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Séminaire BOURBAKI 

62 e année, 2009-2010, n° 1015, p . 91 à 135 

Novembre 2009 

L I N E A R S T A B I L I T Y O F B L A C K H O L E S 

[d'après M . D a f e r m o s e t I. Rodniansk i ] 

by Sergiu K L A I N E R M A N 

The treatment of perturbations of Kerr spacetime has been 
prolixious in its complexity. Perhaps at a later time the com­
plexity will be unravelled by deeper insights. But meantime 
the analysis has led into a realm of the rococo, splendorous, 
joyful and immensely ornate. 

S. Chandrasekhar, The mathematical theory of black holes. 

1. I N T R O D U C T I O N 

While the splendorous remains, a layer of complexity has now been unravelled. 

I report on the recent, remarkable, ongoing progress made on the linear stability 

of black holes, more precisely on the boundedness and decay properties of solutions 

to linear equations in a Kerr spacetime. The Kerr spacetimes $C(m, a) are explicit 

solutions of the Einstein vacuum equations (discovered by R. Kerr in 1963) depending 

on two parameters 0 < a < m, corresponding physically to black holes of mass m 

and angular momentum am. The case a = m = 0 corresponds to the Minkowski 

space while a = 0 ,m > 0, corresponds to the much older Schwarzschild solution 

(K. Schwarzschild 1915). 

The problem of linear stability of the Kerr family is an old problem which has 

received a lot of at tention in the Physics literature immediately after the discovery 

of these fascinating solutions of the Einstein equations in vacuum, which, embedded 

in the larger 3-parameter family of the so-called Kerr-Newman spacetimes, form the 

basis of our understanding of black holes. The obvious question raised by the discovery 

of any interesting, explicit solution of a complex, non-linear system, such as the 

Einstein equations, is tha t of their stability under small perturbations. Roughly 

the problem here is to show tha t all spacetime developments of initial da ta sets, 

sufficiently close to the initial da ta set of a Kerr spacetime, behaves in the large 

like (possible another) Kerr solution. This is not only a deep mathematical question 

but one with serious astrophysical implications. Indeed if the Kerr family would be 

unstable under perturbations, black holes would be nothing more than mathematical 
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artifacts. The Einstein equations are, of course, nonlinear and hyperbolic, thus the 
issue of stability is an extremely difficult and a dicey one. Given the geometric, 
covariant s tructure of the equations, with no universal notions of space and time 
variables, it is not even a-priori clear what tha t means. Linear stability, though 
still tricky, is somewhat easier to define. It is clear, for example, tha t any first 
order approximation of the equations, at the level of the space-time metric, in any 
reasonable coordinate system, will generate some system of wave equations in the Kerr 
background we want to per turb . Thus it is natural to ask, and this must certainly be 
relevant to the full nonlinear problem, whether solutions to linear wave equations in a 
fixed Kerr background are well behaved. If it turns out tha t solutions of these linear 
equations are amplified, due to the non-trivial features of the background geometry, 
then there is a reasonable chance tha t the background itself might be unstable. 

It is not enough, however, to establish tha t solutions are not amplified; to have 
a chance to prove non-linear stability we also need to show tha t solutions decay at 
a sufficient rate. There is a lot of confusion in this regard among some physicists 
who seem to believe tha t somehow the lack of linear instability is a strong indication 
of nonlinear stability. This, of course, is not t rue even near solutions of minimal 
energy of simple nonlinear PDE ' s , as the case of the Burger equation dtu + udxu = 0 
easily demonstrates. The solution u = 0 is a global minimum for the energy integral 
E(t) = f \u(t, x)\2dx, yet any compactly supported, smooth, small per turbat ion of 
the zero initial leads to blow up in finite t ime. 

To be useful, a result on linear stability has to establish, quantitatively, not just 
a lack of amplification but also a realistic decay. In fact all known stability results, 
for strongly nonlinear wave equations (Einstein equations are quasilinear), depend on 
precise decay information for the linearized solutions. 

The methods by which one establishes these decay estimates are also a very impor­
tant issue. Thus, in the Minkowski space R 1 + 3 , it is easy to derive decay estimates for 
solution to the s tandard wave equation •</> = 0 using explicit representation formulas 
in the physical or Fourier variables. These formulas, however, depend heavily on the 
specific features of the Minkowski space and do not survive under small per turbat ions 
of the Minkowski metric. In other words, such methods are intrinsically not robust. A 
far more useful method for deriving decay estimates for the wave equation, and more 
generally for linear field equations, is tha t of invariant vector fields, see [28], [29]. 
Tha t method, first introduced to prove stability results for quasilinear wave equa­
tions, plays a fundamental role in all known proofs of the stability of the Minkowski 
space, see [12], [30], [32], [5]. 

In the case of the Kerr metric, or rather the more accessible case of the 
Schwarzschild metric, one can use the specific symmetries of the space to sepa­
rate variables and then concentrate on the pointwise properties of the corresponding 
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eigenvalue problem. This method is not only not robust but , to our knowledge, was 
not even satisfactory to derive unconditional decay results for general solutions of 
the wave equation. In the physics literature, where the problem of linear stability of 
Schwarzschild and Kerr spacetimes has received a tremendous amount of at tention 
(see e.g. [40], [45], [39], [38], [41], the monograph [9] and the references therein), 
this method of mode decomposition led to nothing more, in the words of Press 
and Teukolsky (see [38]), than "an unsuccessful search for instabilities". On the 
other hand mathematical rigorous efforts based on this approach can only lead to 
statements of decay without a rate or precise rates of decay of specific modes, both 
of which, in principle, compatible with the scenario in which a general solution of the 
corresponding linear problem is not even uniformly bounded. For the results in this 
direction, see [34], [31], [21] in Schwarzschild and an a t tempt [22] in Kerr. Moreover, 
even if ultimately successful, such methods would leave us with a heavy machinery 
to prove some form of linear stability without any clue on how to approach to the 
non-linear problem. 

A simple version of the vector field method was first used by Kay and Wald, see 
[27], to prove the boundedness of solutions of the wave equation in a Schwarzschild 
spacetime. The first a t t empt to use the vector field method, to prove integrated local 
energy decay in Schwarzschild is due to Blue and Soffer [6]. Their work however had 
serious flaws. The first complete results on pointwise decay for solutions of the wave 
equation on the Schwarzschild background have been obtained, independently, by 
Blue-Sterbenz [7], and Dafermos-Rodnianski [16]. In [16] Dafermos and Rodnianski 
also introduced the crucial red shift vector field, which led to stronger decay rates 
along the event horizon in Schwarzschild and, more importantly, played a central role 
in extending the boundedness and decay results to Kerr space-times, see [20], [17]. 
Other important contributions were made by S. Alinhac in [3], Dafermos-Rodnianski 
in [19], Marzuola-Metcalfe-Tataru-Tohaneanu in [35] and Luk in [33] for the problem 
in Schwarzschild, and by Tataru-Tohaneanu in [43] and Andersson-Blue in [4], for 
Kerr spacetimes. 

I will review these results following, mainly the works of Dafermos-Rodnianski, in 
particular their general exposition in [17] and the recent paper [18]. 

2. I N I T I A L V A L U E P R O B L E M 

We recall tha t an initial da ta set consists of a 3-dimensional manifold E, a complete 
Riemannian metric #( 0 ) , a symmetric 2-tensor fy0), and a well specified set of initial 
conditions corresponding to the matterfields under consideration. These have to be 
restricted to a well known set of constraint equations. We restrict the discussion to 
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asymptotically flat initial da ta sets, i.e. outside a sufficiently large compact set K, 

S(o) \K is diffeomorphic to the complement of the unit ball in R 3 and admits a 

system of coordinates in which <?(0) is asymptotically euclidean and AVQ) vanishes, 

at appropriate order. A Cauchy development of an initial da ta set is a globally 

hyperbolic spacetime (M,G), verifying the Einstein field equations, in the presence of 

a matterfield with energy momentum Q , 

(2.1) R-a/3 
1 
2 

( £{<») 8(<>)> k(0)) 

and an embedding i : £ —> M such tha t «*(3(o)), i*(fyo)) are the first and second 

fundamental forms of i(£(0)) in M. 

In what follows I will restrict the discussion to the Einstein vacuum equations, i.e. 

the case when the energy momentum tensor vanishes identically and the equations 

take the purely geometric form 

(2.2) R-a/3 — 0. 

( £{<») 8(<>)> k( 0 ) ) 

FIGURE 1. 

The most primitive question asked about the initial value problem, solved in a 

satisfactory way, for very large classes of evolution equations, is t ha t of local existence 

and uniqueness of solutions. For the Einstein equations this type of result was first 

established by Y. F.-Bruhat [23] with the help of wave coordinates* 1^. According 

to this result any smooth initial da ta set admits a unique, smooth, local (up to an 

isometry) globally hyperbolic1-2^ Cauchy development. In the case of nonlinear systems 

of differential equations the local existence and uniqueness result leads, through a 

straightforward extension argument, to a global result concerning the maximal t ime 

interval of existence. If this interval is bounded the solution must become infinite 

at its upper boundary. The formulation of the same type of result for the Einstein 

equations is a little more subtle; something similar was achieved in [10]. 

THEOREM 1 (Bruhat-Geroch). — For each smooth initial data set there exists a 

unique, smooth, maximal, future, globally hyperbolic development (MFGHD). 

' 1 > These allow one to cast the Einstein vacuum equations in the form of a system of nonlinear wave 
equations. 
( 2 i Any past directed, in-extendable causal curve of the development intersects So-
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Thus any construction, obtained by an evolutionary approach from a specific initial 
da ta set, must be necessarily contained in its maximal development MFGHD. This 
may be said to solve the problem of global(3) existence and uniqueness in General 
Relativity; all further questions, one could say, concern the qualitative properties 
of these maximal developments. The central issue becomes tha t of existence and 
character of singularities 

2 .1 . Spec ia l so lu t ions 

We recall tha t EVE admits a remarkable family of explicit, stationary solutions 
given by the two parameter family of Kerr solutions among which one distinguishes 
the Schwarzschild family of solutions, of mass m > 0, 

(2.3) 9 s = - 1 -
2m> 
r 

dt2 + 1 2m' 
r 

- l 
dr2 + r2do~§2. 

Though the metric seems singular at r = 2m it turns out tha t one can glue together 
two regions r > 2m and two regions r < 2m of the Schwarzschild metric to obtain 
a metric which is smooth along $( = {r = 2m} , see [24], called the Schwarzschild 
horizon. The portion of r < 2m to the future of the hypersurface t = 0 is a black hole 
whose future boundary r = 0 is singular. The similar region to the past of t = 0 is 
called a white hole. The region r > 2m, called the domain of outer communication, 
is free of singularities. 

To see how to explicitly extend the metric, introduce the tortoise coordinate 
r* = r + 2 m l n ( r / 2 m — 1) and the Kruskal null coordinates, U = e-(*-r*)/4m? 
V = e(*+^)/4m5 reiative to which the metric takes the form ds2 = - 32™3e~r/2M dUdV+ 
r2da2. Observe now tha t r = 2 M corresponds precisely to U • V = 0. Indeed r is 
an implicit function of U • V through the relation — l)e^ = —UV. In the new 
coordinates, after a simple conformal compactification, the completed space-time has 
the form given in Figure 3A. 

Here the boundaries y + and J~, called future and past null infinities, are idealized 
boundaries of the space-time corresponding to end points, of future directed, respec­
tively past directed, null geodesies. The points i+ and i~ correspond to end points of 
future and past time-like geodesies while i° corresponds to space-like infinity. 

The Schwarzschild family is included in a larger two parameter family of solutions 
rfC(a, m) discovered by Kerr. A given Kerr space-time, with 0 < a < m, has a well 

(3) A proper definition of global solutions in GR requires a special discussion concerning the proper 
time of causal geodesies. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2011 



96 S. KLAINERMAN 

FIGURE 2. Kruskal's maximally extended Schwarzschiid space-time. Note 
the two disconnected external regions, r > 2m, the black and white holes 
and the curvature singularity at r = 0. Note the behavior of light cones at 
the event horizon, r = 2m. 

defined domain of outer communication r > r+ := m + (m2 — a2)1/2. In Boyei 
Lindquist coordinates, well adapted to r > r+ , the Kerr metric has the form 

9K= -
A-a2 sin2 9 

E 
,!t'2 

2a sin2 9{r2 + a2 - A) 
dtd(j> 

(r2+a2)2 Aa2 sin2 6 
sin2 dtf dr2 + Hd62 

with E = r2 + a2 cos2 6, A = r2 + a2 - 2mr. As in the Schwarzschiid case, the 
exterior Kerr metric extends smoothly across the Kerr event horizon. ,3{={r = r+\. 
It can be shown tha t the future and past sets of any point in the domain of outer 
communication intersect any time-like curve, passing through points of arbitrary large 
values of r, in finite time as measured relative to proper time along the curve. This 
fact is violated by points in the region r < r+ , which consists of the union between a 
black hole region, extended towards the future, and a white hole region to the past. 
Thus physical signals (i.e. future time-like or null geodesies) which initiate at points 
in r < r+ cannot be registered by far away observers*4). The extended Kerr is singular 
only at r = 0. Thus the singularities in Kerr cannot have any effect on the domain of 
outer communication which is, in fact, entirely smooth even analytic. The boundary 

<4) They must end in the singularity at r = 0, in Schwarzschiid space-time. Their behavior in Kerr 
is more complicated. 
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FIGURE 3A. Complete Penrose diagram of Schwarzschild. Note 
the black hole and white hall regions, singularity at r = 0, event 
horizon r = 2m and the boundaries at infinity. 

t - d t 

• + 
1 

r 

•O 
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m -
1 

FIGURE 3B. The right disconnected exterior 
region of Schwarzschild. Note that T = dt 
becomes null along the horizon r = 2m and 
vanishes on the bifurcate sphere where the 
two branches of the horizon meet. 

of the domain of outer communication {r = r + } is called the event horizon. In the 
non-degenerate case, a < m, the event horizon consists of two null hypersurfaces 
intersecting transversally on a compact 2 sphere. 
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FIGURE 4A. Exterior domain of Kerr. Note that the stationary vec­

tor field T, which is time-like in the far away (asymptotic) region of 

space-time, becomes space-like inside the ergo-region, near the horizon 

M = yfUVf. 

The exterior Kerr metrics are stationary, which means, roughly, tha t the coeffi­

cients of the metric are independent of the t ime variable t. One can reformulate 

this by saying tha t the vector field T = <9t is Kill ing' 5 ' (everywhere in the domain of 

outer communication) and time-like at points with r large, i.e. the so-called asymp­

totic region (where the space-time is close to flat). One can also easily check tha t T 

is tangent to the horizon Vf = Vf U Vf_, which is itself a null hypersurface, i.e. the 

restriction of the metric to the tangent space to !H is degenerate (see Figure 4A). In 

addition to being stat ionary the coefficients of the Kerr metric are independent of the 

circular variable <j>. Thus Kerr is stationary and axially symmetric. The Schwarzschiid 

metrics corresponding to a = 0 are not just axially symmetric but spherically sym­

metric, which means tha t the metric is left invariant by the whole rotation group 

of the s tandard sphere S 2 . A well known theorem of Birkhoff shows tha t they are 

the only such solutions of the vacuum Einstein equations. Another peculiarity of 

a Schwarzschiid metric, not t rue in the case of Kerr, is tha t the stat ionary Killing 

vector field T = dt is orthogonal to the hypersurface t = 0. A stat ionary space-time 

which has this property is called static. This is also equivalent to the fact tha t the 

Schwrazschild metric is invariant with respect to the reflection t —> —t. Moreover T 

( 5 ) A vector field X is said to be Killing if its associated 1 parameter flow consists of isometries of g, 
i.e. the Lie derivative of the metric g with respect to X vanishes, £x9 = 0. 
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is time-like for all r > 2m and null along the Schwarzschild horizon 3£ = {r = 2m}. 

This is not the case for Kerr solutions in which case T = dt is only time-like for 

r > m + (m2 — a2 cos 2 O)1^2, null for r = m + ( m 2 — a 2 cos 2 0 ) 1 / 2 and space-like in the 

region between r+ and r = m + (m2 — a2 cos 2 9)1/2, called the ergosphere. Finally we 

remark tha t the Kerr family has unacceptable features for a > m. 

Event horizon 

FIGURE 4B. Kerr solution, on a fixed slice, as a rotating black hole. 
Note the axis of symmetry and the presence of the ergosphere outside 
the event horizon. 

To summarize: 

1. The Kerr family ,3C(a, m) , 0 < a < m provides a two parameter family of asymp­

totically flat solutions of the Einstein vacuum equations exhibiting a smooth 

domain of outer communication and its complement, separated by the event 

horizon { r = r + } . For a < m the event horizon consists of two null hypersur-

faces intersecting transversally on a compact 2 sphere. 

2. All solutions are stationary, i.e they admit a Killing vector field T which is time­

like in the asymptotic region. The Schwarzschild space-time (i.e. a = 0) is also 

static. Moreover the Kerr family is axially symmetric, i.e. it admits another, 

circular, Killing vector field Z which vanishes on the axis of symmetry. The 

Schwarzschild space-time is spherically symmetric. 

3. The stationary vector field T is tangent along the horizon and space-like for all 

a > 0. It remains space-like in a small region of DOC called ergo-region. In the 

case a = 0, T is null along the horizon and time-like everywhere in DOC. 

4. In all cases 0 < a < m, DOC contains t rapped null geodesies, i.e. null geodesies 

which are entirely contained in a region of DOC with a bounded value of r . 
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In the case a = 0, all t rapped null geodesies are either tangent to the time-like 

surface {r = 3m} or asymptotic to it. 

2.2 . S t a t i o n a r y s p a c e - t i m e s 

We formalize below the notion of an asymptotically flat stationary, vacuum, space-

time. Assume tha t (M, g) is a smooth vacuum Einstein space-time of dimension 3 + 1 

and T is a smooth Killing vector field on M. Assume given a space-like hypersurface 

£o C M such tha t outside a sufficiently large compact set K of S , every orbit of T 

intersects EQ at only one point. Moreover we assume the existence of a coordinate 

system ( £{<») 8(<>)> k(0)) in M{end) = T(£0 \ K) (i.e. the union of orbits of T which 

intersect EQ \ K) such tha t T = dt and, with r = x/(z1)2 + (*2)2 + (*3)2, the com­

ponents of the space-time metric verify(6), for some k >0, g0o = - l + ^ + Ofc(r-2), 

gij = Sij+Okir x), Eoi = dfghdfh 2Jjxk + 0 * ( f - 3 ) for some m > 0 , J=(J\J2,J3)eR 

such tha t , | J |2 < m . We can then define the exterior region, or domain of outer com­

munication, by 

6 = J-(M{end)) ( £{<») 8(<>)> k(0)) 

where J~(M(end)) ( £{<») 8(<>)> k(0)) denote, respectively, the past and future sets of 
M{end). One further assumes tha t 6 is globally hyperbolic, i.e. any inextensible 

time-like or null curve in & must intersect Do- Finally we define ^ U ^ , the union of 

the black hole and white hole regions, as the complement of & in M and the event 

horizon $ ( as the boundary of &. One can show tha t $£ is achronal (i.e. no points in 

${ can be connected by time-like curves) and tha t T must be tangent to ${\ One can 

also show, using the theorem of Hawking, tha t ${ is non-expanding (see appendix). 

One can easily check tha t the event horizon of any of the Kerr family $C(a, m) , 

0 < a < m, verifies the following properties: 

1. ${ is spanned by two smooth null hypersurfaces 9f and J[_ which intersect 

transversally along a 2 sphere 5 . Moreover ^ ( r e s p . y£) is spanned by the 

union of the future foast». in-extendible, comolete, null geodesies orthogonal 

to S. 

2. Both Jf and J£_ have vanishing null second fundamental forms (see appendix). 

The second condition is in fact an easy consequence of the non-expanding nature 

of $ ( and the Einstein vacuum equations. A fundamental conjecture in General Rel­

ativity is to prove tha t the converse is t rue, i.e. any, regular, s tat ionary solution of 

the Einstein vacuum equations verifying the above properties must be isometric to 

^ ( a , m ) , 0 < a < m. The simple motivation behind this conjecture is tha t one ex­

pects, due to gravitational radiation, tha t general, dynamic, solutions of the Einstein 

(6) We denote by Ofc(r°) any smooth function in M^end^ which verifies \d%f\ = 0(ra l) for any 

0 < i < k. 
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- d t 2 + d x 2 + d y 2 + dz2 

JP 

t 

FIGURE 5A. Minkowski space in standard coordi­
nates. 

r = o 
t 

sdf 

t = cons t 

1 

sdfg 

J 

dsfg 

r = c o n s t 

1fg 
FIGURE 5B. Penrose diagram of 
the Minkowski space. Note that 
both the past of ,/+ and future 
of J exhaust the entire space. 

field equations settle down, asymptotically, into a stationary regime. Thus the con­
jecture, if true, would give a description of all the asymptotic states of the Einstein 
vacuum equations. The conjecture is, essentially, solved in the analytic case (see 
[14] for an up to date account) and only partially solved in the category of smooth 
space-times, see [26] and [1]. 

In the next section we a t tempt to give a somewhat precise formulation of the 
problem of stability of Kerr. 

3. STABILITY OF KERR 

3.1. Stability of the Minkowski space 

The Minkowski space K3+1 is, of course, the simplest solution of the Einstein 
vacuum equations. Is it stable? Among all Kerr solutions, the Minkowski space is 
also the only one free of singularities, or geodesically complete. Roughly speaking this 
means that any freely moving observer in M can be extended indefinitely, as measured 
relative to its proper time. Such a space-time is said to have a regular MFGHD. Does 
this property persist under small perturbations? 

The result stated below is a rough version of the global stability of Minkowski, 
the complete result also provides very precise information about the decay of the 
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curvature tensor along null and time-like directions as well as many other geometric 

information concerning the causal s tructure of the corresponding space-time, see [12], 

[30], [32] and [5]. Of particular interest are peeling properties i.e. the precise decay 

rates of various components of the curvature tensor along future null geodesies. 

T H E O R E M 2 (Global Stability of Minkowski). — Any asymptotically flat initial data 

set which is sufficiently close to the trivial one has a regular MFGHD. 

3.2 . C o s m i c c e n s o r s h i p 

In general, however, we expect maximal developments to be incomplete, with sin­

gular boundaries. An important result in this direction is the recent formation of 

t rapped surfaces result of D. Christodoulou [11]. Together with the well known sin­

gularity theorem of R. Penrose, his result shows tha t there exists a large class of 

regular initial da ta whose MFGHD is incomplete. The unavoidable presence of sin­

gularities, for sufficiently large initial da ta sets, as well as the analysis of explicit 

examples (such as Schwarzschild and Kerr) have led Penrose to formulate two fun­

damental conjectures, concerning the character of general solutions to the Einstein 

equations. Here I restrict my discussion only to the so called weak cosmic censorship 

conjecture (WCC), which is the only one relevant to the issue of stability of Kerr. 

To understand the statement of (WCC), consider the different behavior of null rays 

in Schwarzschild and Minkowski space-times. In Minkowski space light originating 

at any point p = (to,xo) propagates, towards future, along the null rays of the null 

cone t — to = \x — XQ\. Any free observer in M1+3 , following a straight time-like 

line, will necessarily meet this light cone in finite t ime, thus experiencing the event p. 

On the other hand, any point p in the t rapped region r < 2m of the Schwarzschild 

space, is such tha t all null rays initiating at p remain t rapped in the region r < 2m. 

In particular events causally connected to the singularity at r = 0 cannot influence 

events in the domain of outer communication r > 2m, which is thus entirely free of 

singularities. The same holds t rue in any Kerr solution with 0 < a < m. 

• t 
L 

L 

r 

Ï" 

FIGURE 6. Behavior of null geodesies in the domain of outer communica­
tion by contrast to those in a black hole. 
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W C C is an optimistic extension of this fact to the future developments of general, 
asymptotically flat initial data . The desired conclusion of the conjecture is tha t 
any such development, with the possible exception of a non-generic set of initial 
conditions, has the property tha t any sufficiently distant observer will never encounter 
singularities or any other effects propagating from them. To make this more precise 
one needs define what a sufficiently distant observer means. This is typically done by 
introducing the notion of future null infinity J+ which, roughly speaking, provides 
end points for the null geodesies which propagate to asymptotically large distances. 
The future null infinity is constructed by conformally embedding the physical space-
t ime (M,g) under consideration to a larger space-time(7) (M,g), g = ^2g in M, with 
a null boundary J (where Q = 0, dfi ^ 0). 

DEFINITION 1. — The future null infinity J is said to be complete if any future null 
geodesic along it can be indefinitely extended relative to an affine parameter. 

W e a k C o s m i c C e n s o r s h i p 

Generic asymptotically flat initial data have maximal future developments possess­
ing a complete future null infinity. 

Using the language introduced above, we are finally ready to s tate the following. 

C O N J E C T U R E 3 (Global stability of Kerr) . — Any small perturbation of the initial 
data set of a Kerr space-time has a global future development with a complete future 
null infinity which, within its domain of outer communication^, behaves asymptoti­
cally like a (another) Kerr solution. 

4. S T A B I L I T Y O F M I N K O W S K I S P A C E 

To understand what would be needed in a proof of stability of Kerr it pays to 
review some of the main ideas in the proof of stability of the Minkowski space. For 
lack of space and time I will be very schematic. Also, for brevity, I will be discussing 
only the proof in [12] and [30]. I will just note tha t the proof in [32] is based also 
on a variation of the vector field method discussed below, even though the geometric 
set-up is different. 

(7) Note however that the boundary of this extended space-time is not smooth, generically. 
(8) That means, roughly, outside the black hole region. 
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fdsg 

dfg 
( £{<») 8(<>)> k(0 

FfOCHP 7. Domain of integration for f'.quat inn (1.2) WITII mill bound­
ary ' I and two space-like pie<o>, \ ] , s . >.! \, 

4.1. Vector field method 
The centerpiece, kovst om\ of t ho entire proof is a geomet tic method to derive decay 

est imates for components of the ciirvntinv 1 ensor based on a generalization of f lie 
energy met hod for wave cquat ions. Hit* met hod has two distinct parts, a geometric 
version of the mult iplior met hod and the met hod of commit! ing vector fields. 

1. Multiplier mi fhorf. One st art s with 1 he Bianchi ident it ies which, due to t lie 
vanishing of t licit t race, fake the font! of a -Maxwell type system r : 

M.I} D ; , R M

 ( }- ( £{<») 8(<>) 
A remarkable feat ure of this system is the exist once of a fully symmetric, t faceless, 
covariant four tensor Q M depending quadratically on R. which verifies the diver­
gence condition 

D ' ' Q M e , - 0. 

and such that Q( A';. A A'.;. A' j ) is positive for any future, causal vector holds 
A" i. Aj. A'.<. A" \. Tints, for any three such vector fields X A\Z we find with 
Q / y ( A'. V. Z) the one form obtained by cont ract ion with A". V. Z. 

(4.2) D " Q / ( ( A ' . V . Z l Errf A\ \\Z) 

Err(A\ V.Z) 
1 
2 

( Q ( , X \ T . V . Z , ~ Q X. ^ 77. Z) : Qi A . V. " • ' - ) ) 

where ( A 1 rr -~- '/'v g is the deformation tensor of A\ We integrate 1 t he above iden­
tity on past domains of dependence' M ' I j . sandwiched between two spaced ike 
hypersurfaces >Vi and sl\ with tut ure unit normals denoted by 7*. 

1" The two equal it»ns in \ Id i are in t'nrt rqni valrtu, 
111 '''> i< siii'll t hat t hr causal p;T-a s< ! <»f am point as V in t he dal> tut wren x g , y , . is inehii la>.} in '''. 

\STKH ISOR K :>>'%ij 
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Let Jf denote the null boundary of 2)(0,1) and L the geodesic null generator (i.e. 

T>LL = 0 and g (L, L) = 0), of Jf, normalized by the condition g ( L , T ) = —1 on 

S0 n $f. Then, with Q = Q[R], Err = Err[R] as above, 

(4.3) 

df 
Q(X,YZ, L) + 

df 
Q(X,YZ,T) = 

df 
Q(X,y,Z,T)-

0(0,1) 
Err(X,y,Z). 

Clearly, if X,Y, Z are Killing we deduce, Err[R](X, Y, Z) = 0, and thus derive a 

conservation law. In the particular case when the vector fields X, Y, Z are also causal 

we derive a very useful coercive estimate for the left-hand side of (4.3) in terms of the 

integral on So, which may be interpreted as initial condition. In view of the fact tha t 

the energy-momentum Q is traceless with respect to any pair of indices, the same 

remains t rue if we replace Killing vector fields by conformal Killing ones, i.e. such 

tha t (X^TT is proportional to the metric g or, in other words, the traceless part 

vanishes identically. 

2. Commuting vector field method. — In addition to the procedure outlined above, 

the generalized energy method allows us to make use of commutation with selected 

vector fields. In fact, for any vector field X one can show tha t a suitable modified Lie 

derivative of R, denoted by verifies the following version of (4.1) 

(4.4) D(5(^>xR)A/37<5 J ^ 7 ( W T T , R ) . 

We can thus replace Q = Q[R] with Q [ ^ x R ] and repeat the procedure above to 

derive integral inequalities for suitable directional derivatives of R. 

The procedure outlined above, based on Killing and conformal Killing vector fields, 

seems to require a space-time with a lot of symmetries, such as the Minkowski space. 

It pays at this point to consider how the method works in tha t case. 

4 .2 . Minkowsk i space ]RN+1 

The Minkowski space Rn+1 comes equipped with two important geometric struc­

tures: 

I. Family of Killing and conformal Killing vector fields 

— Generators of translations in the xß directions: T — — 

— Generators of rotations in the (/i, v) plane: ( £{<») 8(<>)> k(0))( £{<») 8 

- Generator of scaling: S = x^d^. 

— Generators of inverted translations^x): w- — o r rp_g_ (xpxp) ddxß. 

Observe that the vector fields can be obtained applying the standard inversion to the vector 
fields Tu. 
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Of particular importance for us are the causal vector fields To = dt and 
= (t2 + r2)dt + 2txldi, which can be used to derive coercive energy identi­

ties. Here r2 = |a?|2 = (x1)2 + • • • (xn)2. 

II. Canonical double null foliation. — This is given by the level surfaces of two optical 
functions u = t — r and u = t + r, i.e. solutions of the Eikonal equation m^daudpu = 
maPdaudpu = 0 . Wi th respect to u,u the vector fields To, S and KQ take the form 

( 4 . 5 ) T0 = 
1 

2 
( £{<») 8(<>)> k( s = 

1 

2 
(uL -h uL), K0 = 

1 

2 
(u2L + u2L) 

where L = —maPdpuda = dt + dr and L = —maPdpuda = dt — dr are the null 
generators of the corresponding null hypersurfaces. Observe also tha t the rotat ion 
vector fields = Xidj — Xjdi (denoted also by Oij) are tangent to the leaves of bo th 
foliations. 

To see how these vector fields can be used consider solutions of the s tandard wave 
equation = 0 , with compactly supported data . Let Q = Q[</>] be the associated 
energy momentum tensor (see ( 6 . 2 ) in Section 6 ) , i.e. T)PQap = 0 . The s tandard 
energy identity, associated to the t ime translation TQ = dt allows us to derive the 
s tandard energy conservation identity 

sdf 
№\2 = 

S0 
\d<t>\2 < Jo 

with Io a constant depending only on the initial da ta of 0 and \d(j)\2 = Yla=o I^WI2-
Using the causal conformal Killing vector field Ko (see details in Section 6 for dimen­
sions n > 3 ) , we can also estimate 

sdgf 
I 0 | 2 < 

SO 
( l + r 2 ) | ô ^ | 2 < / 0 . 

The Killing vector fields TM and LM1/ commute with • , while S preserves the space of 

solutions to •(/> = 0 (since [• ,§] = 2 D ) . This leads us to introduce the generalized 

Sobolev norms 

( 4 . 6 ) QkMt) 
k 

( £{<») 8(<>)> k(0)) 

( £{<») 8(<>)> k(0))( £{<») 8(<>)> k(0)) 

with the sum taken over all Killing vector fields T, L and scaling vector field S. 

The crucial point of this method is tha t these generalized energy type norms are 

bounded by initial data , i.e., 

Qkl4>}(y) < QkMo) < h-
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PROPOSITION 1 (Global Sobolev inequalities). — Let (j) be an arbitrary function in 
Rn+1 such that Qk[4>] is finite for some k > ^. Then for t > 0, we have with 
II, — t — \x\ and u = t+ \x\ 

( 4 . 7 ) №,x)\<c 
1 

(l + u)s^-(l + \u\)i 
Qk[<P}-

Since Qk[(t>] is bounded, for solutions of D<j) = 0, depending only on initial da ta at 
t = 0, we deduce a strong, realistic, uniform decay estimate. 

A similar analysis can be done for solutions of the Maxwell equations or the lin­
earized Bianchi equations in Minkowski space. It is also important to realize tha t 
one can be more economical with the vector fields we use. Thus, for example, one 
can derive the same information using only the vector fields To, S, Ko and rotations 
Oij = i,j = 1 , . . . , n. The upshot of the vector field method is tha t it allows us to 
derive realistic decay estimates by a flexible procedure which can be easily generalized 
to perturbations of the Minkowski space. 

4 .3 . D e f o r m a t i o n m e t h o d 

Since a general per turbat ion of Minkowski space cannot preserve any symmetries 
the best we can hope for is to substi tute them by approximate symmetries. We are 
thus looking to replace some of the conformal Killing vector fields of Minkowski with 
almost conformal Killing, i.e. vector fields whose deformation tensors are sufficiently 
small so tha t we can still derive useful estimates for the curvature tensor. The idea is 
to define these vector fields start ing from two special functions whose role is to replace 
the optical functions u,u of the Minkowski space. In the original proof of [12] this is 
done by choosing a suitable defined optical function u and a suitable time function t. 
The function u is then defined to be u = t — 2u. In [30] one picks instead two exact 
optical functions u and u. One can then define vector fields T Q , S , K o by mimicking 
the formulas (4.5) (with L = —ga^daud/3, L = 2To — L and T 0 the unit future normal 
to the maximal foliation E£) and rotation vector fields by a geometric method tied 

u, t or u,u. To make the method work we need to make sure tha t the errors generated 

in the energy inequalities derived above are sufficiently small. To see, very roughly, 

what this entails consider (in the case of the (£, u) foliations of [12]) a quanti ty of the 

form: 

Q(t) 
df 

Q [ ^ o R ] ( ^ o , K 0 , T 0 , T o ) . 

Based on the vector field method outlined above one can show tha t the time dependent 

quanti ty Q(t) verifies, schematically, an identity of the form 

Q{t) = ß ( 0 ) + <§(*), <S(t) = <5i (*) + &(«) , 
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with 

( £{<») 8(<>)> 
df 

'O 
as 

df 
Q[^oR] (Ko ,Ko ,T0) 

and E2(t) the additional error te rm generated by the right-hand side of (4.4). Here 

Q(jSqH, K o , K o , To ) is an expression quadrat ic in £qTL and linear in the deformation 

tensors of Ko and To- To make this work, i.e. obtain a global bound for Q(t), by 

a Gronwall inequality, we see tha t we need appropriate (and compatible!) decay 

estimates for both R and the traceless par ts of the deformation tensors of Ko,To 

and O. 

We summarize the above considerations as follows: 

1. The proof of stability of Minkowski space in [12] and [30] requires precise decay 

information for the curvature tensor R . 

2. In a first approximation one may assume tha t R verifies a linear field equation(12) 

in Minkowski space (linearized Bianchi). The vector field method allows one to 

derive realistic decay estimates for components of R . 

3. One can derive, essentially, the same decay estimates for the t rue curvature ten­

sor of a per turbed solution of the Einstein equations, by a deformation method 

in which one deforms par t of the geometric s tructure of the Minkowski space 

((u, t) or (u,u)) and an appropriate number of conformal Killing vector fields 

(i.e. T0, K0, So and rotations ©). The key here is to derive, simultaneously, suit­

able decay estimates for R and the traceless par ts of the deformation tensors 

of these vector fields. These estimates have to be strong enough to be able to 

control the error terms generated in the energy estimates. 

4 .4 . N o n - l i n e a r s tabi l i ty of Kerr 

In view of the above discussion a proof of the non-linear stability of the Kerr family 

requires: 

1. A robust method to derive decay estimates for linear field equations in a fixed 

Kerr background. Such a method has to take into account the geometric fea­

tures of the Kerr metric, such as the event horizon, ergo-region and t rapped 

null geodesies. It cannot rely only on the continuous symmetries of the Kerr 

metric, i.e. its Killing vector fields, which are both too limited and have serious 

degeneracies. 

(12) Note also that the result of Lindblad-Rodnianski [32] is based on a linearization at the level of 
the metric, which brings in the standard wave equation. 
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2. Find an effective linearization procedure, such as the linearized Bianchi equa­

tions^3) in the stability of Minkowski space, to which the methods sketched 

above apply. 

3. Find a way to deform the geometry of the Kerr solution, taking into account 

tha t any small per turbat ion of a Kerr metric may lead, asymptotically, to a 

different Kerr metric. 

5. L I N E A R S T A B I L I T Y O F T H E K E R R F A M I L Y 

As discussed above a first, essential step, in the proof of stability of the Kerr solution 

is to establish its linear stability, which amounts to prove appropriate decay estimates 

for solutions to the specific linear field equations in a fixed Kerr background which 

arise by a suitable linearization. In a somewhat simplified version of linear stability, 

one would like to show, by robust methods, tha t all solutions of the covariant wave 

equation 

(5.1) • g 0 = 0, 0 < a < ra, 

in ^ ( a , r a ) , 0 < a < m (or more generally a fixed stationary, axially symmetric 

space-time with a non-degenerate horizon) with reasonable initial da ta on a space­

like hypersurface So, as in the figure below, are well behaved^ in the future of So 

(see figure below). 

1 

£0 •o 
I 

A more elementary task, and yet very difficult in the rotat ing case(15), a > 0, is to 

show tha t solutions remain bounded in the entire exterior region of the space-time. 

(is) Note however that the exact analog of the Bianchi equations in a Kerr background are ill posed. 
(14) Decay at rates comparable to those in the flat case. 
(15) The much simpler non-rotating case a = 0, corresponding to the Schwarzschiid space-time, was 
solved previously in work by Kay and Wald. 
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5 .1 . Diff icult ies 

The following are the main difficulties one has to overcome to prove linear stability, 

in the sense discussed above. 

— ^ ( a , m) has only two linearly independent Killing vector fields, the stat ionary 

one T and the axially symmetric one Z . In the Schwarzschild case we have, 

of course, an action of the full rotation group 5 0 ( 3 ) and thus two linearly 

independent rotation vector fields. 

— The stat ionary Killing field T degenerates in the ergo-region of $£(a, m) , i.e. it 

becomes space-like. The presence of an ergo-region is connected, physically, with 

the so called Penrose process according to which energy can be extracted from a 

rotat ing black hole and thus contribute to linear instability. This phenomenon 

is also known in the Physics l i terature as super-radiance. Even in Schwarzschild, 

T loses its time-like character on the horizon. Thus the basic energy identity 

provided by T loses information near the horizon, for a = 0, and loses coercivity, 

thus seemingly useless, for a > 0. 

— $C(a, m) possesses a family of t rapped null geodesies, i.e. future null geodesies 

which neither go to J nor penetra te the black hole region. Though, fortunately, 

these are unstable they provide however very serious technical difficulties to 

derive decay information. In the case a = 0 the situation is somewhat simpler 

as one can show tha t all t rapped geodesies are restricted, or asymptotic, to the 

surface r = 3m. 

5.2 . M a i n n e w ideas 

I t ry to summarize below some of the main new ideas which have crystallized in 

the wake of the pioneering works of Blue-Soffer, Blue-Sterbenz, Dafermos-Rodnianski, 

Tataru-Tohaneanu, Andersson-Blue, mentioned in the introduction. 

— The introduction (by Dafermos-Rodnianski) of a new vector field defined in a 

neighborhood of the horizon (called the red shift vector field), which I will 

denote by H , with coercive properties in a small neighborhood of the horizon, 

which compensates for the degeneracy of the stat ionary vector field T . 

— A robust mechanism, due to Dafermos-Rodnianski, for proving boundedness 

of solutions for Kerr space-times with a <C m, despite the notorious problem 

of super-radiance. This is based on a decomposition, invariant relative to the 

actions of T and Z , into super-radiant and sub-radiant modes and the properties 

of the red shift vector field EL 

— Discovery on an effective t rea tment of the t rapped region, based on the fact tha t 

all t rapped null geodesies are unstable. In Schwarzschild this can be achieved by 

a suitable modification of the so called Morawetz vector field, which I will denote 
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by M. In ?K{a, ra), for a small enough, there are three competing methods [17], 

[43], [4] which deal effectively with the t rapped region. They all depend, in one 

form or another, on the integrability properties of the geodesic flow, remarkable 

fact due to Carter [8]. 

— Decay in both Schwarzschiid and Kerr is due to a third vector field, which is a 

suitable modification of Ko from Minkowski space(16). Recently, in [18], Dafer-

mos and Rodnianski gave a new, more flexible, t reatment of how to generate 

decay from null infinity without using Kg. 

— Traditionally energy estimates require integration, using appropriate vector 

fields, on large causal domains. Thus one was restricted to look for vector fields 

which are coercive in such regions and, unfortunately, there are not enough of 

those. The new methods, especially those of Dafermos-Rodnianski, point the 

way to a more flexible use of vector fields by concentrating on specific geometric 

regions where degeneracies occur (such as the event horizon) and finding new 

non-causal vector fields (such as the red shift M), which provides an effective 

cure for the missing information. The lack of causality of M can then be com­

pensated by patching it with other vector fields, such as T or M. A similar 

patching procedure can be implemented in a neighborhood of null infinity, see 

[18]. 

5 .3 . M a i n resul t s 

The first result, on boundedness of solutions to the wave equation (5.1), applies to 

the exterior region of a fixed stationary, axially symmetric space-time M, sufficiently 

close to Schwarzschiid, see [20]. 

T H E O R E M 3 (Boundedness). — Any solution (5.1) with reasonable initial data on 

a space-like hypersurface £ Q , is globally bounded^ in the future o/Xlo- The result 

applies in particular to Kerr space-times CK{a, m) with a <C ra. The same method can 

also be applied to derive boundedness of axially symmetric solutions of (5.1) for the 

whole range 0 < a < ra. 

The next result concerns decay of solutions in the Schwarzschiid case a = 0. The 

result is expressed relative to the pair of optical functions u = t — r* and u = t + r* 

where r* = r + 2ra ln( r — 2m). Observe tha t along the horizon, to the future of E0, 

we have u = — oo but , for the region we are interested in, we have u finite. 

(16) Such a vector field is also used in the stability of the Minkowski space. 
(17) It also has bounded, non-degenerate, total energy. 
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• + 
1 

1 

FIGURE 7A. Decay in Schwarzschild can be 
measured with respect to the double null 
foliation given by the level hypersurfaces of 
u = t — r* and v = u = t + r*. 

1 

•o 
i 

FIGURE 7B. Decay in Kerr can be measured 
with respect to a foliation ET obtained from 
Eo, by using the T- flow. Note that Eo 
consists of two null portions and a space­
like one in the middle. 

T H E O R E M 4. — Let Eo as in Figure 8A above, in the exterior of the Schwarzschild 
space-time 3((0,m). Any solution to the wave equation (5.1), with reasonable initial 
data on So, admits the following estimates: 

1. There exists a constant C such that, uniformly^ on all points to the future 
o /E0 

101 < 
C 

u 

2. For any R > 2m, we have, with a constant CR, for all r > R, 

\r<j)\ < 
CR 

\uI 

A similar theorem can be stated and proved for 3C{a, m) with a > 0 suffi­
ciently small. In this case however the functions u = t — r*, u = t + r* where 
r* = r + r+ ln ( r — r+) , r+ = m + \/m2 — a2 are not optical functions. To avoid 
this problem one can measure decay in a different way. The idea is to s tar t with 
hypersurface Soi as m Figure 8B. and translate it using the flow 4>T associated to the 
stat ionary Killing vector field T == dt. This defines a foliation E T = 0 t (Eq) . 

T H E O R E M 5. — Let E0 and foliation ET defined as above (see Figure 8B), in the 
exterior of the Kerr space-time !fc{a,m), with a sufficiently small. Any solution to 
the wave equation (5.1), with reasonable initial data on Eo, admits the following 
estimates: 

(is) The result has been recently improved by J. Luk, see [33] using geometric methods. A similar 
result was also announced by Tataru in [42] using Fourier methods. 
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1. There exists a constant C such that, uniformly^, 

( £{<») 8(<>)> k(0)) 

2. Also, uniformly, 
( £{<») 8(<>)> k(0)) 

6. V E C T O R F I E L D M E T H O D F O R T H E W A V E E Q U A T I O N 

We discuss here modifications of the vector field method for the wave equation in 

a globally hyperbolic Lorentzian space-time (M, g) , 

(6.1) • g 0 = 0. 

Multiplier method. We start with the energy momentum tensor, 

(6.2) Qaß = Qaß[<t>] = D ^ D / 3 0 
1 

2 
g ^ g ^ D ^ D ^ ) . 

One can easily check tha t QMI/ is symmetric and verifies the local conservation laws 

D^Q/xiy = 0 as well as the positive energy conditions Q(X, Y) > 0, for all causal, 

future oriented vector fields X, Y. Unlike the Bel-Robinson tensor encountered above, 

the energy-momentum tensor of the wave equations is not traceless, in the interesting 

physical dimension n — 3. Indeed ( £{<») 8(<>)> k(0)) 
Given a vector field X with deformation tensor ™* = £xe, i.e., 

( £{<») ) — D a X 0 + DfcXa we have 

(6.3) ( £{<») 8(<k(0)) 
( £{<») 8(<>))) 

We integrate (6.3) on a past domain of dependence(20) sandwiched between two space­

like hypersurfaces E0 and E i with future unit normal T. 

Let 9f denote the null boundary of the future set of 0 ( 0 , 1 ) and L the geodesic 

null generator (i.e. D^L = 0 and g(L, L) = 0), of Jf, normalized by the condition 

g ( L , T ) = - 1 on E 0 H ^ . 

Integrating (6.3) in 0 ( 0 , 1 ) we derive the formula 

Q ( X , L ) 4 
r£i 

Q(X,T) = 
SO 

Q ( X , T ) -
0(0,1) 2 ^ 

(<>)> k(0)) 

This formula is particularly useful if X is Killing and time-like in which case 

(X^7T = 0 and the two boundary integrands on the left are positive. In the par­

ticular case when g is the Minkowski metric and X = To = dt is the time derivative 

<19) Note that the loss of S was recently removed. 
(20) 1) is such that the causal past set of any point in 2), in the slab between So, SI , is included 

in 0. 
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M' 

S i 

V(o, 1) 

S o 

FIGURE 8C. Domain of integration for Equation (6.3) with null bound­

ary Jf and two space-like pieces, Eo, S i -

with respect to the s tandard coordinate t, we derive the s tandard law of conservation 

of energy. The method turns out to be useful, even if X is not Killing, by adding a 

lower order correction to the pointwise identity (6.3). 

More precisely we modify the energy momentum Q as follows, 

Q(W)(X,Y) Q ( * , y ) + 
( £{<») 8()) -Y(w)ct>2, 

with w a scalar function to be chosen appropriately. 

PROPOSITION 2. — The following integral identity holds true in a past domain of 

dependence as above, 

g 
Qlw)(X,L) + 

fg 
Q(W)(X,T) 

fg 
Q(W)(X,T) 

»(0,1) 
Ett(<P;w,X) 

with integrand Err = Err(<^>; w, X) given by 

(6.4) Err = 
1 

2 
(Q • (x\ + w g W , # ) ) 

1 

4 
~2(w)<j>2. 

Proof. — Consider Pp. — QpvX" ( £{<») 8(<>) <>)> k(0)) and calculate its divergence, 

( £)> k(0)) = l^Qpu -t | w D " ^ D ^ - \{Uw)<¡>2 which we then integrate on our causal 

domain 59. 

R E M A R K . — Typically we want to choose w = ^y^-tr^ >n to cancel the lagrangian 

term in 7rM1/QM„ = 7rMJyQM„ — I1y^tr7rD'i0D/x0. In some situations, as in Examples 

2, 3 below, it pays to choose instead w = ^tv^-K. 

Below are two important examples (both due originally to C. Morawetz) in 

Minkowski space, in a domain 1) = {t,x)/t0 < t < t\, \x\ < t — r0} C IRn+1 

sandwiched between S0 = {t = t0} and S i = {t = ti}. Thus, L = dt + dr and 

T = T = ¿V 
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Example 1. — Let X be the conformal Killing vector field K0 = (t2 + |#|2)dt + 2txldi 

with deformation tensor ^ T T = - 4 t m . Thus tr((Ko)7r) = - 4 ( n + l)t. Since 

t r (Q) = - ^ g ( d < M < / > ) , we choose w = ^ ( t r ^ y r ) to make the term 

n . POyj- _(_ wg(d6, dé) vanish identically. We derive the conservation law, with 

w = ^ ( t r W î r ) : 

(6.5) 
df 

Q(w)(K0,L) + 
Si 

Q(w)(Ko,T) 
So 

Q W ( K 0 , T ) . 

We can easily check tha t both J s Q(ti,)(Ko,T) and Q(^)(K0, L) are positive. 

In fact one can show, for n > 3 (see [291), for a small constant c > 0, with 

L = dt + dr, L = dt — dr 

Q(w)(K0,T)> , ( ( t + r ) 2 | ^ | 2 f ( t - r ) 2 | L 0 | 2 + r2 |V0|2 + H2). 

Example 2. — Start with X = dr. We have 

TTOO = (X)7To* = 0, (X) 2 

r 
qfsd 

«Z/ ̂  X q 

\x\ \x\ 
i,j = l , . . . , n . 

Hence, ( £{<») 8(<>)> k(0)) Thus, choosing w >)> k(0)) we have, with W denoting the 

induced covariant differentiation on the spheres S(t,r) of constant t and r 

Q • (X)TT +wg(d<M</>) :DaD/3 
(X) a/3 = (<>)> k(0)) 

1 

4 
g H 0 2 = 

n - 1 

4 

1 

r 
4>2. 

In the particular case when n = 3, since A ( ^ ) = — AttSq, we deduce 

Err(0; = 
1 

2 * 
( £{<») 8(<>)> k(0)) 1 

r 
| ^ | 2 + 27T(5o02. 

Therefore, with U ; = I t r W 7 r = 2 

2TT 

•tl 

*0 
|0(*,O)|2dt+ 

sdgf 

1 

r 
|y0 |2 = 

So 
Q(w)(dr,dt)-

sg 
Q(w)(dr,dt) 

dfg 
Q(w)(3r,L). 

One can easily bound the surface integrals on the right-hand side by energy estimates 

(using vector field X = T = dt) and thus derive a very useful space-time inequality 

for the left-hand side. 

Example 3. — Take as vector field X' = f(r)X = f(r)dr. We have, in general, 

{fX)7raf3 = f{X)7raf3 + T>afXp + DfiXa, tr(('x)7r) = / t r <*>7R + 2X(f). Hence, for 

X = dr, we deduce 

Q • « x \ / Q (xh + 2f'(r)\dr<l>\2 ( £{<») 8(<>)> k(0)) 

fW*(D4>,D4>) + 2f\dR4>\2 ( £{<») 8(<>)> k(0)) g(d<f>, d<t>). 
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Therefore, for ( £{<») 8(<>)> k(0)) since ( X ) T T ( # , d(j)) \f(j)\2 and t r (X) = 2(n-l) 

Q ( / x V + wg(#,d</>) f(r)\n\2 + 2f(r)\drcj>\2 

i 

4 

1 

4 

( n - l ) / ( r ) 

r 
+ / ' ( r ) ) -

For n — 3, with F a primitive of f, i.e. / ( r ) = F'(r) i D i t r ( ( W 7 T ) ( £{<») 8(<>)> and. 

hence, with w = w(fX) ( £{<») 8(<>)> k(0)) 

Err(</>;w,/X) ( £{<») 8(<>)> k(0)) + 2/'(r)|dr0|2 
1 

" 4 
02 A 2 F ( r ) . 

To obtain a coercive estimate we thus need / , / ' > 0 and A2F < 0. One can easily 

check tha t f(r) = yxpc, 0 < A < 1 verifies these requirements. In the particular case 

À = 1 we derive. 

PROPOSITION 3 . — The following estimate holds true for arbitrary solutions of 

•</> = 0 in R3+1, for an arbitrary R > 0, 

»oo 

0 '\x\<R 
(|D0|2 + H 2 ) < 

SO 
\B6\2. 

To summarize: The multiplier method consists in finding vector fields X and scalars 

w = w(X) such tha t at least one of the following statements holds t rue in a past causal 

domain 0 : 

— The vector field X is coercive, i.e. we have both Err(0; w(X), X) > 0 and 

Q (^ ) (X, L) , Q(W)(X,T) are positive at the future boundary of 2). 

— The vector field X is positive, i.e. Err(0; w(X), X) > 0, and we have a way to 

est imate the boundary terms along J\f and S i . 

In practice it is very hard to find good vector fields X which achieve either of the 

two conditions. As we have seen, in the stability of the Minkowski space, one defines 

vector fields X , analogous to To, KQ on Minkowski space, such tha t the integrand Err 

is sufficiently small so tha t the corresponding space-time integral can be controlled. 

Also, as we shall see in the next section, it is very difficult to find globally defined 

vector fields X and scalars w = w(X) for which Err(0; w(X), X) has definite sign. 

The new idea, pursued by Dafermos-Rodnianski, is to concentrate in regions of space-

times, not necessarily causal domains (such as a small neighborhood of the event 

horizon in Schwarzschild or the entire ergo-region in Kerr) , where the natural Killing 

vector fields of the space-time are degenerate and look for new vector fields for which 

Err(0;X.A) has a sign in the restricted region. Once we control these degenerate 

regions we can hope to get a global coercive vector field by a patching procedure. 
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6 .1 . C o m m u t i n g vec tor field m e t h o d 

As in the stability of the Minkowski space it is not enough to derive estimates 

by the multiplier method. One needs in addition to commute the equation with 

enough suitable vector fields. In the case of the wave equation this is provided by the 

following. 

LEMMA 1. — For an arbitrary vector field X we have, 

•g(X0) = X(DG</>) ( £{<») 8(<>)> k(0)) ( £{<») 8(<>)> k Da(*r(x)7r))D"</>. 

In particular, if X is Killing and Ds(/> = 0 we infer tha t \3s(X<j>) = 0 and therefore 

we can apply to X((j>) the same multiplies method estimates as for </>. There are cases, 

however, where the error terms obtained by commutation are not small but contain 

instead terms which lead, by integration, to positive bulk integrals. This, as we shall 

see, is the case of the red shift vector field discussed below. 

7. R E D S H I F T 

In [17] Dafermos and Rodnianski prove a general result concerning the existence 

of a red shift vector field in a neighborhood of a non-degenerate Killing horizon. This 

is a null hypersurface Jf with a null generator L (see appendix for definitions) which 

is the restriction to of a Killing vector field N, with complete orbits and flow 

(0r)r>o, and such tha t UJ = g ( D £ L , L ) < 0, for an adapted null companion(21) L. It 

is easily seen tha t the future horizon of any ^ ( a , m) with 0 < a < m verifies these 

assumptions. The result below, however, is a lot more general. 

PROPOSITION 4 (Dafermos-Rodnianski). — Given such a null hypersurface, there 

exist a neighborhood U of J{ and a strictly time-like, smooth vector field M on 1l, 

both invariant^, with respect to the N-flow (j)T, r > 0, such that in for a constant 

c> 0 

( 7 . 1 ) ( £{<») 8(< Q > cQ(M,M). 

Moreover, given any A> 0, we can choose M such that, all along 

ghjhg Q>ce3(<f>)2 f A ( ( e 4 W 2 + | ^ | 2 ) . 

The proof of the proposition is based on the following lemma. 

(21) In fact lj can be made constant, related to the surface gravity of the Killing horizon. 
(22) Qr ^-invariant in a stationary metric such as Kerr. 
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LEMMA 2. — Assume given a small portion of null hypersurface 9f, in a neighbor­

hood of a compact cross section S, with an adapted null pair {e^^e^) (see appendix) 

such that u = g(D4e4,es) < 0. Extend in a small, space-time, neighborhood of S 

by solving the differential equation 

( £{<») 8(<>) -A(X + N), ( £{<») 8(<>) 

where N is an arbitrary smooth extension of e± and A a sufficiently large positive 

constant, whose size depends on A > 0 below. Then, in a full neighborhood of S, 

alonq Jf. we have 

(7.2) 1« {X)TT > ce3(<P)2 + A((e4^)2 + |V^ |2 ) . 

Proof. — See appendix. 

The proof of the proposition follows easily by applying the lemma to the case when 

L is the restriction of the Killing vector field N (recall tha t 9f is a Killing horizon) 

with complete orbits. In tha t case it suffices to construct X in a small neighborhood 

of S (restricted, say, to a space-like hypersurface E passing through S) and then 

extend it by using the flow (</>r)r>0 of N (or T in a stat ionary space-time such as 

Kerr) , in a whole neighborhood of the horizon of the form 9/ = UT>o(f)r(U) where U 

is a neighborhood of S in E. Since £® (X^TT = £?$£xg = £X£N£ — 0 the positivity 

property of Q • on the neighborhood of S in E is preserved all through the 

neighborhood 9l of Jf. Moreover, the same is t rue for the deformation tensor of the 

vector field HI = N + X. 

It remains, however, to check whether it is realistic to expect tha t L = N is bo th 

Killing and verifies the condition — UJ > 0. This property defines in fact non-degenerate 

Killing horizons. In the particular case of the Schwarzschild space-time one can check 

directly tha t the stat ionary Killing field T verifies both properties along the event 

horizon. The same is t rue for all Kerr solutions with a < m, but in tha t case the 

vector field N differs from T , which is space-like on the horizon. 

In fact the following general result holds t rue, see [2]. 
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PROPOSITION 5. — Any non-expanding, bifurcate, null hypersurface {yf,N_,S) ad­

mits a future directed Killing vector field N, defined in a neighborhood of S, which 

is tangent to the null generators of the horizon. Moreover, given an arbitrary null 

geodesic vector field L on9f with affine parameter u, N must be of the form N = KUL 

for some constant K > 0. 

7 .1 . T h e red shift vec tor field as c o m m u t a t o r 

The red shift vector field provides useful estimates near horizon even when used as 

commutator. In view of Lemma 1 we have, with TT the deformation tensor of vector 

field H , • g ( H ^ ) = —7ra^'DaT>p(f) + • • •, where we ignore the terms linear in the first 

derivatives of </>, which may be assumed as having been already estimated. One can 

easily check tha t 7Tsa = 0, see Appendix 10.2. Thus, 7ra^DaD00 does not contain the 

derivatives T>4'Da(j). Hence (see Appendix 10.2), since 7744 = —2a;, 7^4 = u, 

( £{<») 8(<>)> k(0)) 2o;D§0 - 2a;D3D40 + 7r4aD3Da + 7Ta&DaDò H 

One can also eliminate the term D3D40 using the equation = 0 since the principal 

terms of • , expressed relative to our null frame, are of the form — 2u;D3D4-f SabT>aY)b-

We deduce tha t 

(7.3) ( £{<») 8(<>)> k(0)) + AaB3T>a(/) + BahDaT>h(j) + • • • 

with bounded A, B. Now, when applying the multiplier method to (7.3), i.e. replacing 

<t> with W(<j)) in the previous step, we can take advantage of the negative sign of 2a;D3</> 

and absorb all other second derivatives choosing the constant A > 0 in (7.2) sufficiently 

large. 

7.2. Modi f i ed M o r a w e t z vec tor field in Schwarzschi id 

To take care of the t rapped region r = 3m in Schwarzschiid one needs to con­

struct a vector field of the form h(r)dr similar to the one of Morawetz in Exam­

ple 3 above. In fact it is bet ter to work with the modified Regge-Wheeler coordinate 

r* = r + 2ralog(r — 2m) — 3m — 2m log m, such tha t r* = 0 for r = 3m. In these 

coordinates the Schwarzschiid metric takes the form ß(-dt2 + (dr*)2)+r2da2 with 

( £{<») 8(<>)> Observe tha t 8(<>)> k(0)) and (<>)> k(0)) Hence •pr 
r*r* 

m -PR* 
- ^2 — 1 tt 

and r* - Tl*t = I - = Y\t = 0. Also, for an arbitrary orthonormal frame ei ,e2 

on the spheres of constants r and £, ( £{<») 8(<>)> ( £{<k(0)) 
We look for a vector field X = fdr* and scalar w = w(f) such tha t Err(</>; w, X) > 0 

for an open neighborhood, in r* of r* = 0. To motivate the calculations consider 

first X = dr* for which we can easily calculate the only non-xero components, with 

respect to the frame 9 t ,d r* ,e i , e2 of its deformation tensor, i.e. ^irtt = — 
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( £{<») 8(<>) ( £{<») 8(<>) = fsab. Thus, tr<*>7T 4m I 4^ 
r2 r Also, since, g(d(/>, d0) = 

( £{<») 8(<>) ( £{<») 8(<>) ( £{<») 8 we derive 

( £{<») 8(<>) (x)?r(d0,d0) 
1 

3 * 
<*>7rg(d0,d0) 

2m 

r2 

1 

2 
cvgxb g ( # , # ) + 2 

r — 3m 
r2 |V0|2 

2 
r — 3m 

r2 
xcvb 

2/x 

hj 
g (d<M0) . 

Thus, 
1 

2 
( £{<») 8(<>) r — 3m 

r2 I W 2 
hj 

r 
g (d^ ,d0) . 

To eliminate the lagrangian term we are led to choose w = ^ for which 

1 
9 Q W 

hgj r — 3m 
r2 I W 2 

which, unlike the case of Minkowski space, does not have a definite sign. 

We look for a modification of X of the form fX = f(r*)dr*. As in Example 3 

above we find 

Q 
gfhjj ( £{<») 8(<>) + 2 Q ( d / , X ) = / Q <xV + 2 / V 1 Q ( I , I ) 

= 2 / 
r — 3m 

r2 \?<P\2 
2/ / i 

r 
( £{<») 8(<>) + 2 / ' / x -1Qr . r , 

= 2 / 
r — 3m 

r2 ( £{<» 
2/ / i 

r 
g{d<t>,d(j)) + 2 / V 1 dr.<£)2 

1 

2 
( £{<») 8(<>) 

(7.4) hj 2 / 
r — 3m 

r2 
| ^ | 2 + 2/V-1(ör.0)2- /' + 

2fß 

r 
g(d<f>, d<p). 

Recalling Formula (6.4), with w = f'+2f and setting ( £{<») 8(<>) we derive 

Err(</>, w,fdr*) 
r — 3m 

r2 
|y0|2 + / , / / - 1 ( Ö r ^ ) 2 + ^ 2 . 

To obtain a coercive est imate we need to choose a function / = f(r*) such tha t / ' > 0, 

fr~rfn > 0 and W > 0. This cannot be done, but one can find an / which verifies 

the first two properties and such tha t W > 0 in a small neighborhood of r = 3m. 

Therefore, if the function </> is given by its decomposition into spherical harmonics 

ô = 

w<x 
(bp., 

then for the par t (J>L = Yli>L w ^ n ^ sufficiently large, for which 

R§2 
WH\2 > 

L(L + 1) 
r2 

rs2 
\H\\ 
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we can find an appropriate function / l , bounded, increasing and vanishing at r = 3m, 

and a scalar wL such tha t ErrL = Err (</>/,; WL, fL(r*)dr*) has the lower bound 

^s2 
ErrL > c 

'§2 
gh 

r — 3m 
r2 (WL\2 + \dt<F>L\2) + 2 /£ /x -1 (ö r^L)2 + F|0L|2 

for some positive function F. For the remaining first L harmonics, one can find 

functions ft and scalars we such tha t , for Err/ = Err(<^; we, fe(r*)dr*) 

's2 
Err/ > c 

§2 
F(\fôe\2 + \dtôe\2) + 2f'u-1(dr*<t>f)2 + F\óe\2). 

Combining we obtain 

/s2 
Err(</>) > c 

lm 
ml 

r — 3m 

r2 
(IWI2 + I W ) + 2/V1(M2 + i;W 

Two alternative approaches for obtaining a positive definite quantity, without a de­

composition into spherical harmonics, have been advanced. One relies on combining 

(7.4) with an appropriate choice of a scalar w and the red shift vector field, see [35]. 

The other, [18], exploits a combination given by the expression 

QwM-iflX) 7T + Q№2 [©(</.)] ( £{<») 8 

with angular momentum vector fields O. In all of these approaches the generated 

expression degenerates, relative to the principle terms, at the photon-sphere r = 3m, 

thus necessitating a loss of regularity to obtain a non-degenerate estimate. 

The corresponding construction in Kerr with small angular momentum is much 

more subtle, as the t rapped set is no longer confined to a co-dimension one manifold 

r = 3m in physical space. Its structure has to be now captured in the cotangent space, 

where it is governed by the geodesic flow. In Kerr, the geodesic flow is integrable, 

which equivalently can be expressed in terms of the separability of the wave equation— 

respecting the decomposition 

(/)(t,r,V?,^) = 

m>0 

( £{<») 8(<>) 
X 

Sx (au;,0)î m(r), 

where S\im(auj, 6) are the oblate spheroidal harmonics and A is the Carter constant— 

an additional, to uj and m, integral of motion—or existence of a Killing (Carter) tensor. 

In the Kerr case with a <C m, the (degenerate) analog of the Morawetz estimate can be 

derived with the help of three different approaches. In the first, one replaces a vector 

field f(r*)dr* by an appropriately constructed pseudo-differential operator, [43]. The 

second approach, [17], combines different X estimates with appropriately defined 

functions A and scalars x dependent on the geometric frequencies o;,m, A. In 

the third approach, [4], one explores a combination of X type identities for 0 and for 
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the quanti ty obtained by fusing the Carter tensor and (j). All three approaches rely 

on the integrability of the geodesic flow and in particular imply the estimate 

ST 
Err(0) > c 

sfd 
(M\n\2 + W2) + /2(dr.0)2 + F|0|2) 

for some nonnegative function / 1 , vanishing in a neighborhood of r = 3m, and positive 

functions /2 and F. 

8. B O U N D E D N E S S R E S U L T S 

8 .1 . S i m p l e s t case 

Consider first a static space-time (M, g) which is the MFGHD of an initial da t a 

set Eo and such tha t the Killing vector field T is everywhere time-like and orthogonal 

to Eo (23). Let t be the t ime function associated to £, i.e T(t) = 1 and t = 0 on E0. 

Start ing with a local system of coordinates x = (x1,..., xn) on Eo and parametrizing 

points along the orbits 7 of T by the parameter t and the x coordinates on 7 D Eo we 

easily see tha t M = EQ X R and the space-time g metric takes the form 

(8.1) g = —n(x)dt + gij(x)dxldx3, 

with x = ( A R , . . . , xn) an arbi trary coordinate system on E0 and g a Riemannian 

metric. Our assumptions imply, for a sufficiently small constant AQ, uniformly in M 

Ao < n < A0 1, ( £{<») 8(<>) ( £{<») 8(<>) 

Also, relative to our system of coordinates, T = dt. We normalize T by introducing 

the vector field e(0) = n_1T = n~1dt, unit future normal to the space-like foliation E* 

defined by the level surfaces of t. We decompose a space-time vector field X relative 

to the unit time-like e(0), 

(8 .2) X = X{3e{0)+X, g (e(o) ,20 = 0, 

and define the positive definite Riemannian metric, 

(8.3) h(XìY)=X°>Y° + g(XìY). 

Given an arbi trary tensor-field n we denote by | -zr | its norm with respect to the 

metric h. 

(23) Thig implies, in particular, that all orbits of T are complete, see [13], and must intersect So 
(orthogonally), see [15]. 
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PROPOSITION 6. — Any solution <\> of the wave equation 

(8.4) •g0 = 0, (ß\t=o = 0(0), dt(ß\t=o = 

with smooth, compactly supported, initial data 0(o)>0(i) on Eo is globally bounded. 

Proof. — According to our general procedure we have, with Q the energy-momentum 

tensor 

(8.5) 
'St 

Q(T,e(0)) = 
Sc 

Q(T,e(0)) <C. 

Hence, since Q(T ,e(0)) = \n\D<t>\\ and Ao < n < A0 1 we deduce 

(8.6) 
' s t 

M 2 < ao2 
'So 

\n<P\2<c 

with a constant C depending only on Ao and the initial data . In view of our definition 

above, we have |D</>|2 = (e(0)</>)2 + |V0|2, where V denotes the induced covariant 

derivative on Et . We plan to bound the L°° norm of 0 in terms of the 1? norms of 

its higher derivative, according to Sobolev inequality, ||0(£)||l°O < Ylt=i ||V20(^)||l2 

for s > §. To get the higher derivative we commute • with T. Since T is Killing we 

must have DT(0) = 0 and therefore, repeating the first step 

s t 
| D ( T 0 ) | 2 < C 

from which, in particular, Js |<920|2 < C. Now we can write(24) • = —n~2d2 + Ag 

from which we infer tha t HAg^Hj^^) is uniformly bounded. Using the Bochner 

identity for Ag, the boundedness of the curvature tensor of g (and of derivatives of n) 

and the first derivative estimates already established we then deduce tha t || V2(/>\\L2(Et) 

is uniformly bounded in t. Using the vanishing of 0 at infinity (on each Et) and elliptic 

estimates, we can also derive a bound for ||0||L2(Et)- We can repeat the procedure, 

by commuting DG once more with T , to establish bounds for all higher derivatives 

l|Vfc0||L2(£t)> k > 0. Thus, by Sobolev, 0 is uniformly bounded. • 

8.2 . First d e g e n e r a t e case 

We assume next the more realistic hypothesis tha t T is not time-like everywhere 

but degenerates in fact along a horizon, i.e. a null hypersurface 9f along which T is 

tangent to its generators. This, of course, is the situation in Schwarzschiid. Since 

we have to work with space-like hypersurfaces transversal to the horizon we will not 

make use(25) of the condition tha t T is hypersurface orthogonal. We choose an original 

<24) Note that Ag differs from Ag by first order terms in V0. 
(25) It can be shown, however, that a stationary space-time with T tangent to the generators of the 
horizon must be in fact static. 
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space-like hypersurface Eo and translate it using the flow of T to obtain a space-like 
foliation ST, as in the picture below. 

It is easy to show tha t away from the horizon we still have Q(T, eo) > C|D</>| . 
The constant C however degenerates as we approach the horizon. Yet some control 
remains. Thus, precisely on the horizon, we have using an adapted null frame, as 
in appendix, normalized such tha t eo = + 6 4 ) , and such tha t T = — ioe^ with 
u> = g(D4e4,ea) < 0 . Therefore, the energy density Q(T,eo) = — ^(Q(e4,e4) + 
Q(e3i 64 ) = ~5W((E4<A)2 + LY^L2)- In other words we are only missing the transversal 
derivative e3(0). Similarly, the flux density Q(T, e4) = — wQ(e4,e4) = — w|e4(0)|2, 
i.e we are missing the angular derivatives ^(f>. Through a clever argument Kay and 
Wald, see [ 2 7 ] , were able to overcome these difficulties and still derive a boundedness 
result without using any new vector field. 

PROPOSITION 7. — Any solution <f> of the wave equation (8.7) 

(8.7) us4> = 0 , <t>\t=Q = </>(0)> dt<f>\t=o = <A(i) 

in Schwarzschild space-time with smooth initial data 0(o);</>(i) on So, decaying suffi­
ciently fast at infinity, is globally bounded in the domain of outer communication E . 

Proof. — The red shift vector field of Dafermos-Rodnianski provides a far more 
powerful and compelling proof, which holds in fact for any stat ionary space-time 
in which T is everywhere time-like in the complement of the event horizon. The idea 
is tha t , precisely in a neighborhood of the horizon Jf, where the energy identity due 
to T becomes degenerate, we gain the missing information from the red shift vector 
field H . Indeed, along the horizon EI is future time-like. Hence the energy density and 
flux density associated to the red shift vector field EI provide precisely the information 
we would get from the Killing field T if there was no degeneracy at Jf. 

So far this information is purely local. To obtain a useful estimate we need to also 
make use of the fact tha t H7r • Q > c Q ( H , EI) in a space-time neighborhood CU of "Jf, as 
in Proposition 4. We first extend H to our entire domain 0 = J / + ( S Q ) PI & by making 
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sure tha t it coincides with T away from a slightly larger, T-invariant neighborhood 

V. We can also arrange tha t the extended EI is also T invariant and that , in V \ 11, 

we have | Q • H7r | < Q(T, T). Indeed this can be first arranged on E0, by an extension 

of the form / H + (1 — / ) T (with a smooth / such tha t / = 1 on 1l fl Eo and / = 0 

in the complement of V n E) and then extended to the entire domain 2) by using the 

pushforward with <j>T. 

We then apply Proposition 2 for vector field X = H and w = 0, in the domain 

0 ( 0 , T ) , the region of 0 between EQ and E T . Since H7r = 0 in the complement of 'V 

we have 

5V(0,t) 
Q(H, e4)-r 

fdg 
Q(H,e0) = 

dfg 
Q ( H , e 0 ) -

%(0,r) 
" T T - Q -

V(0,T)\to(0,T) 
H7r-e. 

Since fg Q > c|D0|2 in % I % • Ql < ID0I2 in ( £{<») and ^(0,r) Q(H,e4) > 0, 

Q(H,e0) > |D</f, we deduce'26' 

F(T):= 
ET 

ID0I2 < 
So 

|D0j2 
%(0,t) 

|D0|2 + 
®(o,r)\?/(o,r; 

|D0|2 

< ^ ( 0 ) -
fg 

0 
F(r')dT' + 

fT 

fg dfgh 
|D</f 

< F(0) -
fg 

fg 
F{T')dT' + CT. 

Thus, by Gronwall we derive a global bound for F ( r ) , i.e. a bound for the L? norm 

of all first derivatives of <fi. 

To estimate the higher derivative we commute the wave equation not only with T 

but also with the red shift vector field EL Indeed, commutation with T provides 

estimates for supT>0 | |DT(0) | | i2(ST) , estimate which degenerates only near the hori­

zon Jf. This degeneracy is more than compensated by commuting the wave operator 

'26) In the last line of the inequality below we make use of the fact that, away from the neighborhood 
'U of the horizon, the energy identity provided by T gives us a bound for ^ [D0|2 in terms of 
initial conditions. 
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with H . Thus, repeated commutations with T and M and elliptic theory, as in the 

simpler case explained below, provide bounds for all higher derivatives of 6. • 

8 .3 . T h e super-radiant r e g i m e 

The method of proof described above can be extended to the case when the vector 

field T becomes space-like in a neighborhood of the horizon, as is the case in Kerr. 

The major difficulty in this case is tha t the global energy density associated T is 

not positive definite in the ergo-region and therefore ceases to provide any useful 

information, at least in a first approximation. The effect of super-radiance is well 

described in the physics literature, s tar t ing with the pioneering work of Penrose [36] 

and Zel'dovich [44], and provides an amplification mechanism for linear waves. 

Nevertheless, Dafermos-Rodnianski were able to extend their methods to cover 

the case of axially symmetric stat ionary space-times which are sufficiently close to 

Schwarzschiid. Thus, in addition to T the space-time has a second Killing vector field 

Z , with circular orbits, tangent to the horizon 9f. One can show, in this case, for a 

constant 7 > 0, and a suitably defined null generator L = e±, T = L — 7Z along the 

horizon Jf. In other words 9f is also a Killing horizon for a Kerr space-time. 

Thus, the flux density associated to T is Q ( T , L) = Q ( L — 7Z, L) = 

|L0|2 - 7(Z0)(L0) = (T0)2 + 7(Z0)(T0). Therefore, if |T0| > 7|Z0|, we must 
have Q ( T , L) > 0. This suggests a decomposition of 0 = 0̂  + 0b sucn tha t 

Q[0jj](T, L) > 0. It can be made precise by decomposing 0 with respect to Fourier 

frequencies to G M relative to T , and discrete frequencies ra, relative to Z . Thus, 

by a simple cut-off, 0jj will be restricted to the frequency range |o;| > |7|ra, called 

sub-radiant regime, while 0b, the super-radiant part of 0, has frequencies in the range 

LU < 7?TI. We expect tha t the arguments used in the previous subsection would work 

to t reat the non super-radiant par t 0jj, for which T continues to provide a coercive 

energy identity. The real new issue is 0b- One can show, and this is the main new in­

sight of Dafermos-Rodnianski [20], t ha t in stat ionary axisymmetric space-times near 

Schwarzschiid, in particular in ïK{a, ra) with a <C ra, the super-radiant frequencies 

of ng(j) = 0 are not t rapped. The quanti tat ive manifestation of this fact is reflected 

in the existence of a "simple" vector field X = f(r*)dr* and a scalar w = w(X) with 

the property tha t 

Q(™)[0b] ( £{<») 8(< Cri,r2Xri,r2 ( |D^ |2 + |^ |2 ) 

with a characteristic function Xrltr2 equal to one in the region 2ra < 7*1 < r < 

r2 < 00. The relative ease of the choice of X hinges on the fact tha t for 0b the 

lagrangian term g(d0b, d0b) is positive in a neighborhood of r = 3ra—the t rapped set 

in Schwarzschiid. This inequality leads to a non-degenerate version of the Morawetz 

est imate and together with the red shift estimate allows one to control 0b- I should 
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note tha t the actual analysis is complicated by coupling between <j>% and introduced 
by cut-offs in the physical space which are, unfortunately, required to justify the t ime 
Fourier frequencies to. 

9. D E C A Y M E C H A N I S M 

The proof of decay in both Theorems 4 and 5 hinges on two basic steps plus a 
final iteration procedure based on the pigeon hole principle. We consider below the 
simpler case of decay in Schwarzschiid. We consider T-invariant regions obtained by 
intersecting space-time domains of the form 2m < Ri < R < R% or 2m < r < R with 
the future of Eo, in the exterior domain &. Also, in what follows, is the portion of 
the horizon r = 2m to the future of Eo. 

Step I. — The goal of the first step is to derive an estimate of the form 

(9.1) 
sdf 

|D0|2 < CVIo, 

where V is an arbitrary large neighborhood of containing the t rapped region 
and Io a constant depending only on the initial da ta of 4> (it depends in fact on the 
L2(E fl V) of the first two derivatives of 0. The proof of such an estimate requires 
the following substeps: 

1. Using the red shift vector field H one can control the non-degenerate energy in a 
small T-invariant neighborhood %i of the horizon (such as 2m < r < ri 3m), 
at the expense of having to control the space-time integral of |D0|2 in the 
complement of 2/i in a somewhat larger neighborhood (such as r < r\ + e). 

2. Using the modified Morawetz vector field M one can control the space-time 
integral of /(r)(|D0|2 + |0|2), with f(r) vanishing of order 2 at r = 3m, in a 
sufficiently large T-invariant neighborhood % of the t rapped region r = 3m 
which intersects ?4 (such as r\ — e < r < R, for an arbitrary R > 3m). 

3. Commuting the equation with T and using elliptic theory (or, alternatively, 
commuting also with the angular momentum vector fields) we derive a similar 
estimate for /(r)|D20|2 + |D0|2. Thus, by losing one derivative, we control the 
space-time integral of |D0|2 in 2/2-

4. Combining this last estimate with the previous estimate in % we derive a 
space-time estimate for |D0|2 in V = % U % • We also derive a non-degenerate 
estimate along the horizon. 
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Step II. — The goal now is to derive a decay estimate by using the previous step 
together with asymptotic information from future null infinity. Originally this was 
done by using a natural adaptat ion of the vector field Krj of Minkowski space. Here I 
will sketch instead the new procedure of [18]. To simplify mat ters I will first present 
their argument in Minkowski space. It will be quite transparent from the proof how 
to adapt it to the Schwarzschild case. In fact, once the first step above has been 
accomplished (which is a lot more delicate in a Kerr background because of the 
extended t rapped region) the same proof also applies to Kerr. 

The idea is to foliate Minkowski space by hypersurfaces S ( r ) = E ^ r U E R ( T ) 
divided by r = R, for a fixed value R. The left piece is a space-like hyper-
plane E L ( T ) = {{t = r,a;)/ |a; | < R} while the right piece is the null hypersurface 
Efi(r ) = {(t,x)/t - \x\ = T - R, \x\ > R}. Let (DL{T1)T2) and CDR{TX,T2) be the 
regions to the left and right with for T\ < T<I as in the figure below (the figure on the 
right is the same as tha t on the left, but viewed in the compactified Penrose diagram 
of the Minkowski space). 
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We star t with the following estimate: 

( 9 . 2 ) 
<Z>l(t,oo) 

(|D0|2 + H 2 ) < CRE(T) 

where E(T) is the non-degenerate energy of the slice S ( r ) , i.e. 

( 9 . 3 ) EM := 
2 ( t ) 

QM(T,JV) 

with N normal to E ( T ) , i.e. ( £{<») 8( on fgh and AT = L = + 0, on ghh Thus, 

£ ( r ) = 
ghh 

|D0|2 + 
ghh 

((L0)2 + |y</>|2). 

This is, essentially, the estimate obtained at the first step. It also follows by using 

a variation of the Morawetz vector field discussed before. Observe also that E{r) is 

monotonically decreasing(27), i.e. Efa) < E(TI), in Minkowski space. 

In the region Ç)R we apply the energy estimate(28) of Proposition 2 with 

X = rp(dt 4- dr) = rpL, 0 < p < 2 and appropriate choice of w. We derive the 

identity 

( 9 . 4 ) 
Sr( t2 ) 

rP(U)2 + 
2>ß(Tl,T2) 

r ^ 1 ( ( L 0 ) 2 + ( 2 - p ) | ^ | 2 ) 

^ + ( R I , R 2 ) 

Tpmf = 
Eä(t i ) 

rp(L</>)2 + 

( £{<») 8 
r*( |^ |2 - |L0|2) 

where ( £{<») 8(<>)( £{<») 8(< Ignoring the boundary term at future null infinity we 

derive, for v = 2 

'EÄ(TV,) 
r2(L0)2 + 

®ß(Tl,-r2) 
r(Î0)2 < 

'SB(t! ) 
r ^ L ^ + J ^ n , ^ ) 

with 

IR(TI,T2) = 
2 ) I N 0 Ä ( R I , R 2 ) 

r 2 ( | W - L L / > l 2 ) < ß 2 
2 ) R , N 2 ) Ä ( R I , R 2 ) 

|D0|2. 

Averaging with respect to (in a small interval near a fixed value) and using (9.2), 

we derive 

( 9 . 5 ) 
r®fi(RI,T2) 

( £{<») 8( 
fdgdf 

r2(L4,f + CRR2E(r1). 

Hence, in fact 

RSR(R2) 
r2(LÓ)2 + 

®b(ti,t2) 
r(U)2 £ 

S(tx) 
r2(L0)2 + CfiS(r1). 

(27) In Schwarzschild or Kerr we expect some bounded amplification. 
(28) Alternatively one can proceed exactly as in [18] by multiplying directly the wave equation, in 
null coordinates. 
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Using the pigeonhole principle applied to (9.5) we infer tha t there exists a dyadic 

sequence an —> oo such tha t 

(9.6) 
'EB(<T„+I) 

r(L4>)2 < o~x 
( £{<») 

r2(U)2 + CRE(Tl) 

We now consider (9.4) with p = 1. After averaging in R exactly as before and 

applying once more (9.2) we deduce 

( £{<») 8( 
r(L0)2 + 

2>fi(<7n,<7n-L) 
(|^|2 + | ^ | 2 ) < 

'SR(AN_I) 
r(L0)2 + CAtf(<rn_i). 

Using (9.6) we derive 

0R(O-n,Cn-L) 
(\L4>\2 + \f4>\2) ( £{<») 8 

S(R,) 
r2(U)2 + CRE(n) ( £{<») 8( 

Observe t ha t (U)2 = (L£)2 + <A2 + idr(</>2) Thus, after an integration by par ts 

( £{<») 8(<>) 
(U)2 = 

( £{<») 8(<>) 
m2-

0z,n0R(AN,<RN_I) 
<t>2-

Hence, 

( £{<») 8(<>) 
(\Lj>\2 + \n\2) ( £{<») 8 

sg 
( £{<») 8(<>)dfh + CRE{an^). 

On the other hand, in view of (9.2) 

®T(O-n,<Tn-L) 
(\m2+<i>2) < CRE(an-X). 

Adding the last two inequalities together, we derive 

•On 

On-1 

E(r)dT < Ca'1 
'E(TI) 

^(Ltf + CnEin) + CRE{an-1). 

Thus, with J l - JS(TI) r2(L<j>)2 + CRE(Tl) depending only on the initial norm on 

U(r i ) and R 
dsg 

( £{<») 
E(T)dr< ha-'+CREia^). 

Finally we deduce, by another simple application of the pigeonhole principle and the 

monotonicity of E(r), tha t for all r > T~I, 

(9.7) E(r)<T-2h 

as desired. 
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10. APPENDIX 

1 0 . 1 . N u l l h y p e r s u r f a c e s 

Consider a null hypersurface 9f embedded in M, with unit normal L (which itself is 
tangent to Jf). Clearly Ji is generated by all null geodesies tangent to L orthogonal 
to a 2-surface S. In what follows we assume that S has the topology of a 2-sphere. 

DEFINITION. — The null second fundamental form of a null hypersurface 9f is de­
fined by 

(10.1) X(X,Y) s(DxL,Y), 

where L is a fixed null vector field tangent to the null generators of Jf and X, Y 
arbitrary vector fields tangent to 9f. 

Observe that the definition depends tensorially on the choice of L, i.e. if V = aL we 
have x' = aX- The trace tr% can be defined, relative to an arbitrary frame L ,ei ,e2, 
with g(ea, e(,) = 8ab, by t r x = Xn + X22- One can easily check tha t the definition is 
independent of the frame or the choice of null normal L. The hypersurface 5V" is said 
to be non-expanding if the trace of \ vanishes identically. 

We can foliate by the level surfaces of an affine parameter s of L, i.e. L(s) = 1, 
s = 0 on S. We can then define the null companion L of L, at any point p of N, to 
be the unique null normal orthogonal to the level surface passing through p such tha t 
g ( L , L ) = - l . 

g ( L , y = -1 
X(X ,Y) := gO} L,Y) = 0 
X(X,Y):=g(q_I.,Y) = 0 

10 .2 . R e d shift v e c t o r field 

Consider first an arbitrary null hypersurface 9f and a null pair (e4 = L, 
e3 = i ) ,g (e3 , e4 ) = —1 with L null, tangent to 9f and L hypersurface orthogonal, 
i.e. orthogonal to a foliation of 7f by 2-surfaces (see appendix). We complete the 
null pair to a null frame (ei , e2, e3, e4) with ei ,e2 an orthonormal frame tangent to 
the foliation. We easily check the following 

(10.2) 

D4e4 = —we4, 

D4e3 = we3 + ?71e2 + r? e2 

Dae3 = xahe-b + Cae3 
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where LU = g(£>4e4,e3), —a = g(E>4e3,e0), Ca = g(Dae4,e3) , ^ab = g(JL>ae3,eb) 
depend only on the original choice of the null pair (e3, e4) along Jf. 

We extend e3 in a small neighborhood of J\T by solving the equation 

(10.3) U3e3 = -toe3 
with LU an arbi trary function on $f which we hope to choose later. The deformation 

tensor of X = e3 can be easily calculated along Jf 

7r44 = — 2a;, 7r34 = 7T33 = 0, 7T3a = 0, 7T4a = 2a ( £{<») 8(<>) 

Therefore, 

Q • 7T = Q337T44 -H 2Q347r34 - 2Q3a7T4a + Qa67Ta6 

= -w(e30)2 + 2 W | W - 2V3(/>y0 ( £{<») 8(<>) Va0V60 

" 2 ^ 
( - 2 E 3 ( 0 ) E4(0) + I W 2 ) 

= -a;(e30)2 + 2a;|y(/)|2 + afeVa0Vb(/> • 2 E 3 0 ^ - ( 2 - C ) -HTRX(e30)(e40). 

By assuming —a; > K; > 0 and LU sufficiently large positive, we deduce, for some 

positive constant c, | Q • TT + TRX(e30)(e40) > c((e30)2 + \y/(j)\2). To get rid of the 

term TRX(e30)(e40) we need to make a modification of Equation (10.3). We use instead 

(10.4) D3e3 —a;e3 — Ae4. 

Wi th this modification all components of n remain the same, except 7r33 = A. Thus, 

Q 7T = Lu(e3(/))2 + 2çu\f(f>\2 + A(e4cj>)2 ( £{<») 8(<>) 

2 E 3 W - ( 2 - C ) F TRX(e30)(e40). 

Thus, choosing —a; > « > 0 and constants a;, A sufficiently large, we deduce, for some 

positive c > 0 

sdg 
ds 

• TT > c(e3</>)2 + A ( M | 2 + | W ) 

with A > 0 arbitrarily large, provided tha t LU and A are sufficiently large. 
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