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LINEAR STABILITY OF BLACK HOLES
[d’aprés M. Dafermos et I. Rodnianski]

by Sergiu KLAINERMAN

The treatment of perturbations of Kerr spacetime has been
prolizious in its complexity. Perhaps at a later time the com-
plexity will be unravelled by deeper insights. But meantime
the analysis has led into a realm of the rococo, splendorous,
joyful and immensely ornate.

S. Chandrasekhar, The mathematical theory of black holes.

1. INTRODUCTION

While the splendorous remains, a layer of complexity has now been unravelled.
I report on the recent, remarkable, ongoing progress made on the linear stability
of black holes, more precisely on the boundedness and decay properties of solutions
to linear equations in a Kerr spacetime. The Kerr spacetimes K(m,a) are explicit
solutions of the Einstein vacuum equations (discovered by R. Kerr in 1963) depending
on two parameters 0 < a < m, corresponding physically to black holes of mass m
and angular momentum am. The case a = m = 0 corresponds to the Minkowski
space while @ = 0,m > 0, corresponds to the much older Schwarzschild solution
(K. Schwarzschild 1915).

The problem of linear stability of the Kerr family is an old problem which has
received a lot of attention in the Physics literature immediately after the discovery
of these fascinating solutions of the Einstein equations in vacuum, which, embedded
in the larger 3-parameter family of the so-called Kerr-Newman spacetimes, form the
basis of our understanding of black holes. The obvious question raised by the discovery
of any interesting, explicit solution of a complex, non-linear system, such as the
Einstein equations, is that of their stability under small perturbations. Roughly
the problem here is to show that all spacetime developments of initial data sets,
sufficiently close to the initial data set of a Kerr spacetime, behaves in the large
like (possible another) Kerr solution. This is not only a deep mathematical question
but one with serious astrophysical implications. Indeed if the Kerr family would be
unstable under perturbations, black holes would be nothing more than mathematical
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92 S. KLAINERMAN

artifacts. The Einstein equations are, of course, nonlinear and hyperbolic, thus the
issue of stability is an extremely difficult and a dicey one. Given the geometric,
covariant structure of the equations, with no universal notions of space and time
variables, it is not even a-priori clear what that means. Linear stability, though
still tricky, is somewhat easier to define. It is clear, for example, that any first
order approximation of the equations, at the level of the space-time metric, in any
reasonable coordinate system, will generate some system of wave equations in the Kerr
background we want to perturb. Thus it is natural to ask, and this must certainly be
relevant to the full nonlinear problem, whether solutions to linear wave equations in a
fixed Kerr background are well behaved. If it turns out that solutions of these linear
equations are amplified, due to the non-trivial features of the background geometry,
then there is a reasonable chance that the background itself might be unstable.

It is not enough, however, to establish that solutions are not amplified; to have
a chance to prove non-linear stability we also need to show that solutions decay at
a sufficient rate. There is a lot of confusion in this regard among some physicists
who seem to believe that somehow the lack of linear instability is a strong indication
of nonlinear stability. This, of course, is not true even near solutions of minimal
energy of simple nonlinear PDE’s, as the case of the Burger equation d;u + ud,u = 0
easily demonstrates. The solution u = 0 is a global minimum for the energy integral
E(t) = [ |u(t,z)|*dz, yet any compactly supported, smooth, small perturbation of
the zero initial leads to blow up in finite time.

To be useful, a result on linear stability has to establish, quantitatively, not just
a lack of amplification but also a realistic decay. In fact all known stability results,
for strongly nonlinear wave equations (Einstein equations are quasilinear), depend on
precise decay information for the linearized solutions.

The methods by which one establishes these decay estimates are also a very impor-
tant issue. Thus, in the Minkowski space R1*3, it is easy to derive decay estimates for
solution to the standard wave equation [J¢ = 0 using explicit representation formulas
in the physical or Fourier variables. These formulas, however, depend heavily on the
specific features of the Minkowski space and do not survive under small perturbations
of the Minkowski metric. In other words, such methods are intrinsically not robust. A
far more useful method for deriving decay estimates for the wave equation, and more
generally for linear field equations, is that of invariant vector fields, see [28], [29].
That method, first introduced to prove stability results for quasilinear wave equa-
tions, plays a fundamental role in all known proofs of the stability of the Minkowski
space, see [12], [30], [32], [5].

In the case of the Kerr metric, or rather the more accessible case of the
Schwarzschild metric, one can use the specific symmetries of the space to sepa-
rate variables and then concentrate on the pointwise properties of the corresponding
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eigenvalue problem. This method is not only not robust but, to our knowledge, was
not even satisfactory to derive unconditional decay results for general solutions of
the wave equation. In the physics literature, where the problem of linear stability of
Schwarzschild and Kerr spacetimes has received a tremendous amount of attention
(see e.g. [40], [45], [39], [38], [41], the monograph [9] and the references therein),
this method of mode decomposition led to nothing more, in the words of Press
and Teukolsky (see [38]), than “an unsuccessful search for instabilities”. On the
other hand mathematical rigorous efforts based on this approach can only lead to
statements of decay without a rate or precise rates of decay of specific modes, both
of which, in principle, compatible with the scenario in which a general solution of the
corresponding linear problem is not even uniformly bounded. For the results in this
direction, see [34], [31], [21] in Schwarzschild and an attempt [22] in Kerr. Moreover,
even if ultimately successful, such methods would leave us with a heavy machinery
to prove some form of linear stability without any clue on how to approach to the
non-linear problem.

A simple version of the vector field method was first used by Kay and Wald, see
[27], to prove the boundedness of solutions of the wave equation in a Schwarzschild
spacetime. The first attempt to use the vector field method, to prove integrated local
energy decay in Schwarzschild is due to Blue and Soffer [6]. Their work however had
serious flaws. The first complete results on pointwise decay for solutions of the wave
equation on the Schwarzschild background have been obtained, independently, by
Blue-Sterbenz [7], and Dafermos-Rodnianski [16]. In [16] Dafermos and Rodnianski
also introduced the crucial red shift vector field, which led to stronger decay rates
along the event horizon in Schwarzschild and, more importantly, played a central role
in extending the boundedness and decay results to Kerr space-times, see [20], [17].
Other important contributions were made by S. Alinhac in [3], Dafermos-Rodnianski
in [19], Marzuola-Metcalfe-Tataru-Tohaneanu in [35] and Luk in [33] for the problem
in Schwarzschild, and by Tataru-Tohaneanu in [43] and Andersson-Blue in [4], for
Kerr spacetimes.

I will review these results following, mainly the works of Dafermos-Rodnianski, in
particular their general exposition in [17] and the recent paper [18].

2. INITIAL VALUE PROBLEM

We recall that an initial data set consists of a 3-dimensional manifold ¥, a complete
Riemannian metric g(g), a symmetric 2-tensor k), and a well specified set of initial
conditions corresponding to the matterfields under consideration. These have to be
restricted to a well known set of constraint equations. We restrict the discussion to
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asymptotically flat initial data sets, i.e. outside a sufficiently large compact set K,
Y0 \ K is diffeomorphic to the complement of the unit ball in R® and admits a
system of coordinates in which g() is asymptotically euclidean and k() vanishes,
at appropriate order. A Cauchy development of an initial data set is a globally
hyperbolic spacetime (M, g), verifying the Einstein field equations, in the presence of
a matterfield with energy momentum Q,

1
(21) Ra,B - ERgaB = Qaﬁa

and an embedding i : ¥ — I such that i.(g(0)),ix(k(o)) are the first and second
fundamental forms of (X)) in J.

In what follows I will restrict the discussion to the Einstein vacuum equations, i.e.
the case when the energy momentum tensor vanishes identically and the equations
take the purely geometric form

(2.2) Raps = 0.

FIiGURE 1.

The most primitive question asked about the initial value problem, solved in a
satisfactory way, for very large classes of evolution equations, is that of local existence
and uniqueness of solutions. For the Einstein equations this type of result was first
established by Y. F.-Bruhat [23] with the help of wave coordinates™). According
to this result any smooth initial data set admits a unique, smooth, local (up to an
isometry) globally hyperbolic® Cauchy development. In the case of nonlinear systems
of differential equations the local existence and uniqueness result leads, through a
straightforward extension argument, to a global result concerning the maximal time
interval of existence. If this interval is bounded the solution must become infinite
at its upper boundary. The formulation of the same type of result for the Einstein
equations is a little more subtle; something similar was achieved in [10].

THEOREM 1 (Bruhat-Geroch). — For each smooth initial data set there ezists a
unique, smooth, mazimal, future, globally hyperbolic development (MFGHD).

(1) These allow one to cast the Einstein vacuum equations in the form of a system of nonlinear wave
equations.
(2) Any past directed, in-extendable causal curve of the development intersects 3.
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Thus any construction, obtained by an evolutidnary approach from a specific initial
data set, must be necessarily contained in its maximal development MFGHD. This
may be said to solve the problem of global® existence and uniqueness in General
Relativity; all further questions, one could say, concern the qualitative properties
of these maximal developments. The central issue becomes that of existence and
character of singularities

2.1. Special solutions

We recall that EVE admits a remarkable family of explicit, stationary solutions
given by the two parameter family of Kerr solutions among which one distinguishes
the Schwarzschild family of solutions, of mass m > 0,

2 2m\ !
(2.3) gs = — (1 - _m) dt* + (1 - Tm) dr® + r’dog:.
T

Though the metric seems singular at » = 2m it turns out that one can glue together
two regions r > 2m and two regions r < 2m of the Schwarzschild metric to obtain
a metric which is smooth along # = {r = 2m}, see [24], called the Schwarzschild
horizon. The portion of 7 < 2m to the future of the hypersurface t = 0 is a black hole
whose future boundary r = 0 is singular. The similar region to the past of t = 0 is
called a white hole. The region r > 2m, called the domain of outer communication,
is free of singularities.

To see how to explicitly extend the metric, introduce the tortoise coordinate
r = r 4 2mlIn(r/2m — 1) and the Kruskal null coordinates, U = e~(t—"=)/4m
V = elt+r)/4m relative to which the metric takes the form ds? = — MdU dv+
r?do?. Observe now that » = 2M corresponds precisely to U - V = 0. Indeed r is
an implicit function of U - V' through the relation (5 - — 1)ezm = —UV. In the new
coordinates, after a simple conformal compactification, the completed space-time has

the form given in Figure 3A.

Here the boundaries /" and 4~ , called future and past null infinities, are idealized
boundaries of the space-time corresponding to end points, of future directed, respec-
tively past directed, null geodesics. The points i™ and i~ correspond to end points of
future and past time-like geodesics while i° corresponds to space-like infinity.

The Schwarzschild family is included in a larger two parameter family of solutions
K (a,m) discovered by Kerr. A given Kerr space-time, with 0 < a < m, has a well

(3 A proper definition of global solutions in GR requires a special discussion concerning the proper
time of causal geodesics.
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r=2m_’
t=-®

FIGURE 2. Kruskal’s maximally extended Schwarzschild space-time. Note
the two disconnected external regions, r > 2m, the black and white holes
and the curvature singularity at » = 0. Note the behavior of light cones at
the event horizon, r = 2m.

defined domain of outer communication 7 > ry = m + (m? — a?)'/2. In Boyer-
Lindquist coordinates, well adapted to r > r,, the Kerr metric has the form
P A - a28in29dt2 B 2asin’® 0(r? + a? — A)dtdq‘)
b by
2 2\2 _ A 2 & 29 . »
¢ Trad) s sin’ d¢? + Tdr? + Tdp?

with ¥ = 7% 4+ a%cos?0,A = r? + a®> — 2mr. As in the Schwarzschild case, the
exterior Kerr metric extends smoothly across the Kerr event horizon, # = {r = r}.
It can be shown that the future and past sets of any point in the domain of outer
communication intersect any time-like curve, passing through points of arbitrary large
values of r, in finite time as measured relative to proper time along the curve. This
fact is violated by points in the region r < r,, which consists of the union between a
black hole region, extended towards the future, and a white hole region to the past.
Thus physical signals (i.e. future time-like or null geodesics) which initiate at points
in r < ry cannot be registered by far away observers®). The extended Kerr is singular
only at » = 0. Thus the singularities in Kerr cannot have any effect on the domain of
outer communication which is, in fact, entirely smooth even analytic. The boundary

(4) They must end in the singularity at r = 0, in Schwarzschild space-time. Their behavior in Kerr
is more complicated.
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r=0

r=o 1
Ficure 3A. Complete Penrose diagram of Schwarzschild. Note

the black hole and white hall regions, singularity at » = 0, event
horizon » = 2m and the boundaries at infinity.

1

F1cure 3B. The right disconnected exterior
region of Schwarzschild. Note that T = &,
becomes null along the horizon r = 2m and
vanishes on the bifurcate sphere where the
two branches of the horizon meet.

of the domain of outer communication {r = r,} is called the event horizon. In the
non-degenerate case, a < m, the event horizon consists of two null hypersurfaces
intersecting transversally on a compact 2 sphere.
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FIGURE 4A. Exterior domain of Kerr. Note that the stationary vec-
tor field T, which is time-like in the far away (asymptotic) region of
space-time, becomes space-like inside the ergo-region, near the horizon

H=NUN.

The exterior Kerr metrics are stationary, which means, roughly, that the coeffi-
cients of the metric are independent of the time variable t. One can reformulate
this by saying that the vector field T = 9; is Killing®® (everywhere in the domain of
outer communication) and time-like at points with r large, i.e. the so-called asymp-
totic region (where the space-time is close to flat). One can also easily check that T
is tangent to the horizon # = A U A, which is itself a null hypersurface, i.e. the
restriction of the metric to the tangent space to # is degenerate (see Figure 4A). In
addition to being stationary the coefficients of the Kerr metric are independent of the
circular variable ¢. Thus Kerr is stationary and azially symmetric. The Schwarzschild
metrics corresponding to a = 0 are not just axially symmetric but spherically sym-
metric, which means that the metric is left invariant by the whole rotation group
of the standard sphere S2. A well known theorem of Birkhoff shows that they are
the only such solutions of the vacuum Einstein equations. Another peculiarity of
a Schwarzschild metric, not true in the case of Kerr, is that the stationary Killing
vector field T = 0, is orthogonal to the hypersurface ¢ = 0. A stationary space-time
which has this property is called static. This is also equivalent to the fact that the
Schwrazschild metric is invariant with respect to the reflection t — —t. Moreover T

(5) A vector field X is said to be Killing if its associated 1 parameter flow consists of isometries of g,
i.e. the Lie derivative of the metric g with respect to X vanishes, ¥x g = 0.
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is time-like for all » > 2m and null along the Schwarzschild horizon J = {r = 2m}.
This is not the case for Kerr solutions in which case T = 0, is only time-like for

r > m+ (m? —a®cos? )

12 pull for 7 = m + (m? — a? cos? #)'/? and space-like in the

region between 7, and 7 = m + (m? — a® cos? §)1/2, called the ergosphere. Finally we
remark that the Kerr family has unacceptable features for a > m.

Event horizon

(]
e
(V)
£L
o
1%
O
(o))
i
L

i
|
|
Ficure 4B. Kerr solution, on a fixed slice, as a rotating black hole.

Note the axis of symmetry and the presence of the ergosphere outside
the event horizon.

To summarize:

1i;

The Kerr family % (a,m), 0 < a < m provides a two parameter family of asymp-
totically flat solutions of the Einstein vacuum equations exhibiting a smooth
domain of outer communication and its complement, separated by the event
horizon {r = r;}. For a < m the event horizon consists of two null hypersur-
faces intersecting transversally on a compact 2 sphere.

All solutions are stationary, i.e they admit a Killing vector field T which is time-
like in the asymptotic region. The Schwarzschild space-time (i.e. a = 0) is also
static. Moreover the Kerr family is axially symmetric, i.e. it admits another,
circular, Killing vector field Z which vanishes on the axis of symmetry. The
Schwarzschild space-time is spherically symmetric.

The stationary vector field T is tangent along the horizon and space-like for all
a > 0. It remains space-like in a small region of DOC called ergo-region. In the
case a = 0, T is null along the horizon and time-like everywhere in DOC.

In all cases 0 < a < m, DOC contains trapped null geodesics, i.e. null geodesics
which are entirely contained in a region of DOC with a bounded value of 7.
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In the case a = 0, all trapped null geodesics are either tangent to the time-like
surface {r = 3m} or asymptotic to it.

2.2. Stationary space-times

We formalize below the notion of an asymptotically flat stationary, vacuum, space-
time. Assume that (), g) is a smooth vacuum Einstein space-time of dimension 3+1
and T is a smooth Killing vector field on J#. Assume given a space-like hypersurface
3o € M such that outside a sufficiently large compact set K of X, every orbit of T
intersects Xy at only one point. Moreover we assume the existence of a coordinate
system (20, x!,22,2%) in M"Y = T(Z, \ K) (i.e. the union of orbits of T which
intersect ¥ \ K) such that T = 8; and, with r = \/(21)? + (22)2 + (23)2, the com-
ponents of the space-time metric verify(®), for some k > 0, goo = —1 + 27'" + Ok (r™2),
gij = 0;;+0k(r™1), goi = —e,-jkg%””i+0k(r‘3), for somem > 0, J = (J!,J?,J3) € R
such that, |J|? < m2. We can then define the exterior region, or domain of outer com-

munication, by
&= 9~ (MDY A g (D),

where (M), ST (M "D) denote, respectively, the past and future sets of
MDD One further assumes that & is globally hyperbolic, i.e. any inextensible
time-like or null curve in & must intersect ¥y. Finally we define U W, the union of
the black hole and white hole regions, as the complement of & in M and the event
horizon # as the boundary of &. One can show that J is achronal (i.e. no points in
F¢ can be connected by time-like curves) and that T must be tangent to #. One can
also show, using the theorem of Hawking, that J¢ is non-expanding (see appendix).

One can easily check that the event horizon # of any of the Kerr family X (a,m),

0 < a < m, verifies the following properties:

1. # is spanned by two smooth null hypersurfaces & and A which intersect
transversally along a 2 sphere S. Moreover # (resp. /) is spanned by the
union of the future (past), in-extendible, complete, null geodesics orthogonal
to S.

2. Both " and A have vanishing null second fundamental forms (see appendix).

The second condition is in fact an easy consequence of the non-expanding nature
of # and the Einstein vacuum equations. A fundamental conjecture in General Rel-
ativity is to prove that the converse is true, i.e. any, regular, stationary solution of
the Einstein vacuum equations verifying the above properties must be isometric to
K(a,m), 0 < a < m. The simple motivation behind this conjecture is that one ex-
pects, due to gravitational radiation, that general, dynamic, solutions of the Einstein

(6) We denote by Ox(r) any smooth function in M(¢*®) which verifies |8°f] = O(r®~%) for any
0<i<k.
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t
-dt*+ dx* + dy*+ dz® r=o0
z ; t
P
r

t = const

, 1
FIGURE 5A. Minkowski space in standard coordi- FIGURE 5B. Penrose diagram of
nates. the Minkowski space. Note that

both the past of 41 and future
of 4~ exhaust the entire space.

field equations settle down, asymptotically, into a stationary regime. Thus the con-
jecture, if true, would give a description of all the asymptotic states of the Einstein
vacuum equations. The conjecture is, essentially, solved in the analytic case (see
[14] for an up to date account) and only partially solved in the category of smooth
space-times, see [26] and [1].

In the next section we attempt to give a somewhat precise formulation of the

problem of stability of Kerr.

3. STABILITY OF KERR

3.1. Stability of the Minkowski space

The Minkowski space R3*! is, of course, the simplest solution of the Einstein
vacuum equations. Is it stable? Among all Kerr solutions, the Minkowski space is
also the only one free of singularities, or geodesically complete. Roughly speaking this
means that any freely moving observer in 1 can be extended indefinitely, as measured
relative to its proper time. Such a space-time is said to have a regular MFGHD. Does
this property persist under small perturbations?

The result stated below is a rough version of the global stability of Minkowski,
the complete result also provides very precise information about the decay of the
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curvature tensor along null and time-like directions as well as many other geometric
information concerning the causal structure of the corresponding space-time, see [12],
[30], [32] and [5]. Of particular interest are peeling properties i.e. the precise decay
rates of various components of the curvature tensor along future null geodesics.

THEOREM 2 (Global Stability of Minkowski). — Any asymptotically flat initial data
set which is sufficiently close to the trivial one has a regular MFGHD.

3.2. Cosmic censorship

In general, however, we expect maximal developments to be incomplete, with sin-
gular boundaries. An important result in this direction is the recent formation of
trapped surfaces result of D. Christodoulou [11]. Together with the well known sin-
gularity theorem of R. Penrose, his result shows that there exists a large class of
regular initial data whose MFGHD is incomplete. The unavoidable presence of sin-
gularities, for sufficiently large initial data sets, as well as the analysis of explicit
examples (such as Schwarzschild and Kerr) have led Penrose to formulate two fun-
damental conjectures, concerning the character of general solutions to the Einstein
equations. Here I restrict my discussion only to the so called weak cosmic censorship
conjecture (WCC), which is the only one relevant to the issue of stability of Kerr.
To understand the statement of (WCC), consider the different behavior of null rays
in Schwarzschild and Minkowski space-times. In Minkowski space light originating
at any point p = (to,xo) propagates, towards future, along the null rays of the null
cone t — tyg = |z — mp|. Any free observer in R'*?, following a straight time-like
line, will necessarily meet this light cone in finite time, thus experiencing the event p.
On the other hand, any point p in the trapped region r < 2m of the Schwarzschild
space, is such that all null rays initiating at p remain trapped in the region r < 2m.
In particular events causally connected to the singularity at 7 = 0 cannot influence
events in the domain of outer communication r > 2m, which is thus entirely free of
singularities. The same holds true in any Kerr solution with 0 < a < m.

FIGURE 6. Behavior of null geodesics in the domain of outer communica-
tion by contrast to those in a black hole.

ASTERISQUE 339



(1015) LINEAR STABILITY OF BLACK HOLES 103

WCC is an optimistic extension of this fact to the future developments of general,
asymptotically flat initial data. The desired conclusion of the conjecture is that
any such development, with the possible exception of a non-generic set of initial
conditions, has the property that any sufficiently distant observer will never encounter
singularities or any other effects propagating from them. To make this more precise
one needs define what a sufficiently distant observer means. This is typically done by
introducing the notion of future null infinity e which, roughly speaking, provides
end points for the null geodesics which propagate to asymptotically large distances.
The future null infinity is constructed by conformally embedding the physical space-
time (M, g) under consideration to a larger space-time(™ (M, g), § = Q%g in M, with
a null boundary " (where Q = 0,dQ # 0).

DEFINITION 1. — The future null infinity J * is said to be complete if any future null
geodesic along it can be indefinitely extended relative to an affine parameter.

‘Weak Cosmic Censorship

Generic asymptotically flat initial data have mazimal future developments possess-
ing a complete future null infinity.

Using the language introduced above, we are finally ready to state the following.

CONJECTURE 3 (Global stability of Kerr). — Any small perturbation of the initial
data set of a Kerr space-time has a global future development with a complete future
null infinity which, within its domain of outer communication(®), behaves asymptoti-
cally like a (another) Kerr solution.

4. STABILITY OF MINKOWSKI SPACE

To understand what would be needed in a proof of stability of Kerr it pays to
review some of the main ideas in the proof of stability of the Minkowski space. For
lack of space and time I will be very schematic. Also, for brevity, I will be discussing
only the proof in [12] and [30]. I will just note that the proof in [32] is based also
on a variation of the vector field method discussed below, even though the geometric
set-up is different.

(") Note however that the boundary of this extended space-time is not smooth, generically.
(8) That means, roughly, outside the black hole region.
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2

Lo

F1GURE 7. Domain of integration for Equation (4.2) with null bound-
ary A and two space-like pieces, X, 2.

4.1. Vector field method

The centerpiece, keystone, of the entire proof is a geometric method to derive decay
estimates for components of the curvature tensor based on a generalization of the
energy method for wave equations. The method has two distinct parts, a geometric
version of the multiplier method and the method of commuting vector fields.

1. Multiplier method. — One starts with the Bianchi identities which, due to the
vanishing of their trace, take the form of a Maxwell type system(:

(4.1) DRz, = 0, D’Ry 3.5 = 0.
A remarkable feature of this system is the existence of a fully symmetric, traceless,
covariant four tensor Qug-s, depending quadratically on R, which verifies the diver-
gence condition

D(;me«,(s =0,
and such that Q(X, Xo, X3, X4) is positive for any future, causal vector fields
X1, X9,X3,X,. Thus, for any three such vector fields X,Y,Z we find with
Q. (X,Y, Z) the one form obtained by contraction with X,Y, 7,

(4.2) D'Q,(X,Y,Z) = Em(X,Y,Z)

Ern(X,Y,2) = %(QU‘“W-,Y:ZHQ(X Mr,Z)+Q(X,Y, D))

where (X = #yg is the deformation tensor of X. We integrate the above iden-
tity on past domains of dependence™® 9(0,1), sandwiched between two space-like
hypersurfaces ¥y and 3 with future unit normals denoted by T

9) The two equations in (4.1) are in fact equivalent.
(10) 9) is such that the causal past set of any point in 9, in the slab between ¥, 31, is included in 9.
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Let & denote the null boundary of 9(0,1) and L the geodesic null generator (i.e.
D.L = 0 and g(L,L) = 0), of ", normalized by the condition g(L,T) = —1 on
Yo N A . Then, with Q = Q[R], Err = Err[R] as above,

(4.3)

/WQ(X,Y,Z,L)+/21 Q(X,Y,Z,T):/EO Q(X,Y,Z,T)—//@(O,I)Err(X,Y,Z).

Clearly, if X,Y,Z are Killing we deduce, Err[R](X,Y,Z) = 0, and thus derive a
conservation law. In the particular case when the vector fields X,Y, Z are also causal
we derive a very useful coercive estimate for the left-hand side of (4.3) in terms of the
integral on X, which may be interpreted as initial condition. In view of the fact that
the energy-momentum Q is traceless with respect to any pair of indices, the same
remains true if we replace Killing vector fields by conformal Killing ones, i.e. such
that (X7 is proportional to the metric g or, in other words, the traceless part (X)#
vanishes identically.

2. Commuting vector field method. — In addition to the procedure outlined above,
the generalized energy method allows us to make use of commutation with selected
vector fields. In fact, for any vector field X one can show that a suitable modified Lie
derivative of R, denoted by gR, verifies the following version of (4.1)

(4.4) D?(£xR)agys = Japr( X7, R).

We can thus replace Q = Q[R] with Q[Z’;R] and repeat the procedure above to
derive integral inequalities for suitable directional derivatives of R.

The procedure outlined above, based on Killing and conformal Killing vector fields,
seems to require a space-time with a lot of symmetries, such as the Minkowski space.
It pays at this point to consider how the method works in that case.

4.2. Minkowski space R"!

The Minkowski space R®*! comes equipped with two important geometric struc-
tures:

I. Family of Killing and conformal Killing vector fields

— Generators of translations in the z* directions: T, = %.
— Generators of rotations in the (u,v) plane: L,, = 2,0, — z,0,.
— Generator of scaling: S = z#0,,.

_ ; ; 11). — 9 _ 9
Generators of inverted translations®V): K, = 2x,2° 55 — (2°z,) 55 -

(11) Observe that the vector fields K,, can be obtained applying the standard inversion to the vector
fields Tp.
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Of particular importance for us are the causal vector fields T = &; and
Ko = (t* + r2)0; + 2tx'0;, which can be used to derive coercive energy identi-
ties. Here 72 = |z|2 = (z!)2 + .- (z™)2.

II. Canonical double null foliation. — This is given by the level surfaces of two optical
functions u = t —r and u = t+r, i.e. solutions of the Eikonal equation m®? Oqudgu =
m“ﬂaagagg = 0. With respect to u,u the vector fields Ty, S and Kq take the form

1 1 1
(4.5) To=3(L+L), S=Z(uL+uL), Ko= §(u2L+u2L)

where L = —maﬂ(?ﬁuaa =0;+ 0, and L = —maﬂaﬁga = 0y — O, are the null
generators of the corresponding null hypersurfaces. Observe also that the rotation
vector fields IL;; = z;0; — ;0; (denoted also by Q;;) are tangent to the leaves of both
foliations.

To see how these vector fields can be used consider solutions of the standard wave
equation (¢ = 0, with compactly supported data. Let Q = Q[¢] be the associated
energy momentum tensor (see (6.2) in Section 6), i.e. D?Q,p = 0. The standard
energy identity, associated to the time translation Ty = 0; allows us to derive the
standard energy conservation identity

06 = [ 106 < Iy
b 2o

with Iy a constant depending only on the initial data of ¢ and |0¢|? = Y 0_, |8.9|>.
Using the causal conformal Killing vector field Kq (see details in Section 6 for dimen-
sions n > 3), we can also estimate

6 < / (14 12)[06[ < Ip.
I Yo

The Killing vector fields T, and L, commute with (], while S preserves the space of
solutions to O¢ = 0 (since [, S] = 20). This leads us to introduce the generalized
Sobolev norms

(4.6) Qrl0)() Z Z 1Zx., Lx., - Lx; bllL2(m,)

=0 Xiy 0, X,

with the sum taken over all Killing vector fields T, L and scaling vector field S.

The crucial point of this method is that these generalized energy type norms are
bounded by initial data, i.e.,

Qk[8](y) S Lil0)(0) < Io.
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PROPOSITION 1 (Global Sobolev inequalities). — Let ¢ be an arbitrary function in
R such that Qi[¢] is finite for some k > %. Then for t > 0, we have with
u=t—|z| and u =t + |z|

1

(1 +g)"T_1(1 + Iul)% Qk[¢’]

(4.7) l¢(t, )| < ¢

Since @y [¢] is bounded, for solutions of (¢ = 0, depending only on initial data at
t = 0, we deduce a strong, realistic, uniform decay estimate.

A similar analysis can be done for solutions of the Maxwell equations or the lin-
earized Bianchi equations in Minkowski space. It is also important to realize that
one can be more economical with the vector fields we use. Thus, for example, one
can derive the same information using only the vector fields Ty, S, K¢ and rotations
0;; =L;j, 4,5 =1,...,n. The upshot of the vector field method is that it allows us to
derive realistic decay estimates by a flexible procedure which can be easily generalized
to perturbations of the Minkowski space.

4.3. Deformation method

Since a general perturbation of Minkowski space cannot preserve any symmetries
the best we can hope for is to substitute them by approximate symmetries. We are
thus looking to replace some of the conformal Killing vector fields of Minkowski with
almost conformal Killing, i.e. vector fields whose deformation tensors are sufficiently
small so that we can still derive useful estimates for the curvature tensor. The idea is
to define these vector fields starting from two special functions whose role is to replace
the optical functions u,u of the Minkowski space. In the original proof of [12] this is
done by choosing a suitable defined optical function u and a suitable time function ¢.
The function u is then defined to be u = ¢t — 2u. In [30] one picks instead two exact
optical functions v and u. One can then define vector fields Ty, S, K¢ by mimicking
the formulas (45) (with L = —g*#8,udp, L = 2To— L and Ty, the unit future normal
to the maximal foliation X;) and rotation vector fields by a geometric method tied
u,t or u,u. To make the method work we need to make sure that the errors generated
in the energy inequalities derived above are sufficiently small. To see, very roughly,
what this entails consider (in the case of the (¢, u) foliations of [12]) a quantity of the
form:

o = /E QIZoR](Ko, Ko, T, To).

Based on the vector field method outlined above one can show that the time dependent
quantity @(t) verifies, schematically, an identity of the form

Q) = QO)+6@1), &) = 6a(t)+ E2(2),
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with
t ——
Ei(t) = /0 ds /E QIZoR] (Ko, Ko, To)

and Fy(t) the additional error term generated by the right-hand side of (4.4). Here
Q(Z’q\)R, Ko, Ko, Tp) is an expression quadratic in Z’BR and linear in the deformation
tensors of Ko and Ty. To make this work, i.e. obtain a global bound for §)(t), by
a Gronwall inequality, we see that we need appropriate (and compatible!) decay

estimates for both R and the traceless parts of the deformation tensors of Kg, Tqy
and Q.

We summarize the above considerations as follows:

1. The proof of stability of Minkowski space in [12] and [30] requires precise decay
information for the curvature tensor R.

2. In a first approximation one may assume that R verifies a linear field equation'?
in Minkowski space (linearized Bianchi). The vector field method allows one to
derive realistic decay estimates for components of R.

3. One can derive, essentially, the same decay estimates for the true curvature ten-
sor of a perturbed solution of the Einstein equations, by a deformation method
in which one deforms part of the geometric structure of the Minkowski space
((u,t) or (u,u)) and an appropriate number of conformal Killing vector fields
(i.e. To, Ko, Sp and rotations Q). The key here is to derive, simultaneously, suit-
able decay estimates for R and the traceless parts of the deformation tensors
of these vector fields. These estimates have to be strong enough to be able to
control the error terms generated in the energy estimates.

4.4. Non-linear stability of Kerr

In view of the above discussion a proof of the non-linear stability of the Kerr family
requires:

1. A robust method to derive decay estimates for linear field equations in a fixed
Kerr background. Such a method has to take into account the geometric fea-
tures of the Kerr metric, such as the event horizon, ergo-region and trapped
null geodesics. It cannot rely only on the continuous symmetries of the Kerr
metric, i.e. its Killing vector fields, which are both too limited and have serious
degeneracies.

(12) Note also that the result of Lindblad-Rodnianski [82] is based on a linearization at the level of
the metric, which brings in the standard wave equation.
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2. Find an effective linearization procedure, such as the linearized Bianchi equa-
tions(*® in the stability of Minkowski space, to which the methods sketched
above apply.

3. Find a way to deform the geometry of the Kerr solution, taking into account
that any small perturbation of a Kerr metric may lead, asymptotically, to a
different Kerr metric.

5. LINEAR STABILITY OF THE KERR FAMILY

As discussed above a first, essential step, in the proof of stability of the Kerr solution
is to establish its linear stability, which amounts to prove appropriate decay estimates
for solutions to the specific linear field equations in a fixed Kerr background which
arise by a suitable linearization. In a somewhat simplified version of linear stability,
one would like to show, by robust methods, that all solutions of the covariant wave
equation

(5.1) g =0, 0<a<m,

in X(a,m), 0 < a < m (or more generally a fixed stationary, axially symmetric
space-time with a non-degenerate horizon) with reasonable initial data on a space-
like hypersurface X, as in the figure below, are well behaved*® in the future of Xg
(see figure below).

A more elementary task, and yet very difficult in the rotating case*®, a > 0, is to
show that solutions remain bounded in the entire exterior region of the space-time.

(13) Note however that the exact analog of the Bianchi equations in a Kerr background are ill posed.
(14) Decay at rates comparable to those in the flat case.

(15) The much simpler non-rotating case a = 0, corresponding to the Schwarzschild space-time, was
solved previously in work by Kay and Wald.
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5.1. Difficulties

The following are the main difficulties one has to overcome to prove linear stability,
in the sense discussed above.

— K(a,m) has only two linearly independent Killing vector fields, the stationary
one T and the axially symmetric one Z. In the Schwarzschild case we have,
of course, an action of the full rotation group SO(3) and thus two linearly
independent rotation vector fields.

— The stationary Killing field T degenerates in the ergo-region of X (a,m), i.e. it
becomes space-like. The presence of an ergo-region is connected, physically, with
the so called Penrose process according to which energy can be extracted from a
rotating black hole and thus contribute to linear instability. This phenomenon
is also known in the Physics literature as super-radiance. Even in Schwarzschild,
T loses its time-like character on the horizon. Thus the basic energy identity
provided by T loses information near the horizon, for a = 0, and loses coercivity,
thus seemingly useless, for a > 0.

— K(a,m) possesses a family of trapped null geodesics, i.e. future null geodesics
which neither go to J * nor penetrate the black hole region. Though, fortunately,
these are unstable they provide however very serious technical difficulties to
derive decay information. In the case a = 0 the situation is somewhat simpler
as one can show that all trapped geodesics are restricted, or asymptotic, to the
surface r = 3m.

5.2. Main new ideas

I try to summarize below some of the main new ideas which have crystallized in
the wake of the pioneering works of Blue-Soffer, Blue-Sterbenz, Dafermos-Rodnianski,
Tataru-Tohaneanu, Andersson-Blue, mentioned in the introduction.

— The introduction (by Dafermos-Rodnianski) of a new vector field defined in a
neighborhood of the horizon (called the red shift vector field), which I will
denote by H, with coercive properties in a small neighborhood of the horizon,
which compensates for the degeneracy of the stationary vector field T.

— A robust mechanism, due to Dafermos-Rodnianski, for proving boundedness
of solutions for Kerr space-times with a <« m, despite the notorious problem
of super-radiance. This is based on a decomposition, invariant relative to the
actions of T and Z, into super-radiant and sub-radiant modes and the properties
of the red shift vector field H.

— Discovery on an effective treatment of the trapped region, based on the fact that
all trapped null geodesics are unstable. In Schwarzschild this can be achieved by
a suitable modification of the so called Morawetz vector field, which I will denote
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by M. In K (a, m), for a small enough, there are three competing methods [17],
[43], [4] which deal effectively with the trapped region. They all depend, in one
form or another, on the integrability properties of the geodesic flow, remarkable
fact due to Carter [8].

— Decay in both Schwarzschild and Kerr is due to a third vector field, which is a
suitable modification of Kg from Minkowski space®). Recently, in [18], Dafer-
mos and Rodnianski gave a new, more flexible, treatment of how to generate
decay from null infinity without using K.

— Traditionally energy estimates require integration, using appropriate vector
fields, on large causal domains. Thus one was restricted to look for vector fields
which are coercive in such regions and, unfortunately, there are not enough of
those. The new methods, especially those of Dafermos-Rodnianski, point the
way to a more flexible use of vector fields by concentrating on specific geometric
regions where degeneracies occur (such as the event horizon) and finding new
non-causal vector fields (such as the red shift H), which provides an effective
cure for the missing information. The lack of causality of H can then be com-
pensated by patching it with other vector fields, such as T or M. A similar
patching procedure can be implemented in a neighborhood of null infinity, see
[18]. :

5.3. Main results

The first result, on boundedness of solutions to the wave equation (5.1), applies to
the exterior region of a fixed stationary, axially symmetric space-time M, sufficiently
close to Schwarzschild, see [20].

THEOREM 3 (Boundedness). — Any solution (5.1) with reasonable initial data on
a space-like hypersurface Lo, is globally bounded™™ in the future of ¥o. The result
applies in particular to Kerr space-times K (a, m) with a < m. The same method can
also be applied to derive boundedness of arially symmetric solutions of (5.1) for the
whole range 0 < a < m.

The next result concerns decay of solutions in the Schwarzschild case a = 0. The
result is expressed relative to the pair of optical functions u =t —r* and u = t + r*
where r* = r + 2mIn(r — 2m). Observe that along the horizon, to the future of 3,
we have u = —oo but, for the region we are interested in, we have u finite.

(16) Such a vector field is also used in the stability of the Minkowski space.
(A7) Tt also has bounded, non-degenerate, total energy.
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FIGURE 7A. Decay in Schwarzschild can be
measured with respect to the double null
foliation given by the level hypersurfaces of
u=t—r*andv=u=t+r".

FIGURE 7B. Decay in Kerr can be measured
with respect to a foliation ¥, obtained from
3o, by using the T- flow. Note that %o
consists of two null portions and a space-

like one in the middle.

THEOREM 4. — Let ¥ as in Figure 8A above, in the exterior of the Schwarzschild
space-time K (0,m). Any solution to the wave equation (5.1), with reasonable initial
data on Yo, admits the following estimates:

1. There exists a constant C such that, uniformly™® on all points to the future
of o

| Q

lp| <

2. For any R > 2m, we have, with a constant Cr, for allT™ > R,

Cr
E e B
|T¢| — |ull/2'

A similar theorem can be stated and proved for K(a,m) with a > 0 suffi-
ciently small. In this case however the functions v = ¢t — r*, u = t + r* where
re =7+ 7ryIn(r—ry), 7y = m + vm2 —a? are not optical functions. To avoid
this problem one can measure decay in a different way. The idea is to start with
hypersurface ¥, as in Figure 8B, and translate it using the flow ¢, associated to the
stationary Killing vector field T == ;. This defines a foliation X, = ¢, (o).

THEOREM 5. — Let Yo and foliation Y. defined as above (see Figure 8B), in the
exterior of the Kerr space-time K (a,m), with a sufficiently small. Any solution to
the wave equation (5.1), with reasonable initial data on g, admits the following
estimates:

(18) The result has been recently improved by J. Luk, see [33] using geometric methods. A similar
result was also announced by Tataru in [42] using Fourier methods.
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1. There exists a constant C such that, uniformly(®,
[r'/2¢] < CT71H°.

2. Also, uniformly,
1-6

lrg| < Ct~ 77 .

6. VECTOR FIELD METHOD FOR THE WAVE EQUATION

We discuss here modifications of the vector field method for the wave equation in
a globally hyperbolic Lorentzian space-time (X, g),

(6.1) Ogp = 0.
Multiplier method. We start with the energy momentum tensor,

1
(6.2) Qop = Qapl] = Da¢Dgé — 28as (8""D,¢D, ).

One can easily check that Q,, is symmetric and verifies the local conservation laws
D¥Q,, = 0 as well as the positive energy conditions Q(X,Y) > 0, for all causal,
future oriented vector fields X, Y. Unlike the Bel-Robinson tensor encountered above,
the energy-momentum tensor of the wave equations is not traceless, in the interesting
physical dimension n = 3. Indeed g**Q,, = ——"—;—lg’“’D,‘q&quﬁ.

Given a vector field X with deformation tensor X7 = £xg, ie.,
) Tas = DeXg + DpX,, we have

1
(6.3) D*(Qu.X") = §Q'“’ X7,

We integrate (6.3) on a past domain of dependence®® sandwiched between two space-
like hypersurfaces Y9 and ¥; with future unit normal T'.

Let " denote the null boundary of the future set of 9(0,1) and L the geodesic
null generator (i.e. DL = 0 and g(L,L) = 0), of /A", normalized by the condition
g(L,T)=—-1on XgNAN.

Integrating (6.3) in 9(0,1) we derive the formula

1
X,L X,T) = X, T) - ~Q- X,
fexn+ [ axn= [ axn-[[ q-r

This formula is particularly useful if X is Killing and time-like in which case
(X)7 = 0 and the two boundary integrands on the left are positive. In the par-
ticular case when g is the Minkowski metric and X = Ty = 8, is the time derivative

(19) Note that the loss of § was recently removed.
(20) ¢)(0, 1) is such that the causal past set of any point in 9, in the slab between 3¢, 21, is included
in 9.
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2,

Zo

FIGURE 8c. Domain of integration for Equation (6.3) with null bound-
ary 7/ and two space-like pieces, Yo, 2.

with respect to the standard coordinate ¢, we derive the standard law of conservation
of energy. The method turns out to be useful, even if X is not Killing, by adding a
lower order correction to the pointwise identity (6.3).

More precisely we modify the energy momentum Q as follows,

1 1
Qu)(X,Y) = QXY)+gwé-Y () - 7Y (w) ¢,
with w a scalar function to be chosen appropriately.
PROPOSITION 2. — The following integral identity holds true in a past domain of

dependence as above,
[ewxn+ [ @wen = [ Quen-[  Buex)
Vs >4 Sh 7(0,1)
with integrand Err = Err(¢; w, X) given by
1 1
(6.4) Err = 5(Q - D w - g(dg, dg)) — ZD(“’W-

Proof. — Consider P, = Q,, X" + %wd)D n— %Dquﬁ and calculate its divergence,
DHP, = i7" Q, + swD#¢D, ¢ — ;(Ow)¢? which we then integrate on our causal
domain 9. O

REMARK. — Typically we want to choose w = “52tr ) to cancel the lagrangian
term in 7Y Q,, = Q. — ”—;—ltmD“QSD,@. In some situations, as in Examples
2, 3 below, it pays to choose instead w = 1tr )7,

Below are two important examples (both due originally to C. Morawetz) in
Minkowski space, in a domain 9 = {t,z)/tg < t < t1,|z|] < t —ro} C R
sandwiched between ¢ = {t = to} and ¥; = {t = t;}. Thus, L = 0; + 0, and
T = T = 3t.
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Ezample 1. — Let X be the conformal Killing vector field Ko = (t2 + |z|?)8; + 2tz*9;
with deformation tensor ®o)x = —4tm. Thus tr(®o)r) = —4(n + 1)t. Since
tr(Q) = —251g(dp,dp), we choose w = 2=1(tr o)) to make the term
Q- X7 4+ wg(dp,dp) vanish identically. We derive the conservation law, with
w= "T‘l(tr (KO)TF)Z

(6.5) /W Q) (Ko, L) + /E Quy (Ko, T) = /)D Q) (Ko, T).

We can easily check that both le Q(w)(Ko,T) and fﬂ, Q(w) (Ko, L) are positive.
In fact one can show, for n > 3 (see [29]), for a small constant ¢ > 0, with
L=06;+0,,L=0,—0,

Q) (Ko, T) 2 c((t +7)*|Le|* + (t — r)*|LI* + | Vo[> + |4]°).
Ezample 2. — Start with X = 0,. We have

2 T; T; .
(X)7-|-00 = (X)’]l'oi = 0, (X)Tf'ij = ; (61']' — ml—l‘.’—,) , 4L,]= 1’”_,71“

Hence, tr X7 = &T_—l) Thus, choosing w = 1tr @), we have, with ¥ denoting the
induced covariant differentiation on the spheres S(¢,r) of constant ¢ and r

2
Q- Or + wg(dg, dg) = DaDy M7 = 2|74’

Do = 1A (D) 4

In the particular case when n = 3, since A(%) = —4ndy, we deduce
1
Err(¢;w = %tr X r, X =0,) = ;|y¢|2 + 2m6o.

Therefore, with w = $tr X7 = 2

t1 1
o [l [ 9o = [ Q@8- [ Q@80 | Q@ o)

One can easily bound the surface integrals on the right-hand side by energy estimates
(using vector field X = T = ;) and thus derive a very useful space-time inequality
for the left-hand side.

FEzample 3. — Take as vector field X' = f(r)X = f(r)0,. We have, in general,
Um0p = f X 7as + DafXs + DsXa, tr(FX)7) = ftr X7 + 2X(f). Hence, for
X = 0,, we deduce

Q- Mr = fQ- D +2f(n)|o,¢ - f'(r)e(dd, do)
§ Xon(dg, dg) +2£'10,417 ~ (5 for O + 1')g(d, d).
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Therefore, for w = 1tr UX), since Xn(dg,d¢) = |V¢|? and tr X7 = 2n=1)

Q- 7 +wg(dp,dp) = (7")|77¢|2+2fl(7")|a oI’

1 I N 1)f(7")

For n = 3, with F a primitive of f, i.e. f(r) = F'(r), 103tr(U®)1) = 1A?F and,
hence, with w = w(fX) = %tr((fX)‘ﬂ),

Bre($iw, fX) = (r) On(d6,d) + 27 (16,0 ~ 3 ¢ ATF(r).

To obtain a coercive estimate we thus need f, f/ > 0 and A%F < 0. One can easily
check that f(r) =
A =1 we derive.

+ ——, 0 < X <1 verifies these requirements. In the particular case

PROPOSITION 3. — The following estimate holds true for arbitrary solutions of
O¢ = 0 in R3*L, for an arbitrary R > 0,

L, (mer i) < [ o

To summarize: The multiplier method consists in finding vector fields X and scalars
w = w(X) such that at least one of the following statements holds true in a past causal
domain 9:

— The vector field X is coercive, i.e. we have both Err(¢;w(X),X) > 0 and
Q) (X, L), Quu)(X,T) are positive at the future boundary of P.

— The vector field X is positive, i.e. Err(¢; w(X),X) > 0, and we have a way to
estimate the boundary terms along 4" and X;.

In practice it is very hard to find good vector fields X which achieve either of the
two conditions. As we have seen, in the stability of the Minkowski space, one defines
vector fields X, analogous to Ty, Kg on Minkowski space, such that the integrand Err
is sufficiently small so that the corresponding space-time integral can be controlled.
Also, as we shall see in the next section, it is very difficult to find globally defined
vector fields X and scalars w = w(X) for which Err(¢; w(X), X) has definite sign.
The new idea, pursued by Dafermos-Rodnianski, is to concentrate in regions of space-
times, not necessarily causal domains (such as a small neighborhood of the event
horizon in Schwarzschild or the entire ergo-region in Kerr), where the natural Killing
vector fields of the space-time are degenerate and look for new vector fields for which
Err(¢; X.)\) has a sign in the restricted region. Once we control these degenerate
regions we can hope to get a global coercive vector field by a patching procedure.
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6.1. Commuting vector field method '

As in the stability of the Minkowski space it is not enough to derive estimates
by the multiplier method. One needs in addition to commute the equation with
enough suitable vector fields. In the case of the wave equation this is provided by the
following.

LEMMA 1. — For an arbitrary vector field X we have,
Og(X¢) = X(Ogg) — F7*¥DDgé — (2D? Prpg — Do (tr X)) D9

In particular, if X is Killing and Og¢ = 0 we infer that Og(X¢) = 0 and therefore
we can apply to X (¢) the same multiplies method estimates as for ¢. There are cases,
however, where the error terms obtained by commutation are not small but contain
instead terms which lead, by integration, to positive bulk integrals. This, as we shall
see, is the case of the red shift vector field discussed below.

7. RED SHIFT

In [17] Dafermos and Rodnianski prove a general result concerning the existence
of a red shift vector field in a neighborhood of a non-degenerate Killing horizon. This
is a null hypersurface /" with a null generator L (see appendix for definitions) which
is the restriction to A of a Killing vector field N, with complete orbits and flow
(¢+)r>0, and such that w = g(DL, L) < 0, for an adapted null companion®" L. It
is easily seen that the future horizon of any X (a,m) with 0 < a < m verifies these
assumptions. The result below, however, is a lot more general.

PropoOsSITION 4 (Dafermos-Rodnianski). — Given such a null hypersurface, there
erist a neighborhood U of N and a strictly time-like, smooth vector field H on U,
both invariant®?, with respect to the N-flow ¢, 7 > 0, such that in U, for a constant
c>0

(7.1) ®r.Q > cQ(H,H).
Moreover, given any A > 0, we can choose H such that, all along N

7. Q> ces(¢)? + A((ea(9)® + [V9?).

The proof of the proposition is based on the following lemma.

(21) In fact w can be made constant, related to the surface gravity of the Killing horizon.
(22) Or T-invariant in a stationary metric such as Kerr.
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LEMMA 2. — Assume given a small portion of null hypersurface &, in a neighbor-
hood of a compact cross section S, with an adapted null pair (e3,e4) (see appendiz)
such that w = g(Dyey,e3) < 0. Ezxtend eg in a small, space-time, neighborhood of S
by solving the differential equation

DxX = —A(X+N), Xlwzeg,

where N is an arbitrary smooth extension of e4 and A a sufficiently large positive
constant, whose size depends on A > 0 below. Then, in a full neighborhood of S,
along N, we have

(72) 5@ m 2 0ey(9)? + A((ead)? +[V6?).
Proof. — See appendix. O

The proof of the proposition follows easily by applying the lemma to the case when
L is the restriction of the Killing vector field N (recall that 7 is a Killing horizon)
with complete orbits. In that case it suffices to construct X in a small neighborhood
of S (restricted, say, to a space-like hypersurface ¥ passing through S) and then
extend it by using the flow (¢;),;>0 of N (or T in a stationary space-time such as
Kerr), in a whole neighborhood of the horizon of the form % = U;>¢¢,(U) where U
is a neighborhood of S in ¥. Since £y X)7m = £NnPxg = Lx £ng = 0 the positivity
property of Q - ¥)7 on the neighborhood of S in ¥ is preserved all through the
neighborhood % of . Moreover, the same is true for the deformation tensor of the
vector field H =N + X.

It remains, however, to check whether it is realistic to expect that L = N is both
Killing and verifies the condition —w > 0. This property defines in fact non-degenerate
Killing horizons. In the particular case of the Schwarzschild space-time one can check
directly that the stationary Killing field T verifies both properties along the event
horizon. The same is true for all Kerr solutions with a < m, but in that case the
vector field N differs from T, which is space-like on the horizon.

In fact the following general result holds true, see [2].
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PROPOSITION 5. — Any non-expanding, bifurcate, null hypersurface (W', N, S) ad-
mits a future directed Killing vector field N, defined in a neighborhood of S, which
s tangent to the null generators of the horizon. Moreover, given an arbitrary null
geodesic vector field L on V" with affine parameter u, N must be of the form N = xu L
for some constant k > 0.

7.1. The red shift vector field as commutator

The red shift vector field provides useful estimates near horizon even when used as
commutator. In view of Lemma 1 we have, with 7 the deformation tensor of vector
field H, Og (He) = —m*¥D,Dp¢ + - - -, where we ignore the terms linear in the first
derivatives of ¢, which may be assumed as having been already estimated. One can
easily check that 73, = 0, see Appendix 10.2. Thus, W“ﬂDang) does not contain the
derivatives D4D,¢. Hence (see Appendix 10.2), since w4y = —2w, T34 = w,

—71*fD,Dgp = 2wD32¢—2wD3D4¢ + 14, D3D, + DDy + - - -

One can also eliminate the term D3D4¢ using the equation [J¢ = 0 since the principal
terms of [J, expressed relative to our null frame, are of the form —2wD3;D4+3§*°D,Dy.
We deduce that

(7.3) Og(H¢) = 20D36 + AeD3Da¢ + BeyDaDpd + - -

with bounded A, B. Now, when applying the multiplier method to (7.3), i.e. replacing
¢ with H(¢) in the previous step, we can take advantage of the negative sign of 2wD%¢
and absorb all other second derivatives choosing the constant A > 0 in (7.2) sufficiently
large.

7.2. Modified Morawetz vector field in Schwarzschild

To take care of the trapped region r = 3m in Schwarzschild one needs to con-
struct a vector field of the form h(r)d, similar to the one of Morawetz in Exam-
ple 3 above. In fact it is better to work with the modified Regge-Wheeler coordinate
r* = r + 2mlog(r — 2m) — 3m — 2mlogm, such that r« = 0 for r = 3m. In these
coordinates the Schwarzschild metric takes the form p( — dt* + (dr*)?) + r?do? with
p = (1 —22). Observe that % =p~! and 8p = 2Fp. Hence I'M.,.. = = I
and T, . =i, = I, =T% = 0. Also, for an arbitrary orthonormal frame ey, e,
on the spheres of constants r and ¢, D,ep, = V,ep — 54;&8,*.

We look for a vector field X = f0,~ and scalar w = w(f) such that Err(¢; w, X) > 0
for an open neighborhood, in r* of r* = 0. To motivate the calculations consider
first X = 0,« for which we can easily calculate the only non-xero components, with
respect to the frame O;,0,+,e1, e of its deformation tensor, i.e. (X, = —2%u,
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K pupe = 2%y, wap = 2505, Thus, trX)m = 42 4 4 Also, since, g(d¢,dd) =
—p~1(0ep)? + (0 ¢)? + | V| we derive

Q8 (X)'frag = (X)‘fr(d¢, d¢) — %tr (X)ﬂ'g(d¢a d¢)
om 1
= (77; - 5tr<"’ﬂ) g(de, dg) + 2= Vo2
2
_ P g(ds, dg).
Thus,
Qe Mg, = — Lg(dg, do).

To eliminate the lagrangian term we are led to choose w = £ for which

1
3Qw) - @ =

which, unlike the case of Minkowski space, does not have a definite sign.

We look for a modification of X of the form fX = f(r*)8,.». As in Example 3
above we find

Q- Ur = jQ- ®r+2Q(df,X) = fQ- M +2fu'Q(X, X)
2f Le(dp,dg) + 2f 1 Qpepe

2fu

20 g (ap,dg) + 27 ((0,-0)” — Suald,d4))

(7.4) =

2
2 000 — (74 212 ) g(ag, ).
Recalling Formula (6.4), with w = f' + 22, and setting W = —1A(w), we derive

+ 0 (0 0)? + W

Err(¢7 w, faT*) = fr

To obtain a coercive estimate we need to choose a function f = f(r*) such that f’ > 0,
f %’-’1 > 0 and W > 0. This cannot be done, but one can find an f which verifies
the first two properties and such that W > 0 in a small neighborhood of r = 3m.

Therefore, if the function ¢ is given by its decomposition into spherical harmonics

¢=Z¢f,

£>0

then for the part ¢ = 3,5 ¢, with L sufficiently large, for which

[woer = 255D [ o,
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we can find an appropriate function fr, bounded, increasing and vanishing at r = 3m,
and a scalar wy, such that Erry, = Err(¢r; wr, fr(r+)0r+) has the lower bound

Erry, > 0/ (fLT -23m(|W5L|2 +10:0L1%) + 2fL 7 (O L) + F|¢L|2)
S2 S2 T

for some positive function F. For the remaining first L harmonics, one can find
functions f, and scalars w, such that, for Err; = Err(¢g; wy, fo(r«)0r)

/82 Err; > 0/82 (F(IVgel® + 18:6el*) + 2 17" (8= pe)® + Flel?) -

Combining we obtain

r2

r—3m -
/ JEmg) 2 e / (ST VSPR + 106P) + 27 (000 + FlgP)
s s
Two alternative approaches for obtaining a positive definite quantity, without a de-
composition into spherical harmonics, have been advanced. One relies on combining

(7.4) with an appropriate choice of a scalar w and the red shift vector field, see [35].
The other, [18], exploits a combination given by the expression

Qu, [0] - 7+ Qu, [0(9)] 250 7

with angular momentum vector fields @. In all of these approaches the generated
expression degenerates, relative to the principle terms, at the photon-sphere r = 3m,
thus necessitating a loss of regularity to obtain a non-degenerate estimate.

The corresponding construction in Kerr with small angular momentum is much
more subtle, as the trapped set is no longer confined to a co-dimension one manifold
r = 3m in physical space. Its structure has to be now captured in the cotangent space,
where it is governed by the geodesic flow. In Kerr, the geodesic flow is integrable,
which equivalently can be expressed in terms of the separability of the wave equation—
respecting the decomposition

o(t,r,0,0) = Z /ei“’teim“’ZS,\,m(aw,G)u‘;",m(r),
m>0 A
where Sy, (aw, §) are the oblate spheroidal harmonics and A is the Carter constant—
an additional, to w and m, integral of motion—or existence of a Killing (Carter) tensor.
In the Kerr case with a < m, the (degenerate) analog of the Morawetz estimate can be
derived with the help of three different approaches. In the first, one replaces a vector
field f(r*)0,~ by an appropriately constructed pseudo-differential operator, [43]. The
second approach, [17], combines different X estimates with appropriately defined
functions fy; , and scalars w;, , dependent on the geometric frequencies w,m, A. In
the third approach, [4], one explores a combination of X type identities for ¢ and for
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the quantity obtained by fusing the Carter tensor and ¢. All three approaches rely
on the integrability of the geodesic flow and in particular imply the estimate

Err(g) > ¢ /E (VO +18:6P) + F2(0r-8)° + FloP)

I

for some nonnegative function f;, vanishing in a neighborhood of r = 3m, and positive
functions f, and F.

8. BOUNDEDNESS RESULTS

8.1. Simplest case

Consider first a static space-time (M, g) which is the MFGHD of an initial data
set Yo and such that the Killing vector field T is everywhere time-like and orthogonal
to o 3. Let t be the time function associated to ¢, i.e T(t) = 1 and t = 0 on Xy.
Starting with a local system of coordinates x = (z,...,2") on £y and parametrizing
points along the orbits v of T by the parameter ¢ and the x coordinates on v N Xg we
easily see that U = ¥y x R and the space-time g metric takes the form

(8.1) g = —n?(z)dt* + gij(z)dz'dz?,

with £ = (z!,...,2") an arbitrary coordinate system on ¥, and g a Riemannian
metric. Our assumptions imply, for a sufficiently small constant g, uniformly in %

Mo <n<Agh Xolél? < gi€E < NG

Also, relative to our system of coordinates, T = 8;. We normalize T by introducing
the vector field ey = n™'T = n~'9;, unit future normal to the space-like foliation ¥,
defined by the level surfaces of . We decompose a space-time vector field X relative
to the unit time-like e(q),

(8.2) X=X%p+X, gleo),X)=0,

and define the positive definite Riemannian metric,

(8.3) h(X,Y)=X°-Y° +g(X,Y).

Given an arbitrary tensor-field = we denote by |w| its norm with respect to the

metric h.

(23) This implies, in particular, that all orbits of T are complete, see [13], and must intersect X
(orthogonally), see [15].
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PROPOSITION 6. — Any solution ¢ of the wave equation
(8.4) Ogé =0, Blt=0 = d0), OtBlt=0 = b(1)
with smooth, compactly supported, initial data ¢(o), (1) on Lo is globally bounded.
Proof. — According to our general procedure we have, with Q the energy-momentum
tensor

poN %o
Hence, since Q(T, e(q)) = %n|D¢|2, and Ao < n < \j! we deduce
(3) Do <32 [ Do S C

I o

with a constant C depending only on Ag and the initial data. In view of our definition
above, we have |D¢|? = (e0)¢)* + |[V|?, where V denotes the induced covariant
derivative on ¥;. We plan to bound the L® norm of ¢ in terms of the L? norms of
its higher derivative, according to Sobolev inequality, ||¢(t)||Le < iy [ViA(2)]| L2
for s > % To get the higher derivative we commute [J with T. Since T is Killing we
must have O0T(¢) = 0 and therefore, repeating the first step

[ popsc
Tt

from which, in particular, [; [97¢|* < C. Now we can write®) 0 = —n~207 + Ag
from which we infer that |Ag¢| 2(s,) is uniformly bounded. Using the Bochner
identity for Ay, the boundedness of the curvature tensor of g (and of derivatives of n)
and the first derivative estimates already established we then deduce that || V29| 12(x,)
is uniformly bounded in ¢. Using the vanishing of ¢ at infinity (on each ) and elliptic
estimates, we can also derive a bound for ||¢||z2(s,). We can repeat the procedure,
by commuting (g once more with T, to establish bounds for all higher derivatives
IV*@|lL2(s,), k = 0. Thus, by Sobolev, ¢ is uniformly bounded. O

8.2. First degenerate case

We assume next the more realistic hypothesis that T is not time-like everywhere
but degenerates in fact along a horizon, i.e. a null hypersurface /" along which T is
tangent to its generators. This, of course, is the situation in Schwarzschild. Since
we have to work with space-like hypersurfaces transversal to the horizon we will not
make use(®® of the condition that T is hypersurface orthogonal. We choose an original

(24) Note that Ag differs from Ay by first order terms in V¢.
(25) Tt can be shown, however, that a stationary space-time with T tangent to the generators of the
horizon must be in fact static.
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space-like hypersurface ¥y and translate it using the flow of T to obtain a space-like
foliation X, as in the picture below.

It is easy to show that away from the horizon we still have Q(T,eq) > C|Dg|?.
The constant C' however degenerates as we approach the horizon. Yet some control
remains. Thus, precisely on the horizon, we have using an adapted null frame, as
in appendix, normalized such that eq = %(63 + e4), and such that T = —wey with
w = g(Dyeyq,e3) < 0. Therefore, the energy density Q(T,ep) = —%w(Q(e4,e4) +
Q(es, e4) = —3w((e4¢)* +|¥4|?). In other words we are only missing the transversal
derivative e3(¢). Similarly, the flux density Q(T,es) = —wQ(es, e4) = —wles(d)|?,
i.e we are missing the angular derivatives Y¢. Through a clever argument Kay and
Wald, see [27], were able to overcome these difficulties and still derive a boundedness

result without using any new vector field.

PROPOSITION 7. — Any solution ¢ of the wave equation (8.7)

(8'7) Dg¢ =0, ¢|t:o = ¢(0)7 3t¢|t:0 = ¢(1)

in Schwarzschild space-time with smooth initial data ¢y, d(1y on o, decaying suffi-
ciently fast at infinity, is globally bounded in the domain of outer communication E.

Proof. — The red shift vector field of Dafermos-Rodnianski provides a far more
powerful and compelling proof, which holds in fact for any stationary space-time
in which T is everywhere time-like in the complement of the event horizon. The idea
is that, precisely in a neighborhood of the horizon A", where the energy identity due
to T becomes degenerate, we gain the missing information from the red shift vector
field H. Indeed, along the horizon H is future time-like. Hence the energy density and
flux density associated to the red shift vector field H provide precisely the information
we would get from the Killing field T if there was no degeneracy at .

So far this information is purely local. To obtain a useful estimate we need to also
make use of the fact that "7 -Q > ¢ Q(H, H) in a space-time neighborhood % of ", as
in Proposition 4. We first extend H to our entire domain 9 = 4 (3) N & by making
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sure that it coincides with T away from a slightly larger, T-invariant neighborhood
9. We can also arrange that the extended H is also T invariant and that, in ¥\ %,
we have | Q- "7 | < Q(T,T). Indeed this can be first arranged on ¥y, by an extension
of the form fH + (1 — f)T (with a smooth f such that f =1 on #NXyand f =0
in the complement of ¥/ NY) and then extended to the entire domain 9 by using the
pushforward with ¢..

We then apply Proposition 2 for vector field X = H and w = 0, in the domain
(0, ), the region of 9 between ¥y and %,. Since "7 = 0 in the complement of ¢/

we have

/W(O,T) AU, 64)+/2, QU 20) = /zT Q(H, 60)—//74(0,7) HTF.Q—//V(O,T)\W(O,T) il

Since fr-Q > ¢|Dg|? in U, |%7 - Q| < |D¢|? in ¥\ % and S - Q(H, e4) > 0,
Q(H, e9) > |D¢|?, we deduce®

Foy= [ ook s [ oo~ [ paps [ Do
»2 18 >o U(0,1) DO,7)\U(0,T)

. ’ / / T 2
spo- [ rears [ D
< F(0) - /0 " Py + O

Thus, by Gronwall we derive a global bound for F(7), i.e. a bound for the L? norm
of all first derivatives of ¢.

To estimate the higher derivative we commute the wave equation not only with T
but also with the red shift vector field H. Indeed, commutation with T provides
estimates for sup, -, [|[DT(¢)| 12(x,), estimate which degenerates only near the hori-
zon /. This degeneracy is more than compensated by commuting the wave operator

(26) In the last line of the inequality below we make use of the fact that, away from the neighborhood

U of the horizon, the energy identity provided by T gives us a bound for fz \# |ID¢|? in terms of

initial conditions.
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with H. Thus, repeated commutations with T and H and elliptic theory, as in the
simpler case explained below, provide bounds for all higher derivatives of ¢. O

8.3. The super-radiant regime

The method of proof described above can be extended to the case when the vector
field T becomes space-like in a neighborhood of the horizon, as is the case in Kerr.
The major difficulty in this case is that the global energy density associated T is
not positive definite in the ergo-region and therefore ceases to provide any useful
information, at least in a first approximation. The effect of super-radiance is well
described in the physics literature, starting with the pioneering work of Penrose [36]
and Zel'dovich [44], and provides an amplification mechanism for linear waves.

Nevertheless, Dafermos-Rodnianski were able to extend their methods to cover
the case of axially symmetric stationary space-times which are sufficiently close to
Schwarzschild. Thus, in addition to T the space-time has a second Killing vector field
Z, with circular orbits, tangent to the horizon #". One can show, in this case, for a
constant v > 0, and a suitably defined null generator L = e4, T = L — yZ along the
horizon . In other words // is also a Killing horizon for a Kerr space-time.

Thus, the flux density associated to T is Q(T,L)=Q(L—-~+Z,L)=
|Lo|?2 — v(Zg)(Lo) = (T$)? + v(Zp)(T¢p). Therefore, if |To| > ~|Z¢|, we must
have Q(T,L) > 0. This suggests a decomposition of ¢ = ¢y + ¢, such that
Q[4)(T,L) > 0. It can be made precise by decomposing ¢ with respect to Fourier
frequencies w € R relative to T, and discrete frequencies m, relative to Z. Thus,
by a simple cut-off, ¢y will be restricted to the frequency range |w| > |y|m, called
sub-radiant regime, while ¢, the super-radiant part of ¢, has frequencies in the range
w < ym. We expect that the arguments used in the previous subsection would work
to treat the non super-radiant part ¢y, for which T continues to provide a coercive
energy identity. The real new issue is ¢,. One can show, and this is the main new in-
sight of Dafermos-Rodnianski [20], that in stationary axisymmetric space-times near
Schwarzschild, in particular in & (a, m) with a < m, the super-radiant frequencies
of Oy¢ = 0 are not trapped. The quantitative manifestation of this fact is reflected
in the existence of a “simple” vector field X = f(r*)9,« and a scalar w = w(X) with
the property that

Q) [#] ) 7 > Cry iy Xy o (1D + |861%)

with a characteristic function x,, r, equal to one in the region 2m < r; < r <
ro9 < o0o. The relative ease of the choice of X hinges on the fact that for ¢, the
lagrangian term g(d¢,, d¢,) is positive in a neighborhood of r = 3m—the trapped set
in Schwarzschild. This inequality leads to a non-degenerate version of the Morawetz
estimate and together with the red shift estimate allows one to control ¢,. I should

ASTERISQUE 339



(1015) LINEAR STABILITY OF BLACK HOLES 127

note that the actual analysis is complicated by coupling between ¢y and ¢, introduced
by cut-offs in the physical space which are, unfortunately, required to justify the time
Fourier frequencies w.

9. DECAY MECHANISM

The proof of decay in both Theorems 4 and 5 hinges on two basic steps plus a
final iteration procedure based on the pigeon hole principle. We consider below the
simpler case of decay in Schwarzschild. We consider T-invariant regions obtained by
intersecting space-time domains of the form 2m < Ry < R < R3 or 2m < r < R with
the future of Xg, in the exterior domain &. Also, in what follows, /" is the portion of
the horizon r = 2m to the future of X.

Step I. — The goal of the first step is to derive an estimate of the form

(9.1) / [V ID4P < Cyl,,

where ¥ is an arbitrary large neighborhood of A, containing the trapped region
and Iy a constant depending only on the initial data of ¢ (it depends in fact on the
L?(Z N Y) of the first two derivatives of ¢. The proof of such an estimate requires
the following substeps:

1. Using the red shift vector field H one can control the non-degenerate energy in a
small T-invariant neighborhood %; of the horizon (such as 2m < r < r; € 3m),
at the expense of having to control the space-time integral of [D¢|? in the
complement of %; in a somewhat larger neighborhood (such as r < r; +€).

2. Using the modified Morawetz vector field M one can control the space-time
integral of f(r)(|D¢|? + |¢|?), with f(r) vanishing of order 2 at r = 3m, in a
sufficiently large T-invariant neighborhood %s of the trapped region r = 3m
which intersects %; (such as r; — e < r < R, for an arbitrary R > 3m).

3. Commuting the equation with T and using elliptic thedry (or, alternatively,
commuting also with the angular momentum vector fields) we derive a similar
estimate for f(r)|D%¢|% + |D@|2. Thus, by losing one derivative, we control the
space-time integral of [D¢|? in %s.

4. Combining this last estimate with the previous estimate in %; we derive a
space-time estimate for |D¢|? in ¥ = %; U %,. We also derive a non-degenerate
estimate along the horizon.
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L
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Step II. — The goal now is to derive a decay estimate by using the previous step
together with asymptotic information from future null infinity. Originally this was
done by using a natural adaptation of the vector field K, of Minkowski space. Here I
will sketch instead the new procedure of [18]. To simplify matters I will first present
their argument in Minkowski space. It will be quite transparent from the proof how
to adapt it to the Schwarzschild case. In fact, once the first step above has been
accomplished (which is a lot more delicate in a Kerr background because of the
extended trapped region) the same proof also applies to Kerr.

The idea is to foliate Minkowski space by hypersurfaces ¥(7) = .7 U Xg(7)
divided by » = R, for a fixed value R. The left piece is a space-like hyper-
plane X (7) = {(t = 7,z)/|z| < R} while the right piece is the null hypersurface
Yr(1) = {(t,x)/t — |z| = 7 — R,|z| > R}. Let Dp(m1,72) and Dgr(m,72) be the
regions to the left and right with for 71 < 75 as in the figure below (the figure on the
right is the same as that on the left, but viewed in the compactified Penrose diagram
of the Minkowski space).

(1) ’

() |
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We start with the following estimate:
02) J[ oo+ s catir
Dy, (7,00)
where E(7) is the non-degenerate energy of the slice £(7), i.e.
93) B = | Q)
with N normal to ¥(7),i.e. N =0, on ¥ and N = L = 8, + 0, on ¥ . Thus,
Bo) = [ Dok [ (@er+ieP).
ZL(r) Zr(7)

This is, essentially, the estimate obtained at the first step. It also follows by using
a variation of the Morawetz vector field discussed before. Observe also that E(7) is
monotonically decreasing®”, i.e. E(12) < E(m1), in Minkowski space.

In the region ?Pr we apply the energy estimate(®® of Proposition 2 with
X =rP(0;+08,)=rPL, 0 < p < 2 and appropriate choice of w. We derive the
identity

- e
(9.4) /ER(TZ)TP(Ld)) +//9>R(n,72) P71 ((Lg)? + (2 - p)|V9|?)

i 2= pi] 2 D 2 _ 1T 412

t o @ = [ eders [ (9 - o)

where L¢ = 2(8: +8,)¢ + 2= . Ignoring the boundary term at future null infinity we
derive, for p = 2

[orders [[ 0 riers [ 2067+ It
Zr(r2) Dr(T1,72) Zr(71)

with
Inrm) = [ (179 - |Lo?) S B2 | Do,
DLNDR(71,72) DLNDr(T1,72)
Averaging with respect to R (in a small interval near a fixed value) and using (9.2),
we derive

T 2 2/7 2 2
9.5) / /@ ey /Z P9 + O R*B(m)

Hence, in fact

2£ 2 i/ 2 < 2-21 2 ChE ‘
/ER(TZ)T( ¢) +//‘.7)R(T1,7'2)r( d)) N~/E(‘rl)r( ¢) +Cr (7'1)

(27) In Schwarzschild or Kerr we expect some bounded amplification.
(28) Alternatively one can proceed exactly as in [18] by multiplying directly the wave equation, in
null coordinates.
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Using the pigeonhole principle applied to (9.5) we infer that there exists a dyadic
sequence g, — oo such that

(9.6) [ rderser ( [ rder+ CRE(TI)) .
Zr(on+1) Zr(m1)

We now consider (9.4) with p = 1. After averaging in R exactly as before and
applying once more (9.2) we deduce

L¢)® + Lo2 +|V9?) < £6)® + Cr E(on_).
/ER(UTL) r( ) /An(on,an_l) (I | |W I ) / 'l"( ) R (0 1)

Sr(on-1)

Using (9.6) we derive

/ / (ILg]> + |V¢[*) S opt ( / r*(L¢)* + CRE(n)) + CRE(0n-1).
Dr(On,0n-1) 2(m1)

Observe that (L¢)? = (L¢)? + ¢2 + 15,(¢?). Thus, after an integration by parts

Il Loy = [[ Loy - | ¢
@R(Unyo'n—l) @R(U'n,an—l) @anﬂ(onvan—l)

Hence,

/I (ot +178%) Sz ([ 067 + Cab)) + Cublon-),
Dr(On,0n-1) E(m1)

On the other hand, in view of (9.2)

/ / (IDGP + ¢) < CrE(0n-1).
@L(an,an_l)

Adding the last two inequalities together, we derive

/an
g

n—1

E(r)dr < Co;t (/ r?(L¢)* + CRE(71)> .+ CrE(0n-1).
E(m1)

Thus, with I, = fE(T1)7‘2(Lq§)2 + CrE(m) depending only on the initial norm on
E(Tl) and R

/ E(r)dr < Ila,jl + CrE(0opn-1).
On-1

Finally we deduce, by another simple application of the pigeonhole principle and the
monotonicity of F(r), that for all 7 > 7,

9.7) E(r) S17%L

as desired.
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10. APPENDIX

10.1. Null hypersurfaces

Consider a null hypersurface /" embedded in /M, with unit normal L (which itself is
tangent to /). Clearly 7/ is generated by all null geodesics tangent to L orthogonal
to a 2-surface S. In what follows we assume that S has the topology of a 2-sphere.

DEFINITION. — The null second fundamental form of a null hypersurface N is de-
fined by

where L is a fized null vector field tangent to the null generators of N and X,Y
arbitrary vector fields tangent to N .

Observe that the definition depends tensorially on the choice of L, i.e. if L' = aL we
have x’ = ax. The trace tr y can be defined, relative to an arbitrary frame L, e, ea,
with g(eq, ep) = dap, by trx = Xx11 + X22. One can easily check that the definition is
independent of the frame or the choice of null normal L. The hypersurface /" is said
to be non-expanding if the trace of x vanishes identically.

We can foliate 7/ by the level surfaces of an affine parameter s of L, i.e. L(s) =1,
s =0 on S. We can then define the null companion L of L, at any point p of A, to
be the unique null normal orthogonal to the level surface passing through p such that
g(L,L)=-1.

| g(L9I_J)='1
X(X’Y) :=g(l* L7Y)=0
AKXV :=g@ L, V) =0

10.2. Red shift vector field

Consider first an arbitrary null hypersurface /A" and a null pair (¢4 = L,
es = L),g(es,eq) = —1 with L null, tangent to /" and L hypersurface orthogonal,
i.e. orthogonal to a foliation of A" by 2-surfaces (see appendix). We complete the
null pair to a null frame (e, e, €3,€4) with €1, e an orthonormal frame tangent to
the foliation. We easily check the following

Dyes = —wey,
(10.2) Dye3 = wes + 1, ez + 1,2
Daes = X, 0 + Caes
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where w = g(Dses,e3), 1, = g(Daes,€a), (o = g(Daes,e3), x,, = 8(Daes,en)
depend only on the original choice of the null pair (es, e4) along V.

We extend e3 in a small neighborhood of " by solving the equation
(10.3) D363 = —wes3

with w an arbitrary function on A" which we hope to choose later. The deformation
tensor of X = e3 can be easily calculated along A

Mg = —2w, T34 =W, 33 =0, T30 =0, Tga =1, — Ca» Tab = X,
Therefore,

Q- 7= Qa3mas + 2Q347T34 — 2Q3aT4a + QapTab
= —w(esp)® + 2w |V¢I> — 2V3p Vo - (n — ) + x,,Vad Vs

~ Stx( = 2e5(9) - ea(9) + [9P)
= —w(e3d)’ + 2w Vo> + X atVadVod — 2630 V6 - (n — ¢) + trx(esd)(ead).

By assuming —w > k > 0 and w sufficiently large positive, we deduce, for some
positive constant ¢, 1Q - 7 + trx(es¢)(esd) > c((esd)? + |Vo|?). To get rid of the
term try(es¢)(es¢) we need to make a modification of Equation (10.3). We use instead

(10.4) D3€3 = —we3z — Ae4.
With this modification all components of 7w remain the same, except w33 = A. Thus,
Q- m= — w(esd)® +2w|Vo|* + A(es$)? + X VoV
— 2e30 Y- (n— () + trx(esd)(ead).

Thus, choosing —w > k > 0 and constants w, A sufficiently large, we deduce, for some
positive ¢ > 0

1
5Q 7™ > clesd)” + A(leadl” +V9I)
with A > 0 arbitrarily large, provided that w and A are sufficiently large.
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