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Séminaire BOURBAKI 

62 e année, 2009-2010, n° 1016, p . 137 à 156 

Novembre 2009 

E R G O D I C I T Y O F T W O D I M E N S I O N A L T U R B U L E N C E 

[after Hairer a n d M a t t i n g l y ] 

by A n t t i K U P I A I N E N 

I N T R O D U C T I O N 

The problem of turbulence has been described as the last great unsolved problem of 

classical physics. Understanding of the complicated motion of fluids in the presence of 

obstacles or stirring has been a challenge to mathematicians, physicists and engineers 

for quite a time now. The equations governing macroscopic fluid motion, the Navier 

Stokes equations, have been known for close to two centuries. For an incompressible 

fluid in units where the density equals one they read 

( i ) dtu + u Vu = uAu - Vp + / . 

u(t, x) G Rd is the velocity field at t ime t at x G A, a domain in Rd subject to the 

incompressibility condition 

(2) V • i¿ = 0 

and suitable boundary conditions on dA. v is the viscosity coefficient of the fluid, 

p(t, x) the pressure and / (£ , x) the external force tha t sustains the flow. Given / and 

^(0, •) the task is to find u and p. It is fair to say tha t theoretical understanding of 

the consequences of these equations is still in its infancy. On the mathematical side, 

existence of smooth solutions for the three dimensional NS equations is wide open 

and has been chosen by some as one of the major problems of mathematics ( h t t p : 

/ / w w w . c l a y m a t h . o r g / m i l l e n n i u m / ) . On the physical side, experimental violations 

of the Kolmogorov scaling theory of turbulence [12] are still waiting for theoretical 

understanding. 

In two dimensions, i.e., for flows on the plane, there has been some progress during 

the last ten years. On the physical side, 2d turbulence has been the subject of accurate 
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138 A. KU PI AIN EN 

numerical and experimental studies [5], [25] and mathematically the ergodic theory 
of the NS flow has been under intensive study. 

It is important to realize tha t for the problem of turbulence one is interested in a 
very particular kind of force in (1), namely one tha t has a fixed length scale L built 
into it. Examples of this are flows past obstacles, with L the characteristic size of 
the obstacle. In such a setup the flow exhibits universal statistical properties as the 
viscosity parameter tends to zero (actually the control parameter is a dimensionless 
quantity, the Reynolds number given by ^ where v is a velocity scale related to the 
forcing). E.g. t ime averages of measurements of suitable functions of u seem to show 
statistical properties only depending on the Reynolds number. It is therefore of some 
interest to inquire about the foundations for such statistical studies, i.e., about the 
ergodic properties of the NS flow in the turbulent setup of a fixed scale high Reynolds 
number forcing. 

A convenient model for isotropic and homogeneous turbulence (i.e., in the limit of 
large Reynolds number and away from the boundary dA) is to consider ( 1 ) Equat ion (1) 
on the torus T 2 = R 2 / ( 2 T T Z ) 2 and take / random, a Fourier series with a finite number 
of terms and coefficients independent white noises (see below). Then the deterministic 
dynamics of (1) is replaced by a Markov process and one may pose questions on its 
ergodic properties: whether the process has a unique stat ionary s ta te and whether 
this is reached and with what rate from arbitrary initial conditions. 

This Markov process is a diffusion process of a very degenerate type. While the 
phase space is infinite dimensional the noise is finite dimensional. There are two gen­
eral mechanisms tha t can contribute to the ergodic and mixing properties of stochastic 
flows. One is dissipation, coming in our case from the Laplacian in (1). Dissipation 
contributes to ergodicity by exponential contraction of phase space under the flow. A 
second mechanism comes from the spreading of the noise from its finite dimensional 
subspace due to the nonlinear term in (1). In finite dimensional diffusion processes 
this leads to hypoellipticity if the noise spreads to the full phase space: the transit ion 
kernels are smooth (for equations with smooth coefficients). Combined with some 
irreducibility of the process ergodicity follows. 

In our infinite dimensional setup the dissipation due to the Laplacian leads to 
strong damping of large enough (depending on the Reynolds number) Fourier modes. 
If we keep noise on all the other, low, modes then one can reduce the problem to a 
low mode dynamics, albeit with some (exponentially decaying) memory due to the 
large modes. Proofs of ergodicity and mixing of the dynamics were given in this case 
in the works [6], [10] and [18]. However, it seemed far from trivial to extend the 
hypoellipticity ideas to the infinite dimensional setup to control also the case of very 

( 1 ) To get to the turbulent state one actually has to modify (1) a bit, see Section 8. 

ASTÉRISQUE 339 



(1016) ERGODICITY OF TWO DIMENSIONAL TURBULENCE 139 

degenerate forcing where the number of forced modes does not depend on the Reynolds 

number. This was accomplished by Hairer and Mattingly [13], [15] who gave sharp 

sufficient conditions for the noise to produce ergodic and mixing dynamics. In what 

follows I will present the main points of their approach focusing on the difference 

to finite dimensional hypoelliptic diffusions. The papers [13], [15] are very clearly 

writ ten and they contain plenty of background material, especially [15] which builds 

a more general formalism applicable also to some reaction-diffusion equations. [15] 

also corrects a mistake in [13] so it should be consulted for a thorough study. In the 

final section I discuss more informally what we have learned about 2d turbulence and 

what issues might be accessible to a rigorous mathematical analysis. 

I would like to thank J. Bricmont, M. Hairer and J. Mattingly for comments on this 

exposition and the European Research Council and Academy of Finland for financial 

support . 

1. 2 D N S E Q U A T I O N S 

The fundamental fact tha t is behind both the mathematical and physical under­

standing of 3d NS equations is energy conservation: in the absence of forces smooth 

inviscid flow preserves the L2 norm of u(t, •). In two dimensions there is a second 

conserved quantity, the enstrophy, which is related to the H1 norm and which leads 

to quite different physics and to much bet ter regularity. 

Let us first define the vorticity 

u = V x u, 

which in d = 2 is a (pseudo)scalar: u = d\U2 — d^ui. The NS equation becomes in 

terms of a; a t ransport equation: 

(3) Co = UALJ — u - Vu; + g, 

where g = d\J2 — $ 2 / 1 . We will assume the average force vanishes, i.e., / f(tyx)dx = 0. 

Then (1) preserves the condition / u(t,x)dx = 0 which we will assume. The incom-

pressibility condition (2) allows to write u = So ; where the linear operator U is 

given in terms of the Fourier transform by 

(4) So;(A:) = i(k2, —ki)k 2û(k) 

for k G Z2 \ 0. 

The enstrophy S is defined to be (half of) the L2-norm of u: 

= èiM*)f. üú(t, x)2dx : = è iM*)f . 
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140 A. KUPIAINEN 

For a smooth u the condition V • u = 0 leads to the absence of contribution from the 

nonlinear te rm to the evolution of the enstrophy: 

(5) 
dS 

dt 
— —v [Vujfdx + ujgdx, 

where the first term on the RHS can be interpreted as an enstrophy dissipation 

rate and the second one as an enstrophy injection rate . Using Poincaré inequality 

11 Va; 11 > 11 a; 11 and simple estimates one deduces 

(6) | K * ) | | 2 < e - ^ | K 0 ) | | 2 + t/-2 sup| |5( t) | |2 . 
t 

This a priori est imate for the H1 norm of u is the main ingredient in the proof of 

global regularity of the 2d NS flow. 

We wish now to discuss a version of (3) where the force g is random. We work in the 

subspace of real valued L2(T2) functions with a;(0) = 0. It will be convenient to use 

the following basis for this space. Let Z + be the "upper half plane" in Z2 consisting 

of k = (fci,fc2) with k2 > 0 or k2 = 0 and kx > 0. Hence Z2 \ 0 = Z+ U {-Z+). 

Let ek = sinA;# for k E Z+ and = coskx for —k G Z + . For each k G Z2 pick 

independent Brownian motions /3k{t) with unit speed, denoted collectively by (3{t) 

and numbers 7*. G R. Let 

(7) = èiM*)f. 

kez2 
= èiM*)f. 

The stochastic version of Equation (3) reads 

(8) duo = (VAUJ - u • Vu))dt + Qd/3. 

Regularity of the stochastic flow proceeds in parallel with the deterministic case as 

long as 7*; have enough decay at infinity. The analog of the enstrophy conservation 

Equation (5) is obtained by an application of the I to formula 

(9) d(S=id| |a, | |2 = -i/ll Vuj\\2dt + (u, Qd/3) + edt 

where e = 2n2 7 ! can be interpreted as the enstrophy injection rate . Taking 

averages we get a probabilistic analog of (5) and (6): 

(10) 
d m n 

JtE6 
- i /E | |Vw| |2 + e 

and 

( H ) E||u,W||2 <e"2,/t||a;(0)||2 + ^-1e. 

Actually (9) can be used to control exponential moments of the enstrophy [6], [13] 

Lemma A . l : 

(12) EexpfolM*)!!2) <2exp(77e-'"||W(0)||2) 
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for all 77 < i.e., probability for large L2 norm is exponentially small. (9) also allows 

to control the t ime integral of the H1 norm: 

(13) Eexp(r/z>' 
'o 

l|Vu;(i)||2) < 2exp(7?ei + 77||u;(0)||2) 

again for all rj < ^ . Such a priori estimates allow one to prove the existence and 

pathwise uniqueness of strong solutions to Equation (8) under quite general conditions 

on the noise coefficients 7*., see e.g. [11] and [22]. Of course the less the 7& decay at 

infinity, the harder it is to establish the regularity of the PDE's . As explained in the 

introduction, for the turbulence problem only a finite number of the 7^ are nonzero. 

Thus from the point of view of regularity the turbulent case is easy (this is not t rue 

in 3d!). However, the less noise there is, the harder it is to establish the ergodicity of 

the flow. 

2. I N V A R I A N T M E A S U R E 

Let us now specialize to the case where 7^ = 0 for k £ K where K is a finite set. 

Thus the noise is finite dimensional: (3 = {(3k}keK can be identified with the Wiener 

process in Q = C( [0 ,00) ,R^) where D — \K\, equipped with the Wiener measure 

W(db). The solution of Equation (8) is a one parameter family of continuous maps 

$t.nx L2(T2) L2(T2) such tha t u(t) = $t(P,wo) solves Equation (8) with initial 

condition uo and noise realization /3. Actually, $ t is (Prechet) differentiate in /3 

and UJQ. 

uj(t) is a Markov process with state space H = L2(T2). It gives rise to transition 

probabilities Pt(u;o,A) which are probability measures on H, giving the probability 

of entering the set A C H at t ime t given tha t at t ime 0 we have UJ(0) = UJO: 

Pt(u>o,A) = ElA(Lj(t)). 

The transition probabilities generate a semigroup (Pt on bounded measurable func­

tions on H by the same formula: 

(14) = èiM*)f. Pt(.,dwMw) 

and the adjoint semigroup acting on bounded (Borei) measures: 

(15) = èiM*)f. li(dujQ)Pt(<jJo,-). 

We are interested in the invariant (or stationary) probability measures //* satisfying 

the equation 

( i6) = èiM*)f. 
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Existence of an invariant measure is straightforward given the strong probabilistic con­

trol of the flow. One considers the family of t ime averages = t~l J* dsPs(uo, •) 

and shows it is t ight. Prohorov's theorem then yields a limit point which is shown to 

be invariant. 

Uniqueness of the invariant measure is much more subtle. It implies ergodicity, i.e., 

in particular the equivalence of t ime averages and ensemble averages: 

limt^oo AAtW°\0) = M(0) f°r au< 0 € L2(H,fi) and /i-a.s. in UJQ>. In practice one 

would like to have more, i.e., the convergence in some sense of the measures Pt(wo, •) 

to //* as t —> oo. This leads to various mixing concepts. 

3. DISSIPATION AND SMOOTHING 

For finite dimensional diffusion processes it is well known tha t the uniqueness of the 

invariant measure follows from recurrence and smoothing properties of the transition 

probabilities. Let us sketch a special version of this argument having the application 

to NS in mind. 

The semigroup (PT is called strong Feller if the image is continuous for <j> measurable. 

This has drastic consequences for the supports of invariant measures. Recall tha t x 

belongs to the support of a finite Borel measure \i on a Polish space (our setup) if 

/J>(U) > 0 for all open U containing x. Then the supports of two distinct ergodic 

invariant probability measures for a strong Feller semigroup are disjoint. To see this, 

suppose fi _L v and x G supp/x fl suppzA Pick A with fi(A) = 1 and v{A) = 0. By 

strong Feller there exists a U containing x such tha t su\)yzeU \Pt(y, A) — Pt(z, A)\ < \. 

Moreover by assumption a := min{/i({7), v(U)} > 0. Write /i = (l — a)p,-\-a/j>u with p 

and /iu probability measures with /JLU(U) = 1 (i.e., jijj = filu/fJ>(U)) and v similarly. 

Then, bv invariance \KA)-HA)\ \rtix{A)-cp\v{A)\ and thus 

l = | /x(A ) - I / (A) | <(l-a)\ff>;P(A) - ^ ^ ) | + a | ^ ( 4 ) -&>u{A)\ 

< ( l - a ) + a 
'UxU 

\Pt(y,A)-Pt(z,A) \Hu(dy)vu(dz) = èiM*)f. 

a contradiction. 

Suppose now tha t we knew tha t there exists an x tha t necessarily belongs to 

the support of every invariant measure of a strong Feller semigroup. We could then 

conclude uniqueness. This is a reasonable strategy for the NS equation. Indeed, u = 0 

is such a point. This follows since the NS equation is dissipative. Wi thout forcing the 

fluid slows down, i.e., the L2 norm decays exponentially (see Equation (6)). There is 

a non zero probability for the force to stay small enough so tha t any neighborhood 

ASTÉRISQUE 339 



(1016) ERGODICITY OF TWO DIMENSIONAL TURBULENCE 143 

of 0 can be reached. More precisely, the Ito formula ( 1 0 ) combined with Poincaré 

inequality ||o;|| < ||Va;|| yields 

/i(do;)||a;||2 < e/v 

for every invariant probability measure //. Hence, there exists R < oo such tha t every 

such measure has at least half its mass in the ball BR of radius R centered at 0 in H. 

Thus one needs to show: for all r > 0 , there exits Tr < oo such tha t 

Ir := inf 
uj0eBR 

PTr(iJo,Br)>0 

(see [9], Lemma 3 . 1 ) . Then / i(Br) = 3>MBr) > \lr > 0 for all r > 0 . 

This strategy does not quite work in our case since the strong Feller property is very 

hard to show for (PT and might very well not be true. One of the main accomplishments 

of Hairer and Mattingly was to replace it with a condition tha t is more natural for NS 

and yet allows one to conclude tha t the supports of invariant measures are disjoint. 

4 . A S Y M P T O T I C S T R O N G F E L L E R P R O P E R T Y 

A strong Feller semigroup maps bounded functions to continuous ones. Often the 

easiest way to prove this is to show a bit more [8], Lemma 7 . 1 . 5 : 

P R O P O S I T I O N 4 . 1 . — A semigroup on a Hilbert space H is strong Feller if for all 

= èiM*)f. with = èiM*)f.= èiM*)f. = èiM*)f and IWIIoc finite one has 

( 1 7 ) | |DPtQ(x)H<CdlxrlDIQloo, 

where C : M+ —» M and D is the Fréchet derivative. 

We will now argue tha t the condition ( 1 7 ) is not very natural for the NS dynamics. 

As mentioned in the introduction there are (at least) two ways ergodicity can result. 

One is due to smoothing by the noise, the other is due to dissipation tha t erases 

memory of the initial conditions. The former effect leads to a condition like ( 1 7 ) , the 

latter not. Let us next discuss the latter effect in our case. 

Let JSjt with s < t be the derivative of the NS flow ( 8 ) between times s and t, i.e., 

for every f G H, Jsj£ := £(t) is the solution of the linear equation 

( 1 8 ) №t) = «/Ai(t) = èiM*)f. vat)+®m Vw(f) := £ u { t ) № 

for t > s and £(s) = £. This linear equation is readily controlled in terms of the Hl 

norm of u> ([13], Lemma 4 . 1 0 ) : 

( 1 9 ) U(t)\\ < exp = èiM*)f.= èiM*)f. 
t 

s 
||Va;(r)||2dr)||í(*)|| 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2011 



144 A. RUPIA IN EN 

for any 6 > 0 . Combining with the a priori estimate ( 1 3 ) then 

( 2 0 ) E||Js,||p < 2* exp (C(e,u,r,,p)(t-s) + r,\\uJ(s)f) 

for all rj > 0 , all p < oo. 

Equations ( 1 9 ) and ( 2 0 ) indicate a possible exponential separation of trajectories. 

However, since the Laplacian is the Fourier multiplier —k2 it is not surprising tha t 

the high Fourier modes of £ are strongly damped for a t ime tha t can be taken as large 

as we wish as N is increased. This is expressed by [13], Lemma 4 . 1 7 : 

L E M M A 4 . 2 . — For every p > 1 , every T > 0 , and every two constants 7 ,77 > 0 , 

there exists an orthogonal projector TT£ onto a finite number of Fourier modes such 

that 

E ( | | ( l - 7 r , ) J 0 , T f + l l < W i - ^ ) l l p ) < 7e*7ll™o|| 

For such contracting dynamics ( 1 7 ) is not a natural condition to t ry to prove. 

Indeed, let £h = ( 1 — 7i^)£ be the projection of £ to the high modes and consider 

the toy problem where we apply ( 1 — ne) to Equation ( 1 8 ) and drop altogether the 

(^-dependent terms: 

= èiM*)f.= èiM*)f. 

Then for a function = ip((l — n£)uj) depending only on the high modes we have 

D(Pt(j>{uJo)i = ED(t>(u;(t))th(t). Since in this toy case | |&(*)ll < e -At | | f || for A > 0 we 

conclude 

\\DPt<Kx)\\ = èiM*)f.= èiM*)f. 

This toy model and Lemma 4 . 2 motivate the following definition by Hairer and Mat-

tingly ([13], Proposition 3 . 1 2 ) . 

D E F I N I T I O N 4 . 3 . — A semigroup @t on a Hilbert space ${ is asymptotically strong 

Feller if there exist two positive sequences tn and Sn with {tn} nondecreasing and {Sn} 

converging to zero such that for all —> R with \\(f)\\oo and ||D0||oo finite, 

( 2 1 ) \D0tn<K*)\ < C(IWI) ( I M I o o + Ä n l W I l o o ) 

for all n, where C : M+ —• K. 

(Hairer and Mattingly actually give a "topological" definition of the asymptotically 

strong Feller condition which is implied by the one above.) The main point is the 

following result whose proof is similar to the one given above in the strong Feller case 

([13], Theorem 3 . 1 6 ) : 

P R O P O S I T I O N 4 . 4 . — / / the semigroup is asymptotically strong Feller at x then x 

belongs to the support of at most one ergodic invariant measure. 
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We saw above tha t it is not unreasonable to expect tha t the high mode dynamics 

give rise to the second term in (21). Thus the question remains: why would the low 

mode dynamics be strong Feller? The answer to this question lies in the hypoellipticity 

of the low mode dynamics. 

5. H Y P O E L L I P T I C I T Y 

Let us first think about the low mode dynamics in the Galerkin approximation, 

i.e., by put t ing the high modes to zero. More formally, consider the equation 

(22) dut = (vAu) --Kp(wVuj))dt + Qd3, 

where we assume the forcing is on low modes (1 — 7r^)Q/? = 0 and set (1 — irt)uj = 0. 

Equation (22) defines a diffusion process in a finite dimensional space which we may 

identify with R ^ , N = dim n ¿11. The diffusion process is thus degenerate with the 

dimension D of the noise (much) smaller than N. The strong Feller property follows 

for such diffusions provided the generator of the diffusion process is hypoelliptic. Let 

us discuss this next. 

Recall the Fourier basis {e^} for H. Let the range of ni be the span of {ek\ with 

|Jb| < M Write = èiM*)f.= èiM*) Then the equation (22) reads 

(23) dujk = vk{u)dt + ~fkdf3k, 

where vk is given by 

= èiM*)f. -u\k\2uk 
h1 

8tt2 
j+e=k 

(jlt2-J2tl) 
1 

Kl2 

1 

lil2> 
\WjW¿ 

and = èiM*)f.= èiM*)f. for = èiM*)f. and w-k = wk The generator of this diffusion is 

(24) L = X0 + 

keK 

fgd 

where we recall t ha t 7fc = 0 for k £ K. The vector fields Xa are given by 

Xo = 

k 

Vkd„k 

Xk = Ikdu,. 

An operator of the form (24) with smooth vector fields Xa is known to generate a 

semigroup !Pt with smooth kernel (hence it is strong Feller) provided the Hormander 

bracket condition is satisfied (L is then hypoelliptic). The condition is tha t the 

span of the vector fields Xj, j ^ 0 and [X^, [Xi2,... [X^^X^]]...] for k > 1 and 

ij e {0} U K at each u eRN equals RN. 
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To check this condition in the NS case is a purely algebraic exercise and the result 

is the following [9, 13]: 

P R O P O S I T I O N 5 .1 . — The following conditions for the set K c Z 2 \ { 0 } are sufficient 

for the Hôrmander bracket condition to be satisfied: 

(a) K is invariant under the reflection k —> —k 

(b) K contains at least two elements of unequal length 

(c) K spans Z2 under linear combinations with integer coefficients. 

An example of a very degenerate forcing tha t suffices is given by the set 

K = {(1,0) , (—1,0), (1,1) , (—1, — 1)}, i.e there is forcing only on two wave vectors 

and their reflections. ^ 

Note t ha t Proposition 5.1 is t rue for arbi trary (large enough) Galerkin cutoff N. 

Hence the full infinite dimensional generator formally satisfies the Hormander condi­

tion and one might be tempted to t ry to use this to return to the a t t empt to prove 

the strong Feller property for @t. However, it is likely tha t , as we let N increase, 

the derivatives of the kernel of @t with respect to the high modes blow up since the 

smoothing is very weak for them. It is much more natural to t ry to use in tha t regime 

the dissipation as coded in the asymptotic strong Feller condition. 

Let us finally remark tha t if all the 7^ in (23) are nonzero the generator L is elliptic. 

If N is large enough (of the order e/u3) then one may use the dissipativity of the high 

mode dynamics to solve for the high modes in terms of the (temporal history) of the 

low modes and use the ellipticity of the latter to prove ergodicity and mixing of the 

full dynamics [6, 10 , 18]. 

6. MALLIAVIN MATRIX 

Why does elliptic diffusion produce smoothness in transit ion kernels? One way to 

think about this is to consider trajectories of the flow. Noise will make the trajectories 

non-unique: a change in the initial condition can be compensated by the noise. In 

elliptic diffusions noise spans the whole space and the compensation is immediate, in 

hypoelliptic diffusions the nonlinearity spreads the noise in all directions thanks to 

the bracket condition. Thus a derivative of the solution in the initial condition should 

equal its derivative in a particular direction in the (history of) noise space. Since 

we are integrating over the noise the latter derivative can be integrated by par ts and 

hence an estimate like the strong Feller property can emerge. 

To be more explicit recall t ha t we wrote the solution of the stochastic NS equa­

tion as uj(t) = $t(f3,uo) with $ t smooth in the noise /3 £ C([0,00)),RD) and the 
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initial condition UQ. Also we have denoted the derivative in the initial condition by 

= èiM*)f. = èiM*)f.dfhg foi £ € if. Thus 

(25) (D?t4>(wo),t) = E ( ( D 0 ) ( W ( t ) ) , £ ( * ) ) . 
Consider next the infinitesimal change in the solution corresponding to the change of 

the noise /3 in the direction V G C([0, oo)), RD): (Dpu(t),V) : = CW- COO satisfies 

the same linearized NS equation (18) but with forcing QV: 

(26) <K{t) = £u(t)at)dt + QdV(t) 

and zero initial condition. The natural space to vary the noise is the Cameron-Martin 

space, i.e., to take V of the form V{t) = f*v(s)ds with v G L2OC([0, oo],RD). By 

variation of constants, C(t) is then given by 

(27) at) = 
t 

'0 
Js,tQv(s)ds := Atv. 

Actually, the v one will eventually use is itself a function of the noise (see Equa­

tion (40)), but it will be a.s. in L2loc. The upshot is tha t At : L2([0,t] ,RD) -> H is 

an a.s. bounded random operator and so the Prechet derivative can be writ ten as 

(Dßuj(t),V) = 

qsf 

sdf 

o 
cDsüj{t)vk{s)ds 

where the operator cùs is called the Malliavin derivative and heuristically corresponds 

to an instantaneous kick at t ime s to the direction k in noise space. Explicitly 

(28) = èiM*)f = Js,t1k&k-

Suppose now we can find a v such tha t 

(29) í(*) = C ( t ) , i.e., J0, t í = Atv. 

Inserting this to Equation (25) we get 

(30) (DPt<l>(uo),& E((£»0)(o;(i)),C(i)) E{Dß<Ku,(t)),V). 

The derivative Dp in Equation (30) can be integrated by par ts in the Gaussian Wiener 

measure to obtain 

(31) E{Dß4>(u;(t)),V) E(4>(cv(t))D*ßV). 

In other words, the expression Dp is the adjoint of Dp in L2(fi, W). If the process v is 

adapted to the Brownian filtration its expression is simply DpV = J2k f vk(s)d/3k(s), 

the Ito integral. Otherwise a derivative of v with respect to the noise also appears 

and D^V is called the Skorokhod integral of v. Combining (31) with (30) the desired 

bound follows: 

(32) \(D0t4>(wo),Z)\ < IMUEIDjn 
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It remains to solve Equation (29) for V (i.e., for v). Let A* be the Hilbert space 

adjoint of At, i.e., explicitly 

(33) = èiM*)f.= èiM*)f. 

for s < t. Then the Malliavin matr ix is defined by 

(34) Mit) := AtAt = 
v 

/0 
Js,tQQ*J*ds. 

Suppose M(t) is invertible. Then, clearly a solution to (29) is given by 

(35) v = A;MÔJJ0^. 

To sketch the rest of the story in the finite dimensional setup we need a bound for 

the Skorokhod integral appearing in Equation (32) [24]: 

(36) E(D%V)2 < E 
t 

o 
\v(s)\2ds + 

ki 

E 2)^ (r) $lrVk (s))dsdr. 

The first t e rm is the usual identity for the L2 norm of the Ito integral, the second term 

appears for a non-adapted v, as is the one given by (35). To compute the Malliavin 

derivative of v in (36) note tha t all we need is to compute 2)r JSjt since At and M(i) 

are expressed in terms of Js^> This in tu rn is obtained by differentiating the equation 

(18): 7? := 2)*f satisfies 

= èiM*)f.= èiM*)f.= èiM*)f. = èiM*)f. Vu(t) := £u(t)Ti(t) B(Jr^kek,ri(t)) 

where B is the bilinear form in appearing in £ . By variation of constants an expression 

involving only J emerges. Thus in the finite dimensional setup (so e.g. for the Galerkin 

NS) the main work to be done is to show tha t M(£) -1 has good probabilistic bounds. 

Indeed it turns out | |M(£)-11 | is in LP(Q) for all p < 00. In the infinite dimensional case 

with degenerate noise it is unlikely tha t M(t) is a.s. invertible. QQ* is proportional 

to the projection in H to the subspace generated by the noise. In the expression for 

M(t) the dynamics spreads the range beyond this subspace, however we expect the 

projection of the result to the high modes to be very small. The key estimate on the 

Malliavin matr ix Hairer and Mattingly prove is tha t M(t) is unlikely to be small on 

vectors tha t have large projection to low modes: 

P R O P O S I T I O N 6 .1 . — For every a^rj^p and every orthogonal projection on a finite 

number of Fourier modes, there exists C such that 

(37) P inf 
ll^0ll>«ll</>ll 

(M<t>,<t>) 

U\\2 
< t <CePexp(77 |K | | 2 ) 

holds for every e G (0,1), and for every UJQ G H. 
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We will not discuss the details of the proof which is the technical core of the paper 

[15] (see also [21]). However, for experts we want to make the following comments. 

One major difficulty Hairer and Mattingly face is tha t the integrand in the expression 

for the Malliavin matr ix is not adapted, i.e., depends on the future noise. The usual 

way out of this problem in the finite dimensional theory is to use the semigroup 

property Jo,t = Js,tJo,s to rewrite M(t) = Jo,tM(£)Jo t wu^h 

Mit) := 
sdg 

0 
= èiM*)f.= èiM*)f. 

the reduced Malliavin matr ix (and the control v(s) = Q* JQ S~ M(£)-1£) . In finite di­

mensions Jo,t is invertible and now the integrand is adapted. The proof then uses Nor-

ris' lemma [23] which states tha t if a semimartingale is small then both its bounded 

variation par t and local martingale par t are small. In the infinite dimensional case 

with degenerate noise, Jo,t is not invertible due to dissipation of the high modes. 

Hence one needs to work with non-adapted processes. The way out for Hairer and 

Mattingly is the polynomial nature of the nonlinearity. In the iterative proof, to 

show tha t (</>, M(i)</>) is small implies tha t s —• (J8itP(u(s))(/>, (f>) is small for the var­

ious multiple commutators P ; the P will always be a polynomial. One then writes 

u{s) = v(s) + Q/3(s) where v is more regular and expands P(u(s)) in powers of Q{3(s), 

ending up with a polynomial in the Wiener process /3(s) with coefficients tha t are 

nonadapted processes, but with higher regularity. The basic lemma one now needs is 

tha t such a Wiener polynomial can be small only if all the coefficients are small (up 

to events of small probability). 

7. L O W M O D E C O N T R O L 

The approach to prove smoothness sketched in the previous section is a form of 

stochastic control where the noise is used to force solution to a prescribed region in 

phase space (for results on stochastic control in our setup, see also [2], [1]). We 

saw tha t an exact compensation of the change of initial condition by a change in 

the noise seems impossible, but Proposition 6.1 gives reason to hope tha t partial 

compensation is possible for the low modes. Since by Lemma 4.2 the high modes are 

contracted the idea of Hairer and Mattingly is to do an approximate control such tha t 

instead of the full control (29) we have — £(£) —• 0 as t —> oo. Thus, as before 

let v G L2oc(M+, RD) be a shift in the noise and ((t) = Aojv be the corresponding 

(infinitesimal) shift in the solution. Let 

(38) p{t) = m - at)-
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Then, instead of the identities (30) and (31) we obtain 

( 3 9 ) = èiM*)f.= èiM*)f. E(<Kw(t))DlV) fE (D0 (« ( t ) ) , p ( t ) ) 

< | | 0 | | ooE | I ?^ | + h ^ I U E I I P W H . 

The asymptotic strong Feller property will follow provided v can be chosen such tha t 

E | D ^ F | stays bounded as t —> oo and E| |p(t) | | tends to zero exponentially. 

To find v, Hairer and Mattingly use a construction where at successive t ime inter­

vals two steps are alternated, one where high modes contract, the second where low 

modes are controlled by the noise. Suppose at some time t we knew p(t) is mostly 

in the high mode subspace, i.e., ||7r^p(t)|| <C ||p(£)ll- Then, at least for a short t ime it 

pays to set v = 0 since the linearized dynamics contracts such a p strongly. However, 

we cannot do this for too long since the low mode par t of p will increase. Then pro­

vided we can find a v t ha t will compensate the low mode par t on a fixed t ime interval 

while leaving the high mode par t approximately intact we can i terate the procedure. 

The low mode control is a simple modification of the full control explained in the 

previous section. Let us take the t ime intervals as [n, n + 1] with n an odd integer 

for the first step and an even integer for the second step. Thus we set v(t) = 0 for 

t e in, n + 11, n odd. Let An := An n+i , Mn := AnA* and Jn := Jn,n+i- For n even 

take 

(40) Vn '•= ^\[n,n+l] = A*n(Mn + f3)-LJnp(n) 

Note tha t except for the parameter f3 this agrees with the full control (35). While for 

/3 = 0 the inverse in (40) most likely does not exist, for /3 > 0 it does. The point now 

is tha t for small enough (3 (40) does a good job for the low mode control while the 

high modes remain approximately intact. To see this, compute 

( 4 1 ) p(n+l) = èiM*)f.= èiM*)f. 

= èiM*)f.= èiM*)f. + AnA*n(Mn + (3)-1JnP(n)) 

= /3(M„ + /3) -1J„p(n) . 

By Proposit ion 6 . 1 , eigenvectors of M„ with small eigenvalues have small projections 

to the low modes. Hence one expects tha t for small f3 the operator (3(Mn + 

is small on vectors ip with \\wtil>\\ > ^IIV'II whereas it is obviously bounded by one 

elsewhere. Combining the two steps we get the iteration 

(42) p(n + 2) = Jn+1/3(Mn + /3)"1Jnp(n). 

Combining Lemma 4.2, the bound (20) and Proposition 6.1, Hairer and Mattingly 

prove ([13], Lemma 4.16) 
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P R O P O S I T I O N 7 . 1 . — For every two constants 7,77 > 0 and every p > 1 , there exists 

a constant (3Q > 0 s^c/i for n even 

E ( | | p n + 2 | n y n ) 
< /ye»7lknll = èiM*)f 

foo/ds almost surely whenever P<Po 

Iterating Proposition 7 . 1 the exponential decay of E||p(£)|| then follows ([13], 

Lemma 4 . 1 3 ) . 

What remains is to bound the term E|Z>£QV| in ( 3 9 ) uniformly in t, i.e., to bound 

the two integrals in ( 3 6 ) . The crux of the mat ter here is tha t both terms can be 

writ ten as a sum over n of factors proportional to p{n) which provides a conver­

gence factor. For the first term this is obvious by ( 4 0 ) . For the second one we 

need to go back to the integration by par ts formula Equation ( 3 1 ) . By construction 

V(t) = J0 v(s)ds = ^2n Vn where Vn is £?n+2 measurable. Thus since the integration 

by par ts is local in time D^V = Ysn D*^ ^ Vn and the second factor becomes 

( 4 3 ) 

n 

E 
[n,n+2]2 

t r ( 2 ) . v ( r ) , 0 r v ( s ) ) d s d r . 

For details of how to finish the argument we refer the reader to Section 4 . 8 in [13]. 

8. T U R B U L E N C E 

We have seen tha t the NS dynamics has a unique stationary s ta te under very gen­

eral forcing conditions. Moreover, it can be proven tha t the dynamics is mixing [14] 

and the stationary s tate is reached exponentially fast from arbitrary initial conditions 

and for arbitrary large Reynolds numbers R (for earlier proofs of mixing in the case 

where an independent number of modes are forced, see [6], [20]). Does this mean 

we have reached some understanding on the properties of this state, in particular 

on the phenomenon of turbulence? The proof outlined in the previous sections uses 

properties of the system tha t have counterparts in the phenomenological theory of 

turbulence. These are the dissipation of the high Fourier modes and the transfer 

of the noise from the forced modes to the unforced ones due to nonlinearity. The 

latter point is significant because most results of the NS dynamics are based on the 

energy and enstrophy conservation laws alone, and those bounds would hold even if 

the nonlinearity was zero. Therefore, the properties of the latter are not used. 

This being said it must be stressed tha t we have gained very little understanding 

of the actual nature of the invariant state. Crucial part of the proof is irreducibility 

which is based on the fact tha t u = 0 belongs to the support of every invariant 

measure. Recall tha t this holds, because there is a small probability tha t the random 
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forces are close to zero for any given time interval so the fluid flow slows down due 
to viscosity. This is clearly not the t rue reason one sees fast approach to stationarity 
in physical experiments. The mixing times resulting from visits to the origin will be 
much larger than the ones observed. To understand the real mechanism for mixing 
one has to understand much bet ter the transfer of energy and enstrophy from the 
forcing scale to other scales. 

It was Kraichnan's observation [16] tha t we should expect this transfer to be in 
two dimensions quite different from the three dimensional case. In three dimensions, 
according to the Richardson-Kolmogorov picture the forcing in low modes injects 
into the system energy which is t ransported due to the nonlinearity in NS equation 
to the higher modes and eventually dissipated by the viscous te rm by large enough 
modes. This t ranspor t of energy through scales in wave number space (i.e., \k\ := K) 
is called the Richardson energy cascade. In fact the theory predicts a constant flux 
of energy from the injection scale (in our case 1) to the dissipation scale KV (these 
claims can be formulated in terms of various correlation functions in the putat ive 
stat ionary state , see e.g. the review [19]). Kraichnan noted tha t the existence in 2d 
of the second conserved quanti ty of the inviscid flow, the enstrophy, means tha t one 
has to pose the question at what scales (if any) energy and enstrophy are dissipated 
and if there exist separate fluxes for the two. His observation was tha t the fluxes 
of energy and enstrophy are to opposite directions, energy flows towards low modes 
and enstrophy towards high ones. Moreover, energy tends to be not dissipated at all 
whereas enstrophy is dissipated at high modes like energy in the 3d case. The presence 
of the two cascades, the direct cascade of enstrophy and the inverse cascade of energy 
is very well established both numerically [5] and experimentally [25]. In what follows 
we will point out a couple of mathematical questions regarding this picture which 
would be nice to understand. 

To s ta te the Kraichnan picture more precisely it is convenient to work on a torus of 
size JV", i.e., Tfy : = (R/(2nNZ)2 ra ther than N = 1 we had before. Of course by simple 
scaling we can get rid of the N at the expense of changing v and the forcing scale, 
but since the theory involves large separations of the scales of dissipation, forcing and 
injection it is natural to take N large (eventually to infinity) we rather not do tha t . 
Consider now the NS dynamics on with the random forcing on Fourier modes of 
size ~ Kf > A T 1 (observe tha t now k G (AT_1Z)2, i.e., \k\ > 1/N). We shall 
add to the NS equation (3) an extra term tha t damps the low Fourier modes more 
strongly than the viscous term does (note tha t vk2 can be as small as v/N2). This 
is the Ekman friction term — TLU for r > 0. Stationary states for this system exist 
for the same reasons as before and uniqueness should follow in the presence of the 
friction as without provided the conditions of Proposition 5.1 hold. The Kraichnan 
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theory makes predictions on this stat ionary state, call it \JLV,T,N in the various limits 

N oo, T 0 and = èiM*)f. 
The start ing point is conservation laws of energy and enstrophy following from the 

enstrophy balance equation (10) and a corresponding one for energy and taking into 

account the extra friction term in the equation. Since the unique stationary s tate is 

translation invariant these become local identities, for enstrophy 

(44) = èiM*)f.= èiM*)f. + t E j / ) T , j v ( u ; ( x ) ) 2 = e 

and analogously for energy 

(45) VE„TN(VU(X))2 f TE„T,N(U(X))2 = e> 

with e' the energy injection rate (per unit volume) which is proportional to en^ . 

^V,T,N denotes expectation in the measure fiu,r,N-

The first question to pose is what happens to the viscous dissipation of energy and 

enstrophy as v —• 0. All the evidence points to vanishing of energy dissipation 

(46) hm VE„TM(VU(X))2 =0. 

Enstrophy dissipation is more subtle as we will see below, but again it is believed [3] 

tha t it vanishes: 

(47) lim VEV^N{VUJ(X))2 = 0. 

It would be interesting to prove these s tatements and also to understand whether a 

limiting measure lim^_o Mi/,t,at exists and is supported on solutions of the damped 

randomly forced Euler equation. Indeed, some indications tha t this could be done 

come from the work [7] where time averages of solutions and statistical solutions are 

controlled in tha t limit. They are shown to be given in terms of solutions of the Euler 

equation and in particular [7] prove the relation (47) in tha t setup. 

The main predictions of the Kraichnan theory come from the limit N —• oo and 

r —> 0. The limit N —> oo means we are considering the NS dynamics in M 2 . It is 

an interesting problem to t ry to prove tha t the (weak) limit limjv-+oo //^,T,iv = №V,T,OO 
exists. Note tha t we do not expect this s tate to be supported on L2 but rather 
on polynomially bounded (and presumably smooth) functions. The reason the large 
volume limit might exist is the damping of the low modes by the friction term. It 
produces an effective low wave number cutoff (which turns out to be ~ r 3 / 2 e / _ J ) . 

Granting this, what happens if we now take r —• 0? Is there also a measure //^,0,00? 
The prediction of the Kraichnan theory is tha t the viscous energy dissipation (46) van­
ishes as v —> 0 uniformly in r . Thus in tha t limit EU}Tj00{u{x))2 = (e' — o(z/))/r, 
i.e., the average energy density is not bounded in the putat ive limiting measure 
MI/,0,00- However, it is believed tha t /¿^,0,00 is supported on smooth UJ and in particular 
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limr_+o TE„,TI00(U;(X))2 = 0. Then (44) implies dissipative anomaly for enstrophy: en­

strophy dissipation remains nonzero as v —• 0, i.e., limv—o vEv o oo (Vw(x))2=E>0 

The Kraichnan theory makes more quanti tat ive predictions of the distribution of 

energy and enstrophy according to wave number. Define the energy spectrum for 

K G M+ 

(48) e(ft) = 2irg(K)/K 

where # ( 1 ^ 1 ) ls the Fourier transform of the vorticity 2-point function 

g(x -y) = EI/,Tj00a;(a:)a;(2/). 

Then energy density is given by 

( 4 9 ) E„r,ooU(x)2 = 
oo 

0 
e{K)dK 

and enstrophy density by 
-oo 

JO 
e(K)K2dK. Kraichnan theory predicts 

(50) e(«) ~ 
= èiM*)f. 

Kr < K < KV 

e ' 2 / V 5 / 3 = èiM*)f.= èiM*)f. 

where KV ~ u~^e^ is the dissipation scale and KT ~ r3/2e/_7 the friction scale. 

The picture painted by the Kraichnan theory on 2d turbulence is thus quite com­

plex. Wi th well separated scales of viscous dissipation, injection and friction energy 

flows from the injection scale towards small wave numbers and is eventually dissi­

pated by the friction. In the absence of friction and in infinite volume energy flows to 

ever smaller wave numbers and energy density is not defined in the stat ionary state . 

Enstrophy in tu rn flows to high wave numbers and is dissipated there by the viscos­

ity. Only in the s tate /¿^,0,00 as v —> 0 one expects to have constant fluxes of energy 

and enstrophy, for some exact calculations (subject to regularity assumptions), see 

[3]. One has to be careful with the order of limits as is seen from the behavior of 

enstrophy dissipation. Note in particular tha t the stat ionary s ta te JJLV$,N which we 

have been discussing in the previous sections does not exhibit turbulence in the sense 

of cascades of energy and enstrophy. Here energy will reside in low modes, indeed, in 

experiments one often sees the formation of a few large vortices in the flow. If v is 

taken to zero in this s ta te then both energy and enstrophy will blow up and indeed, 

no limit measure exists [17]. In [17] it is proven tha t only by taking the injection rate 

e (and thus also e') proportional to v a nontrivial limiting measure exists. Formally 

this limit still corresponds to diverging Reynolds number, but one does not expect it 

to be a turbulent s ta te with near constant fluxes of energy and enstrophy. 

W h a t makes the Kraichnan theory intriguing is tha t e.g. the spectrum (50) seems 

to be very well verified numerically and experimentally. Moreover, the invariant 

measure seems to possess strong scale invariance properties, at least in the inverse 
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cascade regime. There are even indications of conformai invariance [4]. Thus it is not 
excluded tha t some of its properties could be mathematically accessible. 
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