooth cocycles 

In this section we prove the following result and we use it to obtain Theorem C: 

Theorem 4.1. — Let f be a C1 partially hyperbolic diffeomorphism, $ be a smooth 
cocycle over f, /JL be an f-invariant probability, and m be an ̂ -invariant probability 
on & such that 7r*m = [i. 

(a) If S admits invariant stable holonomies and A_(#, #,£) > 0 at m-almost every 
point (x,£) G 6 then, for any disintegration {mx : x G M} of m into conditional 
probabilities along the fibers, there exists a full ^-measure subset Ms such that 
mz = (Hyz)*my for every y, z G Ms in the same strong-stable leaf. 
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(b) If$ admits invariant unstable holonomies and A+^j x, £) < 0 at m-almost every 
point G & then, for any disintegration {mx : x G M} of m into conditional 
probabilities along the fibers, there exists a full ji-measure subset Mu such that 
mz = (HyZ)*my for every y, z G Mu in the same strong-unstable leaf 

Remark 4.2. — Theorem 4.1 does not require full partial hyperbolicity. Indeed, the 
proof of part (a) that we will present in the sequel remains valid when dim Eu = 0. 
Analogously, part (b) remains true when dim Es = 0. 

Theorem C can be readily deduced from Theorem 4.1 and Theorem D, as follows. 
Given any disintegration {mx : x G M} of the probability m, define ty(x) = mx at 
every point. According to Theorem 4.1, the function \I> is essentially s-invariant and 
essentially u-invariant. By Theorem D, there exists a bi-invariant function ^ defined 
on some bi-saturated full measure set M and coinciding with ^ almost everywhere. 
Then we get a new disintegration {rhx : x G M} by setting mx = ty(x) when x G 
M and extending the definition arbitrarily to the complement. The conclusion of 
Theorem D means that this new disintegration is both s-invariant and ^-invariant 
on M. Moreover, it is continuous if / is accessible. 

The proof of Theorem 4.1 is given in Sections 4.1 through 4.4. Theorem D will be 
proved in Sections 6 and 7. 

4.1. Abstract invariance principle. — Let (M*, M*, /i* ) be a Lebesgue space, 
that is, a complete separable probability space. Every Lebesgue space is isomorphic 
modO to the union of an interval, endowed with the Lebesgue measure, and a finite 
or countable set of atoms. See Rokhlin [23, § 2]. Let T : M* —> M* be an invertible 
measurable transformation. A cr-algebra $ C is generating if its iterates Tn($), 
n G Z generate the whole M* mod 0: for every E G M* there exists E' in the smallest 
cr-algebra that contains all the Tn($) such that ii*(EAE') = 0. 

Theorem 4.3 (Ledrappier [19]). — Let B : M* —• GL(d,K) be a measurable map such 
that the functions x t-> log HjE? )̂̂  || are /i*-integrable. Let $ c M* be a generating 
cr-algebra such that both T and B are ^-measurable modO. 

If X-(B,x) = \+(B,x) at fj,*-almost every x G M* then, for any F(Fb)-invariant 
probability m that projects down to /i*, any disintegration x \-> mx of m along the 
fibers is ^-measurable modO. 

The proof of Theorem 4.1 is based on an extension of this result to smooth co-
cycles that was recently proved by Avila, Viana [3]. For the statement one needs to 
introduce the following notion. A deformation of a smooth cocycle # is a measurable 
transformation $ : 6 —> 6 which is conjugated to 

= l^,offo^f-1, 

by some invertible measurable map : S —» S of the form &(x, £) = (x,&x(£)), such 
that all the ^H~X : &x —• £x are Holder continuous, with uniform Holder constants: 
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there exist positive constants 7 and V such that 

dist(£,77) < rdist(&x(£),Mx(r)))7 for every x G M and £,77 G (Sx. 

To each ^-invariant probability m corresponds an ^-invariant probability rh = ${*m. 

Theorem 4.4 (Avila, Viana [3]). — Let $ be a deformation of a smooth cocycle 
Let $ C M* be a generating a-algebra such that both T and x »—> $x are ^-measur­
able modO. Let rh be an $-invariant probability that projects down to /x*. 

/ / A -^ , #,£) > 0 for m-almost every G & then any disintegration x rhx 
of rh along the fibers is ^-measurable modO. 

4.2. Global essential invariance. — For proving Theorem 4.1 it suffices to con­
sider the claim (a): then claim (b) is obtained just by reversing time. In this section 
we reduce the general case to a local version of the claim (Proposition 4.5 below), 
whose proof is postponed until Section 4.4. 

For each symbol * G {s,u} and r > 0, denote by V*(x,r) the neighborhood of 
radius r around x inside the leaf W*(x). Recall that we write V*oc(x) = V*(a;, R). 

Proposition 4.5. — Consider the setting of Theorem J^.l(a). Let £ be a cross-section 
to the strong-stable foliation Vs of f and let S G (0,R/2). Denote 

d+r+d5r+ 
d+r+d5r 

Vs (z,S) 

Then there exists a full ^-measure subset 9fs of 9f(Y,,8) such that my = (H*y)*mx 
for every x, y G Jfs in the same cWs{z,8), z G S. 

Fix any 6 G (0,i2/2). For each p G M, consider a cross-section D(p) such that 
9/ÇE(p), S) contains p in its interior and let 9fs(p) C 5^(£(p),£) be a full mea­
sure subset as in Proposition 4.5. By compactness, we may find e <C S and points 
Pi, • • • ,PN such that the ball of radius e around every point of M is contained in some 
ffl(E(Pj),5). Since the measure m is invariant under there exists an /-invariant set 
Mm C M with full //-measure such that mf(x) = ($x)*™>x for every x G Mm. Take 

M8 = {xeMm: fn(x) i yrÇZ(Pj),ô) \ 9fs(pj) for all n > 0 and j = 1, . . . , N.} 

Given any pair of points x, y G Ms in the same strong-stable leaf, take n > 0 large 
enough so that the distance from fn{x) to fn(y) along the corresponding strong-
stable leaf is less than e. Next, fix j such that ^(£(pj) , 5) contains the ball of radius 
e around fn(x). Since y G Ms, both points /n(x), fn(y) belong to 9fs{pj). So, by 
Proposition 4.5, 

(4.1) mfn(y) = (Hf"(x)J»(v))*mfHx)' 

Since x, y G Mm, we also have that m/n(x) = ($x)*mx and analogously for y. Then, 
using the invariance relation ^ n ^ ^ n ^ o = #™ o the equality in (4.1) 
becomes my = (Hxy)*mx. 
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This proves claim (a) in Theorem 4.1. Claim (b) is analogous, up to time reversion. 
Thus, we have reduced the proof of Theorem 4.1 to proving Proposition 4.5. 

4.3. A local Markov construction. — The proof of Proposition 4.5 can be out­
lined as follows. The assumption that the cocycle admits stable holonomy allows us 
to construct a special deformation # of the smooth cocycle # which is measurable 
mod 0 with respect to a certain cr-algebra (É. Applying Theorem 4.4 we get that the 
disintegration of m is also ^-measurable mod 0, where m is the ^-invariant measure 
corresponding to m. When translated back to the original setting, this ^-measurabil-
ity property means that the disintegration of m is essentially invariant on the domain 
^ ( E , 6), as stated in Proposition 4.5. 

In this section we construct $ and CB. The next proposition is the main tool. It is 
essentially taken from Proposition 3.3 in [25], so here we just outline the construction. 

Proposition 4.6. — Let E be a cross-section to the strong-stable foliation Vs and S G 
(0, R/2). Then there exists N > 1 and a measurable family of sets {S(z) : z G E} such 
that 

(a) Vs(z, S) C S(z) C Kr(^) for all z G E; 
(b) for alll>\ and z,Ç G E, if flN(S(Q) fl S(z) ^ 0 then flN(S(Ç)) C S(z). 

Outline of the proof. — Fix N big enough so that uN(x) < 1/4 for all x G M, and 
denote g = fN. For each z G E define So = Vs (z, S) and 

(4.2) Sn+1(z) = S0(z)U 
U,w)ezn(z) 

9J(Sn(w)) 

where Zn(z) = {(j,w) G N x E : gj(Sn(w)) fl S0(*) / 0 } . Clearly, S0(z) C Si(z) and 
Z0(z) C Zi(z). Notice that if Sn-i(*) C Sn(z) and Zn-i(z) C Zn{z) for every z G E, 
then, 

(j,w)ezn-1(z) 
gtfSn-^w)) C 

(j,w)ezn(z) 
gj(Sn(w)). 

Therefore, by induction, Sn{z) C Sn+i(z) and Zn(z) C Zn+i(z) for every n > 0. 
Define 

Soo(z) = 
OO 

n=0 

Sn(z) and Z^z) = 
OO 

n=0 

Zn(z). 

Then Z^z) is the set of (j, w) e N x E such that gj(Soo(w)) intersects Sq(z), and 

Soo(z) = S0(z)U 
O'.u>)e2oo(«) 

d+d+r5d+r 

The choice of TV ensures that Soo(z) C Vs(z, 2J). Finally, define 

S(*) = Soo(s)\ 
(*,0€f(*: 

fl*(Soo(0) 

where V(z) = {(fc,£) G N x E : gk(S00(^)) £ Soo(*)}. This family of sets satisfies the 
conclusion of the proposition. • 
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Since the conclusion of Proposition 4.5 is not affected when / and # are replaced 
by its iterates fN and $N, we may take the integer N in Proposition 4.6 to be equal 
to 1. Let M* = M and T = f. Let M* be the /i-completion of the Borel cr-algebra 
of M and //* be the canonical extension of fi to M*. Then (M*, /x*) is a Lebesgue 
space and T is an automorphism in it. 

For each z G E, let r(z) > 0 be the largest integer (possibly infinite) such that 
fj(S(z)) does not intersect any of the S(w), w G E for all 0 < j < r(z). Let <S be 
the cr-algebra of sets E G M* such that, for every z and j , either E contains fi(S(z)) 
or is disjoint from it. Notice that an J^-measurable function on M is ^-measurable 
precisely if it is constant on every fi(S(z)). Define # : & —• S to be # = ^ o j o ^ - 1 , 
where 

3~C x — nx,fHz) if z G fj(S{z)) for some z G E and 0 < j < r(z) 
id otherwise. 

Recall that S(z) C Vfoc(^) for every z, by construction. Reducing S if necessary, 
we may assume that fj(S(z)) C W\oc(P(z)) for every z and every j > 0. Then 
condition (d) in Definition 2.10 ensures that the family \jHx : x G M} is uniformly 
Holder continuous. The definition implies that 

(4.3) 3x - Hf(x)JJ + i(z) ° &c ° HfJ(z),x - $fj(z) 

if x G fj(S(z)) for some z G E and 0 < j < r(z). Moreover, 

(4.4) 3a; — Hf(x),w ° Sx ° H8fr(*)(z),x 

if x G /r<z) (#(*)) for some z G E, where w G E is given by /r(z)+1(S'(^)) C S(w). In 
all other cases, $x = $x. 

Lemma 4.7. — The following properties hold 
(a) T = / and XH^5x are <É-measurable 
(b) dist^o (j#x, id) zs uniformly bounded 
(c) {Tn(g) : n G N} generates M* modO. 

Proo/. — The relations (4.3) and (4.4) show that frc is constant on fj(S(z)) for every 
2 G E and 0 < j < r(z). Thus, x i—• $x is ^-measurable. 25-measurability of / is a 
simple consequence of the Markov property in Proposition 4.6. Indeed, let E G $ 
and let z G E and 0 < j < r(z) be such that f~l{E) intersects fj(S(z)). Then E 
intersects fj+1(S(z)). We claim that E contains p'+1(5(z)). When j + 1 < r(*) this 
follows immediately from E e <$. When j = r(z), notice that fj+1(S(z)) C 5(w) 
for some u> G S(z), and E e $ must contain 5(u>). So the claim holds in all cases. 
It follows that f~x{E) contains fj(S(z)). This proves that f~l{E) G and so the 
proof of part (a) is complete. To prove part (b), observe that 

diam fj(S(z)) < dianw- S(z) < R, 
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for ail z G E and j > 0, and so 
sup dist^o {${x, id) < sup dist^o (H^b, id). 
x£M dist(a,b)<R 

The right hand side is uniformly bounded, since the stable holonomy depends con­
tinuously on the base points, and the space of (a, 6) G M x M with dist(a, b) < R 
is compact. This proves part (b). To prove the last claim, observe that /N(25) is the 
cr-algebra of sets E G M* such that every fj+n{S{z)) either is contained in E or is 
disjoint from E. Observe that the diameter of f^n(S(z)) goes to zero, uniformly, 
when n goes to oo. It follows that every open set can be written as a union of sets 
En G /n($) and, hence, belongs to the cr-algebra generated by {/n($) : n G N} . This 
proves that the latter cr-algebra coincides mod 0 with the completion M* of the Borel 
cr-algebra, as stated in (c). • 

4.4. Local essential invariance. — Next, we deduce Proposition 4.5. By assump­
tion, A_ (5, x,£) > 0 at m-almost every point. Lemma 4.7 ensures that all the other 
assumptions of Theorem 4.4 are fulfilled as well. We conclude from the theorem that 
the disintegration {mx : x G M} of the measure rh = ££*m is measurable modO with 
respect to the cr-algebra (É. Then, there exists a full //-measure set Xs C M such that 
this restriction of the disintegration to Xs is constant on every fi(S(z)) with z G S 
and 0 < j < r(z). The disintegrations of m and m are related to one another by 

rhx = (J{x)*mx = (Hœ pu))*™* iîxe P(S(Z)) for ^ G E and 0 < j < r(z) 

mx otherwise. 

Define Jf* = Xs f l^(E, 5). Recall that S) C S(z) for ail z G E. Then, for every 
x, y G Jfs in the same VU, S), 

{Hsxz)^mx = mx = rhy = (if* J*ray, 

and so my = (HyZ),l1(H^z)*mx = {Hx^y)*mx. This proves Proposition 4.5. The 
proof of Theorem 4.1 is now complete. 

5. Density points 

In this section we recall some ideas of Burns, Wilkinson [10] that will be important 
in Section 6. The conclusions that interest us more directly are collected in Proposi­
tion 5.13. 

Let us start with a few preparatory remarks. Recall that we take M to carry a 
Riemannian metric adapted to / : M —» M, meaning that properties (2.2)-(2.4) hold. 
Clearly, these properties are not affected by rescaling. At a few steps in the course of 
the arguments that follow we do allow for the Riemannian metric to be multiplied by 
some large constant. 

Recall that we write Vloc(x) = V (x,R) for every x G M and * G {s, u}, where is 
R a fixed constant. In the sequel we suppose that R > 1. Up to rescaling the metric, 
we may assume that the Riemannian ball B(p, R) is contained in foliation boxes for 
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both Vs and V^, for every p G M. By further rescaling the metric, we may ensure 
that, given any p G M and x, y G B(p, R), 

y € Wloc(x) implies dist(/(x),/(y)) < v(p) dist(x,«) and, 
y e VL(x) implies distCTH*), +S+S+S+S+E< HrHp)) d f e t f o t i ) 

As a consequence, given any p, x, y G M, 
(i) / ( K c W ) c K c ( / W ) ^ d r W o c M ) c K c t r 1 ^ ) ) . 

(II) If /'"(s) G B(/'(p), il) for 0 < j < n, and y G Wfoc(x), then 
dist(/n(x),/n(y)) < i/n(p) dist(x,y); 

(III) If f~j(x) G B(f-*(p),R) for 0 < j < n, and y G Koc(*)> then 
dist(/-n(:r),/'"(y)) < v-n(p) dist(x,y). 

These properties of the strong-stable and strong-unstable foliations of / are useful 
guidelines to the notion of fake foliations, that we are going to recall in Section 5.2. 

5.1. Density sequences. — Let À be the volume associated to the (adapted) Rie-
mannian metric on M. We denote by Xs the volume of the Riemannian metric induced 
on any immersed submanifold 5. Given a continuous foliation 57 of M with smooth 
leaves, we denote by \&(A) the volume of a measurable subset A of some leaf F, 
relative to the Riemannian metric induced on that leaf. 

By definition, À and the invariant volume fi have the same zero measure sets. More 
important for our proposes, they have the same Lebesgue density points. Recall that 
x 6 M is a Lebesgue density point of a set X C M if 

lim \{X : B(x,6)) = 1 
d->0 

where X(A : B) = \{A fl B)/\(B) is defined for general subsets A, B with X(B) > 0. 
The Lebesgue Density Theorem asserts that X(X A DP(X)) = 0 for any measurable 
set X, where DP(X) is the set of Lebesgue density points of X. 

Balls may be replaced in the definition by other, but not arbitrary, families of 
neighborhoods of the point. 

Definition 5.1. — A sequence of measurable sets (Yn)n is a Lebesgue density sequence 
at x G M if 

(a) (Yn)n nests at the point x: Yn D Fn+i for every n and r\nYn = {x} 
(b) (Yn)n is regular: there is S > 0 such that A(yn+i) > SX(Yn) for every n 
(c) x is a Lebesgue density point of an arbitrary measurable set X if and only if 

l i m ™ X(X : Yn) = 1. 

Some of the sequences we are going to mention satisfy these conditions for special 
classes of sets only. In particular, we say that (Y^n is a Lebesgue density sequence 
at x for bi-essentially saturated sets if (c) holds for every bi-essentially saturated set 
X (this notion was denned in Section 2.1). 
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Burns, Wilkinson [10] propose two main techniques for defining new Lebesgue 
density sequences: internested sequences and Cavalieri's principle. The first one is 
quite simple and applies to general measurable sets. Two sequences (Yn)n and (Zn)n 
that nest at x are said to be internested if there is k > 1 such that 

Yn+fc Ç Zn and Zn+fc Q Yn for all n > 0. 

Lemma 5.2 (Lemma 2.1 in [10]). — If (Yn)n and {Zn)n we internested then one se­
quence is regular if and only if the other one is. Moreover, 

lim MX :Y„) = 1 
n—• oo 

lim X(X : Zn) = 1, 
n—>oo 

for any measurable set X C M. 

Consequently, if two sequences are internested then one is a Lebesgue density se­
quence (respectively, a Lebesgue density sequence for bi-essentially saturated sets) if 
and only if the other is. 

The second technique (Cavalieri's principle) is a lot more subtle and is specific to 
subsets essentially saturated by some absolutely continuous foliation £7" (with bounded 
Jacobians). Let U be a foliation box for £7 and E be a cross-section to £7 in U. The 
fiber of a set Y C U over a point q G E is the intersection of Y with the local leaf 
of £7" in U containing q. The base of Y C U is the set Ey of points q G E whose 
fiber Y{q) is a measurable set and has positive À ̂ -measure. The absolute continuity 
of £7* ensures that the base is a measurable set. We say that Y fibers over some set 
Z C E if the basis Ey equals Z. Given c > 1, a sequence of sets Yn contained in U 
has c-uniform fibers if 

(5.1) c"1 < 
EOSEDLEZ 
D+R?DR+ 

< c for all #2 € Eyn and every n > 0. 

Proposition 5.3 (Proposition 2.7 in [10]). — Z,e£ (Yn)n be a sequence of measurable sets 
in U with c-uniform fibers, for some c. Then, for any locally £7-saturated measurable 
set X C U, 

lim X(X : Yn) = 1 lim AE(EX : EyJ = 1. 
n—>-oo 

By locally £7-saturated we mean that the set is a union of local leaves of £7* in 
the foliation box U. Sets that differ from a locally £7"-saturated one by zero Lebesgue 
measure subsets are called essentially locally £7 -saturated. 

Proposition 5.4 (Proposition 2.5 in [10]). — Let (Yn)n and (Zn)n be two sequences of 
measurable subsets of U with c-uniform fibers, for some c, and Eyn = E^n for all n. 
Then, for any essentially locally £7 -saturated set X c U, 

lim X(X:Yn) = l lim \(X : Zn) = 1. 
n—•oo 
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5.2. Fake foliations and juliennes. — Juliennes were initially proposed by Pugh, 
Shub [20] as density sequences particularly suited for partially hyperbolic dynamical 
systems. These are sets constructed by means of invariant foliations that are as­
sumed to exist (dynamical coherence) tangent to the invariant subbundles Es, Eu, 
Ecs = Ec 0 Es, Ecu = Ec 0 Eu1 and Ec, and they have nice properties of invariance 
under iteration and under the holonomy maps of the strong-stable and strong-unstable 
foliations. As mentioned before, strong-stable and strong-unstable foliations (tangent 
to the subbundles Es and Eu, respectively) always exist in the partially hyperbolic set­
ting. However, that is not always true about the center, center-stable, center-unstable 
subbundles Ec, Ecs, Ecu. 

One main novelty in Burns, Wilkinson [10] was that, for the first time, the authors 
avoided the dynamical coherence assumption. A version of the julienne construction 
is still important in their approach, but now the definition is in terms of certain 
"approximations" to the (possibly nonexistent) invariant foliations, that they call fake 
foliations. We will not need to use fake foliations nor fake juliennes directly in this 
paper but, for the reader's convenience, we briefly describe their main features. 
5.2.1. Fake foliations. — The central result about fake foliations is Proposition 3.1 
in [10]: for any e > 0 there exist constants 0 < p < r < R such that the ball of radius 
r around every point admits foliations 

u -—-—~c -—-cu -—~cs 
Wp, Wp, <WP, <WP, CWP. 

with the following properties, for any * G {u, s, c, cs, cu}: 
,—.* —* 

(i) For every x G B(p,p), the leaf is C1 and the tangent space TxW^x) is 
contained in the cone of radius e around E*. 

(ii) For every x G B(p, p), 

f(Wp(x,p)) C W*f(p)(f(x)) and rl(W*p(x,p)) C W*f-1(j>)irH*))-

(iii) Given x G B(p,p) and n > 1 such that fj(x) G B(fj(p),r) for 0 < j < n, if 
y € W'p(x,p) then fn(y) S Vj„(p)(/"(x), p) and 

dist(fn(x)Jn(y))<vn(p) dfetCr.i,). 

Similarly for V , with / replaced by its inverse. 
(iv) Given x G B(p,p) and n > 1 such that fj(x) G B(fj(p),r) for 0 < j < n, if 

fj(y) € Vp (P(q),p) for 0 < j < n then fn(y) g Wfn(p)(r(x)) and 

dist(/"(x),r(y)) < rip)'1 dist(x,y). 

Similarly for V , with / replaced by its inverse. 
u •—c -—-cu --~-s c cs 

(v) cWp and <Wp sub-foliate Vp , and Vp and Vp sub-foliate Vp . 
(vi) Vp(p) = Ws(p,r) and Vp(p) = W°(p,r). 
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(vii) All the fake foliations V , * G {u, s, c, es, cu} are Holder continuous, and so are 
their tangent distributions. 

— — s 
(viii) Assuming / is center bunched, every leaf of Vp is C1 foliated by leaves of Vp 

-—-en —u 
and every leaf of Vp is C1 foliated by leaves of Vp. 

Properties (i) and (vi) are what we mean by "approximations". Concerning the 
latter, let us emphasize that the fake strong-stable and strong-unstable foliations need 
not coincide with the genuine ones, Vs and CM/U, at points other than p. The local 
invariance property (ii) and the exponential bounds (iii) and (iv) should be compared 
to the corresponding properties (I), (II), (III) of, stated at the beginning of Section 5. 
The regularity properties (vi) and (vii) hold uniformly in p G M. 
5.2.2. Juliennes. — Another direct use of the center bunching condition, besides the 
smoothness property (viii) above, is in the definition of juliennes. In view of the first 
center bunching condition, v < 77 (there is a dual construction starting from v < 77 
instead), we may find continuous functions r and a such that 
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v < T < 0-7 and a < min{7,1}. 

Let p G M be fixed. For any x G Vs (p, 1) and n > 0, define 

m(x) = WJx,an(p)) and Sn(p) = 
+d+r+d5ds 

Bcn(x). 

The (fake) center-unstable julienne of order n > 0 centered at x G Vs (p, 1) is defined 
by 

• T O = 
d+r+de 

T:(y), where #(y) = V / n ( p ) ( r ( y ) , r"(p))). 

The latter is the (fake) unstable julienne of order n > 0 centered at y, and is defined 
for every y € Sn(j>). See Figure 1. 

Snip) , 

vr 

Ws(p, 1) 

d+rev 

J~(x) 

seed y 
X 

BCn(x) 

FIGURE 1. 
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Observe that J™(#) is contained in the smooth submanifold Vp (#), by the co­
herence property (v) of fake foliations. Moreover, J™(x) has positive measure relative 
to the Riemannian volume defined by the restriction of the Riemannian metric 
to °WV (x). Notice also that fake center-unstable leaves are transverse to the strong-
stable foliation, as a consequence of property (i) of fake foliations. One key feature 
of center-unstable juliennes is that, unlike balls for instance, they are approximately 
preserved by the holonomy maps of the strong-stable foliation: 

Proposition 5.5 (Proposition 5.3 in [10]). — For any x, x' G Vs(p, 1), the sequences 
hs(J™{x)) and J™(x') are internested, where hs : °W'p (x) —» °W'p (xf) is the holon­
omy map induced by the strong-stable foliation Vs. 

5.3. Lebesgue and julienne density points. — Let 5 be a locally s-saturated 
set in a neighborhood of p. For notational simplicity, we write 

\~(S : J?{x)) = \~(S n Vp (x) : J?{x)). 

Notice that S fl (WV (x) coincides with the base of S over W (x). 

Definition 5.6. — We call x G Vs (p, 1) a cu-julienne density point of S if 
lim \~(S : J™(x)) = 1. 

n—»oo 
Another crucial property of center-unstable juliennes is 

Proposition 5.7 (Proposition 5.5 in [10]). — Let X be a measurable set that is both 
s-saturated and essentially u-saturated. Then x G Vs (p) is a Lebesgue density point 
of X if and only if x is a cu-julienne density point of X. 

We can not use this proposition directly, because the saturation hypotheses are not 
fully satisfied by the sets we deal with. However, we can rearrange the arguments in 
the proof of the proposition to obtain a statement that does suit our purposes. For 
this, let us recall the main steps in the proof of Proposition 5.7. They involve several 
nesting sequences Bn(x), Cn(x), Dn(x), Gn(x), that we introduce along the way. 

By definition, Bn(x) is just the Riemannian ball of radius o~n(p) centered at x: 
Bn(x) = B(x,an(p)). 

Lemma 5.8. — Let S C M be any measurable set. Then, x is a Lebesgue density point 
of S if and only if rimn_+oc A(5 : Bn(x)) = 1. 
Proof. — This follows from the fact that the ratio an+1 (p)/an(p) = a{fn(p)) of 
successive radii is less than 1, and is uniformly bounded away from both 0 and 1. • 

Next, for x G V (p,l), let 

Cn(x) = 
q€D«(x) 

Wn(</ ,a») and Dn(x) = 
sqs+s+es 

rn(cWU(fn(q),rn(p))). 
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Notice that these two nesting sequences fiber over the same sequence of bases 

Dcns{x) = 

l/€Vp(x,<r»(p)) 

Bcn(y) = 

»€Vp(i,an(p)) 

d0 = Fx(0/\\ 

Also, by the coherence property (v) of fake foliations, each set D^s(x) is contained i 

the submanifold V (x). 

Lemma 5.9. — Let S C M be any measurable set. Then, 

lim X(S : BJx)) = 1 
n—•oo 

lim AS : C„ x = 1. 
n—+oo 

Proof. — Continuity and transversality of the fake foliations Vp and Vp imply that 
the sequences D^s(x) and V (^,crn(p)) are internested. Then, similarly, continuity 
and transversality of the foliations V and Vp imply that the sequences Cn(x) and 
£?n(x) are internested. So, the claim follows from Lemma 5.2. • 

Lemma 5.10. — Let S C M be locally essentially u-saturated. Then, 

lim X(S : C„(x)) = 1 ̂  lim X(S : LLfrrïï = 1 
n—KX> d+dr 

Proof. — By definition, Cn(x) and Dn(aO both fiber over D„s(x), with fibers con­
tained in strong-unstable leaves. The fibers of Cn(x) are uniform, in the sense of 
(5.1), because they are all comparable to balls of fixed radius o~n(p) inside strong-
unstable leaves. Proposition 5.4 in [10] gives that the fibers of Dn{x) are uniform as 
well. Thus, the claim follows from Proposition 5.4 above. • 

Finally, define 
Gn(x) = 

+s+e+s+z 

W\q,on{p)). 

Lemma 5.11. — Let S C M any measurable set. Then, 

lim X(S : DJx)) = 1 
n—>CXD 

lim X(S : Gn(x)) = 1. 
n—>oo 

Proof. — The sequences Dn(x) and Gn(x) are internested, according to Lemma 8. 
and Lemma 8.2 in [10]. So, the claim follows from Lemma 5.2. [ 

Lemma 5.12. — Let S C M be locally s-saturated. Then, 

lim \(S:GJx)) = l 
n—•oo 

lim \~(S : J'u(x)) = 1. 
+d+rd 

Proof. — By definition, Gn(x) fibers over J^u(x). The fibers are uniform, in the sense 
of (5.1), because they are all comparable to balls of fixed radius an(p) inside strong-
stable leaves. Then the claim follows from Proposition 5.3 above. • 

Proposition 5.7 was obtained in [10] by concatenating Lemmas 5.8 through 5.12. 
A variation of these arguments yields: 
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Proposition 5.13. — Let x G Vs(p, 1) and S > 0. 

(a) Let X d M be a locally essentially u-saturated set in B(x, S) and let Y be its 
local s-saturation inside B(x,ô). If x is a Lebesgue density point of X then x is 
a cu-julienne density point ofY. 

(b) Let X C M be a locally essentially s-saturated set in B(x,S) and let Y be its 
local u-saturation inside B(x,8). If x is a cu-julienne density point of X then x 
is a Lebesgue density point ofY. 

(c) Let S C M be any measurable set. If x is a cu-julienne density point of S then 
so is every x' G °WS (p, 1). 

Proof. — Applying Lemmas 5.8 through 5.11 to S = X, we get that 

lim X(X : Gn(x)) = 1 
n—>-oo 

(Lemma 5.10 uses the assumption that X is essentially ^-saturated). It follows that 

lim X(Y : Gn(x)) = 1, 

because Y D X. Thus, applying Lemma 5.12 to S = Y, we get that x is a cw-julienne 
density point of Y, as claimed in part (a) of the proposition. 

Next, we prove part (b). Given an essentially s-saturated set X in B(x, £), we may 
use Lemmas 5.12 and 5.11 with S = X to conclude that 

lim X(X : Dn{x)) = 1 

(Lemma 5.12 uses the assumption that X is essentially s-saturated). It follows that 

lim X(Y : Dn{x)) = 1, 

because Y D X. Then Lemmas 5.10 through 5.8, with S = Y, to conclude that x is 
a Lebesgue density point of Y, as claimed. 

Finally, absolute continuity (with bounded Jacobians) of the strong-stable foliation 
gives that 

lim \~(S : J?(*)) = 1 lim XQ(S : hs(J™(x))) = 1. 

By Proposition 5.5, the sequences hs(J!^u(x)) and J™(x') are internested. Hence, by 
Lemma 5.2, 

lim \~{S : h\J?{x))) = 1 lim \~(S : J?(x')) = 1. 

This proves part (c) of the theorem. • 
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6. Bi-essential invariance implies essential bi-invariance 

We call a continuous fiber bundle % refinable if the fibers %x, x G M are refinable. 

Theorem 6.1. — Let f : M —» M be a C2 partially hyperbolic center bunched diffeo­
morphism and % be a refinable fiber bundle with stable and unstable holonomies. Then, 
given any bi-essentially invariant section ̂  : M —» %, there exists a bi-saturated set 
My with full measure, and a bi-invariant section ^ : My —» % that coincides with \£ 
at almost every point. 

Theorem D(a) is a particular case of this result, as we are going to explain. Indeed, 
let P be the space of probability measures on iV, endowed with the weak* topology, 
that is, the smallest topology for which the integration operator 

P -> R, 77 I—* r 
ipdrj 

is continuous, for every bounded continuous function <£> : iV —> R. It is well known (see 
[5, Section 6]) that this topology is separable and metrizable, because N is a separable 
metric space (if we were to assume that N is complete then the weak* topology would 
also be complete). In particular, P admits a countable basis of open sets and so it is 
refinable. 

Associated to IT : S —> M, we have a new fiber bundle II : % —» M, whose fiber 
over a point x G M is the space of probability measures on the corresponding &x. It 
is easy to see that this is a continuous fiber bundle with leaves modeled on the space 
P we have just introduced: if ix~l{U) —> U x N, v i-> (7r(v), V>7r(v)(v)) is a continuous 
local chart for (5 then 

n-l(C7) - x P, 77 ~ (Ilfa), «>iW*(r7)) 

is a continuous local chart for %. The cocycle S ' & —> & induces a cocycle on by 
push-forward, but this will not be needed here. 

More important for our purposes, the stable and unstable holonomies of # induce 
homeomorphisms 

K,y = (Hsx,y)*-- - %v and hly = {Hly)*:%x^<Xy 

for points y in the same strong-stable leaf or the same strong-unstable leaf, respec­
tively. These homeomorphisms form stable and unstable holonomies on %. Indeed, 
the group property (a) in Definition 2.10 is an immediate consequence of property (a) 
in Definition 2.4, and the continuity property (p) can be verified as follows. Since the 
statement is local, we may pretend that the fiber bundle is trivial and the holonomies 
H^y are homeomorphisms of N. Consider any sequence (xk^yk^k) in % converging 
to (x,y,u) G with G Vfoc(xfc) and y G Vfoc(x). Property (c) in Definition 2.4 
implies that H*kVk converges to uniformly on compact subsets. On its turn, this 
implies that (Hxk,yk)*Vk converges to {H^y)*v in the weak* topology. 
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Now it is clear that Theorem D(a) corresponds to the statement of Theorem 6.1 
in the special case of the section W(x) = mx of the fiber bundle % we have defined. 
In the remainder of this section we prove Theorem 6.1. 

6.1. Lebesgue densities. — Let \£ : M —> P be a measurable function with values 
in a refinable space. 

Definition 6.2. — We say that x G M is a point of measurable continuity of \£ if there 
is v G P such that x is a Lebesgue density point of for every neighborhood 
V C P of v. Then v is called the density value of ^ at x. 

Clearly, the density value at x is unique, when it exists. Let MC(^) denote the 
set of measurable continuity points of The function ^ : MC(\£) —» P assigning to 
each point x of measurable continuity its density value ^f(x) is called Lebesgue density 
of Recall that DP(X) denotes the set of density points of a set X. The hypothesis 
that P is refinable is used in the next lemma: 

Lemma 6.3. — For any measurable function ^ : M -> P, the set MC(\I>) has full 
Lebesgue measure and W = ^ almost everywhere. 

Proof — Let Qi -< • • • -< Qn -< • • • be a sequence of partitions of the space P as in 
Definition 2.12. Let 

M = 
n>iQeQn 

^-1(Q)r\BP(^-1(Q)). 

Since ^-X(Q) D D P ^ - ^ Q ) ) has full measure in ^ ( Q ) , and {^(Q) : Q G Qn} 
is a partition of M for every n, the set on the right hand side has full measure in M 
for every n. This proves that M is a full measure subset of M. Next, we check that 
M is contained in the set of points of measurable continuity of Indeed, given any 
point x G M, let Qn G Qn be the sequence of atoms such that x G ^_1(Qn)- Then x 
is a density point of ^f_1(Qn) for every n > 1, in view of the definition of M. Notice 
that nnQn is non-empty, since it contains ^(x). Then, according to Definition 2.12, 
there exists v G % such that every neighborhood V contains some Qn. It follows that 
a; is a density point of ^r_1(F) for any neighborhood V C % of that is, v is the 
density value for \I> at x. This shows that x G MC(^) with ^{x) = v. Moreover, v 
must coincide with ^(x), since the intersection of all Qn contains exactly one point. 
In other words, ^(x) = for every x G M. • 

More generally, let \I> : M —• % be a measurable section of a refinable fiber bundle 
%. Let x G M be fixed and [/ be a small neighborhood. Using a local chart, one may 
view \I> I U as a function with values in Two such local expressions : U —• %x 
and \£2 • 1/ —• of the section \I> are related by 

*i(*) = M*2(*)), 
where i-» (z, ft^(O) is a homeomorphism from i7 x %x to itself, with = id. 
So, a point v G %x is the density value of at a: if and only if it is the density value 
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of #2 at x. More generally, given any point y eU, the corresponding local expression 
#3 : U —• %y of the section # is related to #1 : U —• %x by 

*i(s) = <fc(*3(*)), 

where (z,£) 1—• (z,gz(£)) ls a homeomorphism from U x %y to U x %x. So, a point 
z is a point of measurable continuity for ^3 if and only if it is a point of measurable 
continuity for ^1. 

These observations allow us to extend Definition 6.2 to sections of refinable fiber 
bundles, as follows. We call v G %x a density value of the section \£ : M —> % at the 
point x if it is the density value for some (and, hence, any) local expression U *-> %x 
as before. We call x a point of measurable continuity of the section \I> if it admits 
a density value or, equivalently, if it is a point of measurable continuity for some 
(and, hence, any) local expression of The subset MC(^) of points of measurable 
continuity has full Lebesgue measure in M, since it intersects every domain U of local 
chart on a full Lebesgue measure subset. Recall Lemma 6.3. Finally, the Lebesgue 
density of ^ is the section MC(\£) —> % assigning to each point x of measurable 
continuity its density value. 

6.2. Proof of bi-invariance. — Now Theorem 6.1 is a direct consequence of the 
next proposition: it suffices to take My = MC(\£) and = the Lebesgue density of \£, 
and apply the following proposition together with Lemma 6.3. 

Proposition 6.4. — Let f : M —• M be a C2 partially hyperbolic center bunched dif­
feomorphism and % be a refinable fiber bundle with stable and unstable holonomies. 
For any bi-essentially invariant section \£ : M —> %, the set MC(\I>) is bi-saturated 
and the Lebesgue density : MC(\£) —> % is bi-invariant on MC(^). 

Proof — For any x G MC(\I>) and y G Vs(x, 1), we are going to prove hxy(^f(x)) is 
the density value of * at y. It will follow that y G MC(^) and = hxy(^(x)). 
Analogously, one gets that if x G MC(*) and y G Vw(x, 1) then y G MC(^) and 
*&(y) = hxy(S&(x)). The proposition is an immediate consequence of these facts. 

It is convenient to think of 7r : % —> M as a trivial bundle on neighborhoods Ux 
of x and Uy of y, identifying 7r~1(L7E) « Ux x P and /ir~1(Uy) « Uy x P via local 
coordinates, and we do so in what follows. Let V C P be a neighborhood of hsxy{^{x)). 
We are going to show that y is a density point of ^~1(V). 

By the continuity property (/?) in Definition 2.10, we can find e > 0 and a neigh­
borhood W C V of ft£>y(tf (x)) such that 

(6.1) KUW2(W) C V for all wu w2 G B(y,e) with Wl G K > 2 ) . 

Similarly, up to reducing e > 0, there exists a neighborhood U C P of ^f(x) such that 

(6.2) h*ZtW(U) C W for every z G B(x,e) and w G B(î/,e) with z G Vfoc(w). 
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The assumption that \I> is bi-essentially invariant (Definition 2.11) implies that there 
exists a full measure set Ssu such that 

ft|,î7(*(0) = for anY ÇiV € Ssu in the same strong-stable leaf 

^*3^ ^ ( * ( 0 ) = *(^) for any ^ ^ in the same strong-unstable leaf. 

Lemma 6.5. — Let x G Vs (p, 1) 6e a point 0/ measurable continuity of \I>. Then for 
any open neighborhood U of the point ^f(x) G P there exist S > 0 and L C B(x,5) 
such that 

(a) #(LnSsn) C 17. 
(b) L is a union of local strong-stable leaves inside B(x,S). 
(c) Each of these local leaves contains some point of Ssu. 
(d) x is a cu-julienne density point of L: lim^oo A^(L : J°u(x)) = 1. 

Proof. — By the continuity property (/?) in Definition 2.10, there exists S2 > 0 and 
a neighborhood U2 C U of ty(x) such that 

{hsZiZ2)(U2) CU if zi, z2 G B{x,S2) are in the same local strong-stable leaf. 

and there exists Si > 0 and a neighborhood f/i C C/2 of such that 

{h^iZ2){Ui) C C/2 if zi, z2 G 5(x, Si) are in the same local strong-unstable leaf. 

Let S = min {1, Si, 0*2}. Since a; is a point of measurable continuity of \£, it is a Lebesgue 
density point of ^~1(Ui). Then, x is also a density point of Li = \I/_1(C/i) n 5SM, 
because Ssu has full Lebesgue measure. Let L\ be the local it-saturate of Li inside 
B(x, S) and let L2 = L\ fl 5SU. Then x is a Lebesgue density point of L^, because 

D Li, and so it is also a density point of L2, because Ssu has full measure. Take 
L to be the local s-saturate of L2 inside B(x,S). 

Consider any point z G L fl 5SW. By definition, there exist zi G \£_1(t/i) D Ssu and 
z2 G L\ fl 5SU such that 21 is in the local strong-unstable leaf of z2, and z2 in the 
local strong-stable leaf of z. Consequently, in view of our choices of Ui and U2, 

*(z2) = huZuZ2(V(zi))eU2 and then 9(z) = haZ2tX(*(z2)) ZU. 

This proves claim (a) in the lemma. Claims (b) and (c) are clear from the construction: 
L is a local s-saturate of a subset of Ssu. Finally, applying Proposition 5.13(a) to X = 
L2 we get that x is a c^-julienne density point of Y = L. This gives claim (d), and 
completes the proof of the lemma. • 

Let L and S be as in Lemma 6.5. Of course, we may suppose S < e. We extend 
the local leaves in L along W*oc(x), long enough so as to cross B(y,e). Let L denote 
this extended set. See Figure 2. As we have seen in Proposition 5.13(c), cw-julienne 
density points of locally s-saturated sets are preserved by stable holonomy. Hence, 
Lemma 6.5(d) ensures that y is a ctx-julienne density point of L. Then, clearly, y 
is also a cu-julienne density point of X = L fl S8U fl B(y,e). Let Y be the local 
^-saturation of X inside B(y,s). Since X is locally essentially s-saturated, we may 
use Proposition 5.13(b) to conclude that y is a Lebesgue density point of F and, hence, 
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FIGURE 2. 

also of B = Ssu fi Y. Thus, to prove that y is a Lebesgue density point of as 
we claimed, it suffices to show that 9(B) C V. 

Consider any point b G Y. By definition, 6 G Ssu fl B(y,e) and there exists some 
it; G X such that 6 and w are in the same local strong-unstable leaf. By part (c) 
of Lemma 6.5, there exists z G L fl Ssu in the same local strong-stable leaf as w. 
By part (a) of Lemma 6.5, we have that 9(z) G U. So, (6.3) and (6.2) imply that 
* M = K,w(y(z)) G W. Then (6.3) and (6.1) imply that 9(b) = hlB(9(w)) G V, 
as we wanted to prove. This proves Proposition 6.4. • 

Now the proof of Theorem 6.1 is complete. 

Remark 6.6. — Let us say that a section 9 : M —> % is essentially s-continuous if 
the s-continuity property (Definition 2.13) holds on some full measure subset Ms, 
uniformly on the neighborhood of every point. In formal terms: given any p, q G M 
and rj G P, there exists p > 0 such that for any e > 0 there exists 6 > 0 such that 
(trivialize the fiber bundle near p and q), given any G B(p,p) fl Ms and y, 
2/' G £(<?,p) H Ms with (x), #(*') G B(rj,p) and y G Vfoc(x) and y' G W^oc(x'), 

dist(#, xf) < S, dist(y, y') < S, dist(^(x), 9(x')) < S =^ dist(tf (j/), *(î/')) < £-

Essential u-continuity is defined analogously. Moreover, 9 is bi-essentially continuous 
if it is both essentially s-continuous and essentially w-continuous. A variation of the 
previous arguments yields the following statement (compare Proposition 6.4): If / : 
M —» M is a C2 partially hyperbolic center bunched diffeomorphism and % be a 
refinable fiber bundle then, for any bi-essentially continuous section 9 : M —» 
the set of points of measurable continuity is bi-saturated and the Lebesgue density 
§ : MC(9) % is bi-continuous. 

7. Accessibility and continuity 

Now we prove Theorem E. The main step is to show that small open sets can 
be reached by "nearby" 5^-paths starting from a fixed point in M. For the precise 
statement, to be given in Proposition 7.2, we need the following notion: 
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Definition 7.1. — Let z, w E M. An access sequence connecting z to w is a finite 
sequence of points [yo, yi, • • •, yn] such that yo = z and yj G W*(yj-i) for 1 < j < n, 
where each * GDDR and î/n = w. 

Proposition 7.2. — Given xq G M, there is w G M and there is an access sequence 
[yo(w),... ,2/jv(w)] connecting xq to w and satisfying the following property: for any 
e > 0 there exist S > 0 and L > 0 such that for every z G B(w,S) there exists an 
access sequence [yo(z),yi(z),... ,2/at(2)] connecting xo to z and such that 

dist(yj(z),yj(w)) < e and distv* (y^fa), yj(z)) < L for j = 1,.:.,JV 

where dist^* denotes the distance along the strong (either stable or unstable) leaf 
common to the two points. 

Let us deduce Theorem E from this proposition. Since the section \I> is assumed 
to be bi-continuous, it suffices to prove it is continuous at some point in order to 
conclude that it is continuous everywhere. Fix xq G M and then let w G M and 
[2/o(w), 2/i(w), ••• >2/iv(w)] be an access sequence connecting xq to w as in Proposi­
tion 7.2. We are going to prove that \I/ is continuous at w. Take the fiber bundle 
7T : % —* M to be trivialized on the neighborhood of every node yj(w), via local 
coordinates. Let V C P be any neighborhood of *&(w) — *&(y]sr(w)). Since ^ is bi-
continuous, we may find numbers Sj > 0 and neighborhoods Vj of ty(yj(w)) such that 
VN = V and 

(7 1) * € [ y o ( z ) , y i ( z y e B(yj(w)J£j), 2/GV*J(X), 
1 " ' and G Vj-i *(y) G V,-

for every j = 1, . . . , N. Let e = min {sj : 1 < j < N}. 
Using Proposition 7.2 we find ô > 0 and, for each z G B(w,S), an access sequence 

[3/0(2), 2/1(2;),..., 2/at (2)] connecting x0 to z, with 

(7.2) G B{yj(w),e) C +S+SZ+Sfor j = 1,. . . , N. 

It is no restriction to suppose that 5 < e. Consider any z G B(w,5). Clearly, &(x) = 
^f(y0(z)) G V0. Hence, we may use (7.1)-(7.2) inductively to conclude that &(yj(z)) G 
Vj for every j = 1, . . . , N. The last case, j = AT, gives W(z) G V. We have shown that 
ty(B(w,ô)) C V. This proves that \I> is continuous at as claimed. 

In this way, we reduced the proof of Theorem E to proving Proposition 7.2. 

7.1. Non-injective parametrizations. — In this section we prepare the proof of 
Proposition 7.2, that will be given in the next section. Roughly speaking, here we 
construct a kind of continuous parametrization of the space of sw-paths with any 
given number of legs. 
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7.1.1. Exhaustion of accessibility classes. — Fix any point xo G M. For each r G N, 
we consider the following sequence of sets i^r,n, n G N: 

Kr,i = {y G V5(x0) : distv*(x0,y) < r} and 

s+d+dr 
d+r+d+r 

{y G : distv* (x, y) < r} , for n > 2, 

where * = s when n is odd, and * = u when n is even. That is, Kr,n is the set of points 
that can be reached from XQ using an access sequence with n legs whose lengths do 
not exceed r. 

Lemma 7.3. — Every Kr,n is closed in M and, hence, compact. 

Proof. — It is clear from the definition that Kr^\ is closed. The general case follows 
by induction. Suppose ifr,n-i is closed, and let z belong to the complement of Kr^n. 
Then, by definition, 

Z={ye W*(2):distv*(x,2/)<r} 

does not intersect the closed set Kr,n-\. It follows that U fl Kr,n = 0 for some 
neighborhood U of the set Z. By continuity of the strong-stable and strong-unstable 
foliations, and their induced Riemannian metrics, for every point w in a neighborhood 
of 2, 

{y G : distv*(x,2/) < r} C U 

and hence, the set on the left hand side is disjoint from Kr,n-\. This proves that 
points w in that neighborhood of z do not belong to Kr^n either. Thus, Kr^n is indeed 
closed. • 

By definition, the union of Kr,n over all (r, n) is the accessibility class of XQ. Since 
we are assuming that / is accessible, this union is the whole manifold: 

M = vr+d 
r,n€N 

Since M is a Baire space, it follows that Kr^n has non-empty interior for some r and n, 
that we consider fixed from now on. Our immediate goal is to define a (non-injective) 
continuous "parametrization" 

(7.3) 0 = Fx(0/\\Fx(0s 

of the set Kr^n by a convenient compact subspace &rin of a Euclidean space, that 
we are going to introduce in the sequel. Let ds and du denote the dimensions of 
the strong-stable leaves and the strong-unstable leaves, respectively. This Euclidean 
space will be the alternating product of M.ds and Rdu, with n factors, each of which 
parametrizing one leg of the access sequence. The case n = 2 is described in Figure 3. 
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FIGURE 3. 

7.1.2. Fiber bundles induced by local strong leaves. — The following lemma will be 
useful in the construction of (7.3). The whole point with the statement is that U does 
not need to be small. The diffeomorphisms in the statement are as regular as the 
partially hyperbolic diffeomorphism / itself. 

Lemma 7.4. — For any contractible space A, any continuous function Sfr : A —» M, 
and any symbol * G {s,u}, there exists a homeomorphism 

Q : Ax Rd* —• {(a, y) : a G A and y G Vi*oc(*(a))} 

mapping each {a}xRd* diffeomorphically to {a}xcW*oc(^(a)) with ©(a, 0) = (a, \P(a)) 
for all a G A. 

Proof. — We consider the case * = s. Since °\/\/s is a continuous foliation with smooth 
leaves, for each p G M we may find a neighborhood Uv and a continuous map 

$p : Up x Rds -> M 

such that $p(x,0) = x and $p(#, •) maps Rds diffeomorphically to Vloc(x), for every 
x G Uv. Using these maps we may endow the set 

Fs = {(x,y) : x G M and y G Wfoc(z)} 

with the structure of a fiber bundle with smooth fibers, with local charts 

Up x Rds -» : x E Up and y G Vfoc(x)} (rr,v) (x,Qp(x,v)). 

Then F£ = {(a,2/) : a e A and y G Vfoc(*(a))} also has a fiber bundle structure, 
with local coordinates 

9P : 9-HUP) x Rd° - {(a,y) : *(o) € C/p and y € Kc(*(«) ) } 

given by 0p(a, v) = (a, $p(\£(a), v)). This fiber bundle admits the space of diffeomor­
phisms of Rds that fix the origin as a structural group: all coordinate changes along 
the fibers belong to this group. 

The core of the proof is the general fact (see [17, Chapter 4, Theorem 9.9]) that, 
for any topological group G, any fiber bundle over a contractible paracompact space 
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that has G as a structural group is G-trivial. When applied to this result means 
that there exists a global chart 

6 : A x Rd* -+ {(a,y) : a G A and y G V?oc(tf(a))} , 6(a,v) = (a,Q(a,v)) 

such that every $(a, •) maps Rds to the strong-stable leaf through \P(a), and every 
$(a, o$p(\IJ(a), •) is a diffeomorphism that fixes the origin of Rd°. The latter gives 
that *(a, 0) = *p(*(a), 0) = tf (a) for all a G A • 

7.1.3. Construction of non-injective parametrizations. — We are ready to construct 
ÂriTl and \I> as in (7.3). Let / > 1 be fixed such that, for any x G M, 

(7 4) {2/ 6 VS(a;) : dist^(*'2/) < M C r ' ( K c ( / ' ( * ) ) ) 
{ye V » : distv-foy) < 2r} C / ' ( K c ( / " ' W ) ) . 

Our argument is somewhat more transparent when / = 0, and so the reader should 
find it convenient to keep that case in mind throughout the construction. 

Define Ex = {y G M : fl(y) G Vfoc(/Z(x0))} and $i : Ex -+ M to be the inclusion. 
Notice that E\ is contractible and Q\(E\) contains Kr^. Since E\ is a smooth disc, 
there exists an diffeomorphism 6i : Rds —> E\ with ©i(0) = x0. Then 

^i = $ i o 9 i : Rds -+ M 

is a continuous function whose image contains Kr^. Notice that the pre-image .ft̂ i = 
ty^l{Kr,i) is compact: ifr5i = {y G Vs(x0) : dist^(x0,2/) < r} and we have a factor 
2 in (7.4). Next, define 

E2 = {(a,y) : a G Rds and /"'(y) G K c f / " 1 ^ ) ) ) } 

and $2 • ^2 —* M, $2(a, y) = y. Notice that $2 (-#2) contains Kr>2. Using Lemma 7.4 
with 4̂ = Rds, ^ = f~l o ̂ f1, and * = w, we find a homeomorphism 

62 : Rd° x Rd« - {(a,y) : a G Rds and y G K c l / l ^ i W ) ) } 
that maps each {a} x Rdu diffeomorphically to {a} x V^c(/_z(^i(a))) and satisfies 
02(a,0) = (a,/-z(#i(a))). Clearly, the map 

T2 : {(a,y) : a G Rds and y G Kc(/~Z(*i(«)))} - ^2, F2(a,y) = (a,/z(y)) 
is a homeomorphism, and ^(62(0,0)) = (a, ^i(a)). Then 

#2 = $2 o T2 o 62 : Rds x Rdu —> M 

is a continuous map whose image contains ifrj2- Moreover, #2 may be viewed as a 
continuous extension of because 

*2(a,0) = *2(r2(e2(a,0))) = *2(a,*i(a)) = *i(o) 

for all a G Rdfi. In general, ^^(Kr^) needs not be compact. However, 

#r,2 = {(a, 6) e Rds x Rdu : a G ^,1 and distv<*(*2(a, 0), *2(a, 6)) < r} 
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is compact and satisfies ^2(^,2) = Kr,2- Repeating this procedure, we construct 
continuous maps 

: Rds x Rdu x • • • x Rd* —• M 

(there are j factors, and so * = u if j is even and * = s if j is odd), contractible 
sets Ej, and compact sets &rj such that each tyj is a continuous extension of ^ j - i , 
in the previous sense, and Wji&rj) — Krj- We stop this procedure for j = n. The 
corresponding map \I/n is the parametrization announced in (7.3). 

7.2. Selection of nearby access sequences. — Now we prove Proposition 7.2. 
We need the following general fact about regular values of continuous functions. 

Definition 7.5. — Let $ : S —> 25 be a map between topological spaces S and CB. A 
point x G 8 is regular for if for every neighborhood V of x we have $(#) G 
A point G 2? is a regular value of $ if every point of $-1(y) is regular. 

Proposition 7.6. — Let S be a compact metrizable space and $ a locally compact 
Hausdorff space. If $ : -+ $ is continuous then the set of regular values of $ is 
residual. 

Proof. — We are going to prove that the image of the set of non-regular points is 
meager. The assumptions imply that S admits a countable base £T of open sets, and 
the map $ is closed. If x is a non-regular point of then there exists V G V such 
that $(x) does not belong to the interior of ^(V). Therefore, $(#) belongs to the 
closed set d$(V), which has empty interior because 3>(V) is closed. Then, the image 
of non-regular points is a subset of the meager set (J : V G £7"}. • 

We apply this proposition to the continuous map \£n : ÂriTl —> Kr,n. Recall that, 
by construction, the image Krjn has non empty interior. Then, in particular, \£n has 
some regular value w G Kr^n. Let (ai , . . . , an) G ^r,n be any point in &r^n such that 
^n(a i , . . . , an) = w. Let e > 0 be as in the statement of the proposition. Since the 
functions 2̂» • • • > *n are continuous, there exists p > 0 such that if \a,j — bj \ < p, 
for 7 = 1 n, then 

(7.5) d i s t ^ ^ a i , . . . , ^ ) , ^ ^ ! , . . . , ^ ) ) < e 

for all j = 1, . . . , n. Using that the point (ai , . . . , an) is regular (Definition 7.5), we 
get that the image ^n{V) of the neighborhood 

V = &r,n H {(&i,... ,6n) : \aj - bj\ < p, for j = 1,... ,n} 

has w in its interior. In other words, there exists 6 > 0 such that B(w,S) C tyn(V). 
Consider any point z G B(w,5). Then there exists (bi(z),... ,bn(z)) G V such that 
2 = *n(&i(2),---,M*))- Define 

0i(*) = *;(M*))> •••,%(*)) 
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for j = 1,... ,n, and yo(z) = w. Then [yi(z),... ,yn(z)] is an access sequence con­
necting xo to z. The inequalities (7.5) mean that 

dist(yj(z)1yj(w)) <e for j = 1, . . . , n. 

Moreover, since ^fn(bi(z),... ,bn(z)) G ifr,n> the distance between every yj-i(z) and 
yj(z) along their common strong (stable or unstable) leaf does not exceed r. Propo­
sition 7.2 follows taking L = r and N = n. 

8. Generic linear cocycles over partially hyperbolic maps 

In this section we prove Theorem A. We will take the vector bundle n : V —» M 
to be trivial, that is, such that V = M x Kd and 7r : M x Kd —> M is the canonical 
projection. This simplifies the presentation substantially, but is not really necessary 
for our arguments, which are local in nature: for obtaining the conclusion we consider 
modifications of the cocycle supported in a neighborhood of certain special points 
(the pivots, see Proposition 8.8), where triviality holds anyway, by definition. 

Let us begin by giving an outline of the proof. Let Kx = {x} x Kd be the fiber of V 
and P(Ka;) = {x} x P(K) be the fiber of the projective bundle P(V) over the point x. 
We call loop of f : M —* M at x e M any access sequence 7 = [yo,..., yn] connecting 
a point x £ M to itself, that is, such that yo = Un = x. Then we denote 

#7 = H*V:_UYN 0...0 H*Y>_UVI o H£V1 : ¥(KX) - F(KX) 

where *j G {s,u} is the symbol of the strong leaf common to the nodes yj-i and yj. 
Theorem B implies that if A+(F) = A_(F) then any F-invariant probability measure 
m that projects down to JJ, admits a disintegration {mz : z G M} such that 

(8.1) {H7)*mx = mx for any loop 7. 

We consider loops with slow recurrence, for which some node yr, that we call pivot, is 
slowly accumulated by the orbits of all the nodes including its own. Using perturba­
tions of the cocycle supported on a small neighborhood of the pivot, we prove that 
the map F 1—• H7 assigning to each cocycle the corresponding holonomy over the loop 
is a submersion. In fact, we are able to consider several independent loops with slow 
recurrence, 71, . . . , 7m, and prove that the map 

^ ( ^ 7 1 ^ ) 

is a submersion. Consequently, for typical cocycles, the matrices if7i are in general 
position, and so they have no common invariant probability in the projective space. 
This shows that for typical cocycles the condition (8.1) fails and, hence, the extremal 
Lyapunov exponents are distinct. 
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8.1. Accessibility with slow recurrence. — An important step is to prove that 
loops with slow recurrence do exist. Beforehand, let us give the precise definition. 

Definition 8.1. — A family {71,.. . , 7m} of loops 7; = [y^,..., y%n^) has slow recur­
rence if there exists c > 0 and for each 1 < i < m there exists 0 < r(i) < n(i) such 
that, for alH, I = 1, . . . , m, all 0 < j < n(i), and all FCEZ, 

dist (/*(»}),î£(J))>c/(l + *2) 

with the exception of k = 0 when (i, j) = (Z,r(Z)). 

It is convenient to distinguish access sequences [yo, yi,..., yn] according to the 
nature of the last leg: we speak of accessibility s-sequence if yn-i and yn belong 
to the same strong-stable leaf, and we speak of accessibility u-sequence if yn-\ and 
yn belong to the same strong-unstable leaf. Let ds and du be the dimensions of the 
strong-stable leaves and strong-unstable leaves, respectively. 

Proposition 8.2. — For any m > 1 and any (xi,..., #m) G Mm, there exists a family 
7i of loops with slow recurrence, where each 7$ is a loop at Xi. 

The proof of this proposition requires a number of preparatory results. 

Lemma8.3. — Given any finite set {wi,... ,wn} C M, any y G M, and any symbol 
* G {5, u], there exists a full Lebesgue measure subset of points w G V*oc(y) such that 

(8.2) àiBt(fk(wj),w) >c / ( l + fc2) 

for some c > 0 and for all 1 < j < n and all k G Z. 

Proof. — Consider * = s: the case * = u is analogous. Since local strong-stable leaves 
are a continuous family of C2 embedded disks, there exists a constant D\ > 0 such 
that 

AVfoc(y)(Kc(j/) n B(z,c/(1 + k2))) < D1(c/(l + k2))d° 

for any z G M. Thus, the Lebesgue measure of the subset of points w G Vloc(2/) not 
satisfying inequality (8.2) for some fixed c > 0 is bounded by 

n 

d++d+d+r 
Dicds(1 + k2)-ds < D2 cds with D2 = nD1 

kez 
\l + k2)-ds < 00. 

Making c —> 0, we conclude that the inequality (8.2) is indeed satisfied by Lebesgue 
almost every point in Vfoc(2/). • 

Corollary8.4. — Given any m > 1, any (#i,...,xm) G Mm, and any * G {s,it}7 
then for every (21,..., 2m) in a full Lebesgue measure subset of Mm there exist c > 0 
and accessibility ^-sequences [yjj • • • >2/n(i)] connec^n9 x% t° z% su°h that 

ai&t{fk{y%Zl)>c/{l + k2) 

for all i, / = 1, . . . , m, all 0 < j < n(i), and all k G Z. 
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Proof. — Consider * = s: the case * = u is analogous. Since the strong-stable foliation 
is absolutely continuous, it suffices to prove that, given any points |/i G M, 1 < i < m, 
the conclusion holds on a full Lebesgue measure subset of points Zi G Vfoc(2/i), 
1 < i < m. Now, by the accessibility assumption, there exist accessibility sequences 
bo5 • • • » ylr(i)] connecting xi to yit Consider each zi in the full Lebesgue measure subset 
of ^(yi) given by Lemma 8.3, applied to the finite set 

{y) ' 1 < i < m and 0 < j < r(i)} . 
and the point y = yi- Then the accessibility s-sequences [y^,... ^ylk^yZj\ satisfy the 
conditions in the conclusion. In view of the observation at the beginning, this proves 
the corollary. • 

Lemma 8.5. — For any m > 1 and any (yi, . . . , ym) G Mm, there exists a full 
Lebesgue measure subset of (zi,..., zm) G Vfoc(yi) x • • • x Vfoc(2/m) such that 

dist(/fe(^),^)>c/(l + A:2) 
for some c > 0 and for all z, I = 1,. . . , m and all k > 0, except k = 0 when i = I. The 
statement remains true if one replaces Vfoc by Vĵ c and k > 0 by k < 0. 

Proof. — It is clear that each strong-stable leaf contains at most one periodic point. 
As an easy consequence we get that, that given any K > 1, there exists a full Lebesgue 
measure subset of (zi,..., zm) G Vfoc(yi) x • • • x Wfoc(ym) such that fk(zi) ^ z\ for 
alH, / = 1,. . . , m and all 0 < k < ft, except k = 0 when i = I. Then the condition 
in the statement holds, for some c > 0, restricted to iterates 0 < k < K. Let us focus 
on k > K. For each i, / = 1,. . . , m, define 

Kl = izi e Kc(2/0 : dist(/fc(^),^) < V(l + k2) for some Zi G Kc(îfc)} • 
The diameter of fk(Vfoc(2/i)) is bounded by C\6k, where Ci > 0 is some uniform 
constant and 0 < 1 is an upper bound for the contraction function v(x) in (2.2). 
Consequently, 

d i a m ( ^ ) < CxQk + 2/(1 + k2) < C2/(l + k ) 
for another uniform constant C2 > 0. It follows that 

AK,C0/i) 
m 00 

s+ev+r 
d+r+d+dr OO 

k=K 
C2(l + k2)~d°. 

On the one hand, the right hand side of this expression goes to 0 when K goes to 
infinity. On the other hand, in view of our previous observations, for any n > 1, 
Lebesgue almost every (zi,..., zm) € Vfoc(2/i) x • • • x Vfoc(ym) with 

zi é 
m 00 

i=lk=K 
Eh 

satisfies the conclusion of the lemma for some c G (0,1). This proves that the subset 
of (zi,..., zm) for which the conclusion of the lemma does not hold has zero Lebesgue 
measure, as claimed. • 
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Corollary 8.6. — For any m > 1, and every (zi,..., zm) in a full Lebesgue measure 
subset of M171, there exists c > 0 such that 

dist(/fc(^),^)>c/(l + A:2) 

for all i,l = 1, . . . , ra and all k G Z, except k = 0 w/ien i = /. 

Proof. — It suffices to prove that the conditions obtained replacing k G Z by either 
A; > 0 or & < 0 are satisfied on full Lebesgue measure subsets of Mm, and then take 
the intersection of these two subsets. We consider the case k > 0, as the other one is 
analogous. Suppose there is a positive Lebesgue measure subset of {z\,..., zm) G Mm 
for which the condition is not satisfied: the forward orbit of some Zi accumulates 
some z\ faster than c/(l + k2) for any c > 0. Then, since M is covered by the foliation 
boxes of the strong-stable foliation, there exist foliation boxes U{, 1 < i < m such 
that this exceptional subset intersects U = U\ x • • • x Um on a positive Lebesgue 
measure subset. The domain U is foliated by the products ^lodyi) x • • • x Vs(2/m) 
of local strong-stable leaves. We denote this foliation as Vs,m. Given any holonomy 
maps hi : T,} —> between cross-sections to the strong-stable foliation Vs inside Ui, 
the products Y,3' = E{ x • • • x H,3m are cross-sections to V5'771, and the holonomy map 
of Vs'm is 

h : E1 -+ E2, h(zi,...,2m) = (M^i), . . . ,hm(*m)). 
Since all the hi are absolutely continuous, so is h: the Jacobians are related 
by Jh(zi,..., zm) = Jh\{z\) • • • Jhrn(zrn). This absolute continuity property implies 
that every positive Lebesgue measure subset of U intersects Wfoc(î/i) x • • • Wfoc(2/m) 
on a positive Lebesgue measure subset, for a subset of (yi, . . . , ym) with positive 
Lebesgue measure. In particular, the exceptional set intersects some leaf of cWs,rn on a 
positive Lebesgue measure subset. This contradicts Lemma 8.5, and this contradiction 
proves the corollary. • 

Corollary 8.7. — For any m > 1, any (xi , . . . , xm) G Mm, and any * G {s, u}, and a 
full Lebesgue measure set D* of (zi,..., zm) G Mm, £/iere exists c > 0 sitc/i £/ia£ 

(8.3) dist(/fe(^)^/)>c/(l + fc2) 

/or all i,l = l , . . . ,m and a// A; G Z, except k = 0 w/ien i = I, and there exist 
accessibility ^-sequences [y^,... ,2/^^] connecting Xi to Zi, for 1 < i < m such that 

(8.4) dist(/fc(^),z,)>c/(l + fc2) 

/or all i,l = 1,... ,m, all 0 < j < n(i), and all k G Z. 

Proof. — Just take the intersections of the full Lebesgue measure subsets given in 
Corollary 8.4, for * G {s,u}, and in Corollary 8.6. • 

Proof of Proposition 8.2. — Given m > 1 and (xi,..., xm) G Mm, let Ds and £>u be 
the full Lebesgue measure sets given by Corollary 8.7, and then consider 

(21,...,*m) G Ds f)Du. 
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The corollary yields, for each 1 < i < m, an accessibility s-sequence [y0,..., ylr^\ and 
an accessibility ^-sequence [wl0,... ,w\^] connecting Xi to Z{. Then 

HB,i,l,n [dBHBn,l-l,l(B)]HB,-y,0,l-l> 
is a loop at Xi, and properties (8.3)-(8.4) mean that the family {71,... ,7m} of loops 
has slow recurrence. • 

8.2. Holonomies on loops with slow recurrence. — As we pointed out before, 
the tangent space at each point B G $r,a(M,d,K) is naturally identified with the 
Banach space of Cr,a maps from M to the space of linear maps in Kd. This means 
that we may view the tangent vectors B as Cr,a functions assigning to each z G M a 
linear map B(z) : Kz —> Kf(zy 

Let A G ^r'a(M, d, K) be fiber bunched. As we have seen in Section 3.2, there exists 
a neighborhood îl C ffr,oc(M, d, K) of A such that every B G 2/ is fiber bunched. Then, 
for any loop 7 = [yo,..., yn] at a point a: G M, and any 0 < k < I < n, we have linear 
holonomy maps 

-DJT̂J1 B,yi-i,yi ±J,yk,yk+1 Uk yi 
Furthermore, all the maps B 1—> i?B,7,fc,Z are C1 on In particular, the derivative 
of B 1—> HB.-V = ^B.RO.n is given by 

(8.5) ÔBHB^ ' B 
n 

1 = 1 
HB,i,l,n [dBHBn,l-l,l(B)]HB,-y,0,l-l> 

The main result in this section is 

Proposition 8.8. — Let A G ^r'a(M, d,K) be fiber bunched and be a neighborhood 
as above. For each x G M and m > 1, let 7* = [î/o>2/î> • • • >2/n(i)l> * — * — m ê a 
family of loops at x with slow recurrence. Then 

ÎIBB^ (HB^ , • • •, HB„„ ) e GL(d, Kxr 
is a submersion: the derivative is surjective at every point, even restricted to the 
subspace of tangent vectors B supported on a small neighborhood of the pivots. 

In the proof we use (8.5) together with the expressions for the ÔBHB,7,I-I,I(B) given 
in Propositions 3.5 and 3.7. The idea is quite simple. Perturbations in the neighbor­
hood of the pivots affect the holonomies over all the loop legs, of course. However, 
Corollaries 3.6 and 3.8 show that the effect decreases exponentially fast with time, 
and slow recurrence means that the first iterates need not be considered. Combining 
these two ideas one shows (Corollary 8.12) that the derivative is a small perturbation 
of its term of order zero. The latter is easily seen to be surjective (Lemma 8.13), and 
then the same is true for any small perturbation. 

Remark 8.9. — Essentially the same arguments yield an SL(d, K)-version of this 
proposition: the map ÎIH 0R,A(M,d,K) 3 B \-> (BB,7l,..., HB,7M) G SL(d,KrE)m is 
a submersion. Clearly, it remains true that the derivative is a small perturbation of 
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its term of order zero. Then the main point is to observe that the restriction of the 
operator S in Lemma 8.13 maps TB<^R,A(M, d, K) surjectively to THB^ SL(d, Kx). 

Before getting into the details, let us make an easy observation that allows for some 
simplification of our notations. If 7 = [yo,..., yn] is a loop with slow recurrence then 
so is 7 = [yni... ,2/o]j an<3 # £ , 7 is the inverse of HB,7- Hence, the statement of the 
proposition is not affected if one reverses the orientation of any 7̂  as described. So, it 
is no restriction to suppose that every loop 7 has the orientation for which the pivot 
yr satisfies 

(8.6) yr € Vs(«r_0 n Wiyr+i), 

and we do so in all that follows. 

Lemma 8.10. — Let 7 = [t/os • • •, yn] be a loop with slow recurrence and yr be the 
corresponding pivot. Then, there is r > 0 such that for any small e > 0 and any 
tangent vector B supported on B(yr,e), 

\\dBHB„,i-i,i(B)\\ < 6 ^ \\B\\O,0 for any I £ r, and 

\\dBHBn,r-iAB) + B{yrylB{yr)HB^_uyr\\ < 6 ^ \\B\\0,p. 

Proof. — By Definition 8.1, there exists c > 0 such that 

dist(/fc(yj),yr) >c/(l + k2) foraU(ï,fc)G{0,...,n}xZ, (i,fc)^(r,0). 

Consider e < c/2. Then B(yr,s) contains no other node of the loop. Moreover, for 
any 0 < I < n and any k > 1, 

fk(Vi) E B(yr,e) => \k\ > t(s), where t(e) = Jc/e - 1. 

Let us denote by ^B^B,7,z-i,z,t(e)(-^) the t-tail of the derivative, that is, the sum over 
i > t in Proposition 3.5 (case *j = s) or Proposition 3.7 (case *j = u). Then, for 
any B G TB$r,oc(M, d, K) supported in B(yr,e), the expression in Proposition 3.5 
becomes 

(8.7) dBHB,7,i-i,i{B) = dBHBnti_ltltt(e)(B) 

for all / r, and 

(8.8) ÔBffBl7,r-l,r(B) = -BiyrT'BiyM+Q+Q+Q+Q+^^+dBHB^^iÈ) 

for / = r. This applies to the loop legs with symbol *; = s. Observing that the sum 
in Proposition 3.7 does not include the term i = 0, we conclude that (8.7) extends to 
all loop legs with symbol *; = u. Next, by Corollaries 3.6 and 3.8, 

(8-9) \\dBHBn^lu(B)\\ < C5(a) 0* \\è\\0,fi, 

for every 1 < I < n and any t > 0, where a is an upper bound for the distances 
between consecutive loop nodes. Choose any r < c/2. The lemma follows directly 
from (8.7), (8.8), (8.9) with t = t(e), because 6 < 1 and the choices of e and r ensure 
t(e) > yfFfê. • 
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Corollary 8.11. — Let 7* = [yj, y\,..., 2/^^], 1 < i < m be a family of loops at x with 
slow recurrence and yr(i), 1 < i < m be the corresponding pivots. Then there exists 
T > 0 such that, for any small e > 0, any 1 < j < m, and any tangent vector B 
supported on B(y^e), r = r(j) 

\\dBHB^,-iAB)\\ < 0^Tle \\B\WQ for all (i,l) ± (j,r), and 

||aBffBl7i,r-llr(5)+B(»j)-1B(^)^fyi_ yJ| <flV^||B||0|/3. 

Proof. — The case i = j is contained in Lemma 8.10. The cases 2 ^ j follow from the 
same arguments, observing that 

dist(/fe(2/i),yjr) > c/(l + /c2) for every fe G Z 

and so fk(y\) G B(yl,e) implies |fc| > t(e), for every 0 < Z < n(i). 

Corollary 8.12. — Let 7$ = [2/0» 2/î > - - - 5 2/n(i)]> 1 — * — m ê a family of loops at x with 
slow recurrence, and yr^, 1 < i < m be the corresponding pivots. Then, there exists 
K\ > 0 such that, for any small e > 0, any 1 < j < m, and any tangent vector B 
supported on B(yl,e), r = r(j) 

\\dBHB^(È)\\ < K^y/^ \\è\\o« for all i ± j , and 

\\ÔBHB%7i(È) + ffB|7iirfn(j.)B(^)-1é(^)ffB|7ifolr|| < KiOyW* \\È\\0tfi 

Proof. — This follows from replacing in (8.5) the estimates in Corollary 8.11. By 
part (e) of Proposition 3.2, the factors iÏ£,7i,o,z-i and HB^u^n^ are bounded by 
some uniform constant K2 that depends only on the loops. Then, for every i ^ j , 
Corollary 8.11 and the relation (8.5) gives 

\\dBHBni(È)\\ < 
n(i) 

1=1 

Kl\\dBHB^u(È)\\ < KtfS&WÈh*, 

as long as we choose K\ > K2 max^ n(i). This gives the first part of the corollary. Now 
we consider i — j . For the same reasons as before, all but one term in the expression 
(8.5) are bounded by K^O^^ \\È\\Q^. The possible exception is 

,7j,r,n(J) \PBHB,~IJ,r-l,r (B)] HB^.,0,r-l 5 

corresponding to I = r. By Corollary 8.11, this last expression differs from 

- HB^^r^3)B(y3r) 1B(yJr)HsB ^ ^iJB,7j,o,r-i = 

HB,i,l,n [dBHBn,l-l,l(B)]HB,-y,0,l-l>sdesxs 

by a term bounded byHB,i,l,n [dBHBn,l-l,l\\B\\otp. This completes the proof. 
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Lemma 8.13. — Let 7 = [yo,..., yn] be a loop at x G M and 0 < r < n be fixed. Then 
the linear map 

S: TB^a(M,d,K) - THb GL(d,Kx) ~ £(KdKd) 

B > —HB,~y,r,nB(yr) 1B(yr)HB^.Q,r 

is surjective, even restricted to the subspace of tangent vectors B vanishing outside 
some neighborhood of yr. More precisely, there exists K3 > 0 such that for 0 < e < 1 
and 6 G £(Kd,Kd) there exists ÈQ G TB$r,a(M, d, K) vanishing outside B(yr,e) and 
such that S(Èe) = G and \\Be\\o^ < Kzs~P ||0||. 

Proof. — Let r : M —• [0,1] be a Cr,a function vanishing outside B(yr,e) and such 
that r(yr) = 1 and the Holder constant H0(T) < 2e~p. For 6 G £(Kd,Kd), define 
Be€TB^ 'a (M,d ,K)by 

B e M = B(yr) HB* 6 B^)"1 r(ti;) B(ti;) fT-* 

Notice that £e(2/r) = B(yr) HBl nQ HB\ 0 and so 5(Be) = 6. Moreover, 

(8.10) ||J?e||o,0 < ll^.r.nll l l ^ .Ur l l 1 (̂̂ )11 I I W 1 ! ! ||B||o,0 ||6||. 

For any w\, w<i G M the norm of B@(wi) — B@(wo) is bounded by 

\\H~' Il Hffë.VnJI ||B(»r)|| HBd/r)-1!! 

(HrK) - r^JHHBK)!! + Ir^ î l I lBK) - 5(«,2)||) ||6||. 

Consequently, the Holder constant Hp(B&) of Be is bounded above by 

(8.11) WHgl.J \\HB*\\ \\B(yr)\\ WBivr)-1]] (2£-"||JB||0,o + Hp(B)) ||6|| 

Adding the inequalities (8.10) and (8.11), and taking 

= \\HB^rJ \\HB^r\\ \\B(yr)\\ WBiy^W \\B\\0,P, 

one obtains ||B@||o,/3 < K3e-^\\Q\\. 

Proof of Proposition 8.8. — For each 1 < j < m, let Sj be the operator associated 
to 7 = 7j as in Lemma 8.13. Let Qj be any element of the unit sphere in £(KX,KX). 
By Lemma 8.13, for any small e > 0 there exists a tangent vector B(j, Qj) supported 
in B(y3,...e) such that 

sj(È(j,ej)) = ej and HBO'.e,-)!!^^-". 

By Corollary 8.12, the norm of 

(dBHBill,.. •, 6BHBtlj,..., dBHB„J(B) - (0, . . . , 0, Sj(È), 0, . . . , 0) 

is bounded above by K36v r/£||JB||, for any tangent vector supported in B{y^.ye). 

For B = £?(j, Qj) this gives that 

\\{dBHBni,..., dBHBili,..., dBHB,7J(B(j, Qj)) - (0, . . . , 0,6,-, 0,...,0)| | 
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is bounded by KiK^O^^e P. Assume e > 0 is small enough so that 

KxKzQ^e-P < l/(2m). 

Then for any G = (Gi, . . . , Gm) with Qj in the unit sphere of £(KX,KX) we find a 
tangent vector È(Q) = X]j=i ^{3, supported on the ^-neighborhood of the pivots 
and such that 

||(dHBnidHB„m)(B(0)) - 0|| < 1/2. 
This implies that the image of the derivative (dHBni, •. •, dHBnrn ) is the whole target 
space £(Ki,Ki)m, as claimed. • 

8.3. Invariant measures of generic matrices. — Finally, we prove Theorem A. 
The only missing ingredient is 

Proposition 8.14. — Given £>l, let Git be the set of (Ai,..., k2i) G GL(d, K)2^ such 
that there exists some probability rj in P(C) invariant under the action of ki for every 
1 < i < 2£. Then G2i is closed and nowhere dense, and it is contained in a finite 
union of closed submanifolds of codimension > £. 

Remark 8.15. — The arguments that we are going to present remain valid if one 
replaces GL(d, K) by the subgroup SL(d, K) of matrices with determinant 1: just note 
that the curves B(t) defined in (8.13) and (8.17) lie in SL(d, K) if the initial matrix A 
does. Thus, the proposition holds for SL(d, K) as well. 

Let us assume this proposition for a while, and use it to conclude the proof of the 
theorem in the complex case. Let A G $r,a(M, d, K) be fiber bunched. Fix any £ > 1 
and x G M. By Proposition 8.2 there is a family 7 ,̂ 1 < i < 2£, of loops at x with 
slow recurrence. By Proposition 8.8, the map 

Î13B^ (jffB|7l,..., HB^t) G GL(d, Kx)2£ 

is a submersion, where ÎI is a neighborhood of A independent of £. Let Z be the pre-
image of G2e under this map. Then Z is closed and nowhere dense, and it is contained 
in a finite union of closed submanifolds of codimension > £. 

We claim that \-(B,p) < A+(#,p) for all B G îl\Z. Indeed, suppose the equality 
holds, and let m be any P(F#)-invariant probability that projects down to p>. By 
Theorem B, the measure m admits a disintegration {mz : z G M} which is invariant 
under strong-stable holonomies hs = F(HS) and strong-unstable holonomies hu = 
¥(HU), on the whole manifold M. In particular, 

(8.12) W{HBni)*mx = mx for every 1 < i < 2£. 

This contradicts the definition of G2£, and this contradiction proves our claim. Let Zo 
be the set of fiber bunched B G ̂ r,a(M,d,K) for which \-{B,p) = \+(B,p). We 
have shown that any fiber bunched A G $r'a(M, d, K) admits a neighborhood ÎI such 
that, for any £ > 1, there exists a nowhere dense subset Z of ÎI contained in a finite 
union of closed submanifolds of codimension > £ and such that Zo fl îl C Z. Thus, 
the closure of Zq has infinite codimension and, in particular, is nowhere dense. 
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The proof of Theorem A has been reduced to proving Proposition 8.14. The proof 
of the proposition is presented in the next two sections. 

8.3.1. Complex case. — Let 5 be the subset of matrices A G GL(d, C) whose eigen­
values are all distinct in norm. Then, 5 is an open and dense subset of GL(d, C) whose 
complement is contained in a finite union of closed manifolds of positive codimension. 
We use the following fact about variation of eigenvectors inside 5: 

Lemma 8.16. — Let A G S. Then there exist C°° functions Xi : 5A —» C and Vi : 5A —> 
¥(Cd) defined on an open neighborhood 5A of k, for each 1 < i < d, such that Vi(B) is 
the direction of an eigenvector ofB associated to the eigenvalue Xi(B), for any B e Sx-
Furthermore, the map 5A —> F(Cd)d, B i-» (^i(B),... ,^(B)) is a submersion. 

Proof — Since each eigenvalue Xi(k) is a simple root of the polynomial det(A — À id), 
it has a C°° continuation Â (B) for all nearby matrices, given by the implicit function 
theorem. Denote Li(B) = B — Â (B) id. It depends smoothly on B G 5A and, since X{(B) 
remains a simple eigenvalue of B, it has rank d — 1. Since the entries of adj(Z (̂B)) are 
cofactors of Li(B), the adjoint is a non-zero matrix that also varies in a C°° fashion 
with B. Moreover, 

Li(B) • adj(Li(B)) = det(L.(B)) id = 0. 

This means that any non-zero column of adj(Li(B)) is an eigenvector for I/i(B), de­
pending in a C°° fashion on the matrix, and so we may use it to define a function 
Vi(B) as in the statement. To check that the derivative of v at A is onto just consider 
any differentiable curve (—e, s) B t • (f3i(t),..., 0d(t)) such that fli(0) = Vi(k) for all 
i = 1,...,d. Define P{t) = \fii(t),...,0d(t)], that is, P(t) is the matrix whose column 
vectors are the 0i(t). Then define 

(8.13) B(t) = P(t) diag[À!(A),..., Xd(k)}P(t)-\ 

Then, B(0) = A and v(B(t)) = (Pi(t),... ,(3d(t)) for all t. In particular, the derivative 
Dv(A) maps B^O) to (/?i(0),... ,/%(0)). So, the derivative is indeed surjective. • 

Let Zi be the subset of A = (Ai,...,k2e) such that Â  ̂  5 for at least £ values 
of i. Then Z\ is closed and it is contained in a finite union of closed submanifolds of 
codimension > L For every A ^ Z\ there are at least £+1 matrices A; whose eigenvalues 
all have distinct norms. Restricting to some open subset V of the complement of Zi, 
and renumbering if necessary, we may suppose that these matrices are Ai,..., A +̂i. 
By Lemma 8.16, reducing V if necessary, the map 

V \ Zi 9 A _> (vj(Ai))1<j<d, x<w+1 € P(C<Y(m) 

is a submersion. Consequently, there exists a closed subset Z2 of V \ Z\ contained 
in a finite union of closed submanifolds of codimension > £ such that for every A G 
V \ (Zi U Z2) there exists some 1 < i < £ such that 

(8.14) va(A*) + vh{ki+x) for every a, b G {1 , . . . , d}. 
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Now it suffices to prove that G2e H V is contained in Z\ U Z2. Indeed, suppose there 
is A G G2£ D V \ (Zi U Z2). By the definition of G2£, there exists some probability 
measure rj on P(Cd) such that 

(8.15) (A/)*/? = rj for every 1<1<2£. 

Consider I = i, as in (8.14), and also I = t + 1. Since all the eigenvalues of have 
distinct norms, r\ must be a convex combination of Dirac masses supported on the 
eigenspaces of Â . For the same reason, rj must be supported on the set of eigenspaces 
of A +̂i. However, (8.14) means that these two sets are disjoint, and so we reached a 
contradiction. This contradiction proves Proposition 8.14 in the complex case. 

8.3.2. Real case. — The proof for real matrices is a bit more complicated due to the 
possibility of complex conjugate eigenvalues. In particular, the set of matrices whose 
eigenvalues are all distinct in norm is not dense. This difficulty has been met before 
by Bonatti, Gomez-Mont, Viana [7], and we use a similar approach in dimensions 
d > 3. For d = 2 we use a different argument, based on the conformai barycenter 
construction of Douady, Earle [11]. 

For each r, s > 0 with r + 2s = d, let 5(r, s) be the subset of matrices A G GL(d, R) 
having r real eigenvalues, and s pairs of (strictly) complex conjugate eigenvalues, such 
that all the eigenvalues that do not belong to the same complex conjugate pair have 
distinct norms. Every S(r,s) is open and their union S = Ur)S5(r, s) is an open and 
dense subset of GL(d, R) whose complement is contained in a finite union of closed 
submanifolds with positive codimension. Let Grass(fc,d) denote the fc-dimensional 
Grassmannian of Rd, for 1 < k < d. In what follows we often think of elements 
of Grass(2, d) as subsets of Grass(l, d) = ¥(Rd). 

Lemma 8.17. — Let 9 = {[(n,...,rd)eie) G P(Cd) : 0 G [0, 2TT], (n,.. . ,rd) G Rd}. 
Then 9 is closed in F(Cd) and the map # : P(Cd)\y -> Grass(2,d) defined 
by ̂ (v) = Span {Re(i;), Im(v)} is a submersion. 

Proof. — First, we recall the usual local charts in Grass(2,d). Let ei, . . . ,e^ the 
canonical base of Rd and 1 < i < j < d be fixed. For any d x 2 matrix A we de­
note by <̂ (A) the 2 x 2 matrix formed by the ith and jfth rows of A and by <̂ *(A) the 
(d — 2) x 2 matrix formed by the other rows of A. Let Uij be the open set of planes 
L G Grass(2, d) such that the orthogonal projection of L to Span {e ,̂ ej} is an isomor­
phism. This means that if L G Uij with L = Span {vi, v2} then ^(A^) is invertible, 
where Â  = ^2] is the matrix whose columns are the vectors vi, v2. Then the map 
(f) : Uij R2(d-2) defined by </>(L) = (Y9*(AL)(̂ (AL)-1, where we identify (d - 2) x 2 
matrices with points in R2(d~2), is a local chart in the Grassmannian. 

Now, note that v, v G Cd are linearly independent if and only if v G P(Cd)\£7\ 
Moreover, in that case Re(v), Im(v) are C-linearly independent and, in particular, ty(v) 
is well defined. It is clear from its expression in local charts that \£ is differentiable. 
Moreover, still in local charts, its derivative is given by 

DV{v)v = ^(À)^(A)"1 - ^*(A)(^(A)-V(Â)^(A)-1, 
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where v G TvF(Cd), A = [Re(v), lm(v)] and À = [Re(v), Im(*)]. Let B be in the tangent 
space T (̂v) Grass(2, d). Then B is a (d — 2) x 2 matrix with real entries. Let ÂB be the 
d x 2 matrix defined by <£*(Ag) = B(p(k) and y>(Àg) = 0. Since, Àg = [1)1,1)2], we have 
that Dty(v)(vi -\-iv2) = B. This finishes the proof of the lemma. • 

Lemma 8.18. — Let A G 5(r, s). Then there exists an open neighborhood Sk of A and 
there exist C°° functions 

Xj : 5A —» R, fj r 5A —• Grass(l, d), /or 1 < j < r, and 

: 5A C \ R, r\k\Sk-> Grass(2, d), forl<k<s, 

such that £j(B) is the eigenspace of B associated to the eigenvalue Aj(B), and rjk(B) 
is the characteristic space associated to the conjugate pair of eigenvalues /xjt(B) and 
/2fc(B). Furthermore, the map 

5A -> Grass(l,d)r x Grass(2,d)s, B (^•(B)i<i<r,r7fc(B)i<fe<a) 

is a submersion. 

Proof. — Existence and regularity of the eigenvalues Xj and follow from the 
implicit function theorem. Moreover, the arguments in Lemma 8.16 imply that if 
Vj(B) is an eigenvector associated to the eigenvalue Aj(B), for j = l , . . . , r , and 
i;r+2fc-i(B), vr+2fc(B) are eigenvectors associated to /Xfe(B), Mfc(B), respectively, for k = 
1,. . . , 5, then the map $ defined by 

(8.16) *(B) = («i(B),.. ,«r(B),i;r+i(B),... ,«r+2,(B)) € P(Rd)r x P(Cd)' 

is C°°. We are going to show that this map is a submersion on some open neighborhood 
5A of A. For this, it is sufficient to show that the derivative D<b(A) is onto. Consider 
any differentiable curve (—s,e) 9 t H ((3i(t),...,/?r+s(£)) such that (3j(0) = Vj(k) 
for j = 1, . . . , r and /3r+fc(0) = vr+2k-i(k) for k = 1, . . . , s. Define 

p(t) = [^i(05---^R(*),/^R+i,^r+i,...,/?r+s,^r+s],and 
(8.17) 

B(t) = P(t) diag[Ai(A),..., Ar(A),/ii(A),/îi(A),... ,/x,(A),/ia(A)] P(t)"1. 

Observe that £ i-* B(£) is a curve in GL(d, R), with B(0) = A. Observe also that 
$(B(t)) = (/?i(t),...,/3r+s(t) for all t G (-£,£), and so D$(A) maps B'(0) to the 
vector (/?i(0),... ,/?£+s(0)). So, the derivative is indeed surjective. Finally, define 

£j (B) = Vj (B) for j = 1, . . . , r and 

77fc(B) = Span{Re(vr+2ifc-i),Ini(î;r+2fc-i)} for k = 1, . . . , s. 

Clearly these maps are C°°. Moreover, since (8.16) is a submersion, Lemma 8.17 
implies that B 1—• (£j(B)i<j<r,r)k(B)i<k<s) is a submersion. • 

Let Z\ be the subset of A = (Ai,..., A2̂ ) such that Aj ^ 5 for at least £ values 
of i. Then Z\ is closed and it is contained in a finite union of closed submanifolds 
of codimension > £. For every A ^ Z\ there are at least £ + 1 values of i such that 
Â  G 5, that is, Â  G S(ri,Si) for and Si. Restricting to some open subset V of the 
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complement of Z\, and renumbering if necessary, we may suppose that these matrices 
are Ai,... , A^+i. By Lemma 8.18, reducing V if necessary, the map 

(8.18) HB,i,l,n [dBHBn,l-l,l(B)]HB,-y,0,l-l>+d+r+d+d+r+d +d+<+d+d 

is a submersion. 
Assume first that d > 4, and so dimP(Rd) > 3. Since the £j(A) are points and the 

?7fc(A) are lines in the projective space, it follows that there exists a closed subset Z2 
of V \ Z\ contained in a finite union of closed submanifolds of codimension > £ such 
that for every AG V \ (Zi U Z2) there exists some 1 < i < £ such that 

(8.19) £a(Ai)^&(A*+i) 

(8.20) Ça(A») i Vc{&£+i) and &(Ai) £ rjd(ke+1) 

(8.21) HB,i,l,n [dBHBn,l-l,l(Bd;, 

for every 1 < a < r(A^), 1 < b < r(A^+i), 1 < c < s(A;), and 1 < d < s(A^+i). 
Now it suffices to prove that G21 H V is contained in Z\ U Z2. Indeed, suppose there 
is A G G21 H V \ {Z\ UZ2). By the definition of G2 ,̂ there exists some probability 
measure rj on F(Cd) such that 

(8.22) (A/)*r? = 77 for every 1 < / < 2£. 

Consider both I = i, as in (8.19)-(8.21), and 1 = 1+1. Since all the eigenvalues of Â  
have distinct norms, apart from the complex conjugate pairs, the measure rj must be 
supported on 

E(Ai) = 
r 

bds,d 

fô(Ai)}U 
S 

fc=l 
Vk{ki)' 

Analogously, 77 must be supported on E(A^+i). However, conditions (8.19)-(8.21) mean 
that the two sets E(A )̂ and £(A^_i) are disjoint. This contradiction proves the propo­
sition in any dimension d > 4. 

For d = 3 the projective space P(R3) is only 2-dimensional, and so one can not 
force a pair of 1-dimensional submanifolds rjk(A) to be disjoint, as required in (8.21). 
However, the argument can easily be adapted to cover the 3-dimensional case as well. 
Firstlv. one reolaces (8.21) bv 

(8.23) rçc(A») ^ *7d(A*+i) 

for every 1 < c < s(ki) and 1 < d < s(ki+1). (Both (8.21) and (8.23) are void if 
either s(A )̂ = 0 or s(A^+i) = 0; the only other possibility is s(ki) = s(A^+i) = 1, with 
c = d = 1.) Then the argument proceeds as before, except that we may no longer 
have disjointness: when s = 1, 

E(Ai) H E(Aj+i) = r/!(A*) H !7i(Aj+i) 

consists of exactly one point in projective space. Then 77 must be a Dirac measure 
supported on this point. However, in view of (8.22), this would have to be a fixed point 
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of contained in rji(ki), which is impossible because the eigenspace ^(A^) contains 
no invariant line. Thus, we reach a contradiction also in this case. 

Now we deal with the case d = 2. Let Z\ be as in the previous cases: for every 
A £ Zi there are at least £+1 values of i such that k{ G S = 5(2,0) U 5(0,1). As 
before, it is no restriction to assume that these matrices are Ai,... , A^+i. There are 
three cases to consider: 

First, suppose there exist l<i,j<£+l such that A; G 5(2,0), that is, it has 
two real (distinct) eigenvalues, and kj G 5(0,1), that is, it has a pair of complex 
eigenvalues. We claim that in this case A can not belong to G^. Indeed, on the one 
hand, any probability measure 77 on P(R2) which is invariant under Â  G 5(2,0) must 
be a convex combination of Dirac masses at the two eigenspaces. On the other hand, 
the action of kj G 5(0,1) on the projective space is a rotation whose angle is not a 
multiple of 7r, and so it admits no such invariant measure. 

Next, suppose all the matrices are hyperbolic: Â  G 5(2,0) for all 1 < i < £. In this 
case one can use precisely the same argument as we did before in higher dimensions 
(conditions (8.20) and (8.21)-(8.23) become void). One finds a closed subset Z2 con­
tained in a finite union of submanifolds with codimension > t such that G^i H *V is 
contained in Z\ U Z2 • 

Finally, suppose all the matrices are elliptic: Â  G 5(0,1) for all 1 < i < £. Recall 
that every matrix A G GL(2,R) with positive determinant induces an automorphism 
hk of the Poincaré half plane H: 

(8.24) A = a b 
c d 

hk(z) = 
az + b 
cz + d 

The action of A on the projective plane may be identified with the action of hk on the 
boundary of M, via 

<ffl^P(M2), [(x, 1)1 

(including x = oo) so that P(A)-invariant measures on the projective plane may be 
seen as /iA-invariant measures sitting on the real axis. It is also easy to check that hk 
has a fixed point in the open disc EI if and only if A G 5(0,1). Define 0(A) to be this 
(unique) fixed point. It is easy to see that the A 0(A) is a C°° submersion: just use 
the explicit expression for the fixed point extracted from (8.24). The key feature is 
the following consequence of a classical construction of Douady, Ear le [11]: 

Lemma 8.19. — If k, B G 5(0,1) have some common invariant probability measure JJ, 
on dU then 0(A) = 0(B). 

Proof. — It is clear that elliptic matrices have no invariant measures with atoms 
of mass larger than 1/3: such atoms would correspond to periodic points of A in the 
projective plane with period 1 or 2, which would contradict the definition of 5(0,1). In 
Proposition 1 of [11] a map B{p) is constructed that assigns to each probability 
measure /i with no atoms of mass > 1/2 (see Remark 2 in [11, page26] ) a point B(JJ,) 
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in the half plane H, in such a way that 
B(h*fi) = h(B{n)) for every automorphism h : M —• H. 

When /i is A-invariant this implies hK(B(/i)) = -E?((/iA)*/i) = B(/JL), and so the con-
formal barycenter B(JJL) must coincide with the fixed point 0(A) of the automorphism 
/iA. Thus, if [i is a common invariant measure then 0(A) = B{ji) = 0(B). • 

It follows from the previous observations that the map 

<J/\Zi9A^(^(Ai))I<.<w€tf+1. 

is a submersion. Hence, there exists a closed subset Z2 of V \ Z\ contained in a 
finite union of closed submanifolds of codimension > I such that for every A 6 V \ 
(Zi UZ2) there exists some 1 < i < I such that 0(A*) 7̂  0(A^+i). Thus, we may apply 
Lemma 8.19 to conclude that if A e c\/\ {Z\ U-Ẑ )- In other words, (^fl V is contained 
in ZiUZ2. 

The proofs of Proposition 8.14 and Theorem A are now complete. 
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