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Séminaire BOURBAKI 
62 e année, 2009-2010, n° 1013, p. 31 à 61 

Novembre 2009 

p-ADIC FAMILIES OF MODULAR FORMS 
[after Hida, Coleman, and Mazur] 

by Matthew EMERTON 

INTRODUCTION 

The theory of p-adic families of modular forms grew out of two highly related 
traditions in the arithmetic theory of modular forms: the theory of congruences of 
modular forms (which dates back to work of Ramanujan) and the (more recent) 
theory of Galois representations attached to modular forms. The first example of a 
p-adic family of modular forms was the Eisenstein family, considered by Serre in [37]. 
This is a family of g-expansions, parametrized by the weight whose coefficients are 
p-adically continuous functions of k. Serre 's immediate goal in studying this family 
was to obtain an understanding of the possible congruences between the (/-expansion 
coefficients of modular forms in different weights, especially of the constant terms, 
since such congruences lead to congruences between special values of ^-functions. 

The papers [23, 22] led to a decisive shift in the theory, placing it at the centre 
of the arithmetic theory of modular forms. In these papers, Hida constructed p-adic 
families of cuspforms, varying continuously with the weight k, which were also simul­
taneous eigenforms for the Hecke operators. Thus, in light of the known construction 
of Galois representations attached to Hecke eigenforms, one found that associated to 
these p-adic families of cuspidal eigenforms there were corresponding p-adic families of 
p-adic Galois representations. The existence of such families led Mazur to develop his 
general theory of deformations of Galois representations [31], which in turn inspired 
further developments [45, 43]. 

Hida's constructions had a certain limitation: if / is a Hecke eigenform of weight 
k > 1 and level N prime to p, then / appears in a Hida family if and only if (at least) 
one of the roots of the pth Hecke polynomial of / is of slope zero (i.e. a p-adic unit). 
This restriction was removed by the work of Coleman and Mazur [10], who constructed 
p-adic analytic (more precisely, rigid analytic) curves of eigenforms containing any 
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3 2 M. EMERTON 

such form / , whether or not its pth Hecke polynomial admits a unit root; these are 
the so-called eigencurves. 

The eigencurves are fundamentally analytic objects. One can also ask whether 
there is an algebraic family (or more precisely, a scheme) that parametrizes all the / 
as above, regardless of the slopes of the roots of the pth Hecke polynomial. Indeed, 
there is such an object; all the eigenforms / (of arbitrary weight but some fixed 
level N) are parametrized by the Zp points of SpecT(TV), where T(N) is the p-adic 
Hecke algebra of level N. These points are no longer parametrized by weight; indeed, 
Spec T(N) is (at least conjecturally) of relative dimension three over SpecZ p . It is 
conjectured that every continuous, two-dimensional, semi-simple odd p-adic Galois 
representation of GQ that is unramified outside finitely many primes corresponds 
to a point of SpecT(iV) for some appropriate value of N. This is one of the main 
motivations for the study of the families SpecT(TV), and the related p-adic families 
of eigenforms constructed by Hida and Coleman-Mazur. 

In Section 1 of this exposé we recall the basic theory of modular forms, Hecke oper­
ators, and the Galois representations associated to Hecke eigenforms. In Section 2, we 
outline the definitions and basic results and conjectures regarding the p-adic Hecke 
algebras T(iV), and the families of Hida and Coleman-Mazur. We focus more on 
systems of Hecke eigenvalues attached to eigenforms, rather than on the eigenforms 
themselves. This is in keeping with our focus on the relationship with Galois repre­
sentations (although it takes us somewhat far in spirit from the concrete viewpoint 
of [37]). 

Acknowledgment s 

I would like to thank J-P. Serre for his helpful comments on an earlier version of 
this article. 

0.1. Notation 

As usual Q, R, and C denote the fields of rational, real, and complex numbers, and 
Z denotes the ring of integers. For any prime p, we let Zp denote the ring of p-adic 
integers, and Qp denote the field of p-adic numbers. 

We let Q denote the algebraic closure of Q in C, and let Z denote the integral 
closure of Z in Q. For each prime p, we fix an algebraic closure Qp of Q p , and let Zp 

denote the integral closure of Zp in Qp. We also fix an embedding ip : Q <^-> Qp. This 
restricts to an embedding Z ^ Zp. We write ¥ p to denote the residue field of Zp. 

It is an algebraic closure of the field ¥ p of p elements. We let ord p : Qp -» Z U {oo} 
denote the p-adic valuation, normalized so that ovdp(p) = 1. If x G Qp, then ordp(x) 

is also called the slope of x. (Thus x has finite slope if and only if x ^ 0, while x has 
slope zero if and only if x G Z*.) 
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1. MODULAR FORMS, HECKE ALGEBRAS, A N D GALOIS 
REPRESENTATIONS 

1.1. Modular forms 

Let 

^ = {r eC | 3 (r ) > 0 } 

denote the complex upper half-plane. The group SL 2(Z) acts on $C in the usual way: 

a b 

c d 
T = 

ar + b 

er + d 

Let 0(${) denote the space of holomorphic functions on ${. If k is an integer, then 
we define the weight fc-action of SL 2(Z) on Q(^{) as follows: 

( / 1 * 7 ) 0 " ) : = (cT + d)-kfhr), 

for / G 9(${) and 7 = [ab] G SL 2(Z); as the notation indicates, this is a right 
action. 

If N > 1, define 

(TV) := { 7 e SL 2(Z) I 7 = ( ¿ Ï ) m o d iV}. 

DEFINITION 1.1. — A modular form (resp. cuspform) of weight k and level N is a 
holomorphic function f G that is invariant under the weight k-action ofTi(N), 
and for which 

(1) lim (/ Ifc j)(i'y) 

exists and is finite (resp. vanishes) for each 7 G SL2(Z). We letMk(N) (resp. ^^(N)) 
denote the space of modular forms (resp. cuspforms) of weight k and level N. 

Remark 1.2. — If / G 0(H) is invariant under the weight fc-action of Vi(N), then, 
in order to check if / is a modular form or a cuspform, it suffices to study the 
limit (1) for finitely many 7 G SL 2(Z) (namely, for a set of coset representatives for 
r!(JV)\SL 2(Z)). 

Remark 1.3. — If / is a modular form of weight k and level TV, then, applying the 
invariance property of / to the matrix ( J \ ) G Ti(N), one finds that / ( r + 1 ) = f(r). 

We may thus expand the function f(r) as a Fourier series 

f(r) := 

OO 

n=—OO 

cM)qn, 
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3 4 M. EMERTON 

where q := exp(27rrr). Condition (1), with 7 = 1, then shows that cn(f) = 0 for n < 0 
(resp. for n < 0 if / is a cuspform). We refer to this Fourier series as the g-expansion 
of/. 

Clearly Mk(N) and <$k(N) are vector subspaces of In fact they are also 
finite dimensional. (See [39] for a discussion of this and other basic facts concerning 
modular forms.) 

Example 1.4- — If fe < 0, then Mk(N) = 0. When k = 0, the space Mo(N) consists 
simply of the constant functions on ${ (and so (^0(N) = 0). To avoid these trivial 
cases, we will typically assume that k > 1 in all that follows. As k increases, the di­
mensions of both Mk(N) and <flk(N) grow essentially linearly in k (with the exception 
that Mk(N) = 0 if N = 1 or 2 and k is odd). 

Example 1.5. — The simplest examples of modular forms of positive weight are the 
Eisenstein series Ek € Mk(X)' These are defined for even k > 4. (It is easily shown 
that Mk(}) vanishes if k is odd or 0 < k < 4.) The ^-expansion of Ek is given by the 
following formula: 

Ek(r) = -Bk 
2k 

OO 

n = l d\n 

dk -1 qn 

where Bk is the kth Bernoulli number. 
There is a direct sum decomDosition 

Mk(l) = CEk®<jk(l). 

More generally, for any TV, we may decompose MK(N) into the direct sum of a space 
of Eisenstein series (typically of dimension greater than one when N > 1) and the 
space of cuspforms. (See Example 1.18 below.) 

1.2. Hecke operators 

Fix integers k > 1 and N > 1. Write 

r0(iV) := { 7 e SL2(Z) I7 = (0 *) mod N}. 

Note that TQ(N) contains T\(N) as a normal subgroup, and that the map 

a b 
c d 

dmod N 

induces an isomorphism 

(2) (Z/iVZ)x.(Z/iVZ)x. (Z/iVZ)x. 

A simple computation, using the normality of ri(iV) in TQ(N), shows that the 
weight fc-action of r0(AT) preserves Mk(N) and <^k(N). When restricted to these 
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spaces, this action obviously factors through the quotient To(N)/Ti(N), and hence, 
via the isomorphism (2), we obtain an action of the group (Z/NZ)X on Mk{N) and 
<JSk(N). If d G (Z/NZ)X, then we denote the corresponding automorphism of Mh{N) 
by (d). (These operators are sometimes referred to as the diamond operators.) 

Remark 1.6. — We note a simple but important identity for the action of the diamond 
operator (—1), namely 

(3) (Z/iVZ)x.(Z/iVZ)x. 

for any / G Mk(N). This is easily verified by considering the weight fc-action of the 
matrix ( -1 \ ) G T0(N) on / . 

DEFINITION 1.7. — If £ is a prime not dividing N, then we define the automorphism 
Se ofMk(N) via the formula 

S£ = u)ek-2. 

Since the diamond operators leave <flk(N) invariant, so do the operators Se. In 
fact, although it is traditional to single out the operators Se as defined above, it is 
the operators £Se = (£)£h~1 that will be more important for us, as we see already in 
the next definition. 

DEFINITION 1.8. — If £ is a prime not dividing N, then we define the endomorphism 
Te of Mk(N) via the formula 

(4) 
m/)(r) = 

OO 

n=0 
CntU)qn + 

no 

n=0 

£cn(Sef)qn£. 

Remark 1.9. — It is not immediately obvious that T ,̂ which we have defined simply 
by its effect on ^-expansions, actually preserves the space Mk(N). In fact T£ can 
be thought of as a certain double coset operator, corresponding to the double coset 
GL2{Ze) (g ?) GL2(Z£) (see e.g. [39, Ch. 3]). Prom this point of view, it is easy to 
verify that it preserves the space Mk(N), as well as the subspace <flk(N) of cuspforms. 

The operator Se also has a double coset interpretation; it corresponds to the double 
coset GL2(Ze) (o ?) GL2(Z^). This is one reason to consider Se as a primary object, 
rather than the diamond operator (£). 

DEFINITION 1.10. — We let Tfc(iV), or simply when the level N is understood, 
denote the Z-subalgebra of End(Mk(N)) generated by the operators £Se and Te as £ 
ranges over the primes not dividing N. The algebra Tfc(TV) is called the Hecke algebra 
(for the given weight k and level N). 
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3 6 M. EMERTON 

Remark 1.11. — Following [39, Ch. 3], one can extend Definition 1.8 and define Hecke 
operators Tm acting on Mk(N) for any positive integer m prime to N. The algebra 
Tfc(iV) defined above then coincides with the Z-algebra of endomorphisms of Mk(N) 

generated by the collection of these operators Tm. 

The following result encapsulates the basic properties of the algebra T^, and of its 
action on Mk{N). 

PROPOSITION 1.12. — The algebra is commutative, reduced, and free of finite 

rank over Z. Furthermore, the tensor product C <g)z Ifc acts faithfully on Mk(N). 

Remark 1.13. — The commutativity part of the statement is not difficult to verify; 
for example, it is easily checked using the description of the Hecke operators in terms 
of double cosets. The additional properties of are then equivalent to the following 
statements about the eigenspaces and eigenvalues of the Hecke operators: 

1. Every eigenvalue of any of the Hecke operators is an algebraic integer. (Here one 
sees the importance, when k = 1, of taking £Se rather than St in the definition 
of Tfc, so as to avoid introducing denominators.) 

2. The systems of simultaneous eigenvalues for the action of the Hecke operators 
on Mk(N) (which are collections of algebraic integers, by 1) are closed under 
the action of Gal(Q/Q). 

3. The space Mk{N) decomposes as a direct sum of simultaneous eigenspaces for 
the Hecke operators. 

DEFINITION 1.14. — We say that f E Mk(N) is a Hecke eigenform if it is a simulta­
neous eigenvector for the Hecke operators tSi and Ti (where £ ranges over all primes 
not dividing N), or equivalently, if there is a ring homomorphism A : —+ C such 
that Tf = X(T)f for all T e Tk. 

We refer to a homomorphism X : Tk —> C as a system of Hecke eigenvalues. (Any 

such X is the system of Hecke eigenvalues attached to some Hecke eigenform. Also, 

according to the preceding remark, any such A factors through the ring of algebraic 

integers Z in Q.) If X is a system of Hecke eigenvalues, then we write Mk(N)[X] to 

denote the corresponding subspace of Hecke eigenforms. 

As already noted in the preceding remark, the space Mk(N) admits the direct sum 

decomposition 

Mk(N) 
A 

Mk(N)[X], 

where the direct sum is taken over all systems of Hecke eigenvalues. 
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Remark 1.15. — The formula (4) shows that if A is a system of Hecke eigenvalues, 
then the (/-expansion of a Hecke eigenform / E Mk{N)[\], and hence the eigen­
form / itself, is to a large extent determined by the system of Hecke eigenvalues 
A. For example, if N = 1, then the group of diamond operators is trivial, and so 
iStf = £k~xf. Formula (4) then shows that 

X(Ti)cn(f) = cn£(f) + cn/i(f)£
k-1 

for every prime number £ (where we set cn/£ = 0 if £ \ n). Thus the Fourier coeffi­
cients cn(f) (n > 1) are determined recursively by the single coefficient c i ( / ) , and 
so / is determined up to a scalar by its associated system of Hecke eigenvalues. In 
particular, the A-eigenspace in Mk(l) is one-dimensional. (1 ) If N > 1, then we find 
that / is determined by A, together with the Fourier coefficients c m ( / ) , for those 
positive integers m divisible only by primes dividing N. Thus / need not be uniquely 
determined (up to a scalar) by A, and the A-eigenspace in Mk(N) can be of dimen­
sion greater than one. However, the structure of this eigenspace is well-understood, 
either using the theory of so-called oldforms and newforms as in [2], or in terms of 
the action of GL 2(A) on the space of modular forms of weight k [25, 6]. We do not 
recall the details here, since they will not be important for us. As we will explain in 
the following subsection, our attention will be focussed on the systems of eigenvalues 
A themselves, rather than on the associated Hecke eigenforms. 

Remark 1.16. — Given a system of Hecke eigenvalues A appearing in Mk(N), it fol­
lows from the definition of the operators S£ that there is a QX-valued character e 
of (Z/NZ)X such that X(£S£) = e(£)£k~l. Thus we may recover the value of the 
weight k from the system of eigenvalues A. Indeed, if £ is any prime not dividing TV, 
then k = ( log^|A(^) |) + l. 

Example 1.17. — If k > 4 is even, then the Eisenstein series Ek E Mk(X) is a Hecke 
eigenform. The corresponding system of Hecke eigenvalues A is given by 

X(£S£)=£k~\ X(T£) = l+£k-\ 

(Here £ is an arbitrary prime, since we are in the case N = 1.) 

Example 1.18. — Let Vi : (Z /MiZ) x -> C x and ^2 : (Z/M2Z)X -+ C x be char­
acters, and let k > 1 (unless Mi = M2 = 1, in which case we require that k > 4) 

t 1 ) A slight amount of caution is required here, because c o ( / ) is not directly determined by the cn(f) 

for n > 1. However, since k > 1, then in fact c o ( / ) is so determined, as one easily sees, since a 

constant function cannot be modular of weight k > 0. As Serre notes [37, Rem. 2) , p. 221], one can 

directly determine c o ( / ) from the cn(f) for n > 1 as follows: —co( / ) is the value at s = 0 of the 

meromorphic function defined by analytic continuation of the Dirichlet series ^2^^ cn{f)n~s. 
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be chosen so that 1)^2(—1)(—l)k = 1- Then the following system of Hecke 
eigenvalues, which we denote by A ^ ^ f c , appears in Mk(MiM2): 

(Z/iVZ)x.(Z/iVZ)x. (Z/iVZ)x.(Z/iVZ)x. (Z/iVZ)x. (Z/iVZ)x.(Z/iVZ)x. 

In the case when Mi = M2 = 1, we obtain the systems of Hecke eigenvalues associated 
to the Eisenstein series Ek, as considered in the preceding example. In general, we 
refer to such a system of Hecke eigenvalues as an Eisenstein system of eigenvalues. 

If we write 

Sk(N) = 
X Eisenstein 

Mh{N)[\], 

where the sum ranges over all Eisenstein systems of Hecke eigenvalues for which 
M\M2 = TV, then we refer to modular forms / G &k{N) as Eisenstein series. There is 
a direct sum decomposition 

(Z/iVZ)x.(Z/iVZ)x.(Z/iVZ)x. 

Unlike the Eisenstein systems of eigenvalues considered in Example 1.18, the sys­
tems of eigenvalues appearing in the spaces of cuspforms do not admit an elementary 
description. As we will see in the following subsection, they correspond to certain 
Galois representations. 

Example 1.19. — We close this subsection with a careful presentation of the preced­
ing concepts in the case N = 1 and k = 12. In this case 

M12(l) = (§12(1)0 ^12(1), 

where Si2(l) is one-dimensional, spanned by 

E\2 
691 

32760 

OO 

n = l d\n 

dll)qn = 
691 

32760 
+ q + 2049c2 + 177148c3 + 

and <^12(1) is also one-dimensional, spanned by Ramanujan's famous cuspform 

A(r) = q 
OO 

71=1 

(1 - qnY* = 
O O 

71=1 

r(n)qn = q- 24<f + 252<f + 

(Here r(n) = cn(A) is by definition the nth Fourier coefficient of A.) Each of these 

modular forms is a Hecke eigenform, and correspondingly T12 admits two systems of 

Hecke eigenvalues. 

If we write Ai (resp. A2) to denote the system of Hecke eigenvalues attached to £12 
(resp. A), then 

(5) Ai x A2 : T12 ^ Z x Z. 

Note that since each of these eigenforms has been normalized so that c\ = 1, we may 
read off the corresponding systems of Hecke eigenvalues from the Fourier coefficients, 
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as in Remark 1.15. The product Ài x A2 provides an embedding Ài x À2 : T i 2 Z x Z. 
It was first observed by Ramanujan that this embedding is not an isomorphism. 
Indeed, Ramanujan showed that 

r(n) EE 

d\n 

d11 mod 691 

for every natural number n, or equivalently, 

Ai(ïi) = A 2(7i) mod 691 

for each prime £. On the other hand, it is easily verified (just by considering the cases 
when £ = 2 and 3) that no such congruence holds modulo any higher power of 691, 
nor modulo any other prime. Thus (5) induces an isomorphism 

Ti 2 —>{(ti , t ; ) eZxZ\u = v mod 691}. 

If p is a prime and p ^ 691, then Zp <S>z T i 2 Z p x Z p ; this reflects the fact that 
the distinct systems of eigenvalues Ai and A2 remain distinct when reduced modulo p. 

On the other hand, the tensor product Z6gi ®z T i 2 does not factor as a product in 
any non-trivial way; rather, it is a local ring, reflecting the congruence of Ai and A2 

modulo 691. 

1.3. Galois representations 

As in the preceding section, fix integers k > 1 and N > 1. From a certain point of 
view, it is the systems of Hecke eigenvalues appearing in Mk(N) that are of the great­
est interest, rather than the modular forms, or even the Hecke eigenforms, themselves. 
This is because they give rise to Galois representations, as we now recall. 

Choose a prime number p. If A is a system of Hecke eigenvalues appearing in 
Mk(N), then since A takes values in the ring Z of algebraic integers, we may compose 
it with our chosen embedding ip : Q Q p , and so regard A as taking values in 
Z p . For the remainder of this subsection, we regard all systems of Hecke eigenvalues 
as being Zp-valued. If A : —> Zp is a system of Hecke eigenvalues, then we let 
A : Tfc —> Fp be the homomorphism obtained by composing A with the map Zp —» ¥p 

given by reducing modulo the maximal ideal of Zp. 

Let E denote the (finite) set of primes dividing Np, let Qs denote the maximal 
algebraic extension of Q in Q that is unramified outside of the primes in E , and write 
GQ ? S •= Gal(Qs/Q). Recall that if £ is a prime not in E , then attached to £ is a 
Frobenius element Frob^ G G Q 5 S , well-defined up to conjugacy, with the property 
that there is a prime ideal [ lying over £ in the ring of algebraic integers in Qs that is 
preserved by Frob^, such that for any algebraic integer x G Qs, Frob^(#) EE X£ mod I. 

The Cebotarev density theorem furthermore implies that the union of these conjugacy 
classes is dense in GQ 5 S-
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4 0 M. EMERTON 

If M is any integer divisible only by primes dividing Np, and if CM denotes a 

primitive Mth root of unity, then CM G Qs, and so there is a group homomorphism 

X M : G Q , S ^ ( Z / M Z ) X 

describing the action of the elements of GQ,S on CM, namely, for any a G GQ 5 E, we 

have 

< 7 « M ) = < ^ ( < 7 ) . 

We refer to XM as the mod M cyclotomic character. It can also be characterized by 

the formula 

XM(Frob^) = £ mod M, 

for any prime £ not dividing Np. Also, if c G GQ 5 E denotes complex conjugation, then 

XM(C) = - 1 . 

We also define the p-adic cyclotomic character x : GQ ? E —> %p to be the projective 

limit over n of the mod pn-cyclotomic characters Xpn- Again, the character x 1S 

characterized by the formula x(Erob^) = £ for any £ not dividing Np, and we also 

have that x(c) — — 1-

The various cyclotomic characters give the basic examples of characters (i.e. one-

dimensional representations) of the group GQ,E. The following theorem shows that 

Hecke eigenforms are a source of two-dimensional representations of this group. 

THEOREM 1.20. — If X : Tk(N) —> Z P is a system of Hecke eigenvalues appearing in 
Mk{N), then there is a continuous, semi-simple representation 

Px : G Q , £ -+ G L 2 ( Q p ) , 

uniquely determined (up to equivalence) by the condition that for each prime £ \ Np, 

the matrix p\(Frobe) has characteristic polynomial equal to X2 — X(T£)X + X(£S£). 

Remarks on the proof — The uniqueness statement of the theorem is easily proved. 

Indeed, if p\ and p2 are two representations both satisfying the conditions of the theo­

rem, then by assumption their characteristic polynomials agree on the set of elements 

Frob^, which by Cebotarev density are dense in Gq^. Since they are continuous, their 

characteristic polynomials then agree on all elements of GQ,E- It follows that pi and 

p2 are equivalent, as claimed, since a semi-simple finite-dimensional representation of 

a group is uniquely determined, up to equivalence, by its characteristic polynomials. 

In the case when A is an Eisenstein system of Hecke eigenvalues, the existence of 

px is also easily proved; see Example 1.24 below. On the other hand, if A is a system 

of eigenvalues attached to a cuspform, then the construction of p\ is much less trivial. 

Its construction is due to Eichler, Shimura, and Igusa [13, 38, 24] (in the case k = 2), 

to Deligne [11] (for k > 2), and to Deligne and Serre [12] (for k = 1). • 
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It is useful to give a name to the characteristic polynomials appearing in Theo­
rem 1.20. 

DEFINITION 1 . 2 1 . — IfX : Tfc(AT) —> C is a system of Hecke eigenvalues, then for 
each prime £\ N, we define the £th Hecke polynomial of A to be the polynomial 

x2-\(T£)x + \(es£). 

Remark 1.22. — Since GQ,E is profinite, the representation p\ may be conjugated so 
as to take values in GL,2(ZP), and we let px denote such a GL2(Zp)-valued representa­
tion underlying p\. The GL2(Zp)-valued representation p°x is not always uniquely de­
termined up to equivalence by A. However, if we let p^ denote the semi-simplification 
of the representation GQ?E —• G L ^ F p ) obtained by reducing p°x modulo the maximal 
ideal of Zp, then px is uniquely determined, up to equivalence, by A, and in fact, 
even by A (as the notation suggests). Indeed, p^ is uniquely characterized, up to 
equivalence, by the condition that for each prime £ \ Np, the matrix p^(Prob^) has 
characteristic polynomial equal to X2 — \(Te)X + \(£Se). (The proof of the uniqueness 
is identical to that given in the proof of Theorem 1.20.) 

Remark 1.23. — As in Remark 1.16, write X(£Se) = e(i)ek-1 for some Qx-valued 
character e of (Z/iVZ)x. We may compose e with the mod N cyclotomic character 
XN to obtain a Q*-valued character of GQ5£, which we regard as being Q*-valued 
via our chosen embedding ip : Q Qp. It then follows from the condition on the 
determinant of p(Prob^) in the statement of Theorem 1.20, together with Cebotarev 
density and the given relationship between \(£Se) and e(£), that 

detpA := {eoXN)xk 1. 

where as above x denotes the p-adic cyclotomic character. 
In particular, if c G GQ?S denotes complex conjugation, then one computes that 

det^(c) = £(-l)(-l)fc-1 = - 1 
(the last equality following from (3 ) ) . One says that p\ is odd. Similarly, the repre­
sentation p^ is odd. 

Example 1.24- — If A ^ ^ f c is an Eisenstein system of Hecke eigenvalues attached 
to characters fa : (Z/MiZ)x —> Cx and the weight fc, as in Example 1.18, then it 
is easy to write down a corresponding Galois representation p\rPl^2jk satisfying the 
conditions of Theorem 1.20; namely, we can take 

(Z/iVZ)x. № ° X A f i ) (fa°XM2)xk 

On the other hand, if A arises from a cuspform, then p\ does not admit a description 
in terms of characters. Indeed, one has the following result [35, Thm. 2.3]. 
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PROPOSITION 1 .25 . — / / the system of Hecke eigenvalues X is attached to a cusp-
form, then the representation p\ associated to A by Theorem 1.20 is irreducible. 

For any prime p, write TJ^ to denote the subalgebra of generated by the 

elements £St and Tt for £ not dividing Np (i.e. we omit the Hecke operators at p). If 

A : Tfc —» Z p is a system of Hecke eigenvalues, we write X^ to denote the restriction 

of A to and refer to A(p) as the p-deprived system of Hecke eigenvalues associated 

to A. Similarly, we let A ^ : TJ^ —• ¥ p denote the restriction of A. The conditions 

on the Galois representation p\ given in Theorem 1.20 evidently depend only on \ ( p \ 

and in fact we can use the existence of the Galois representations attached to A to 

show that X^ already determines A. Indeed, we have the following more general 

result. 

PROPOSITION 1.26. — If Xi and X2 are two systems of Hecke eigenvalues such that 
Ai(T^) = X2(T£) for all but finitely many primes £ not dividing N, then X\ and X2 

coincide. 

Proof. — This is proved by the same argument used to establish the uniqueness 
claim of Theorem 1.20. Let q be some fixed prime not dividing iV, and choose p 
to be distinct from q. Let p\± and p\2 denote the Galois representations associated 
to Ai and A2 as in Theorem 1.20, regarded as representations over Q . Then p\x 

and p\2 have the same traces on the elements Frob^, for all but finitely many £. 
Cebotarev density implies that the set of elements Frob^ (where £ ranges over all but 
finitely many primes not dividing Np) is dense in GQ,E, and so, since p\x and p\2 

are continuous, we see that their traces coincide. Thus they have isomorphic semi-
simplifications (since we are working over the field Qp of characteristic zero), and 
so their characteristic polynomials coincide on any element of GQ^. Applying this 
to Prob g, we find that Xi(Sq) = X2(Sq) and that Xi(Tq) = X2(Tq). Since q was an 
arbitrary prime not dividing N, the proposition follows. • 

The preceding proposition has the following technical corollary. 

COROLLARY 1 .27 . — The ring TJ^ has finite index in T f c. 

Proof. — Since Tfc is finite over Z, it suffices to show that C <8>z TJ^ C 0 z T^. 
Equivalently, we must show that distinct systems of Hecke eigenvalues remain distinct 
after omitting the eigenvalues corresponding to the Hecke operators at p. This follows 
from the proposition. • 

Remark 1.28. — The finite index of Corollary 1.27 can be greater than 1. For exam­

ple, if N = 2 3 , k = 2 , and p = 2 , then the index of T2

2^ in T2 is equal to 2. (More 

precisely, T 2 ^ Z[(l + > / 5 ) / 2 ] , while T^ 2 ) ^ Z[y/S\.) 

A S T É R I S Q U E 339 



(1013) p-ADIC FAMILIES OF MODULAR FORMS 4 3 

Remark 1.29. — Corollary 1.27 (or better, its proof) shows that A i—• A ^ induces a 
bijection between the set of homomorphisms —> C and the set of homomorphisms 
TJ^ —• C, and hence between the set of homomorphisms —• ZP and the set of 
homomorphisms TJ^ —> ZP. 

2. p-ADIC FAMILIES OF SYSTEMS OF HECKE EIGENVALUES 

2.1. The p-adic Hecke algebra 

Let AT be a positive integer, and fix a prime p not dividing N. If k > 1 is a positive 
integer, then for each prime £ not dividing N we define the operators Si and T£ on 
the direct sum 0f=1 Mi(N) in the obvious way: Se and T£ act on each summand via 
the Hecke operator with the same name. 

DEFINITION 2.1. — We let T^(JV), or simply T(p)<k ifthe level N is understood, 

denote the Z-algebra of endomorphisms of ^k=1Mi(N) generated by the operators 

£Se and T£, as £ ranges over all primes not dividing Np. 

Since each operator S£ and T£ is determined by its action on each of the direct 
summands, there is a natural injection 

(6) <k 

k 

i=l 

Ti. 

Remark 2.2. — We could consider the analogous algebra in which we included the 
operators pSp and Tp. However, for our later purposes, it is important to omit these 
operators from the algebra under consideration. 

PROPOSITION 2.3. — The image of (6) has finite index in Y\k=0Ti. 

Proof. — Given that the source and target of (6) are both finite Z-algebras, it suffices 
to show that (6) becomes an isomorphism after tensoring with C over Z. This follows 
from the fact that the p-deprived systems of eigenvalues appearing in Mk(N) are 
distinct for different values of fc, by Remarks 1.16 and 1.29. • 

Example 2.4. — Take N = 1, p = 2, and k = 6. The spaces Af<(l) for 1 < i < 6 
vanish unless i = 4 or 6, in which case they are one-dimensional, spanned by E± and 
EQ respectively. Thus T4 —> Z and T6 —> Z, and so (6) becomes in this case an 
embedding 

(7) Tf6 m Z x Z . 
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Now 

E4 = 
1 

240 

o o 

71=1 d\n 

d3Un, 

while 

(Z/iVZ)x. 
- 1 

504 

o o 

n=l d\n 

d5)qn 

One immediately checks that 

1 + £ À = 1 + 1 mod 12, 

for all ^ 7̂  2. Furthermore, no analogous congruence holds modulo any larger modulus, 
and thus the embedding (7) induces an isomorphism 

T(2) 
^ 6 {(u,v) eZxZ\u = v mod 1 2 } . 

A similar calculation shows that 

t < 6 {(u, v) eZxZ\u = v mod 6}. 

These examples exhibit congruences similar to those discussed in Example 1.19, but 
involving congruences between systems of Hecke eigenvalues in different weights. 

If k! > k, then 
k 

i=0 

Mi(N) 
k' 

i=0 

(Z/iVZ)x. 

and so restriction induces a surjection 

(Z/iVZ)x. (Z/iVZ)x. 

rensoring this with Zp over Z, we obtain a surjection 

(8) (Z/iVZ)x. (Z/iVZ)x. 
DEFINITION 2 . 5 . — The p-adic Hecke algebra T(iV), or simply T if the level N is 

understood, is defined to be the projective limit 

(9) T := limZp 02 

fc 

nnip) 

where the transition maps are the maps (8). 

Remark 2.6. — Note that since any prime £ ^ p is invertible in Zp, the operator 
Si = £~1(£Si) lies in each of the algebras Zp <S>z TJf \ for each £ \ Np, and so we may 
regard each of these algebras as being generated by the elements Se and T£ (£ \ Np), 

just as well as by £S£. Also, since the transition maps (8) take the elements S£ and 
T£ in the source to the elements S£ and T£ in the target, these elements give rise to 
well-defined elements S£ and T£ in the projective limit T, for any prime £ \ Np. 

A S T É R I S Q U E 339 



(1013) p-ADIC FAMILIES OF MODULAR FORMS 4 5 

From the various embeddings (6), we obtain an embedding 

(Z/iVZ)x. 
k>i 

Zp ®z Tk. 

The target of this embedding is a countable product of non-zero rings; in particular, 
it is not Noetherian. On the other hand, we have the following result regarding the 
source. 

THEOREM 2.7. — The ring T is a p-adically complete, Noetherian Zp-algebra, and 

is in fact the product of finitely many complete Noetherian local Zp-algebras. 

Remarks on the proof. — Each Zp <S>z TJ^ is a finite Zp-algebra, and so is a product 
of finitely many complete local finite Zp-algebras. It follows that T is p-adically 
complete, and is a product of a countable collection of complete local Zp-algebras. 
The fact that this product involves only finitely many local algebras is not formal; 
it is equivalent to a statement about Fp-valued systems of Hecke eigenvalues that is 
the subject of Proposition 2.8 below. The fact that these local factors are Noetherian 
is also not formal; it is proved via a consideration of relation between the ring T 
and Galois representations, as discussed in the following subsection. (More precisely, 
each local component of T is canonically the quotient of a certain Galois pseudo-
deformation ring, and hence is Noetherian; see [30, §1.4] for a discussion of the latter, 
and in particular Lemma 1.4.2 for a proof of the Noetherianness of pseudo-deformation 
rings. ( 2 )) • 

Informally speaking, this theorem can be thought of as showing that the phe­
nomenon exhibited in Example 2.4 is typical: as k grows, the power of p dividing 
the index of the image of (6) in its target grows progressively larger, reflecting the 
existence of many congruences modulo powers of p between systems of eigenvalues 
appearing in various weights. 

We present one concrete manifestation of this abundance of congruences in the 

following proposition (due to Jochnowitz [26], generalizing an argument of Serre in 

the case TV = 1), which is an important ingredient in the proof of Theorem 2.7. Indeed, 

its statement is a straightforward reformulation of the claim that T has only finitely 

many maximal ideals. In order to state the proposition, we introduce additional 

notation. Suppose given a p-deprived system of Hecke eigenvalues A ^ : TJ^ —> Zp. 

We then write A ^ : TJ^ —> ¥p to denote the reduction of A ^ modulo the maximal 

ideal of Zp. 

( 2) Technically, the results of [30, §1.4] only apply when p is odd; however, wi th the appropriate 

modifications, they should also apply in the case when p = 2. 
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PROPOSITION 2 . 8 . — As X^ ranges over all p-deprived systems of eigenvalues of all 

weights k > 0, there are only finitely many possibilities for the collection of eigenvalues 

(\{p\eSt)XP) (Z/iVZ)x. 

One has the following precise conjecture regarding the Krull dimension of the 

ring T. 

CONJECTURE 2 . 9 . — The ring T is equidimensional of Krull dimension 4, i.e. each 

irreducible component o/SpecT is of dimension 4 . 

Since T is a torsion free and p-adically complete Zp-algebra, this is equivalent to 

SpecT having relative dimension 3 over SpecZp. This conjecture is motivated by 

the known and conjectured relations between the ring T and Galois representations. 

(See Remark 2 . 1 4 below.) We will prove in Corollary 2 .28 below that each irreducible 

component of Spec T has Krull dimension at least 4 . 

2.2. Galois representations again 

As in the preceding subsections, we regard all systems of Hecke eigenvalues as 

taking values in Zp. 

DEFINITION 2 . 1 0 . — A p-adic system of Hecke eigenvalues is a homomorphism of 

Zp-algebras £ : T —> Zp. 

Suppose that X^ : TJ^ —> Zp is a p-deprived system of Hecke eigenvalues. Since 

the target of X^ is a Zp-algebra, this homomorphism extends to a homomorphism 

Â p) : Zp <g>z TJ^ —» Zp. Composing this homomorphism with the natural surjection 

T —> TJ^, we obtain a homomorphism £ : T —• Zp. We refer to p-adic systems of 

Hecke eigenvalues arising in this way as classical. 

THEOREM 2 . 1 1 . — If £ : T —• Zp is any p-adic system of Hecke eigenvalues, then 

there is a continuous, semi-simple representation 

Pt : GQ,S GL2(Qp), 

uniquely determined (up to equivalence) by the condition that for each prime £ \ Np, 

the matrix p^(Frob^) has characteristic polynomial equal to X2 — ^(T$)X + ^(£Si). 

Sketch of proof. — The uniqueness proof is identical to that given in the proof of 

Theorem 1.20. As for existence, if £ is a classical system, arising from the p-deprived 

system of eigenvalues X^p\ then we can clearly set p% := p\.To construct p$ in general, 

one uses the fact that the classical £ are dense in the set of all £ (in a suitable sense), 

and then constructs p% by an interpolation argument. • 

Just as in the case of Theorem 1.20, one shows that if £ is a p-adic system of 

Hecke eigenvalues, then p% is odd, and so we see that T parametrizes a family of odd 
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two-dimensional p-adic Galois representations. Furthermore, one has the following 

fundamental conjecture to the effect that all odd two-dimensional Galois representa­

tions should be of this form. (See e.g. the conjecture on p. 108 of [20].) 

CONJECTURE 2.12. — IfY,is any finite set of primes containing p, and if 

p : G Q , E - * G L 2 ( Q p ) 

is continuous, semi-simple, and odd, then p = p$ for some p-adic system of Hecke 

eigenvalues of some level N divisible only by primes in E distinct from p. 

Remark 2.13. — In fact, one expects to be able to take N to be the tame (i.e. prime-

to-p) Art in conductor of p. 

Remark 2.14- — One can use techniques from Galois cohomology to show that if p 

is an odd, irreducible, continuous two-dimensional p-adic representation of GQ,S (for 

some fixed finite set of primes £) , then the expected dimension of a neighbourhood of 

p in the space of all such representations is three. (See Corollary 3 on p. 405 of [31]. 
This reference treats the case of mod p Galois representations, but is easily adapted 

to the context of p-adic Galois representations.) Taken together with Conjecture 2.12, 

this motivates Conjecture 2.9. 

Building on ideas of Gouvèa and Mazur [21] (in particular, the infinite fern, as 
considered in Subsection 2.5 below), together with the techniques of Wiles [45] and 
Taylor-Wiles [43], Bòckle [3] has proved a strong result in the direction of Conjec­
tures 2.12 and 2.9. Since the statement of his result is a little technical, we do not 
recall it here. However, by appealing to a result of Kisin, one can improve the part 
of Bòckle's theorem that pertains to Conjecture 2.9, as follows. 

Before stating it, we recall that Q(Cp 3) contains a unique quadratic extension of Q 

when p is odd, and three such extensions when p = 2. For any such quadratic 

L C Q ( C P 3 ) , we write G L , E := Gal(Q s /L) . 

THEOREM 2.15. — Let £ : T —> ZP be classical, and suppose that P^\GL^ ^S ^RRE~ 

ducible, for each quadratic extension L C Q(Cp 3)- Then SpecT has dimension 3 in a 

neighbourhood of £. 

Proof. — It follows from [29, Thm., p. 277] that this dimension is at most 3, while 

Corollary 2.28 below establishes the opposite inequality. This proves the result. • 
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2.3. Families parametrized by weight: the Eisenstein family 

Since SpecT is (at least conjecturally) of relative dimension 3 over SpecZ p , one 
can think of the set of all p-adic systems of Hecke eigenvalues £ as depending on three 
parameters. Unfortunately, even in those cases when Conjecture 2.9 is known, there 
is no particularly canonical choice of these three parameters. A little more formally, 
if Spec T has Krull dimension 4, then Noether normalization allows one to construct 
a finite map SpecT —• SpecZp[[Ti,T2,Ts]]. However, there is no canonical choice for 
such a map. 

On the other hand, there is a canonical map SpecT —• SpecZp[[T]], as we now 
explain. Write q = p if p is odd, and q = 4 if p = 2, and set T = 1 + qZp. Let 

£ := {£ prime \£=1 mod Nq}. 

We regard £ as a subset of Y. Dirichlet's theorem on primes in arithmetic progression 
shows that £ is in fact dense in T. 

LEMMA 2 . 1 6 . — The map £ —> T given by £ i-> Se extends uniquely to a continuous 
homomorphism of groups T —• T x . 

Proof — If t G £, and if A is any system of Hecke eigenvalues of weight fc, then 
X(Se) = £k~2. (Because £ = 1 mod N, the diamond operator (£) is trivial.) The 
function x i—• xk~2 is continuous on T, and so the map £ \-* Se from £ —> Zp ®z TJ^ 
extends to a continuous homomorphism T —> (Zp ®z T J ^ ) X , for any weight k. The 
lemma now follows by an easy passage to the limit. • 

Write ZP[[T]] := l i m Z p [ r / r p n ] . This is the so-called completed group ring of T 
n 

over Zp\ there is an evident embedding of the usual group ring Z p[r] Zp[pT]]. If 
x G T, we write [x] to denote the corresponding element of Zp[[r]] (so as to avoid 
confusion with the same element x regarded as belonging to the ring of coefficients 
Zp). There is an isomorphism of Zp-algebras ZP[[T]] Zp[[r], determined by the 
condition T i-> [1 -f q] — 1. 

The continuous map r —• T x of the preceding lemma extends uniquely to a homo­

morphism of Zp-algebras 

(10) w : ZP[[T\] T, 

which we may equally well regard as a map ZP[[T]] —• T. Passing to Specs, we get the 
canonical map 

( H ) SpecT -+ SpecZp[[r]] SpecZp[[T]] 

referred to above. What is the meaning of this map? 
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Well, giving a Zp-valued point of SpecZp[[r]] is the same as giving a continuous 
character K : T —» Z* . Thus SpecZp[[r]] is the space of characters of T. (The 
isomorphism SpecZp[[r]] —> SpecZp[[T]] is then given by mapping a character K to 
the value T = K(1 + q) — 1; in this way, the space of continuous characters of T is 
identified with the maximal ideal of Z p , or, in more geometric terms, the open unit 
disk around the origin of Qp.) U k is an integer, then we may define a character 
Kk : r —• Z* via the formula Kk(x) = xh~2. These points are Zariski dense in 
SpecZp[[r]] (in fact, any infinite collection of them is Zariski dense), and so we regard 
SpecZp[[r]] as a certain kind of interpolation of the set of integers, and refer to it as 
weight space. In particular, the Zp-valued point Kk is said to be the point of weight k. 

Now suppose that £ : T —> Z p is classical, arising from the system of Hecke eigen­
values A : Tfc —> Z p . One computes that the composite £ o w is equal to the point 
of weight k. Thus we may think of the w as mapping a system of Hecke eigenvalues to 
its corresponding weight (which explains our choice of notation). Prom this, we also 
see that w is injective (since there exist systems of Hecke eigenvalues of arbitrarily 
high weight), and hence that (11) is dominant. 

Now the weight is a very natural parameter to consider, and so it is reasonable 
to ask whether we can find families of systems of Hecke eigenvalues, and hence fami­
lies of Galois representations, that are parametrized by the weight. Somewhat more 
precisely, we can ask whether we can find a closed subscheme Z <̂-> Spec T such that 
the composite Z SpecT —> SpecZp[[T]] is dominant with finite fibres; such a sub-
scheme Z could then be thought of as a family of Galois representations, parametrized 
by the weight. ( 3 ) 

Of course, if we impose no other conditions on Z, then such subschemes Z exist for 
very general geometric reasons; on the other hand, a further natural condition to im­
pose is that Z contain a Zariski dense set of points corresponding to classical systems 
of Hecke eigenvalues. The scheme Z could then be regarded as a one-dimensional 
family of systems of Hecke eigenvalues, parametrized by weight, and interpolating a 
collection of classical systems of Hecke eigenvalues. 

Example 2.17. — The most basic example of a one-dimensional family of systems 
of Hecke eigenvalues, parametrized by weight, is the Eisenstein family. This is the 
original p-adic family of modular forms, introduced by Serre in [37]. We describe it 
here, in the language of systems of Hecke eigenvalues that we have introduced. 

For simplicity we take N = 1, and we fix an even residue class i mod p — 1 if p 

is odd. Consider the p-deprived systems of Hecke eigenvalues AJ^ associated to the 

( 3 ) We are using the word "parametrized" in a somewhat liberal sense, in that we are allowing our 

family to be a multi-valued function of the weight, i.e. we are asking that Z —+ S p e c Z p [ [ T ] have 

finite fibres, but not that it necessarily be injective. 
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Eisenstein series Ek, for k > 4, and congruent to i mod p — 1 if p is odd (resp. k > 4 
and even if p = 2). Recall that these are given by 

\£\tst) = tk-\ \(?\Te) = i + ek-1, 

where £ ranges over all primes distinct from p. 

We wish to rewrite these formulas slightly. Recall that Z* = x T (if p is odd) 

or ¡12 x T (if p = 2). In either case, let fi denote the first factor, and write u : Z* —• \i 

to denote the corresponding projection. Then we may rewrite the formulas for Xkp^ 

as 

(Z/iVZ)x. 
= M 0 * ~ 2 ( M 0 - 1 ) Aip)№) = i + M 0 i _ 2 ( M 0 _ 1 ) » 

where we set i = 0 if p = 2. We may evidently interpolate these formulas into a 
Zp[[r]]-valued point of SpecT. Namely, there is a homomorphism E : T —> Zp[[r]], 
defined by 

s ^ ü ^ - ' i m * ) " 1 ] , r ^ i + M ^ ' ^ M * ) " 1 ] -

By construction, the composite ° E is equal to for any k = i mod p — 1 (or any 
even k, if p = 2). Again by construction, i£ o is the identity on Zp[[r]]. Thus, in 
more geometric terms, we have constructed a map SpecZp[[r]] —• SpecT which is a 
section to the weight map w : SpecT —» SpecZp[[r]], namely a family of Eisenstein 
systems of eigenvalues, parametrized by their weight. 

2.4. Families parametrized by weight: Hida families and the eigencurve 

In our discussion of p-adic systems of Hecke eigenvalues, we have systematically 
ignored the Hecke operators Sp and Tp. This is important; for example, for the 
family Afc of the Example 2.17, we have Xk(Sp) = pk~2 and Xk(Tp) = 1 +pfe_1. These 
functions do not interpolate well as p-adic functions of k. However, if we consider the 
pth Hecke polynomial X2 — Xk(Tp)X +pAfc(Sp), we see that it has the form 

X2-(l+pk-1)X+pk-1 --(X-lXX-p1*-1). 

One of the two roots of this polynomial is in fact constant in the family, and so 
interpolates without difficulty in the family. It is the second root which does not 
interpolate well. This motivates the idea of changing our context slightly, and con­
sidering points not just in Spec T, but in Spec T x Gm (here the fibre product is with 
SpecZp^T"1] over SpecZ, or equivalently, with SpecZp[T, T-1] over SpecZp). To 
any system of Hecke eigenvalues A appearing in some Mk (N), we can plot a pair of 
Qp-valued points in this fibre product, whose first coordinate (for either point) is the 
associated classical p-adic system of eigenvalues £, and whose second coordinates are 
the roots of the pth Hecke polynomial of A. 

A S T É R I S Q U E 339 



(1013) p-ADIC FAMILIES OF MODULAR FORMS 5 1 

DEFINITION 2.18. — Let % denote the set of Qp-valued points o/SpecT x Gm con­
sisting of pairs (£, a ) , where £ : SpecT —> Zp is classical, attached to some system of 
Hecke eigenvalues A : Tk —> Zp with k > 1, and a is a root of the pth Hecke polynomial 

X2-\(Tp)X+p\(Sp). 

Let 9Covd denote the subset of % consisting of pairs (£,a) for which a € Zp . (The 

superscript ord is for ordinary.) 

Remark 2.19. — The reason for singling out the subset 9Cord of % is that (since any 
system of Hecke eigenvalues is a Zp-valued point of Spec T) these are precisely the 
points of % that consist of Zp-valued points of Spec T x Gm. 

The following theorem, due to Hida [23, 22], describes the interpolation of the 
points in %ord. (The map SpecT x Gm —> SpecZp[[r]] appearing in the statement of 
the theorem is the one obtained by first projecting onto the factor SpecT, and then 
applying the map w.) 

THEOREM 2.20. — The Zariski closure WOTd of %ord in SpecT x Gm is one-
dimensional. The composite î?0^ —> SpecT x Gm —» SpecZp[[r]] is finite, and is 
furthermore étale in the neighbourhood of those points of (X°V that are attached to 
systems of Hecke eigenvalues appearing in weight k>2. 

DEFINITION 2.21. — We refer to {?or as the Hida family, or ordinary family, of 

tame level N. 

Remark 2.22. — We will see in Subsection 2.5 below that it is necessary to restrict 
to weights k > 2 in the final statement of the theorem. 

The curve g>ord is (almost) precisely a family of the type we envisaged in the 
previous subsection. (We say "almost" because it lies in Spec T x Gm rather than in 
SpecT itself.) On the other hand, not every classical system of eigenvalues appears 
in £?or ; it is certainly possible that if A : T& —• Zp, then both roots of the pth Hecke 
polynomial may have positive slope. 

We thus turn to our next result, due to Coleman and Mazur [10], which deals with 
the interpolation of the entire set %. In this case, taking the algebraic Zariski closure 
of these points in SpecT x Gm turns out to be too coarse of an operation, and we 
cannot hope to construct an algebraic family of the type envisaged in the previous 
subsection that contains all the points of %. Rather, we will construct a rigid analytic 
family, lying inside the associated rigid analytic space (SpecT x Gm)an.(4) 

<4) Concretely, if T = HZ1Zp{[Tu..-,Tri}] '(fi,li • ' ' 1 fl,Si)l then 

Spec T x Gm = U^iSpecZp[ [r i , . . . ,Tr i ] ] [T,T~1]/(fiii,..., / i , S i ) , 
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THEOREM 2 . 2 3 . — The rigid analytic Zariski closure "6 of % in (SpecT x Gm)an is 
one-dimensional. More precisely, the composite 

(12) t?--» (SpecT xGm)an (SpecZp[[r]])an 

is flat, and has discrete fibres. Furthermore, for any positive constant C, there are 

only finitely many points (£,«) in any given fibre satisfying ordp(a) < C. (In other 

words, the slopes of the Gm-coordinates go to oo in each fibre.) 

DEFINITION 2 . 2 4 . — The curve is called the eigencurve of tame level N. The ana-
lytification of "6°^ is called the slope zero part, or the ordinary part, of the eigencurve. 
It is a union of connected components of *6. 

Remark 2.25. — The map (12) is in fact étale in the neighbourhood of a point 
(£,a) G unless a is a repeated root of the pth Hecke polynomial of the sys­
tem of eigenvalues À giving rise to £. (Compare the discussion of [10, p. 5].) It is 
conjectured that such repeated roots cannot occur when the weight k > 2 [9]. 

Remark 2.26. — By construction, each of ë?ord and "6 contains a(n algebraic or rigid 
analytic, as the case may be) Zariski dense set of points (£, a) for which £ is a classical 
system of eigenvalues. It is natural to ask whether the converse holds, namely, if 
(£, a ) is any Qp-valued point of ^ of lying over the weight Kk : T —» Zp , for 
some positive integer k, then is £ classical? 

The answer is no in general, for trivial reasons. One already sees this with the 
Eisenstein family of Example 2 .17. Indeed, in the notation of that example (and 
assuming p is odd for simplicity), if k ^ i mod p — 1 then the associated system of 
eigenvalues is not associated to a modular form of level 1; rather, its values on £Si 
and Tg (for £ \ Np) coincide with those of the system of eigenvalues A^_fc k (in the 
notation of Example 1.18), corresponding to an Eisenstein series of level p. 

Hida showed in general that if (£, a ) is a Zp-valued (or equivalently, Qp-valued) 
point of ë?ord lying over the character for k > 2 (or, more generally, a character 
of the form V̂ fc? where has finite order and k > 2 ) , then there is a system of 
eigenvalues A : Tk(Np) Zp such that Ç(£Se) = X(£Se) and £(T£) = X(T£) for all 

£ \ Np. 
In the non-ordinary case, the situation is more complicated. The fibre of 5? over 

any Kk (or over any character V̂ fc> where ^ is of finite order) is typically infinite, 
and all but finitely many of the points do not arise from a classical eigenform (of 
any level). However, Coleman showed [7, 8] that if (£,a) is such a point, and if the 

and ( S p e c T x Gm)an is the rigid analyt ic space 

(Z/iVZ)x.(Z/iVZ)x.(Z/iVZ)x. | T i | , . . . , | T P l | < l , r # 0 , / i , i ( T i I . . . , r r j ) = " - = / i , . i (T i , . . . ,Tr i ) = 0 } . 

Also, (SpecZp[[r]])an (SpecZp[[T]])an = {T I |T| < 1 } i.e. the open unit disk in Qp. 
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slope of a is less than k — 1, then just as in the ordinary case, there is a system of 
eigenvalues A : Tk(Np) Zp such that £(£Se) = X(£S£) and = X(T£) for all 
£ \ Np. (One can show, e.g. using Theorem 2.33 below, that, conversely, if such a A 
exists, then the slope of a is at most k — 1. Of course, all but finitely many of the 
points lying over nk have slope > k — 1.) 

Idea of proofs. — The first step in the proof of Theorems 2.20 and 2.23 is to define 
a space of p-adic modular forms on which the p-adic Hecke algebra T acts. In fact 
one can literally work with such a space, namely the space of generalized p-adic 

modular functions of Katz (as defined in [27], see also [19] and [23]) — this is the 
approach taken in [23] for the ordinary case and in [10] for the general case — or 
with a surrogate, constructed from the group cohomology of Ti(N) and certain of 
its subgroups. The cohomological approach to the ordinary case is developed in [22], 
and for the general case is developed in [42, 1]. There is another approach, via 
the p-adically completed cohomology of modular curves [15, §4], which is somewhat 
different, and which we will say a little about below. To simplify the exposition, 
from now on we will speak simply of "the space of p-adic modular forms", meaning 
either the space of generalized p-adic modular functions, or one of the cohomological 
surrogates of [1, 22, 42]. 

The next step is to introduce an additional Hecke operator on this space, the so-
called C/p-operator. In the context of p-adic modular forms, this operator has the 
following effect on g-expansions: 

uPf = 
o o 

n=0 

anp(f)qn 

We let T* denote the quotient of T[UP] that acts faithfully on the space of p-adic 
modular forms. Evidently, SpecT* ^ SpecT x A1. 

Suppose for a moment that / is a modular form of weight k and level JV, with 
p { TV, and let a and /3 be the roots of the pth Hecke polynomial. Then / ( r ) — (3f(pr) 
is a modular form of level Np, which is a t/p-eigenform with eigenvalue a. (This can 
be checked directly on the level of ^-expansions.) Thus SpecT* contains the set %, 
and hence also the Zariski closure of this set. The technical difficulty that arises 
in establishing the theorems is that SpecT* is much bigger than either J?°rd or 
roughly speaking because Up has a huge kernel on the space of the p-adic modular 
forms, while we are trying to construct curves lying in SpecT x Gm, i.e. systems of 
eigenvalues of T* for which the associated C/p-eigenvalue is non-zero. 

It is at this point that the proofs of the two theorems diverge somewhat, with 
the proof of Theorem 2.20 being technically simpler than that of Theorem 2.23. The 
points of %ord correspond to eigenforms whose C/p-eigenvalue is ordinary. If / is any 
eigenform for T* whose C/p-eigenvalue a is of positive slope, then limn Upf = anf—>0 
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as n —• 0. Thus by iterating C/p on the space of p-adic modular forms and passing 
to a limit, we can cut out the ordinary part of the space of p-adic modular forms, on 
which Up acts with only ordinary eigenvalues. (This process can be summarized by 
using the limits of powers of Un to construct the so-called ordinary projector, which 
projects to the ordinary part.) The quotient of T* acting faithfully on this ordinary 
part is denoted by Tord, and j?°r<i = SpecTord. The key fact, underlying the proof of 
Theorem 2.20, is that Tord is finite over Zp[[r]]. This can be proved in various ways; 
either using the theory of mod p modular forms, if one is working with generalized 
p-adic modular functions (this is the approach taken in [23]), or by arguments with 
group cohomology (this is the approach of [22]). 

As already indicated, the proof of Theorem 2.23 is more technical. The reason is 
as follows: if m* is a maximal ideal of T* lying over a maximal ideal m of T, and if 
m* is not ordinary (i.e. if Up G in*), then it follows from [19, Prop. II.3.14] that 

T; , - T m [ [ c / P ] ] . 

(Here TĴ * and Tm denote completions, and Tm[[J7p]] is the formal power series ring in 
Tm with variable Up.) Thus if £ : Tm —• Zp is a system of eigenvalues, we can extend 
it to a system of eigenvalues of TĴ  by assigning any positive-slope value of Up that 
we choose; even if £ is classical, attached to some system of eigenvalues A : —> Zp, 
the algebra T* has no way of distinguishing the positive slope roots of the pth Hecke 
polynomial of A from any other positive slope elements of Zp. 

Thus one cannot reasonably interpolate the points % by algebra alone; it is 
necessary to use some analysis. In the generalized p-adic modular functions setting, 
the key step is to replace this space by a certain subspace of so-called overconvergent 
modular forms. (This is the approach of [10].) In the cohomological framework, 
this step can be taken at the beginning, by working with rigid analytic (rather than 
merely continuous) modular symbols (as is done in [42, 1]). In these settings, the 
operator Up is a compact operator, and so has a reasonable spectral theory. One can 
then analyze, and obtain finiteness results for, all of its non-zero eigenspaces, rather 
than just the ordinary eigenspaces. The analysis of these eigenspaces is at the heart 
of the proof of Theorem 2.23. 

As mentioned above, there is another approach to the proof of Theorem 2.23, via 
p-adically completed cohomology [15]. In this setting, one does not directly have 
an action of the ?7p-operator, but rather has an action of the entire group GL2(QP), 
and the introduction of the [/^-operator and the passage to its non-zero eigenspaces 
is effected in a single step, by applying the locally analytic Jacquet module functor 
of [14]. 

We make some further technical remarks. In the paper [10], the authors prove 
Theorem 2.23 only in the case when N = 1. The generalization to arbitrary N can be 
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found in [4, Part II], or [15, §4]. Also, in most of the papers cited, the authors work 
with Hecke algebras that contain the Hecke operators Ug for t\N, £ ^ p, as well as 
the operators Se and Tg that we have considered. We have avoided any consideration 
of these additional operators, since they are not essential for the consideration of 
Galois representations. It is not difficult to deduce the results in the form that we 
have stated them from the corresponding results cited, which perhaps involve these 
additional operators. • 

2.5. The infinite fern 

The composition of the closed embedding g?ord SpecT x Gm with the projection 
onto the first factor gives a map 

(13 ) (Z/iVZ)x. SpecT 

which is very close to being injective on Zp-points. Indeed, if (£i,a) and (£2,/?) are 
two such points mapping to the same point of SpecT, then £1 = £2 = £ (say), and 
we see (by Theorem 2.29 below) that p% \ cQp admits unramified quotients on which 
Frobp acts by a and /3 respectively. Thus if a ^ (3, we see that p% | cQp is unramified. 
It is then conjectured (as a special case of [18, Conj. 3c]), and is proved in most 
cases [5], that £ is a classical system of Hecke eigenvalues, arising from a weight 1 
Hecke eigenform of level N. Hence (13) has (or at least, is expected to have) at most 
finitely many double points, arising from classical systems of Hecke eigenvalues in 
weight one. 

On the other hand, if we consider the analogous map 

(14) T—>(SpecT)an, 

then every system of eigenvalues A : —• Zp gives rise to a pair of points (£, a) and 
(£,/?), where £ is a p-adic system of Hecke eigenvalues associated to A, and 

X2 - X(Te)X + X(lSt) 
(X - a)(X - ¡3). 

Unless a = (5 (which, as we already noted, is expected to be impossible unless k = 1), 
we see that the image of (14) admits a double point at £. Thus the image of (14) is a 
very complicated curve, with an infinite number of double points. It is known as the 
infinite fern [32, 21]. The following theorem, due to Gouvea and Mazur [21], shows 
that it is a kind of "space-filling curve" in (SpecT)an. 

THEOREM 2.27. — Each component of the Zariski closure of the infinite fern in 

(SpecT)an is at least two-dimensional. 

Sketch of proof. — Since "6 is defined to be the Zariski closure of we see that 
the Zariski closure of the image of (14) is equal to the Zariski closure of the set £ 
of classical p-adic systems of Hecke eigenvalues. Suppose that this Zariski closure 
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contains a component Z that is one-dimensional. Since the singular locus of Z is 
a Zariski closed proper subset of Z, we may find a classical £ lying in the smooth 
locus of Z. Since Z is one-dimensional, the map —• Z must be surjective in a 
neighbourhood of £. Let A : T& —• Zp, for some k > 1, be the system of eigenvalues 
giving rise to £, and let a and /? be the two roots of the pth Hecke polynomial of A. 
Then (unless a = ¡3), the image of J? is branched at £, contradicting the fact that Z 

is smooth at £. 
If a = /3, then by appealing to the result of Coleman mentioned in Remark 2.26, it 

is easy to see that we may find arbitrarily small perturbations £' of £, for which £' is 
classical and such that the corresponding roots af and ¡3' of the pth Hecke polynomial 
are distinct. Then we may apply the above argument to £' instead, and again derive 
a contradiction. • 

The previous result has the following corollary on the Krull dimension of Spec T, 
which is again due to Gouvea and Mazur [21]. 

COROLLARY 2.28. — The Krull dimension of each component of SpecT is at least 4. 

Sketch of proof. — It is equivalent to show that each component of the associated 
rigid analytic space (SpecT)an is at least three-dimensional. Any such component 2/ 
contains a component Z of the image of (14), which is two-dimensional. Twisting by 
characters of p-power conductor then provides a one-dimensional deformation of Z 

inside 2/, showing that y is at least three-dimensional. • 

2.6. Galois representations over Hida families and the eigencurve 

The following result, due to Mazur-Wiles [34] and Wiles [44], gives a Galois-
theoretic interpretation of the points of ??or , and in particular, of the Gm-coordinate. 
Before stating it, we note that the chosen embedding ip : Q <^-> Qp induces a map 
Gqp —* Gq —> Gq^ (where we have written Gqp and Gq to denote Gal(Qp/Qp) 
and Gal(Q/Q) respectively, and where the second arrow is the natural surjection). 
For any representation p of Gq^, we write P\G®P to denote the restriction of p to a 
representation of Gqp via this map. Recall that Gqp contains a normal subgroup Ip 

(the inertia subgroup), such that Gqp/Ip —• Gpp, the absolute Galois group of Fp. 
This latter group is topologically generated by the Probenius automorphism Frobp. 
We say that a representation of Gqp is unramified if it is trivial when restricted to 
Jp; any such representation is then endowed with an action of Frobp. 

THEOREM 2.29. — / / (£,a) is Zp-valued point of g>ord; then PÇ\G®p admits a one-

dimensional unramified quotient on which Probp acts with eigenvalue a. 

One has the following conjecture, which is an analogue for lord of Conjecture 2.12. 

It was first made by Mazur and Tilouine [33]. 
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CONJECTURE 2 . 3 0 . — IfY,is any finite set of primes containing p, and if 

p : G Q , E - + G L 2 ( Q p ) 

is a continuous, semi-simple, and odd representation whose restriction to GQp admits 

a one-dimensional unramified quotient on which Frob p acts through the eigenvalue a, 

then there is a Zp-valued point (£,«) in the Hida family for some level N divisible 

only by primes in £ distinct from p such that p = p%. 

In their papers [40, 41], Skinner and Wiles have established this conjecture in a 
large number of cases. 

THEOREM 2 . 3 1 . — Let p and a be as in the statement of Conjecture 2 .30, and let 

P • GQ 5 S —> GL2(FP) be the representation obtained by descending p to Zp and 

then reducing modulo the maximal ideal of Zp. If detp\jp = ipxk~l for some finite 

order character ip and some integer k > 2 (recall that x denotes the p-adic cyclotomic 

character), and if the semi-simplification ofp\Gq (which is necessarily the direct sum 

of two characters, and which is well-defined independently of the choice of Zp-model 

of p giving rise to p) is the direct sum of distinct characters, then Conjecture 2 . 3 0 
holds for p. 

Remark 2.32. — Suppose that p and a are as in the preceding result, and let (£, a) 
be the point on the Hida family (of an appropriately chosen level), whose existence 
is given by the theorem, for which p = p£. The assumption on detp in the theorem 
(and in particular, the assumption that k > 2) implies, by the result of Hida recalled 
above, that £ is obtained from a system of eigenvalues A : Tk(Np) —• Zp. Thus, in the 
context of this result, one concludes that p actually arises from the system of Hecke 
eigenvalues attached to a classical modular form (of level possibly divisible by p). 

The following result gives a Galois-theoretic interpretation of the points on 
analogous to Theorem 2.29. It is due to Kisin [28]. The statement requires the 
language of Fontaine's theory [17]. Recall that Fontaine has defined a ring B^ris, 

equipped with commuting actions of the group Gqp and of a "Frobenius" operator (p. 

If V is any representation of GQp over Q p , then D+[s(V) := (B+is <g>Qp V)GQ? is 
a Qp-vector space of dimension at most that of V, equipped with an operator ip 

induced by the operator tp on 2 ? * I S . 

THEOREM 2 . 3 3 . — / / (£,a) is a Qp-valued point of J?, and if P ^ G q denotes 

the contragredient representation to p£\cQp, then Dcris(P^\G® ) contains a one-

dimensional subspace on which ip acts via a. 

S O C I É T É M A T H É M A T I Q U E D E F R A N C E 2 0 1 1 



5 8 M. EMERTON 

Sketch of proof — If the p-adic system of Hecke eigenvalues £ is classical, arising 

from a system of Hecke eigenvalues A : —> Zp attached to some modular form of 

weight k > 1, then the representation P ^ \ G Q

 1S M ^ a c ^ crystalline, with Hodge-Tate 

weights equal to 0 and 1 — k, and so D^ris(p^ G^ ) is two-dimensional over Qp. In this 

context, it is known that the characteristic polynomial of (p is equal to the pth Hecke 

polynomial of A [36]. Thus, if a and ¡5 are the two roots of this polynomial, then we 

see that D+is(p^Gq )v=a and D+[s(p^Gq ) ^ = / 3 are both non-zero. The theorem is 

then proved by showing that these non-zero spaces interpolate over the curve g\ • 

Remark 2.34. — In the context of Theorem 2 .33 , if a G Zp , then D+is(pV]Gq Y=OL 

is non-zero if and only if p^ \ cQp contains an unramified quotient on which Frob p acts 

via a. Thus Theorem 2 .29 is a consequence of Theorem 2 .33 . 

The following conjecture is analogous to Conjecture 2 .30 in the ordinary case. (See 

the hope expressed in Remark (2) of [28, p. 450].) 

CONJECTURE 2 . 3 5 . — IfT,is any finite set of primes containing p, and if 

p: G Q , E ^ G L 2 ( Q P ) 

is a continuous, semi-simple, and odd representation such that D^Tis(p^G^ )v-a %s 

non-zero, then there is a Qp-valued point (£,a) in "6 for some level N divisible only 

by primes in E distinct from p such that p = pç. 

There has been recent progress on this conjecture (see the corollary on p. 3 of [30] 
as well as the forthcoming paper [16]). 
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