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PERIODIC TWISTED COHOMOLOGY AND T-DUALITY 

Ulrich B U N K E , Thomas SCHICK and Markus S P I T Z W E C K 

Abstract. — Using the differentiable structure, twisted 2-periodic de Rham cohomol-

ogy is well known, and showing up as the target of Chern characters for twisted 

K-theory. The main motivation of this work is a topological interpretation of two-

periodic twisted de Rham cohomology which is generalizable to arbitrary topological 

spaces and at the same time to arbitrary coefficients. 

To this end we develop a sheaf theory in the context of locally compact topological 

stacks with emphasis on: 

— the construction of the sheaf theory operations in unbounded derived categories 

— elements of Verdier duality 

— and integration. 

The main result is the construction of a functorial periodization associated to a U(l)-

gerbe. 

As an application we verify the T-duality isomorphism in periodic twisted coho

mology and in periodic twisted orbispace cohomology. 

Résumé (Cohomologie périodique tordue et T-dualité). — La cohomologie de de Rham 

tordue (périodique de période 2) est une construction bien connue, elle est importante 

en tant que codomaine d'un caractère de Chern pour la K-theorie tordue. 

La motivation principale de notre livre est une interprétation topologique de la 

cohomologie de de Rham tordue, une interprétation avec généralisations a des espaces 

et coefficients arbitraires. 

Dans ce but, nous développons une théorie des faisceaux sur des piles topologiques 

localement compactes, et plus particulièrement : 

— la construction des opérations de la théorie des faisceaux dans les catégories 

dérivées non-bornées, 

— les éléments de la dualité de Verdier, 

— et l'intégration. 

Notre résultat principal est la construction d'une périodisation fonctorielle associé a 

une C/(l)-gerbe. 
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Parmi les applications, citons la vérification d'un isomorphisme de T-dualité pour 
la cohomologie périodique tordue et celle des orbi-espaces. 
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CHAPTER 1 

INTRODUCTION 

1.1. Periodic twisted cohomology 

1.1.1. — The twisted de Rham cohomology HdR{M,uj) of a manifold M equipped 
with a closed three form UJ G Q 3 ( M ) is the two-periodic cohomology of the complex 

(1.1.1) Q(M,uj)per: > ftev(M) H ftodd(M) H ftev(M) -+ • • • , 

where dw = ddR+u is the sum of the de Rham differential and the operation of taking 
the wedge product with the form UJ. The two-periodic twisted de Rham cohomology 
is interesting as the target of the Chern character from twisted if-theory [1], [19], [3], 
or as a cohomology theory which admits a T-duality isomorphism [4], [7]. 

1.1.2. — In [9] we developed a sheaf theory for smooth stacks. Let / : G —• X be 
a gerbe with band U(l) over a smooth stack X , and consider a closed three-form 
UJ G ftx(X) which represents the image of the Dixmier-Douady class of the gerbe 
G —• X in de Rham cohomology. The main result of [9] states that there exists an 
isomorphism 

(1.1.2) W S x ^ tox[[z]]u 

in the bounded below derived category Z}+(Sl iAbX) of sheaves of abelian groups on 
X. Here R X denotes the constant sheaf with value R on X. Furthermore, flx[Mlw 
is the sheaf of formal power series of smooth forms on X, where deg(z) = 2, and 
its differential is given by := ddR + Vj^- The isomorphism is not canonical, but 
depends on the choice of a connection on the gerbe G with characteristic form UJ. 

1.1.3. — The complex (1.1.1) can be denned for a smooth stack X equipped with a 
three-form UJ G H ^ ( X ) . It is the complex of global sections of a sheaf of two-periodic 
complexes ^ x , a ; , p e r on X. The complex of sheaves fix[[^]]o; is not two-periodic. The 
relation between ftx[N]w and Ox ,u; ,Per has been discussed in [9, 1.3.23]. Consider the 
diagram 

(1.1.3) 2): il(X)[[z])u 
d 

dz n(X)[[z]]u 
_d_ 
dz 

n(X)[[z]]u 
_d_ 
dz 
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2 C H A P T E R 1. I N T R O D U C T I O N 

Then there exists an isomorphism 

(1.1.4) ftx,u,,Per = holim 2) 

1.1.4. — As mentioned above, the isomorphism (1.1.2) depends on the choice of a 

connection on the gerbe G. Moreover, the diagram 2) depends on these choices via 

UJ. In order to construct a natural two-periodic cohomology one must find a natural 

replacement of the operation ^ which acts on the left-hand side i?/*/*Ex OI" (1-1-2). 

It is the first goal of this paper to carry this out properly. 

1.1.5. — One can do this construction in the framework of smooth stacks developed 

in [9]. But for the present paper we choose the setting of topological stacks. Only 

in Subsection 2.3 we work in smooth stacks and discuss the connection with [9]. In 

Section 6 we develop some aspects of the theory of locally compact stacks and the 

sheaf theory in this context. For the purpose of this introduction we freely use notions 

and constructions from this theory. We hope that the ideas are understandable by 

analogy with the usual case of sheaf theory on locally compact spaces. 

1.1.6. — Let G —> X be a C7(l)-banded gerbe over a locally compact stack. The 

main object of the present paper is a periodization functor 

n(X)[[z]]u (ShAbX) £>(ShAbX) 

which is functorial in G —» X , and where D+ (ShAbX) and .D(ShAbX) denote the 

bounded below and unbounded derived categories of sheaves of abelian groups on the 

site X of the stack X. A simple construction of the isomorphism class of P Q { F ) is given 

in Definition 2.4.2. The functorial version is much more complicated. Its construction 

is completed in Definition 3.4.5. 

1.1.7. — Let us sketch the construction of P Q - Recall that gerbes with band £7(1) 

over a locally compact stack Y are classified by i J 3 ( F ; Z ) , and automorphisms of a 

given J7(l)-gerbe are classified by H2(Y;Z) [14]. We consider the diagram 

T2 x G u T2xG , 

p 

T2 x X G G 

f f 

X 

where the automorphism u of gerbes over T2 x X is classified by OTT2 x 1 € H2(T2 x 

X;Z), and where 0 ^ 2 denotes the orientation class of the two-torus. W e define a 

natural transformation 

D: Rf.f* RUS*- r>+(ShAbX) D + ( S h A b X ) 

A S T É R I S Q U E 337 



1.1. PERIODIC T W I S T E D C O H O M O L O G Y 3 

of degree —2 as the composition 

D: Rf,r 
units 

Rf*Rp*Ru*u*p*f* 
fpu=fp 

Rf*Rp*p*f* 
I 

Rf.f , 
where 

p 
: Rp*p* id is the integration map of the oriented T2-bundle T2 x G G. 

For F e D + ( S h A b X ) we form the diagram 

J « F : RM* (F) 
D Rf.fiFM 

D 
Rf*f*(F)[4] D 

in L>(ShAbX) 

Definition 1.1.5. — We define the periodization PG(F) e £>(ShAbX) of F by 

Pa(F) : = holim MF) e £>(ShAbX) . 

Note that this introduction is meant as a sketch. In particular, one has to be aware 

of the fact that the notion of holim in a triagulated category is ambiguous and has 

to be used with great care, as will be explained below and in the body of the paper. 

At present, the above definition only fixes the isomorphism class of PG(F). 

1.1.8. — The same construction can be applied in the case of smooth stacks X. It is 

an immediate consequence of Theorem 2.3.2 that there exists an isomorphism of the 

diagrams S G ( S X ) and ® (see (1.1.3)). Equation (1.1.4) implies the following result. 

Corollary 1.1.6. — If X is a smooth manifold, then there exists an isomorphism 

n(X)[[z]]un(X)[[z]]u 

in D ( S h A b X ) . In particular we have an isomorphism of two-periodic cohomology 

groups H*dR(X,uj) = H * ( X ; P G ( R X ) ) . 

The existence of this isomorphism played the role of a design criterion for the 

construction of the periodization functor PQ> 

1.1.9. — The operation D: Rf*f*(F) Rf*f*{F) is a well-defined mor-

phism in the derived category. In particular, we get a well-defined diagram 

(^G(F) e D(ShAbX)N°P, where we consider the ordered set N as a category. This 

determines the isomorphism class of the object P G { F ) £ D ( S h A b X ) . We actually 

want to define a periodization functor 

PG:D+(ShAhX) £>(ShAbX) , 

which also depends functorially on the gerbe G —> X. These functorial properties are 

required in our applications to T-duality, or if one wants to formulate a statement 

about the naturality of a Chern character from G-twisted if-theory with values in 

the periodic twisted cohomology H*(X; P G ( S X ) ) -

In order to define P G ( F ) hi a functorial way we must refine the diagram <$G(F) £ 

£)(ShAbX)N°P to a diagram in £)((ShAbX)N°P). This is the technical heart of the 

S O C I É T É M A T H É M A T I Q U E D E F R A N C E 2011 
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4 C H A P T E R 1. I N T R O D U C T I O N 

present paper. The details of this construction are contained in Section 3 and will be 

completed in Definition 3.4.5. Along the way, we have to use the enhancement of the 

category of sheaves to bounded below complexes of flasque sheaves. 

1.1.10. — The periodization functor P Q can be applied to arbitrary objects in 

D + ( S l i A b X ) . In Proposition 2.5.1 we calculate examples which indicate some inter

esting arithmetic features of this functor. 

1.2. T-duality 

1.2.1. — Topological T-duality is a concept which models the underlying topology 

of mirror symmetry in algebraic geometry or T-duality in string theory. We refer to 

[6] for a more detailed discussion of the literature. In the present paper we introduce 

the concept of T-duality for pairs (E,G) of a [/(l)-principal bundle E —> B over a 

topological stack B together with a topological gerbe G —• E with band U(l) using 

the notion of a T-duality diagram. 

1.2.2. — Consider a diagram 

(1.2.1) p*G 
U 

p*G 

G 

f 

E xB E G 

E 

v 

7T 

P 

Ê 

f 

B 

7T 

where 7r, TT are U(l)-principal bundles, and / , / are gerbes with band U(1). In 4.1.3 we 

describe the isomorphism class of the universal T-duality diagram over the classifying 

stack @U(1). 

Definition 1.2.2 (Definition 4.1.3). — The diagram (1.2.1) is a T-duality diagram, if it 

is locally isomorphic to the universal T-duality diagram. 

The pair (G , E) is then called a T-dual of (E, G ) . 

1.2.3. — In Lemma 4.1.5 we will check that this generalizes the concept of T-duality 

(for [/(l)-bundles) from the classical situation of principal bundles in the category of 

spaces [6, 8] and the slightly more general situation of such bundles in orbispaces [8] to 

arbitrary J7(l)-actions. The situation of semi-free actions is discussed (in a completely 
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1.2. T - D U A L I T Y 5 

different way) in [24]. It is an interesting open problem to relate his approach to the 
approach used here. 

1.2.4. — One of the main themes of topological T-duality is the T-duality trans
formation in twisted cohomology theories. In [8] we observed that if the T-duality 
transformation is an isomorphism, then the corresponding twisted cohomology theory 
must be two-periodic. 

This applies e.g. to twisted if-theory. In fact, one can argue that twisted if-theory 
is the universal twisted cohomology theory for which the T-duality transformation is 
an isomorphism (1) 

1.2.5. — Our construction of PQ is designed such that the corresponding T-duality 
transformation is an isomorphism. To this end we define the periodic G-twisted co
homology of E with coefficients in 7R*F, F G D+(ShAbB) , by 

H*(E,G:ir*F) = H*(E;PG(n*F)) . 

In this case the T-duality transformation 

T : H * p e r (E,G-XF) R r* 
p e r n(X)[[z]]u 

is induced by the composition 

Rn*PG(TT*F) unit 
Rn*Rp*p PG{**F) 

f Rir*Rp*Pp*G(p*ir*F) 
U* 

R-K*Rp*Pp,G(p*ir*F) 

7TV—TTV R-k*Rp*P..G(p*rF) 
f Rn*Rp*p*Pô(7r*F) 

p R^PG{r{F)) . 

Note that here we use the functoriality of the periodization in an essential way. 

Theorem 1.2.3 (Theorem 4.3.7). — The T-duality transformation in twisted periodic 
cohomology is an isomorphism. 

1.2.6. — I f G — > X i s a gerbe over a nice non-singular space X, then üf*er(X, G; R x ) 
is the correct target of a Chern character from twisted if-theory. If X is a topological 
stack with non-trivial automorphisms of points, then this is no longer correct. At the 
moment we do understand the special case of orbispaces. In [10, Sec. 1.3] we give a 
detailed motivation for the introduction of the twisted delocalized cohomology. 

T1) W e thank M . Hopkins for pointing out a proof of this fact. 
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6 C H A P T E R 1. I N T R O D U C T I O N 

Let G —• X be a topological gerbe with band U(l) over an orbispace X. In [10, 

Definition 3.4] we show that it gives rise to a sheaf £ G Sl iAbLX, where LX is the 

loop orbispace of X. 

The G-twisted delocalized periodic cohomology of X (with complex coefficients) is 

defined as (see [10, Definition 3.5]) 

H * 
S I S I M — I d d (X,G) := H*(LX;PGL(L)) , 

where Gl LX is defined by the pull-back 

GL G 

LX X 

Let us now consider a T-duality diagram (1.2.1) over an orbispace B. Then we 

define a T-duality transformation 

T : H. * 
i e l o c . p e r (E,G) H s d e l o c , p e r l (E,G) 

by a modification of the construction 1.2.5. 

Theorem 1.2.4 (Theorem 5.4.2). — The T-duality transformation in twisted delocalized 

periodic cohomology is an isomorphism. 

So the situation with twisted delocalized periodic cohomology is better than with 

orbispace if-theory. A t the moment we do not know a proof that the T-duality trans

formation in twisted orbifold if-theory is an isomorphism (see the corresponding com

ments in [8]). Using the fact that the Chern character is an isomorphism, our result 

implies that the T-duality transformation in twisted orbifold and orbispace if-theory 

is an isomorphism after complexification. 

1.3. Duality for sheaves on locally compact stacks 

1.3.1. — In Section 6 of the present paper we develop some features of a sheaf 

theory for locally compact stacks. Our main results are the construction of the basic 

setup, of the functor / ! , and the integration fj for oriented fiber bundles. Section 6 

not only provides the technical background for the applications of sheaf theory in the 

previous sections, but also contains some additional material of independent interest 

(in particular the results connected with / ! ) . 
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1.3. D U A L I T Y F O R SHEAVES O N L O C A L L Y C O M P A C T STACKS 7 

1.3.2. — A presheaf F of sets on a topological space X associates to each open 
subset U Ç X a set of sections F(U), and to every inclusion V —• U of open subsets 
a functorial restriction map F(U) —• F(V), s s\y In short, a presheaf is a con-
travariant functor from the category (X) of open subsets of X to sets. A presheaf is 
a sheaf if it has the following; two properties: 

(1) If 5, t G F(U) are two sections and there exists an open covering (Ui) of U such 

that s\u. = t\ui for all i, then s = t. 
(2) If (Ui) is an open covering of U and (si) is a collection of sections s$ G F(U{) 

such that Silc/inc/j = sj|i/<nt/j f°r au pairs i,j then there exists a section s G 
F(?7) such that s\u- = Si for all i. 

The notion of a sheaf is thus determined by the Grothendieck topology on (X) given 
by the collections of open coverings of open subsets. We will call (X) the small site 
associated to X. 

If X is a topological stack, then the open substacks form a two-category which does 
not give the appropriate setting for sheaf theory on X. For example, if G is a finite 
group, then the quotient stack [*/G] is quite non-trivial but does not have proper open 
substacks. On the other hand its identity one-morphism has the two-automorphism 
group G, and in a non-trivial theory sheaves should reflect the two-automorphisms. 

1.3.3. — For applications to twisted cohomology a setting for sheaf theory on smooth 
stacks has been introduced in [9]. In the present paper we develop a similar theory 
for topological stacks. There are various choices to be made in order to define the 
site of a stack in topological spaces. The sheaf theories associated to these choices 
will have many features in common, but will differ in others. The main goal of the 
present paper is the construction of the periodization functor PQ associated to a 
[/(l)-banded gerbe G —> X. One of the main ingredients of the construction is an 
integration ff for oriented fiber bundles / with a closed topological manifold as fiber. 
In order to define the integration map we need a projection formula which expresses 
a compatibility of the pull-back and push-forward operations with tensor products, 
see Lemma 6.2.11. Already for the projection formula in ordinary sheaf theory one 
needs local compactness assumptions. For this reason we decided to work generally 
with locally compact stacks and spaces though much of the theory would go through 
under more general or different assumptions. 

1.3.4. — A stack in topological spaces is topological if it admits an atlas A —• X. 
From the atlas we can derive a groupoid A X x A =4 A which represents X in an 

appropriate sense. The stack is called locally compact if one can find an atlas A —> X 
such that the resulting groupoid is locally compact (i.e. A and A xx A are locally 

compact spaces). 

S O C I É T É M A T H É M A T I Q U E D E F R A N C E 2011 



8 C H A P T E R 1. I N T R O D U C T I O N 

The site X associated to a locally compact stack is the category of locally compact 

spaces (U —> X) over X such that the morphisms are morphisms of spaces over X 

(i.e. pairs of a morphism between the spaces and a two-morphism filling the obvious 

triangle.) W e require that the structure morphism U —• X has local sections. The 

topology on X is again given by the collections of coverings by open subsets of the 

objects (U —> X). For many constructions and calculations the restriction functors 

from sheaves on X to sheaves on (U) play a distinguished role. They are used to build 

the connection between operations with sheaves on the stack X and corresponding 

classical operations in sheaf theory on the spaces U. 

1.3.5. — For the theory of stacks in topological spaces in general we refer to [14], 

[10], [22]. Some special aspects of locally compact stacks are discussed in Subsection 

6.1 of the present paper. 

In our treatment of sheaf theory on the site X we give a description of the closed 

monoidal structure on the categories of sheaves and presheaves of abelian groups 

SriAbX and PrAbX on X . The interplay between sheaves and presheaves will be im

portant when we study the compatibility of the monoidal structures with the functors 

/ * : ShAbY ShAbX : /* 

associated to a morphism of locally compact stacks / : X —• Y. In general these 

functors do not come from a morphisms of sites but are constructed in an ad-hoc 

manner. Because of this we must check under which conditions properties expected 

from the classical theory carry over to the present case. 

The derived versions of these functors on the bounded below and unbounded de

rived categories D+ (ShAbX) and D(S l iAbX) will play an important role in the present 

paper. In order to deal with the unbounded derived category we use an approach via 

model categories. 

1.3.6. — Besides the development of the basic set up which we will not discuss 

further in the introduction let us now explain the two main results which may be of 

independent interest. 

Theorem 1.3.1 (Theorem 6.3.2). — If f : X —> V is a proper representable map between 

locally compact stacks such that /* has finite cohomological dimension, then the functor 

Rf* : D+ (ShAbX) —> D+ (ShAbY) has a right-adjoint, i.e. we have an adjoint pair 

(1.3.2) Rf* :D+ (ShAbX) £+(ShAbY): / ! . 

We think that one could prove a more general theorem stating the existence of a 

right adjoint of a functor Rf\ where f\ is the push-forward with proper support along 

an arbitrary map between locally compact stacks such that f\ has finite cohomological 

dimension, though we have not checked all details. 
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1.3. D U A L I T Y F O R SHEAVES O N L O C A L L Y C O M P A C T STACKS 9 

This theorem generalizes a well-known result ([26], [17, Ch. 3]) in ordinary sheaf 

theory. Its importance is due to the classical calculation 

(1.3.3) n(X) = r(F)[n] 

(compare [17, Prop.3.3.2]) for F G T > + ( S h A b ( * 0 ) , if / : X Y is an oriented locally 

trivial bundle of closed connected topological n-dimensional manifolds on a locally 

compact space Y. If we would know such an isomorphism in the present case (for 

sheaves on the sites X , Y and stacks X , Y), then we could define the integration map 

as the composition 

7 
:RLf*(F) Rf*f(F){-n] 

couni t 
F[-n] , 

where the last map is the co-unit or the adjunction (1.3.2). 

Unfortunately, at the moment we are not able to calculate f'(F) in any interesting 

example. However, we can construct the integration map in a direct manner avoiding 

the knowledge of (1.3.3). 

Some elements of the theory developed here are formally similar to the work [23] 

on sheaves on the lisse etale site of an Artin stack. In this framework in [18] a functor 

/ ! was introduced between derived categories of constructible sheaves. On the one 

hand the methods seem to be completely different. On the other hand this functor 

has the expected behavior for smooth maps, i.e. it satisfies a relation like (1.3.3). A t 

the moment we do not see even a formal relation between the construction of [18] 

with the construction in the present paper which could be exploited for a calculation 

o f / ! ( F ) . 

1.3.7. — The following Theorem is the result of Subsection 6.4. 

Theorem 1.3.4. — If the map f : X —»• Y of locally compact stacks is an oriented 

locally trivial fiber bundle with a closed connected topological n-dimensional manifold 

as fiber, then there exists an integration map, a natural transformation of functors 

if 
: RM* i d [ - n ] : £>+(ShAbX) £>+(ShAbX) 

which has the expected compatibility with pull-back and compositions. 

In Subsection 6.5 we extend the push-forward and pull-back operations to the 

unbounded derived categories and construct the integration map in this setting. 
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CHAPTER 2 

GERBES AND PERIODIZATION 

2.1. Sheaves on the locally compact site of a stack 

2.1.1. — Let Top denote the site of topological spaces. The topology is generated 
by covering families COVTop(^4) of the objects A G Top, where covxop(^) is the set of 
coverings by collections of open subsets. 

A stack will be a stack on the site Top. Spaces are considered as stacks through 
the Yoneda embedding. 

A map A —> X from a space A to a stack X which is surjective, representable, and 
has local sections is called an atlas. We refer to 6.1.2 for definitions and more details 
about stacks in topological spaces. 

Definition 2.1.1. — A topological stack is a stack which admits an atlas. 

Definition 2.1.2. — A topological space is locally compact if it is Hausdorff and every 
point admits a compact neighborhood. A stack is called locally compact if it admits an 
atlas A —> X such that A and A Xx A are locally compact. 

If X is a locally compact stack, then the site of X is the subcategory Top lc /X of 
locally compact spaces over X such that the structure map A —» X has local sections. 
The topology is induced from Top. We denote this site by X or S i t e ( X ) . See 6.1.6 for 
more details. 

2.1.2. — As will be explained in 6.1.9, a morphism of locally compact stacks f:X—> 
Y gives rise to an adjoint pair of functors 

f * : S h Y ShX : /* 

The functor /* is left-exact on the categories of sheaves of abelian groups and admits 
a right-derived 

n(X)[[z]]u ShAbX L>+(ShAbY) 

between the bounded below derived categories, compare 6.1.9. 
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12 C H A P T E R 2. GERBES A N D P E R I O D I Z A T I O N 

2.1.3. — Let M be some space. 

Definition 2.1.3. — A map between topological stacks f : X —> Y is a locally trivial 
fiber bundle with fiber M if for every space U —> X the pull-back U X y X —> U is a 
locally trivial fiber bundle of spaces with fiber M. 

Assume that M is a closed connected and orientable n-dimensional topological 
manifold. 

Definition 2.1.4. — Let f': X —> y be a map of locally compact stacks which is a locally 
trivial fiber bundle with fiber M. It is called orientable if there exists an isomorphism 
Rnf*(ZiX.) — —Y' An orientation of f is a choice of such an isomorphism. 

2.1.4. — Let / : X —* Y be a locally trivial oriented fiber bundle with n-dimensional 
fiber M over a locally compact stack Y. Under these assumptions we can generalize 
the integration map (see [17, Sec. 3.3]) 

Theorem 2.1.5 (Definition 6.4.6). — If f: X ^ Y be a locally trivial oriented fiber bun
dle over a locally compact stack with fiber a closed topological manifold of dimension 
n, then we have an integration map, i.e. a natural transformation of functors 

if 
: Rf. o r • id : D + ( S h A b Y ) D + ( S h A b Y ) 

of degree —n. 

2.1.5. — We consider a map of locally compact stacks f: X —> Y which is a locally 
trivial oriented fiber bundle with fiber a closed topologieaLmanifold of dimension n. 
Furthermore let U —» X be a morphism of locally compact stacks which has local 
sections. Then we form the Cartesian ^ diagram 

V V 
X 

9 f 

u u 
Y. 

Note that g : V —> U is again a locally trivial oriented fiber bundle with fiber a closed 
topological manifold of dimension n. The orientation of / (which gives the marked 

t1) In the present paper by a Cartesian diagram in the two-category of stacks we mean a 
2-Cartesian diagram. In particular, the square commutes up to a 2-isomorphism which we 
often omit to write in order to simplify the notation. More generally, when we talk about 
a commutative diagram in stacks, then we mean a diagram of 1-morphisms together with a 
collection of 2-isomorphism filling all faces in a compatible way, and again we will usually not 
write the 2-isomorphisms explicitly. 
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2.2. ALGEBRAIC STRUCTURES ON THE COHOMOLOGY OF A GERBE 13 

isomorphism below) induces an orientation of g by 

RngJZv) i T < ^ * ( Z X ) 
(6.1.15) 

« . n ( Z j c ) 
x )[[z]]u ZY 

Lemma 2.1.6. — The following diagrams commute 

(2.1.7) u* o Rf, o f x Rg* ov* o f* 

n(X)[ 

xc Ue O fl* o it* 

' 9 

i&z* oRG * o g* xc • # / * o Rv* o g* 

Ru* 
J 9 

Ru* n(X)[[z]]u 
x xc 

Proof. — Commutativity of the first diagram follows immediately from the stronger 
(because valid in the derived category of unbounded complexes) Lemma 6.5.31. Com
mutativity of the second diagram is proved in Lemma 6.5.31, but only for the bounded 
below derived category. • 

2.2. Algebraic structures on the cohomology of a gerbe 

2.2.1. — Let X be a locally compact stack and / : G —• X be a topological gerbe 
with band U(l). Then G is a locally compact stack. Indeed, we can choose an atlas 
A —> X such that A and Axx A are locally compact, and there exists a section 

G 

A X 

Then A —* G is an atlas and AXGA-+AXXA is a, locally trivial (7(l)-bundle. In 
particular, A XQ A is a locally compact space. 

2.2.2. — By T2 we denote the two-dimensional torus. We fix an orientation of T2. 
We consider the pull-back pr^G = T2 x G —> T2 x X. The isomorphism classes of 
automorphisms of this gerbe are classified by H2(T2 x X;Z). Let 

pr^G 
<t> 

WIG 

T2 x X 
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14 C H A P T E R 2. GERBES A N D P E R I O D I Z A T I O N 

be an automorphism classified by or^2 x l v G H2(T2xX\ Z ) . We consider the diagram 

(2.2.1) p r ïG 
<t> 

pv*2G 

V P 

G T2 x X G 

f 

X 

f 

Notice that (/> is unique up to a non-canonical 2-isomorphism. In the present paper 

we prefer a more canonical choice. W e will fix the morphism <\> once and for all in the 

special case that X is a point and G = $C7(1), i.e. we fix a diagram 

T2 x <£U(1) 
0univ 

T2 x <ËU{\) 

T2 x <Ë rp2 8U(l) 

T 

If G —> X is a topological gerbe with band 17(1), then we obtain the induced diagram 

by taking products 

GxT2 x <£U(l) 
T2 x <Ë 

GxT2 x <£U(1) 

G x #17(1) X x T2 G x #17(1) 

X 

W e now replace the products $[7(1) x G by the tensor product of gerbes as explained 

in [11, 6.1.9] and identify $[7(l)<g>G with G using the canonical isomorphism in order 

bo get 

PT*2G 
4> 

pr^G 

P P 

G T2 x X G 
f f 

X 
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In this way we have constructed a 2-functor from the 2-category of U(l)-banded gerbes 

over X to the 2-category of diagrams of the form (2.2.1). By taking prefered models 

for the products we can, if we want, assume a strict equality / o p o </>G = f o p. 

2.2.3. — Observe that the map of locally compact stacks p: pr^G —• G is a locally 

trivial oriented fiber bundle with fiber T2. Therefore we have the integration map (see 

2.1.5) 

V 

: Rp* o p* id . 

Definition 2.2.2. — We define a natural endo-transformation D Q of the functor 

Rh o f' : D+(ShAbX) ?+(ShAbX) 

of degree —2 which associates to F € £)+(ShAbX) the morphism 

Rf*°f*(F) 
units 

R/* o Rp* o R<f>* o f o / o f*(F) 

fopo<f>=fop 
RL o Rp* T2 x <ËT2 x m R / * ° / * ( F ) • 

2.2.4. — It follows from Lemma 2.1.6 that DG is compatible with pull-back dia

grams. In fact, consider a Cartesian diagram 

g G 

d f 

fd f 
X 

Using the canonical construction explained in 2.2.2 we extend this to a morphism 

between diagrams of the form (2.2.1). Then we have the commutative diagram 

9* o Rf+ o /* T2 x T2 x <ËT2 x <Ë 

9*DG DG,og* 

g*oRf.of* x Rf'.ot(f)*rog* 

2.2.5. — We compute the action of DG in the case of the trivial gerbe / : G —> * 

and the sheaf F £ SliAbSite(*) represented by a discrete abelian group F. Note that 

Rf* ° / * ( Z ) is an object of T>+(ShAbSite(*)). We get an object Rf* o / * ( £ ) ( * ) G 

D+(Ab) by evaluation at the object ( * — » * ) G Site(*). 

Lemma 2.2.3. — There exists an isomorphism 

H*(Rf.of/*(£)(*)) F Z[[z}} , 

where deg(z) = 2. On cohomology the transformation DG is given by DG = id dz ' 
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16 C H A P T E R 2. GERBES A N D P E R I O D I Z A T I O N 

Proof. — We choose a lift * —> G. Forming iterated fiber products we get a simplicial 

space 

• • • * XQ * XQ * T2 x Ë * X Q * XQ * * XQ * * . 

Note that * X G * = U(l). One checks that the simplicial space is equivalent to the 

simplicial space BU(1)\ the classifying space of the group £7(1), 

U(l) x 17(1) x U(l) U(l) x U(l) /7(1) * 

Let (U —• * ) G Site(*). If i f G ShAbG, then we consider an injective resolution 

0 —> i f —• f . The evaluation I (U x BU(1)') gives a cosimplicial complex, and after 

normalization, a double complex. Its total complex represents Rf*(H)(U —• * ) (see [9, 

Lemma 2.41] for a proof of the corresponding statement in the smooth context). We 

calculate the cohomology of Rf*(H)(U —> * ) using the associated spectral sequence. 

Its second page has the form 

E d dq lHp(Ux BU(l)q;H) . 

We now specialize to the sheaf H = /*(£) = F_G, where F is a discrete abelian 

group, and U = *. In this case the spectral sequence is the usual spectral sequence 

which calculates the cohomology of the realization of the simplicial space BU(1)' with 

coefficients in F. Note that i f * ( £ £ / ( l ) ; Z ) = Z[[z]] as rings with deg(^) = 2. Since it 

is torsion free as an abelian group we get 

iT(IR/*o / * ( £ ) ( * ) ) F H*(BU(1):Z) F 0 Z[[z]] . 

In a similar manner we calculate Rf*oRp* op* o / * ( F ) ( * ) . Its cohomology is H*(TZ x 

BU(1);F), hence we have 

H*(Rf*oRp* op* o / * ( £ ) ( * ) ) F H*(T2 x BU(l)-Z) F A(ti ,v)<8)Z[[z]] , 

where u,v G i71(T2 ,Z) are the canonical generators. 

For every topological group Y we have a natural map T —> il(BT). By adjointness 

we get a map c : 17(1) x T —* U(l) AT —> i?r. We will need a simplicial model c of this 

map. We consider the standard simplicial model §' of 17(1) with two non-degenerate 

simplices, one in degree 0, and one in degree 1. Then §' x T is a simplicial model 

of U(l) x T. It suffices to describe the map c on the non-degenerate part of §' x T. 

The component c° maps S° x T to the base point * of #r\ The component c1 is the 

natural identification of the non-degenerate copy of T c S1 x T with T = BY1. 

We now specialize to the case T = U(l). We get a map c : T2 = U(l) x U(l) -+ 

BJ7(1), or on the simplicial level, a map c : S" x U(l) —» BU(l)'. We have 

i f *(B17(1); Z ) ^ Z[[*]] with z of degree 2, and one checks that uv = c*(z) G i f 2(T2; Z ) 

(after choosing an appropriate basis v G i f 1 ( T 2 ; Z ) ) . 
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2.3. IDENTIFICATION OF THE TRANSFORMATION DG IN THE SMOOTH CASE 17 

Note that BU(1)' is a simplicial abelian group. The discussion above shows that 

the automorphism 4>: G —» G i n (2.2.1) with X = * and classified by uv G 5 2 ( T 2 ; Z ) 

can be arranged so that it induces an automorphism of bundles of BU(1) -torsors 

(2.2.4; S' x U(l) x 5*7(1) 
(t,x)i->(tyC (t)x) 

•S" x U(l) x BU{iy 
4>-

S' x C/( l ) 

Under this isomorphism the action of 

(2.2.5) 0*: 5 * ( 5 / * o5p* op* o / * ( £ ) ( . ) ) - H*(Rf*oRp* op* o / * ( £ ) ( * ) ) 

is induced by 2; ̂  2; + m>, w i-^ w, v H> v In order to see this note that m*(z ) = 

Z! + z2, where m : BU(1) x 5(7 (1 ) -> 5*7(1) is the multiplication, and 5 * (5*7(1) x 

517(1); Z ) = Z[ [z i , ^2 ] ] - After realization the map 0* leads to the composition 

T2 x BÏ7(1) 
( i d T 2 ,c ) x i d 

T2 x BU(1) x B t / ( 1 ) 
idT2 x m 

T2 x 517(1) 

which maps 

z 
(id^,2 x m ) 

*1 + 22 
( ( i d T 2 , c ) x i d ) * 

[it T2 x <Ë 

In cohomology of the evaluations at the point the integration map 

x 
:5/*oflp*op*o/*(F) Rf*°f*(F) 

induces the map F ® A(u,v) <S)Z[[z]] —> F <g) Z[[z]] which takes the coefficient at uv. 

This implies the assertions of Lemma 2.2.3. • 

2 . 3 . Identification of the transformation DQ in the smooth case 

2 . 3 . 1 . — In this subsection we work in the context of [ 9 ] of manifolds and smooth 

stacks. It can be considered as a supplement to [ 9 ] concerning the transformation DQ 

introduced in Definition 2.2.2 which can be defined in the smooth context in a parallel 

manner. 

If X is a smooth stack, then Qx denotes the sheaf of de Rham complexes on X. 

It associates to (U —» X) G X the de Rham complex £lx(U —> X) := Q(U) of 

the manifold U. Note that in this subsection X denotes the site of a smooth stack 

introduced in [ 9 ] . 

If UJ G QX(X) is a closed 3-form, then we form the sheaf of twisted de Rham 

complexes QX[[z]]w. Its evaluation at (U —> X) G X is the complex fix[[^]]o;(?7 —• 

X) := ft(£/)[[*]] = n(U)®zZ[[z]] with differential ddR + u;£. In this formula the form 

UJ acts by wedge multiplication with the pull-back of u to U. 
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18 C H A P T E R 2. GERBES A N D P E R I O D I Z A T I O N 

Let / : G —• X be a gerbe with band (7(1) over a smooth manifold X. The choice 

of a gerbe connection determines a closed 3-form u G f ^ ( X ) which represents the 

Dixmier-Douady class of the gerbe. By [9, Theorem 1.1] we have an isomorphism 

(2.3.1) T2 x <Ëvv T2 x <Ë 

in the derived category D+ (ShAbX). 

2.3.2. 

Theorem 2.3.2. — We have a commutative diagram 

T2 x <Ëv 
(2.3.1) union 

DG d 
dz 

T2 x <Ë 
(2.3.1) 

fix[[*]]o,. 

Proof. — The isomorphism (2.3.1) was constructed in [9, Section 3] using a particular 

model of 72/*/* ( M x ) . We first recall its construction. Let A —> G be an atlas. For 

(U —• X) G X we form the simplicial object ( A ^ —• G ) G GA°P with 

T2 x <Ë A xG . . . xG AxxU G 

n + l factors 

The boundaries and degenerations are given by the projections and diagonals as usual. 

If F G C + ( P r A b G ) is a bounded below complex of presheaves, then we form 

the simplicial complex of presheaves (U —> X) t-> F(A'V —> G ) . W e let CA(F) G 

C + ( P r A b X ) denote the presheaf of associated total complexes. Sometimes we will 

write C™'N(F) for the summand of bidegree ( m , n ) , where the first entry m denotes 

the cosimplicial degree. 

If F is a complex of flabby sheaves, then by [9, Lemma 2.41] we have a natural iso

morphism 72/* (F) = CA ( F ) . Here we use in particular that the functor CA preserves 

sheaves. 

Note that the resolution RG —> Qg of the constant sheaf with value 3R by the sheaf 

of de Rham complexes is a flabby resolution (see [9, Subsection 3.1]). Therefore we 

have a natural isomorphism iJ/*(RG) = C U ( £ J G ) -

We choose an atlas A —> X given by the disjoint union of a collection of open 

subsets of X such that there exists a lift in 

A 

G 

f 

X 
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This lift is an atlas A —> G of G. We furthermore choose a connection datum ( A , ß ) G 

Q 1 ^ ( A X Q A) x Q2(A). The one-form a is a connection of the C/(l)-principal bundle 

A XQ A —> A xx A. It is related with the two-form ß by DDRA = Sß. This equation 

implies that ÖDDIIß = 0 so that D^Rß assembles to a uniquely determined closed form 

u G Q,x{X) (compare [9, Section 3.2]). The 3-form UJ represents the Dixmier-Douady 

class of the gerbe G —* X and will be used for twisting the de Rham complex. 

The isomorphism (2.3.1) is given by an explicit quasi-isomorphism 

(2.3.3^ T2 x <Ë vT2 x <Ë 

Note that QX[[z]] w and CA(QG) are sheaves of associative DG-algebras central over 

the sheaf of DG-algebras Fix, and that z generates QflxMw The quasi-isomorphism 

(2.3.3) is the unique morphism of sheaves of associative DG-algebras, central over 

Qx> with 

z (a,ß)eC 1.1, 
A nG)(X) C .0,2 

{ÜG){X) . 

For more details we refer to [9, Subsection 3.2] 

2.3.3. — For I = 1 , . . . , n there are £/(l)-principal bundle structures 

Pi : A XQ - - - XQ A 

n + l factors 

A XQ - - XQ AX 

I factors 

X A XQ • • • XQ A 

n—i+1 factors 

Furthermore, we have embeddings 

Ji : A XQ • • • XQ A 

n factors 

A XQ • • • XQ A > 

i factors 

X A X Q - ' X Q A 

n—¿+1 factors 

given by 

ji := i<U • • • x id^ 

i— 1 factors 

KAA x idA • - x ÎÛA 

n—i factors 

where A: A A-* Axx A\s the diagonal. 

If (U —> X) G X , then the maps pi and ji induce similar maps on the product 

— • XX U of these manifolds over X with U which we denote by the same symbols. 

For I = 1 , . . . , n we define the map of degree —1 

Vi \ CIL x T2 x 
<Ë 

i n - 1 
'•U 

as the composition of the integration over the fiber of pi with the pull-back along ji, 

i.e. Vi := j * o fp . Since the construction of Vi is natural with respect to U we can 

view Vi as a morphism of sheaves C%m(nG) C^-1 'm-1(f tG). W e define the family 

of morphisms 

T2 x <Ë 
n 

i=l 

T2 x <ËT2 x <ËT2 x <Ë C 
n—1.* —1 
A 

T2 x <Ë 

and let D : CA(^G) CA(^G) be the endomorphism of sheaves of degree —2 given 

by DN in bidegree (n, * ) . 
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2.3.4. 

Lemma 23.4. — The map D : CU(ftc) —+ CU(ft<sO is a derivation of tlx-modules. 

Proof. — Note that Vj commutes with the de Rham differential. Moreover, if 

qk: A xG • • • xG A 

n + l factors 

AxG xG A 

n factors 

is the projection which leaves out the k-th factor (k = 0 , . . . , n ) , then we have the 
relations 

T2 x <ËT2 x <Ë j <k 

ml = qtVi-u j > k + 1 

ml = °> j = k,k + 1. 

Observe that in the last case qk factors over the bundle which is used for the integration 
in the definition of vk or V f c + i , and the composition of a pullback along a bundle 
projection followed by an integration along the same bundle projection vanishes. These 
relations imply by a direct calculation that D is a chain map for the Cech-de Rham 
differential of CA($IG)-

Moreover, it follows immediately from the definition of D that it is ftx-linear (even 
ft^-linear). 

It is again a straightforward calculation to verify that D is a derivation for the 
associative product on CA(^G) (compare [9, 2.4.9] for the product structure). • 

2.3.5 

Lemma 2.3.5. — We have a commutative diagram 

T2 x <Ë (2.3.3) vT2 x <Ë 

d 
dz D 

T2 x <Ë (2.3.3) vT2 x <Ë 

Proof. — Since a is the connection one-form of a [/(l)-connection on the total space 

of the U (l)-principal bundle pi : AxG A —> Axx A we have / a = 1. Consequently, 

D(a,/3) = 1. This implies the assertion, since D and ^ are ftx-linear derivation, and 

z generates ftx[[^]]o;- Q 

In view of Lemma 2.3.5, in order to finish the proof of Theorem 2.3.2 is suffices to 
show that the operation D coincides with the operation of J o0* op* on CU(ftc)-
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2.3.6. — Let M' be a simplicial manifold and consider the bundle U(1) x M' —* M'. 

We describe the integration map 

: 11(1/(1) x M ) fi(Af) 

in the simplicial picture, i.e. as a map 

: Çl(S' x M) N ( M " ) . 

For n > 1 the manifolds Sn x Mn consists of n copies < 7 i ( M n ) , . . . ,crn(Mn) of M n 

which correspond to the points of §n which are degenerations of the non-degenerated 

point of S1 (where the index measures which 1-simplex in the boundary is non-

degenerate), and an additional copy of Mn corresponding the point of Sn which is the 

degeneration of the point in S°. For k = 1 , . . . , n + 1 let jk : Mn - * §n+1 x Mn+1 be 

the map Mn —> ak{Mn+l) C §n+1 x Mn+1, which corresponds the fcth degeneration 

[n -f 1] —> [n]. We now define a chain map of total complexes 

: fi(S' x M) • f i ( M ' ) 

of degree —1 which is given by 

(236) 
n + l 

k=l 

(-l)kJt : 0(Sn+1 x Mn+1) Q ( M n ) , 

and is zero on f } ( § ° x M ° ) . This map realizes the integration in the simplicial picture. 

2.3.7. — For (U —> X) G X the automorphism of gerbes 0 : T2 x G T2 x G 

induces an automorphism of simplicial sets 

0- : S" x (7(1) x Av S' x 17(1) x Av 

which we now describe explicitly by an extension of the special case (2.2.4) to general 

base spaces. 

If t G §n x £7(1) belongs to 17(1) ^ crk(U(l)) C Sn x £7(1), k = 1 , . . . ,n, then 

0"(£, a) = ( t ,mfe(t ,a)) , where ra/c : ¿7(1) x Ag- —» -Ag- is the action of U(l) on the 

principal fibration pk> If £ G §n x U(l) belongs to the degeneration of S° x t7 ( l ) , then 

(f)'(t,a) = (£, a ) . This formula provides a simplicial description of the action of 

T2 x <ËT2 x <ËT2 x <Ë 
G § x t / ( l ) x A ( ^ G ) 

Combining the description of the integration map (2.3.6) with this formula for the 

action of 0* it is now straightforward to show the equality of maps 

D = 
p 

o<f)* o p* : cA(nG) Ca(ÎÏg) • 
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2.4. Two-periodization — up to isomorphism 

2.4.1. — Let / : G —• X be a topological gerbe with band C/ ( l ) over a locally 

compact stack X. In Definition 2.2.2 we have constructed a natural endomorphism 

DG G End(i?/* o / * ) of degree —2. To any object F G D + ( S h A b X ) we associate the 

inductive system 

[2.4.1) 9tG(F):Rf.of*{F) 
DG 

Rf.of(F)[2] 
DG 

Rf.of*(F)[4] 
DG 

indexed by { 0 , 1 , 2 , . . . } . 

Using the inclusion T)+(ShAbX) —> T>(SliAbX) of the bounded below into the 

unbounded derived category of sheaves of abelian groups on X we can consider 

(^G(F) G jD(Sh.AbX)N°P, where the ordered set of integers N is considered as a cate

gory. 

2.4.2. — Using the triangulated structure of T>(ShAbX) one can define for each 

object <fl G T>(ShAbX)N°P an object holim <^ G D(Sl iAbX) which is unique up to non-

canonical isomorphism (see [21]). An explicit construction of this homotopy limit 

uses the extension of maps in D ( S h A b X ) to exact triangles by a mapping cylinder 

construction. In particular, we obtain holim <fiG (F) by the extension to a triangle of 

the map 1 — D in 

holim <Jr(F) 
i>0 

S W ( F ) [ 2 i ] 
l-D 

i>0 
Ä / . o / * ( F ) [ 2 i ] holim ¿G(F)[1] -

where 

S 
¿>o 

R / . o f ( f ) [ 2 ¿ ] 
2>C 

Ä / , o / * ( F ) [ 2 i ] 

maps the sequence (x{)i>o to the sequence (-D<3#i+i)i>o-

2.4.3. — We can now define the periodization PG(F) € T>(ShAbX) of an object 

F G T > + ( S h A b X ) . 

Definition 2.4.2. — For F e £>+(ShAbX) we define PG(F) G T>(ShAbX) by 

PG(F) : = holim <ßG(F) 

Note that P G ( F ) is well-defined up to non-canonical isomorphism. 

2.4.4. — The operator 

i>0 
DG 

i>0 

Ä / . o / » ( F ) [ 2 i ] 
¿>o 

Ä / . o / * m f 2 < ) - 2 
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commutes with V and therefore induces a map W : P G { ^ ) PG(F)[-2] via an 
extension in the diagram 

PG(F) 
W 

PG(F)[-2] 

,>oRf*of*(F)[2i} 
vT2 x <Ë 

T2 x <ËT2 x <Ë F)[2i})[-2] 

1-D 1-D 

i>0 Rf* o /* (F) f2 t l 
U>oD° T2 x <Ë o / ' ( F ) [ 2 i ] ) [ - 2 ] 

PG(F)[1] 
w 

PG (F 1 - 2 

Note that such an extension exists by the axioms of a triangulated category, but it 
might not be unique. 

The following proposition asserts that P G ( F ) is two-periodic. 

Proposition 2.4.3. — The map W: PG(F) —> P g ? ( F ) [ — 2 ] is an isomorphism. 

Proof. — For notational convenience, we consider the following general situation. Let 
D(A) be the unbounded derived category of a Grothendieck abelian category. Note 
that Sl iAb(X) is such a category (see Section 3.3.1). We consider an object X G D(A) 
together with a morphism D: X —> X[—2]. We can assume that D is represented by 
a map of complexes D: X —» X[—2]. We obtain the extension 1 — D to a triangle 

(2.4.4: y 
i>0 

X[2i] 1-D 

i>0 
X[2i] - y [ l ] 

where F : = ' i > 0 Y[2i] 2>0 X"[2i])[l] with the differential 

T2 x 
d 1 - P 

U —d 

where d is the differential of X. The induced map W: Y —> y[—2] is given by 

W:= 
U>nD 0 

0 T2 x <Ë 

Let 

E: 
i>0 

X[2i] 
i>0 

X[2i})[2] 
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24 CHAPTER 2. GERBES AND PERIODIZATION 

be the shift E(xi)i>o (#z+i)i>o- Note that E commutes with 1 — D, too. Therefore 
we obtain the extension S: Y —> Y\2] in the diagram 

f .i>0 X[2i] 
l-D 

L>o X\2i] ~Y[1] 

s E E S 

Y\2] U>o X[2i})[2) 
l-D 

[i>0 X[2i})[2] Y{1][2] 

by the matrix 

S:= 
E 0 

0 E 

Proposition 2.4.3 is a consequence of the following Lemma. 

Lemma2.4.5. — We have the equalities WoS = id = SoW. 

Proof. — First observe that i>C DoE = D = Eo i>0 D. Therefore W o S = 

SoW = n n 

1-Ih 
[n order to show that W o S = id we show that the map 

I := 
D 0 

0 D 

on Y is homotopic to the identity and therefore is equal to the identity in the derived 
category. This follows from 

1-1 = So / 4 - Jo S 

with 

J:= 
0 0 

1 0 

2.4.5. — We continue with the notation introduced in the proof of Proposition 2.4.3. 
Applying a homological functor to the triangle (2.4.4) we get the long exact sequence 

/4- J H*(Y) 
i>0 

H*(X[2i}) 
7>n 

H*(X[2i}) H*(Y[1]) 

If we analyze the middle map and compare it with the ordinary definition of limits in 
abelian categories we get the following result. 

Corollary 2.4.6. — We have an exact sequence: 

0 lim 
7. 

^•(xpKM-i] H*(Y) lim 
x 

H*(X\2i\) 0 . 
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2.4.6. — Note that the construction 

holim : D(A)N°P D(A) 

is not a functor. The construction of the homotopy limit holim ( 5 ) for S G D(A)N°P 
via mapping cylinders uses explicit representatives of the maps of the system S and 
depends non-trivially on this choice. 

A homotopy limit functor holim : D(AN°P) —• D(A) can be defined as the right-
derived functor of lim: AN°P —• A. Note that in the domain we take the derived 
category of the abelian category of №p-diagrams in A as opposed to №p-diagrams 
in the derived category of A. In Section 3 we will use this idea and refine P Q to a 
periodization functor 

PG:L>+(ShAbX) £>(ShAbX) 

which is a triangulated functor and natural in G —> X. The main idea is the construc
tion of a refinement of the diagram (2.4.1) to a diagram in D((ShAbX)N°P), see 3.4.6 
(the details are in fact more complicated). 

2.5. Calculations 

2.5.1. — In this subsection we calculate P G { F ) in the special case, where G —» * is 
the (trivial) £/(l)-gerbe over the point, and F G SliAbSite(*) is the sheaf represented 
by a discrete abelian group F. We will calculate the abelian group # * ( * ; PG{E))-
This cohomology is two-periodic so that we only have to distinguish the even and the 
odd-degree case. In the table below AQf denotes the group of finite adeles of Q, which 
contains Q via the diagonal embedding. 

Proposition 2.5.1. — We have the following table for the cohomology H*(*; PG(E))-

F 

Z 

Q 

Zini 

Q/Z 

H™(*:PG(F)) 

0 

D 
o 

/4-

HODD(*;PG(F)) 

aJ/q 

0 

0 

u 

2.5.2. — To prove Proposition 2.5.1, we use the exact sequence 2.4.6 where 

H*(X) = H* (*;#/* ° /*(£)) F )Z[[z]]*F[[z]] 

by Lemma 2.2.3 with z of degree 2. We must discuss the cohomology of the complex 

0 
i>0 

\F\\z}}\2i] 1 - D 

i > 0 
F[\z№i\ o , 
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26 CHAPTER 2. GERBES AND PERIODIZATION 

where D(xi)i>0 = (DGxi+i)i>0 with DG s 
A. 
dz' This means that we have to study the 

solution theory for the system 

(2.5.2; /4- Jo 
d 

Ay' 
/4- Jo S i > 0 , Xi € F[[z]] . 

2.5.3. — Let us start with the case F = Q. Since we can divide by arbitrary integers 

the operator DG is surjective and we can for any (a^ieN solve this system inductively. 

Therefore the cokernel lim* Q[u] of 1 — D is trivial. A solution of the homogeneous 

system is uniquely determined by the choice of x$ and the constant terms of the Xi, 

i > l . Note that the constant term of x\ is in degree — 2i. It follows that 

tfev(*;PG(Q); 0 . ( Q ) ) Q , Hodd(*;PG 

2.5.4. — We now discuss torsion coefficients F = Z/nZ. Write X{ = Y2xi,kZk, 
/4- Jo S/4- J with Xitk, CLi,k £ Z/nZ. Then we have to solve 

0 0 

k=0 

Xi,kZk - (k + \)xi+lik+1zk = 

0 0 

k=0 

a>i,kZk Vi>0. 

Equating coefficients this system decouples into finite systems 

Xi,kn - (kn + l)xi+i,fcn+i &i,kn 

Xi,kn+l - (Kn + l)Xi+\,kn+2 ai,kn+l 

%i,kn-}-n—2 (kn + 72 — l ) # i + l , kn+n-l "i,fcn+n+2 

%i.kr),-\-n,— l — r ~\~ (kn + n)xi+iikn+n 

= 0 

ttikn+n—l 5 

where i, k > 0. We see that we can always solve this system uniquely by backwards 

induction. We get 

Hev(*;PG(Z/nZ)) i n ffodd(*;PG(Z/nZ)) 0 

2.5.5. — Let us now assume that F = Q / Z . Since this group is divisible we can 

solve the system (2.5.2) for every ( a ^ e N - It follows that 

#odd(*;PG ;q/z) 0. 

We now discuss the solution of the homogeneous system in degree 0. We can choose x0 

arbitrary. If we have found Xi for i = 0,..., n—1, then we must solve xn_i = nxn in the 

next step. We see that xn is well-defined up to the image of Z/nZ = n~1Z/Z C Q / Z . 

We see that Hev(*] PG(Q/Z)) admits a sequence of quotients 

Hev(*;PG(Q/Z)) Qn Qn- xw 

A S T É R I S Q U E 337 



2.5. C A L C U L A T I O N S 27 

where Qn = Q / Z and Qn —> Qn_1 is given by multiplication with n for all n e N . 

The limit 

A Q 
f 

l imi 
n G N 

Q / n ! Z 

is the ring Aqh of finite adeles of Q, and Q C à Q 
gf 

is a subgroup. We thus get 

tfEV(*;PG(Q/z)) A Q 
f 

2.5.6. — Finally assume that F = Z . We must again consider the system (2.5.2) of 

equations above. Let us discuss this system in degree 2r. Then the relevant coefficients 

of Xi and di are sequences of integers, and (writing out only these) dxi+\ = (r + i + 

l ) # i + i . We see that the homogeneous equation has only the trivial solution since 

otherwise the integer XQ must be divisible by n + i + 1 for all i > 0. Hence 

HEV(*;PG(Z)) 0 

In order to calculate HODD(*; P g ( Z ) ) we consider the exact sequence 

0 Z Q> o/z 0 

It gives rise to an exact sequence of sheaves 

0 1 Q Q / Z 0 

and a long exact cohomology sequence. In Section 3.4 we will construct a functorial 

version of PQ which is a triangulated functor, and which coincides with the isomor

phism class constructed above. Using this functor, we get a triangle 

PG№ 
/4- Jo S P g ( Q / Z ) ffe(Z)[l] 

and therefore a long exact cohomology sequence 

/ / * ( * ; P G ( Z ) ) H*(*;PG(Q)) H*(*;PG(<Q/Z)] iP(*;PG(Z))[l] . 

By the calculations for Q and Q / Z we get exact sequences 

n Qsd A Q #oaa(*;PG(l); o , 

where c is the canonical embedding. Therefore 

H°DD(*;PG(F)) A Q 
7 ' Q . 
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CHAPTER 3 

FUNCTORIAL PERIODIZATION 

3.1. F labby resolutions 

3.1.1. — Let X be a site, e.g. the site of a locally compact stack. For U G X let r : = 
(Ui —> U)iei G covx(C^) be a covering family. Then we consider V := \_]iei Ui —> U. 
Forming iterated fiber products we obtain a simplicial object V in X with 

Vn = V xu-- xvV 

n + l factors 

If F G P r X is a presheaf on X , then we form the cosimplicial set C ' ( r , F) := F(V). 

3.1.2. — If F is a presheaf of abelian groups, then we form the Cech complex C ( r , F) 
which is the chain complex associated to the cosimplicial abelian group C'(r,F). 

If F is a sheaf, then H°C(r, F) ^ F(U). We recall the following definition (see [25, 
Definition 3.5.1]). 

Definition 3.1.1 (see [25, 3.5.1]). — A sheaf F G ShAbX is called flabby if for allU G X 
and r G covx(C/) we have H1C(T, F) = 0 for all i>1. 

By [25, Cor. 3.5.3] a sheaf F G ShAbX is flabby if and only if Rki(F) = 0 for all 
k > 1, where i : ShAbX —> PrAbX is the inclusion of sheaves into presheaves. 

As an immediate consequence of the definition a sheaf F G ShAbX is flabby if and 
only if the restriction Fu of F to the site (U) is flabby for all (U —> X) G X (see 
6.1.14 for the notation). 

3.1.3. — Let now X be a locally compact stack and X be the site of X. Occasionally, 
in the present paper we need the stronger notion of a flasque sheaf. 

Definition 3.1.2. — A sheaf F G ShAbX is called flasque if for every (U —• X) G X 
and open subset V CU the restriction F(U —• X) —> F(V —> X) is surjective. 

In the literature, e.g. in [17] or [5], this is sometimes used as the definition of 
flabbiness. 
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Lemma 3.1.3. — A flasque sheaf is flabby. 

Proof. — For C / g X let Tv : ShAhX A b be the section functor F h-» YV(F) : = 
F(U). For V C U we have Tv(Fu) = TV(F). A sheaf F G ShAbX is flasque by 
definition if and only if Fu is flasque for all U G X . But a flasque sheaf is Ty-acyclic 
for every V C U by [ 5 , Ch. 2, Thm. 5.4] (note that in this reference our flasque is 
called flabby). By [ 2 5 , Cor. 3.5.3] it is flabby in the sense of 3.1.1. 

This argument shows that Fu is flabby for all (U —> X) G X and implies that F 
itself is flabby. 

W e do not know if the converse of Lemma 3.1.3 is true. Therefore we must be 
careful when using results from the literature. 

3 . 1 . 4 . 

Lemma 3.1.4. — / / / : X — > У is a representable map of locally compact stacks, then 
a flabby sheaf is f^-acyclic. 

Proof. — Let F G ShAbX be a flabby sheaf. We must show that Rkf*(F) = 0 for 
all к > 1. W e have a morphism of sites /Й : Y —> X , see 6.1.10. The functor p/* : 
P r X P r Y is given by pf*F := F о fK It is in particular exact. Therefore we have 
Rf* = $ о о Ri. Since a flabby sheaf is г-acyclic we conclude that Rki(F) = 0 for 
к > 1. This implies Rkf*(F) = 0 for к > 1. 

3 . 1 . 5 . 

Lemma 3.1.5. — If a morphism f: X -^Y of locally compact stacks has local sections, 
then the functor f* : SliAbY —* ShAbX preserves flabby sheaves. 

Proof. — Let F G SliAbY be flabby. We consider an object (U —> X) G X and a 
covering family r G covx(tO- Then we must show that the higher cohomology groups 
of C ( r , / * F ) vanish. 

W e obtain a covering family / j j r G covY(/tfkO, see 6.1.11. Let V' be the simplicial 
object associated to r as in 3.1.1. Since f§ preserves fiber products in the sense of 
[ 2 5 , 1.2.2(H)] we see that f$V is the simplicial object in Y associated to f$r. The 
rule f*F(U) = F(f$U) (see again 6.1.11) gives the isomorphism of cosimplicial sets 
f*F(V) = F(f$V) and hence an isomorphism of complexes 

C(T,f*F) C(hr,F) 

Since F is flabby the higher cohomology groups of the right-hand side vanish. 
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3.1.6. — We now construct a canonical flabby resolution functor 

9l\ ShAbX C + ( S h A b X ) , id 91 

It associates to a F a sort of Godement resolution which consists in fact of flasque 

sheaves. 

For a space U let (U) denote the site of open subsets of U with the topology of 

open coverings. We will first construct flabby resolution functors 

9iv: ShAh{U) C+(ShAh(U)) id 9lu 

for all (U —> X) G X which are compatible with the morphisms V —> U in X . For 

F G ShAbX we obtain a collection of flabby resolutions (Fy —* fflu(Fu))ueXi which 

by 6.1.14 give rise to a resolution F —> £7Z(F). In the following we discuss these steps 

in detail. 

3.1.7. — Let pu: U —> U be the identity map, where U is the set U with the discrete 

topology. Let F G S h A b ( ^ ) . We set 9fv(F) := (pu)* o p*,(F) and let F 9$j(F) 

be given by the unit id —» (pu)* °Pu-

Lemma 3.1.6. The sequence 0 F (pu)* °PijF is exact' 

Proof. — Let w G U. We must show that the induced map on stalks Fw —> ((pu)* ° 

PIJF)w is injective. This immediately follows from the description 

((pu)*°PuF)w colim^çv^cc/ 
vew 

Fv . 

3.1.8. — We now construct £7£u(F) inductively. Assume that we have already con

structed 9fiAF) - > > Wu(F). Then we let 

fc+i, 
u (F) := (pu). op^(coker(S^ 

k-l 

u 
•(F) 

k 
U 

and £7i 17 (*0 
fc+i 

7 ( F ) be again given by 

91 
k 
U rF) coker(£7i 

fc-i 

u (f) m 
k 
u 

uni 9P! fc+i 

17 ( F ) 

In this way we construct an exact complex 

0 F 9 o 
u 

(F) m u \F) 9i •u (F) 

All pieces of the construction are functorial. Hence, the association F »—> 9l\j(F) is 

functorial in F. The inclusion F —> 9£y(F) gives the natural transformation id —> 

FlU. 
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3.1.9. 

Lemma 3.1.7. — For any sheaf F G ShAb(LO the sheaf (pu)* °Pu(F) ^s Absque and 

flabby. 

Proof. — For W C U we have 

(3.1.8 (pu)* °Pu IF)(W) 
w£W 

Fyj . 

It is now obvious that (pu)* °Pu(F)(U) —• (pu)* °Pu{F)(W) is surjective. A flasque 

sheaf is flabby by Lemma 3.1.3. • 

3.1.10. — We now consider a sheaf F G ShAbX. For (U - > X ) let Fv G ShAb(^ ) 

denote its restriction to (U). We apply the previous construction to all objects (U —» 

X) G X and the sheaves Fu. Then we get a collection of complexes of sheaves fflu(Fu) 

for all (U —> X) G X . Let / : V —» t/ be a morphism in X . W e shall construct a 

functorial morphism f*9%u(Fu) —> 57?v(iV). 

Let G G Sh(f7), iiT G S h ( F ) , and / * G —• iif be a morphism of sheaves. We consider 

the diagram 

V 
f 

Û 

Pv Pu 

V 
f 

-u 

It induces the transformation, natural in G and i f , 

/* o(pu),op\j(G) ( p v W * op* , (G) 

( P v ) . ° P y o / * ( G ) 

( T V ) * ° p M # ) 

W e now construct the map f*£%u(Fu) —• &ly(Fv) of complexes inductively. As

sume that we have already constructed the morphisms f*(ffi\j(Fu)) —> &tv(Fy) for 

all i < k compatible with the differential. Using that / * is right exact (Lemma 6.1.9), 

we have an induced morphism 

/*coker(0i 
}k-l 

U (Fu) 9i 
k 
U (Fu)) coker(£72 

, f e - i 

v (Fv) 21 ,k 
v Fv))-

The construction above gives a morphism /*57?^+1(F[/) —• 9l^'1(Fy)y again compat

ible with the differential of the complexes. 

In this way we get the morphism f*&£u{Fu) —> 9r£y(Fy). By an inspection of the 

construction we check that for a second morphism g: W —• V in X the morphisms 

g*f*Fu(Fu) g*S?v(Fv) Fw(Fw) and U°9Y&u(Fu) £?V(*V) coincide. 

The collections of resolutions Fu —> &£u(Fu), {U -+ X) € X , determines a resolu

tion F -+ £ # ( F ) in C + ( S h A b X ) . 
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3.1.11. 

Lemma ЗА.9. — The association F Ь-> (F —> 9£(F)) is a functorial flabby resolution. 

Proof. — The local constructions FJJ i—• 9£jj(Fu) are functorial in F\j. The connect
ing maps f*9£u(Fu) —> &%v{Fv) are compatible with this functoriality. It follows 
that the construction F —• 9£(F) is functorial in F. 

The restrictions ShX —> Sh(C/) detect flabbiness and exact sequences (see 6.1.14). 
Therefore the local statements 3.1.6 and 3.1.7 imply that the sequence 0 —> F —> 
9£(F) is a quasi-isomorphism, and that the sheaves 9£ (F) are flabby for all к > 0. • 

Definition 3.1.10. — We call F —> 9£(F) the functorial flabby resolution of F. 

Note that it actually produces resolutions by flasque sheaves. 

3.1.12. — Let / : X —> Y be a map of locally compact stacks which has local sec
tions. Let £7?x and 9£Y denote the flabby resolution functors for X and Y according 
to Definition 3.1.10. 

Lemma 3.1.11. — We have a natural isomorphism of functors / * о 9£-y = £7?x ° /* • 

Proof. — For (U —» X) G X we have by 6.1.11 a natural isomorphism f*Fu — Ffru
it gives natural isomorphisms &lu((f*F)u) = 9%uu{Fhu) and thus &£*(/*F)и = 
(f*9£y)u- Finally this collection of isomorphisms gives a natural isomorphism 

Mx(f*F) F) = 0 for alli>l. 

3.1.13. 

Lemma 3.1.12. — The functorial flabby resolution functor preserves flatness. 

Proof. — Consider a space U, p : U —> U as above and a flat sheaf F G ShAb(^) -

Then coker(F —• p*p*(F)) is flat as shown in the proof of [17, Lemma 3.1.4]. This 

implies inductively that the sheaves 57?^ (F) are flat for all k > 0. The result for 

the functorial flabby resolution functor on ShAbX now follows from the fact that the 

restriction functors ShAbX —» ShAb(C^) detect flatness (see 6.2.6). • 

3.1.14. — We can extend the flabby resolution functor 3.1.10 to a quasi-isomorphism 

preserving functor 

91: C + ( S h A b X ) C + (ShAbX) 

by applying 9£ to a complex term-wise and forming the total complex of the resulting 

double complex. 
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3.2. A model for the push-forward 

3.2.1. — Let / : G —> X be a morphism of locally compact stacks which has local 
sections. Following [9, Sec. 2.4] we construct a nice model for the functor Rf* o 
/ * : D + ( S h A b X ) -+ T>+ (ShAbX). We choose an atlas a: A -+ G. Then by Proposition 
6.1.1 the composition / o a: A —> G —» X is representable. Then we can define the 
functor 

0 C U : C + ( P r A b G ) C + ( P r A b X ) 

as in 9, Sec. 2.4 (the subscript p indicates that it acts between categories of 
presheaves). 

3.2.2. — We recall the definition P C A - For (U —• X) consider the Cartesian diagram 

Gu G 

f 

U- X 

Then for F G PrAbG we have 

(3.2.11 sd ik 
A \(F)(U X) = F AxG'- xGA> 

fc+l factors 

X G GU G). 

The differential *C\{F){U X) -> PC\+1{F)(U X) is induced as usual as an 

alternating sum by the projections 

(A Xa - - - Xa A) 

fc+2 factors 

(AxG — - xGA) 

fc+1 factors 

We extend the functor PCA to sheaves by the formula 

CA : = i» o PCA O i . 

3.2.3. — The functor 

<»: C + ( P r A b X ) >C*+(ShAbX) 

is exact by 6.1.8. The functor PCA is exact, see [9, 2.4.8]. Since flabby sheaves are 
i-acyclic the functor ioffl: C + ( S h A b X ) —> C + ( P r A b X ) preserves quasi-isomorphisms. 

Therefore the composition 

j " o p c a oiom CAo9t:C+{ShAbG) c+(ShAbx; 

preserves quasi-isomorphisms and descends to the homotopy categories ^ 

CAOSR: hC+(ShAhG) hC+ (ShAbX) . 

t1) By abuse of notation we use the same symbol 
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After identification of the homotopy categories with the derived categories we have 
by [9, 2.41] that 

с A о m Rf* : D+ (SliAbG) D+ (ShAbX) . 

3.2.4. — Since f:G—>X has local sections the functor / * is exact. It therefore 
descends to 

f•: ftC+(ShAbX) hC+ (ShAbG) 

The composition 

СAo 91 of*: hC+ (ShAbX) hC+ (ShAbX) 

thus represents 

RUof*-. JD+(ShAbX) D+ (ShAbX) 

3.2.5. — W e now study the dependence of CA on the choice of the atlas A —> G. 
Let us consider a diagram 

(3.2.2) A' 
Ф 

A 
a 

Ч a 

G 

where a' satisfies the same assumptions as a (see 3.2.1). The map 0 induces maps 

(A' xG ••• xGAr *GGU 
0 f c + 1 x i d G [ ; 

(A xG xGA) XG GU 

G 

and therefore 

PC к 
A [F)(U X) F [Axn • • • xn A XG GU G) 

k+l factors 

1 A xG • . • xG A X G GU G) 

fc+l factors 

P ci (F)(l X) 

This map is natural in F and preserves the cosimplicial structures. In other words, 
the diagram (3.2.2) induces a natural transformation 

pCé:pCA vcA, 

Composing with i$ and i o £7? we get a morphism of functors 

С*: CAo9l С А' о 91: hC+{ShAbG\ hC+ (ShAbX) . 
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Both CA °Fl and CA1 °Fl represent Rf*. Using the explicit constructions and the 

proof of [9, Lemma 2.36] one checks that the diagram 

H°(CA o W)(F) 
F) = 0 >l. 

•H°(CA^9l)(F) 

'f*(F) 

commutes. Therefore, on the level of derived categories, C<f> : CA ° —* CA1 o £71 is 

the canonical isomorphism between two realizations of JfJ/*. 

3.2.6. — Let q: H —• G be a represent able morphism with local sections. Consider 

the pullback diagram 

B 
b 

H 

i Q 

A 
A 

G 

f 

X 

T h e n b : B —* H is an at las , and w e can form t h e functor CB '• C+ (PrAbH) 

C + ( P r A b X ) . 

Observe tha 

B xH ... xH B (A XG ••• XQ A) XGH . 

For (U —> X) consider the diagram 

Hn E 

- G 

f 

U X 

Observe further that 

[BxH.--xHB) F) = 0 i>l. (A xG ..• xG A) XG Gu xGH . 
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For a presheaf F G P r H and (V -+ G) G G we have pq*(F)(V) = F(V xG i f ) . We 

now have the following identity 

PC ik 
A pq*(F)(U X) PQ*(F) AxG ••• xG A XGGU G) 

k+1 factors 

F A xG - - • xG A xGGv xGH H) 
fc+l factors 

F [B xH xH B xHHv H 

fc+l factors 

vG ,k F) = 0 >l. X) 

This isomorphism is functorial in F and induces a natural isomorphism 

pCAoPq* PCQ*A , 

where we write a* A := B. 
The functor pq* preserves sheaves [9, Lemma 2.13]. Therefore we get the identity 

i o v o pq+ o i = pq* o i 

and thus an isomorphism 

(3.2.3) CA°q* o PCA ° î ° î " ° pq* o i i$oPCA opq*oi i*opCq*Aoi CQ*A 

3.2.7. — Consider a Cartesian diagram 

H 
V 

G 

9 

Y 
U 

X 

where u has local sections. We extend the diagram to 

B A 

77 
V 

G 

9 f 

Y 
U 

X 

The map B —> H is again an atlas. 

Lemma 3.2.4. — We have a natural isomorphism of functors 

u*- o CA CB°V* 
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Proof. — W e first find a natural isomorphism 

pu*opCA p C B o V . 

Let (U^Y)eY and F G PrAhG. Then we have 

pu* opCA(F)(U) pCA(F)(u»U) . 

W e have a diagram 

Hu F) = 0l. H 
V 

G 

9 

TT s 
s X 

We calculate 

(AXQ '— xGA) xGGNU (A xG ••• xG A) xG H XH GU^U 

v*(B xH--xHB) xHB) 

This implies thai 

pu*oCA(F)(U) pCA(F)(UiU) 

F((A XQ • • • X G A) XG Gu.U) 

F(vt((B xH ••• xHB) xHHV)) 

(pv*F)((B xH xH B) XH HU) 

pCBopv*(F)(U) 

Since u and v have local sections, by 6.1.11 the functors pu* and pv* commute with 

i o and this isomorphism induces 

u* o CA CBov* 

(compare with the calculation (3.2.3)). 

3.2.8. — The isomorphisms of Lemma 3.2.4 and Lemma 3.1.11 induce an isomor

phism 

(3.2.5) u* o CA o m CBou*o 91 CBo9£o v* 

On the other hand, by Lemma 6.1.12 we have an isomorphism 

u* o Rf, Rg* o v* 

Lemma 3.2.6. — The following diagram of natural isomorphisms of functors 

£>+(ShAbG) D+(ShAbH) 
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commutes. 

u* o CA O 91 -CBO&ÌOV* 

u* o Rf* Rg* o v* 

Proof. — It is easy to check that this commutativity holds true on the level of ze-

roth cohomology sheaves. Since all functors are the derived versions of their zeroth 

cohomology functors the required commutativity follows. • 

Corollary 3.2.7. — The following diagram of natural isomorphisms commutes 

u*ocAo&eo f CB°9t,og*o u* 

u* o Rf* o / * Rg* og* ou* 

3.3. Zig-zag diagrams and limits 

3.3.1. — We define the unbounded derived category D(H) of an abelian category 

as the homotopy category hC(U) of complexes (with no restrictions) in iS. 

Definition 3.3.1. — An abelian category £2 with the following properties 

(1) £2 is cocomplete, 

(2) filtered colimits are exact, 

(3) $ has a generator, i.e. there is an object Z such that for every object F with 

proper subobject F' C F, Hom(Z, F') —> Hom(Z, F) is not surjective. 

is called a Grothendieck abelian category. 

In this section, we will consider a Grothendieck category in which countable prod

ucts exist, e.g. a complete Grothendieck category. The category ShAbX of sheaves of 

abelian groups on a site X is a complete Grothendieck abelian category [25, Chapter 

I , Thm. 3.2.1]. 

Lemma 3.3.2. — If Z is a small category and U is a Grothendieck abelian category in 

which countable products exists, then the diagram category UZ is again a Grothendieck 

abelian category in which countable products exist. 

This is proved in [25, 1.4.3]. 
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3.3.2. — We consider the category C ( S ) of complexes in a Grothendieck abelian 

category fâ. It is known that C ( S ) has a model category structure (see [16, Theorem 

2.2] where this fact is attributed to Joyal, [15, Thm. 2.3.12] for the example of the 

category of modules over a ring, and [2] for a proof in general). This model structure 

is given by the following data: 

(1) The weak equivalences are the quasi-isomorphisms. 

(2) The cofibrations are the degree-wise injections. 

(3) The fibrations are defined by the right lifting property. 

By hC(ÏÏ) we denote the homotopy category of C(W). The category hC(W) is trian

gulated with the shift functor T: hC{¥3) —• hC(Wj given by the shift of complexes 

T(X) = X[l]. The class of distinguished triangles is generated by the mapping cone 

sequences on C(ïï), 

A f 
B C(f) T(A) 

The extension of a morphism in [ / ] G hC(ffi) with chosen representative / G C(<&) 

to a triangle can thus naturally be defined using the mapping cone C(f). 

3.3.3. — Let S be a Grothendieck abelian category, and consider a small category 

Z. Then we have an equivalence C(ffi)z = C ( $ ) . Because $ is a Grothendieck 

category by Lemma 3.3.2, we can equip the category of Z-diagrams C{W)Z with 

the injective model category structure. By translation of 3.3.2 we get the following 

description. 

(1) The weak equivalences are the level-wise quasi-isomorphisms. 

(2) The cofibrations are the level-wise injections. 

(3) The fibrations are defined by the right lifting property. 

3.3.4. — We consider the category U pictured by 

We let 2>($) c C+(&)u be the subcategory of objects of the form 

(3.3.3) Yo Yi Y2 Y3 

X X[-2\ 

with bounded below complexes Yi,X. A morphism in the category 2 ) ( S ) is given 

by maps Yi —• Y(, i = 0,1,2,3, and X —• X' which are compatible with the struc

ture maps. A quasi-isomorphism in this category is a morphism which is a quasi-

isomorphism level-wise. 
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3.3.5. — We let Z be the category pictured by 

Let C(Wjz be the category of Z-diagrams of complexes in iS. We define a functor 

Rn g>(8) -xHB) 

which maps the diagram (3.3.3) to the Z-diagram 

n [ 4 ] r2[4] 

*î[2] ^o[2] 

Y3[2] ^ [ 2 ] 

The maps are induced by the shifted maps of the diagram (3.3.3), and the composition 
Ys[2k + 2] —> X[2fc] —• Yb[2fe]. The functor i?i preserves quasi-isomorphisms, since 
those are defined level-wise. 

3.3.6. — We now define a triangulated functor 

lim: h(C{U)z) hC(U) 
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by a direct construction on the level of complexes. Consider a Z-diagram X G C ( $ ) z 

c3 C3 B3 

d3 

C2 
C2 

B2 
d2 

Ci 
ci 

B 
di 

Co 
c0 

Bo 

We define the morphism in C{Wj 

</>x ' 

i>0 

s 
i>0 

Bi 

which maps ( # i ) i > o to (ci(xi) — d i + i ( ^ t + i ) ) i > o - Then we define l i m ( X ) as a shifted 

cone of ex'-

l i m ( X ) : = CUX) F - l ] G C ( g ) . 

Since quasi-isomorphisms in C(W)Z are defined level-wise, the functorial construction 

X —> lim X preserves quasi-isomorphisms and thus descends to a functor 

lim: h(C(ÏÏ)z) hC(ïï) . 

Note that lim commutes with the shift and sum, so that it is a triangulated functor. 

3.3.7. — We now consider the composition l i m o i ^ : D (l) Hc(L)—» / i C ( S ) . The compo

sition of the maps (or their inverses, respectively) in the diagram (3.3.3) gives rise to 

a morphism £>[—2] : X —> X[—2] in hC{W). We consider the sequence 

(3.3.4) X*:X< 
D 

X\2] 
D\2] 

X[4] 

in hC(U). As already explained in 2.4, for such a diagram in the triangulated category 

hC(U) the homotopy limit holim (X*) G hC(ffl) is a well-defined isomorphism class 

of objects. It is given by the mapping cone shifted by —1 of the morphism 

i>0 

X[2i] 

i>0 

X[2i] 

which maps (xi)i>o to (xi — D\2i]xi+i)i>o (see [21, Sec. 1.6]). 

Lemma 3.3.5. — For a diagram W G 2)(îS) of the form (3.3.3) we have a non-

canonical isomorphism 

holim ( X # ) lim o f t ( W ) . 

A S T É R I S Q U E 337 



3.4. THE FUNCTORIAL PERIODIZATION 43 

Proof. — We use the dual statement of [21, Lemma 1.7.1]. For i > 1 let C2%~\ : = 

y3[2z], C2i : = ^ i [ 2 i ] , B2i-i '•= Y2[2i] and B2i : = lo[2*]. Note that we have morphisms 

Vi'. Ci —• # i in C( iS) which become isomorphisms in hC(H). Moreover, we have 

maps w2i: C2i —• B2i-\ coming from the map Y\ —> Y2 of (3.3.3), and morphisms 

^ 2 i + i : C2i+i —> # 2 i coming from Ys[2] — > X —• 1 q of (3.3.3). We consider the diagram 

in / i C ( S ) , using the invertibility of v» in / i C ( H ) , 

[ i > i 
vi xi 

<PRl (W) 
[i>l Bi 

id i>lVi 1 

I i > l Ci 
-xHB) 

whose vertical maps are isomorphism. By definition, the mapping cone of the upper 

horizontal map is lim oR1(W). Because the vertical maps are isomorphisms in h C ( 8 ) , 

this is isomorphic to the mapping cone of the lower horizontal map, which gives the 

homotopy limit of the sequence 

-x) Yi[2] -xH) Yi[4] -xHB) 

W e can expand this sequence to 

(3.3.6) X Y3[2] y2[2] Yi[2] YoW X[2] 

Y3W - Y2[4] Yl[4] Yo[4] X[4] Ys{6} 

and because the sequence (3.3.4) is just another contraction of (3.3.6), by [21, Lemma 

1.7.1] its homotopy limit holim (X*) is then also isomorphic to limoR^W). • 

3.4. T h e functorial periodization 

3.4.1. — Let X be a locally compact stack. Define C + ( S h 5 £ X ) C C + ( S h A b X ) to 

be the full subcategory of bounded below complexes of flat sheaves. 

Lemma 3.4.1. — This inclusion induces an equivalence of homotopy categories 

hC+(Sk flat 
AH X ) hC+ (ShAbX) . 

Proof. — We first construct a functorial flat resolution functor 

R : ShAhX Cb(SY flat 
Ab 

Note that a torsion free sheaf is flat. If F G ShAbX, then let F G P r X denote 

the underlying presheaf of sets. Let ZF G PrAbX be the presheaf of free abelian 

groups generated by F, and ZF := i^ZF be its sheafification. Then we have a natural 

evaluation ZF —• F, which extends uniquely to e : ZF —> F since F is a sheaf. We 

define R{F) to be the complex ker(e) —• ZF, where ZF is in degree zero. The natural 
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map R(F) —> F is a quasi-isomorphism. Moreover, Z F and its subsheaf ker(e) are 

torsion-free, hence flat. 

We extend R to a functor R : C + ( S h A b X ) -> C ^ S h ^ X ) by applying # objectwise 

and taking the total complex of the resulting double complex. 

The inclusion C + ( S h i £ X ) - * C + ( S h A b X ) and R : C + ( S h A b X ) - > C + ( S h 2 £ X ) 

induce mutually inverse functors of the homotopy categories. • 

3.4.2. — Let / : G —> X be a topological gerbe with band 17(1) over a locally com

pact stack. Recall the associated geometry introduced in 2.2.1. Using the functorial 

version we get the diagram 

(3.4.2) T2 x G 

G 

p 
m 

G 

f 

X 

which 2-functorially depends on the gerbe G —> X. The map p: T2 x G —• G is the 

projection onto the second factor, and m : = p o <\>. 

3.4.3. — Observe that p is a trivial oriented fiber bundle with fiber T2. Let 

0 ^Si te (T2xG) ^ ( ^ S i t e ( T 2 x G ) ) 

be the functorial flat and flabby resolution of ZG constructed in 3.1.10, see also 3.1.12 

for flatness. By 

K : 0 K° K1 K2 w)0 

we denote the truncation of 9V(ZiSite(T2xG)) after the second term, i.e. with 

K2 : = ker(£#2 (^SiteCT^xGï) ^ (^Si te (T '2xG)) ) 

The complex K is still a flat and p*-acyclic resolution of IiSite(T2xG) (Lemma 6.3.3). 

Let 

T : C + ( S h A b S i t e ( T 2 x G ) ) C+(ShAbSite(T2 x G)) 

be the functor given on objects by 

Tr.(F) :=F K . 

3.4.4. — W e consider the commutative diagram 3.4.2. Since / o p = f o m (recall 

that we actually can assume equality) we have by Lemma 6.6.8 and Corollary 6.6.9 

isomorphisms of functors m* o / * = p* o / * and / * o m * = / * o ^ . W e fix an atlas 

A -> G and define X: C+(ShflatX) C + ( S h X ) by 

X : = C A o f * o S 7 l . H l 
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Since / has local sections we have / * o £7? = tfl o / * by Lemma 3.1.11. It now follows 

from 3.2.4 that X = CA o fflo f* preserves quasi-isomorphisms. It therefore descends 

to the homotopy categories and induces the functor Rf* o / * as composition 

£>+(ShAbG) 
T.f>rn.rn.n. S 4 1 

/ * C + ( S h flat 
Ab G ) 

X 
hC+(ShAhX) <£>+(ShAbX) . 

3.4.5. — We further form B := m*A xT2xGp*A. It comes with a natural morphism 

B —• m*A over T2 x G which induces a transformation CM*A —• CB- Using the unit 

id —> ra* o m*, the inclusion id —• TK , and the isomorphisms m* o / * = p* o / * , and 

using that by 3.2.6 CU o ra* = Cm*A5 we define a natural transformation 

X CA O / * o S3? 

CA O o m , o m* ofom 
CA O CA O CA O om*of*o9l 
CA O CA O CA O CA O CA O 

Cm* A ° T V op* of* o £7? 

Cm.Ao9l0TK. oP*of*o5re 

CBo9to TK op* of* o&l 

^0 

Using the other projection B - » p*A we define 

Yi TK op* of* TK op* of* 

CB o&loTK op* of* 

C f l O ^ O TK op* of* o m 
Yo 

Using the identity CP*A — CA °P* we define 

Yi CV.A°№° TK op*o f* 

CA°P*°&Z° TK op* of* 

CA°W°P* o9ioTK- op* of* 

Y2 

Note that P*OTK is an exact functor by Lemma 6.3.6 and calculates ilp* by Corollary 

6.4.4. Since p . o £7? o TK represents the same functor, the map p* o TK —> p . O £7? O TK 

induces a quasi-isomorphism which is preserved by CA ° The natural transforma

tion Tp^K —* P* ° TK °p* is an isomorphism, if applied to complexes of flat sheaves 

by 6.2.11. By Lemma 6.1.11 the pull-back / * preserves flatness. 
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These two facts explain the quasi-isomorphisms in 

Y3 CAo&-£o TP, .K of* 

CA O £7? O p„ O TK o p ' o f 

CAo moPt oUlo TK op* of* 

Y2 . 

Using the projection T„^K —• id of (6.5.8) we define the natural transformation 

(3.4.3) Y3 cAomo TP,K of* 

cAomo f* [ -2] 

CA O f* o m\-2) 
X[-2] . 

Observe that all functors Yi preserve quasi-isomorphisms, using that / * , p*, CA ° 91, 

P* ° TK (and by Lemma 6.2.11 therefore also TP^K) do so. 

3.4.6. — The construction 3.4.4, 3.4.5 gives a quasi-isomorphism preserving functor 

Ro : GH Sh flat 
Ab X ®(ShAbX) 

(see 3.3.4 for the definition of the target). By composition with the functor Ri (see 

3.3.5) we get a functor 

Tt '.— R\ o JRQ : G+(St flat 
Ab x) C ( S h A b X ) z 

It preserves quasi-isomorphisms and therefore descends to (again using Lemma 3.4.1) 

R: Z T ( S h A b X ) M G ( S h A b X ) z ) 

3.4.7. — The construction of the functor RQ explicitly depends on the choice of 

an atlas A —> G. These choices form a subcategory Z C Stacks/G. The choice of 

A —• G enters the definition via the functor CA- For the moment let us indicate the 

dependence on A in the notation and write RQ for the functor RQ defined with the 

choice A. 

Observe, that A —> m*A, A —> p*A and A —• m*A xT2xG p*A are functors 

Stacks/G —> Stacks/(T2 x G ) . The construction 3.2.5 shows that for a given F G 

D + ( S h A b X ) the association A —> RQ(F) extends to a functor 

RQ(F): Zop ®(ShAbX) . 

The components X ^ CA o 91 o / * and Y{ ^ G? o 91 o • . . (where ? G { A, p* A, A , m*A, 

m*A xT2xG p*A}) all involve a flabby resolution functor in front of G*. If A —> A ' 

is a morphism in Z , then the transformation G^ ' o 9£ CA ° 9£ (or the similar 

transformations for the other subscripts) produce quasi-isomorphisms by 3.2.5. 
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It follows that the functor R'Q(F) : Zop —• 2)(ShAbX) maps all morphisms to quasi-
isomorphisms. We now consider the composition R~(F) : = Ri o RQ(F): Zop —• 
h(C(ShAhX)z). 

For two objects A, В G 2 we consider the diagrarr. 

Ax В 

s 
t 

A В 

where the fiber product is taken in Stacks/G. We consider the isomorphism 

R(A, В) := Д*о IR8)"1: RA(F) RB(F) 

in h(C(ShAh(X)) ) . Using the commutativity of the squares in the diagram 

Ax В x С 

Ax В Л x С В х С 

А В С 

we check that 

Я ( А , Б ) о Я ( В , С ) R(A.C) 

This has the following consequence:. 

Lemma3.4.4. — The functor R: JD+(ShAbX) —> ZiG((ShAbX)z) is independent of 
the choice of the atlas A —> G up to canonical isomorphism. 

Consider an automorphism ф : A —• A in Z and observe that it induces the identity 
on the level of cohomology, i.e. H*(R^) = id. It is an interesting question whether R^ 
is the identity. 

3.4.8 

Definition 3.4.5. — We define the periodization functor 

PG : = limotf: D+ (ShAbX) / i ( G ( ( S h A b X ) z ) ) / iG(ShAbX) . 

By Lemma 3.4.4 it is well defined up to canonical isomorphism. 
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3.4.9. — Let F G T>+(ShAbX). By 3.2.4 X(F) = CA o / * o 91(F) represents 

Rf* ° f * ( F ) . The composition D[—2]: X —• X[—2] of the maps (or their inverses, 

respectively) in the diagram RQ(F) G 0 (S l iAbX) represents the map D Q \ Rf* o 

f*(F) ->Rf* o f * ( F ) [ - 2 ] defined in Definition 2.2.2. By Lemma 3.3.5 we see that 

P G ( F ) (according to 3.4.5) is isomorphic to our former Definition 2.4.2 of the isomor

phism class P G ( F ) . 

3.5. Properties of the periodization functor 

3.5.1. — The domain and the target of P G are triangulated categories. Distinguished 

triangles in both categories are all triangles which are isomorphic to mapping cone 

sequences 

C ( / ) [ - l ] X 
f 

Y C(f) 

Lemma 3.5.1. — The functor P G : D + ( S h A b X ) —> / iC(Sl iAbX) is triangulated. 

Proof. — We must show that it is additive, preserves the shift, and maps distinguished 

triangles to distinguished triangles. It follows from the explicit constructions that 

the functors lim and Ri are additive and preserve the shift. The functorial flabby 

resolution £71 on sheaves is additive. On complexes of sheaves it is defined as the 

level-wise application of the flabby resolution functor composed with the total complex 

construction. Therefore it also commutes with the shift. Al l other functors involved 

in the construction of RQ (e.g. CU, q*, T K ) are additive and commute with the shift, 

too. 

Since the distinguished triangles in D+ (ShAbX), / i ( C ( S l i A b X ) z ) , and / iC(Sl iAbX) 

are defined as triangles which are isomorphic to mapping cone sequences, and the 

latter only depend on the additive structure and the shift, we see that lim and R 

preserve triangles. • 

3.5.2 

Lemma 3.5.2. — For F G £>+(ShAbX) the object PG(F) G / iC(ShAbX) is two-

periodic. 

Proof. — The isomorphism P G ( F ) [ 2 ] —> P G ( F ) is given by the isomorphism W in 

2.4.3. 

The two-periodicity will be analyzed in more detail in Subsection 3.6. 
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3.5.3. — Let u: Y —> X be a map of topological stacks which admits local sections. 
Then we consider a Cartesian diagram 

(3.5.3) 

H 
V 

G 

9 df 

Y u X. 

Lemma 3.5.4. — The diagram (3.5.3) induces an isomorphism u* o PG PH o u*. 

Proof. — By taking the pull-back of (3.4.2) along u we get the extension of the 

Cartesian diagram above to 

T2 x H 
w 

T2 x G 

n,q m,p 

H 
V 

G 

9 f 

Y 
U 

X 

Note that there is no 2-isomorphism between n and q or m and p, respectively. Since 
u has local sections the functor u*: ShAbX —> ShAbY is exact by Lemma 6.1.11. It 
therefore extends to functors u*: ®(ShAbX) 2)(ShAbY) and u*: C ( S h A b X ) z -> 
C ( S h A b Y ) z which both preserve quasi-isomorphisms. We therefore also have corre
sponding functors on the derived categories which will all be denoted by u*. In the 
following we are going to show that there are natural isomorphisms 

(1) u* o Rx ^ R1 o u* 
(2) u* o lim = lim ow* 
(3) µ*o RQ = RQ O u* 

of functors on the level of homotopy categories. 

In fact it follows from an inspection of the construction of R\ that already u*oR1 = 
R\ o u* on the level of functors 0 ( S h A b X ) —> C ( S h A b Y ) z , i.e. before descending to 

the homotopy category. Assertion (1) follows. 

Since u*: C ( S h A b X ) z —> C ( S h A b Y ) z preserves products and mapping cones we 

again have µ* o lim = lim ou* before going to the homotopy categories. This implies 

(2) . 
In order to see (3) , using v we construct a canonical isomorphism 

u*oR$ R$ou*:C+(Sh flat 
d x) 0 ( S h A b Y ) , 
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where we indicate the dependence of the functor RQ on the choices by a superscript 

as in 3.4.7. The atlas C —» H is given by the diagram 

C A 

H 
V 

G 

g f 

Y 
U 

X 

where the upper square is also Cartesian. 

The isomorphism (3) is induced by a collection of isomorphisms indexed by the 

objects of the diagram U (3.3.4) which induce a morphism of diagrams in / i2) (ShAbY). 

First we have 

[3.5.5) 

u*oX u*ocAof*o m 

' Cc o v* o / * o 91 

Ccog* o u* o 91 

Cc o g* o 91 o u* 

Xou* 

where we use Lemma 3.2.4, v* o / * = g* o u* (see Lemma 6.6.9) and the fact that the 

flabby resolution functor commutes with the pull-back by u, since u has local sections 

(Lemma 3.1.11). 

Let D : = n*C XT2XH q*C. We write KT2xG for the complex formerly denoted by 

K . 

Next we observe that there is a canonical isomorphism W*KT2XQ — KT2XH- ^N 

fact KT2xG and KT2xH are given by truncations of the complexes S^(^site(T2xG)) 

and 9£(Zsite(T2xH)). The isomorphism is induced by the fact that w* commutes with 

the flabby resolution functor, and the isomorphism 

W * Z g i t e ( T 2 x G ) ^ S i t e ( T 2 x f f ) -

This implies by Lemma 6.2.5 that w* o TK = TK ow*. In order to increase 

readability of the formulas we will omit the double subscript from now on and write 

TK for both functors. Using this observation, Lemma 3.2.4, and the other previously 
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used isomorphisms, we get 

u*oY0 u o CB ° 9£oTK op* of* o m 
CD ° w ° 9£oTK op* of* o 91 

CDo9£oW* o TK op* of* o9£ 

CDo9£o TK o w* OT) o f o 9£ 

CDo9£o TK O q* ov* of* o9£ 

CDo9£ oTK on o q ou o 9£ 

CDOWO TK o q* o g* o £7? o u* 

Y0ou* 

In a similar manner we get 

u*oY: u* o cv.A o m °TK- op* of* 

C„*C OW* O 9loTK- op* Of* 

Ylou* 

u*oY2 Yoou* 

u*oY3 Y3ou* 

For these isomorphisms, we use in particular Lemma 6.1.12 to get v*p* = q*w*, and 
moreover Lemma 6.2.5 to get the chain of isomorphisms 

v*(F®p*K) v*F(, v*p*K v*l q*w*K v*F Tq, Tq,K{v*F), 

which gives the isomorphism v* o TP^K — TQ^K ° v*. 
By a tedious check of the commutativity of many little squares we see that these 

maps indeed define an isomorphism of functors u* o RQ = RQ OV*. AS an example of 
these checks, let us indicate some details of the argument for the map Y3 —• X[—2]. 
For F e D+(ShAhX) we have the maps 0 : Y3(F) - » X[-2](F) and V : Y3(u*F) -> 
X[-2](u*F) given by (3.4.3). We must show that 

u*Y3(F) Y3(u*F) 

11*4 scp 

u*X[-2](F X[-2](u*F) 
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commutes. This indeed follows from the sequence of commutative diagrams 

(3.5.6) 

u*Y3 u*CASffTPmKf* 
Tq, x 

x u*CA9lf*[-2] u*X[-2] 

cBv*mTp,Kf* 
TP*K 

\2] 
id cBv*mr[-2] 

CB9lv*Tp.Kr 
Tq, 2x 

id 
cBmv*r[-2] 

Y3u* CBmTq,Kg*u* Tq, [2] id 
cBmg*u*[-2\ X[-2]u* 

where for the last we use that w preserves the orientation of the fiber T2. 

The following statement directly follows from the constructions. 

Lemma 3.5.7. — The isomorphism of Lemma 3.5.4 behaves functorially under com
positions of diagrams of the form (3.5.3). 

3.5.4. — Let F G T>+(ShAbX). Recall that PG(F) is the homotopy limit of a Z-
diagram consisting of sheaves Yb[2z], Yi[2i ] , Y^pz] , 1̂ 3 [2i]. For all i > 0 we construct 
an evaluation transformation 

e*: PG(F) Ä / . o / ' ( F ) [ 2 t ] 

as the composition of the canonical map from the limit to I3 [2i + 2] with the structure 
map to X[2i] and the identification X[2i](F) ^ Rf* 6 f*[2i](F). To be precise we 
consider Rf*f*(F) G T>(ShAbX) via the inclusion D+(ShAbX) -+ T>(ShAbX). In the 
situation of 3.5.3 an inspection of the proof of Lemma 3.5.4 together with Corollary 
3.2.7 shows that we have a commutative diagram in T>(ShAbX) 

(3.5.8) 

vTFG{F) 
V* 

PH{u*F) 

u*ei ei 

u*RfJ*(F)[2i] 
V* 

Rg*g*(u*F)[2i] 

Note, however, that the morphism in the bottom line is only defined on D+(ShAbX) 
(or equivalently on its image in T)(ShAbX)), and we do not know whether we can 
extend it to the full unbounded derived category. Fortunately, we do not have to do 
this for the purposes of the present paper. 
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3 . 5 . 5 . — Consider the special case of the diagram (3.5.3) where Y = X, u = idx , 

H = G, and v is an automorphism of the gerbe G. Lemma 3.5.4 provides an auto

morphism v* : P Q —> P G of periodization functors. 

3 . 5 . 6 . — Let us illustrate this automorphism by an example. We consider the trivial 

t / ( l )-gerbe G-+S2 over S2 and let </> e Aut(G/S2) be classified by 1 e # 2 ( S 2 ; Z ) ^ 

Z. It induces an automorphism of the cohomology H*(S2] P G ( F S 2 ) ) , where FS2 is 

the sheaf represented by a discrete abelian group F. We have a Cartesian diagram 

G $U(1) 

9 

s 2 

f r 
• * 

Since f*F+ ^ FQ2 we have 

H*(S2;PG(FS2)) tf*(S2;PG(/*F*)) 

Lemma 3.5.4 
H*(S2;f*Pm(1)(F_*)) 

Lemma 6.2.13 
H*(S2;Z) P)(F_*))Pm(1)(F_*)) 

Z\w\/(w2) )(F_*))Pm(1)(F_*)) 

where H * ( * P $ u ( i ) ( P * ) ) has been calculated in examples in Proposition 2.5.1. If 

F = Q or Q / Z , then i/ev(*; P ^ ( 1 ) ( F J ) ^ Q or • • - = A ^ , respectively. If F = Z, 

then J ï o d d ( * ; P ^ ( 1 ) ( Z J ) ^ A?/Q. 

Lemma 3.5.9. — In all these cases the action of 0* is given by 

Pm(1)(F) ) X + w Pm(1)()) » À + w ( A + fi) , 

w/iere À,/x E Q, AQF or Aj/Q, respectively. 

Proof. — We will use the description of H*(S2, PG{FS2)) given in Corollary 2.4.6. 

In Lemma 2.2.3 we have calculated the automorphism on H*(S2,Rg*g*FS2) = 

F[w][[z]]/(w2) induced by the diagram 

G 
4> 

G 

9 9 

S2 

It is given by 2 i—• z + w, w i - > w. The operation induced by D Q is d/dx and the 

periodized cohomology is given as the kernel (in the cases F = Q and F = Q / Z ) or 

cokernel (in the case F = Z ) of n*>o i d I 2 * ] ~ Ui>o DG№] on f I i > o f M [ [ * ] ] / ( ™ 2 ) [ 2 * ] . 
Recall from 2.5.3 that the class a e # ° ( S 2 , PG(Q52)) 9* Q[w]/(w2) is represented by 
(a,az,az2/2,... ,azk/k\...), which is mapped by </>* to (a ,a (w + z),a(w + z)2/2,...). 
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We must read off a representative of this class in the form above. If a = w then 

w(w + z)k/k\ = wzk/k\ and therefore (j)*w = w. On the other hand, if a = 1, then 

a(w + z)k/k\ = zk/k\ + wz^/ik - 1)!, so that (/>*(1) = 1 + w. 

Exactly the same argument applies if F = Q / Z . Finally, the cohomology with 

coefficients F = Z is the cokernel (up to shift of degree) of the map induced by the 

inclusion Q <-»AQf which implies the assertion also for F = Z . • 

3.6. Periodicity 

3.6.1. — W e consider a topological [ / ( l ) -gerbe f:G—>X over a locally com

pact stack. Let F G D+ (ShAbX). In Lemma 3.5.2 we have argued that P G { F ) G 

£>(SliAbX) is two-periodic. The periodicity is implemented by a certain isomorphism 

W : PG(F)[2] —> P G ( F ) which may depend on additional choices, see also the dis

cussion in 2.4.4. In the present subsection we show that there is a canonical two-

periodicity isomorphism. 

3.6.2. — The gerbe G —> X gives rise in a 2-functorial way to the diagram (see 2.2.1 

for details) 

(3.6.1) G 
à 

G 

r 
S 

s 
r 

G X x T2 G 

f 
p 

f 

X 

This diagram induces the desired periodization isomorphism as the following compo

sition of natural transformations 

(3.6.2) W: PG(F) 
unit 

Rp*p*PG(F) 
Lemma 3.5.4 

Rp*Pà(p*F) 

è 
Rp*Pô(p*F) Rp*p*PG(F) df Pa(F)[-2] 

Proposition 3.6.3. — The transformation (3.6.2) 

W: PG(F) PG(F)[-2] 

is a canonical choice for the isomorphism in Proposition 2.4-3. 

3.6.3. — To start the proof of Proposition 3.6.3, recall the definition 

F>G '• Rf*f*(F) Rf.r(F)[-2] 
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as the composition 

Rf*f*(F) 
unit Rf*Rr*R<j>*<t>*r*f*(F) Rf*Rr*r*f*(F) fr Rf*f*(F)[-2] 

where at the marked isomorphism "!" we use the natural isomorphisms 6.6.13 and 
6.6.9 associated to the identity f or = f or o (f> 

Recall from 3.5.4 the definition of the natural evaluation transformation 
d: PG{F) - Rf.f*(F)[2i] for all i > 0. 

Lemma 3.6.4. — The following diagram commutes: 

PG(F] 
w 

PG(F) 

Pm)) Pm) 

Rf*f*(F)[2i + 2 
Pm) 

Rf*f*(F)[2i) 

Proof. — We split this square in parts. First we observe that in Z)(SfiAbX) 

PG(F) 
unit Rv*p*PG(F) 

Rp*r* 
Rp*Pô(p*F) 

Pm) Rp*p* ei+i Rp*e%+i 

Rf*f*(F)[2i + 2] unit Rp*p*Rf*f*(F)[2i + 2] 
Rp*r* 

Rp*Rs*s*p*(F)[2i + 2] 

RUr(F)[2i + 2] 
Rfmf*\init 

Rf*f*Rp*P*(F) Rf*Rr*r*f* (F)[2t + 2] 

commutes (use Lemma 6.1.12 for the upper left and the lower and 3.5.4 for the upper 
right rectangle). 

In the next step we observe that 

Rp*Pó(p*F) id Rp.Pô{p*F) Rp*4>* RP,P6(P*F) 

Pm) Pm) 

Rp*Rs*s*p*(F)[2i + 2] u n i i 
Rp*Rs*R(j>*<j)*s*p*(F)[2i + 2' Rp*Rs*8*p*(F)[2i + 2] 

Rf*Rr*r*f*(F)[2i + 2] unit 
Rf*Rr*R(t>*<l)*r*f*(F)[2i + 2] RLRr*r*r(F)\2i + 2] 

commutes, where we use for the upper rectangle again 3.5.4, and posocj) = pos, 
po s = f or, f or o (j) = f or and Lemma 6.1.12 for the remaining squares. 
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In the last step we observe the commutativity of 

Rp*Pô(p*F) 
R/./*(F) 

Rp*p*PG(F) V PG(F)[-2 
T-2 

PG(F) 

R/./*(F)[ Rp,p*ei+i R/./*(F)[2t 

Rp*Rs*s*p*(F) [2* + 2] 
R/./*(Ft 

Rp*p*Rf*f*< F)\ [2* + 2] 'p Rf*f*(F) [2*1 

Rf*Rnr*f*(F) [2i + 2] 
«/ . (Jr) 

Rf*f*(F) [2*1-
Again, for the commutativity of the upper left rectangle we use (3.5.8) of 3.5.4. For 
the upper right corner we use the fact that fp is a natural transformation between 
the functors Rp*p* and id on Z)(Sl iAbX). For the lower rectangle we use Lemma 
6.5.31. • 

3.6.4. — We now finish the proof of Proposition 3.6.3. We have an exact triangle 

• Pa(F) 
«>oei 

i>0 
Rf.f(F) [2*1 a 

i>0 
Rf*f*(F) [2tl [i] 

where (using the language of elements) the map a is given by 

Ct(Xi)i>Q (xi - DGxi+i)i>0 

By Lemma 3.6.4 we have a morphism of exact triangles 

PG(F, 
i>o ei 

i>C Rf*f*(F)\ [2*1 a 
l i > 0 Rf*f*(F) [2*1 

W /3 /3 

PG(F) [ -2] 
U>oe 

li>0 Rf*f*(F) [2i - 2} a \i>0Rf*F(F) [ 2 t - 2 ] , 

where the map /3 is given by P(xi)i>o := (DGXi)i>Q. In Lemma 2.4.5 we have shown 

that W is an isomorphism. • 
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CHAPTER 4 

T-DUALITY 

4.1. T h e universal T-duality diagram 

4.1.1. — Topological T-duality intends to model the underlying topology of string 
theoretic T-duality on the level of targets and quantum field theory. In the special 
case of targets modeled by a gerbe on top of a Tn-principal bundle over a space, 
topological T-duality is by now a well-defined mathematical concept, see [11], [6] and 
the literature cited therein. In the case of T-principal bundles it was extended to 
orbifolds in [8]. In the present paper we propose a definition of T-duality in the case 
of T-bundles over arbitrary stacks. This framework includes arbitrary T-actions on 
spaces. The special case of an almost free action (i.e. every orbit is either free or a 
fixed point) has been treated with completely different methods in [24]. 

4.1.2. — The notion of a T-duality diagram has first been introduced in [6]. In the 
present paper we first produce a universal T-duality diagram over the stack $U(l) — 
[*/U(l)]. Then we proceed to define a T-duality diagram over a general stack as one 
which is locally isomorphic to the universal one. 

4.1.3. — The universal T-duality diagram is a diagram of stacks 

(4.1.1) ^univ^univ ûniv Ainiv^univ 

^univ F 
1 univ ^univ 

^univ^u 
Puniv 

Puniv 

/univ 
-̂ univ -̂ univ 

ûniv 
TTuniv 

-̂ univ 

In the following we explain the stacks and the maps. 

S O C I É T É M A T H É M A T I Q U E D E F R A N C E 2011 



58 CHAPTER 4. T-DUALITY 

Amiv : = $U{1) 

EunW '= * and 7runiv is the map which classifies the trivial [/(l)-bundle over 

the point *. 

GUI1iv : = ^ ¡ 7 ( 1 ) , and /univ is the unique map. 

^univ •= $U(1) x 17(1), and 7runiv is the projection onto the first factor, 

/univ- Cuniv —• Ĵ univ is a gerbe with band 17(1) classified by z (8) v G 

H2(<8U(1)] Z)®H\U(l)\ Z ) 9* H3(%U(1) x 17(1); Z ) , where z G H2(<8U(1); Z ) 

and v G i f1 (17(1) ; Z ) are the standard generators. 

^univ : = K n i v Xfiuniv K n i v = *7(1), and pUniv,pumv are the canonical projec

tions. 

Since #2(Funiv; Z ) ^ 0 ^ i73(Funiv; Z ) , the pull-back punivGUniv can be identi

fied with the trivial gerbe punivGuniV = U(l)x <$U(1) by a unique isomorphism 

class of maps represented by ixUniv 

Let us fix once and for all a universal T-duality diagram (i.e. a choice of uun[v in its 

isomorphism class and 2-isomorphisms filling the faces). 

4.1.4. — Let B be a topological stack and consider a diagram 

(4.1.2) p*G 
U 

p*G 

G F G 
f 

p 

p 

f 

E E 
TV 

7T 

B 

of topological stacks where the squares are Cartesian, f:G—>E and f:G—>E are 

topological J7(l)-gerbes, and u is an isomorphism of gerbes over F. 

A n isomorphism between two such diagrams over B is first of all a large commu

tative diagram in stacks, but we furthermore require that the horizontal morphisms 

are morphisms of [/(l)-banded gerbes in all places where this condition makes sense. 

Definition 4.1.3. — The diagram (4.1.2) is called a T-duality diagram if for every 

object (U —• B) G B there exists a covering (Ui —> U)iei G COVB(?7) such that for all 

i G I the pull-back of the diagram (4.1.2) along the map Ui —» U —» B is isomorphic 

to the pull-back of the universal T-duality diagram (4.1.1) along a map Ui —> Buniv. 
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4 . 1 . 5 . — In the following we describe the concept of T-duality. Let B be a topological 

stack. A pair (E, G) over B consists of a T-principal bundle ir: E —> B and a U(l)-

gerbe f . G ^ E . 

Definition 4.1.4. — We say that a pair (E, G) admits a T-dual, if it appears as a part 

of a T-duality diagram 4-1-2. In this case the pair (E, G) is called a T-dual of (E, G). 

This is our proposal for the mathematical concept of T-duality for pairs of T -

principal bundles and gerbes. Using the Tn-bundle variant of the universal T-duality 

diagram one can easily generalize this definition to the higher-dimensional case. But 

note that, in contrast to the case of one-dimensional fibers, a unique isomorphism 

^univ does not exist for Tn if one uses the exactly parallel setup. This explains why 

suitable modifications are necessary in [ 6 ] . In particular, the universal base space is 

not simply the n-fold product of copies of £Univ used in the one-dimensional case. 

4 . 1 . 6 . — In the following we show that the concept of topological T-duality as 

defined above really coincides with the former definitions. 

Lemma 4.1.5. — Definitions 4-1-3 and 4-1-4 reduce to the notion of T-duality as used 

in [ 6 ] , [ 7 ] , if B is a locally acyclic space. 

Proof. — By Definition 4.1.3 a T-duality triple over a space B is given by the following 

data: 

(1) locally trivial [/(l)-principal bundles E, E over B, 

(2) C/(l)-banded gerbes G, G over E or E, respectively, 

(3) an isomorphism u between the pullbacks of G and G to the correspondence 

space E xB E. 

Every point b € B admits an acyclic neighborhood b G U Ç 5 . The bundles E and E 

are trivial over U, i.e. we have E\V U x 17(1) = Ê{u. Since H3(U x 17(1); Z ) ^ 0, 

the restrictions of the gerbes G\E\V and G|E\U are trivial, too. The Definition 4.1.3 

requires that the isomorphism of trivial gerbes u|E|uu|E|u x uE is classified by the generator 

of H2(E\u XuÊ\u', Z ) (note that E{u XuÊ^^Ux 17(1) x 17(1)). This reformulation 

of the definition of a T-duality triple over a locally acyclic space B is exactly the 

definition of a T-duality triple in [ 6 ] . 

In the approach of [ 7 ] to T-duality we start with a pair (E,G). We characterize 

T-dual pairs by topological conditions. We then analyze the classifying space of pairs 

and observe that the universal pair has a unique T-dual pair which gives rise to the 

T-duality transformation. 

It turns out that the classifying space of pairs in [ 7 ] is equivalent to the classifying 

space of T-duality triples in [ 6 ] , and that the universal pair and its dual are parts 
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of the universal T-duality triple. This shows that the approaches of [7] and [6] are 

equivalent. 

4.2. T-duality and periodization diagrams 

4.2.1. — Recall that the construction of the periodization functor PQ was based on 

the diagrams introduced in 2.2.1. In the present subsection we relate these diagrams 

to T-duality. 

4.2.2. — The double of the universal T-duality diagram (4.1.1) is (by definition) the 

big universal periodization diagram 

(4.2.1) 

ProPuniv^univ 
PrOuuniv 

pr̂ Guniv 
pr, u 
r 1 univ * * /^i 

PrlPuniv̂ jruniv 

Puniv̂ univ 
prc 

Miniv •̂ uni-s ûniv 
p~rl 

Puniv̂ univ 
ûniv̂ univ 

PI"0 
Prl ûniv /univ 

f* • Puniv -funr L univ /univPuniv 
Puniv 

Puniv 

Guniv 
/univ 

ProPuniv^u /univ ProPuniv^u 

Note that all squares are Cartesian, with the exception of the central square 

-̂ univ X -E\iniv F 
runiv 

F univ F 
1 univ 

ProPuniv^u 

which does not commute. The same remark aDDlies to similar diagrams we introduce 

later. 
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4.2.3. — We form the diagram (1) 

(4.2.2) 

9univ 

Pr0Puniv^uni 9univ 
funiv 

^Univ 5 

f̂ univ 

where 

^univ : = /univPuniv ° Wl ° P^i^univ O pr^univ , guniv : = /univPuniv ° Pr0 • 

Definition 4.2.3. — The diagram (4.2.2) is called the small universal periodization di

agram. 

4.2.4. — Let / : G —> X be a topological gerbe with band 17(1) over a stack X. 

Then we consider the pull-back of the small universal periodization diagram to X via 

the projection r: X —> Funiv — *• We form the tensor product with the gerbe G (see 

[11, 6.1.9] for some details on such tensor products) and obtain the diagram 

(4.2.4) 

x 

H 

m 

H 
f 

x , 

where 

H : = p r t G PrF„nivX •̂ univ Funiv ProPuniv^univ H:=G 9univr*G 

p r x : X x Funiv X|un.v 9univF 9univ 

P̂ *Funiv x £i Funiv : X x Funiv x£;univ F 
1 univ 

FLiniv * £, 
-C'univ 

univ 

are the projections, and m, # are induced by the corresponding universal maps muniv 

or tfuniv, respectively. 

Definition 4.2.5. — The diagram (4.2.4) is called the small periodization diagram of 

G X. 

In fact we have defined a 2-functor from gerbes/X to a 2-category of such small 

periodization diagrams. Using the fact that Guniv = <BU(1) we have a canonical 

identification H = G. Furthermore, Funiv x ^ -Funiv — T2, and we can identify 
-C'univ 

H -+ X x Funiv x * Funiv with G xT2 X xT2. 

Lemma 4.2.6. — With these identifications the small periodization diagram (4.2.4) is 

isomorphic to the diagram (3.4.2) used in the definition of P Q -

Proof. — This follows directly from the definitions of these maps. • 

( i ) This diagram does not commute. It is a short-hand for a square of the form (3.4.2) with a 

2-isomorphism between /univ ° <?univ and /univ ° ™>unw • W e will adopt a similar convention for 

other diagrams written in this short-hand form below. 
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4.2.5. — The T-duality diagram (4.1.2) gives rise to the big double T-duality dia

gram 

(4.2.7] 9univ9univ 9univ 
pr%G 

pr%G 
prîï>*G 

Pr0 pr%G 

pr%G FxÊF p*G 
pr%G Pri pr%G 

Pr0 

/ * P F 

v 

F pr%G 

v 

G 
pr%G 

E 
pr%Gf 

Or 

Note that the middle square does not commute. We have 

F x pr%G (ExBE) xÊ( ÊxBE) ExBÊ xB E E xBÊ x U(l) 

where the last arrow is given by (e, e,etz) « — (e, e,u). Under this identification 

pr0(e,e,u) = ( e , e ) and pr1(e, e,u) = (eг¿, e ) . W e can correct this non-commutativity 

as follows. Let c:FxEF F x E F b e the isomorphism, which under the above 

identification is given by c(e, e, u) := (eu~l,e, u). Note that prx oc = pr0. Furthermore 

note that pr^ = p r ^ o c : F x^ F —• E. Therefore we get a canonical morphism c 

satisfying pr^ = pr^ o c in the diagram 

p r^G 
C 

pr*-G 
pr%G 

G 

F x pr%G C 
F xÊF 

pr* 
Ê 
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If we plug this in the big double T-duality diagram, then we get the big commutative 

T-duality diagram diagram 

(4.2.8) 

prSp*G 
PTQU 

p^g c 

p4g 
pr^u 1 

prÎP*G 

pr0 p"rl 

P*G F x FxÊF C 
F x FxÊF p*G 

FxÊF FxÊF Pmf. 

Pr0 

/ •p FxÊF FxÊF /*p 

p 

FxÊF f F F -

p 

FxÊF G 

Prom this we derive the diagram 

(4.2.9) 

AT 

pr*oP*G 

TUT 

G 
f 

E , 

where 

qr : = /*P o pr0 , FxÊF f*p o p r i C prJîX 1 O C O PTQU . 

Definition 4.2.10. — The diagram (4.2.9) is called the small double T-duality diagram 

associated to (4.1.2). 

4.2.6. — The following fact is an immediate consequence of the definitions. 

Proposition 4.2.11. — The small double T-duality diagram (4.2.9) is locally isomor

phic to the small periodization diagram (4.2.4) of G —» F . 

4.3. Twisted cohomology and the T-duality transformation 

4.3.1. — Let F be a topological stack. In order to write out operations on twisted 

cohomology effectively we introduce some notation for operations on £>+(ShAbF) or 

D(ShAbF) . If p : F —» F is a map of topological stacks, then we let p* : id —> Rp*p* 

denote the unit. If p is an oriented fiber bundle, then we let p! : Rp*p* —> id denote 

the integration map. If TT : E —» B is a second map, then we write 7r*p*, 7r*pi or 

simply also p* and pi for the induced transformations Rn+Tr* —> i27r*i?p*p*7r* and 

R7T*Rp*p*7T* #7r*7r*. 
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If 

G 
V 

H 

E 
U 

F 

7T 

7T 

Fi 

is a diagram with [/(l)-gerbes H —• F and G —> E such that the square is Cartesian, 

then we write P(v) for the transformation u* o PH —• PGow* , and we use the same 

symbol for the induced transformation R-K*U*P//7T* —> RTT^PGU^TT*. 

In a commutative diagram 

d 
v 

v 

E E 

71 

7T 

ft 

we will use the symbol 3 or, if necessary, Jnop^op in order to denote the transforma

tion 

R7T*Rp*p*7T* R7t*Rp*P*7T* . 

4.3.2. — We consider a topological gerbe f:G—>E with band 17(1) over a locally 

compact stack. In [9] we define the G-twisted cohomology of E with coefficients in 

F E L > + ( S h A b E ) by 

FxÊF G;F) H*(E; Rf*f* (F)) 

4.3.3. — Assume now that / : G —• E is a part of a T-duality diagram 

(4.3.1) p*G 
U 

~p*G 

d 
q 

(T F G 

Gf 
' v 

p 

f 

E Ê 

ir 

7T 

B 
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Then we define the transformation 

(4.3.2) J := qi. o ] o ( u _ i f o q* : Rn.Rf*f*n* RfcMf*r . 

Note that here 3 = r3<Kfqu-1=irfq' 

Consider a sheaf F G D+fSriAhB). Note that, by definition, H*(E<G:TT*F) = 

H*(B]Rir*Rf*f*n*F). 

Definition 4.3.3. — For F e T>+(ShAbE) the T-duality transformation is defined as 

the map 

T: iT(£,G; 7T F) 
H*(E-PH*(E-P 

7T*F) 

induced by the natural transformation (4.3.2). 

4.3.4. — Let us calculate the effect of the T-duality transformation in a simple 

example. There is a unique isomorphism class of T-duality diagrams over the point 

B = *. In this case E = U(l) and G = U(l) x $U(1). We consider a discrete abelian 

group F. Then we have 

H*(E,G;ir*FB) n\z]]\v}/(v2) F ,H*(E,G;rFB] Z[[z]][v]/(v2) 
H*( 

where deg(v) = 1 = deg(t)) and deg(z) = 2. 

To explicitly calculate the effect of T in this case, observe that the cohomology of 

Rf*Rq*q*f*F is Z[[z]] ® A(v, v)®F with v and v the generators corresponding to the 

two 51-factors E and E in F. The automorphism u induces in cohomology, i.e. on 

Z[[z]] <g> A(v, v) <g> F, the algebra homomorphism given by z >—> z + vv, v i - » v, v i—> { ) . 

It follows that 

T ( z r ' / ) = 
F/£? 

F:e H*(E-PH*(E-P 
) /) = nzn~xv f 

T(znv / ) = 
'FIE 

znv )f = zn ds 

We see that the T-duality transformation is not an isomorphism. 

4.3.5. — Our main motivation for introducing the periodization functor is the con

struction of twisted sheaf cohomology which admits a T-duality isomorphism. Let 

G —> E be a topological gerbe with band U { \ ) over a locally compact stack E. 

Definition 4.3.4. — We define the periodic G-twisted cohomology of E with coefficients 

in F e T>+(ShAbE) by 

HPER*(E-P 
G;F) H*(E-PG H*(E-P 

Note that here we use the sheaf theory operations for the unbounded derived cat

egory, see Subsection 6.5 for details. 
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4.3.6. — Assume again that / : G —• E is part of a T-duality diagram (4.3.1). W e 

define a natural transformation 

(4.3.5) J : ifor* o PG O 7T! j R 7 T * O Pg, O 7 T * 

by 

J : = p , o J o P ( « ) _ 1 op* . 

Consider a sheaf F G D+(ShAbB) . Note that by definition H*er(E, G ; T T * F ) = 

i J * ( 5 , ^ 7 T * P G ( 7 T * ( F ) ) ) . 

Definition 4.3.6. — For F G T)+(ShAbE) t/ie T-duality transformation in periodic 

twisted cohomology 

T: H*(E%G\ir*Fy sd ds 
p e r 

( £ , G ; r F ) 

is the map induced by the natural transformation (4.3.5). 

4.3.7. — As an illustration let us calculate the action of the T-duality transformation 

in the example started in 4.3.4. The sequence <^G(F_) for F = Z, Q, Q / Z either has 

trivial lim or trivial lim1. Therefore in this special case the morphism T calculated in 

4.3.4 defines uniquely an endomorphism of H*er(E, G; T T * F b ) (we identify E = E). For 

example if F = Q, then we read off directly from 4.3.4 that (with H°eT(E, G; ?r*Q) ^ 

Q[v]/v2) the T-duality morphism is 

T : Q[v]/v2 Q[v]/v2 , T(v) = 1 T(l) = v 

In particular, we see in this example that now we get an isomorphism. 

4.3.8. — In the remainder of the present subsection we show the following theorem. 

Theorem 4.3.7. — The T-duality transformation in twisted periodic cohomology 4-3-6 

is an isomorphism. 

Proof. — The opposite of the T-duality diagram (4.3.1) is obtained by reflecting it in 

the middle vertical, and by replacing u by its inverse. We let T': H*er(E,G',7r*F) —• 

H*'1 
-"per 

( F , G ; 7 r * F ) be the associated T-duality transformation. 
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Both, the T-duality diagram and its opposite can be recognized as subdiagrams of 

the (slightly extended) big commutative T-duality diagram 

(4.3.8) 

pv*0p*G 
PTQU 

pr%G d 
P 4 G 

H*(E-P 
prÎP*G 

pr„ P*G a P*G P-ri 

df H*(E-P 

P*G H*(E-P F 
C 

- F x Ê F p*G 

P*f 

P ro 
d P r l P* f 

f*P F 
p 

E F f*P 

p 
p 

G 
f 

- E E 

p 

f 
G 

We now calculate the composition T' o T. The compatibility of the integration with 

pull-back in the Cartesian diagram 

F 
pr0 

FxÊ 
F 

P P r i 

E 
V 

F 

is employed in the equality marked by ! below. The equality p o pr 0 o c 1 = p o pr 0 is 

used in the equality !!. Finally we use pr 0 o c = pix at !!!. We have 

J' o J pi o 3 o P(u) o p* o p» o 3 o F M " 1
 op* 

p! o3 o P(u) op t j . . H*(E-PH*(E-P p ^ - ^ p * 

p! o 3 o P(u) o p r x ! o3 o P(c ) o (c ) * o p t 0 * o3oP(u)-1op* 

p. o p t u o P ( p r î ^ ) H*(E-PoP^jo P ( p r ^ ) " 1 o p r x * o p * 

p! o p t i i 0 P(pvluoc o (pr*u) ^ o p r / o p * 

This is exactly the transformation coming from the associated small double T-

duality diagram (4.2.9) (actually its mirror). Since this is locally isomorphic to the 

small periodization diagram we see that locally J' o J coincides with n+W, where W 

is as in Proposition 3.6.3. By Proposition 3.6.3 this transformation is an isomorphism 

on periodic sheaves of the form R K + P G ^ F ) . Therefore T o f is an isomorphism. 
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We can interchange the roles of T and T", hence T o T' is an isomorphism, too. This 

implies the result. • 

ASTÉRISQUE 337 



CHAPTER 5 

ORBISPACES 

5.1. Twisted periodic delocalized cohomology of orbispaces 

5.1.1. — Let us recall some notions related to orbispaces (compare [10]). Orbispaces 

as particular kind of topological stacks have previously been introduced in [8, Sec. 2.1] 

and [22, Sec. 19.3]. In the present paper we use the set-up of [8] but add the additional 

condition that an orbifold atlas should be separated. This condition is needed in order 

to show that the loop stack of an orbifold is again an orbifold. 

(1) A topological groupoid A: A1 A0 is called separated if the identity 
1A '> A0 —> A1 of the groupoid is a closed map. 

(2) A topological groupoid A1 =^ A0 is called proper if (5, r ) : A1 —» A0 x A0 is a 
proper map. 

(3) A topological groupoid is called étale if the source and range maps s,r: A1 —• 
A0 are étale. 

(4) A proper étale topological groupoid A1 ^4° is called very proper if there 
exists a continuous function x: A0 [0,1] such that 

(a) r : supp(s*x) —• A0 is proper 

(b) E»€^- *(«(»)) =1 for a11 * « A°-
( 5 ) A topological stack is called (very) proper (or étale, separated, respectively), 

if it admits an atlas A —> X such that the topological groupoid A X x A A 
is (very) proper (or étale, separated, respectively). 

(6) An orbispace atlas of a topological stack X is an atlas A —> X such that 

A X x A=> A is a very proper étale and separated groupoid. 

(7) An orbispace X is a topological stack which admits an orbispace atlas. 

(8) If X , Y are orbispaces, then a morphism of orbispaces X —> Y is a representable 

morphism of stacks. 

(9) A locally compact orbispace is an orbispace X which admits an orbispace atlas 

A —> X such that A is locally compact. 
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5.1.2. — If X is a stack, then its inertia stack (sometimes called loop stack) LX is 

defined as the two-categorical equalizer of the diagram 

X 
idx 

H*( 
X 

In [10, Sec 2.2] we have introduced an explicit model of LX and studied its prop

erties. The loop stack LX depends 2-functorially on X. Indeed, since HomCat is a 

strict 2-functor, the loop functor is a strict functor between 2-categories. As already 

mentioned before, later we will suppress the 2-morphisms in 2-commutative diagrams 

in 2-categories for better legibility. If X is a topological stack (orbispace), then LX is 

a topological stack (orbispace), too (see [10, Lemma 2.25], [10, Lemma 2.33]). 

Lemma 5.1.1. — If X is a locally compact orbispace, then LX is a locally compact 

orbispace, too. 

Proof. — Let A —> X be a locally compact orbispace atlas of X. Then we have the 

proper, separated and etale topological groupoid A X x A => A. Since the source map 

of this groupoid is etale, the space of morphisms A X x A of this groupoid is locally 

compact, too. 

In the proof of Lemma [10, Lemma 2.25] we constructed an orbispace atlas W —> 

LX of LX, where W was given by the pull-back of spaces 

W A xx A 

w H*(E-P 

dd 
diae 

Ax A 

This implies that W is locally compact. • 

5.1.3. — Let G —> X be a topological gerbe with band U(l) over a locally com

pact orbispace. The truly interesting G-twisted cohomology of X (with complex co

efficients) is not the cohomology H*ER(X,G;Q (see 4.3.6), but a more complicated 

delocalized version H^ELOCPER(X,G), which we will define below (see [10, Sec. 1.3] for 

an explanation). 

As shown in [10, Sec. 2.5] the gerbe gives rise to a principal bundle G5 —> LX 

with structure group ^7(1)^ in a functorial way, where U(l)s denotes the group ?7(1) 

with the discrete topology. By £ € Sr±AbL3C we denote the sheaf of locally constant 

sections of the associated vector bundle GS xu^1y C —> LX. 

W e define the gerbe GL - » LX as the pull-back 

GL - G 

vcv f 

LX X 
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Definition 5.1.2. — We define 

H*(E-PH*(E-PH*(E-P £>(ShAbLX) 

The G-twisted delocalized periodic cohomology of X is defined as 

m (X,G) H*{LX;£G) . 

5.2. T h e T-duality transformation in twisted periodic 

delocalized cohomology 

5.2.1. — We consider a T-duality diagram 

(5.2.1) p*G 
U 

-p*G 

G 1 G 

f 

p 

. p 

f 

E 

dsf 
7T 

B 

(see Definition 4.1.3), where B is a locally compact orbispace. 

We apply the loops functor L: orbispaces —• orbispaces to the subdiagram 

F 

p p 

E qsd 
7T 7T 

B 

and get 

LF 

Lp Lp 

LE LE 
Lit LTT 

LB 

In the first diagram the maps p,p, 7r,7r are all [/(l)-principal bundles. The maps 

Lp, Lp, Ln, LTT are not necessarily surjective. Thus in general the derived diagram of 
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loop stacks is not part of a T-duality diagram. But it is so locally in a certain sense 

which we will explain in the following. 

5.2.2. — We can extend the second diagram by the local systems (see 5.1.3) 

(5.2.2) Lp*£ u 
Lp*£ 

£ LF £ 

Lp 

Lp 

LE LE 
Lit 

LB 

L% 

and the pull-backs of gerbes 

(5.2.3) Lp GL 
U 

Lp*GL 

GL LF GL 
Lp 

Lp 
TL 

LE LE 
Ltt 

Ltt 

LB 

In particular, we have an isomorphism 

(5.2.4) u:Lp*£G Lp*£ô 

5.2.3. — Note that p: F —> Ê is a [/(l)-principal bundle. In [10, Lemma 2.34] we 

have constructed a map h: LE —> U(l)s which measures the action of the automor

phisms of the points of E on the fibers of p. We get a decomposition into a disjoint 

union of open substacks 

LÊ 

u€U(l) 

LEU , 

where LEU := / i - 1 ( ^ ) . Here and in the following we use the simplified notation fo_1(^) 

for the pullback of h: LE —• U(l)s along the inclusion iu: * —> (7(1) with iu(*) : = u. 

By [10, Lemma 2.36], the map Lp: LF —> LE factors over the inclusion J : LE\ —> 

LE, and the corresponding map Lp\: LF —> LE\ is a (7(l)-principal bundle. The 
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integration 

£px! : Ä ( L p i ) . oLpl id 

is well-defined. The open inclusion J induces a natural transformation 3î : R « / * o j * - > 

id. W e can thus define 

H*(E-PH*(E-P 
P L p * o Lp* id . 

5.2.4. 

Definition 5.2.5. — T/ie /oca/ T-duality transformation associated to the diagram 

(5.2.1) is given by the composition 

Tioc : = £pi o u o £p* RLir* £c H*(E-PH*( 

w/iere w ¿5 induced by (5.2.4). 

Note that H^eloc per(£, G) = H*(LB; RLit*£G). Hence we can make the following 

definition. 

Definition 5.2.6. — The T-duality transformation in twisted periodic delocalized coho

mology associated to the T-duality diagram (5.2.1) is the transformation 

T : # d e l o c , p e r C # > G ) " ^ d e l o ^ p e r ^ G O 

induced by the local T-duality transformation T\oc defined in 5.2.5. 

5.3. The geometry of T-duality diagrams over orbispaces 

5.3.1. — We consider a T-duality diagram (5.2.1) over a locally compact orbispace. 

As explained in [10, Sec. 2.5] (see also 5.1.3) the gerbe G —* E naturally gives rise 

to a C/(l)(5-principal bundle Gs —> LE. Let g: LB\ —» U(l)s be the function which 

describes the holonomy of the bundle Gs —• LE along the fibers of LE —• LB\ (see 

[10, 2.6.3]). In the following we recall from [10] a cohomological description of the 

functions g and h (introduced in 5.2.3). 

Let c\ G H2(B\Z) denote the first Chern class of the U(l)-principal bundle n : E —• 

B, and let d G H3(E;Z) denote the Dixmier-Douady class of the gerbe f:G—>E. 

By integration over the fiber it gives rise to a class f^d G H2(B;Z). In [10, 2.4.11] 

we have shown that a class x € H2{B; Z) gives rise to a function x- LB —• U(l)s in 

a natural way. 

Proposition 5.3.1 (Lemma 2.38 and Prop. 2.49 [10] ) . — We have the equalities 

(i) 
cl = h:LB U(l)s . 
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(2) 

d 
•>T \LB\ 

ft: LB, U(l)s . 

5.3.2. — W e now have functions h, h: LB —» U(l)s associated to the [/(l)-principal 

bundles 7r: E —» B and ir: E -> B. We define 

H*(E-P H*(E-P H*(E-P H*(E-P 

We furthermore have functions (see 5.2.1) 

g: LB( i , * ) uar H*(E-Pg: 
H*(E-P 

measuring the holonomy of Gr —> LE and Ga —> LE along the fibers. 

ProDOsition 5.3.2. — We have the eaualities 

a = H*(E-P 
9 = 

H*(E-P 

Proof. — Let 

deH3(E;Z) , deH3(Ê;Z) 

be the Dixmier-Douady classes of the gerbes GL —» E and GL —> E. Furthermore let 

cuc1e H2(B-Z) 

denote the first Chern classes of the U(l)-principal bundles n: E —• B and n: E —• B. 

The theory of T-duality for orbispaces [8] gives the equalities 

C\ = —7T\(d) C\ = —7T\(d) . 

Hence the assertion follows from Proposition 5.3.1. 

5.4. T h e T-duality transformation in twisted periodic delocalized cohomol

ogy is an isomorphism 

5.4.1. — Let us consider a Z7(l)-principal bundle TT: E —» B in locally compact 

orbispaces with first Chern class c\ G H2{B\Z) and a topological [/(l)-banded gerbe 

/: G —> E with Dixmier-Douady class d G H3(E;Z). In Definition 5.1.2 we have 

introduced the object £Q G D (ShAbLE) . Furthermore we have £7(1)5-valued functions 

h = a[ and g = 7T\(d) on LB. Let LB\ := h~1(l) and note that LIT: LE —> LB factors 

over the [/(l)-principal bundle Ln: LE —• LBi. We fix u G U(l)s \ { 1 } and consider 

the component LB^^ := h~1(l) n ^ _ 1 ( u ) . 

Lemma 5.4.1. — We have R * * ( £ G ) \ H * ( E - P H*(E-P o. 
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Proof. — Let ( T —> LB(i>u)) E LB(1)U). After refining T by a covering we can assume 

that there is a diagram 

H*(E-P 
2 17(1) x &U(1] H*(E-P GL(1,u) 

2/ a: 

x 
Ml) V 

T x U(l) 
s H*(E-P 

x x 7T 

lu - T x H * ( E - P £ # ( l , u ) 

of Cartesian squares. We get 

t*Rir*(£G) Rp*s*i £ G ) 

RP*S*(PGL (£)) 
Rp*PS*GL (s*£) 

Let & e ShAb(Site(t7(l))) be the locally constant sheaf over (7(1) with fiber C and 
holonomy u e U(l) \ {!}. Then we have s*£ = v*&. We calculate further 

H*(E-PH*(E-PVC 
Rp*PS*GL 

H*(E-P 

Rp*v*Pu(l)x$U(l) 
H*( 

w*Rq*PU(1)X#U(1) H*( 

It remains to show that 

Rq*Pu(i)x<8u(i)ffl) o 

Recall from 3.4.9 that the object Pu(i)x@u(i)(H)fl) e £)(ShAbSite(i7(l))) is given (up 
to non-canonical isomorphism) by the holim of a diagram 

0 Rx*x*(M) 
D Rx*x*(M)[2] 

D 
R x * x * H * ( E 

D 
R x * x * ( ^ ) [ 6 ] 

The functor Rq* commutes with this holim (1)\ Therefore Rq*Pu(i )x$u( i ) f f i ) (H) *s given 
by the holim of the diagram 

0 Rq*Rx*x*{${) 
Rq*(D) 

Rq*Rx*x*(M)[2] 

RqJD 
Rq*Rx*x*($(№ 

Rq*{D\ 
Rq*Rx*x*(rt)[6] 

The following calculation uses the projection formula twice, first by Lemma 6.2.10 for 

the non-representable map x and a tensor product with a one-dimensional local system 

of complex vector spaces H secondly using Lemma 6.2.13 for the proper representable 

t1) Rq* is a right-adjoint and commutes with products and mapping cones 
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map q and the tensor product with the bounded below object Ry*{t»£jsite([*/u(i)])) € 
T>+(ShAbSite(£/(l))) 

Rq*Rx*x*(M) Rq*Rx* (^Site(C/(l) x &U(1) 
e([*/u 

Rq*(Rx* ®Site(l /( l)x0tf(l))) e([*/u 

Rq*(Rx*(z* ^Site(^t/(l))) e([*/u 

Rq* (q* (Ry*IiSite($u(i))) e([*/u 

•%*&ite(0tf( l)) Rq*№ • 

Since the holonomy of fH along U(l) is non-trivial, and the cohomology of S1 with 
coefficients in a non-trivial flat line bundle is trivial, we have 

Rq*{M) 0 

5.4.2. — We now consider a T-duality diagram (5.2.1) where B is a locally compact 
orbispace. 

Theorem 5.4.2. — The local T-duality transformation (Definition 5.2.5) 

T\oc : RL7T*(£G) RL*.(£ô)[-2] 

is an isomorphism in -D(ShAhLB). Jn particular, the T-duality transformation 

T' H^elocper(E,G) > H^eiOCtlieT(E,G) 

is an isomorphism. 

Proof. — We have functions ft, ft: LB —• J7(l) which define substacks LJ3(1)#) : = 

ft_1(l) and LS(+j i ) : = ft-1(l). By Proposition 5.3.2 we have g = h^B ) : LB^^ —• 

[ / ( l ) 5 . By Lemma 5.4.1 the object RLTT*(£G) £ L)(ShAbLB) is supported on 

g-\l) = LB{1^ ^R(*,i) = : ^ ( i , i ) 

Note that g = ft|L1B( , so that RLTT^£Q is supported on LB^i^, too. Let 

i: LB(i i) —> LB denote the inclusion. The following diagram is the pull-back 
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of (5.2.1) via the map LBn u —• LB —> B 

(5.4.3) 

P1(GL)|LE|LB(II) 
hjj 

^ ( 6 L ) | L E | L B ( I I ) 

(GL)|LE|LB(II LF\LB{ljl) P 1 ( G L ) | G L ) I ^ I " ( M ) 

/L 

Lp 
Lp 

/L 

P1(GL)|LE| 
P1(GL)£7|W(i,i) 

I/7T1 
L7T1 

^(1,1) 

We consider 

£i /l£\LElLB(ll) ¿1 • - *\LÊ]LB{ltl) 

Because we restrict to the subset L2?(1}1) of trivial holonomy we have isomorphisms 

£i £ < C L B ( 1 I 1 ) ¿1 ^ * Î Ç L B ( 1 > 1 ) 

The local T-duality transformation T\oc is now locally equal to the transformation J 

defined in 4.3.5 applied to the T-duality diagram (5.4.3) and the sheaf CLB . As 

in the proof of Theorem 4.3.7 one shows, using the commutative double T-duality 

diagram, that T\oc is an isomorphism. 

The global second assertion can be deduced directly from Theorem 4.3.7. By the 

observation on the support of RLTT*(£G) € ^ ( S l i A b L B ) made above we get 

^ d e l o ^ p e r ^ G ) ^per (LB( 1,1 ) ; R L (nl ) * P(GL) \LE\LB(1A) ( M £ L B ( 1 | 1 ) ) ) > 

and similarly 

^deloc.perC^^OGre 
M£LB(1|1) 

R L { ^ ) * P { Ù L ) M £ C M £ ( ^ I £ L B ( 1 ) 1 ) ) ) 

With these identifications the T-duality transformation in twisted periodic delocal-

ized cohomology is then equal to the T-duality transformation in twisted periodic 

cohomology for the diagram (5.4.3) and the sheaf CLB (1,1) G D+(ShAbLBi5i).1,1 • 
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C H A P T E R 6 

VERDIER D U A L I T Y 
FOR LOCALLY C O M P A C T STACKS 

6.1. Elements of the theory of stacks on Top and sheaf theory 

6.1.1. — In the present paper we consider stacks on the site Top. A prestack is 
a lax presheaf X of groupoids on Top. The prefix "lax" indicates that for a pair of 
composable morphisms u: U —• V, v: V —> W we have a natural transformation 
of functors </>UiV: X(u) o X(v) —> X(y o u) which is not necessarily the identity, and 
which satisfies a compatibility condition for triples. A prestack is a stack if it satisfies 
the standard descent conditions on the level of objects and morphisms. A sheaf of 
sets can be considered as a stack in the canonical way. Via the Yoneda embedding 
Top —* ShTop (note that the topology of Top is sub-canonical, i.e. representable 
presheaves are sheaves) we consider topological spaces as stacks in the natural way. 

6.1.2. — In the following we collect some definitions and facts of the theory of 
stacks in topological spaces. Stacks are objects of a two-category, and fiber products 
and more general limits in stacks are understood in the two-categorial sense. Note 
that two-categorial limits in stacks exists (see [10] for more information), and that 
the inclusion of spaces into stacks preserves those limits. A useful reference for stacks 
in topological spaces and manifolds is the survey [14]. 

(1) A morphism of stacks G —> H is called representable, if for each space U and 
map U —> H the fiber product U xH G is equivalent to a space. 

(2) A representable map G —> H between stacks is called proper if for every map 
K —> H from a compact space the fiber product K x # G is a compact space. 

(3) A map / : A —> B of topological spaces has local sections if for each point 
b e B in the image of / there exists a neighbourhood b e U C B and a map 
s : U —> A such that / o u = idu. 

(4) A representable morphism G —> H has local sections if for every map U —> H 
from a space the induced map U x # G —> U of spaces has local sections. 
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(5) A representable map G —» H is surjective if for every map U —• H from a 
space the induced map U x # G —> U is a surjective map of spaces. 

(6) A map A —• X from a space A to a stack X is called an atlas of X , if it is 
surjective, representable and admits local sections. A stack which admits an 
atlas is called a topological stack. 

(7) A morphism (not necessarily representable) between topological stacks G —> H 
is surjective (or has local sections, respectively) if for an atlas A —• G the 
composition A —• G —> H is surjective (or has local sections, respectively) 
(note that this composition is representable by Proposition 6.1.1 below). 

(8) A composition of maps with local sections has local sections. The corresponding 
assertion is true for the following properties of maps: 

(a) representable 
(b) representable and propei 
(c) surjective. 

(9) Consider a two-cartesian diagram of stacks 

H 
u 

G 

Q f 

Y 
u 

X 

If u has local sections, then so has v. If / is representable, then so is g. 

6.1.3. — The inclusion of spaces into sheaves and of sheaves into stacks preserves 
small limits, where limits in stacks are understood in the 2-categorical sense. This 
implies that a map of spaces X —> Y is representable. In fact we have the following 
more general result. 

Proposition 6.1.1. — Let G be a tovolooical stack and X a svace. Then every morvhism 

f: X G is representable. 

The proof will be given in 6.1.5 and needs some preparations. 

6.1.4. — We will need the notion of an open substack. 

Definition 6.1.2. — Let G be a stack in topological spaces. A morphism H —> G of 
stacks is an embedding of an open substack, if it is representable and for each map 
T —> G from a space T the induced map of spaces T XQH —> T is an open embedding 
of topological spaces. 

Note that, via Yoneda, an open embedding of spaces is an open embedding of 

stacks. 
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Definition 6.1.3. — A morphism U —> G of topological stacks is locally an open em

bedding ifU = \_\iej Ui for a collection (Ui)izi of topological stacks and Ui —• G is an 

embedding of an open substack for every i £ I. 

Let us first characterize spaces as stacks which can be covered by a collection of 

spaces. 

Lemma 6.1.4. — Let X be a stack in topological spaces for which there exists a mor

phism U —> X from a space which is surjective and locally an open embedding. Then 

X is equivalent to a space. 

Proof — Let U = UiUi be such that Ui —» X is an open embedding for all i. Then 

we define the space B as the coequalizer in spaces 

(6.1.5) B : = coeq 

i;j 

Ui xx Uj 

i 

Ui) . 

Since Ui —• X is an open embedding we see that pr^.: Ui X j Uj —» Ui is an open 

embedding. We can now refer to [22, Prop. 16.1] and deduce that the equalizer in 

spaces B is also the two-categorical equalizer in stacks of the diagram (6.1.5), which is 

of course equivalent to X. Note that the difficulty at this point is that the embedding 

of the category of spaces (viewed as a two-category) into the two-category of stacks 

does not preserve general small colimits, as opposed to the case of limits. 

For completeness we will give an argument. First note that pr^.: Ui Xx Ui ^ Ui 

is a homeomorphism. It thus follows from the groupoid structure of the coequalizer 

diagram that Ui —>• B is injective for all i. Since Ui Ui —• B is a topological quotient 

map it is open. Therefore |Ji Ui —• B is a open covering. We further conclude that 

the natural map Ui Xx Uj —> Ui XB UJ is in fact a homeomorphism. 

The claim is that X is equivalent to B. We first construct a morphism X —• B. 

Let ( T X) e X(T). Then (T{ := T xx Ui)i is an open covering of T. Using the 

identification Ti XTTJ = T Xx (Ui Xx Uj) we get a diagram 

Ui Ti xTT Ui xx Uj 

ITi iUi 

T B 

where the horizontal maps are induced by the projections T Xx Ui —> Ui, and the 

left vertical is the representation of T as a coequalizer. Therefore we obtain a unique 

factorization ( T —• B) £ B(T). The construction is functorial in T and therefore 

induces a morphism X —• B. 
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In order to see that it has an inverse let ( T —• B) € B(T) be given. Then we define 
the open covering (T, : = T x c U)i of T. The compositions 

4>i • Ti :TXBUi 
BUi 

Ui X 

can be considered as a collection of objects(qi € X(Ti))i. The induced map 

T4i Tj Ti xTTj (T xB Ui) xT {TxB\ TxB {Ui xB 

PTUi X B Uj 
Ui xB Uj Ui xx Tj Xxx X 

can be considered as a collection of isomorphisms 4>ij : {^^^nTj (0i)|TinTj which 
satisfy the cocycle condition on triple intersections. Since X is a stack we can therefore 
glue the local maps and get a map ( T —* X) G X(T) which is unique up to unique 
isomorphism. This construction is again functorial in T and provides the map B —• X. 

It is easy to see that both maps X —> B and B —> X constructed above are 
mutually inverse. • 

6.1.5. — We now show Proposition 6.1.1 

Proof. — Consider a map T —• G from a space T. We have to prove that the fiber 
product T XQ X is equivalent to a space. Using the assumption that G is topological 
we choose an atlas A —• G of G. Because A —> G has local sections, we can find an 
open covering Ui =: U —> X such that UxGA —• U has a section s: U —> UXQA. 
We first want to show that T XQ U is a space. Since the structure map A —> G of 
an atlas is representable we know that U XQ A and T xG A are spaces. Therefore, 
T xGU xG A = (T xG A) xA(U xG A) is a, space, too. The section s pulls back to a 
section s : T xGU —• T xGU xG A which implements T xGU as a subspace of the 
space T xGU xG A. 

Tj 
TxGUxG A 

s 
:UxG A 

T XQ u u 

TxG X X 

T -G 

A 
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Since the map U —• X is surjective and locally an open embedding its pull-back 
TXQU-^TXGX is surjective and locally an open embedding, too. Therefore by 
Lemma 6.1.4 the stack T XQ X is equivalent to a space. • 

6.1.6. — Recall that a topological stack is called locally compact if it admits a locally 
compact atlas A —• G such that A XQ A is a locally compact space. Furthermore 
recall that the site X = S i t e (X) associated to a locally compact stack X is the full 
subcategory of locally compact spaces U —» X over X such that the structure map 
has local sections. A morphism in this site X is a diagram 

(6.1.6) U • V 

X 

consisting of a morphism of spaces over X and a two-morphism. The topology on X 
is given by the covering families of the objects (U —> X) induced by open covering of 

U. 

Much of the general theory would work without the assumption of local compact
ness. But local compactness is important in connection with the projection formula 
Lemma 6.2.11 which is a crucial ingredient of the theory of integration. Since the 
latter is our main goal of the present section we generally adopt the restriction to 
locally compact stacks. 

6.1.7. — The sheaf theory for topological stacks can be built in a parallel manner 
to the sheaf theory for smooth stacks developed in [9]. The transition goes via the 
following replacements of words: 

(1) For the definition of stacks the site of smooth manifolds Mf°° is replaced by the 
site of topological spaces Top. In the definition of the site of a locally compact 
stack manifolds are replaced by locally compact spaces. 

(2) The concept of a smooth stack is replaced by the concept of a locally compact 
stack. 

(3) The notion of a smooth map is replaced by the notion of a map which admits 
local sections. 

In the present paper we freely use results in the general sheaf theory for topological 
stacks from [9, Sec. 2] in the case of stacks in topological spaces which are proved there 
for manifolds. It should be noted that with the conventions just made, all statements 
and proofs carry over verbatim 

6.1.8. — Let X be a locally compact stack. By P r X and ShX we denote the cate
gories of presheaves and sheaves on X . They are related by a pair of adjoint functors 

i*: P r X ShX : * . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2011 



84 CHAPTER 6. VERDIER DUALITY FOR LOCALLY COMPACT STACKS 

The sheafification functor i$ is exact. 

6.1.9. — Let / : X —> Y be a morphism of locally compact stacks. In induces a 
functor p/* : P r X - > P r Y by 

pf*F(V >Y): KmF(U X) 

where the limit is taken over the category of diagrams 

(6.1.7) U- X 

f 

V Y 

with (U —> X) € X . For details we refer to [9, Sections 2.1, 2.2]. This functor fits into 
an adjoint pair 

pf* : P r Y P r X : pf. 

The functor pf* is given by 

pf*G(U X) = colim G(V Y) , 

where the colimit is again taken over the category of diagrams with ( V —» Y) G Y 

We extend these functors to sheaves bv 

/* i* opLoi dff : fi 0Pf* OI 

and obtain an adjoint pair 

/ * ShY ? ShX : / . . 

Note that pf* preserves sheaves (see [9, Lemma 2.13]). The right-adjoint functor 
f* : ShAbX —> ShAhY is left exact and therefore admits a right-derived functor 

Rh :D+ (ShAbX) D + ( S h A b Y ) 

between the bounded below derived categories. 

6.1.10. — If g : Y —• Z is a second morphism of locally compact stacks, then we 

have natural isomorphisms of functors 

(9 ° /)* BUiBUi °9 ( S O / ) ' 

(see 6.6.9). Furthermore, we hav( 

Rg* o Rf* R(g°f)* 

on the level of bounded below derived categories by Lemma 6.6.13. The relation 

f*og* = (gof)* descends to the derived categories if the pull-back functors are exact, 

e.g. if / and g have local sections (see 6.1.11). These facts generalize corresponding 

results shown in [9]. 
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6.1.11. — Let / : G —> H be a morphism between topological stacks which has 
local sections. It induces a morphism between sites /JJ : G —• H by composition. On 
objects it is given by f$(U —• G) := (U —> G —> H) (we will often use the short hand 
U for (U —• G) and write f$U). In fact, since U —» G and / have local sections, the 
composition U —> H has local sections. Furthermore, the map U H from a space to 
a topological stack is representable by Lemma 6.1.1. One checks that f% maps covering 
families to covering families and preserves the fiber products as in [25, 1.2.2]. 

If / : G —> H has local sections, then the functor / * : ShH —• ShG is the pull-back 
/ * = ( / j | )* associated to a morphism of sites. Explicitly it is given by f*F(U) := 
F(f$U), compare Lemma [9, 2.7]. In addition, the functor / * : ShH —> ShG is exact 
(see [9, 2.5.9]) and preserves flat sheaves of abelian groups. 

Lemma 6.1.8. — If f : X —> Y is a morphism between locally compact stacks which 
has local sections, then we have the derived adjunction 

/*: D+(ShAhY) D+ (ShAbX) : RL 

Proof. — Since / * is exact its right adjoint / « preserves injectives. If G € C+ (ShAbX) 
is a complex of injectives and F € C + ( S l i A b Y ) , then we have 

RHomshAb Y (F, Rf* (G) ) H o m S h l K Y ( F , / . ( G ) ) 

HomShAbx( /* (F) ,G) ^ H o m S h A b X ( / * ( F ) , G ) 

This implies the assertion. 

6.1.12. 

Lemma 6.1.9. — Let X be a locally compact stack. IfC,B-+X are maps from locally 
compact spaces, then C Xx B is locally compact. 

Proof. — By assumption X is locally compact so that we can chose an atlas A —> X 
such that A and Axx A are locally compact. Since A —» X is surjective and has local 
sections, there exists an open covering (Bi) of B such that we have lifts 

Bi 

A 

B X 

Then (A xx Bi) \s an open covering oi Axx B. In order to show that A xx B is 
locally compact it suffices to show that the space A xx Bi is locally compact. By 
A Xx Bi = (A xx A) XA Bi C A xx A x Bi, this space is a closed (note that A is 
Hausdorff) subspace of a locally compact space and hence itself locally compact. 

The same argument shows that CxxA is locally compact. We now write CxxBi = 
(C xx A) xA Bi <Z (C xx A) x Bi m order to see that C Xx Bi is locally compact. 
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Since (C Xx Bi) is an open covering of C Xx B we conclude that C Xx B is locally 
compact. • 

6.1.13. — Let / : X —• Y be a morphism between locally compact stacks. 

Lemma 6.1.10. — If f is representable, then it induces a morphism of sites f$ : Y 
X given by f»(\ Y) := (X xYV X). 

Proof. — Let B —» X be a locally compact atlas. We consider (V •—• Y) G Y and 
form the diagram of Cartesian squares 

V x y B B 

U X 

f 

V Y 

In order to check that ( [ / I ) G X we must show that U is locally compact. Since 
B —• X is surjective and has local sections we see that V X y B —> U is surjective 
and has local sections, too. Since Y is locally compact we see by Lemma 6.1.9 that 
V Xy B is locally compact. Let u G U and W C 17 be a neighborhood of u such that 
there exists a section 

V xYB 
s TT 

w •u 

Let K C 7r_1(Ty) be a compact neighborhood of s(µ) Then s-1( K) is a compact 
neighborhood of u. Indeed, s~L(K) is a closed subset of the compact set TC(K). 

It is easy to see that maps covering families to covering families and preserves 
the fiber products required for a morphism of sites, see [25, 1.2.2]. • 

If / : X —> Y is a representable morphism between locally compact stacks, then 
we have the relations / * = ( / * ) * : S h Y ShX and /* = ( / » ) * : ShX - * S h Y , see 
[9, Lemma 2.9]. 

6.1.14. — Let X be a topological stack and (U —• X) G X . Let (U) denote the 
site whose objects and morphisms are the open subsets of U and inclusions, and 
whose coverings are coverings by families of open subsets. W e have restriction functors 
i/u : ShX - > Sh((7) and pvv : P r X P r ( t f ) . For F G ShX we also write uu(F) =: Fv. 
W e have the following assertions, most of which are straightforward to prove. 
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(1) Let $ and i\j denote the sheafification functors on the sites X and (U). Then 

we have a natural isomorphism 

BUi OPUV Vu o$ , 

see [9, Lemma 2.4.7] 

(2) Let F G ShX. If / : U —> V is a morphism (6.1.6) in X , then we have a natural 

map f*Fv - » Fu. 

(3) There is a one-to one correspondence of sheaves F G ShX on the one hand, 

and of collections (Fu)(u^x)ex of sheaves Fu G Sh({7) together with functorial 

maps f*Fy —• Fu for all morphisms / : U —> V in X on the other hand. 

(4) Let F, G G ShX. There is a one-to-one correspondence between compatible 

collections of morphisms gu'> Fu —> G\j for all (17 —> X ) G X and maps 

< ? : F ^ G . 

(5) If F, G G ShX or F, G G D + ( S h A b X ) , then a map F G is an isomorphism if 

and only if the induced map Fu —» Gu is an isomorphism for all (17 —• X) G X . 

(6) Let / : X —> y be a representable map of locally compact stacks, ( A —> Y) G Y 

and (B := A xY X ^ X) e X . Let g: 5 —> A be the projection onto the first 

factor and g* : Sh(B) -> Sh (A) . Then we have for F G ShX or G G D + ( S h A b X ) 

BUiBUi BUiBUi Rf*G)A Rg*(GB) 

The second isomorphism follows from the first using the fact that the restriction 

VB preserves flabby or even injective sheaves (see Lemma 6.1.11). 

(7) If / : X. —> Y is a map of topological stacks which has local sections, (B —> 

X) G X , then we have (B - » X y ) G Y and for F G S h Y 

BUiBUi Fb 

(8) The collection of restriction functors (vu)(u->x)ex. detects flabby (flasque, flat) 

sheaves (see Definition 3.1.1), i.e. a sheaf F G ShAbX is flabby (flasque, flat) 

if and only if Fu G ShAb(^7) is flabby for all (U —> X) G X (compare 6.2.6 for 

the flat case). 

(9) The collection of restriction functors (yu)(u-+x)ex> detects exact sequences, i.e. 

a sequence F —> G —• 77 of sheaves of abelian groups on X is exact if and only 

if Fv -* Gv -* Hv is exact for all (U X) G X . 

Lemma 6.1.11. — Le£ (17 —> X ) G X . ÏTie functor vu : ShAbX —> ShAb(^7) preserves 

injective sheaves. 

Proof. — We show that v\j has an exact left adjoint i/% : SliAb(£7) —> ShAbX. We 

first show that the restriction functor vv\j ' P rAbX —> PrAb(?7) fits into an adjoint 

pair 
p 
V 

u 
z : PrAb(C/; P rAbX : *w . 
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The left-adjoint is given b\ 

pv L 

Z 
(F)(A X) = c o l i m F ( F ) , 

where the cohmit is taken over the category or diagrams 

V •A 

4> 

u X 

where V —> U is the embedding of an open subset. As explained in [ 2 0 , II.3.18] we have 

a decomposition of this category into a union of categories S((j>) with <p € Homx((^4 —> 

X), (U —• -X")). The category S(<f>) is the category of open neighborhoods of <f>(A) and 

their inclusions. It is cofiltered. Therefore F i—> colims(<j,)F(V) preserves finite limits 

and is in particular left exact. This implies that VVJJ given by 

rv f 
f (F)(A X) 

4> 

colimS(0) F(V) 

is left-exact, too. We now get i/% := i$ o pis% o iv. As a left-adjoint it is right-exact. 

Since %u is left exact and ^ is exact, this composition is also left-exact. • 

6 . 1 . 1 5 . 

Lemma 6.1.12. — Consider the following Cartesian diagram in locally compact topo

logical stacks 

H V G 

9 f 

Y u X 
In this situation the two canonical ways to define a natural transformation 

u*f* 9*v* : ShAb(G) ShAb(Y) 

give the same result, i.e. the diagram 

(6.1.13) u f* unit 
g*g*u*f* 

ug=fv 
g.v*rf. 

counit 
g*v* 

BUi unit 
U*f*V*V* 

ug=fv 
U*U*Q*V* 

counit 
g*v* 

commutes. This transformation is functorial with respect to composition of Cartesian 

diagrams. 

Moreover, if u has local sections, then this transformation induces isomorphisms 

(6.1.14) BUi g*v*: ShAb(G) ShAb(Y) , 

(6.1.15) vfRf. ' Rg*v* : £»+ShAb(G) £>+ShAb(Y). 
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If u and f have local sections, then we get commutative diagrams 

µ* 

unit 
. unit 

u*g*g* BUiBUi BUiBUi 

B 
counit 

counit 
BUiBUi • f*u,g, - v*g*g* 

µ* 

unit 
unit 

BUiBUi -g*v*f* - g*g*u* 

µ* 

counit 
counit 

BUiBUi g*u*f* g*g*v* 

and their derived versions, e.g. 

(6.1.16) u* 

unit 
unit 

u*Rf*r Rg*v*f* Rg*g*u* 

and also 
(6.1.17) 

Ru*u* 
unit unit 

Ru*u*Rf*f* RutRg„v*f* • RftRvtv*r • RftRv*g*u* • Rf*f*Rutu* 

Proof. — Most of the following arguments and the large diagrams were supplied by 
Ansgar Schneider. We thank Ansgar Schneider for the premission to use these ideas 
in the present article. For convenience we present a proof of (6.1.13), see also [13, 
Expose X V I I , Proposition.1.3]. We first observe that 

(6.1.18) v*f*f*v* counit 
V*V* 

counit 

(fv)'(fv)* counit •id 
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commutes. Using this in addition to standard functorial properties we check that all 
squares in the following diagram commute: 

, counit unit 
9*9 u U 9*\U9) J* ~9*{fvyU , counit counit g*v* 

unit unit unit unit unit 

9*9 u*f*v#v* - ' 9*{U9)*f*W* g*(fv)*f*v*v* - g*v*/* f*v*v' . counit 9*V*V*V* id 

counit 

g*g*u*f*v*v* g*{ugr{fv)*v* g*(fvY(fv)*v* g*(fvy(fv)*v* counit g*v* 

g*g*u*f*v*v* 9*{ugr(fv)*v* g*{ugy(ug)*v* = 9*{ug)*{ug)*v* counit g*v* 

counk 

g*g*u*f*v*v* g*g*u*{fv)*v g*g*u*(ug)*v* - g*g*u*u*g*v* .counit 
g*9*9*v* id 

unit unit unit unit unit 

« 7 . 
unit , counit u*(fv)*v* u*(ug)*v* • u*u*g*v* counit 

g*v*. 

The two ways to go along the boundary from the upper left to lower right corner give 
the two maps ^ * / * —> g*v* in question. 

The isomorphism (6.1.14) can be shown as in [9, Lemma 2.16], where the assump
tion of smoothness of u in [9] corresponds to the assumption of local sections in the 
present setting. The derived version (6.1.15) can be shown using the simplicial models 
as in [9, Lemma 2.43]. Alternatively one can use the commutativity of the diagram 
asserted in Lemma 3.2.6 and the isomorphism (3.2.5). 

We now show the compatibility of the units and counits with Cartesian diagrams. 
The arguments are purely formal and only use that the functors involved occur as 
parts of adjoint pairs. We will only give the details for the two triangles involving 
derived functors. If in addition to u also / has local sections, then so has g. In this 
case we have the adjoint pairs (f*,Rf*) and (g*,Rg*)> In order to see (6.1.16) we 
must show that 

u* 
unit u*Rf*f* x 

Rg*v*f* RgJfv)* Rg*(ug)* Rg*g*u*, 

unit 
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commutes, where w : u Kf*j —> Kg*v f is induced by ( b . l . l ò j . Ihis is a conse

quence of the commutativity of 

u* 
unit 

u*RUr 
Y 

Rg*v*r 

unit counit 

Rg*g*u*ur Rg*(ug)*Rf*f* Rg*(fv)*Rftf* Rg*v*f*Rf*fí id 

unit unit unit unit 

µ* unit Rg*g*u* Rg*(ug)* Rg*(M* Rg*v*f* 

which follows from standard functorial properties of units and counits. 

The same properties are used in the proof of (6.1.17) which is represented by the 

boundary of the following big array of small commutative squares and triangles (see 

Fig. 1 on next page). • 

6.2. Tensor products and the projection formula 

6.2.1. — We consider a Grothendieck site X and a commutative ring R. The goal of 

the present Subsection is to discuss aspects of the closed monoidal structures on the 

categories of presheaves Pr^-ModX and sheaves Sh#_ModX of i?-modules on X . The 

material is standard, but we need to understand in detail the relation between the 

sheaf and presheaf versions in order to show the compatibility with the operations 

induced by a morphism of stacks. 

6.2.2. — Let F,G G PrR_ModX be presheaves of i2-modules. The tensor product 

F <8>p G G Pr^_ModX is defined as the presheaf which associates to (U —• X) the 

i?-module F(U) ®PR G{U). In this way Pr^-ModX becomes a symmetric monoidal 

category. 

Since colimits of presheaves are defined objectwise we have for a diagram of 

presheaves of i?-modules (Fi)iei that 

colimi€l(Fi ®PR G) ^ (colimi€lFi) ®PR G . 

6.2.3. — For U G X let hjj G P r X denote the presheaf represented by U and 

h§ G Pr#_ModX be the presheaf of i2-modules generated by hu. Let F, G G Pr#_ModX. 

We define the presheaf 

by 

Romp(FG) G Pr#_ModX 

Romp(FG)(U) HomPrfi.ModX R 
U 

)pF,G) . 
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The topology of the site of a locally compact stack is sub-canonical. Hence, in this 

case hjj is actually a sheaf. But even in the case of a sub-canonical topology h§ is 

only a presheaf, in general. 

If U V is a morphism in X , then Hpmp(F, G)(V) -+ Homp(F, G)(U) is induced 

by the morphism h\j —• hy. If H G Pr#_ModX, then we have 

HomPrH-ModX ( i 7 , H o m p ( F , G ) ) HomPrfí.ModX (colim^H HnVi Homp(F,G) i 

lim 
df dh 

HomPrH_ModX i/i 'V! H o m p ( F , G ) ) 

lim 
fgg •if 

H o m ^ K G W ) 

lim 
fg H 

HomPrfî.ModX( fg 
gf 

?F,G) 

HomPr*-ModX colim g fg (h t g ? F), G) 

HOmPrR-ModX ((colini^* HhR ïpF,G) 

HomPrH_ModX ( A )PF,G) 

In other words, the pair (<g)p,Homp) together with this natural isomorphism defines 

a closed symmetric monoidal structure on Pr^.ModX. In particular, if (Fi)iei is a 

diagram of presheaves, then we have 

(6.2.1) Homp(colim¿€/F¿, G ) lin 
df 

Homp(Fi<G) 

6.2.4. — An element of 

H o m ( F , G ) ( £ T = HomPrfí_ModX (I 
d 
df )PF,G) 

is given by a collection of ^-linear maps (<t>v-+u : F(V) ~* G(V))(v-+u)ex/u sucn 

that for a morphism (W —> 17) ^ ( V —* £/) in X / { 7 the diagram 

F(V) F(W) 

<t>V^U <f>w-*u 

G(V) -G(W) 

commutes. Therefore 

H o m ( F , G ) ( £ / ) HomPrfí.ModX/C7 [F\u,G\u) . 

Lemma 6.2.2. — If G is a sheaf then Hom(F, G ) is a sheaf 

Proof. — Let C / G X and (Ui —» U)iei be a covering. In order to simplify the notation 

we consider V := U^jUi. We must show that the sequence 

0 H o m ( F , G ) ( i 7 ) H p m ( F , G ) ( V ) Hom(F.G)(V Xtt V) 

is exact. 
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Let ip G RompTR Modx./u(F\u, G\u) be such that its restriction to V vanishes. If 
[W -+ U) G X/J7, then ^ x ^ ^ l f is a covering of W, and p r ^ : G(W) -> 
G(W Xu V) is injective since G is a sheaf. In view of the commutative diagram 

F(W) 
F(x 

F(W xvV) 

1pW ('*P\v)wxuV 

G(W) 
F(W x 

GiWxuV) 

we see that ipw = 0. 
Let now <f> G HomPrH_Modx/v(F\v> G\y) De sucn that the induced map 

$ G HomPrH.ModX /(VXrrV) CF|Vxt/V,G|yXt/vO 

vanishes. W e will construct ip G HomPrR_Modx/u(F\u, G\V) such that ip\V = 0 . Let 
(W — *7) G X/U and / G - + 17) = F(W). Then T ^ x ^ F — > W i s a covering 
of W and p r ^ / G F ( W ) w x v V ^V) = F(W xv V). We get an element 

4>WxuV F(W) F(W) eG(Wxu V) G\V(Wxv V - V) 

Note that ( W x v V) x w ( W x v V) ^ W x v (V x v V). The difference of the pull-backs 

of (f)wxuV^v{p^w(f)) with respect to the two projections to W XuV induces 

$Wxu(VxuV) (P**w(f)) 0eG((WxuV) XwiWxuV)) 

Again, since G is a sheaf there is a unique element ipw(f) £ G(W) such that 

^w{f)\Wxu\ <t>W*uV^v№wU)) ' 

The morphism i\) is now given by the collection (ipw)(w^u)ex/u-

6 . 2 . 5 . — If F, G G Sho ModX, then we define F ® G e ShR_ModX to be 

fa G := iHi(F) F(W) 

W e furthermore define 

Hom(F, G) : i » H o m p ( J ( F ) , i ( G ) ) . 

Using the fact 6.2.2 that Homp(i(F),i(G)) is a sheaf at the isomorphism marked by 
! we get for every H € Shfl.ModX that 

HomShR_ModX (H F,G) HomShB_ModX F(W) )pi(F),G) 

HomPrfi-ModX (i(H fi(F), i ( G ) ) 

HomPrR.ModX (i(H),Uomp(i(F) i(G)) 

HomPrH.ModX F(W) i o i" ;Hompfi(F). F(W) 

HomShfl.Modx ( t 'o i f f f l .Hom (F,G)) 

Homshfi.ModXi (H,Eom(F,G)) . 
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In other words, the pair ( ® , Horn) together with this natural isomorphism make 

Sh#-ModX into a closed symmetric monoidal category. 

6.2.6. — Let F, G G Shi*_ModX and (U X) G X . Then we have 

(F G)u F(W) Gn 

Indeed, this follows from the fact that sheafification commutes with the restriction 

from the site X to the site ( { / ) , see 6.1.14. Since the collection of functors (yu){u->x)eyi 

detects exact sequences it now follows that a sheaf F G Sh^-ModX is flat if and only 

if Fv G Shfl_Mod(kO is flat for all (U —> X) G X . This fact was claimed in 6.1.14. 

6.2.7. 

Lemma 6.2.3. — For F, G G Pr^.ModX we have i*(F ®p G ) = i*(F) <g> i*(G). 

Proof. — This follows from (we omit the functor i at various places in order to sim

plify the formula) 

HomShfí.Modx F(W) ?GYH) HomPr*-ModX [F )p G,H) 

HomPrH.ModX (FHomp(G.H)) 

HomPrñ-ModX ;¿"(F),Homp(G, F(W) 

H0mPrH-ModX F(W) d G,H) 

HomPrR.ModX (G,Hgmp(itF F(W) 

HomPrR-ModX (i*G.Homp(P F,H)) 

HomPiR.M»dX (t»G ip i*F, H) 

HomShR.ModX( isG i*F,H) 

for arbitrary H € Sh^.ModX, where we use Lemma 6.2.2 at the isomorphisms marked 

by! . • 

6.2.8. — Let / : X —> Y be a morphism of locally compact stacks. Let X and Y be 

the sites associated to X and Y. Consider the adjoint pair of functors 

p r : P r ñ - M o d Y Pi\R-ModX: p / . . 

The proof of the following Lemma uses the product in Y described in [9, Lemma 3.1] 

in a specific way. 

Lemma 6.2.4. — For F,G € Pr^-ModY we have a natural isomorphism 

pf*(F ì>p G) iPf*F P Pf*Q 
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Proof. — W e use the notation introduced in [9, 2.1.4]. For ( f / - » I ) 6 X w e consider 
the category U/Y of diagrams 

U X 

V Y 
The functor pf* is defined in [9, Definition 2.3] as a colimit over this category. 

W e consider the diagonal functor U/Y —> U/Y x U/Y given on objects by 

U X 

V Y 

(U X 

V Y 

U x ) 

V Y 

In view of the definition of pf* by colimits it induces a map 

pf (F )p G) F(W) F(W) 

In the other direction we have the functor U/Y x U/Y —> U/Y given by 

(U X 

V Y 

U x ) 

d Y 

u X 

V x y V Y 

This together with the projections V x y V —> V and V X y V —> V induces the 
inverse map 

pf*F ?,p P f*G pr(F SpG) . 

6.2.9. — Let / : X —> Y be a morphism of locally compact stacks. 

Lemma 6.2.5. — For F,G € Shft.Mod Y we have a natural isomorphism 

f*(F G) f*F f*G . 

Proof. — For H G Shfl.ModX, using the fact that pf„ preserves sheaves (see 6.1.9) 
and Lemma 6.2.3, we have 

Homshfl.ModX lf*(F®G) H) HomShB.Modx (F GJJH)) 

HomShR.ModY (i*(i(F) )pi(G))A o fpoi\ g F(W) 

HomPr*-ModY ((i(F) <pi(G)),fP< >i(H)) 

HomPrB.M()dx (pr(i(F] pi(G)). AH)) 

HomPRK.MOD3( (pf*oi(F) p pf* o i(G) AH)) 

Homshfl.ModX (i}(pf*oi(F) )p pf* ° i(G)) ,H) 

HomShfl.ModX( T(F) f*(G) ,H) 
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6.2.10. — For a derived version of Lemma 6.2.5 we assume that the morphism 

/ : X —• Y of locally compact stacks has local sections. For simplicity we only consider 

the case R = Z, i.e. sheaves of abelian groups (finite cohomological dimension of R 

would suffice). Then the exact functor / * = (/u)* preserves torsion-free sheaves of 

abelian groups. Since the derived tensor product can be calculated using torsion-free 

resolutions we get the following corollary. 

Corollary 6.2.6. — If f : X -* Y has local sections, then for F,G G £>+(SliAbY) we 

have a natural isomorphism 

f*(F >L G) f'Fi )L f*G . 

6.2.11. — Let / : X —> Y be a morphism of locally compact stacks. 

Lemma 6.2.7. — For F e Shjj.ModY and G € Shfi.ModX we have a natural isomor

phism 

HomCF. LG) / . H o m ( / * F , G ) 

in Shñ_ModY 

Proof. — For any T € Shñ.ModY we calculate 

HomShR.MODY ( T , / » H o m ( r F , G ) ; HomShH_M„dX ; / * T , H o m ( / * F , G ) ) 

HomShñ 
-Mod-* 

(f*T f*F,G) 

HomShfl.ModX ( H T F),G) 

HomShR.MODY (T F,f*G) 

'•• HomShK.MODY ( T , H o m ( F , / . < ? ) ) 

6 . 2 . 1 2 . — Let / : X —> Y be a morphism of locally compact stacks. 

Lemma 6.2.8. — For F € Sh.R_Mod Y and G € Sh^-ModX we have a natural morphism 

UG F MG f*F) . 

Proof. — The transformation is the image of the identity under the following chain 

of maps, where the first is induced by the counit / * o / „ —> id of the adjoint pair 

(/*> /*)> and the second isomorphism is given by Lemma 6.2.5. 

HomShK.Modx (G f*F,G f*F) HomShñ.Modx ( / 7 . G f*F,G f*F) 

'• HomShH.ModX F(W)G F),G f*F) 

HomShR.MODY if*G F,MG f*F)) . 

Lemma 6.2.9. — / / / has local sections, then for F € ShAbY and G € ShAbX we 

have a natural morphism 

/ . G < 
eds 

MG L f*F) . 
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Proof. — W e use the same argument as for Lemma 6.2.8 based on the adjoint pair 
(/*, Rf*) and Lemma 6.2.6. • 

6.2.13. — Let / : X —> Y be a morphism of locally compact stacks. 

Lemma 6.2.10. — Let F G Sh^-ModY be a sheaf which is locally isomorphic to RY, 
i.e. there exist an atlas a: U —> Y such that a*F = Rjj. In this case we have the 
projection formula: For allG G SliR-ModX or H G D+ (ShAbX) the natural morphisms 

f*G F MG f*F) , Rf*H ,L m Rf*(H L f*F) 

are isomorphisms. 

Proof. — This can be checked locally on the atlas U —> Y. We consider the pull-back 

V 
b X 

9 f 

u a Y 

W e must check that 

a* o (LG F) a*ofJG f*F) 

is an isomorphism. This map is equivalent to 

o*( / .G F) a*f.G a*F 

a* LG Ru 
a* LG 

9*b*G 

g*b*(G Rx) 

9*(b*G > b*f*RY) 

g*{b*G g*a*RY) 

g*(b*G g*a*F) 

9*b*(G f*F) 
F(W) F( f*F) . 

The derived version is shown in similar manner. 

6.2.14. — W e will also need the projection formula with different assumptions. Let 
/: X —> Y be a map of locally compact stacks. We consider F G Sh^-ModY and 

G G Shß-ModX. 
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Lemma 6.2.11. — Assume that f is proper and representable, and that F is flat. Then 

the natural transformation 

F(W) F MG F(W) 

of 6.2.8 is an isomorphism. 

Proof — Using the observations 6.1.14 we see that it suffices to show that for all 

(U —*Y) G Y the induced morphism 

(6.2.12) g*Gv >FC/ g*(Gv g*Fu) 

is an isomorphism. Here g: V —• U is the proper map of locally compact spaces defined 

by the Cartesian diagram 

V X 

9 f 

u Y 

The map (6.2.12) is an isomorphism by [17, Prop. 2.5.13]. • 

6.2.15. — We also have a derived version of the projection formula in the case of 

sheaves of abelian groups. The main point is that the ring Z has finite cohomological 

dimension (in fact equal to 1). Let f:X —> Y be a morphism of locally compact 

stacks. 

Lemma 6.2.13. — Assume that f is proper and representable. If G G D + ( S h A b Y ) and 

F G D+ (ShAbX), then we have 

RUG L F Rf*(G L 
f*F) 

in £>+(ShAbY). 

Proof. — As in the proof of Lemma 6.2.11 we can reduce to the small sites (U) for 

all objects (U —> Y) G Y . After this reduction we apply [17, Prop. 2.6.6] and the fact 

that the cohomological dimension of Z is 1, hence finite. • 

6.2.16. — The following derived adjunction again uses the finiteness of the cohomo

logical dimension of Z. 

Lemma 6.2.14. — For F,G,H G D+ (ShAbX) we have a natural isomorphism 

RRomShAMF ®L G, H) * JRHomShAbx(^ i?Hom(G, H)) . 

Proof. — If G G ShAbX is flat and H G ShAbX is injective, then the functor 

ShAbX 3 F H HomshAbx(F, Hpm(G, H)) 9* HomShAbx(^ 0 G, i f ) G A b 

is, as a composition of exact functors, exact. It follows that Hom(G, H) is again 

injective. We now show the Lemma. We can assume that H is a complex of injectives. 
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Furthermore, since the cohomological dimension of Z is one, hence in particular finite, 

we can assume that G is a complex of flat sheaves. Then we have 

ifflomShAbx (F )L G,H) HomshAbX^ G,H) 

HomShAbx ( F , H o m ( G , f f ) ) 

ÄHomShAb> ( F , H o m ( G , f f ) ) . 

6.3. Verdier duality for locally compact stacks in detail 

6.3.1. — Let / : X —• Y be a map of locally compact stacks. 

Definition 6.3.1. — We say that the cohomological dimension of f* is not greater than 

n G N if the derived functor R1 f* : ShAbX —> SliAbY vanishes for all i > n. 

The main theorem of the present subsection is 

Theorem 6.3.2. — Assume that f : X —> Y is a representable and proper map be

tween locally compact stacks such that /* has finite cohomological dimension. Then the 

functor Rf*: £ )+(ShAbX) —• £>+(ShAbY) admits a right adjoint f : JD+(ShAbY) —> 

(ShAbX) . 

The proof of Theorem 6.3.2 will be finished in 6.3.6. The main idea is to transfer 

the construction of / ! from [17, Section 3.1] to the present situation. 

6.3.2. — We consider the functorial flabby resolution (see 3.1.10) of the constant 

sheaf Z x —• £7?(ZX) and form the truncated complex K := r-n£7i?(Zx) so that in 

particular Kn = k e r ( 5 r r ( Z x ) 5^n+1(Zx) ) . 

Lemma 6.3.3. — Assume that f is representable and that /* has cohomological di

mension not greater than n. Then the complex 

(6.3.4) 0 K° K° 
K° K° 0 

is a flat and f^-acyclic resolution ofZ^. 

Proof. — The sheaf ker(liTn —• Kn+1) is a torsion-free subsheaf of a torsion-free 

sheaf and therefore flat (compare [17, Lemma 3.1.4]). By Lemma 3.1.4 the flabby 

sheaves Kl for i = 0 , . . . , n — 1 are /»-acyclic. In order to see that Kn is /»-acyclic, 

it suffices to show that PSUkeiiK71n Kn+l)) ^ 0 for i > 1. In fact, we have 

&f.Qxsr(Kn Kn+1)) Ri+nf*Zx 0. 
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b.J.J. — i n e libers 01 a representable ana proper morpnism 01 topological stacKs 

are compact. This is explicitly used in the proof of the following Lemma. 

Lemma 6.3.5. — If f : X —> Y is a representable and proper morphism of locally 

compact stacks, then the functor /* : ShAbX —> SliAbY preserves direct sums. 

Proof. — Let (Gi)iei De a family of sheaves in ShAbX. Then we have a canonical 

map 

iei 
)of.(Gi) ho 

iei 
GÌ) 

In order to show that this map is an isomorphism we show that the induced map 

iei 

)oh(Gi))u ( / . o | 
iei 

(Gi))u 

is an isomorphism for all (U —» Y) G Y . Choose such (U —> Y) and consider the 

Cartesian diagram 

V X 

9 f 

u Y 

It suffices to show that the induced map 

iei 

°g*(Gi)u g* ° 
iei 

(Gi)u 

is an isomorphism. We consider the induced map on the stalk at x G U. Since the 

restriction to g~1(x) commutes with the sum and g~1(x) is compact it is given by 

iei 

o r ^ - 1 ^ ) , ! ^ ) ^ ] , , - ! ^ ) ) r a r 1 * * ) 
iei 

)[(Gi)u]\g-l(x)) 

(see [17, Proposition 2.5.2]). But this last map is an isomorphism since the global 

section functor on sheaves on a compact space commutes with sums. • 

6.3.4. — Fix j G { 0 , 1 , 2 , . . . , n} and set K := Kj, see 6.3.2 

Lemma 6.3.6. — Let f : X —• Y be a representable, proper morphism of locally com

pact stacks such that /* has cohomological dimension not greater than n. Then the 

functor G h-> / * ( G (8) K) is an exact functor ShAbX —> SliAbY. Furthermore, G ® K 

is h~acyclic. 
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Proof. — In the following proof we freely use the facts listed in 6.1.14. Let G be an 

exact complex in ShAbX. For (U —> Y) G Y consider the Cartesian diagram 

V X 

a f 

u Y 

Note that (V —> X) G X . By construction (see [17, Lemma 3.1.4]) Ky is flat and g-

soft. The complex Gv is exact. By [17, Lemma 3.1.2 (ii)] the complex g*(G'v<8>Ky) = 

(f*(G' <8> K))u is exact. Since this is true for all (U —> Y) G Y we conclude that 

/ * ( G ' 0 K) is exact. 

We now show that G®K is /*-acyclic. W e must show that Rlf*(G<8>K) = 0 for all 

i > 1. For (U -> Y) G Y as above we have ( # 7 * ( G <8> # ) )£ / - &9*{Gu <8> #£ / ) = 0, 

since Gc/ (8) KU is ^-soft by [17, Lemma 3.1.2 (i)] (note that K\j is flasque and flat). 

Since (17 - > y ) was arbitrary this implies that i T / * ( G % K) ^ 0 • 

6 . 3 . 5 . — For ( V —• X ) G X let hy denote the sheafification of the presheaf hy, 

the presheaf of free abelian groups generated by the sheaf hy represented by V. We 

consider the functor fK: SliAbY —> PrAbX which associates to a sheaf F G ShAbY 

the presheaf fx(F) G PrAbX given by 

X 3 ( V X) firF(V) : = H o m S H A B Y ( / * ( ^ 
z 
V ü Q , F ) G A b . 

Note that K fx{F) is also a functor in X (for fixed F). 

Lemma 6.3.7. — Let K be as in 6.3.4 and f X —> Y be a representable, proper 

morphism of locally compact stacks such that /* has cohomological dimension not 

greater than n. Assume that F G SfiAbY is an injective sheaf. Then / j f ( F ) is an 

infective sheaf. Furthermore, for G G ShAbX there is a canonical isomorphism 

(6.3.8) H o m S H A B Y ( / * ( G K), F) :HomShAbX(G, / j , (F ) ) . 

Proof. — W e show that Fk'F is a sheaf by copying the corresponding argument in 

the proof of [17, Lemma 3.1.3]. The functor G i-> HomshABY( /* (G <g> K),F) is exact 

by Lemma 6.3.6 and injectivity of F. If we establish the isomorphism (6.3.8), then we 

also have shown that fx(F) is injective. 

For (W —> X) G X w e have a canonical isomorphism 

:6.3.91 HomShABY(/*(fr 
z 
w K),F) = fK(F)(W) HomShAbx(ft 

z 
w 

K°K°K°K° 
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For a system (Gi)iei of sheaves we have a natural map co l im^/ ° f*(Gi) —> /* o 

c o l i m ^ j ( G i ) . For G 6 ShAbX we get 

HomshABY (MG 
(MG HomshAbY(/*((colim azw 

(MG K),F) 

HomShAbY(/. ocolim (MG 
(MG 

K),F) 

HomShAbY ( c o l i m ^ G <°f*(hw K),F) 

lim 
(MG •G 

HomShAbY( / . (Äw K),F) 

lim 
hi c 

cHomshAbx h w JK(F)) 

HomShAbx(colim x x 
x Z 

w 
fk(F)) 

HomShAbx(G: fk 
(MG 

The marked isomorphism uses that the tensor product of sheaves commutes with 

colimits, a consequence of the fact 6.2.5 that it is part of a closed monoidal structure. 

It remains to show that this composition is an isomorphism. If we write out the 

definition of the colimit in G = colim^z ^Q^W we obtain an exact sequence of the 

form 

f6.3.10) 

jeJ 

(MG 
(MG 

(MG 
hi G 0 . 

Now observe that for any collection ( G i W j of sheaves in ShAbX we hav 

HomShAbY(/* 
i 

Gì) K),F) 

iei 

HomShA. Y(f*(Gi K),F) 

since /* (Lemma 6.3.5) and K commute with sums. Clearly we also have 

HomShAbx 

i 

GiJirlF)) 
iei 

HomShAbx(Gi , / ]c (F 

brom (6.3.10) we thus get the diagram 

0 0 

HomShAbY 'MG K),F) HomShAbX(G, / j , (F) ) 

[iei HomShAbY (h(hZVi 
(MG a 

[iei HomShAbx (hl,fk(F)) 

df HomshiKY(/*(/ 
(MG 
(MG K),F) m 

(MG HomShAxx(ft 
wx 

x 
(MG(MG 
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Because of the isomorphism (6.3.9) the maps a and /3 are isomorphisms. The left 

vertical sequence is exact by Lemma 6.3.6. The right vertical sequence is exact by 

the left-exactness of the Hom-functor. It follows from the 5-lemma that (6.3.8) is an 

isomorphism. • 

6.3.6. — Let /S l iAbX C SliAbX denote the full subcategory of injective objects and 

I f + ( / S h A b X ) be the category of complexes in JSliAbX which are bounded below, and 

whose morphisms are homotopy classes of chain maps. Then we have an equivalence 

of triangulated categories 

K+(IShAhX) L>+(ShAbX) 

Let / : X —> Y be a representable, proper morphism of locally compact stacks such 

that / , has cohomological dimension not greater than n, and let K be as in 6.3.2. 

W e then define the functor f : i f + ( / S h A b Y ) - f .Jf+(/ShAbX) by 

(MG 
(fk(F))tot , 

where E'{ot denotes the total complex of the double complex E > . Since fK preserves 

injective sheaves by Lemma 6.3.7 this functor is well-defined. Furthermore, for F G 

K+(IShAhY ) and G G K + ( / S h A b X ) we have by Lemma 6.3.7 a natural isomorphism 

between spaces of chain maps 

Homc+(ShAbY) {U(a ®K')toUF) Homc+(ShAbx)i .Jf+(/ShAbX) 

which descends to an isomorphism on the level of homotopy classes 

H o m X + ( / S H A B Y IMG' K')touF-} Homx+(jshAbX (GJ-(F)). 

Since f'(F') is a complex of injective sheaves we have 

HomK+(/ShAbx) (G\f(F)) HomD+(shAbx^ ( G \ / ! O H ) -

Note that G' = G ' 0 Z x ^ (G' ® K-)tot is a quasi-isomorphism, and the complex 

G 0 K consists of /^-acyclic sheaves by Lemma 6.3.6. Therefore / * ( G ' <S) K')tot 

Rf*(G'). Since F is injective we have 

rIomK+(Sh 
Ab * j 

(MG K-)toUF-) Hom£)+(SHABY) [RfAG),F) 

W e conclude that 

HomD+(Sh Y ) [RMG-),F-)< HomD+(shabX) (GJ- (Fl))-

This finishes the proof of Theorem 6.3.2. 
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6.3.7. — We consider morphisms / : X —• Y and u : U —• Y of locally compact 
stacks and form the Cartesian diagram 

V V X 

a f 

U U Y 

Lemma 6.3.11. — Assume the f is representable, proper and that /* has finite coho
mological dimension. Assume furthermore that u has local sections. Then we have a 
natural transformation v* o / ! -4^!ou* . 

Proof. — First note that g is representable, proper and that g* has finite cohomologi
cal dimension. Furthermore, v has local sections. We apply / ! to the unit id —• Ru*ou* 
and obtain a morphism 

(6.3.12) sd f o Ru* o . 

Since / is representable and u has local sections we have the isomorphism (see Lemma 
6.1.12 or [9, Lemma 2.431) 

u* o Rh Rg* o v* 

Taking its right adjoint yields the isomorphism 

f o Ru* Rv* o g- . 

We plug this into (6.3.12) and obtain a transformation 

ds Rv* o g- ou* . 

Its adjoint is the desired transformation 

6.3.8. — The following adjunction is a consequence of the derived projection formula 
Lemma 6.2.13 and the derived adjunction Lemma 6.2.14 

Lemma 6.3.13. — If f : X —>Y is a representable proper morphism of locally compact 
stacks which has local sections and is such that /* has finite cohomological dimension, 
then for G G D + ( S h A b X ) and F G D + (ShAbX) we have a natural isomorphism 

RLRRom(G, flF) RRom(RLG.F) . 
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Proof. — Let H G D+ (ShAbX) be arbitrary. Then we calculate using Lemma 6.1.8 
and Lemma 6.2.13 that 

ifflomShABY (H<RLRHom(G, flF)) JfflomshAbX ; / * i J , Ä H o m ( G , / ! F ) ) 

#HomShAbx (f* H ?T G,fF) 

ÄHomShAbY .Jf+(/ShAbX L G),F) 

RRomShAhY(H >L Rf*G,F) 

i?HomshAbY (H,RRom(RLG,F)) 

6.3.9. 

Definition 6.3.14. — If f : X —• Y is a proper morphism of locally compact stacks 
such that /* has finite cohomological dimension, then we define the relative dualizing 
complex by 

Vx/y : = / * ( 1 Y ) • 

It would be interesting to know the structure of cjx/y f°r a topological submersion / 
in the sense of [17, Def. 3.3.1]. 

6.3.10. — In a different setup of Artin stacks and the lisse-etale site in [18] a six 
functor calculus was constructed. Starting with the observation that dualizing sheaves 
on the small sites are sufficiently functorial the functors Rf\ and / ! are constructed 
on constructible sheaves by duality. In this approach one can relate the global f with 
the local versions without any difficulty. 

A similar approach may work in the present topological context as well, but it is 
not clear how the resulting / ! will relate to the construction in the present paper. 

6.4. T h e in tegra t ion m a p 

6.4.1. — Let M be a closed connected orientable n-dimensional topological manifold. 

Definition 6.4.1. — A map between locally compact stacks f : X —> Y is a locally 
trivial fiber bundle with fiber M if for every space U —• X the pull-back U X y X —> U 
is a locally trivial fiber bundle of spaces with fiber M. 

Note that a locally trivial fiber bundle / with fiber M is representable, proper 
and has local sections, and /* has finite cohomological dimension. In order to see the 
last fact and to calculate i i n / * ( Z x ) we consider (U —> Y) G Y and let V —> U be 
surjective and locally an open embedding such that we have a diagram with Cartesian 
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squares 

(6.4.2) M .J(/ShAbX) UxvX Y 

Q h 9 f 

* 
P 

u Y 

The map g is a topological submersion in the sense of [17, Def. 3.3.1]. As remarked 
in [17, Sec. 3.3] the cohomological dimension of g* is not greater than n. This implies 
(R*f*F)u 9* &g*(FuxYx) = 0 for all i > n. Since this holds true for all (U - » Y) € Y 
we conclude that Rlf*F = Q for all i > n. 

We use the left part of the diagram (6.4.2) in order to see that i ? n / * ( Z x ) is locally 
isomorphic to Z Y . In fact, we have 

.Jf+(/ShAbX) Rh*Z(VXYx) p*Rq*Z(M) . 

A choice of an orientation of M gives an isomorphism Rnq^L(M\ = Z,^ and therefore 

RnUI^)v .Jf+(/S 
hAbX) %(V)' 

Definition 6.4.3. — A locally trivial fiber bundle f: X —> Y with fiber M is called 
orientable if there exists an isomorphism i ? n / * ( Z x ) = Z Y . An orientation of f is a 
choice of such an isomorphism. 

6.4.2. — Let / : X —• Y be a locally trivial fiber bundle with fiber M , where M is 
a compact closed n-dimensional topological manifold. We consider the /*-acyclic and 
flat resolution K defined in (6.3.4). 

Corollary6.4.4. — The functor Rf*: D + ( S h A b X ) —• D + ( S h A b Y ) is represented by 
/* ° TK, where TK is tensor product with the complex K. 

We now define a natural transformation 

fiHom(#n/*(Zx),F) Rf*of(F) 

Let F € C+(JS l iAbY) be a complex of injectives. We start from the observation that 

.Jf+(/ShAbX) UKn)/im(UKn~l) .Jf+(/ShAbX) 
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For (U —> Y) G Y we thus obtain a chain of maps of complexes 

H o m f i T /*ZX, F)(U) HomshABY ( 4 . S o m ( i ? n / * Z x , F ) ) 

HomshABY 
fVL 

Rni*(ix), F) 

HomshAbY (h z 
TI 

fJirVimiUK"-1) f*(Kn)), F) 

HomshAb^ ih 
Z 
u f*(K),F) 

6.2.11 
HomShAKY(/, K) 

,F) 
z 
Ö K), F) 

6.3.7 
HomShAbx(/*ft 

XC 
XC X C : F ) ) 

HomshAHxrô 
z 
u f*°fk 

,F) 

f*°fK(F)(U). 

where the map marked by ! has degree n. The projection formula Lemma 6.2.11 

can be applied since f*nfj is flat. This transformation preserves homotopy classes of 

morphisms F —> F1. Since F is injective we have 

S o m ( i T / * Z x , F ) ' Riiom(RnLZ^F) 

Further note that fK(F) is still a complex of injectives by Lemma 6.3.7. Therefore /* o 

fUF) ^ fi/. f*(K),F) Hence this chain of maps of complexes induces a transformation 

(6.4.5) R H o m ( f i " / . Z x , F ) RLof(F) . 

6.4.3. — Its adjoint is a natural transformation 

RLf*RRoir ( i T / * Z x , F ) F 

Let us now assume that / : X —• Y is in addition oriented by an isomorphism 

Rn Z x = Z y . We precompose with this isomorphism and get the integration map. 

Definition 6.4.6. — The integration map 

if 
Rf* o f* id 

is the natural transformation of functors D + ( S I i A b Y ) —• £>+(ShAbY) of degree —n 

defined as the composition 

Rf*f*(F) W * ( H o m ( Z Y , F V RLr(Bom(Rnt ( l x ) ^ ) ) F 

In Lemmas 6.5.20 and 6.5.31 we will verify in the more general case of unbounded 

derived categories that the integration map is functorial with respect to compositions 

and compatible with pull-back diagrams. 
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6.5. Operations with unbounded derived categories 

6.5.1. — The category of sheaves ShAbX on a locally compact stack is a 

Grothendieck abelian category (see 3.3.1). The category of complexes in a Grothendieck 

abelian category carries a model category structure (see 3.3.2). The unbounded de

rived category is the associated homotopy category. The goal of the present subsection 

is to extend the sheaf theory operations ( / * , / * ) and the integration map to the 

unbounded derived category. 

Many results of the present subsection would continue to hold if one drops the 

assumption of local compactness in the definition of the site associated to stacks as 

well as for the stacks themselves. But the assumption of local compactness is important 

for the integration map since it uses versions of the projection formula. 

6.5.2. — Let / : X —> Y be a morphism between locally compact stacks. Then we 

have an adjoint pair of functors 

/*:C(ShAbY) C(SriAbX) : /* . 

In order to descend the functor /* to the bounded below derived category it was 

sufficient to know that /* is left exact. In this case the idea is to apply /* to injective 

resolutions. The descent of the other functor / * is usually only considered if it is exact, 

but see e.g. [23] for more general constructions. We know by 6.1.11 that the functor 

/ * is exact if / has local sections. 

It is not possible to show using the left exactness that /* preserves quasi-

isomorphisms between unbounded complexes of injectives. Even worse, it is not 

clear how to resolve an unbounded complex by an injective complex. The method to 

descend /* to the derived category uses abstract homotopy theory and works under 

the additional assumption that / has local sections. 

Recall that we use a model structure on the category C(Sl iAbX) of unbounded 

complexes of sheaves for which the equivalences are the quasi-isomorphisms, and the 

cofibrations are the level-wise injections (see 3.3.2). The inclusion C+(ShAbX) 

C(Sl iAbX) of the full subcategory of bounded below complexes induces an identifi

cation £>+(ShAbX) ^ hC+(ShAhX) <-+ hC(ShAhX) =: L>(ShAbX) of the bounded 

below derived category as a full subcategory of the unbounded derived category. 

The functor Rf* : D+(Sh.A\>X) —> D + ( S h A b Y ) is the adjoint of the restriction 

of / * to the bounded below derived categories, and it is therefore the restriction of 

Rf+ : L>(ShAbX) -+ £>(ShAbY) to be defined below. 

Lemma 6.5.1. — If the morphism f:X—*Y of locally compact stacks has local sec

tions, then (/**, /*) is a Guillen adjoint pair. -
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Proof. — We use the criterion [15, Def. 1.3.1 (2)] in order to show that / * is a 
left Quillen functor. We must show that it preserves cofibrations and trivial cofibra-
tions. In other words, we must show that / * preserves injections and injections which 
induce isomorphisms on cohomology. Both properties follow from the exactness of 
/ * : S h A b Y ^ ShAbX. • 

6.5.3. — Let / : X —• Y be a map between locally compact stacks which has local 
sections. Since ( / * , / * ) is a Quillen adjoint pair it induces a derived adjoint pair 

Lf : / iC(ShAbY) W7(ShAbX) : RU 

(see Lemma [15, Lemma 1.3.10]). Since / * is exact it directly descends to the homo
topy category. 

6.5.4. — Let g: Y —> Z be a second map of locally compact stacks which admits 
local sections. Then we have adjoint canonical isomorphisms 

(6.5.2) (9 of)* °9 , (9 of)* g*°f* • 

Lemma 6.5.3. — We have a canonical isomorphism 

R(g°f)* Rg* o Rft 

Proof. — Using [15, Thm. 1.3.7] we have a natural transformation 

(6.5.4) R(gof). R(g* ° f*] Rg* o Rf* 

which is adjoint to 

(6.5.5) Lf*oLg* Wog*) Lia of)* 

Since L / * , Lg*, and L(gof)* are plain descents of / * , Gµ and (gof)* to the homotopy 
category it follows from (6.5.2) that (6.5.5) is an isomorphism. Therefore its adjoint 
(6.5.4) is also an isomorphism. • 

6.5.5. — Consider a Cartesian diagram of locally compact stacks 

U D X 

9 f 

V u Y 

where all maps have local sections. Using the unit id —• v* ov*, the counit u* o-u* —> id, 
and (6.5.2) we define (see Lemma 6.1.12) a transformation 

u of* f*(K),F)f*(K)) u o u* o o v a* o v . 

It is functorial with respect to compositions of such Cartesian diagrams. By the same 
method we obtain a transformation 

(6.5.6 Lu* o Rf* - Rg* o Lv* 
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6.5.6. — By Lemma 6.1.12 we know that the transformation 

u* of* 9* °v* 

is in fact an isomorphism. The derived version is more complicated and needs an 
additional assumption. 

Lemma6.5.7. — Assume that g is representable and g*: SliAbU —» SliAbV has finite 
cohomological dimension. Then the transformation (6.5.6) is an isomorphism. 

Proof. — We choose fibrant replacement functors 

/x:C(ShAbX) > C(ShAbX) Iu : c(ShAbu; C(ShAbU) . 

In terms of these replacement functors we can write the compositions of derived 
functors as descents of quasi-isomorphism preserving functors on the level of chain 
complexes: 

Lu* o Rf* u* o / „ o Ix Rg* o Lv* g*oIuov* . 

Let F G C(S l iAbX) . We must show that the marked arrows (induced by id —• Iu and 
id —> Ix) in the following sequence are quasi-isomorphisms 

u*fJx(F) Q*v*Ix(F c gjvv IX{F/ (**) gJuv*{F) . 

The arrow marked by ( * * ) is a quasi-isomorphism since the functors g*Ijj and v* 
preserve quasi-isomorphisms, and F —» Ix(F) is a quasi-isomorphism. 

The morphism ( * ) is more complicated, and it is here where we need the assump
tion. It is a property of the injective model structure on the chain complexes of a 
Grothendieck abelian category that a fibrant complex consists of injective objects. 
An injective sheaf is in particular flabby. Since v has local sections v* preserves flabby 
sheaves (Lemma 3.1.5). We conclude that v*Ix(F) is a complex of flabby sheaves. 

Let G G C(Sl iAbU) be a complex of flabby sheaves. We must show that g*(G) —> 
g*Iu(G) is a quasi-isomorphism. Since g* is an additive functor this assertion is equiv
alent to the assertion that g*(C) is exact, where C is the mapping cone of G —> Ijj(G). 
Note that C is an exact complex of flabby sheaves. It decomposes into short exact 
sequences 

0 Zn f*(K Zn+1 o , 

where Zn := ker(Cn —• Cn+1). Since g is representable we know by Lemma 3.1.4 that 
flabby sheaves are g*-acyclic. Therefore we obtain the exact sequence 

0 9*(Zn) aJCn) 9*(Zn+1) RX9ÀZn) u 

and the isomorphisms 

RkgJZn+1) Rk+19*(Zn) 
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for all k > 1. By induction we show that for k > 1 and all / € N we have 

Rkg*{zn) •:Rk+lg*(Zn-1) . 

Since we assume that g* has bounded cohomological dimension we conclude that 

Rk(Zn) = 0 for all n € Z and k > 1. In particular the sequences 

0 Rkg*{zn) •9*(C") aJZn+1) 0 

are exact for all n € Z. This shows the exactness of g*\C). • 

6.5.7. — Let now / : X —» Y be a representable map between locally compact 

stacks which is an oriented locally trivial fiber bundle of closed oriented manifolds of 

dimension n. In particular, / has local sections and is proper, and / « has cohomological 

dimension < n. We consider the canonical flabby resolution (see 3.1.10) 

0 ez Rkg*{zn) Rkg*{zn) 

Then we know that /*£72(ZX) is exact above degree n. We let K denote the truncation 

(6.3.4) of this resolution at n. Then the orientation of the bundle (see 6.4.3) gives the 

last isomorphism in the following composition 

Rkg*{zn) • f*Kn/im(f*Kn~ f*Kn) 
Rkg*{zn) Zy 

W e let TK • C(S l iAbX) —> C(S l iAbX) denote the functor which associates to the com

plex F the total complex TK(F) of F ® K. The projection formula Lemma 6.2.11 for 

the proper representable map / gives an isomorphism 

UoTKof{F) Tf.K{F) 

for complexes of flat sheaves F G C ( S l i A b Y ) . The inclusion Z x —> K and the projec

tion f*K —> Z-yl—n] induce transformations 

(6.5.8) id Tk 
Tf*K i d [ - n ] 

6.5.8. — We know by Lemma 6.3.6 that the functor 

f*oTK: ShAbX ShAbY 

is exact. We choose a functorial fibrant replacement functor id —> / on C ( S h A b X ) . 

Let R : C ( S h A b Y ) —• C ( S h A b Y ) be the functorial flat resolution functor of 3.4.1, 

extended to unbounded complexes. Then we consider the sequence 

(6.5.9) 

/ * o / o / * • U°TK o / o / * hoTKoi LoTKof*oR Tf*K°R R[-n] i d [ - n ] . 

Al l functors in this sequence preserve quasi-isomorphisms and therefore descend 

plainly to the homotopy category ZiC(ShAbX). Since /* o TK is exact the arrows 

marked by ! induce isomorphisms of functors on the homotopy category. Now observe 
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that the descent of /* o I o / * to the homotopy category is isomorphic to Rf* o Lf*. 
Therefore (6.5.9) induces a transformation 

(6.5.10) 
f 

Rf*oLf* i d [ -n ] . 

Definition 6.5.11. — The transformation (6.5.10) is called the integration map. 

It generalizes Definition 6.4.6 from the bounded below to the unbounded derived 
category. 

6.5.9. — In order to have a simple definition we have defined the integration map 
using a canonical resolution of Z x of length n. In fact, we can use more general 
resolutions. This will turn out to be useful for the verification of functorial properties 
of the integration map. 

6.5.10. — Let us first recall some notation. An object (U —> X) G X represents the 
presheaf hjj G P r X (see also 6.2.3). We let /i§ G PrAbX be the free abelian presheaf 
generated by hjj and form hjj := fitifj G ShAbX. 

Definition 6.5.12. — Let f : X —• Y be a map of locally compact stacks. A sheaf 
F G ShAbX is called locally }'^-acyclic, if for every (U —> X) G X and k > 1 we have 
Rkf*(h z 

'TT F) 0. 

6.5.11. — Let / : X —> Y be a map of locally compact stacks 

Lemma 6.5.13. — Assume that the cohomological dimension of f* is bounded by n. If 

L° L1 Ln-1 Ln 0 

is an exact complex such that the Lx are f*-acyclic (or locally /*-acyclic) for i = 
0 , . . . ,n — 1, then Ln is /*-acyclic (or locally f*-acyclic, respectively). 

This can be shown by a similar induction argument as used in the proof of Lemma 
6.5.7. • 

6.5.12. — Let / : X —> Y be a map of locally compact stacks. 

Lemma 6.5.14. — Let (V —• X) G X and F be locally f^-acyclic. Then hy <g) F is 
locally f^-acyclic. 

Proof. — Indeed, let (U —> X) G X . Then we have 

h z 
V 

s 
d 

Z 
V F) h 

d 
d s sd 

dd F . 

Furthermore we have 

s z 
V 

s z Lemma 6.2.3 
i*{h z 

u sd sd 
sd iHhn x hv) 

s 
i*h z 

'U Rkg 
sd d 

UxxV y 
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where we use the fact, that the absolute product in X is given by the fiber product 

spaces over X ([9, Lemma 2.3.3]). It follows that 

Rkh{h 'U (h i v F)) Rkh(h z 
u XxV F) 0 

for all k > 1. 

6.5.13. — Let / : X —» Y be a map of locally compact stacks. 

Lemma 6.5.15. — Assume that f is proper, representable, and that the cohomological 

dimension of f* is finite. If F £ ShAbX is flat and locally f*-acyclic, then for any 

sheaf G £ ShAbX the tensor product G ® F is f*-acyclic and locally f*-acyclic). 

Proof. — We construct a resolution • • • —• Gj —> Gj-i —> • • • —> Go —> G, where all 

Gj are coproducts of sheaves of the form hfT. In fact, we have a surjection 

hi- sd 

Rk 
g 

G 

If we have already constructed Gj — » • • • — » Go —> G, then we extend this complex by 

~^ker(Gj -+Gj _ i ) 

h u Rkg* 

Since F is flat, the complex 

Gj F - Go )F G F 

is exact. The tensor product commutes with direct sums. Therefore Gj 0 F is a sum 

of /*-acyclic sheaves, and by Lemma 6.5.14 also of locally /*-acyclic sheaves. Since 

/* commutes with direct sums (Lemma 6.3.5) the sheaves Gj 0 F are themselves /*-

acyclic and locally /*-acyclic. Wi th Lemma 6.5.13 we conclude that G®F is /*-acyclic 

and locally /*-acyclic. • 

6.5.14. — Let / : X —> Y be a map of locally compact stack. 

Lemma 6.5.16. — If f is representable, then a flasque sheaf is locally f*-acyclic. 

Proof. — Let F G ShAbX be flasque. W e consider (U —> Y) £ Y and form the 

Cartesian diagram 

V X 

9 f 

TI Y 

Then (V X) e X and we have Rf*{F)v ^ Rg*(Fv). The restriction Fv € ShAb(V) 

is still flasque. A flasque sheaf on (V) is #-soft (see [17, Definition 3.1.1]). But this 

implies that Rkg*(Fy) = 0 for k > 1. Since U —> Y was arbitrary we see that 

Rkf*(F) = 0iovk>l. • 
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6.5.15. — Let us from now on until the end of this subsection assume that f : X —> Y 
is a proper representable map of locally compact stacks which is an oriented locally 
trivial fiber bundle with fiber a closed connected topological manifold of dimension n. 

Since a flat and flasque sheaf is locally /*-acyclic and K is a truncation of a flat 
and flasque resolution of Z x we see by Lemma 6.5.13 that K is a complex of flat and 
locally /^-acyclic sheaves. These are the two properties which make the theory work. 

Let L —• M be a quasi-isomorphism between upper bounded complexes of locally 
/*-acyclic and flat sheaves. 

Lemma 6.5.17. — For every complex F G C(Sl iAbX) the induced map 

MF L) MF M) 

is a quasi-isomorphism. 

Proof. — We form the mapping cone C of L —» M. It is an exact complex of locally /*-
acyclic and flat sheaves. Since the tensor product and g* commute with the formation 
of a mapping cone it suffices to show that f*(F 0 C) is exact. 

We know by Lemma 6.5.15 that F®C is a complex of /^-acyclic sheaves. We claim 
that F (g) C is exact. 

To this end we first show that H <g) C is exact for an arbitrary sheaf H G ShAbX. 
We decompose the exact complex C into short exact sequences 

S(k): C • Zk ck Rkg*{z 0 

where Zk := ker(Cfc —> Cfc+1). Using the fact that the sheaves Ck are flat we obtain 
the exact sequence 

0 Ton (H% Zk+l) H 7k H ck /7 Rkg*{ 0 

and the isomorphisms Torm+i(jr7, Zk+1) = Torm(if, Zk) for all m > 1. Since Z is 
one-dimensional we know that Torm = 0 for m > 2. Inductively we conclude that 
Tori ( i f , Zk) ^ 0 for all k eZ.lt follows that H <g> S(k) is exact for all k G Z. This 
implies that H 0 C is exact. 

Let now F be a complex. Using the previous result and a spectral sequence argu
ment we conclude that the total complex associated to the double complex F ® C is 

exact. 
This finishes the proof of the claim. 
Let now C G C(Sl iAbX) be an exact complex of /^-acyclic sheaves. We show that 

this implies that / * ( C ) is exact. The complex C decomposes into short exact sequences 

0 Zn C n Zn+1 o , 
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where Zn := ker(Cn —> Cn+1). Using the fact that Cn is /^-acyclic we obtain the 

exact sequence 

0 Rkg*{zn) f*(Cn) >f*(zn+1] 
Rkg*{zn) 0 

and the isomorphisms 

Rkf*(Zn+1) Rk+1f*(Zn) 

for all k > 1. By induction we show that for k > 1 and all Z £ N we have 

RkUZn) lk+lf*(Zn~l) . 

Since /* has bounded cohomological dimension we conclude that Rkf*(Zn) = 0 for 

all n £ Z and k > 1. In particular the sequences 

0 f*{zn) 
Rkg*{zn) / * ( £ n + 1 ) 0 

are exact for all n £ Z. This shows the exactness of / * ( C ) . 

6.5.16. 

Lemma 6.5.18. — The integration map is independent of the choice of a flat locally 

f^-acyclic resolution K ofZ^ of length n. 

Proof. — Let K, L are two such resolutions. Assume that there exists a quasi-

isomorphism K —> L. The identification 

c o k e r ^ L " " 1 - f*Ln) coker( LK71-1 • f*Kn) ^ n / * ( l x ) Z Y 

gives a map f*L —> ZY[—n] which induces the transformation T^x, —> id of degree 

—n. 

It induces a commutative diagram 

f*ir f*TKIf* f*TKf* f*TKf*R Rkg*{zn) R id 

f*If* f*TLIf* f*TLr f*TLf*R •Tf.LR R id 

The upper horizontal composition is the integration map denned using K (see 

6.5.9), and the lower horizontal composition is the integration map denned using L. 

W e see that both maps are equal. 

Let now K, L again be flat and locally /^-acyclic resolutions of Z x of length n. W e 

complete the proof of the Lemma by showing that there exists a third such resolution 

M together with quasi-isomorphisms K ^> M L. 

The maps Z x —> K and Z x —> L, respectively, induce maps K —> K <£> L and 

L D f which are auasi-isomorohisms. W e further eet induced Quasi-isomorphisms 

(6.5.19) K Rkg*{zn) L] L Rkg*{z L). 
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We let M := T-nffl(K®L). The maps (6.5.19) factorize over M. Note that K®L is 
flat. Since £7̂  and truncation preserve flatness (see Lemma 3.1.12), we see that M is 
flat. Since £7? in fact produces flasque and hence locally /^-acyclic resolutions, and the 
cohomological dimension of /* is bounded by n we conclude by Lemma 6.5.13 that 
M is locally /^-acyclic. • 

6.5.17. — In this paragraph we show that the integration map is functorial. Let 
g : Y —> Z be a second proper and representable map of locally compact stacks which 
is an oriented locally trivial fiber bundle of closed m-dimensional manifolds. 

Lemma 6.5.20. — We have a commutative diagram 

Rg* o Rf* o Lf* o Lg> R(gof).oL(gof)* 

Rkg*{zn) 
Jgof 

Rg*oLg*[-n] - '9 id[—n — m] 

Proof. — The following sequence of modifications transforms the down-right compo
sition into the right-down composition. 

(6.5.21; 9.1 f.If 9* • g.If.TKIf*g' g*If*TKf*g*R gJg*R 

g*TLIg*R 9*TLg*R id 

(6.5.22) gjfjf*g* g*TLIfJf*g* g*TLIf*TKIf*g g*TLf*TKIf*g* 

g*TLf*TKf*g*R g*TLg*R • id 

(6.5.23; gjfjf*g* g*TLlf*lf*g* g*iLj*ij g > g*TLf*TKIf*g* 

9*TLf*TKf*g*E g*TLg*R id 

(6.5.24) 9.1 f.If* 9* 9*f*If*9* 9.TLfJf*g* > 9.TLUTKIf*g* 

- g.TLf.TKf*g'R g*TLg*R id 

[6.5.25) 9*f.If*9* 9,TLfJf*g* g.TLf,TKIf*g* g.TLUTKmrg* 

g*Tilf*TicRf*g*R g*TLg*R id 

(6.5.26; g.f.ifg* 9.TLf.TKirg* g.f.TfL KRif*g* 

- g*f*Tf*L iKRf*g*R 9*TLg*R id 

(6.5.27) (9 o f).I(g o / ) * • (g o f).TMI(g o / ) * (9 o f)*TM(g o f)*R id 
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The transition from (6.5.21) to (6.5.22) uses the fact that tensoring with L and the 
map id —» TL can be commuted with the intermediate operations. In order to go 
from (6.5.22) to (6.5.23) we use the fact that #*TL preserves quasi-isomorphisms. The 
same reason and the fact that /* preserves fibrant objects is behind the transition from 
(6.5.23) to (6.5.24). We use e.g. the isomorphism g*f*If*g* ^ g*If*If*g*. There is a 
vertical quasi-isomorphism from (6.5.25) to (6.5.24). The step from (6.5.25) to (6.5.26) 
uses the isomorphism TLJ+TKR —> f*Tf*L®KR given by the projection formula. The 
weak equivalence in (6.5.26) is not obvious (since f*L <g) K is not obviously #*/*-
acyclic), but follows from the fact, that this line is isomorphic to the previous (6.5.25). 
In the last step from (6.5.26) to (6.5.27) we use the map f*L (g) K —> M given by 
a truncated flabby resolution of f*L ® K and the fact that the integration map is 
independent of the choice of the resolution. • 

6.5.18. — Consider a cartesian diagram of locally compact stacks 

(6.5.28) V V X 

9 f 

u u Y 

W e assume that / and u, and hence also g and v have local sections. Furthermore we 
assume that / is representable and a locally trivial oriented fiber bundle with a closed 
manifold as fiber. Then g has these properties, too. The orientation of g is induced by 

Rng*Zv Rkg*{zn) u*Rnf*Zy- Rkg* Z u 

W e get diagrams 

(6.5.29) u'Rf.f* 
(6.5.6) 

Rg*v*r 

u* 
d (6.5.5) 

sd 

9 
Rg*g*u* 

(6.5.30) Ru*Rg*g* Rf*Rv*g* 

Ru* 
J9 

Ru* 
Ru+ 

Rf*f*Ru* 

For the upper horizontal transformation in (6.5.29) we use 6.5.3, and for the right 
vertical one (6.1.15) or 6.5.7. Note that only in the bounded below derived category 
the right vertical morphism is an equivalence for general u (which is anyway the 
situation in which we will apply the assertion). 
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Lemma 6.5.31. — The diagrams (6.5.29) and (6.5.30) commutes. 

To prove Lemma 6.5.31, we start with the following two technical lemmas. 

Lemma 6.5.32. — Given a Cartesian diagram (6.5.28) of locally compact stacks such 
that f and u have local sections, then for sheaves K G ShAbX and F G SliAbU the 
following diagram commutes: 

f*K u*F UK u*F 

6.2.8 6.2.8 

Rkg* îf*u*F) Rkg*{zn) F) 

6.1.12 

Rkg*{zn) : v*g*F) Rkg*{zn) F) 

6.2.8 6.2.8 

LvJv*K 9*F) u*g*(v*K 9*F) 

6.6.8 6.6.8 

hJv*K )g'F) h*(v*K 9*F) 

where h := f ov = uog. 

Proof. — By Definition 6.2.8, the left vertical morphism is the image of the identity 
under the following sequence of maps 

Uom(v*K g*K,v*K )Q*K) Hom(v*f*LK v*v*g*K,v*K >g*K) 

H o i m V (f*LK f*u*K), v*K®g*K) Rom(f*(LK u*K),v*(v*K 9*K)) 

Hom(LK u*K,f*v*(v*K 9*K)) H o m ( / . K u*K. hJv*K >9*F)) 

The right vertical morphism, on the other hand, is given by 

Bom(v*K )g*Kyv*K )Q*K) Hom(#* g*v* K » g u u*K, v K >9'K) 

Uom(g*(u*f*K u*u*K),v*K 9*K) Kom(u*(ftK u*K),g*(v*K <9*K)) 

H o m ( / . Ä u*K, u*g*(v*K i Rkg*{zn) Hom(ffK 5 u*K, K(v*K 9*F)). 

In both cases, we first use the counit, then "commute" pushdown and pullback using 
Lemma 6.1.12 and finally use adjunctions. By Lemma 6.1.12, the two ways to apply 
the counit and the push-pull isomorphism commute. This implies commutativity of 
the diagram of homomorphism sets, and therefore the commutativity of the original 
diagram. • 
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Lemma 6.5.33. — In the situation of Lemma 6.5.32 for K e ShAbX and F G SliAbY 
the following diagram commutes: 

u*(LK F) 
6.2.8 

u*UK f*F) 

6.2.5 6.1.12 

u*LK >u*F 9*v*{K Rkg*{zn) 

6.1.12 6.2.5 

Q*V*K )U*F 9*{v*K )v*f*F) 

6.6.9 

g*v*h u*F 
fi 2 S 

gJv*K g*u*F) 

Proof. — The left vertical and lower composition is by definition the image of the 
identity under the sequence of maps 

Hom(.ft 5 f*F, h )f*F) unit Hom(A f*F,v*v*(E f*F)) 
adj Rom(v*(K f*F),v*(K f*F)) 

Rkg*{zn) q*u*F,v*K q*u*F) 

counit Hom(g*g*v*K g*u*F,v*K ^9*u*F) 

adj H o m f o ^ * ^ u*F,aJv*K 9*u*F)) 

Rom(u*(f*K F),gJv*K g*u*F)). 

The upper and right vertical composition is the image of the identity under the se
quence of maps 

Hom(ü: Sf*FK )f*F 
COUNIT 

H o m ( R / . * I f*F,K >f*F) 

adj Kom(f*K F UK Rkg*{zn) 

unit H o m ( / „ A : iFu*u*UK Rkg*{zn) 

adj 
Uom(u*(LK >F),u*f*(K f*F)) 

Eom(u*(LE >F),g*v*(K Rkg*{zn) 

• H o m ( u * ( / . Ä >F),gJv*K >Vf*F)) 

Rom(u*(f*K $F),gJv*K i>g*u*F)). 

These two maps coincide, as follows from the fact that units and counits commute 
(in the appropriate sense) with a* and 0*. • 
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6.5.19. — We now show that (6.5.29) commutes. We simplify the definition of the 

integration map which is represented by all horizontal compositions in the following 

diagram. 

fJf* f*TKIf* UTKpR id 

Rkg*{zn) - UTKiri UTKf*RI -I 

/ * / * / - f*TKf*I UTKf*RI I 

Rkg*{zn) f+TKrim UTKf*Rm im 

Rkg*{zn) f*TKf*9l- - f*TKf*R& 91 

Let us comment about the isomorphisms in the first column. Let F G C(Sr iAbX). 

Then f*If*(F) —> f*If*I(F) is a quasi-isomorphism since / * / / * preserves quasi-

isomorphisms and F —> 1(F) is a quasi-isomorphism. The map f*f*I(F) —> 

f*If*I(F) is a quasi-isomorphism since 1(F) is a complex of injective, hence flabby 

sheaves, the functor / * preserves flabby sheaves, and therefore the acyclic mapping 

cone of C := C(f*I(F) —• If*I(F)) is an exact complex of flabby sheaves. In 

particular it is an exact complex of /*-acyclic sheaves. Since /* has bounded coho

mological dimension this implies that / * ( C ) is exact (see the argument in the proof 

of Lemma 6.5.17), and therefore f*f*I(F) —> f*If*I(F) is a quasi-isomorphism. 

The map f*f*I(F) —> f*f*I(7l(F) is a quasi-isomorphism by a similar argument. 

In fact, / * (71(F) —> f*I{7Z(F) is a quasi-isomorphism of /^-acyclic sheaves. This 

implies again by the mapping cone argument, that f*f*9£(F) —> f*f*I£7£(F) is a 

quasi-isomorphism. 

The lower line of the diagram (6.5.29) expresses the integration map in terms of 

the flabby resolution functor 9L Since we know that 9£ preserves flat sheaves (we do 

not know this for I) we can drop the flat resolution functor R from the construction of 

the integration by adopting the convention that the functors are applied to complexes 

of flat sheaves. 
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W e get the following commutative diagram 

(6.5.34) 

u*Rf*f* Rkg*{zn) 

Rkg*{zn) 

u* 

u*LTKrm u*Tf,Km Rkg*{z 

g*v*TKrm Rkg*{zn)Rkg*{z Rkg*{zn) 

g*Tv.Kv*f*SM Tg.v,Ku*m Rkg*{ 

g*Tv.Kg*u*m Tg,v.Ku*m Rkg*{ 

9*Tv*Kq*mW Rkg*{zn)v Rkg*{ 

Rg*g*u* Rkg*{zn) J9 Rkg*{zn  

The commutativity of all the small squares is evident. The commutativity of the large 
rectangle relies on the fact that the projection formula is compatible with pullbacks, 
this is the statement of Lemma 6.5.33. The commutativity of the boundary of this 
diagram gives (6.5.29). 

6.5.20. — In order to show that (6.5.30) commutes we start with the following 
observation. 

Lemma 6.5.35. — Assume, in the situation of Lemma 6.5.32, that K is a flat locally 
f*-acyclic resolution ofZx of length n, and that f is a projection of a locally trivial 
orientable fiber bundle of n-dimensional closed manifolds. Assume that f*K —• Z y is 
an orientation. Let g*v*K —> be the induced orientation of the pullback bundle g. 
Then the following diagram commutes, where all the horizontal maps are given by the 
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orientations. 
UK u*F Rkg u+F 

u*(u*f*K Zy Rkg*{zn) F) 

u*(g*v*K • F ) uJZir F) 

Proof. — The upper diagram commutes because of the naturality of the homomor-

phism of the projection formula, the lower diagram commutes by the definition of the 

induced orientation of g. • 

To understand the relation between derived pushdown along a non-representable 

map and integration we need to use an explicit model of the derived pushdown. If 

u: U —> Y is a morphism between locally compact stacks which has local sections, 

then Ru* is given by CA ° 9£, where £7£ is the functorial flabby resolution functor, 

and CA is defined in Section 3.2, using an atlas A —> U. Note that CA indeed can be 

decomposed as the composition of a functor LA on sheaves on U and u*. Here LA is 

the sheafification of the functor on presheaves given by 

s s k 
A tF(W •U) s A Xu • • • Xtt A XttW U 

k + 1 factors 

i.fi. PI k 
'A Pk*pt, with pk: A Xtt • - Xtt A U. 

k + 1 factors 

Lemma 6.5.36. — In the situation of Lemma 6.5.35, we obtain a commutative dia

gram 

LTKf*u*LAff£ f*TKf*u*LA9l Rkg*{zn)Rkg*{ U*LA£7£ 

f*TKv*Lg.Ag*m 
3.2.4 

UTKv*g*LA9l U*TU*^KLA9£ U*LA&£ 

f*v*Tv*Kg*LA9£ U*T9^V*KLA&£ u*LA9£ 

u*g*Tv*Kg*LA9£ u*T9mV.KLA9l u*LA9£. 

Here, the right horizontal maps are given by the orientations f*K —• Z y and g*v*K 

Zu-

Proof. — This is the direct translation of Lemma 6.5.32 and Lemma 6.5.35. 
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Note that the upper composition is a representation (when applied to flat sheaves) 
of 

Rf*f*Ru* d Ru*. 

The leftmost vertical arrow represents the morphism 

(6.5.37) Rf*f*Ru* Rf*Rv*g*, 

since g* preserves flabby sheaves, and V*L9*A indeed is a model for C9*A, which can 
be used to calculate Rv*. 

Therefore the diagram in Lemma 6.5.36 contains one part (lower right-up) of the 
diagram (6.5.30). 

6 . 5 . 2 1 . — To represent the other composition of the diagram (6.5.30), we have to 
commute not only u* but also LA with the other operations. Recall that LA provides 
some kind of a resolution, i.e. we have a canonical map id —» LA, which is used in the 
Lemma below. 

Lemma 6.5.38. — In the situation of Lemma 6.5.35, the following diagram commutes, 
where the horizontal maps are induced by the orientation of g. 

u*TgmV*KLA&% u*TzLAcJt, 

U*TLAg^V*KLA Hl u+TLAzLA9t 

U^LATQ^K 91 u*LATzS7l 

The second vertical map in each column follows from a variant of the projection for
mula, using that LA is given by application of (pk)*Pk (or by directly inspecting the 
definitions). 

Proof. — If G —> H is a morphism of sheaves, then we get a natural transformation 
of functors TQ —> TH- This naturality implies the commutativity of the first square. 
The second square is commutative by the naturality of the morphism in the projection 
formula. • 

Observe that we have a natural isomorphism g*LA — Lg*Ag*-
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Lemma 6.5.39. — In the situation of Lemma 6.5.35, we obtain the following commu

tative diagram 

u*g*Tv*Kg*LA9£ u*T9mV*KLA: 9£ 

u*g*TLg*AV*Kg*LA\ 9£ U*Tg^Lg,AV*KLA 91 

3.2.4 

u*g*TL v*KLg*Ag* 9£ U*TLA9+V*KLA i9£ 

u*g*Lg*ATv*Kg* 9£ U*LAT»V*K^ 91 

3.2.4 

u*LAg*Tg^v*Kg* 91 u*LATg^v*K 91 

Proof. — The upper square is commutative because of the naturality of the morphism 

in the projection formula. The commutativity of the lower rectangle follows from 

Lemma 6.5.32, as we basically have to commute two different applications of the 

projection formula. • 

We now prove the commutativity of (6.5.30). Using explicit representatives of the 

maps in question, we obtain (applied to flat sheaves) 

Rf*f*Ru* Rf*f*Ru* df 
Ru* 

Ru* 

f*TKf*u*LA9£ TfmKu+LA9i u*LA9£ 

u*g*Tv*Kg*LA9£ u*Tg^v*KLA9£ u*LA9£ 

u*LAg*Tg^v*Kg*9£ u*LATg^v*K9t u*LATz9£ 

u*LA9£g*T9mV*Kg*9£ u*LA9£Tg„v*K9£ u*LA9£ 

Ru*Rg*g* Ru*Rg*g* 
sfff 

9 Ru* 
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Here, the first and the last rows are just added as illustration what the next or 
preceding line, respectively, computes in the derived category. The map from the 
third-last to the second-last row is induced by the inclusion into the flabby resolution. 
This step is necessary because we don't know that the functors in question are u*-
acyclic, and explains why one can directly define only the map f*Ru* —> Rv*g*, and 
why it is hard to show that this is an equivalence. The other vertical maps, and the 
commutativity of the remaining four squares, are given by Lemmas 6.5.36, 6.5.38, 
6.5.39. 

Note that the left vertical composition is the composition 

Rf*f*Ru* Rf*Rv*g* Ru*Rg*g*, 

as shown in the reasoning for (6.5.37V The assertion follows. 

6.5.22. — Compared with the simplicity of its statement the proof of Lemma 6.5.31 
seems to be too long. But let us mention that the proof of a similar result in the 
algebraic context is quite involved, too. The book [12] is devoted to this problem. 

6.6. Extended sites 

6.6.1. — We consider the lower right Cartesian square of the diagram 

UxYB B 

A x y X U x y X X 

f 

A U Y 

in stacks where U, X , Y are locally compact. 

Lemma 6.6.1. — If U is a space or f is representable, then UxyX is a locally compact 
stack. 

Proof. — We first assume that U is a locally compact space. Let B —» X be a locally 
compact atlas. Then C / x y J B — > C / x y X i s a n atlas. Indeed, surjectivity, representabil-
ity, and local sections for this map are implied by the corresponding properties of the 
map B —> X. The stack U X y B is a space since U —* Y is representable by Proposi
tion 6.1.1. By Lemma 6.1.9 the space U X y B is locally compact. Furthermore, again 
by Lemma 6.1.9, 

(17 x y B) X(UXYX) (UxYB) U x y (B xx B) 
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is locally compact since B X j B is locally compact. Hence the atlas U xYB —» U xYX 
has the properties required in Definition 2.1.2 so that U Xy X is a locally compact 
stack. 

We now assume that / is representable. Let A —> U be a locally compact atlas 
such that A xv A is locally compact. Then A xY X = A Xf/ ( [ / X y I ) - > [ / x y I 
is an atlas of U Xy X. We again verify the properties required in Definition 2.1.2. By 
the special case of the Lemma already shown this atlas is locally compact. Moreover 
[A Xtj (U xY X)] xUXyX [A Xjj (U xY X)] = (A xv A) xY X is locally compact. • 

6.6.2. — If / : X —> Y is a representable map with local sections between locally 
compact stacks, then for (U —> Y) G Y we have pf*hrj = huXxy (see the proof 
of Lemma 6.6.6 below). If we drop the assumption that / is representable, then in 
general pf*hrj is not representable. In order to overcome this defect we enlarge the 
site X to X so that it contains the stacks U XxY-+X over X. 

We consider the 2-category Stackstop'lc/is,rePX of locally compact stacks U —• X 
over X, where the structure map is representable and has local sections. A morphism 
in this category is a diagram 

U V 

X 

consisting of a one-morphism and a two-morphism. The composition is defined in the 
obvious way. If there is a two-morphism between two such one-morphisms, then it is 
unique by the representability of the structure maps. Therefore Stackstop'lc/iSjrepX is 
equivalent in two-categories to the one-category obtained by identifying all isomorphic 
one-morphisms. 

6.6.3. — Let / : X —» Y be a map between locally compact stacks. 

Definition 6.6.2. — We let X be the category obtained from Stackstop,lc/iS5repX by 
identifying all isomorphic one-morphisms. 

We now define the topology on X . A covering family (Ui —• U) of (17 —• X) G X 
is a family of locally compact stacks over U such that Ui —> U is representable, has 
local sections and U^jUi —> U is surjective Using Lemma 6.6.1 one easily checks 
the axioms listed in [25, 1.2.1]. 

Let X be the site with the same underlying category as X , but with the topol
ogy generated by the covering families of (U —• X) given by families (Ui U) G 

(x) These maps are actually equivalence classes, but in order to simplify the language we will 
not mention this explicitly in the following 
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Stacks op' C/X such that Ui —• U is a map from a locally compact space with local 
sections and UiUi —» U is surjective. 

Lemma 6.6.3. — We have a canonical isomorphism 

ShX ShX . 

Proof. — The covering families of X are covering families in X . Here we use Propo
sition 6.1.1 in order to see that the maps Ui —> U from spaces Ui are representable. 
On the other hand, every covering family (Ui —• U) of (U —> X) in X can be refined 
to a covering family in X by choosing a locally compact atlas Ai —• Ui for each Ui. 
This implies the lemma. • 

6.6.4. — The natural functor Top lc /X Stackstop'lc/X from locally compact 
spaces over X to locally compact stacks over X induces a map of sites j : X —> X . 

Lemma 6.6.4. — The restriction functor 

j * : S h X ShX 

is an equivalence of categories. 

Proof. — The inverse of j * is the functor given by 

3.F{U) lim 
(V^U)GJC//U 

F(V) 

for all (U X) G X , where X//U is the category of all pairs (V G X , j(V) U G 
M o r ( X ) ) such that the map j(V) —> U has local sections. 

If U G j ( X ) , then (U,idj{u): j(U) j(U)) is the final object of X/ /J7 . This gives 
a natural isomorphism j*j*(F)(U) = F(U). 

We now define a natural isomorphism j*j*(F) —> F for all F G ShX. Let ( [ / —• 
X) G X . The family (V —> f / ) x / / c / is a covering family of J7 —> X in X . Since F is 
also a sheaf on X by Lemma 6.6.3 we get an isomorphism 

J*f(F)(U) lim 
(V->17)€X//E/ 

Rkg*{zn) Rkg*{zn) 

6.6.5. 

Lemma 6.6.5. — A map f : X —• Y between locally compact stacks induces a map o] 
sites 

/ " : Y —> X 

by 
Rkg*{zn) :=U XyX^X 
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Proof. — Indeed, if U —> Y is a map from a locally compact space, then the stack 
U X y X is locally compact by Lemma 6.6.1. If (Ui —> U) is a covering family of 
(U —> Y) G Y by open subspaces, then (Ui xY X ^ U X y l ) i sa covering family in 
X by open substacks. 

Furthermore it is easy to see that ft preserves fiber products, i.e. if (Ui —• U) is a 

covering family and V —> U is a morphism in Y , then ft(Ui xvV) = ft(Ui) x 

ft(V). • 

6.6.6. — We consider a map / : X —• Y between locally compact stacks. Then we 
have an adjoint pair of functors 

/ » : S h Y ShX : ( / » ) * 

Lemma 6.6.6. — We have an isomorphism of functors j* o /J = / * : S h Y —• ShX 

Proof. — The map j : X —> X induces a map pj*: P r X —• P r X . We show the relation 
first on representable presheaves. Let {U —> Y) € Y and observe that (U X y X —> 
X) € X by Lemma 6.6.1. The following chain of natural isomorphisms (for arbitrary 
F € P r X ) shows that flhv ^ hUXYx-

KomPty.(f!hu,F) H o m p r Y ( / k / , ( / T F ) 

(PYF(U) 

F(p(U)) 

F(U xYX) 

HomPrx (huxvx,F) . 

For (U -> Y) e Y we have Pf*hv ^ pj*hUxYX. Indeed, for (V -> X) e X we have 

p. f fcc/xvx(tO H o m ^ O X n C / x y X ) Rkg*{zn)Rkg*{z 

where the marked isomorphism can be seen by making the definition of pf* explicit. 
Since pj* o Pfl and pf* commute with colimits the equation pj* o p / | = Pf* holds 
on all presheaves. The restriction to sheaves (note that all functors preserve sheaves) 
gives j*ofl ^f*. • 

By adjointness we get 

(6.6.7) Rkg*{zn) xc 

6.6.7. — Consider two composeable maps between locally compact stacks. 

X L df 9 Z . 

The following lemma generalizes [9, Lemma 2.23] by dropping the unnecessary addi
tional assumptions that / has local sections or g is representable. 
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Lemma 6.6.8. — We have an isomorphism of functors g*of* = (gof)* : ShX —> ShZ. 

Proof. — We consider the following diagram: 

Sh3 
if 

ShX 

Rk) fdf 

(so/). S h Y 
xc 

S h Y 

9* (9*)* 

ShZ 
i f 

^ShZ 

((<?o/)V 

We know that the squares commute (Equation (6.6.7)), and that the horizontal arrows 
are isomorphisms (Lemma 6.6.4). It follows from the constructions that 

peg* (9 of) 

on the level of sites. Hence the right triangle commutes, too. This implies commuta
tivity of the left triangle. • 

Taking adjoints we get: 

Corollary 6.6.9. — We have an isomorphism / * o ^ * = ( ^ o / ) * : ShZ —• ShX. 

6.6.8. — W e consider a topological stack X and the inclusion j : X —» X which 
induces by Lemma 6.6.4 an equivalence of categories of sheaves 

j * : ShX S h X : j * . 

Note that the notion of flabbiness depends on the site. 

Definition 6.6.10. — We call a sheaf F G ShAbX strongly flabby if j * (F) is flabby. 

Since flabbiness is a condition to be checked for all covering families and since all 
covering families in X induce covering families in X it follows that a strongly flabby 
sheaf is flabby. Since injective sheaves are strongly flabby each sheaf admits a strongly 
flabby resolution. 

6.6.9. — Let / : X —• Y be a morphism of locally compact stacks. 

Lemma 6.6.11. — Strongly flabby sheaves are j'^-acyclic. 

Proof. — In view of Lemma 6.6.6 it suffices to show that flabby sheaves in ShAbX 
are /^-acyclic. W e now can write /* = $ opf* o i , where $ and i are the sheafification 
functor and the inclusion of sheaves into presheaves for the tilded sites, and p/* = 
p(f*)*: P r X - » P r Y . Since pf*(F)(V —> Y) = F(V xY X -> X) we see that *7* 
is exact. Since strongly flabby sheaves are i-acyclic, and $ is exact, it follows that 
strongly flabby sheaves are /*-acyclic. • 
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Lemma 6.6.12. — The functor 

/* : ShAhX ShAbY 

preserves strongly flabby sheaves. 

Proof — We must show that /* preserves flabby sheaves. Let F G ShAbX and r = 
(Ui —> U) be a covering family of (U —> Y) in Y . We must show that the Cech complex 
C ( r , / . F ) is acyclic. Note that f+F{V) = F ( F x y X ) . The family / « ( r ) : = (t/i x y I - » 
(7 x y X ) is a covering family of U X y X in X . We see that C ( r , / * F ) = C(ft(r), F). 
Since F is strongly flabby, the complex C(f^r, F) is acyclic. • 

6.6.10. — Consider again a sequence of composeable maps between locally compact 
stacks. 

X 
f 

Y g Z . 

The following Lemma generalizes [9, Lemma 2.26], again by dropping the unnecessary 
assumptions that / has local sections or g is representable. 

Lemma 6.6.13. — We have an isomorphism of functors 

Rg* o Rf* R(gof)*:D+(ShAhbX] D+(ShAbZ). 

Proof. — The isomorphism (g o / ) * —> g* o induces a transformation R(g o / ) * —> 
•Rp* ° i?/*- Since injective sheaves are strongly flabby, /* preserves strongly flabby 
sheaves, and strongly flabby sheaves are g*-acyclic, this transformation is indeed an 
isomorphism. • 
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