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Séminaire B O U R B A K I 

63 e année, 2010-2011, n° 1035, p. 233 à 263 

Avril 2011 

T H E F U N D A M E N T A L L E M M A A N D T H E H I T C H I N F I B R A T I O N 

[after Ngô Bao Châu] 

by Thomas C. HALES 

The study of orbital integrals on p-adic groups has turned 
out to be singularly difficult. 

(R. P. Langlands, 1992) 

This report describes some remarkable identities of integrals that have been 

established by Ngo Bao Chau. M y task will be to describe why these identities— 

collectively called the fundamental lemma (FL)—took nearly thirty years to prove, 

and why they have particular importance in the theory of automorphic representa­

tions. 

1. B A S I C C O N C E P T S 

1.1. Or ig in s o f t h e f u n d a m e n t a l l e m m a ( F L ) 

To orient ourselves, we give special examples of behavior that the theory is designed 

to explain. 

E X A M P L E 1. — We recall the definition of the holomorphic discrete series represen­
tations of 51/2 (M). For each natural number n>2, let Vn,+ be the vector space of all 
holomorphic functions f on the upper half plane \) such that 

[ \f\2yn-2dxdy <oo. 

5Z/2(M) acts on VUi+: 

( : : ) 
/ ( „ . ( - t a + d ) - / ^ ) . 

Similarly, for each n > 2, there is an anti-holomorphic discrete series representation 

Vn~. These infinite dimensional representations have characters that exist as locally 
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234 T. C. HALES 

integrable functions 6 n > ± . The characters are equal: O n ? + ( g ) = Qn,-{g), except when 
g is conjugate to a rotation 

( cos 6 sin 6 \ 

— sin 0 cos 6 J 

When g is conjugate to 7, a remarkable character identity holds: 

i(n-l)0 1 -i(n-l)0 
(2) e „ , _ ( 7 ) - e n , + ( 7 ) = — - ^ — - e — . 

It is striking that numerator of the difference of two characters of infinite dimen­
sional representations collapses to the character of a two dimensional representation 
7 h-> 7 n _ 1 of the group H of rotations. Shelstad gives general characters identities of 
this sort [49]. 

We find another early glimpse of the theory in a letter to Singer from Langlands in 
1974 [33]. Singer had expressed interest in a particular alternating sum of dimensions 
of spaces of cusp forms of G = SL2 over a totally real number field F. Langlands's 
reply to Singer describes then unpublished joint work with Labesse [32]. Without 
going into details, we remark that in the calculation of this alternating sum, there is 
again a collapse in complexity from the three dimensional group SL2 to a sum indexed 
by one-dimensional groups H (of norm 1 elements of totally imaginary quadratic 
extensions of F). 

These two examples fit into a general framework that have now led to major results 
in the theory of automorphic representations and number theory, as described in 
Section 7. Langlands holds that methods should be developed that are adequate for 
the theory of automorphic representations in its full natural generality. This means 
going from 51/2 (or even a torus) to all reductive groups, from one local field to all 
local fields, from local fields to global fields and back again, from the geometric side 
of the trace formula to the spectral side and back again. Moreover, interconnections 
between different reductive groups and Galois groups should be included, as predicted 
by his general principle of functoriality. 

Thus, from these early calculations of Labesse and Langlands, the general idea 
developed that one should account for alternating sums (or K-sums as we shall call 
them because they occasionally involve roots of unity other than ±1) that appear in 
the harmonic analysis on a reductive group G in terms of the harmonic analysis on 
groups H of smaller dimension. The FL is a concrete expression of this idea. 
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1.2. Orbital integrals 

This section provides brief motivation about why researchers care about integrals 

over conjugacy classes in a reductive group. Further motivation is provided in Sec­

tion 7. 

It is a basic fact about the representation theory of a finite group that the set of 

irreducible characters is a basis of the vector space of class functions on the group. A 

second basis of that vector space is given by the set of characteristic functions of the 

conjugacy classes in the group. We will loosely speak of any linear relation among the 

set of characteristic functions of conjugacy classes and the set of irreducible characters 

as a trace formula. 

More generally, we consider a reductive group G over a local field. Each admissible 

representation IT of G defines a distribution character: 

/ h - trace / f(gMg)dg, f G CC°°(G), 
J G 

with dg a Haar measure on G. A trace formula in this context should be a linear rela­

tion among characteristic functions of conjugacy classes and distribution characters. 

To put all terms of a trace formula on equal footing, the characteristic function of a 

conjugacy class must also be treated as a distribution, called an orbital integral: 

/ ~ 0 ( 7 , / ) = / fig'^dg, / G C C ° ° ( G ) , 
JIy\G 

where J 7 is the centralizer of 7 G G. 

The FL is a collection of identities among orbital integrals that may be used in a 

trace formula to obtain identities among representations TT. 

1.3. Stable conjugacy 

At the root of these K-sum formulas is the distinction between ordinary conjugacy 

and stable conjugacy. 

EXAMPLE 3. — A clockwise rotation and counterclockwise rotation 

( cosO — sinéA 

sin 6 cos 6 J 
and ( cos 0 sin 6 \ 

— sin 6 cos 9 J 

in SZ/2(M) a r e conjugate by the complex matrix (J but they are not conjugate 

in the group when 6 £ Indeed, a matrix calculation shows that every 

element of GL2 (R) that conjugates the rotation to counter-rotation has odd determi­

nant, thereby falling outside SI/2(M). Alternatively, they are not conjugate in SZ/2(M) 

because the character identity (2) separates them. 

Let G be a reductive group defined over a field F with algebraic closure F. 
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236 T. C. HALES 

DEFINITION 4. — An element 7' G G{F) is said to be stably conjugate to a given 
regular semisimple element 7 G G(F) if'7' is conjugate to 7 in the group G(F). 

There is a Galois cohomology group that can be used to study the conjugacy classes 
within a given stable conjugacy class. Let I1 be the centralizer of an element 7 G 
G(F). The centralizer is a Cart an subgroup when 7 is a (strongly) regular semisimple 
element. Write 7' = g~1^g, for g G G(F) . For every element a of the Galois group 
Gal(F/F), we have gcr(g)~1 G I-y(F). These elements define in the Galois cohomology 
group Hl{F, I7) a class, which does not depend on the choice of g. It is the trivial 
class when 7' is conjugate to 7. 

EXAMPLE 5. — The centralizer 7 7 of a regular rotation 7 is the subgroup of all rota­
tions in 51/2(M). The group I 7 ( C ) is isomorphic to C x . Each cocycle is determined 
by the value r G / 7 ( C ) = C x of the cocycle on the generator o/Gal(C/]R). A given 
r G C x satisfies the cocycle condition when r G M x and represents the trivial class in 
cohomology when r is positive. This identifies the cohomology group: 

H1(R,I1) = RX/R*=Z/2Z. 

This cyclic group of order two classifies the two conjugacy classes within the stable 
conjugacy class of a rotation. 

When F is a local field, A = HX(F, 7 7 ) is a finite abelian group. Every function 
A —• C has a Fourier expansion as a linear combination of characters K of A. The 
theory of endoscopy is the subject that studies stable conjugacy through the separate 
characters K of A. Allowing ourselves to be deliberately vague for a moment, the idea 
of endoscopy is that the Fourier mode of n (for given 7 7 and G) produces oscillations 
that cause some of the roots of G to cancel away. The remaining roots are reinforced 
by the oscillations and become more pronounced. The root system consisting of the 
pronounced roots defines a group H of smaller dimension than G. With respect to 
the harmonic analysis on the two groups, the mode of n on the group G should be 
related to the dominant mode on H. 

1.4. Endoscopy 

The smaller group H, formed from the "pronounced" subset of the roots of G, is 
called an endoscopic group. Hints about how to define H precisely come from various 
sources. 

— It should be constructed from the data (G, 7 7 , ft), with 7 regular semisimple. 
— Its roots should be a subset of the roots of G (although H need not be a subgroup 

of G). 

ASTÉRISQUE 348 



(1035) THE FUNDAMENTAL LEMMA AND THE HITCHIN FIB RATION 237 

— H should have a Cartan subgroup In C H isomorphic over F to the Cartan 
subgroup J 7 of G, compatible with the Weyl groups of the two groups H and 
G. 

— Over a nonarchimedean local field, the spherical Hecke algebra on G should be 
related to the spherical algebra on H. 

— It should generalize the example of Labesse and Langlands. 

Every reductive group G has a dual group G that is defined over C. The character 
group of a Cartan subgroup in the dual group is the cocharacter group of a Cartan 
subgroup in G, and the roots of the G are the coroots of G. The dual of a semisimple 
simply connected semisimple group is an adjoint group, and vice versa. For example, 
we have dualities GL(n) = PGL(n) and Sp(2n) = SO(2n + 1). The duality between 
the root systems of Sp(2n) and SO{2n + 1) interchanges short and long roots. The 
groups G and G have isomorphic Weyl groups. We write T C G for a Cartan subgroup 
of G. There is a somewhat larger dual group LG that is defined as a semidirect product 
of G with the Galois group of the splitting field of G. 

There are indications that the groups H should be defined through the dual G (or 
more precisely, LG) of G: 

— Langlands's principle of functoriality is a collection of conjectures, relating the 
representation theory of groups when their dual groups are related. Since the 
examples about SL2 in Section 1.1 are representation theoretic, we should look 
to the dual. 

— The Satake transform identifies the spherical Hecke algebra with a dual object. 
— The Kottwitz-Tate-Nakayama isomorphism identifies the group of characters on 

Hl(F, 7 7 ) with a subquotient 7r 0(T r) of the dual torus T. (This subquotient is 
the group of components of the set of fixed points of T under an action of the 
Galois group of the splitting field of 7 7 .) 

DEFINITION 6 (Endoscopic group). — Let F be a local field. The endoscopic group 
H associated with (G,7 7,AC) is defined as follows. By the Kottwitz-Tate-Nakayama 
isomorphism just mentioned, K is represented by an element of the dual torus, T. By 
an abuse of notation, we will also write n G T for this element. The identity component 
of the centralizer of K is the dual H of a quasi-split reductive group H over F. The 
choice of a particular quasi-split form H among its outer forms is determined by 
the condition that there should be an isomorphism over F of a Cartan subgroup IH 
of H with I7 in G, compatible with their respective Weyl group actions and outer 
automorphisms. 

We write p for the choice of quasi-split form H among its outer forms and refer to 
the pair (« , p) as endoscopic data for H. More generally, if G is defined over any field, 
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we can use a pair (K, p), with K G T, to define an endoscopic group H over that same 
field. 

One of the challenging aspects of the FL is that it is an assertion of direct relation 
between groups that are defined by a dual relation. Very limited information (such 
as Cart an subgroups, root systems, and Weyl groups) can be transmitted from the 
endoscopic group H to G through the dual group. 

2. A B I T OF LIE T H E O R Y 

2.1. Characteristic polynomials 

Let G be a split reductive group over a field k and let g be its Lie algebra, with 
split Cartan subalgebra t and Weyl group W. We assume throughout this report that 
the characteristic of k is sufficiently large (more than twice the Coxeter number of 
G, to be precise). The group G acts on Q by the adjoint action. By Chevalley, the 
restriction of regular functions from Q to t induces an isomorphism 

k[g)G = k[t}w. 

We let c = Spec (fcft]1^), and let x 9 —> c be the morphism deduced from Chevalley's 
isomorphism. The following example shows that x Q ~* c 1S a generalization of the 
characteristic polynomial of a matrix. 

EXAMPLE 7. — IfG = GL(n), then k[g]G is a polynomial ring, generated by the 
coefficients c\ of the characteristic polynomial 

(8) p ( t ) = t n + c n _ i t n - 1 + --- + co 

of a matrix 7 G Q = Ql(n). The morphism x & —> C C A N be identified with the 
"characteristic map" that sends 7 to ( c n _ i , . . . ,CQ). 

2.2. Kostant section 

Kostant constructs a section e : c — » # o f x : g — > c whose image lies in the set Qreg 

of regular elements of g. In simplified terms, this constructs a matrix with a given 
characteristic polynomial. 

EXAMPLE 9. — When g = sl(2), the Lie algebra consists of matrices of trace zero, 
and the characteristic polynomial has the form t2 + c. The determinant c generates 
k[g]G. The Kostant section maps c to 

(10) 
с ; 
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E X A M P L E 1 1 . — If g = $Kn)> w e c a n construct the companion matrix of a given 

characteristic polynomial p G k[t], by taking the endomorphism t of R = k[t]/(p), 

expressed as a matrix with respect to the standard basis 1, t, t 2 , . . . , tn~x of R. The 

companion matrix is a section c —• g that is somewhat different from the Kostant 

section. Nevertheless, the Kostant section can be viewed as a generalization of this 

that works uniformly for all Lie algebras g. 

2 .3 . Cen t ra l i ze r s 

Each element 7 G g has a centralizer I1 in G. If two elements of greg have the same 

image a in c, then their centralizers are canonically isomorphic. By descent, there is 

a regular centralizer J a , for all a in c, that is canonically isomorphic to I7 for every 

regular element 7 such that — a -

E X A M P L E 1 2 . — Suppose G = SL{2). We may identify Ja with the centralizer of (10) 

to obtain the group of matrices with determinant 1 of the form 

fx -yc\ 

\V x J 

E X A M P L E 1 3 . — If g = gi(n), then the centralizer of the companion matrix with 

characteristic polynomial p can be identified with the centralizer oft in GL(R), where 

R = k[t]/(p). An element of gi(R) centralizes the regular element t if and only if it is 

a polynomial in t. Thus, the centralizer in gi(R) is R and the centralizer in GL(R) is 

Ja = R x . 

2.4. Discriminant and resultant 

Let $ be the root system of a split group G. The differentials da of roots define a 

polynomial called the discriminant: 

( 1 4 ) J] da 

on t. The polynomial is invariant under the action of the Weyl group W and equals a 

function on c. The divisor of this polynomial c is called the discriminant divisor. 

E X A M P L E 1 5 . — Let G = GL(n). The Lie algebra t can be identified with the diagonal 

matrix algebra with coordinates t\,..., t n along the diagonal. The discriminant is 

Ufr - tj). 

This is invariant under the action of the symmetric group on n letters and can be 

expressed as a polynomial in the coefficients C{ of the characteristic polynomial. In 
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particular, the discriminant of the characteristic polynomial t2 + bt + c is the usual 
discriminant b2 — 4c. 

If i f is a split endoscopic group of G, there is a morphism 

(16) v : CH -> c 

that comes from an isomorphism of Cartan subalgebras t# —> t and an inclusion of 
Weyl groups WH C VF: C# = t/Wn —> t/W = c. There exists a resultant divisor *K 
such that 

(17) i/*5)G = 2> H + 2 9t. 

EXAMPLE 18. — Let i f = GL(2) x GL(2), embedded as a block diagonal subgroup 
ofGL(4). Identify roots of H with roots of G under this embedding. The morphism 
v : CH -~+ c, viewed in terms of characteristic polynomials, maps the pair (pi ,P2) of 
quadratic polynomials to the quartic p\P2- Let t\,t2 be the roots of pi, for i = 1,2. 
The resultant is 

I I W - * 2 ) . 

The resultant is symmetric in the roots of pi and in the roots of P2 and thus can be 
expressed as a polynomial in the coefficients of p\ andpi. It vanishes exactly when pi 
and P2 have a common root. 

3. T H E S T A T E M E N T OF T H E FL 

Let G be a reductive group scheme over the ring of integers Ov of a nonarchimedean 
local field Fv in positive characteristic. Let q be the cardinality of the residue field 
k. The map \ 1 9 ~^ c ^ s compatible with stable conjugacy in the sense that two 
regular semisimple elements in g(Fv) are stably conjugate exactly when they have 
the same image in c(Fv). The results of Section 1.3 (transported to the Lie algebra) 
show that each element 7 stably conjugate to e(a) carries a cohomological invariant 
in Hl(Fv, J a ) , which is trivial for elements conjugate to e(a). 

For each regular semisimple element a G c(Fv) and character 

, . : i i 1 ( F v , J a ) ^ C x , 

we write (ft, 7) for the pairing of K with the cohomological invariant of 7. A K-orbital 
integral is defined to be 

(19) 0 * ( a ) = Yl J {K,l)h{ov)№9-\l))dg, 
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where 7 7 centralizes 7, and the sum runs over representatives of the conjugacy classes 
in Q(FV) with image a. Here lg(ov) is the characteristic function of g(OV). A Haar 
measure on G has been fixed that gives G(Ov) volume 1. 

The character ft determines a reductive group scheme H over OV, according to 
the construction of (1.4). In general, we add a subscript H to indicate quantities 
constructed for H, analogous to those already constructed for G. In particular, let CH 
be the Chevalley quotient of the Lie algebra of H. There is a morphism v : c# —• c. 
When ft is trivial, we write SO for O^. 

Here is the main theorem of Ngo [46]. 

THEOREM 20 (Fundamental lemma (FL)). — Assume that the characteristic of Fv 

is greater than twice the Coxeter number of G. For all regular semisimple elements 
a G CH(Ov) whose image u(a) in c is also regular semisimple, the ft orbital integral 
of v(a) in G is equal to the stable orbital integral of a in H, up to a power of q: 

(21) 0K(u(a)) = qr^SOH(a), where rv(a) = degv(a*9t). 

A sketch of Ngo's proof of the FL appears in Section 6.5. 
The FL has been obtained from the character identity (2) for SL2: 

ei(n-l)0 _|_ e-i(n-l)0 
e n , _ ( 7 ) - 0n,+(7) = — e i e _ e _ i 0 , 

by multiple levels of generalization. A general reductive group G replaces SL2 and a 
nonarchimedean local field replaces R. Orbital integrals are used rather than charac­
ters, roots of unity (ft, 7) rather than signs ±1 , an endoscopic group H rather than 
the rotation group, and a transfer factor qTv^ rather than a denominator el6 — e~l6'. 

Over the years from the time that Langlands first conjectured the FL until the 
time that Ngo gave its proof, the FL has been transformed into simpler form [36]. 
The statement of the FL appears here in its simple form. Section 8 makes a series of 
comments about the original form of the FL and its reduction to this simple form. 
Except for that section, our discussion is based on this simple form of the FL. In par­
ticular, we assume that the field Fv has positive characteristic and that the conjugacy 
classes live in the Lie algebra rather than the group. 

Analogous identities (transfer of Schwartz functions) on real reductive groups have 
been established by Shelstad [49]. Her work gives a precise form to the idea that the 
oscillations of a character ft cause certain roots to cancel away and others to become 
more pronounced: normalized ft-orbital integrals extend smoothly across the singular 
hyperplanes of some purely imaginary roots a, but jump across others. At a philo­
sophical distance, Ngo's use of perverse sheaves can be viewed as p-adic substitute for 
differential operators, introduced by Harish-Chandra to study invariant distributions 
near a singular element in the group and adopted by Shelstad as a primary tool. 
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4. A F F I N E S P R I N G E R FIBERS 

4.1. Spectral curves 

Calculations in special cases show why the FL is essentially geometric in nature, 

rather than purely analytic or combinatorial. We recall a favorite old calculation 

of mine of the orbital integrals for 50 (5) and sp(4), the rank two odd orthogonal 

and symplectic Lie algebras [21]. Let Fv be a nonarchimedean local field of residual 

characteristic greater than 2. Let k be the residue field with q elements. Choose 

a G c(Fv) and let 0, ± £ i , ± £ 2 be the eigenvalues of the Kostant section 7 = e(a) in 

so(5) C gC(5). Assume that there is an odd natural number r such 

Wl)\=q-r/\ 

for every root a of 50 (5). We use the eigenvalues to construct an elliptic curve Ea 

over fc, given by y2 = (1 — X2T\)(1 — X2T2), where Ti is the image of t2/wr in the residue 

field, for a uniformizer w. By direct calculation we find that the stable orbital integral 

SO (a, / ) of a test function / equals the number of points on the elliptic curve: 

(22) A(q) + B(q) card(£ a(fc)), 

up to some rational functions A and B, depending on / . 

Similarly, in the group $p(4) C #t(4), there is an element a' with related eigenvalues 

± £ 1 , ± ¿ 2 . According to the general framework of (twisted) endoscopy, there should be 

a corresponding function / ' on sp(4) such that the stable orbital integral SO(a ; , / ' ) in 

sp(4) is equal to (22). A calculation of the orbital integral of / ' gives a similar formula, 

with a different elliptic curve E'a,, but otherwise identical to (22). The elliptic curves 

Ea and E'a, have different j-invariants (which vary with a and a'). The proof of the 

desired identities of orbital integrals in this case is obtained by producing an isogeny 

between Ea and E'a,. (The identities of orbital integrals are quite nontrivial, even 

though the Lie algebras so(5) and sp(4) are abstractly isomorphic.) 

In a similar way, hyperelliptic curves appear in calculations of certain orbital inte­

grals in groups of higher rank. When orbital integrals are computed by brute force, 

these curves appear as freaks of nature. As it turns out, they are not freaks at all, 

merely perverse. One of the major challenges of the proof of the FL and one of the 

major triumphs of Ngo has been to find the natural geometrical setting that combines 

orbital integrals and spectral curves. 

4.2. Orbital integrals as affine Springer fibers 

An orbital integral can be computed by solving a coset counting problem. The 

value of the integrand (19) is unchanged if g is replaced with any element of the 

coset gG{Ov). The integral is thus expressed as a discrete sum over cosets of G(Ov) 
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in G modulo the group action by 7 7 . Each coset gG(Ov) contributes a root of unity 

(ft, 7) or 0 to the value of the integral depending on whether Ad g~lr) £ Q(OV) (again 

modulo symmetries 7 7 ) . This interpretation as a coset counting problem makes the 

FL appear to be a matter of simple combinatorics. However, purely combinatorial 

attempts to prove the FL have failed (for good reason). 

Let Mv(a, k) be the set of cosets that fulfill the support condition (19) of the 

integral over k: 

Mv(a, k) = {ge G(FV)/G(ÔV) | Adg-1^ G B(<5V)}, 70 = c(a). 

Kazhdan and Lusztig showed that the coset space G(Fv)/G(Ov) is the set of 

Appoints of an inductive limit of schemes called the affine Grassmannian. Moreover, 

Mv(a, k) itself is the set of points of an ind-scheme Mv(a), called the affine Springer 

fiber [28]. 

Each irreducible component of Mv(a) has the same dimension. This dimension, 

Sv (a), is given by a formula of Bezrukavnikov [8]. From that formula, it follows that 

the dimension of the affine Springer fiber of v(a) in G exceeds the dimension of the 

affine Springer fiber of a in H by precisely rv{a). The factor qrv^ that appears in 

the FL is forced to be what it is because of this simple dimensional analysis. 

Goresky, Kottwitz, and MacPherson made an extensive investigation of affine 

Springer fibers and conjectured that their cohomology groups are pure. Assuming 

this conjecture, they prove the FL for elements whose centralizer is an unramified 

Cartan subgroup [19]. They prove the purity result in particular cases by construct­

ing pavings of the affine Springer fibers [20]. 

Laumon has made a systematic investigation of the affine Springer fibers for unitary 

groups. Ngo joined the effort, and together they succeeded in giving a complete proof 

of the FL for unitary groups [41]. 

Ngo encountered two major obstacles in trying to generalize this earlier work to 

an arbitrary reductive group. These approaches calculate the equivariant cohomology 

by passing to a fixed point set in Aiv(a) under a torus action. (In the case of unitary 

groups, over a quadratic extension each endoscopic group becomes isomorphic to 

a Levi subgroup of GL(n). The torus action comes from the center of this Levi.) 

However, in general, a nontrivial torus action on the affine Springer fiber simply does 

not exist. 

The second serious obstacle comes from the purity conjecture itself. In accordance 

with Deligne's work, Ngo believed that the task of proving purity results should 

become easier when the affine Springer fibers are combined into families rather than 

treated in isolation. With this in mind, he started to investigate families varying over 

a base curve X. This moves us from local geometry of a p-adic field Fv to the global 

geometry of the function field of X. He found that the Hitchin fibration is the global 
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analogue of affine Springer fibers. The Hitchin fibers will be described in the next 

section. Deligne's purity theorem applies in this setting [18]. 

5. H I T C H I N FIB R A T I O N 

The Hitchin fibration was introduced in 1987 in the context of completely inte­

grable systems [27]. Roughly, the Hitchin fibration is the stack obtained when the 

characteristic map g —• c varies over a curve X. Ngó carries out all geometry in 

the language of stacks without compromise, as developed in [40]. For this reason, 

groupoids (a category in which every morphism is invertible) appear with increasing 

frequency throughout this report. 

Fix a smooth projective curve X of genus g over a finite field k. We now shift per­

spective and notation, allowing the constructions in Lie theory from previous sections 

to vary over the base curve X. In particular, we now let G be a quasi-split reductive 

group over X that is locally trivial in the etale topology on X. Let g be its Lie algebra 

G and c the space of characteristic polynomials, both now schemes over X. 

Let D be a line bundle on X. For technical reasons (stemming from the 2 in the 

structure constants of SÍ2), we assume that D is the square of another line bundle. At 

one point in Ngo's proof of the FL, it is necessary to allow the degree of D to become 

arbitrarily large (6.5). We place a subscript D to indicate the tensor product with D: 

gD = g ®oxD, etc. 

We let A be the space of global sections on X with values in CD = c ®oxD. The 

group G acts on g by the adjoint action. Twisting g by any G-torsor E gives a vector 

bundle Ad(£ ) over X. 

DEFINITION 2 3 . — The Hitchin fibration M is the stack given as follows. For any 

k-scheme S, M.(S) = [g£>/G](X x S) is the groupoid whose objects are pairs (E,(/)), 

where E is a G-torsor over X x S and <¡> is a section of Ad(E)r>. 

There exists a morphism / : M —» A, obtained as a "stacky" enhancement of the 

characteristic map x : 9 c o v e r X. In greater detail, x : 9 ~* c gives successively 

[9D/G] -+ cDi [gD/G](XxS) - cD(XxS), M(S) A(S), f : M - A. 

In words, the characteristic polynomial of 0 is a section of X x S with values in C£>; 

that is, an element of A(S). We write Ma for the fiber of M over a G A. This is the 

Hitchin fiber. 

The centralizers J a, as we vary a G c, define a smooth group scheme J over c. Now 

select on A an S-point: a : S —• A. There is a groupoid Va(S) whose objects are 

Ja-torsors on X x S. Moreover, Va(S) acts on Ma(S) by twisting a pair (E, <f>) by a 
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J a-torsor. As the S'-point a varies, we obtain a Picard stack V acting fiberwise on the 

Hitchin fibration A4. 

E X A M P L E 2 4 . — We give an extended example with G = GL(V), the general linear 

group of a vector space V. In its simplest form, a pair (E, </>) is what we obtain when we 

allow an element 7 of the Lie algebra end(V) to vary continuously along the curve X. 

As we vary along the curve, the vector space V sweeps out a vector bundle E on X, 

and the element 7 G end(V r ) sweeps out a section (j) of the bundle end(E)E>. 

For each pair (E,</>), we evaluate the characteristic map v H-» x(<t>v) of the endo-

morphism (j) at each point v G X. This function belongs to the set A of a global section 

of the bundle c& over X. This is the morphism f : M —> A . 

Abelian varieties occur naturally in the Hitchin fibration. For each section 

a = ( c n _ i , . . . , Co) G A , the characteristic polynomial 

( 2 5 ) t n + c - i ^ r 1 + • • • + co(v) = 0, veX, 

defines an n-fold cover Ya of X (called the spectral curve). By construction, each point 

of the spectral curve is a root of the characteristic polynomial at some v G X. We con­

sider the simple setting when Ya is smooth and the discriminant of the characteristic 

polynomial is sufficiently generic. A pair (E,^>) over the section a £ A determines 

a line (a one-dimensional eigenspace of (j) with eigenvalue that root) at each point 

of the spectral curve, and hence a line bundle on Ya. This establishes a map from 

points of the Hitchin fiber over a to Pic (Fa), the group of line bundles on the spectral 

curve Ya. Conversely, just as linear maps can be constructed from eigenvalues and 

eigenspaces, Hitchin pairs can be constructed from line bundles on the spectral curve 

Ya. The identity component Pic°(Ya) is an abelian variety. 

5 .1 . P r o o f s t ra teg ies 

At this point in the development, it would be most appropriate to insert a book-

length discussion of the geometry of the Hitchin fibration, with a full development and 

many examples. As Langlands speculates in his review of Ngo's proof, "an exposition 

genuinely accessible not alone to someone of my generation, but to mathematicians of 

all ages eager to contribute to the arithmetic theory of automorphic representations, 

would be, perhaps, . . . close to 700 pages" [37]. 

To cut 700 pages short, what are the essential ideas? 

First, as mentioned above, the Hitchin fibration is the correct global analogue of 

the (local) affine Springer fiber. This analogy can be made precise; an orbital integral 

over a local field is computed by counting points on an affine Springer fiber, but an 

orbital integral over the ring of adeles is computed by counting points on a fiber of the 

Hitchin fibration. Moreover, the description of the affine Springer fiber as a functor 

(an 5-point is a G-torsor on XvxS plus a bit more, where Xv is a formal disk) 
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imitates the description of the Hitchin fibration as a stack (an S'-point is G-torsor on 
X x S plus a similar bit more). The relationship between the Hitchin fiber Aia and 
the affine Springer fiber Mv(a) can be expressed as a factorization of categories (43): 
Ma modulo symmetries as a product of Aiv(a) modulo their symmetries as v runs 
over closed points of X. Through this relationship, the Hitchin fibration can be used 
to study orbital integrals and the FL. 

Second, the Hitchin fibration should be understood insofar as possible through its 
Picard symmetries V. The obvious reason for this is that it is generally a good idea 
to study symmetry groups. The deeper reason for this has to do with endoscopy. The 
objects of the Picard stack are torsors of the centralizer JA. Although the relation­
ship between G and H is mediated through dual groups, the relationship between 
centralizers is direct: over c#, there is a canonical homomorphism from the regular 
centralizer J of G to the regular centralizer JH of H: 

(26) v*J ^JH-

Thus, their respective Picard stacks are also directly related and information passes 
fluently between them. We should try to prove the FL largely at the level of Picard 
stacks. 

Third, by working directly with the Hitchin fibration, the difficult purity conjecture 
of Kottwitz, Goresky, and MacPherson can be bypassed. Finally, continuity arguments 
may be used, as explained in (5.4). 

5.2. Perverse cohomology sheaves 

We give a brief summary without proofs of some of the main results proved by Ngo 
about the perverse cohomology sheaves of the Hitchin fibration. 

There is an etale open subset A of A®k k that has the technical advantage of killing 
unwanted monodromy. The tilde will be used consistently to mark quantities over A. 
For example, if we write / a n i : Mani —• * 4 a m for the Hitchin fibration, restricted to the 
open set of anisotropic elements of A, then / a n i : Mani —> ^4 a n i is the corresponding 
Hitchin fibration over the anisotropic part of A. 

The conditions of Deligne's purity theorem are satisfied [18], so that / a n i Q ^ is 
isomorphic to a direct sum of perverse cohomology sheaves: 

PHn(fr®e)[-n}. 

The action of VANI on . M a n l gives an action on the perverse cohomology sheaves, 
which factors through the sheaf of components 7To = 7To(Pam)- The sheaf 7To is an 
explicit quotient of the constant sheaf X* of cocharacters, and hence X* acts on the 
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perverse cohomology sheaves through 7To. As a result, the perverse cohomology sheaves 

break into a direct sum of /^-isotypic pieces 

(27) LK=Wn(frQe)K, 

as K runs over elements in the dual torus T. (By duality, the cocharacter group X * is 

the group of characters of the dual torus, which gives the pairing between T and X * . ) 

We use the same curve X and same line bundle D both for G and for its endoscopic 

groups H. The morphism v : CH —> c from (16) extends to give v : CH,D —> tD and 

then by taking sections of these bundles, we obtain a morphism between their spaces 

of global sections: 

(28) v:AH-+A. 

We hope that no confusion arises by using the same symbol v for all of these mor-

phisms. 

For each K G T, there is a closed subspace AK of A consisting of elements a 

whose "geometric monodromy" lies in the centralizer of K in the dual group LG. Each 

subspace AK is in fact the disjoint union of the images of closed immersions 

(29) V . A H ^ A 

coming from endoscopic groups H with endoscopic data (K, . . . ) . The support of LK 

lies in *4^ m . The geometric content of the FL is to be found in the comparison of v*LK 

with 

(30) L H M = pHn+2r(f^qe)st(-r), where r = dim(^l) - d i m ( ^ ) . 

The subscript st indicates the isotypic piece with trivial character K = 1. 

The anisotropic locus * 4 a m admits a stratification by a numerical invariant 

S : A - > N : 

AANI = ] J AT{. 

There is an open set AGOOD of AAN\ given as a union of some strata A^M that satisfy: 

(31) c o d i n g 1 1 1 ) > 6. 

5.3 . S u p p o r t t h e o r e m 

The proof of the following theorem about the support of the perverse cohomology 

sheaves of the Hitchin fibration constitutes the deepest part of the proof of the FL. 

T H E O R E M 32 (Support theorem). — Let Z be the support of a geometrically simple 

factor of LK. If Z meets ^(A9^OD) for some endoscopic group H with data ( / s , . . . ) , 

then Z = u(A^j'1). In fact, there is a unique such H. 
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A major chapter of the book-length proof of the FL is devoted to the proof of 

the support theorem. The strategy of the proof is to show that every support Z also 

appears as the support of some factor in the ordinary cohomology of highest degree 

of the Hitchin fibration. To move cohomology classes from one degree to another, Ngò 

uses Poincaré duality and Pontryagin product operations on cohomology coming from 

the action of the connected component of the identity p°^ni on , M a m . This action 

factors through the action of an abelian variety, a quotient of the Picard stack p ° > a m . 

To show that the support Z can be pushed all the way to the top degree cohomology, 

it is enough to show that the dimension of this abelian variety is sufficiently large 

and that the cohomology of the abelian variety acts freely on the cohomology of the 

Hitchin fiber. The required estimate on the dimension of the abelian variety comes 

from the inequality ( 3 1 ) . Freeness relies on a polarization of the abelian variety. 

Once the support Z is known to appear as a support in the top degree, he shows 

that the action of VANI on the Hitchin fibration leads to an explicit description of the 

top degree ordinary cohomology as the sheaf associated with the presheaf 

U ------> Q l khur(v) 

The supports of 7To can be described explicitly in terms of data in the dual group, in 

the style of the duality theorems of Kottwitz, Tate, and Nakayama. By checking that 

the conclusion of the support theorem holds for the particular sheaf 7To, the general 

support theorem follows. 

We apply the support theorem with H as the primary reductive group and K as 

the trivial character. In this context, the only endoscopic group of H with stable data 

is H itself. Moreover, v is the identity map on AH • The support theorem takes the 

following form in this case. 

COROLLARY 3 3 . — Let Z be the support of a geometrically simple factor of Ln^t- If 

Z meets A9^, then Z = A^\ 

5.4. Continuity and the decomposit ion theorem 

The strategy that lies at the heart of the proof of the FL is a continuity argument: 

arbitrarily complicated identities of orbital integrals can be obtained as limits of 

relatively simple identities. 

The complexity of an orbital integral is measured by the dimension of its affine 

Springer fiber. Growing linearly with deg v (a*S), this dimension is unbounded as a 

function of a. Fortunately, globally, we can view an element a for which this degree 

at v is large as a limit of elements a' with small degrees: degw(a
f*1)) < 1 for all 

w G X. This follows the principle that a polynomial with repeated roots is a limit of 

polynomials with simple roots. When the degrees are at most 1, the affine Springer 

fibers have manageable complexity. 
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The Beilinson-Bernstein-Deligne-Gabber decomposition theorem for perverse 
sheaves provides the infrastructure for the continuity arguments [7]. Let S be a 
scheme of finite type over k. The support Z of a simple perverse sheaf on 5 is a 
closed irreducible subscheme of S. There is a smooth open subscheme U of Z and a 
local system C on U such that the simple perverse sheaf can be reconstructed as the 
middle extension of the local system on U: 

UjuC[àimZ], i: Z -> S, j :U Z. 

We express this as a continuity principle: if two simple perverse sheaves with the same 
support Z are equal to the same local system on a dense open [/, then they are in 
fact equal on all of S. 

More generally, for any irreducible scheme Z of finite type over k, in order to show 
that two pure complexes on Z are equal in the Grothendieck group, it is enough to 
check two conditions: 

1. Every geometrically simple perverse sheaf in either complex has support all of Z. 
2. Equality holds in the Grothendieck group on some dense open subset U of Z. 

The purpose of the support theorem (32) and its corollary is to give the first con­
dition for the two pure complexes v*LK and Ln^t- The idea is that second condition 
should be a consequence of identities of orbital integrals of manageable complexity, 
which can be proved by direct calculation. The resulting identity of pure complexes 
on all of Z should then imply identities of orbital integrals of arbitrarily complexity. 
This is Ngo's strategy to prove the FL. 

6. M A S S F O R M U L A S 

6.1. Groupoid cardinality (or mass) 

Let C be a groupoid that has finitely many objects up to isomorphism and in 
which every object has a finite automorphism group. Define the mass (or groupoid 
cardinality) of C to be the rational number 

u(C) = г . 
#€obj(C)/iso 

1 
card(Aut(x)) 

EXAMPLE 34. — Let C be the category whose objects are the elements of a given finite 
group G and arrows are given by x i-> g~lxg, for g G G. Then the set of objects up to 
isomorphism is in bijection with the set of conjugacy classes, the automorphism group 
of x is the centralizer of x, and the mass is 

l j ( c ] = V - 1

 = y " c a r d ( ° r b i t ( x ) ) = i 
^ ; ^ card(Aut(x)) V card G 

x/iso x/iso 

1. 
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EXAMPLE 35. — Let P be a group that acts simply transitively on a set M. Let C be 
the category whose set of objects is M, and let the set of morphisms be given by the 
group action of P on M. There is one object up to isomorphism and its automorphism 
group is trivial. The mass of C is 1. 

EXAMPLE 36. — The following less trivial example appears in Ngo. Let P be the 
group Gm x Z defined over a finite field k of cardinality q. Let M = (P 1 x Z ) / ~ ; where 
the equivalence relation (~) identifies the point (oo, j) with ( 0 , j + l ) for all j . Thus, M 
is an infinite string of projective lines, with the point at infinity of each line joined to 
the zero point of the next line. The group P acts on M by (po, i)-(mo,j) = {pomo,i+j), 
where porno is given by the standard action of Gm on P 1 , fixing 0 and oo. Let a be 
the Frobenius automorphism ofk/k, and define a twisted automorphism of P(k) and 
M(k) by a(xo,i) = {&XQ \ — i)- Define a category C with objects given by pairs 

(37) (ra,p) G M(k) x P(k) such that a(m) = pm. 

Define arrows by h G P(k), where 

(38) h{m,p) = (rn'ip'), provided hm = m! and hp = p'cr(h). 

Then it can be checked by a direct calculation that there are two isomorphism classes 
of objects in this category, represented by the objects 

((0,1), (1,1)) and ((1,0), (1,0)) G M(Jfc) x P{k) = ( P 1 ^ ) x Z) x (Gm(k) x Z ) . 

The group P(kY of order q + 1 acts as automorphisms of the first object, and the 
group of automorphisms of the second object is trivial. The mass of this category is 
therefore 

MC) = 
l 

9 + 1 
+ 1. 

More generally, suppose there exists a function Obj(C) —> A from the objects of a 
groupoid into a finite abelian group A and that the image in A of each object depends 
only on its isomorphism class. Then for every character At of A, we can define a K-mass: 

M C ) = E 
x€obj(C)/isc 

{к,х) 
card(Aut(a:)) 

EXAMPLE 39. — In Example 36, if (m,p) is an object and p = (po,j) G Gm x Z, 
then the image of j in A = Z /2Z depends only on the isomorphism class of the object 
(m,p). If K is the nontrivial character of A, then the K-mass of this groupoid is 

Ик(С) = -
1 

<7 + l 
•fi. 
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6.2. Mass formula for orbital integrals 

Let Mv(a) be the affine Springer fiber for the element a and let Ja be its centralizer. 

We write Vv(Ja) for the group of symmetries of the affine Springer fiber. Let C be the 

groupoid of fc-points of the quotient stack [Mv(a)/Vv(Ja)] with objects (m,p) and 

morphisms and h defined by the earlier formulas (37) and (38) (substituting Mv(a) 

for the space M and Vv(Ja) for the symmetries P). 

For each character of if1(fc,<Px;(Ja)) we can naturally define a character K of 

JH' 1(FV, J a) as well as a character (also called K) on a finite abelian group A as above. 

The description of orbital integrals in terms of affine Springer fibers takes the 

following form. It is a variant of the coset arguments of (4.2). 

THEOREM 40. — For each regular semisimple element a G t(Ov), the K-mass of the 

category C is equal to the K-orbital integral of a: 

fiK(C) = c QK(a), 

up to a constant c = YO\(J^(Ov), dtv) used to normalize measures. 

6.3. Product formula for masses 

Recall from (28) that there is a morphism v : AH —> A. We choose a commutative 

group scheme J'a for which there are homomorphisms 

(41) J'a -* ¿vía) —»• t̂f,a 

extending the homomorphism (26) and that become isomorphisms over a nonempty 

open set U of X. The group scheme J'a can be chosen to satisfy other simplifying as­

sumptions that we will not list here. The homomorphisms (41) functorially determine 

an action of V(J'a) on both Hitchin fibrations Mu(a) and M.H,a- Changing notation 

slightly, we will assume that henceforth all masses for both G and H are computed 

with respect to the same Picard stack V(J'a) in global calculations and with respect 

to Vv(J'a) in local calculations. This simplifies the comparisons of masses that follow. 

For each element a G A^(k), we have a mass /ifl-(a) of the groupoid of Appoints of 

the Hitchin fiber MH,CL modulo symmetry on H. Its image v(a) G AANL has a tt-mass 

of the groupoid of fc-points of the Hitchin fiber Ma modulo symmetry. 

For each regular semisimple element a G CH(OV), we have a mass of the affine 

Springer fiber modulo symmetry on H. We write (a) for this mass. Moreover, if 

the image u(a) under the map v : c# —• c is also regular semisimple, there is a tt-mass 

/^/c,v(Ka)) ° f t n e affine Springer fiber modulo symmetry of v[a) in G. 

AH is the set of global sections of CH,D over X. For each v G X , we can fix a 

local trivialization of CH,D at v and evaluate a section a G AH at v to get an element 

av e CH> We write MH,V{O) — MH,V{O>V) for its affine Springer fiber, and / / / ^ ( a ) for 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2012 



252 T. C. HALES 

the local mass fiH,v(^v)- Similarly, we write nK,v(v(a)) for iiKiV(y(av)). With all of 
these conventions in place, we can state the product formula: 

THEOREM 42. — Let a G AH

n,l{k). The mass of a Hitchin fiber modulo symmetry 
satisfies a product formula over all closed points of X in terms of the masses of the 
individual affine Springer fibers modulo symmetries: 

fjLK(i/(a)) = Y[ M/^(K a))> V>H(O>) = JJ l*H,v(a)-
vex vex 

The local factors are 1 for almost all v so that the products are in fact finite. 

This theorem is a geometric version of the factorization of K-orbital integrals over 
the adele group into a product of local /^-orbital integrals in [36]. It confirms the claim 
that the Hitchin fibration is the correct global analogue of the affine Springer fiber. 

Proof sketch. — The proof choses an open set of X over which J'a is isomorphic to 
Ja. For a given a, on a possibly smaller open set U of X , the action oiV(Ja) on Ma 

induces an isomorphism of V(Ja) with Ma- It follows that the local masses equal 1 
for all v G U. The product in the lemma can be taken as extending over the finite 
set of points X \ U. The lemma is a consequence of a wonderful product formula for 
stacks, relating the Hitchin fibration to affine Springer fibers: 

(43) [Ma/V(J'a)]= I ] [Mv{v{a))/Vv{J'a)\. 
vex\u 

A similar formula holds on H. • 

6.4. Global mass formula 

The following is the key global ingredient of the proof of the FL. In fact, it can be 
viewed as a precise global analogue of the FL. 

THEOREM 44 (Global mass formula). — Assume deg(D) > 2g, where g is the genus 
of X. Then for all a G A9H°d(k) with images a G AH

n,'L{k) and v(a) in A(k), the 
following mass formula holds: 

/i^(z/(a)) = qrHH(a), where r = dim A — dim AH-

Proof sketch. — The proof first defines a particularly nice open set U of A^od C A^1. 
The idea is to place conditions on U to make it as nice as possible, without imposing 
so many conditions that it fails to be open. There exists an open set U of v4|^od on 
which both of the following conditions hold: 

- Each a G U(k) cuts the divisor 5)H,D + transversally. 
— For each n, the restriction to U of the perverse cohomology sheaves v*LK and 

LH,st from (27) and (30) are pure local systems of weight n. 
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The support theorem (32) and decomposition and continuity strategies (5.4) are used 
to find the pure local systems. 

After choosing U, the proof of the lemma establishes the global mass formula on 
U, then extends it to all of A^OD. 

By imposing such nice conditions on U, Ngo is able to prove the mass formula 
on this subset by explicit local calculations. By the transversality condition on a, at 
any given point v, the local degree (dfl- j W(z/(a)),rv(a)) must be (0,0), (1,0), or (0,1). 
Prom Bezrukavnikov's dimension formula (4.2), the dimension of the endoscopic affine 
Springer fiber A4#>(a) is 0. In fact, Vv(J'a) acts simply transitively on the affine 
Springer fiber, and the mass is 1. 

It is therefore enough to compute the ft-mass of is (a) and compare. The transversal­
ity condition determines the possibilities for the dimension 5v(v{a)) in G. The affine 
Springer fiber in this case is at most one and the ^-masses of the groupoids can be 
computed directly. In fact, (36) is a typical example of the computations involved. 

The result of these local calculations is that for every point a in U, with images 
a G AH and v{a) G A, a local mass formula holds for all closed points v of X: 

(45) »KAHa)) = qdeë{v)rv{a)»HA*)-

The exponents satisfy 

(46) r = 2jdeg(u)r„(a). 
V 

These two identities, together with the product formula for the global mass, give the 
lemma for elements a of U. 

The extension from U to all of A^OD is a global argument. Through the 
Grothendieck-Lefschetz trace formula (adapted to stacks), this identity of global 
masses over U can be expressed as an identity of alternating sums of trace of Frobe-
nius on local systems. These calculations can be repeated for all finite extensions k'/k. 
By Chebotarev density as we vary k'', the semisimplifications of the local systems are 
isomorphic on G and H. 

Following the decomposition and continuity strategy (5.4), this isomorphism of 
local systems on U extends to an isomorphism between (the semisimplifications of) 
v*LK and LiH,st' This isomorphism, again by Grothendieck-Lefschetz, translates back 
into a mass formula for the Hitchin fibration modulo symmetries, and hence the 
result. • 

6.5. Local mass formula and the FL 

We recall some notation from Section 3. Let Gv be a reductive group scheme over 
the ring of integers Ov of a nonarchimedean local field Fv in positive characteristic. 
Let q be the cardinality of the residue field k. Let (K, p) be endoscopic data defining 
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an endoscopic group Hv. Let a G c#(O v) and v(a) be its image in c(F). Assume that 
u(a) is regular semisimple. Let rv(a) G N be the local invariant. 

Assume that the characteristic of k is large. By standard descent arguments ( 8 . 1 ) , 
we also assume without loss of generality that the center of HV does not contain a 
split torus. 

THEOREM 4 7 (Local mass formula). — The following local mass formula holds for 
general anisotropic affine Springer fibers (both masses being computed with respect to 
the same symmetry group Vv(J'a) acting on the fibers): 

fjLKtV(u(a)) = qrv{a)VH,v(a)-

COROLLARY 4 8 (Fundamental lemma (FL)). — 

0K(v(a)) = qr^SOH(a). 

The corollary follows from the theorem by the mass formula ( 4 0 ) for orbital inte­
grals. 

Proof sketch. — The proof of the FL is based on the global mass formula on A^OD. 
We can use standard strategies to embed the local setting into a global context. We 
pick a smooth projective curve X over fc, such that a completion of the function field 
at some place v is isomorphic to Fv and deg(v) = 1. We choose a global endoscopic 
group H of a reductive group G, a divisor D on X , a global element ( 1 ) a' in the 
Hitchin base AH of H. These global choices are to specialize to the given data GV 

and Hv at v. If the degree of D is sufficiently large, then we can assume that a' is 
the image of o! G A^od(k). The element a' and its image v(o!) in A are chosen to 
approximate the given local elements a and u(a) so closely that their affine Springer 
fibers together with their respective symmetries are unaffected at v. 

The global mass formula ( 4 4 ) for a' asserts: 

цк{у{а!)) = qriiH{a'). 

By the product formula ( 4 2 ) and ( 4 6 ) , each global mass is a product of local masses: 

( 4 9 ) Y[ßK,w(v(a')) = цк(и(а')) = qrßH(a') = П q d ^ r ^ a W,«>(« ' ) -
W W 

The global data is chosen in such a way that at every closed point w ^ v, the 
transversality conditions hold, so that the calculation ( 4 5 ) of the previous section 
gives the local mass formula at w: 

ßK.v,(v(a')) = qáe^w)r-{al)UH,w{a'), w ф v. 

W More accurately, Ngó shows that a suitable element a' exists over every sufficiently large finite 
field extension k'/k. He makes the global arguments over the extensions k' and uses a Probenius 
eigenvalue argument at the end to go back to k. 
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These masses are nonzero and can be canceled from the products in (49). What 

remains is a single uncanceled term on each side: 

»K,vMa')) = qd**Wr«(« )/x v(a /), with deg(v) = 1. 

Since a' was chosen as a close approximation of a at v, we also have 

^ , v M f l ) ) = r W M t ; ( û ) . 

This is the desired local mass formula at v. • 

7. USES OF T H E FL 

"Lemma" is a misleading name for the Fundamental Lemma because it went decades 

without a proof, and its depth goes far beyond what would ordinarily be called a 

lemma. Yet the name FL is apt both because it is fundamental and because it is 

expected to be used widely as an intermediate result in many proofs. This section 

mentions some major theorems that have been proved recently that contain the FL as 

an intermediate result. In each case, the FL appears to be an unavoidable ingredient. 

The FL appears as a specific collection of identities that are needed to stabilize the 

Arthur-Selberg trace formula. If G is a reductive group defined over a number field 

JF, the trace formula for G is an identity of the general form 

c 7 0 ( 7 , / ) + ••• = 2^ra(7r)trace7r(/) + 
7<EG(F)/~ 7T 

for compactly supported smooth functions / on the adele group G(AF). On the left-

hand side appears a sum of orbital integrals and on the right-hand side the sum runs 

over discrete automorphic representations n of G. The trace formula contains more 

complicated terms that have been suppressed. 

By stabilization of the trace formula, we mean that the terms on the left-hand side 

of the trace formula that are associated with a given stable conjugacy class have been 

gathered together, rearranged into /^-orbital integrals, and then replaced with stable 

orbital integrals on the endoscopic groups. These manipulations are justified by the 

FL and by a product formula that relates the adelic orbital integrals 0(7 , / ) to orbital 

integrals on local fields. Another Bourbaki seminar gives further details about the role 

of the FL in the stable trace formula [16]. All applications of the FL come through 

the stable trace formula. 

Before going into recent uses of the FL, we might also mention various special cases 

of the FL that have been known for years. These classical cases of the FL already give 

abundant evidence of the usefulness of the lemma. For example, Langlands proves 

the FL for cyclic base change for GL{2) in his book [35, Lemma 5.10]. From there, it 
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enters into the proof of the tetrahedral and octahedral cases of the Artin conjecture 
(the Langlands-Tunnell theorem), which in turn is used by Wiles in the proof of 
Fermat's Last Theorem. Waldspurger's proof of the FL for SL(n) is taken up by 
Henniart and Herb in their proof of local automorphic induction for GL(n), which 
becomes part of the proof of the local Langlands correspondence for GL(n) in Harris 
and Taylor [53],[26],[25]. 

Shimura varieties provided much of the early motivation for endoscopy and the 
FL [34]. When expressing the Hasse-Weil zeta function of Shimura varieties as a 
product of automorphic L-functions, the formula involves the L-functions associated 
with endoscopic groups H as well as those of G. This can be most clearly seen through 
a comparison of the stable trace formula with the Grothendieck-Lefschetz trace for­
mula of the Hasse-Weil zeta function. An early application of the FL carries this out 
for Picard modular varieties [1]. From there, the FL becomes relevant to the theory of 
Galois representations through the representations associated with Shimura varieties. 

We turn to more recent uses of the FL. For most applications to date, the FL for 
unitary groups is used as well as the twisted FL between GL(n) and unitary groups. 
Applications of the trace formula to Shimura varieties often rely on a base change 
FL, which arises because of the description of that Kottwitz gives of points on certain 
Shimura varieties in terms of twisted orbital integrals [30]. 

The original proof by Clozel, Harris, Shepherd-Barron and Taylor of the Sato-Tate 
conjecture for elliptic curves over Q was restricted to elliptic curves with non-integral 
j-invariants [10]. With the advent of the general FL, it has become possible to remove 
the non-integrality assumption and to greatly extend the theorem, in particular to 
elliptic curves over a totally real number field [6]. 

Shin and Morel use the FL in recent work on the cohomology of Shimura varieties 
and associated Galois representations [50] [43]. Other advances rely on their work. In 
particular, Skinner and Urban have proved the Iwasawa-Greenberg main conjecture 
for many modular forms and in particular for the newforms associated with many 
elliptic curves over Q [52],[51]. Their work ultimately relies on the work of Shin and 
Morel and on the FL to prove the existence of certain Galois representations. 

Last year, Bhargava and Shankar proved that when elliptic curves E over Q are 
ordered by height, a positive fraction of them satisfy the Birch and Swinnerton-Dyer 
conjecture [9]. Specifically, a positive fraction of them have rank 0 and analytic rank 0. 
First they construct a set (of positive density) of elliptic curves with rank 0. Second, 
they construct a subset (again of positive density) of the rank 0 set, consisting of 
elliptic curves with analytic rank 0. This second step relies on conditions in Skinner 
and Urban for the analytic rank to be zero, and hence indirectly on the FL. 

Moeglin classifies the discrete series representations of unitary groups over a nonar-
chimedean local field [42]. Again, this relies on the FL for unitary groups and related 
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variants. Finally, we mention that Arthur's forthcoming book uses the twisted FL 

between GL(n) and the classical groups [5]. His work uses the trace formula to give a 

classification of the discrete automorphic representations of classical groups in terms 

of cuspidal automorphic representations of GL(n). It also gives a classification locally, 

for p-adic fields. 

I will leave a further discussion of the uses of the FL to those whose research in 

this area is fresher than my own. 

8. R E D U C T I O N S 

Langlands first expressed the FL in these words: "Mais même après avoir vérifié 

que les facteurs de transfert existent, il reste à vérifier ce que j'appelle le lemme 

fondamental, qui affirme que pour des G, H et non-ramifiés, o n a / n c(j)*H(/)... 

pour toute fonction / G UQ \ [36, p. 49]. 

In this notation, §*H is the homomorphism given by the Satake transform, from 

the spherical Hecke algebra HG with respect to a hyperspecial maximal compact 

subgroup of an unramified reductive group G to the spherical Hecke algebra on H. 

The arrow / h-> C0#( / ) is his assertion that for every strongly G-regular element 7 in 

H, the transfer (specified by transfer factors) of each /^-orbital integral of a spherical 

function / on G (over a stable conjugacy class in G matching 7) is equal to the stable 

orbital integral of (f)*H(f) on the stable conjugacy class of 7 in H. 

This final section describes some theorems related to the FL that simplify it from 

the form in which it was initially conjectured, to the final form in which it was proved 

by Ngô. Waldspurger's work has been particularly significant in transforming the 

conjecture into a friendlier form. In the initial conjecture, the existence of transfer 

factors was part of the conjecture. Langlands and Shelstad later defined the transfer 

factors explicitly [38]. We also mention some extensions of the FL. 

8.1. Descent to the Lie algebra 

A lemma of Harish-Chandra's asserts the transfer of an orbital integral on G near 

a singular semisimple element 2:70, with z central, to an orbital integral on the cen-

tralizer 7 7 o . This is called the descent of orbital integrals. Langlands and Shelstad 

made hard calculations in Galois cohomology to prove that their transfer factors are 

compatible with Harish-Chandra's descent of orbital integrals [39]. The point of their 

calculations was to reduce identities of orbital integrals involving transfer factors to 

a neighborhood of 70 = 1, arguing by induction on the dimension of the centralizer. 

In a neighborhood of 70 = 1, identities can be pushed to the Lie algebra, using the 

exponential map. 
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The original FL has been supplemented by a twisted FL, conjectured by Kottwitz 
and Shelstad, where the data is twisted by a nontrivial outer automorphism 6 of the 
group G [31]. In the untwisted case, the centralizer of an element fails to give a group 
of smaller dimension precisely when the element is central. By contrast, a twisted 
centralizer (with respect to a nontrivial outer automorphism) always has dimension 
less than G. As a consequence, descent always untwists the twisted FL into identities 
of ordinary orbital integrals. If the (standard) FL is then applied, each K-orbital 
integral can be replaced with a stable orbital integral. By combining both descent 
and stabilization, the twisted FL of Kottwitz and Shelstad takes the form of identities 
of stable orbital integrals on the Lie algebra (from which the automorphism and the 
character K have entirely vanished). The corresponding long calculations in Galois 
cohomology that establish descent properties of the transfer factors for the twisted 
FL have been carried out by Waldspurger [56]. Ngo proves the general twisted FL in 
its untwisted stable form on the Lie algebra. 

8.2. Hecke algebras 

A global argument based on the trace formula shows that the FL holds for the 
full Hecke algebra for an arbitrary nonarchimedean local field of characteristic zero, 
provided it holds for the unit element of the Hecke algebra for local fields of sufficiently 
large residual characteristic (and for groups of smaller dimension) [22]. The idea of 
the proof is to choose suitable global functions for which the comparison of stable 
trace formulas yields an obstruction to the FL. This obstruction, which comes from 
the spectral side of the trace formula, takes the form of a set of linear functionals 

L : Tic —+ C, = X ) a № a c e tt(/) 
7T 

on the local spherical Hecke algebra HG of the reductive group G, each given by a 
finite sum over irreducible admissible representations with an Iwahori fixed vector. 
By purely local arguments, it can be shown that no nonzero linear map L exists of 
the form prescribed by the global theory. Because these obstructions L are zero, the 
FL can be shown to hold on the full spherical Hecke algebra. 

8.3. Smooth transfer 

Langlands's book on the stabilization of the trace formula contains two separate 
conjectures: the transfer of smooth functions and the FL [36]. An important result of 
Waldspurger links the two conjectures, by proving that the FL implies the transfer of 
smooth functions. His key local lemma shows how to obtain simultaneous control over 
the orbital integrals of test functions / on the Lie algebra Q and the orbital integrals 
of their Fourier transform / [54, Prop. 8.2]. In view of the uncertainty principle, it is 
a remarkable feat to control both / and / as he does. His proof is a global argument, 
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based on a stable Poisson summation trace formula on the Lie algebra over the ring of 
adeles. The key local lemma allows Waldspurger to pick global test functions for which 
the comparison of trace formulas asserts a local identity: the Fourier transform of a 
semisimple /c-orbit on G equals the Fourier transform of the corresponding stable orbit 
on H. By a purely local argument, this stabilization identity of Fourier transforms 
implies smooth transfer. 

8.4. Weighted orbital integrals 

Langlands's book is a début: he stabilizes the terms in the trace formula that come 
from regular elliptic conjugacy classes, but this is insufficient for general applications 
of the trace formula. Kottwitz extended the analysis to singular elliptic conjugacy 
classes [29]. Arthur has completed the full stabilization without restrictions on the 
conjugacy classes. The non-elliptic conjugacy classes lead to significant complications. 
Arthur truncates the trace formula to obtain the convergence of the non-elliptic terms. 
Because of truncation, the non-elliptic terms bear "weights," non-invariant factors that 
appear in the integrand of orbital integrals. Arthur conjectured a weighted FL needed 
for stabilization of the non-elliptic terms [3]. Chaudouard and Laumon have used the 
Hitchin fibration to prove Arthur's weighted FL [13] [14]. 

8.5. Transfer to characteristic zero 

The FL for nonarchimedean local fields in characteristic zero can be deduced from 
the FL in positive characteristic [55] [15]. Cluckers and Loeser have developed a gen­
eral abstract theory of integration as a combination of primitive operations such as 
taking the volume of a ball of given radius, enumerating points on a variety over the 
residue field, summing an infinite ^-series, and making a change of variables. Since 
each of the primitive operations manifestly depends only on the residue field rather 
than the field itself, their theory allows many identities of integrals to be transfered 
from one field to another with the same residue field. The FL lemma and its weighted 
and twisted variants are identities that fall within the scope of this theory. Wald­
spurger's approach is also an abstraction of p-adic integration, but it requires more 
detailed properties of the specific integrals appearing in the FL. 

8.6. Etc. 

These separate variations on the FL can be considered in concert: a weighted 
twisted FL, the twisted FL on the full Hecke algebra, transfer of the weighted FL to 
characteristic zero, and so forth. Most combinations have now been proved. 
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9. L I T E R A T U R E 

I recommend Ben-Zvi's video lecture for a presentation of the big ideas of Ngo's 
proof. Drinfeld's lecture notes contain many worked examples and exercises that are 
helpful in learning the geometric concepts. I also recommend Nadler's survey [44], 
Casselman for an in-depth treatment of SL2 with history going back to Hecke [11], 
my summer school lecture for the detailed statement of the FL [23], Arthur's Fields 
medal laudation [4], and [12]. Several articles in the book project deal with the FL [2], 
particularly [17]. 

Ngo's book is superb, both as mathematics and as exposition [46]. It is helpful to 
read it with his earlier paper [45]. He has several supplementary accounts, especially 
the expository account [47], his article in the book project [48], and ICM lectures. 

While there have been numerous applications that quote the FL as a finished 
product, Yun, Chaudouard, and Laumon are noteworthy in following Ngo in their 
direct use of the Hitchin fibration to prove new results in the field [57]. 

I wish to thank Bhargava, Harris, Ngo, and Skinner for comments that helped me 
to prepare this and my earlier report [24]. 
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