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FIXED POINT THEORY AND 
TRACE FOR BICATEGORIES 

Kate PONTO 

Abstract. — The Lefschetz fixed point theorem follows easily from the identification of 
the Lefschetz number with the fixed point index. This identification is a consequence 
of the functoriality of the trace in symmetric monoidal categories. 

There are refinements of the Lefschetz number and the fixed point index that give 
a converse to the Lefschetz fixed point theorem. An important part of this theorem 
is the identification of these different invariants. 

We define a generalization of the trace in symmetric monoidal categories to a trace 
in bicategories with shadows. We show the invariants used in the converse of the 
Lefschetz fixed point theorem are examples of this trace and that the functoriality of 
the trace provides some of the necessary identifications. The methods used here do 
not use simplicial techniques and so generalize readily to other contexts. 

Résumé (Théorie du point fixe et trace pour les bicatégories). — Le théorème du point 
fixe de Lefschetz découle facilement de l'identification du nombre de Lefschetz avec 
l'indice de point fixe. Cette identification est une conséquence de la fonctorialité de 
la trace dans les catégories symétriques monoïdales. 

Ce sont des raffinements du nombre de Lefschetz et de l'indice de point fixe qui 
fournissent la réciproque du théorème du point fixe de Lefschetz. Une partie impor
tante de ce théorème est l'identification de ces invariants. 

Nous définissons une généralisation de la trace dans les catégories symétriques 
monoïdales, en une trace dans les bicatégories avec ombres. Nous montrons que les 
invariants utilisés dans la réciproque du théorème du point fixe de Lefschetz sont des 
exemples de cette trace, et que la fonctorialité de la trace fournit certaines identifica
tions nécessaires. Les méthodes présentées ici n'utilisent pas de technique simpliciale 
et peuvent donc être généralisées facilement dans d'autres contextes. 
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INTRODUCTION 

There are many approaches to determining when a continuous endomorphism of 
a topological space has a fixed point. One of the simplest is given by the Lefschetz 
fixed point theorem. 

Theorem A (Lefschetz fixed point theorem). — Let M be a compact ENR and f: M —> 
M be a continuous map. If f has no fixed points then the Lefschetz number of f is 
zero. 

The Lefschetz number of a map is defined using rational homology and so is rela
tively easy to compute. Further, if M is a simply connected closed smooth manifold 
of dimension at least three then a converse to the Lefschetz fixed point theorem also 
holds. 

Theorem B. — Let f': M —> M be a continuous map of a simply connected closed 
smooth manifold of dimension at least three. Then the Lefschetz number of f is zero 
if and only if f is homotopic to a map with no fixed points. 

Note that we have replaced 'the map / has no fixed points' with 'the map / is 
homotopic to a map with no fixed points'. This change only reflects the fact that 
the Lefschetz number is defined using homology and so cannot distinguish between 
homotopic maps. In particular, the Lefschetz number cannot determine if a map has 
no fixed points, it can only determine if it is homotopic to a map with no fixed points. 

Unfortunately, Theorem B does not hold if we remove the hypothesis that the space 
is simply connected. However, by sacrificing some of the computability we can refine 
the Lefschetz number to an invariant, called the Nielsen number, that detects if the 
map has fixed points. 

Theorem C. — Let f: M —• M be a continuous map of a closed smooth manifold of 
dimension at least three. The Nielsen number of f, N(f), is the minimum number of 
fixed points among all maps homotopic to f. In particular, N(f) is zero if and only 
if f is homotopic to a map with no fixed points. 

The idea behind the Nielsen number is to incorporate information about the fun
damental group into the invariant itself. This additional information corresponds to 
recording which fixed points can be eliminated by a homotopy of the original map. 
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viii INTRODUCTION 

The Nielsen number is not the most convenient description of this information for 
defining generalizations of this invariant to other categories and for proving results 
about relationships between the Nielsen number and basic topological constructions 
such as cofiber sequences or products. The invariant that retains the necessary infor
mation is called the Reidemeister trace. This invariant was defined by Wecken and 
Reidemeister in [40, 45]. It can be used to prove a theorem similar to Theorem C. 

Theorem D. — Let f': M —> M be a continuous map of a closed smooth manifold 
of dimension at least three. The Reidemeister trace of f is zero if and only if f is 
homotopic to a map with no fixed points. 

Classically, all four of these results were proved using simplicial techniques. In 
[11], Dold and Puppe proposed an alternative approach. Their idea was to focus on 
the identification of the Lefschetz number, which is a global invariant, with a local 
invariant, the fixed point index. It is immediate from the definition that the fixed 
point index is zero for a map that has no fixed points or is homotopic to a map 
with no fixed points. Using this observation, the Lefschetz fixed point theorem is a 
consequence of the identification of the Lefschetz number with the index. 

Dold and Puppe approached this identification by defining a more general con
struction that includes both of these invariants as special cases. Their construction 
is a 'trace' in any symmetric monoidal category. In some cases the trace is functo-
rial. Dold and Puppe showed that the identification of the Lefschetz number with the 
index is an example of this functoriality. 

In addition to giving an alternate proof of the Lefschetz fixed point theorem, Dold 
and Puppe's definition of trace can be used to describe generalizations of the fixed 
point index to other categories. If / : X —> X and p: X —> B are continuous maps 
such that p o / = p we say that / is a fiberwise map. In [8], Dold defined an index 
for fiberwise maps and showed that the index is zero for a map that is fiberwise 
homotopic to a map with no fixed points. The fiberwise index is an example of the 
trace in symmetric monoidal categories. 

It is possible to prove results for the trace in symmetric monoidal categories that 
can be applied to the special cases of the Lefschetz number and the index. For example, 
the Lefschetz number and the index are both additive on cofiber sequences. This 
follows from the additivity of the trace in (some) symmetric monoidal categories, 
see [32]. 

Unfortunately, the trace in symmetric monoidal categories cannot be used to de
scribe the invariants of Theorems C and D. Invariants that include information about 
the fundamental group do not fit into a symmetric monoidal category. However, by 
replacing symmetric monoidal categories by appropriate bicategories and similarly 
modifying the definition of the trace we can accommodate these invariants. 

Here we implement this philosophy. First we show that the Reidemeister trace is 
an example of a more general trace. This trace is defined here and is a trace in bicat
egories with some additional structure; these bicategories are called bicategories with 
shadows. Just as the Lefschetz number can be identified with the fixed point index, 
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INTRODUCTION ix 

there is more than one description of the Reidemeister trace. There are generalizations 
of the fixed point index, defined by Reidemeister and Wecken, and of the Lefschetz 
number, defined by Husseini in [19]. Both of these invariants are examples of the trace 
in bicategories with shadows, and the functoriality of the trace can be used to identify 
them. There is also an invariant defined by Klein and Williams in [25] that can be 
identified with another example of the trace in a bicategory with shadows. 

Next we show that this change in perspective gives definitions and proofs that 
generalize more easily than the classical approaches. One element of the classical 
invariants that causes problems for equivariant and fiberwise generalizations is the 
role played by a base point. Both classical definitions of the Reidemeister trace require 
that a base point be chosen, but a different choice of the base point does not change 
the invariant. Modified forms of the Reidemeister trace can be defined without a base 
point. We show that these invariants are also examples of trace in bicategories, and 
we use the formal structure of the trace to show that these unbased invariants can be 
identified with the classical invariants. 

The second source of problems for generalizations is only obvious when trying to 
prove a converse to the Lefschetz fixed point theorem like Theorem D. In [41], Scofield 
defined a generalization of the Nielsen number to fiberwise maps and gave an example 
that showed this invariant does not give a converse to the fiberwise Lefschetz fixed 
point theorem. More recently, Klein and Williams have defined a fiberwise invariant 
that does give a converse to the fiberwise Lefschetz fixed point theorem. 

Theorem E. — Let M —> B be a fiber bundle with closed smooth manifold fibers F 
such that dim(F) — 3 > dim(I?). A fiberwise map f': M —• M is fiberwise homotopic 
to a map with no fixed points if and only if the fiberwise Reidemeister trace of f is 
zero. 

There is another invariant, defined by Crabb and James in [6], that can help to 
explain the discrepancy between Scofield's invariant and Klein and Williams' invari
ant. The invariant defined by Crabb and James is a derived form of the Reidemeister 
trace and so in the transition from a classical invariant to a fiberwise invariant it is 
sensitive to information that the other forms of the Reidemeister trace, like Scofield's 
invariant, miss. Crabb and James' invariant can be identified with the invariant de
fined by Klein and Williams. Crabb and James' invariant, in both its classical and 
fiberwise forms, is an example of the trace in bicategories with shadows. 

More concretely, our goal is to convert Dold and Puppe's outline for proving The
orem A into an approach for proving Theorems D and E. Dold and Puppe's proof 
identified the Lefschetz number and the fixed point index and then used the observa
tion that the index is zero for maps with no fixed points. Our first step is the same. 
We start by identifying the form of the Reidemeister trace defined by Husseini with 
Reidemeister and Wecken's form of the Reidemeister trace. Unfortunately, it is not 
obvious that Reidemeister and Wecken's form of the Reidemeister trace is zero only 
when the map is homotopic to a map with no fixed points. The next step in our proof 
is to identify Reidemeister and Wecken's form of the Reidemeister trace with Crabb 
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X INTRODUCTION 

and James' version. This invariant can then be identified with the invariant defined 
by Klein and Williams. Klein and Williams' proof in [25] then completes the proof of 
Theorem D. 

To implement this plan we need to make connections between four different invari
ants. The first three invariants are examples of the trace in bicategories with shadows. 
Functoriality gives an identification of the Reidemeister trace defined by Husseini with 
the Reidemeister trace defined by Reidemeister and Wecken. Functoriality also shows 
that the Reidemeister trace defined by Reidemeister and Wecken is zero when the 
Reidemeister trace defined by Crabb and James is zero. The converse of this fact is 
not formal. 

In the fiberwise setting of Theorem E not all of the steps in our proof of Theorem D 
make sense. Here we only have two invariants, the invariant defined by Klein and 
Williams and the fiberwise version of the invariant defined by Crabb and James. Klein 
and Williams' proof has an immediate fiberwise generalization and their fiberwise 
invariant can be identified with the fiberwise version of Crabb and James' invariant 
in complete analogy with the classical case. 

We could interpret these proofs either as category theory with topological applica
tions or as topological proofs that have a formal part. Here we will try to aim for the 
middle since, in reality, the category theory motivates the topology and the topology 
motivates the category theory. This balance is reflected in the structure of this paper. 
We start with some motivation from fixed point theory and category theory. Then we 
give reinterpretations of the fixed point theory that further suggests our definition of 
trace in a bicategory and the results that are entirely category theory. Motivated by 
these descriptions we define shadows and traces in bicategories. Using these formal 
results, we then give new proofs of some classical and fiberwise fixed point theory 
results. The last chapter returns to category theory and consists of further examples 
that are closely related to the topological examples given earlier. 

In Chapters 1 and 2 we recall the elements of topological fixed point theory that 
will be the motivation for much of the later chapters. In Chapter 1 we define the 
Lefschetz number and the fixed point index. We also summarize Dold and Puppe's 
results on duality and trace in symmetric monoidal categories and their applications 
to fixed point theory. In Chapter 2 we focus on the converse to the Lefschetz fixed 
point theorem. We define the Nielsen number and the two versions of the Reidemeister 
trace defined by Husseini and Reidemeister and Wecken. We also describe Klein and 
Williams' proof of the converse to the Lefschetz fixed point theorem. 

Chapter 3 serves as a transition between the classical fixed point theory of Chapter 
2 and the definition of trace in a bicategory with shadows in Chapter 4. Here we give 
alternate descriptions of the versions of the Reidemeister trace defined by Wecken 
and Reidemeister and Crabb and James that suggest the definitions of Chapter 4. 
This chapter does not contain rigorous proofs, which are delayed to Chapters 5, 6, 7, 
and 8, but instead makes it clear that the Reidemeister trace has many features in 
common with trace in symmetric monoidal categories. 
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In Chapter 4 we define shadows in a bicategory and trace in a bicategory with 
shadows. We also prove some basic results about the trace and give some algebraic 
examples. In Chapters 5 and 6 we describe topological examples of duality and trace 
and show that the Reidemeister trace as defined by Reidemeister and Wecken and 
Crabb and James can be described using the trace in a bicategory with shadows. We 
also show that functoriality gives identifications of some of the forms of the Reide
meister trace. In Chapters 7 and 8 we show that many of the results from Chapters 
5 and 6 carry over to fiberwise spaces. 

Chapter 9 consists of examples of bicategories with shadows that either motivate or 
are motivated by the topological examples in Chapters 5, 6, 7, and 8. While the earlier 
chapters can be read without these examples, some of the results and constructions 
we use in Chapters 5, 6, 7, and 8 have more straightforward analogues in Chapter 9. 
In the earlier chapters we will indicate when there is a relevant section in Chapter 9. 
Chapter 9 can be read after Chapter 4. 
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CHAPTER 1 

A REVIEW OF FIXED POINT THEORY 

This chapter and the next are primarily a review of the definitions and results 
from classical fixed point theory that motivate the remaining chapters. This chapter 
also contains an introduction to Dold and Puppe's definitions of duality and trace in 
symmetric monoidal categories. 

The two invariants described in this chapter, the Lefschetz number and the fixed 
point index, are examples of trace in symmetric monoidal categories. Since the fixed 
point index is zero for maps that have no fixed points, the Lefschetz fixed point 
theorem follows from the identification of the Lefschetz number with the index. This 
identification is a consequence of the functoriality of the trace in symmetric monoidal 
categories. 

Some references for the standard approach to topological fixed point theory include 
[2,14,20,21]. 

1.1. Classical fixed point theory 

The Lefschetz fixed point theorem is a familiar result that relates a local, geometric 
invariant to a global, algebraic invariant. The algebraic invariant is the Lefschetz 
number. 

Definition 1.1.1. — Let K be a field and C* a finitely generated chain complex of 
vector spaces over K. If / : C* —• C* is a map of chain complexes, the Lefschetz 
number of / , L(f), is the alternating sum of the levelwise traces. 

Theorem 1.1.2 (Lefschetz Fixed Point Theorem). — Let M be a closed smooth manifold 
and / : M —• M a continuous map. If the Lefschetz number of 

/ „ : # „ ( M ; Q ) # . ( M ; Q ) 

is nonzero then f has a fixed point. 

Note that the Lefschetz number of the identity map is the Euler characteristic. 
Since homology is a homotopy invariant, we could replace the conclusion of this 

;heorem with "then all maps homotopic to / have a fixed point." Additionally, we can 
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2 CHAPTER 1. A REVIEW OF FIXED POINT THEORY 

use the integers rather than the rational numbers as our coefficients. The Lefschetz 
number of # * ( / ; Z) is denned and is equal to the Lefschetz number of # * ( / ; Q). 

To refine the Lefschetz fixed point theorem as described in the introduction we need 
another invariant, the fixed point index. There are many ways to define the index. 
We will use Dold's definition using homology and fundamental classes from [7,10]. 

For a generator [SN] of HN(SN; Z) ^ Z and any pair K c V C Rn, V open and K 
compact, there is a fundamental class 

[Sn]K e Hn{V,V - K-7L) 

around K. This class, [SU]K, is the image of [SN] under the map 

HN(SN;Z) HN(SN,SN K;Z) Hn(V,V K;Z). 

Definition 1.1.3. — [10, VII.5] Let V C Rn be open and / : V -> Rn be continuous. 
Assume 

F = {x G V\f(x) = x} 

is compact and let [SN]F be the fundamental class of F. Then If G Z, the fixed point 
index of / , is defined by If[Sn] = (id — /)*[5n]i? where 

( i d - / ) : (V, V — F) (Rn,Rn - 0 ) 

is defined by (id —f)(x) = x — f(x). 

The index is additive. If there are open sets V{ such that (J Vi = V and (F fi Vi) fi 
(F fi Vj) = 0 for i ^ j , then J2Jf\Vi = If - The in<lex is local. If F C W C F for 
some open set W, then / / jw = If - The index is commutative. If V C Rn, V C Mm 
are open sets and / : V —• Rm, y : F; —• W1 are continuous maps then 

U f-\v) 
9f Rn and U' • g-1(V) fg rn 

have homeomorphic fixed point sets. If these sets are compact Ifg = Igf. 
If Y is any topological space and U C Y is an open set which is also an ENR, then 

every map f:U—>Y admits a factorization f = (3 a where 

u-
a V ß 

Y 

and V is open in some Rn. If Ff = {y G U\f(y) = y} is compact then the fixed point 
index Iaß of aß : /?-1(i7) —» V C Rn is defined and is independent of the factorization 
/ = ßa. This number is defined to be the index of / . In particular, the index of an 
endomorphism of an ENR is well defined. 

Remark 1.1.4. — The index is an invariant of homotopy classes of maps, so homotopic 
maps have the same index. Additivity, localization, commutativity, homotopy invari
ance along with an additional axiom, normalization, characterize the index, see [2, 
IV]. The normalization axiom ensures that the index agrees with the Lefschetz num
ber. Alternatively, in [8, 5.1], a characterization of the index is given using a variation 
of the homotopy invariance axiom and a normalization axiom. 
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1.2. DUALITY AND TRACE IN SYMMETRIC MONOIDAL CATEGORIES 3 

Theorem 1.1.5 (Lefschetz-Hopf). — If M is a closed smooth manifold and f: M —• M 
is a continuous map then the index of f, If, equals the Lefschetz number of 

/ * : tf*(M;Z) JÏ.(Àf;Z). 

The Lefschetz Fixed Point Theorem is a consequence of this theorem since if / has 
no fixed points the index is zero. There is a familiar proof of this theorem that uses 
simplicial homology, see [1, 9.6] or [16, 2.C]. We will describe an alternative, conceptual 
proof using duality in symmetric monoidal categories in the next two sections. 

1.2. Duality and trace in symmetric monoidal categories 

This section is a summary of the results of [11] that we will generalize. Other refer
ences for this section include [28, III.l] and [33]. We will define trace and duality for 
any symmetric monoidal category, but our focus will be on examples in the category 
of modules over a commutative ring R and the stable homotopy category. 

Let ^ be a symmetric monoidal category with product <8>, unit object / , and 
symmetry isomorphism 7. 

Definition 1.2.1. — We say that A G ob^7 is dualizable if there is a B G obff and 
morphisms 77: I —• A ® JB, called coevaluation, and e: B ® A —* J, called evaluation, 
in ^ such that the following composites are the identity maps 

A = I <S> A 
77®idA 

• A® B ® A 
id A <8>e 

A® I = A 

B = B®I 
ids <8>rj 

Б<8> А @B e<S>idB 
1®В В. 

We call B the dual of A and we say (A, B) is a dual pair. 

Note that any two duals of a dualizable object are isomorphic. 
Let R be a commutative ring and Mod/* be the category of jR-modules. Then Mod# 

is a symmetric monoidal category using the usual tensor product over R. The ring R 
thought of as a module over itself is the unit. 

The dual of a finitely generated free i^-module M is Hom# (M,R). This is also a 
finitely generated free jR-module. If M has a basis {rai ,ra2,. . • , mn} and dual basis 
{mi , m 2 , . . •, m^} the coevaluation and evaluation for the dual pair, 

77: R- - M <S)R H o m ^ M , R) and e : HomjR(M, R) ®R M R, 

are i?-module homomorphisms given by e(0, m) = <j)(m) and by linearly extending 
the map 77(1) = Y2imi® ™>i-

If M is a finitely generated projective module it is also dualizable with dual 
HomjR(M, R). The evaluation map is e(</>, m) = <j>(m). The dual basis theorem implies 
that there is a 'basis' {mi , 7712,. • . , mn} of M and dual 'basis' {mi , m 2 , . . . , mrn} of 
Hom#(M, R). The coevaluation map is given by linearly extending 77(1) = Y^i m^m^. 

Let Ch# be the symmetric monoidal category of chain complexes of modules over 
a commutative ring R and chain maps. The dualizable chain complexes are the chain 
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4 CHAPTER 1. A REVIEW OF FIXED POINT THEORY 

complexes that are projective in each degree and finitely generated. The dual of a 
finitely generated projective chain complex M is the chain complex Hom# (M,R). 

Theorem 1.2.2. — Let A and B be objects in ^ and e: B 0 A —> / be a morphism in 
ff. Then the following are equivalent. 

(i) B is the dual of A with evaluation e. 
(ii) The map e / ( - ) : <*f (C, D ® B) -* tf(C 0 A, D) which sends f' : C -» D 0 B to 

C®A 
/®id 

D®B® A 
id<g)e D@I 

D 

is a bisection for all objects C,D G <é?. 

There is a similar characterization for a map 77: / —> A 0 B. If the category ^ is 
closed, there is another characterization of dualizable objects; see [28]. 

Definition 1.2.3. — For a dualizable object A, the trace of / : A —> A is the composite 

I n 
A^B 

/®id 
A®B 7 B®A e 

I. 

The trace is independent of the choice of B, 77, and e. 
Let i2 be a commutative ring and M be a finitely generated projective i2-module 

with 'basis' { m i , . . . ,mn}. The trace of a map of i2-modules / : M —• M is a map 
i2 —• R and the image of 1 is 

i 
m-/(mi). 

If J? is a field the image of 1 is the usual trace of / regarded as a matrix. For a map 
/ : M —• M of chain complexes, the trace is also a map R —> and the image of 1 is 

i 
( _ l ) d e g ( m i ) m ; ( / ( m . ) ) j 

the Lefschetz number of / . The sign comes from the sign in the symmetry isomor
phism. 

Let ^ and c€' be symmetric monoidal categories. A lax monoidal functor consists 
of a functor 

f:C-->C 
and natural transformations 

(f>: FA 0 FB -l F (A 0 lB) and V FI 

subject to the standard coherence conditions. 
A lax monoidal functor is symmetric if the following diagram commutes. 

F (A) 0 F(B) 
o 

F (A 0 B) 

7' F(7) 

F(B) 0 F (A) <t> ; y 
F{B <g> A) 
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1.3. DUALITY AND TRACE FOR TOPOLOGICAL SPACES 5 

Lemma 1.2.4. — If A is a dualizable object with dual DA, F: ^ —• c&' is a lax sym
metric monoidal functor, and FA 0 FDA —> F(A 0 DA) and V —» FI are iso
morphisms, then FA and FDA are a dual pair with evaluation 

FDA 0 FA 
o • F(DA 0 A) 

F(e) 
FI V 

and coevaluation 

V •FI 
F(n) 

F (A 0 DA) 
o-1 

FA 0 FDA. 

This lemma follows from the definition of a dual pair. As an immediate consequence 
of this lemma we have the following corollary. 

Corollary 1.2.5. — Let F: ^ —* be a lax symmetric monoidal functor and A be 
a dualizable object of with dual DA such that <p: FA 0 FDA -> F(A 0 DA) and 
V —> FI are isomorphisms. Then 

trace(F/) = F(trace(/)) 

for any endomorphism f of A. 

The Kiinneth theorem implies that the homology functor satisfies the conditions 
of Corollary 1.2.5 if C* is a finitely generated chain complex of projective modules, 
the images of the boundary maps are projective, and each Hi(C*) is projective. In 
particular, the rational singular or cellular chains on a compact manifold satisfy these 
conditions. 

Remark 1.2.6. — There are also axiomatic descriptions of traces, see [23,30]. For 
symmetric monoidal categories where all objects are dualizable these two notions of 
trace coincide. 

1.3. Duality and trace for topological spaces 

Spanier-Whitehead duality for topological spaces is an example of duality in sym
metric monoidal categories using the stable homotopy category. We will describe an 
equivalent definition that is more intuitive. For the perspective using the stable ho
motopy category see [11], [28, III], or [34, 15]. 

Definition 1.3.1. — [28, III.3.5] Let X be a compact, based topological space. A based 
space Y is n-dual to X if there are maps rj: Sn —> X AY, called coevaluation, and 
e: Y A X —> Sn, called evaluation, such that the following diagrams commute stably 
up to homotopy. 

Sn AX 
77Aid 

(XAY)AX 

— 

I A S " 
id Ae 

X A (Y A X) 

YASn 
id A77 

> Y A (X A Y) 

(crAid)7 = 

SnAY 
eAid 

(Y A X) A Y 
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6 CHAPTER 1. A REVIEW OF FIXED POINT THEORY 

Here a: Sn —> Sn is a map of degree (—l)n. 

For closed smooth manifolds and compact ENR's we can explicitly describe dual 
pairs. 

Theorem 1.3.2. — [11, 3.1][28, III.5.1] 

(i) Let K C Rn be a compact ENR. Then K+ and the cone on the inclusion of 
Rn\K into Rn are n-dual 

(ii) Let M be a closed smooth manifold embedded in Rn. Then M+ and the Thorn 
space of the normal bundle v of M —> Rn are n-dual. 

As usual, M+ is M with a disjoint base point added. We will denote the Thorn 
space of the embedding of M in Rn by Tv. 

Many of the explicit characterizations of dual pairs for topological spaces can be 
stated in this form. Compact ENR's are the natural generality, but closed smooth 
manifolds are the practical generality. Since the duality maps for manifolds are easier 
to describe, we will state most results in that form but there are also generalizations 
to compact ENR's. 

The coevaluation map for the dual pair (M+,7V) 

Sn Tv M+ A Tv, 

is the composite of the Pontryagin-Thom map for the normal bundle of the embedding 
M —• Sn and the Thorn diagonal. If a: M —• v is the zero section, the evaluation 
map 

Tv A M+ M+ASn Sn 

is the composite of the Pontryagin-Thom map associated to a tubular neighborhood 
of 

M M x M a x id 
v x M 

and the projection M+ A Sn —> Sn. 
Let {—, —} denote the stable maps of based spaces. Prom the characterizations of 

dual pairs in Theorem 1.2.2 and Theorem 1.3.2 we have the following corollary. 

Corollary 1.3.3. — If M is a closed smooth manifold embedded in Rn and Z and W 
are based spaces then 

{Z M+,W} {Sn Z,WA Tu} 

Definition 1.3.4. — Let X be a based space with n-dual Y and coevaluation and 
evaluation maps 77: Sn —» X A Y and e: Y A X —» Sn. If / : X —» X is a continuous 
map, then the trace of / is the stable homotopy class of the map 

Sn n 
X AY 

/ A i d 
XAY 

1 
-Y AX 

e 
•sn. 
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1.4. DUALITY AND TRACE FOR FIBERWISE TOPOLOGICAL SPACES 7 

By examining the explicit duality maps for a closed smooth manifold M (or a 
compact ENR) we can see that for / : M —> M, 

index(/) = tf*(trace(/+);Q). 

This is described in detail in [7,8,11]. 
Applying rational homology to the coevaluation and evaluation maps of the dual 

pair (M+,TV) we get a pair of maps 

n:Q 

i 

;#¿(M+;Q) Hn-i(Tv;Q) 

and 

e: 

i 

ffn_i(Ti/; Q) ® ffi(M+; Q) - Q. 

Since these maps come from the dual pair (M+,TV) they are coevaluation and eval

uation maps that make (# i (M+; Q), #n_i(TV; Q)) a dual pair. The trace of a map 

does not depend on the choice of dual pair, so the trace of /?*( /+; Q) with respect to 

this dual pair is the Lefschetz number. Theorem 1.1.5 follows from this observation: 

index(/) = Lefschetz number(/). 

1.4. Duality and trace for fiberwise topological spaces 

We can also define trace and duality in the symmetric monoidal category of ex-
spaces over a fixed space B. The objects in this category are spaces E with maps 
B E B such that po a is the identity map of B. The map a is called the section 
and p is called the projection. The morphisms are maps E —• E' that commute with 
the section and projection. The product is the internal smash product, A#. Given two 
ex-spaces X and Y over Z?, we can form the pullback along the maps to B, X x^Y, 
and the pushout along the maps from B, XVBY. The internal smash product is the 
pushout 

X\JBY- XxBY 

B- XABY. 

Remark 1.4.1. — For all ex-spaces we require that the base space and total space are 

of the homotopy type of CW complexes, the projection map is a Hurewicz fibration 

and the section is a fiberwise cofibration. The category of these spaces and the fiber-

wise homotopy classes of maps is equivalent to the model theoretic homotopy category 

of ex-spaces defined in [34]. See [34, 9.1.2]. 

If we need to consider an ex-space that does not satisfy these conditions we will 

replace it with an equivalent space that does satisfy our requirements. We will not 

indicate the replacement in the notation. 
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8 CHAPTER 1. A REVIEW OF FIXED POINT THEORY 

Definition 1.4.2. — Let X be an ex-space over B. An ex-space Y is n-dual to X if 
there are fiberwise stable maps 

rj:SnxB XABY and e:YABX Sn xB 

such that 

Sn AX 
rjAid 

[X AB Y) AB X 

y = 

XASn 
id Ae 

X AB (Y AB X) 

Y A Sn 
id A 77 

Y AB (X AB Y) 

(<7Aid)7 — 

Sn AY 
eAid 

(Y AB X) AB Y 

commute up to stable fiberwise homotopy. 

This definition is very similar to the definition of n-duality in the category of based 
topological spaces. Using parametrized spectra, this definition can be expressed as 
duality in a symmetric monoidal category, see [11, 34]. We also have explicit charac
terizations of dual pairs similar to those in Theorem 1.3.2. 

Theorem 1.4.3. — [6, II.12.18][11, 6.1][34, 15.1.1] 

(i) Let L be an ENRB over a paracompact space B such that p: L —> B is proper. 
Then L+ = LIIB and the cone on the inclusion of (B x Rn) \ L in B x Rn are 
an n-dual pair. 

(ii) Let N be an ex-space over B that satisfies the conditions of Remark 1.^.1. Then 
N is dualizable as an ex-space if and only if p~l{b) for b G B is dualizable in 
the sense of Definition 1.3.1. 

In particular, if E —• B is a fiber bundle with closed smooth manifold fibers the 
ex-space E+ is dualizable. 

The definition of trace for a fiberwise map is identical to the definition of trace for 
a map of based spaces. 

Definition 1.4.4. — Let X be an n-dualizable ex-space over B with dual Y and 
f'.X —> X be a fiberwise map over B. The trace of / is the fiberwise stable 
homotopy class of the composite 

BxSn 
n 

-XABY 
/ A i d 

X AB Y 
1 Y ABX e 

Bx Sn. 

When X is a compact fiberwise ENR over a compactly generated paracompact 
base space, this is the fiberwise Dold index of / as defined in [8]. 

ASTÉRISQUE 333 



1.4. DUALITY AND TRACE FOR FIBERWISE TOPOLOGICAL SPACES 9 

Remark 1.4.5. — There is a category & with objects ex-spaces over B as before but 
whose morphisms are pairs of maps f:E-^E and f:B-+B such that 

B 
f 

B 

o a 

E 
f 

E 

p p 

B f 
1 

B 

commutes. The category of ex-spaces is the subcategory of & with the same objects 
whose morphisms are the pairs (/, / ) where / is the identity. 

Fixed point theory in & and in the category of ex-spaces are very different. We 
will not discuss fixed point theory in &\ some references for it include [18, 26]. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010 





CHAPTER 2 

THE CONVERSE TO THE 
LEFSCHETZ FIXED POINT THEOREM 

The invariants described in the previous chapter only give a converse to the Lef-
schetz fixed point theorem under additional hypotheses. The crucial assumption is 
that the spaces are simply connected. We can relax this assumption by changing the 
invariant. The Nielsen number and various forms of the Reidemeister trace are choices 
for this refined invariant. 

The Reidemeister trace, in any of its forms, is not an example of trace in sym
metric monoidal categories. The reasons for this incompatibility will become clear as 
we define these invariants and compare different features of these invariants in this 
chapter and in the following chapters. 

Despite the many differences between the Reidemeister trace and trace in symmet
ric monoidal categories it will also become clear that the Reidemeister trace can be 
described using a trace very much like the trace in a symmetric monoidal category. 
The structure suggested in this chapter and the next chapter is explicitly described 
in Chapters 4, 5, and 6. 

2.1. The Nielsen number 

To define the index we needed to assume that the fixed point set 

F = {xe M\f(x) = x} 

is compact; now we will also assume that it is discrete. All invariants discussed here 
are invariants of homotopy classes of maps so choosing a homotopic representative 
doesn't change the invariant. If M is a manifold, transversality implies that any 
endomorphism of M is homotopic to a map with a discrete fixed point set. 

Definition 2,1.1. — Two fixed points of / : M —• M, x and y, are in the same fixed 
point class if there is a lift of / to 

/ : M —> M 
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12 CHAPTER 2. THE CONVERSE TO THE LEFSCHETZ FIXED POINT THEOREM 

on the universal cover of M and lifts of x and y to x and y in M such that f(x) = x 
and f(y) = y. 

There is an equivalent definition of fixed point classes using paths in M rather than 
the universal cover. 

Lemma 2.1.2. — Two fixed points x and y of f: M —> M are in the same fixed point 
class if and only if there is a path a from x to y such that a is homotopic to f(ct) 
with endpoints fixed. 

We can give another interpretation of this lemma in terms of the fundamental 
groupoid, IIM, of M. Let Fix be the groupoid defined by the equalizer 

Fix >- IIM i d = = t IIM. 
/ 

The objects of Fix are the fixed points of / and the morphisms are the homotopy 
classes of paths with [a] = [f o a]. If we think of the fixed points as a discrete category, 
this category includes into the category Fix. The lemma shows that two fixed points 
are in the same fixed point class if and only if their images are in the same connected 
component of Fix. A fourth description of fixed point classes can be found in [3]. 

Since the fixed point set is assumed to be compact and discrete, it must be finite. 
Let Fi, F2 , . . . , Fk be the fixed point classes of / . This is also a finite set, UFi = F, 
and Fi HFj = 0 if i ^ j . 

Let f:M —> M be a continuous map with a compact and discrete, and hence 
finite, fixed point set. For a fixed point class Fi, let Vi be an open set in M such that 
Fi cVi and Vi fl Fj is empty ifi^j. Define the index of Fi, i(Fi), to be the index of 
f\Vi. Since the index is local this is well defined. 

Definition 2.1.3. — The Nielsen number of / , N(f), is the number of fixed point 
classes with nonzero index. 

Theorem 2.1.4 (Theorem C). — The Nielsen number of a continuous endomorphism of 
a closed smooth manifold of dimension at least three is zero if and only if the map is 
homotopic to a map with no fixed points. 

The standard proof of this result uses simplicial techniques, see [2, VIII]. That 
proof shows that the theorem holds for simplicial complexes where the star of each 
vertex is connected. We will give a more conceptual proof in Chapter 6. 

The dimension hypothesis is necessary. In [22], Jiang constructed an endomorphism 
for any two dimensional connected manifold with negative Euler characteristic that 
is not homotopic to a fixed point free map but whose Nielsen number is zero. 
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2.2. THE GEOMETRIC REIDEMEISTER TRACE 13 

2.2. The geometric Reidemeister trace 

Using the fixed point classes and the index of a continuous map / : M - > M we 
can also define the geometric Reidemeister trace. This invariant contains all of the 
information in the Nielsen number so it can also be used to prove a converse to the 
Lefschetz Fixed Point Theorem. 

Choose a base point * in M, a path £ from * to / ( * ) , and a path ^x from * to x 
for each fixed point x of / . The map that takes a fixed point x to the homotopy class 
of 7^"1/(7x)C defines a function from the fixed points of / to the fundamental group 
of M. 

Definition 2.2.1. — Let 7r be a group and n —> 7r a homomorphism. The set ((7r^)) 

of semiconjuqacy classes of 7r is the set n modulo the relation a ~ BaMB-1) for 

a, B E II. 

fixed points 

<II1MO> 

commutes. 
We let Z((7TiM^)) denote the free abelian group on the set {TTIM^}. The injection 

above gives an identification of a fixed point class Fk with its image in {niM^}. 

Definition 2.2.2. — The geometric Reidemeister trace of / , Rgeo(f), is 

Fixed Point Classes Fk 
i(Fk) • -Ffc E Z((7Ti(M)^)). 

The index of / is the sum of the coefficients in the Reidemeister trace. The Nielsen 
number is the number of elements in ((7Ti(M)^)) with nonzero coefficients in the Rei
demeister trace. 

Note that the geometric Reidemeister trace is zero if and only if the Nielsen number 
is zero. 
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Using the path £ we can define a homomorphism </>: niM —• -K\M by 4>(a) = 
C_1/(a)£. The map from the fixed points of / to niM descends to a well-defined 
injection from the fixed point classes of / to((7TiM^))that is independent of all choices 
of paths. 

The paths £ and ^x also define a map 

Fix->((7riM*>) 

by x H - » 7ar1/(7x)C and the diagram 

Fix 
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Theorem 2.2.3 (Theorem D). — If M is a closed smooth manifold of dimension at least 
three, then the geometric Reidemeister trace of an endomorphism f of M is zero if 
and only if f is homotopic to a map with no fixed points. 

2.3. The algebraic Reidemeister trace 

We generalized the index to the geometric Reidemeister trace using the fixed point 
classes of an endomorphism. We can also use fixed point classes to generalize the 
Lefschetz number to the algebraic Reidemeister trace. 

The algebraic Reidemeister trace is based on a generalization of the trace for linear 
transformations to a trace for homomorphisms of finitely generated projective mod
ules. We will recall the definition of this generalized trace, called the Hattori-Stallings 
trace, first and then use it to define the algebraic Reidemeister trace. 

Let R be a ring. A trace function is a function, T, from square matrices over R to 
an abelian group such that 

(i) If A, B e JKpxp{R) then T(A + B) = T(A) + T(B). 

(ii) If A e ^pxq(R) and B e ^qxp(R) then T(AB) = T(BA). 

These condition imply T(A) = YliT(o>u) for A = (a^) . 

Prom a ring R we define an abelian group {R} as the quotient of R by the subgroup 
generated by elements of the form 

rir2 - r2ri 

for n , r2 E R. 

Proposition 2.3.1. — [43] The universal trace function, a trace function through which 
every trace function can be factored, is given on 1 x 1-matrices by the quotient map 

&:R-+im. 

This extends to n x n matrices by 3F{A) = ]T\ ¿?(au) for A = ( a^) . 

Let M be a finitely generated free right ü-module. Given any trace function T we 

can define a map T: End(M) —• ((i?)). For each endomorphism (j) choose a matrix A 
representing (j) and define 

T(<P):=T(A). 

By the second property of a trace function this is well defined. 

We can also use a trace function T to define a map 

T: End(M) ->((#)) 

for a finitely generated projective right i?-module M. Let N be a module such that 

M 0 N is a finitely generated free ii-module. If </> is an endomorphism of M define 

an endomorphism of the free module M 0 N by <j> 0 0. Then T(<j)) is defined to be 

T(6 0 0). This is independent of all choices. 
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2.3. THE ALGEBRAIC REIDEMEISTER TRACE 15 

This description is given in terms of a 'basis' since it is defined using matrices. 
There is an equivalent definition of the universal trace function that does not require 
explicit use of the basis. For any right i2-modules P and M there is a map 

(2.3.2) i/: P®R HomjR(M, R) ^ EomR(M, P) 

defined by i/(p<g>0)(ra) = p<j>{m). If M is a finitely generated projective right P-module 
this map is an isomorphism. 

Proposition 2.3.3. — If M is a finitely generated projective right R-module, the uni
versal trace function is the composite map 

H o m ^ M , M) -^-^ M ®R H o m ^ M , R) —^(R)) 

where S(m (8) 0) = ^(</)(m)). 

The algebraic Reidemeister trace requires a generalization of the universal trace 
function. Before we can generalize the trace we need a more general target for a trace 
function. 

Definition 2.3.4. — Let P be an P-P-bimodule. Then ((P)) is the quotient of P, as an 
abelian group, by the subgroup generated by elements of the form pr — rp for r G R 
and p G P. 

Let ^: P —> ((P)) be the quotient map. 
The generalization of the universal trace function is easier to describe when not 

explicitly using a basis, so we will generalize the description given in Proposition 2.3.3. 
Let R be a ring, P be an P-P-bimodule, and M be a finitely generated projective 
right P-module. 

Definition 2.3.5. — The Hattori-Stallings trace, tr, of a map / : M —> M <g)# P is the 
image of / under the composite 

Hom*(M, M ®R P) (M ®R P) ®R RomR(M, R) —^(P)) 

where S(m (8) p (8) <j>) = ^{p<t){rn)). 

If C* is a finitely generated chain complex of projective right R-modules, P is an 
P-P-bimodule, and / : C* —> C* P is a map of chain complexes, the Hattori-
Stallings trace of / is 

Et-irtrCf*), 
the alternating sum of the levelwise traces. The sign enters since the evaluation map 
requires a transposition. 

The example of the Hattori-Stallings trace we are most interested in is the alge
braic Reidemeister trace. To define this invariant we must first fix some conventions. 
Composition of paths in a space X is given by (/3, a) i-* (3a where a is a path from 
a to 6, /3 is a path from b to c and /3a is a path from a to c. This induces the group 
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16 CHAPTER 2. THE CONVERSE TO THE LEFSCHETZ FIXED POINT THEOREM 

multiplication in TT\X. If we think of X as homotopy classes of paths in X that start 

at the base point * there is an action of -K\X on X from the right by (7, a) 1—> 7a. 
Let X be a finite connected CW complex. Pick a base point * in X. Then the 

cellular chain complex of X is a finitely generated free right lm\{X, *)-module. A 

continuous map / : X —» X is not required to preserve a base point, and so we define 

an induced map / on the universal cover by / ( a ) = f(a)( for some choice of path £ 

from * to / ( * ) . Define a group homomorphism 

4>: TTI (X ,* ) - > 7 r x ( X , * ) 

by (f)(a) = C_1/(a)C- The map / is 0-equivariant in the sense that4 

Riot) = /(7)^(a) 

for a G 7Ti (X, *) and 7 G I . 

Let Z 7 r i ( X , * ) ^ be the Z T T I ( X , * ) - Z ? r i ( X , *)-bimodule that is Z T T I ( X , * ) as an 

abelian group with the usual left action of TTI(X, *) and the right action given by first 

applying </> and then using the group multiplication. Then / defines a map 

U : C*X -> C J OZII1(X,*)ZII1(X,*)* 

and this is a map of right lm\{X, *)-modules. 

Definition 2.3.6. — The algebraic Reidemeister trace of / , Ral9(f), is the Hattori-

Stallings trace of /* . 

Theorem 2.3.7. — There is an isomorphism of abelian groups 

Zfrri(X,.)*J->fZ7ri (* ,* )* ) 

and under this isomorphism 

Rg*°(f) = Ralg(f). 

A proof of this theorem can be found in [14, 3.4] or [19, 1.13]. In Chapter 6 we will 
give a more conceptual proof of this result. 

2.4. A proof of the converse to the Lefschetz fixed point theorem 

In [46], Wecken showed that for some finite polyhedra the Nielsen number of an 

endomorphism is zero if and only if the map is homotopic to a map with no fixed 

points. Shi [13] later proved a refinement of Wecken's result. These proofs used sim-

plicial techniques. Similar techniques can be used to prove an equivariant analogue of 

this result, but they are not as useful when trying to prove fiberwise results. 

Here we will present the main ideas of an alternative proof due to Klein and 

Williams from [25]. This proof gives the converse to the Lefschetz fixed point theorem 

for manifolds of dimension at least three and has fiberwise and equivariant general

izations. The details of the fiberwise version are in Section 8.2. The missing details in 

this section can be recovered from that proof. 
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2.4. A PROOF OF THE CONVERSE TO THE LEFSCHETZ FIXED POINT THEOREM 17 

For their proof Klein and Williams translate fiberwise homotopy theory into equiv-
ariant homotopy theory using a loop group construction. They observe that their 
proof works equally well without this transformation and that it would be necessary 
to eliminate this transition to prove a converse to the fiberwise Lefschetz fixed point 
theorem. Here we present the main ideas of Klein and Williams' proof of the converse 
to the Lefschetz fixed point theorem using fiberwise homotopy theory. 

Proposition 2.4.1. — [12][25] 

(i) Let X be a topological space and f: X —> X a continuous map. Homotopies of f 
to a fixed point free map correspond to liftings which make the following diagram 
commute up to homotopy. 

X x X - A 

X ——X x X. 

Here Tf is the graph of f. 
(ii) For a continuous map h: X —> Z let r(h): N(h) —> Z be a Hurewicz fibration 

such that 

X ^ N(h) 

z 
r(h) 

commutes and the map X —> N(h) is a homotopy equivalence. There is a bijective 
correspondence between liftings up to homotopy in the diagram 

X 

h 

Y—^Z 

and sections of the fibration g*N(h) -+Y. 

This proposition converts a fixed point question into a question about sections of 
fibrations. We will define a fixed point theory invariant by defining an invariant that 
detects sections of Hurewicz fibrations. 

Let p: E —» B be a Hurewicz fibration over a connected space B. The unreduced 
fiberwise suspension of E over B is the double mapping cylinder 

SBE :=Bx { 0 } Up E x [0, l]L\pBx { 1 } . 
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18 CHAPTER 2. THE CONVERSE TO THE LEFSCHETZ FIXED POINT THEOREM 

The map p: E —• B induces a map q: SBE —• B which is also a fibration. ^ Let 

cr_,cr+: B —> SBE 

be the sections of SBE —> B given by the inclusions of B x { 0 } and B x { 1 } into 
SBE. 

Proposition 2.4.2. — [25, 3.1] If p: E —> B admits a section then cr_ and <r+ are 
homotopic over B. 

Conversely, assume p: E —> B is (r+1)-connected and B is homotopically a retract 
of a cell complex with cells in dimensions < 2r + 1. If a- and < 7 + are homotopic over 
B, then p has a section. 

From this point we will work in the category of ex-spaces, rather than spaces over 
B. This means that all spaces over B have a section and all maps respect the section. 
In particular, SBE is an ex-space with section cr_. 

Let SB be the ex-space over B with total space two disjoint copies of B. The inclu
sion of B into one of the copies of B is the section. The projection map is the identity 
on each component. Under the assumptions in Proposition 2.4.2, a fiberwise version 
of the Freudenthal suspension theorem [6, 3.19] gives the following isomorphism 

[S%,SBE]B = {SB,SBE}B. 

The {—, — }B notation indicates fiberwise (sectioned) stable homotopy classes of fiber-
wise maps. 

Definition 2.4.3. — [25, 3.4] The stable cohomotopy Euler class of p is the element of 

{S%,SBE}B 

that corresponds to the map <J_ II cr+. 

For a continuous map / : M —• M there is an associated fibration 

T}(r(i)):T}(N(i))^M 

given by pulling the fibration associated to the inclusion 

i:MxM-A-*MxM 

back along the graph of / . For this particular case we can give another description of 
the stable cohomotopy Euler class. Let AfM = {7 E M7|/(7(l)) = 7(0)}. 

(1)If A: Np-^E1 is a lifting function for p with adjoint A define 

X: Nq x J —• SBE 

by x ( (e , t ) ,0 ,a ) = (A(e,/3,s),*) for (e,t) G E x (0,1) and x (6 , f ts) = b € B x {0} for 6 G B x {0} 
and similarly for b G B x {1} . Then the adjoint of x , 

X:Nq-+(SBEy, 

is a lifting function for q. See [15, 44] for similar results. 
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Proposition 2.4.4. — [25, 4.1, 5.1] There is an isomorphism 

{S0M,SM(T}(N(Z)))}M = {S°,AFM+}. 

We will denote the image of G- II cr+ under this isomorphism by RKW(f). 
If M is of dimension n then T*jN(i) —• M is (n — l)-connected, see [25, 6.1,6.2]. If 

n is at least three then the corollary below follows from Proposition 2.4.2. 

Corollary 2.4.5. — [25, 10.1] If M is a closed smooth manifold of dimension at least 
3, f is homotopic to a map with no fixed points if and only if RKW(f) is zero. 
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CHAPTER 3 

TOPOLOGICAL DUALITY AND FIXED POINT THEORY 

In the previous chapters we recalled the definitions of some classical fixed point 
theory invariants. The definition of the algebraic Reidemeister trace is very similar to 
the trace in the symmetric monoidal category of modules over a commutative ring. 
Prom the definition we gave in the last chapter it is less clear that the geometric 
Reidemeister trace resembles the trace in a symmetric monoidal category. 

In this chapter we will give another description of the geometric Reidemeister trace 
that will make the similarity with the trace in a symmetric monoidal category more 
clear. We will give definitions of duality and trace that resemble the definitions for 
a symmetric monoidal category and are also similar to the definition of the Hattori-
Stallings trace for modules over a ring. We will show these constructions are examples 
of duality and trace in a bicategory with shadows in Chapters 4 and 5. 

We will also describe an invariant, originally defined by Crabb and James, that can 
be identified with Klein and Williams' invariant. The definition of this invariant is 
similar to the geometric Reidemeister trace but it has two very significant differences. 
This invariant does not require a base point. We also replace homotopy classes of 
paths with path spaces. 

In this chapter we are mostly interested in the impact of these changes on the 
invariants that we have already described, but the changes are even more important 
for fiberwise invariants. For a fiberwise space choosing a base point would correspond 
to choosing a section and sections do not always exist. So fiberwise invariants need 
to be unbased. The change to path spaces reflects the greater variety of invariants 
for fiberwise spaces. In the classical case, the invariant defined by Crabb and James 
is only zero when the geometric Reidemeister trace is zero. These invariants have 
fiberwise generalizations that do not share this property. 

Since the techniques of Chapter 4 significantly simplify some of the proofs of the 
results in this chapter we will delay most of the proofs until Chapters 5 and 6. 
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3.1. Duality for spaces with group actions 

In this section and the next section we will give an alternate definition of the 
geometric Reidemeister trace that is closer to the trace in a symmetric monoidal 
category. We first define duality for spaces with an action by a group 7r. The motivating 
example of a space with a group action is the action of the fundamental group of a 
manifold on the universal cover by deck transformations. In the next section we use 
this definition of dual pairs to define a trace. This trace is similar to the Hattori-
Stallings trace. 

There are two important observations about the duality defined in this section. 
First, this duality is more similar in perspective to the duality defined by Ranicki in 
[39, 3] than to duality in the symmetric monoidal category of G-spaces for a compact 
Lie group G. Second, despite the action of the group 7r, this duality is used to study 
classical invariants, not equivariant ones. 

Let 7r be a discrete group. For a based right 7r-space X and a based left 7r-space V, 
let X 0 Y denote the based bar complex B(X, 7r, Y). 

The bar complex B(X, n,Y) is the geometric realization of the simplicial based 
space with n simplices 

X A (7rn)+ A y, 

face maps 

do(x,gi,g2,... ,gn,y) = (xgi,92, • • • ,0n,2/) 

di(x,gi,g2,.-.,gn,y) = (x,gi,...,gigi+1,...,gn,y) for 0 < i < n 

dn(x,9i,92, • • • ,9n,y) = {x,9i, • • • ,9n-i,9ny) 

and degeneracy maps 

Si(x,gi1g2l... ,gn,y) = (x,9i, • • • gi, e, gi+1• -9n,y)-

If Z has left and right actions by n then B(X, 7r, B(Z, 7r, Y)) is isomorphic to 
B{B(X, 7 r , Z ) , 7 r , y ) . Also, B(X, 7r,7T+) and X are equivalent, but not necessarily iso
morphic, as right 7r-spaces. 

We think of B(X, 7r, Y) as the homotopy coequalizer of the maps 

X ATT+ AY r i A 7 

where the maps X /\ir+ AY —> X AY are the action of 7r on X and ir on Y. We will 
denote the actual coequalizer of these maps X AnY. 

We use a homotopy coequalizer to define 0 so that the result has the correct 
homotopy type. Alternatively, we could make assumptions on the actions of n so that 
the bar resolution is equivalent to X An Y. This will be the case in the examples we 
consider. 

Lemma 3.LI. — [31, 8.5] / / n acts principally on X and effectively on Y then 
B(X,7T,Y) is weakly equivalent to X An Y. 
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3.1. DUALITY FOR SPACES WITH GROUP ACTIONS 23 

Let K be a based space (without an action by 7r). Then \/nK, the wedge product 
of copies of K indexed by the elements of n, has left and right actions of ir given by 
permutations of the factors. 

Definition 3.1.2. — We say a based right 7r-space X has n-dual Y if Y is a based left 
7r-space, there is a map r?: Sn —> XQ)Y and a n — n equivariant map e: YAX —> V^S71 
such that the diagrams below commute up to equivariant homotopy after smashing 
with Sm for some m G N . 

SnAX^^(XQY)AX YASn^^YA(XOY) 

X 0 (Y A X) (<7Aid)7 (Y A X) 0 Y 

id ©e e0id 

v I V 

X A Sn ——^ X 0 (V^S71) Sn A Y — ^ (V^5n) 0 Y 

The map a: SN —> 5n is a map of degree (—l)n. If Y is the dual of X we say that 
(X, Y) is a dual pair. 

Not many 7r-spaces are dualizable in this sense. For example, let a be a nontrivial 
subgroup of 7r. If the TT space (n/cr)+ was dualizable with dual Y there would be a 
7r-7r-equivariant map 

e : Y A (ir/<r)+ - » V^S71 
for some integer n such that the diagrams in Definition 3.1.2 are satisfied. Since e is 
a 7r-7r-equivariant map its image must be the basepoint of VVS71. 

Let M be a closed smooth manifold with universal cover M, quotient map n: M —» 
M, and normal bundle v. 

Lemma 3.1.3. — For a closed smooth manifold M, M + is dualizable as a right -K\M 
space with dual TTT*U. 

Let SU be the fiberwise one point compactification of the normal bundle of M and 
M —» -K*SV be the inclusion as the points at infinity. Then Tir*v is the pushout of the 
maps M —> ir*SU and M —* *. We use T since we want to suggest the Thorn space in 
analogy with the duality described in Chapter 1. The space Tit*v is a left -K\M space 
with action given by a • (7,^) = (7a:""1, v) for a G TTIM and (7, G Tn*v. Since the 
right action of 7TiM on M is free, M+ 0 T 7 r V is equivalent to M A ^ M TIT*V. 

The coevaluation map for M is the composite 

Sn ^ Tv . • M + 0TTT*I/. 

The first map is the Pontryagin-Thom map for an embedding of M in Rn. The second 
map is defined by 

v —> (yo(v), Yo (v), v) 
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24 CHAPTER 3. TOPOLOGICAL DUALITY AND FIXED POINT THEORY 

where p: v —> M is the projection and 7p(v) is any lift of p(v) to M . The second map 
is independent of the chosen lift since quotienting by the action of TT\M will identify 
any two different choices. 

Before we define the evaluation map we need the following preliminary lemma. 

Lemma 3.1.4. — [6, II.5.2] Let K be an ENR. Then there is an open neighborhood W 
of the diagonal in K x K and a homotopy H: W x / —• K such that Hoix^y) = x, 
Hi(x,y) = y and Ht(x,x) = x for all (x,y) G W and t e l . 

We fix such a homotopy H and use it when defining all similar evaluation maps. 
The evaluation map for M+, 

Tn*p A M + ^ (TTIM)+ A Sn = VVlMSn, 

is defined by 

(7m,u,7n) ^ (7m H(n,m)^n,€{v,n)) 

where e is the evaluation map from the dual pair (M+, Tv). The element 

7m ii(n,m)7n 

of TTIM is the unique g e TT\M such that 7m • g is contained in a small neighborhood 
of 7n-

If a: M —> Tv is the zero section, points outside of a small neighborhood N of 
the image of (<J x id) A are mapped by e to the base point of Sn. If necessary we can 
shrink JV so that for all (v, m) e iV, (p(v), m) 6 W. If i /(n, m) is not defined then the 
triple (7n ,7m5^) is mapped to the base point. The evaluation map is continuous and 
independent of choices. It is also compatible with the actions of niM on TTT*V and 
M+. We show that these maps make the required diagrams commute in the proof of 
Lemma 5.3.3. 

3.2. The geometric Reidemeister trace as a trace 

Before we can define the trace, we need to introduce a little more structure. This 
additional structure plays the role of the symmetry isomorphism in the definition of 
trace in a symmetric monoidal category and allows us to compare the target of the 
coevaluation with the source of the evaluation for dual pairs of 7r-spaces. 

Definition 3.2.1. — Let Z be a based n-n space. The shadow of Z, (Z}r is the cyclic 
bar resolution C(Z, n). 

The cyclic bar resolution C(Z, n) is the geometric realization of the simplicial based 
space with n simplices 

(nnU A Z, 
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3.2. THE GEOMETRIC REIDEMEISTER TRACE AS A TRACE 25 

face maps 

do(9u92,.--,9n,z) = (glì...ì9n^U9nz) 
di(gi -> 92Ì • • • ? 9m z) — Í9li • • • » 9n-i9n-i+li • • • j 9m z) &>г 0 < i < П 

дп(9ъ92, "чдп,г) = (g2ì..., дп, zgi), 

and degeneracy maps 

8i(gi,92, ...,9n,z) = (91,- -,9i,e,9i+i, • -9n,z)-

We think of {Z} as the homotopy coequalizer of the two actions of TT on Z. 
For a homomorphism (/>: IT —• TT let TT̂  be TT as a set. On the left n acts on by 

multiplication and on the right TT acts by applying <j) and then acting by multiplication. 
There is a simplicial map from C(7r^,7r) to the constant simplicial set on the set of 
semiconjugacy classes of 7r with respect to </> given by 

(9i,92,--,9n,h) (9i92--9nh). 

This map is an isomorphism on components since the images of hi, h2 € TT^ in the 
set of semiconjugacy classes coincide if and only if there is an element (g, h) G 7r X 

such that gh = hi and h(j)(g) — h2. Note that 7ro(((7r^))) coincides with ((71 )̂) in 
Definition 2.2.1. 

Taking the shadow of a 7T-7T space is similar to applying the functor ((—)) to an 
.R-jR-bimodule for a ring R. In both cases these solutions seem like an ad hoc resolution 
to a very small problem. In the next chapter we will show that structures very similar 
to these are very important in the definition of trace in a bicategory. 

In this section we will define trace for 7r-maps 

fiX^X* 

where (f>: n —• 7r is a homomorphism, X is a right 7r-space and X^ is the space X with 
right action of 7r given by x • g = xc/)(g). There is a simplicial map from B(X, 7r, 7r+) to 
the constant simplicial set X^ given by the action of ir on X. This map is a simplicial 
homotopy equivalence with inverse given by 

x H-> e , . . . e) 

and so X 0 7T+ is equivalent to X^ as a right 7r-space. 

Definition 3.2.2. — Let X be a right 7r-space with n-dual Y. Let </>: n —> n be a 
homomorphism. The £race of an equivariant map / : X —• is the stable homotopy 
class of the map 

Sn XQY - ^ t 0 7 = ( l 0 71+) 0 Y = ((Y A X 0 (7^)+))^=^V<IIo> Sn 

Let / : M -> M be a continuous map of a closed smooth manifold. Let <j>: 7Ti (M) —> 
7Ti (M) be the induced map given by a choice of path £ from the base point to its image 
under / . Define 

/ : M — M 
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26 CHAPTER 3. TOPOLOGICAL DUALITY AND FIXED POINT THEORY 

bv f h) = fh)C Then f satisfies 

/(7a) = / ( 7 ) / ( « K = /(7)CC7(«)< = f{l)<t>{<*) 

and defines an equivariant map 

f : M + - > M I . 

Recall that the geometric Reidemeister trace of a map / is 

Fixed Point Classes Fu 
i(Fk)-Fk€li7r1(M)'t')) 

where i(Fk) is the index of the fixed point class 
Let 7if (X) be the ith stable homotopy group of X. 

Proposition 3.2.3. — There is an isomorphism TTQ(X) —> HQ(X). The image of the 
trace of f under this isomorphism is the geometric Reidemeister trace of f. 

Proof. — The isomorphism TTQ(X) —> HQ(X) is the composite 

TTS0(X) - 7rQ(WX) HQ(WX) * H0(X) . 

The first map is the inclusion. For sufficiently large q the Freudenthal suspension 
theorem implies this map is an isomorphism. The second map is the Hurewicz homo-
morphism. It is an isomorphism since /Ki(YTQX) is trivial for all i less than q. The last 
map is the suspension isomorphism. 

By Lemma 3.1.3, (M+,T7r*i/) is a dual pair. The trace of / with respect to this 
dual pair is the composite 

Sn —^ Tu ^ M + 0 Tir*u foid M + 0 TTIM^ 0 TTTV — ^ ^ M ^ f 

The trace of / is a map into a wedge product, so specifying a point in Sn and an 
element of {niM^} identifies the image of v G Sn under the trace of / . The image of 
v G Sn under the trace / in Sn is e(rj(v), fp(rj(v))). The image of v G Sn under the 
trace / in((7TiM^))is 

7 ^ ) ^ ( / W W , W(v))/(7pt|(t;))C. 

The map r) is the Pontryagin-Thom map for an embedding M —> Mn, e is the evalu
ation for the dual pair (M+,TV), and H is as in Lemma 3.1.4. At a fixed point, the 
orniin plfvmpnt 

Ypn (v) H(fpn(v), pn (v)) f(ypn (v)C 

1S 1m(v)f('Yp'n(v))Ci the image of the fixed point under the injection from the fixed 
point classes to the semiconjugacy classes described in Section 2.2. Since the index is 
local, the trace of / restricted to a neighborhood of a fixed point is a map of degree 
equal to the index of the fixed point. 
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3.3. DUALITY FOR SPACES WITH PATH MONOID ACTIONS 27 

The trace of / is an element of 7To(((7riM^))+) and it is the image of an element 
in 7rn(En({7riM^))+) if M is n-dualizable. The image of this representative under the 
Hurewicz homomorphism is (tr(/))*([S]). The projection 

HN(Y^XM%) * ®Hn{Sn) - Hn(Sn) 

to the component corresponding to a G ((7Ti(M)^)) takes (tr(f))*([S\) to the index of 
the fixed point class corresponding to a. • 

The trace of / and the other invariants we will define here are more naturally 
described as elements of stable homotopy groups rather than homology classes. We will 
think of them as homotopy classes of maps, and use the isomorphism TTQ(X) = HQ(X) 
when it is necessary to make a connection with homology. We will use this isomorphism 
to refer to the trace of / as the geometric Reidemeister trace. 

Remark 3.2.4. — By looking at the explicit description of the trace of / for a map 
/: M —• M we see that Rgeo(f) does not depend on the choice of the lift of / . Also 
note that R9eo(f) is an invariant of the homotopy class of / since the trace of / is an 
invariant of the homotopy class of / . 

In the next chapter we will define duality and trace in a bicategory. In Chapter 5 
we will show that the duality and trace defined in this section are examples of duality 
and trace in a bicategory. 

3.3. Duality for spaces with path monoid actions 

In the previous section we gave a description of the geometric Reidemeister trace. In 
this section we will describe an invariant that is similar to the geometric Reidemeister 
trace, and coincides with the invariant defined by Klein and Williams. 

In Section 3.1 the motivating example was the action of the fundamental group 
of a topological space on the universal cover by deck transformations. In this section 
the motivating example is the 'action' of the free path space of a topological space 
on itself by composition. Prom this action we can define modules over the path space 
and then define duality for modules and trace for homomorphisms. 

We will use this trace to define the homotopy Reidemeister trace which is a 'derived' 
form of the geometric Reidemeister trace. The homotopy Reidemeister trace is zero 
only when the geometric Reidemeister trace is zero. 

In the previous section we worked with homotopy classes of paths. In this section 
we will work with free Moore paths. The free Moore paths of a space have composition, 
but composition is only defined for paths with compatible endpoints. This path space 
also satisfies unit conditions, but it has many units rather than just one. We use 
Moore paths rather than regular paths since the composition of Moore paths is strictly 
associative. 

In the previous section all spaces had base points and we had to make adjustments 
since the maps were not based. In this section we will not use base points at all. This 
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has several advantages. The base point is part of the construction of the geometric 
Reidemeister trace but the invariant does not depend on the choice of base point. As 
we mentioned before, fiberwise spaces don't always have sections, so in that case we 
will need unbased descriptions. 

The free Moore path space of a space M is 

cpM = {(7,w) G Map([0,oo),M) x [0,oo) \y(t) = 7(11) for all t > u} 

This space is given the subspace topology from Map([0,00), M) x [0,00). There are 
two maps s,t: $M —• M, given by s(y,u) = 7(0) and t(j,u) = j(u). Later we 
will think of @M as a category and so s and t denote source and target. Two paths 

(a,u) G PM can be composed if a(u) = /3(0) and this composition defines a 
unital and associative product 

0MxMPM = {((/?, v), (a, ti))|/?(0) = a(u)} - > 9>M. 

If we restrict to paths that start and end at some chosen point * G M the composition 
induces the group multiplication in the fundamental group. 

Let X be an ex-space with section and projection maps M X M that satisfies 
the conditions of Remark 1.4.1. We define an ex-space over M, № ^ 1 , by imposing 
additional identifications on the fiber product 

&MxMX = {((7,u),x) G £PM x X|7(0) = p(x)}. 

We identify ((7, u),x) and ((7', uf), x') if x and x' are both in the image of the section 
and 7 (w) = 7 ' ( i / ) . The projection map 

<PM H X -+ X 

is ((7,ii),x) 1—> ̂ (u). The section 

M -> @M IE1 X 

is m H ((cm, 0), cr(m)) where cm is the constant path at m in M. A different de

scription of this product is given in Chapter 5. The ex-space X IEI $M is defined 

similarly. 

Similarly, for two ex-spaces X and Y over M we define a based space X IEI Y by 

{{x,y)\p(x) =p'(y)}/ ~ 

where (x, y) is identified with (#', y') if one of element of each pair is in the image of 

the section. The base point is the point of X 13 Y given by the equivalence relation. 

Definition 3.3.1. — An ex-space X over M is a right @M-module if there is a map 

over and under M 

K: XM&M -+ X 

that is associative and unital with respect to the product of $M. 
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The definitions of a left module and a bimodule are similar. The space (PM is a 
space over M x M via the map t x s. With a disjoint section added @M is a ex-
space over M x M. This ex-space is written (#*M, t x s)+. Using composition of paths 
(0M,t x s)+ is a ^M-^M-b imodu le . Using only one of the maps t or s we can 
think of $M as either a left or right ^M-module. For example, (flM, s)+ is a right 
^M-module. 

If X and Y are ex-spaces over M, the external smash product YAX is an ex-space 
over M x M. If Xn is the fiber of X over n and Fm is the fiber of Y over m, the 
fiber of YAX over (m,n) is Fm A Xn. If X is a right ^M-module and Y is a left 
^M-module then YAX is a ^M-^M-bimodule. 

For a right ^M-module X and a left ^M-module Y, X 0 Y is defined to be the 
bar resolution B(X, flM, Y). The product used to define the bar resolution is the 
product defined above. This is analogous to the 0 for two spaces with an action by a 
group 7r or to the tensor product of modules over a ring. 

Definition 3.3.2. — We say that a right ^M-module X is n-dualizable if there is 
a left ^M-module Y, a continuous map rj: Sn —> 1 0 7 and a map e: YAX —> 
SnA(0M,t x s)+ of ^M-^M-bimodules such that 

SnAX 

XASn 

rçAid 
(X © y ) Ä X YÄS" 

X © (YAX) (<7Aid)7 

id0e 

XQ(SnA(0M,tx s)+) SnAY 

id A77 
F A ( X 0 Y) 

((YAX) 0 y ) 

e©id 

( S n Ä ( ^ M , t x s ) + ) 0 7 

commute stably up to homotopy respecting the action by !PM. 

Let s*Su denote the pullback of S" along s: 9>M -> M. Then TMs*Su is the 
quotient of 5*5^ where we identify ((7,M),V) and ((7', г¿,), v') if v and t/ are in the 
image of the section and j(u) = ^'(u'). This is an ex-space over M with projection 
given by 

((7,u),v) h-> 

We use T M to denote the quotient since TMS*SU is related to the Thorn space. This 

is a left ^M-module 

Lemma 3.3.3. — Let M be a closed smooth manifold. Then (flM, s)+ is dualizable 
with dual TMS*SV . 

We prove this lemma in Chapter 5 where it is part of Lemma 5.4.3. 

The coevaluation map 

Sn ^(0M,s)+GTMs*S" 
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is the composite of the Pontryagin-Thom map for the normal bundle of M with the 
map that takes an element v of the normal bundle to (cp(v), cp^, v). Here cx is the 
constant path at x. The evaluation map is more difficult to describe. It is closely 
related to the evaluation map in Lemma 3.1.3 and it is defined in Lemma 5.4.3. 

3.4. The homotopy Reidemeister trace as a trace 

Before we define the trace we need to define the shadow of a space with two actions 
of 0>M. 

Definition 3.4.1. — Let Z be a ^M-^M-bimodule. The shadow of Z,{Z}, is the cyclic 
bar resolution C(Z, 0M). 

For a map / : M - » M, (0fM,t x s)+ is the ^M-«^M-bimodule defined by 

(<Pf M, txs):= { (m, (7,и)) e M x 0M\f(m) = 7(0)} . 

This is a space over M x M with projection map (771,7) h~* (l{u)im)- The actions of 
ФМ are given by composition of paths on the left and composing with / followed by 
composition of paths on the right. There is a map from the shadow of (0fM,txs)+ 
to the space 

AfM = { (7 ,u ) G 0M\f(<y(u)) = 7 (0)}+. 
This is an isomorphism on components. See Section 6.2 for a description of this 
comparison. 

For a map f:M—>M there is an induced map 

/ : ( W * ) + - > ( ^ M , e ) + 

of right ^M-modules. 

Definition 3.4.2. — If M is closed smooth manifold and / : M —> M is a map, the 
trace of / is the stable homotopy class of the map 

Sn ( 0 M , e ) + G>TM8*S» -^(TMs*S»A(PM,s)+} 

-—^(TMs*S"A(!PfM,5)+)) ^ Sn A({PfM,t x 5 )+) ) 

Definition 3.4.3. — The homotopy Reidemeister trace of / , i2htpy(/), is the trace of / . 

The duality and trace defined in these two sections are also examples of the duality 
and trace in bicategories defined in Chapter 4. The bicategory used to define this 
duality is described in Chapter 5. 
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CHAPTER 4 

WHY BICATEGORIES? 

In the previous two chapters we have explained some of the reasons why Dold and 
Puppe's trace in symmetric monoidal categories cannot describe the Reidemeister 
trace. We have also explained why there should be some structure, similar to the 
trace in symmetric monoidal categories, that does describe the Reidemeister trace. In 
this chapter we will describe that structure. 

To achieve the necessary additional generality we replace symmetric monoidal cat
egories by bicategories. Bicategories have structure that is very similar to a symmetric 
monoidal category in the ways that are important for defining duality and trace. In 
particular, bicategories have 'tensor products', or composition, and units. Bimodules 
over a ring and spaces with group actions are examples of bicategories. 

Without some additional structure bicategories are not similar enough to sym
metric monoidal categories to have a trace. To define a trace we add shadows. The 
shadows are closely related to the bicategory composition and they play a role similar 
to that of the symmetry isomorphism in a symmetric monoidal category. 

Some results that follow easily from the definitions of duality and trace significantly 
simplify proofs of results stated in Chapter 3. We include those results here and 
complete the proofs omitted from Chapter 3 in Chapters 5 and 6. 

We omit most proofs in this section since they are diagram chases from the defini
tions. Additional information can be found in [38]. 

4.1. Definitions 

Bicategories can be thought of as monoidal categories with many objects. Instead 
of having objects and morphisms, bicategories have 0-cells, 1-cells, and 2-cells. Each 
1-cell or 2-cell in a bicategory ^ has a source 0-cell and a target 0-cell. For two 0-
cells A and B, the 1-cells and 2-cells with source A and target B form a category 
with objects the 1-cells and morphisms the 2-cells. This category is usually written 
&(A, B). In addition, for 0-cells A, B, and C there is a functor 

0 : # ( B , C) x &(A, B) S8{A, C) 
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that acts as 'composition' for 1-cells and 2-cells. For each 0-cell A there is a functor UA 
from the category with one object and one morphism to 38(A, A). Up to isomorphism 
2-cells, the functors 0 are associative and unital with respect to the functors UA-

Definition 4.1.1. — [27, 1.0] A bicategory 38 consists of 
(i) A collection o b ^ . 

(ii) Categories 88(A, B) for each A,Be ob38. 
(Hi) Functors 

0 : 88(B, C) x 38(A, B) 38(A, C) 

UA' *->38(A,A) 
for A, B and C in o b ^ . 

Here * denotes the category with one object and one morphism. The functors 0 are 
required to satisfy unit and associativity conditions up to natural isomorphism 2-cells. 

Remark 4.1.2. — There are two choices for the convention used for the bicategory 
composition. We follow the convention used in [29], but the choice 

0 : 38(A, B) x 88(B, C) -+ 38(A, C) 

is also used. 

Some examples of bicategories include: 

— The bicategory with 0-cells rings, 1-cells bimodules, and 2-cells homomorphisms. 
— The bicategory with 0-cells categories, 1-cells functors, and 2-cells natural trans

formations. 
— The bicategory Ex of ex-spaces with 0-cells spaces; and for two spaces A and B 

the category Ex(A, B) is the category of ex-spaces over B x A. ^ 
A monoidal category is a bicategory with a single 0-cell. The objects of the monoidal 

category are the 1-cells of the bicategory and the morphisms are the 2-cells. The 
monoidal product of the monoidal category is the 0 in the bicategory and the unit 
object / is used to define the single functor Ui. Chapter 9 contains more examples of 
bicategories. 

Definition 4.1.3. — A lax functor F: 38 -» 38' between bicategories consists of 

(i) A function F from the 0-cells of 38 to the 0-cells of SB'\ 
(ii) Functors F: 38(A, B) -* 38'(FA, FB) for all pairs of 0-cells A and B of 38\ 

(iii) Natural transformations 

(f>x,Y: F(X) 0 F(Y) F(X 0 Y) 

for all 1-cells X and Y\ 
(iv) Natural transformations (J>A'- UFF^ —> F(UA) for each 0-cell A 

that satisfy some coherence conditions. 

t1) The name Ex is used to refer to a different, but related, category in [34]. 
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This is analogous to a monoidal functor and its natural transformations 

F(A) <g> F(B) -+ F(A 0 B) 

and V —* F(I). A strong functor of bicategories is a lax functor where the natural 

transformations (j>x,Y and CJ>A are natural isomorphisms. 
For more detailed definitions see [27, 34]. 

4.2. Rings, bimodules, and maps 

Many of the important features of bicategories can be seen in the example of rings, 
bimodules, and homomorphisms. The 0-cells of this bicategory are rings, the 1-cells 
with source A and target B are the £?-^4-bimodules. The 2-cells between two B-A 
bimodules are the bimodule homomorphisms. The 0 is the usual tensor product of 
modules over a ring. The functor UA associated to a ring A is A regarded as an 
A-A-bimodule. This bicategory is denoted by Mod. 

We used the Hattori-Stallings trace of an endomorphism of a finitely generated 
projective module to define the algebraic Reidemeister trace. In the definition we 
used the map 

v: X ®AP®A Honu(X, A) -> H o n u ( X , X ®A P) 

which is an isomorphism for all right A-modules P and finitely generated projective 
right A-modules X. We can also define a map 

rj: Z^RomA(X,X) 

for any right A-module X by 77(71) = n • idx- If X is a finitely generated projective 
right A-module then the composite of 77 with v~x gives a map 

Z - > X ® A HomA(X, A). 

In fact, the existence of a map 

Z->X<8u Honu(X, A) 

satisfying some additional conditions is equivalent to v being an isomorphism. 

Proposition 4.2.1. — The following are equivalent for a right A-module X. 

(i) X is a finitely generated projective right A-module. 
(ii) The map 

v: P®A Honu(X, A) -> HomA(X, P) 

is an isomorphism for all A-A-bimodules P. 

(iii) There is a map 77: Z —• X <8u DAX, DAX := H o m ^ X , A), such that 

DAX — D A X ® Z Z IDON DAX 0Z (X ®A DAX) 

id ^ 

DAX — A ®A DAX evoid (DAX <g>z X) ®A DAX 
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and 
X —— ZOZ X 77<g)id ( X ®A DAX) <g>z X 

id 

X- •X®AA~ 
id <g)ev 

X ®A (DAX ®z X ) 

commute. 

Using the map 77 and the functor ((—)) from Definition 2.3.4 we can give another 
description of the Hattori-Stallings trace. 

Proposition 4.2.2. — If X is a finitely generated projective right A-module, P is an 
A-A-bimodule, and f: X —> X <8>A P is a map of right A-modules, then the Hattori-
Stallings trace of f is the image of 1 under the composite 

Z 

X®ADA{X) 
foid 

X®A P®A DA(X) 

«-P» 
A 

«ev» 

(P®A DA(X) ®ZX)). 

In the rest of this chapter we generalize this description of the Hattori-Stallings 
trace to a trace in bicategories with shadows. We begin by recalling the generalization 
of Proposition 4.2.1 to a bicategory from [34]. Then we define shadows which generalize 
the functors ((—)). 

4.3. Duality 

Duality in a bicategory is similar to duality in a symmetric monoidal category. 
Many of the differences are already seen in Proposition 4.2.1, which we generalize 
here. This section is based on Chapter 16 of [34] which contains additional details. 

Definition 4.3.1. — A 1-cell X € 3S{B, A) is right dualizable if there is a 1-cell Y € 
8S(A, B) and maps rj: UA —» X 0 F, called the revaluation, and e: Y O X —• UB, 
called the evaluation, such that the following diagrams commute in 38{B,A) and 
38(A,B), respectively. 

Y -UAQX 
rçOid 

[X © Y) 0 X 

id 

X -XQUE id ©€ X © (Y © X) 

Y •YQUA 
id ©77 Y © (X © Y) 

id 

Y UBQY eOid (Y © X) © Y 

If X is right dualizable with dual Y we say that Y is the right dual of X and that 
(X, Y) is a dual pair. We also say that Y is left dualizable and that X is the left dual 
of Y. 
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Proposition 4.3.2. — Let X be a 1-cell in 3ë{B,A), Y be a 1-cell in 38(A,B), and 
e: Y 0 X —> UB be a 2-cell in 38(B, B). Then the following are equivalent. 

(i) Y is the right dual of X with evaluation e. 
( i i ) The map e / ( - ) : âB (W, Z ®Y) -+ 38(W 0 X , Z) which takes a 2-cell f:W -* 

ZGY to the 2-cell 

WGX 
foid 

ZQYGX idOe Z®UB = Z 

is a bisection for all W G 38(A, C) and Z G 38(B, C). 

There is a similar characterization using the coevaluation. If 38 is a closed bicate
gory there is also a characterization using the internal horn. 

As in the symmetric monoidal case, any two right duals of a right dualizable object 
are isomorphic. If (X,Y) is a dual pair with coevaluation rj and evaluation e and 
(X, Y') is another dual pair with coevaluation rf and evaluation e' then 

Y^YQUA 
id Gin' 

YQXQY' 
c©id 

UBQY'2i Y' 

is an isomorphism with inverse 

Y' = Y' Q UA 
id (T)T? 

y 0 X 0 y 
e'Oid 

UB 0 Y Y . 

A dual pair in a symmetric monoidal category is also a dual pair in the corre
sponding bicategory with one 0-cell. However, in a bicategory an object that is right 
dualizable might not be left dualizable, and conversely. 

The following results about composites of dual pairs follow immediately from the 
definition of a dual pair. While they are both very easy to prove they have significant 
consequences. 

Theorem 4.3.3. — Let X be a right dualizable 1-cell in 38(B, A) with dual Y and W 
be a right dualizable 1-cell in 38(C,B) with dual Z. 

Let (rj,e) be coevaluation and evaluation maps for the dual pair (X,Y), and let 
( C J ^ O be coevaluation and evaluation maps for the dual pair (W,Z). Then the com
posites 

UA 
n • x QY -XQUBOY 

id ©COid 
• (X © W) © (Z © Y) 

and 

(ZQY)Q(XQW)-
id ©€©id 

ZQUBQW ZQW Uc 

are coevaluation and evaluation maps that exhibit (X 0 W, Z 0 Y) as a dual pair of 
1-cells. 

Theorem 4.3.4. — Let (X, Y) be a dual pair with evaluation e: Y 0 X —> UB- Let Z 
be another 1-cell and suppose ( X 0 Z, V) is a dual pair. If e is an isomorphism then 
(Z, V 0 X ) is a dual pair. 
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Let (Z, W) be a dual pair with coevaluation x: UB —• Z 0 W and X be a 1-cell. If 
(X 0 Z, V) is a dual pair and x is an isomorphism, then (X, Z © V) is a dual pair. 

Strong functors of bicategories are compatible with dual pairs, but weaker hypothe
ses can also give compatibility between functors and dual pairs. 

Proposition 4.3.5. — Let (X, Y) be a dual pair in a bicategory 38, X G 38(B, A), and 
F: 38 —> 38* be a lax functor of bicategories such that 0x,y and <\>B are isomorphisms. 
Then (FX, FY) is a dual pair in 38'. 

If the coevaluation and evaluation maps for the dual pair (X, Y) are 

rj:UA^XeY and e:Y®X^UB, 

then the coevaluation and evaluation maps for the dual pair (FX, FY) are 

U>FA J ^ U F(UA) ™L F{X 0 yf-^Vl 0 FY 

and 

FYQFX Qyx ̂ X F(Y QX)-^L F(UB) — U'FB. 

Let Ch be the bicategory with 0-cells rings, 1-cells chain complexes of bimodules, 
and 2-cells maps of chain complexes. Let C be a chain complex of left .R-modules and 
D be a chain complex of right i2-modules. Suppose (D, C) is a dual pair. There is a 
map 

H*(D) 0 JT.(C) = H*(D) ®R H*(C) -> H*(D 0H C). 

The Kiinneth Theorem implies this map is an isomorphism if each C* is a projective 
module, the boundaries of Ci are projective and the homology of C is projective in 
each degree. The natural transformations (J)R are the identity for all rings R and so 
when the hypotheses of the Kiinneth Theorem are satisfied Proposition 4.3.5 implies 
that the homology of a dualizable complex is dualizable. 

4.4. Shadows 

In symmetric monoidal categories the symmetry isomorphism 

X®Y ^Y ®X 

provides a way to compare the target of the coevaluation with the source of the 
evaluation for a dual pair (X, Y). This is an important part of the definition of the 
trace. To define trace in a bicategory we will also need to be able to compare the 
target of coevaluation with the source of evaluation. For example, in the bicategory 
of rings, bimodules, and homomorphisms it is necessary to compare X <S>A Y with 
Y <8>B X for an B-A-bimodule X with dual Y. 

The comparisons we need are not automatically part of the structure of a bicate
gory, as we can see in the bicategory Mod. In Mod we introduced the functors ((—)) to 
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define the Hattori-Stallings trace. In this section we describe how to generalize these 
functors to other bicategories. 

Definition 4.4.1. — A shadow for a bicategory 31 consists of functors 

«-»: #{A,A)^T 

for each object A of 31 and some fixed category T, and a natural isomorphism 

0:{XQY))^(YQX} 

for all pairs of 1-cells X € 38{B, A) and Y € SS{A, B) such that the following diagrams 
commute whenever they make sense: ^ 

({X O F ) © Z)—6-^{Z 0 (X © y)> *((Z © X) © Y) 

( x © (y © z ) ) ) - ^ ( ( y © Z) © x ) — - ( y © (Z © X))) 

(z © c ^ > — © ^ - ^ ( ^ © uAj 

«4 
Shadows can be thought of as 'cyclic tensor products' since the natural isomor

phisms will allow cyclic permutations of 1-cells and 2-cells. 
As we noted before, from a symmetric monoidal category we can define a bicategory 

with a single 0-cell, 1-cells the objects of the category, and 2-cells the morphisms. The 
identity functor is a shadow for this bicategory and the isomorphism 6 is the symmetry 
isomorphism. 

The bicategory Ch is a bicategory with shadows. The shadows are given by applying 
the shadows of Mod levelwise. The isomorphism {X 0 Y} —» ((Y 0 X} is the usual 
exchange of elements and adds a sign determined by degree. 

Since shadows are not automatically part of the structure of a bicategory, it is not 
surprising that additional hypotheses will be needed before a lax functor is considered 
compatible with shadows. 

Definition 4.4.2. — Let 3 and 3' be bicategories with shadows. A lax shadow functor 
is a lax functor F: 3-^3', a functor F: T —> T', and a natural transformation 

i>A •• ((F(-)} -> F{-} 

(2) The following diagrams are due to Michael Shulman. 
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for each 0-cell A of 88 such that 

{FX 0 FY} — ^ {FY 0 FX} 

4>X,Y 4>Y,X 

((F(XQY)} {F{Y 0 X)} 

ФА ФБ 

HX&Y}- F{Y®X)) 

commutes for all 1-cells X € 8B{B, A) and Y € &(A, B). 

Homology is a lax shadow functor. The lax functor is the identity on 0-cells and 
the usual homology functor on 1-cells and 2-cells. Define tpR by the coequalizer 

R®H,(C*) Я * ( Д ® С * ) 
H,(к) 

Я . ( « 7 ) 
я л а ) Н<я*(а)» 

H*(R®C*) 
Я Л / с ) 

Я . ( « 7 ) 

Я , ( С . ) 

Фи 

í . ( ( C . » . 

4.5. Trace 

Motivated by the definition of trace in a symmetric monoidal category and the 
Hattori-Stallings trace we can now use duality in a bicategory to define trace in a 
bicategory with shadows. 

In this section 88 is a bicategory with shadows and X 6 88{B, A) is a 1-cell with 
right dual Y G 88(A, B). Let rj: UA —• XQY and e: Y01 -> UB be the coevaluation 
and evaluation for the dual pair (X, Y). 

Definition 4.5.1. — For 1-cells P e 38(B,B) and Q e 88(A,A) and a 2-cell 

f:Q(DX^X®P 

the trace of / is the composite 

IQ) 

<QUOA idon 
(QQXQl 

fOidl 
t-lXQPQ Y)) = ((У 0 l 0 P 

(e©id¡ 

<P> 

/ ß 0 . 

In a symmetric monoidal category, trace was defined only for endomorphisms of 

dualizable objects. In a bicategory we add the 1-cells P and Q since we want to use 

this trace in fixed point theory applications. For these examples the maps we want 

to take the trace of are not endomorphisms of 1-cells. Rather, they are 2-cells of the 

form X —> X 0 P. This can be seen in the definition of the algebraic Reidemeister 
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trace where X = C*(M;Q) for some closed smooth manifold M and P = Z7Ti(M)^. 
While Q is not needed in our applications, we add it to the definition for symmetry. 

We define the trace of a 2-cell g: Y 0 Q —> P QY similarly. 
The following lemmas describe basic properties of the trace. All of these lemmas 

are easy to prove. 

Lemma 4.5.2. — If (X, Y) and (X, Y') are dual pairs, the trace of f with respect to 
(X, Y) is equal to the trace of f with respect to (X,Yf). 

Let / ' be the composite 

YQQ PQY. 

YQQQUA id 0 id ©ri YOQOXQY 
_ i d © / © i d 

YQXQPOY 
. eQid 0 ic 

UBGPQY 

The 2-cell / ' is the dual of / . 

Lemma 4.5.3. — For f and f as above, 

tr(/) = t r( / ' ) . 

One of the defining properties of a trace function on matrices is commutativity. 
The trace in bicategories is also commutative. 

Lemma 4.5.4. — If X and Z are right dualizable 1-cells, g: i? 0 Z —• X 0 S, f: Q 0 
X —> Z 0 P are 2-cells, and the composites 

QOROZ 
ido 0.9 

0 0 X 0 5 
/0id<? 

z e P e s 

ReQex 
i d R 0 / 

RQZQP 
gGidp 

X 0 5 0 P 

are defined, then 

tr((/ 0 id5)(idQ Og)) = tr((g 0 idP)(idH 0 / ) ) . 

The trace respects the 0 structure. 

Lemma 4.5.5. — If X and Z are right dualizable 1-cells, f:QQX-+X and g: Z —• 
Z 0 P are 2-cells, and 

g(Df:Z0Q0X-*Z0PGX 
is defined, then 

t r ( 0 O / ) = t r ( 0 ) t r ( / ) . 

Some of the dual pairs that we will consider later have much more structure than 
is required by the definitions. The additional structure gives more information about 
the traces. 
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Lemma 4.5.6. — (i) Let (X, Y) be a dual pair such that the evaluation e is an iso
morphism. Let Z be another 1-cell such that X 0 Z is dualizable. For a 2-cell 
g: Q © Z —• Z © P let g* be the composite 

XOQQYQXQZ 
id © id ©e©id 

X © Q © UA © Z 

XOQOZ 
id©g 

X © Z © P. 

Then 

(XQQQY)) -{YOXQQ} 
<eoid 

VA © Q ((QÌ 
tr(s) 

is the trace of g*. 

(ii) Let (Z, W) be a dual pair such that the coevaluation x i>s an isomorphism and 
let X be another 1-cell such that X 0 Z is dualizable. If f: Q 0 X —> X 0 P is 
a 2-cell let f* be the composite 

QCDXGZ-
/0id 

XQPQZ 

XQUAOPOZ 
id OxOid 0 id 

x e z e w e P e z . 

Then 

<Q> trf {P)) = ((PQUAy 
((id ©y» 

f P © Z © W) ((W 0 F 0 Z)) 

is the trace of f*. 

Strong symmetric monoidal functors preserve dual pairs and trace in a symmetric 
monoidal category, as do lax symmetric monoidal functors that satisfy some additional 
hypotheses. Strong functors of bicategories, and lax functors of bicategories where 
some of the coherence natural transformations are isomorphisms, preserve dual pairs 
in a bicategory. Strong functors of bicategories that are also shadow functors almost 
preserve the trace. 

Proposition 4.5.7. — Let F be a lax shadow functor and (X, Y) a dual pair such that 

<\>xy : F(X) 0 F(Y) - F(X 0 Y) 

and 

<t>B:U'F{B)^F{UB) 

are isomorphisms. If f: Q 0 X —» X 0 P is a 2-cell, (J)Q,X is an isomorphism and f 
is the composite 

FQ 0 FX 
W-1Q,1 

F(QQX) 
F(f) 

F(X 0 P) 
<t>x,p 

FX © FP 
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then the following diagram commutes. 

(FQ)) 
tr(/) 

>(FP} 

wa wb 

HQ)) F(tr(f)) HP)) 

For the homology functor, the natural transformations (f>A are all the identity and 
so the conditions of Proposition 4.5.7 are all consequences of the Kiinneth Theorem. 

Corollary 4.5.8. — Let C be a finitely generated chain complex of projective right 
R-modules such that the boundaries and homology of C are projective in each de
gree. If f : C —> C <S>R P is map of chain complexes then 

2 
tr(4>oiï.(/)) 

(HJP)} 

z — H.(tr( /» 
H*({P}) 

oA 

commutes. 

In particular, if M is a finite CW complex and H* (M; Z ) is projective as a right 
module over ZTTIM then the algebraic Reidemeister trace computed using the chains 
on M is the same as the trace of the induced map on homology. Compare this obser
vation with [11, 4.3.b] and [19, 1.4]. 

Remark 4.5.9. — The trace defined in this section generalizes the trace in symmetric 
monoidal categories defined in [11]. It also satisfies generalizations of several of the 
defining properties of the trace in [23, 30]; see [38]. In particular, the trace in this 
section is natural and, up to unit isomorphisms, the trace of a 2-cell 

f:QOUA->UAGP 

is ((/)). Since the bicategorical trace is 'asymmetric' the remaining properties can't be 
generalized in all cases. 

In [38] there is another definition of trace in bicategories. This approach uses an 
extension of the definition of the shadow to double categories. This definition does 
not use dualizability, but in case of dualizable 1-cells the definitions coincide. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010 





CHAPTER 5 

DUALITY FOR PARAMETRIZED MODULES 

In this chapter we give several examples of the duality defined in the previous 
chapter. We will first describe the bicategory of ex-spaces and one particular example 
of duality in this bicategory. 

Prom the bicategory of ex-spaces we can define a bicategory that is a topological 
analogue of the bicategory of rings, bimodules, and homomorphisms. After defining 
the bicategory, we give several examples of dual pairs. These examples are similar to 
those in Chapter 3, but now we use the formal results from Chapter 4 to simplify 
many proofs. 

The results from Chapter 4 that do the most to simplify the proofs here are the 
results about composites of dual pairs. The first of these results shows that the com
posite of two dual pairs is a dual pair. This result, along with a particular dual pair 
for a closed smooth manifold, will produce the dual pairs we described in Chapter 3. 

In the next chapter we use these dual pairs to show that several forms of the 
Reidemeister trace are examples of trace in bicategories and we use functoriality of 
the trace to relate these invariants. 

5.1. Costenoble-Waner Duality 

We first define the bicategory Ex of ex-spaces. The 0-cells of Ex are spaces. A 1-cell 
in Ex(^4, B) is an ex-space X over B x A, a space X with maps 

BxA^X^BxA 

such that po a = id. The 2-cells of Ex are maps of total spaces that commute with 
the section and projection. If Y is an ex-space over B we think of it as an object of 
Ex(B,.) . 

Recall from Remark 1.4.1 that for homotopical control we will usually consider 
parametrized spaces X over A x B where the map X —» A x B is a fibration and 
the map A x B —» X is a fiberwise cofibration. This assumption implies that maps in 
the homotopy category will correspond to fiberwise homotopy classes of maps. While 
this is a restrictive assumption, in many of the examples we are interested in this 
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condition is satisfied. When this does not hold we choose an equivalent replacement 
that does satisfy these conditions. See [34, 9.1.2] for further details. 

The external smash product A of an ex-space X over A with an ex-space Y over 
B is a parametrized space over A x B. The fiber of the external smash product over 
(a, 6) is the fiber of X over a smashed with the fiber of Y over b. 

If X is a parametrized space over A x B and Y is a parametrized space over 
B xC then we define I I 7 , a parametrized space over A x C, as the pullback along 
A : B —> B x B and then pushout along r: B - » * of XAY'. 

gn -^X^tY and tY И X A ¡5g 

such that 

commute up to fiberwise homotopy. 
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Ax C 
idxr x id 

A x B x C 
id x A X id 

A x B x B x C 

XMY ( i d x A x id)*(XAy) - XAY 

AxC 
id xrxid 

AxBxC 
id X A x id 

Ax B x B xC 

Following [34], we write this as X MY = r\A*(XAY) where (—)* indicates pullback 
and (—)j indicates pushout. This is the bicategory composition in Ex. For more details 
on these definitions see Chapter 17 of [34]. With the assumption that the projection 
maps are fibrations and the sections are fiberwise cofibrations X El Y will have the 
correct homotopy type. 

For each 0-cell B, (B, A)+ £ Ex(£, B) denotes the ex-space with projection map 
the diagonal map A : B —> B x B and a disjoint section. This is the unit for El and so 
it will be denoted UB- More generally, if p: X —• B is a continuous map, then (X,p)+ 
is the parametrized space with projection p and a disjoint section. We regard (X,p)+ 
as an object of Ex(B, *). 

Costenoble-Waner duality [34, Chapter 18] for parametrized spaces is an example 
of duality in a more sophisticated stable version of the bicategory Ex but it also has 
an interpretations in terms of n-duality in Ex. 

Definition5.1.1. — [34, 18.3.1] An ex-space X over B is Costenoble-Waner n-
dualizable if there is an ex-space Y over B and maps 

Sn№X 
T7 îd 

(XMtY)MX 

XMSn 

X El (tY El X) 
• id He 

X E 1 A.Sg 

tY on 
idx n 

• tY B (X m tY) 

( < r E l i d ) 7 (tY №X)№tY 

axid 
SnmtY ASbX tY 
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Note that Ai (5g) G Ex(#, B) is the pushout of Sn x B along the diagonal map of 
B. The t indicates that we are thinking of Y as an element of Ex(*,#) rather than 
Ex(B,*). 

Theorem 5.1.2. — [34, 18.6.1] Let M be a closed smooth manifold with an embedding 
in R n . Then (S^^tS^) is a Costenoble-Waner n-dual pair. 

The ex-space 5 ^ G Ex(M, *) has total space two copies of M. The projection map 
is the identity map on both components. The ex-space Sv G Ex(M, *) is the fiberwise 
one point compactification of the normal bundle of M. The section is the inclusion of 
M as the points added by the compact ification. It is a space over M via the projection 
map p: Su —• M. 

The coevaluation map 
n: Sn ^ SQMMtSv ^Tv 

is the Pontryagin-Thom map for the normal bundle of the embedding M —> Sn. 
The diagonal gives an inclusion of M into v x M. Let e be an identification of a 
neighborhood V of M in v x M with the trivial bundle R n x M. We can define a map 

E: V -+ Map(/ ,M) x ( E n x M) 

by 
E(v,m) = (H(p(v), m), e(v, m)) 

where H(p(v),m) is a path from p(v) to m as in Lemma 3.1.4. 
The evaluation map e is the composite of the Pontryagin-Thom map for the em

bedding M —• vxM with the map E. This is related to the evaluation map described 
for the dual pair in Lemma 3.1.3. 

Since Costenoble-Waner dual pairs are examples of dual pairs in a bicategory there 
are other characterizations of Costenoble-Waner duals. Let {—, —} denote stable ho-
motopy classes of maps and {—, — } B denote fiberwise stable homotopy classes of maps 
over B. 

Corollary 5.1.3. — If X is Costenoble- Waner n-dualizable with dual Y, 

{Z H X , W}B = {Sn AZ,W№ tY} 

for Z e Ex(*, *) and W G Ex(£, * ) , 

In particular, for a closed smooth manifold M 

{S0M,U}M = {S°,U®tS»} 

for U G Ex(M,*). 

For any space B the parametrized spaces (i?,id)+ G Ex(B, *) and £(2?,id)+ G 
Ex(*, B) form a dual pair. The coevaluation is the diagonal map 

A:B-+BxB. 

If r: B —> * is the map to a point, the evaluation map is 

r+:B+-+S°. 
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For a manifold M, the dual pairs ((M, id)+, t(M, id)+) and ( 5 ^ , tSv) can be composed 
to give the dual pair (M+,XV) described in Theorem 1.3.2. 

5.2. A bicategory of bimodules over parametrized monoids 

In this section we define the bicategory that describes the topological dual pairs we 
will use later. This is a bicategory of monoids, bimodules, and maps of bimodules and 
its construction is similar to the construction of the bicategory of rings, bimodules, 
and homomorphisms from the category of abelian groups. 

The bicategory in this section is a special case of the bicategory described in Sec
tion 9.3 with one exception. In Section 9.3 we make frequent use of colimits. In this 
section we will use homotopy colimits. Here we are primarily interested in homotopical 
information and homotopy colimits will give the right homotopy types. Also, we must 
use homotopy colimits to be able to connect our invariants with classical invariants, 
especially the invariant defined by Klein and Williams. 

Definition 5.2.1. — A monoid in Ex is a parametrized space si G Ex(A,A) with 
parametrized maps 

fi: si M si ^ si and L:UA ^ si 

such that 

A = A X A uxid A X A A* 
A 

and 

A = UA X A id S t £/El«0 A 

are the identity and 

A X A X A 
u îd 

A X A 

id 18 A* A* 

A X A 
A* u 

commutes. 

We think of /x as composition and £ as the unit. 

Definition 5.2.2. — Let srf and be two monoids in Ex. An srf-&-bimodule is an 
object 3£ G Ex(£, A) and two parametrized maps 

k : A X X —> X 

and 

K : 36 El ̂  -> # 

that are unital and associative with respect to the monoid structure of « 2 / and 38. We 
also require that the actions K and « ' commute. 
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A monoid srf defines an srf-srf bimodule with left and right actions given by the 
monoid multiplication \x. We will denote this bimodule by since it is the unit in 
a bicategory. 

A parametrized space X over A is trivially a bimodule. Thought of as a space over 
* x i , f has a left action by [/* using the obvious isomorphism. It also has a right 
action by UA using the unit isomorphism 

X XUA — X 

Definition 5.2.3. — Let 3C and & be j^-^-bimodules. A map of bimodules is a 
parametrized map / : SC —> & such that 

JB/ M X — ^ X 

id Kl/ 

A X Y 
K 

f 

y 

and X X B k' X 

/Bid f 

y XB 
K. 

y 

commute. 

Definition 5.2.4. — Let X be an ^-^-bimodule and & a ^-^-bimodule. Then X'0 
& is the bar resolution B(X,38,9). This is an ^-^-bimodule. 

The bar resolution B(X,38, is the geometric realization of the simplicial ex-
space over C x A with n simplices 

X X (B)n X Y 

face maps 

do = tf'Elid^Elid^ 

di = id El id!^1 S/i El id* El id^ for 0 < i < n 
dn = id^Elid'T1 Ek 

and degeneracy maps 

Si = id9T Elid« El id!L *Elid^. 

W e think of X G) 9 as the homotonv coeoualizer 

X №38№& 
/c'Elid 

idia« 
X X Y ~ X (dW 

as an ex-space. 
The bar resolution is associative up to isomorphism. To see this recall that the 

geometric realization is a tensor product of functors, see [42]. Then the comparison of 
B{X,3S,B(9^,X)) with B(B(X,3B, Y), C, X) is a comparison of coequalizers. 
The product X 0 38 is homotopy equivalent to X using a simplicial homotopy and 
the extra degeneracy in 38. 
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This defines a bicategory ^#Ex with 0-cells monoids, 1-cells bimodules, and 2-cells 
homotopy classes of maps of bimodules. The 0 of Definition 5.2.4 is the bicate
gory composition. The unit associated to a monoid si is that monoid regarded as 
a si-si -bimodule. 

5.3. Ranicki duality for parametrized bimodules 

Since the bicategory is defined using spaces instead of spectra, the definition 
of duality has to be modified a little from the definition of duality in a bicategory. We 
imitate the definition of n-duality for parametrized spaces. 

If X is a j^-^-bimodule then SCASn and SnA3£ are also ^-^-bimodules. 

Definition 5.3.1. — Let 9C be an j^-^-bimodule. Then 3C is n-dualizable if there is 
a SB-si-bimodule <3f and maps of bimodules 

rj: SnAU^- X OY and e: ^ 0 X SnAU& 

such that the following diagrams commute up to stable parametrized homotopy re
specting the module structure. 

.QnA W (SnAU^) G) 97 
noid XOYOX 

&KSN 

id0c 

XO (SnAUB) 

<3/T\SN & © (SNÄU^) 
id ©77 

^ 0 ^ 0 ^ Y 

€©id (<TA id)7 

SnA& [SnAU&) 0 9. 

^s before, a is a map of degree (—l)n. 

By neglect of structure any ̂ -^-bimodule 977 defines an S^-UB-bimodule denoted 
L(97) and a J7A-^-bimodule denoted R(97). 

Lemma 5.3.2. — Let si be a monoid. Then (R(V, L(U'^)) is a dual pair. The co-

evaluation map 

UA —> R(uA) O L(UA) 

is the unit mav. The evaluation mat) 

LUA —> R(uA) O L(UA) 

is the monoid multiplication. 
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The simplicial ex-space used to define R(U^) 0 L(U^) has an 'extra' degener
acy given by regarding an element of R(U^) or L(U^) as an element of srf. This 
means that R(U^) 0 L(U^) is equivalent to iV(C7», the monoid &/ regarded as an 
L^-^A-bimodule. 

Costenoble-Waner duality is an example of duality in the bicategory ^ E x - The 
Costenoble-Waner dual of an ex-space X over B is the dual of X as a C/*-C/5-bimodule 
in c/#Ex-

Costenoble-Waner duality only uses monoids defined using unit isomorphisms. The 
Ranicki dual pair described in Section 3.1 requires less trivial monoids. With the 
discrete topology, (7TiM)+ G Ex(*,*) is a monoid. The monoid multiplication 

(7TiAf)+ El (7TiM)+ = (TTXM X 7TiM)+ - > (7TiM) + 

is the group multiplication and the unit t: S° —» (7TiM)+ is the inclusion of the 
identity element of TTIM. The universal cover M+ G Ex(*, *) is a right (7TiM)+ module 
with the right action given by the usual action of TTIM on M. With this interpretation, 
a Ranicki dual for M+ is a dual for the module M+ in the bicategory «y#Ex-

We can use the quotient map to regard M as a space over M. In contrast with 
the convention above, we choose to regard (M ,7r)+ as an element of Ex(*,M). This 
choice is consistent with our later convention for path spaces since we think of M as 
the homotopy classes of paths in M that start at a base point. Then (M ,7r)+ is a 
right (7TiM)+-module. Note that M+ is equivalent to © (M ,7r)+. Let *M denote 
the universal cover of M regarded as homotopy classes of paths ending at the base 
point rather than starting at the base point. Then (*M ,7r)+ is a left 7TiM-module. 

Lemma 5.3.3. — For a closed smooth manifold M we have the following dual pairs. 

(t) ((M,7T) + ,(*M,7T) + ). 
(ii) (M+,TII*Sv) 

Proof. — As before, T^S" is the pushout of the maps M —• 7r*tSv and M —> *. 
This is equivalent to (*M, 7r)_j_ 0 Sv. The ex-space 

( M , 7 T ) + 0 ( * M , 7 r ) + 

is equivalent to the coequalizer of the two actions of TTIM on 

(M X M,7T X 7r) + 

since niM acts freely on M. Similarly, 

M+OTir*Sy 

is equivalent to the coequalizer of the two actions of niM on 

M + A T T T T . 

The coevaluation map for ((M, 7 r ) + , (*M, 7 r ) + ) 

UM -> (M, 7r)+ 0 ( *M, 7T)+ ~ (M X ^ M M, 7T X 7r) + 
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is given by m H (7m>7m) for any lift 7m of m. This map is well defined since the 
action of 7 T i M identifies all possible choices. The evaluation map 

( * M , TT)+ 0 ( M , TT)+ = { ( a , 0) e M x M|7r(a) = TT(/?)}+ - C / ^ M 

is given by (a, (3) »-> a/?. 
Note that the required diagrams for this dual pair commute strictly and without 

needing to stabilize. This is closely related to the observation above that monoids 
produce dual pairs. 

The second dual pair is the composite of the dual pairs ( ( M , 7 r ) + , ( * M , 7 r ) + ) and 
(S°M,tSv). The coevaluation map 

SN Tv >• M+ AniM TIT*SV ~ M+ 0 Tir*S" 

is the composite of the coevaluation, 77, for the dual pair (S^^tS1") and the map 

v *-* (lp(v),1p(v),v). 

The evaluation map 

Tir*S" 0 M + ~ Tir*Su A M + >• (TTIM)+ A Sn = y^lMsn 

is given by (7 ,v ,a) \-> (/yH(a(l),j(0))a,e(v,a(l))) where e is the evaluation map for 
the dual pair (S°M,tSl/). The path i f (a ( l ) ,7 (0) ) is defined in Lemma 3.1.4. • 

This lemma completes the proof of Lemma 3.1.3. 

5.4. Moore loops and bicategories 

In the previous section we defined duality in the bicategory of monoids and bimod-
ules in parametrized spaces and gave examples of dual pairs. With the exception of 
the first dual pair in Lemma 5.3.3, the dual pair for the universal cover of a manifold 
regarded as a space over that manifold, we haven't used the flexibility the bicategory 
Ex offers. In this section we will begin to exploit this greater flexibility. 

One undesirable aspect of using Ranicki duality to describe duality for universal 
covers was the need to choose a base point. There are two ways of dealing with this 
problem. The first is to verify that different choices of the base point give "the same" 
dual pairs. The second is to use all possible choices of base point. In other words, use 
objects like the fundamental groupoid rather than the fundamental group. The first 
approach is used in [2,21] and the second in [4]. We will use the second approach here 
since it will also be useful when defining fiberwise dual pairs. 

For our topological applications, the fundamental groupoid is not exactly the right 
object. First, we would rather have a space of objects and a space of morphisms rather 
than sets. Second, for fiberwise applications we would rather consider all paths than 
homotopy classes of paths. Instead of the fundamental groupoid we will consider a 
topologized version of the fundamental groupoid and the space of Moore paths. 
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Let M be a closed smooth manifold and IIM the space of homotopy classes of 
paths in M with endpoints fixed. Topologize this space using the quotient topology 
from the usual compact open topology on Map(J, M ) . There is a Hurewicz fibration 
t x s: UM —• M x M given by 5(7) = 7(0) and £(7) = 7(1). The fiber product 

UMxMnM = {(72,71) € UM x IIAf|7i(l) = 72(0)} 

is a space with a map t o M x M given by (72,71) «-» (72(1)» 7i(0)). Composition gives 

a strictly associative map /x: IIM xM IIM —• IIM. This is a map over M x M . 

The inclusion t of M into IIM by constant paths is also a map over M x M if M 

is regarded as a space over M x M using the diagonal map 

A : M —• M x M. 

We regard IIM xM M as a space over M x M by the map (7, m) H-> (7(1), m). Then 

IIM XM M is homeomorphic to IIM as a space over M x M. The map £ acts as the 

unit for \i in the sense that the following maps are the identity 

IIM ^ IIM xM M -* IIM x IIM -> IIM 

IIM = M xM IIM -> IIM x IIM IIM. 

With a disjoint section, IIM is a monoid in Ex. 

In contrast with the previous sections, we will not use a different notation for a 

path space monoid and that monoid regarded as a bimodule. 

Recall that for an ^-^-bimodule 3C', R(X) is X regarded as a L^-^-bimodule, 

L(X) is 3£ regarded as a ^-{Ts-bimodule, and N(X) is X regarded as a UA-UB-^-

module. 

The parametrized space (IIM, s)+ has a right action of (IIM, t x s)+ by composition 

of paths. Recall that Sv is the fiberwise one point compactification of the normal 

bundle of M. Then TMs*Su is defined to be L(IIM, t x s)+ 0 tSv'. This is an ex-space 

over M, and it has a left action by IIM. 

The dual pairs in Lemma 5.4.1 are the unbased versions of the dual pairs in 

Lemma 5.3.3. We make this comparison explicit in Lemma 5.4.2. 

Lemma 5.4A. — For a closed smooth manifold M we have the following dual pairs. 

(i) (R(IlM,t x s)+,L(n.M,t x s)+) 
(ii) ((nM,5)+,TM5*5^) 

Proof. — As noted before ,R(IIM,£ x s)+ 0 L(IIM,t x s)+ is equivalent to 

N(IlM,txs)+. 

The first dual pair is a dual pair arising from a monoid and so this dual pair follows 

from Lemma 5.3.2. The second dual pair is the composite of 

(R(ILM,t x s)+,L(ILM,t x 

with the dual pair (S°M,tSu). 

In (z), the coevaluation map 

UM -> -R(IIM, t x s)+ 0 L(IIM, t x s)+ 
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is given by m i—• (cm, cm) where cm is the constant path at m. The evaluation map 

L(UM, txs)+Q R(UM, txs)+^ (nM, t x s)+ 

is given by (a, ¡3) i—• a(3. 

In ( i f ) , note that 

((IIAf,*)+, T M ^ S " ) ^ (Sjf O R(IIM,tx s)+,L(nM,t x s)+ ©IS") . 

The coevaluation map 

ST ^Tu^\UM,8)+eTM8*Sv 

is given by v i—• (cp(v(v))icp(r)(v))iV(v))i where r\ is the Pontryagin-Thom map for the 
normal bundle of M . The evaluation map 

TM8*SV 0 (IIM,s)+ -+ SnAL(UM,t x s)+ 0 R(UM,t x «)+ SNA(nM,t x s)+ 

is given by (a,v,(3) »-> (e(v,>9(1)), aH(fi(l), a(0))/3) where i f is as in Lemma 3.1.4 
and e is the evaluation map for (S^/I,tSt/). • 

Lemma 5.4.2. — M+ zs dualizable as a niM-space if and only if (UM,s)+ is dualiz-
able as a (IIM, t x s)+-module. 

Proof — This result follows from Theorems 4.3.3 and 4.3.4. Let a; be a point in 
M and (UMx,t)+ be the universal cover of M thought of as homotopy classes of 
paths in M that start at x. This has a right action of ni(M,x) and a left action 
of (IIM, t x This space is dualizable with dual (XIIM, s)+, the universal cover 
thought of as homotopy classes of paths in M ending at x with a right action by 
(IIM, t x s)+ and a left action by 7Ti(M, X). This dual pair satisfies the additional 
condition that the evaluation map is an isomorphism. 

Then (IIM, s)+0(IIMx,t)+ is equivalent to M+ regarded as a right 7Ti(M, x)-space. 
By Theorems 4.3.3 and 4.3.4, M+ is dualizable as a 7TiM-space if and only if (IIM, s)+ 
is dualizable as a (IIM, t x s)+-space. • 

Recall that 0>M = {(7,u) G M^0'00) x [0,oo)|7(t) = 7(11) fort > u} is the space of 

free Moore paths in M. With a disjoint section, $M is a monoid over M x M in Ex. 

The parametrized space (#*M,s)+ has a right action of (0M,t x s)+ by composition 

of paths. 

Lemma 5.4.3. — For a closed smooth manifold M we have the following dual pairs. 

(i) ( i ? ( » , t x s ) + , L ( № , t x 5 ) + ) 
(ii) ((0>M,8) + ,TM8*S") 

Proof. — TMs*Sv is defined to be L{&M,t x *)+ 0 S". 
The first dual pair is a dual pair arising from a monoid as in Lemma 5.3.2. The 

second dual pair is the composite of (R(JPM,t x s)+,L(!PM,t x s)+) with the dual 
pair (S°M,tSn-
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In (i), the coevahiation map 

UM -> R(PM, txs)+G L(3>M, t x 5 ) + ~ (0>M, t x s)+ 

s the inclusion of M into TP M as constant paths. The evaluation map 

{JPM x M ff>M, txs)+~ L(ff>M, f x s ) + 0 R(@M, t x s)+^ (0>M, t x s)+ 

s given by composition of paths. 

In (ii), note that 

(S°M®R(PM,t x s)+,L(0M,t x s)+ O S " ) ~ ( ( ^ M , 5 ) + , T M 5 * 5 I / ) . 

rhe coevaluation map 

5n -> 5 ^ B Sv ~ Ti/ s)+ 0 T M 5 * 5 " 

s given by v 1—• (cprj(v), cpr?(v), r/(v)) where 77 is the Pontryagin-Thom for the embedding 

)f M in R n . The evaluation map 

TM8*S" 0 (0Af, s)+ >• L(£PM, t x s ) + 0 ((M, A)+ASn) 0 #(#>M, t x *)+ 

5 n A ( » , t x s ) + 

is given by (a,v,(3) (e(v,/3(1)), aH(f3(l), a(0))/3) where i f is as in Lemma 3.1.4 

and e is the evaluation map for (S^I,tS1/). • 

This lemma completes the proof of Lemma 3.3.3. 

Lemma 5.4.3 is very similar to Lemma 5.4.1. In both lemmas a dual pair defined 

using a monoid is composed with the dual pair ( 5 ^ , Sis). Let c : $M —> IIM be the 

map that takes a path to its homotopy class with end points fixed. This map induces 

a map 

N(ff>M,tx s)+ -> N(ILM,t x s)+ 

and similarly for the corresponding left and right modules. Functoriality implies that 
the following diagrams commute 

UM ^ N(PM, t x s)+ — ^ R(0>M, t x s ) + 0 L(ff>M, t x s)+ 

N(TIM, t x s)+ —^U- R(UM, t X 5 ) + 0 L(TIM, t x s ) . 

L ( 0 M , f x s ) + 0 Ä ( ^ M , £ x $)+ (#>M,£ x s)+ 

L(UM, tx s)+Q R(UM, t x s)+ - (UM,t x s) + 

Composing with the dual pair (Sj^, 5") gives similar diagrams showing compatibility 

of the dual pairs ( ( 0 M , s)+,TMs*S") and ((nM, s)+, TMs*Sy). 
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5.5. Shadows and traces for Ranicki dualizable bimodules 

The shadows in are very similar to 0 in Jß^. In special cases they are a 
'derived form' of the semiconjugacy classes of the fundamental group. They also relate 
to the target of the Hattori-Stallings trace. 

Definition 5.5.7. — Let X be an j^-^-bimodule. Then {X} is the cyclic bar resolution 
C(X, st). 

The maps 0 are induced by 

n A * ( X El &) >- n A * ( Ä T 0 &) *{X 0 &% 

r\AW H X) ^ r , A * ( f 0 X) ^IW 0 X)) 

The target of the shadow functor is the category of based spaces. 
The cyclic bar resolution C(X,srf) is the geometric realization of the simplicial 

based space with n simplices 
r , A * ( ( ^ ) n K ^ ) , 

far.fi mans 

a0 = idn-1 OK 
di = idnJ~ ©u © id'J1 © id^r for 0 < i < n 

dn = (idr1©«')7 
where 7: (srf)n № X —> (stf)n 1 № X№sa/ is the twist map, and degeneracy maps 

si = idV ©*, © id*L 1 © id^ . 

As before, we use n-duality to define the trace of a map. 

Definition 5.5.2. — Let X be an n-dualizable ^/-^-bimodule with dual coevalu-
ation and evaluation 

r? : SNAU* • X G)W and e: &GX SNAU<%. 

Suppose 3 is a ^-j^-bimodule, & is an ^-^-bimodule and f:t&QX-+X®&fis 
a map of bimodules. Then the trace of / is the stable homotopy class of the composite 

{£ASN) 
(Cid G)nl 

W OXOY 

/ © i d ) 

,r © & © ̂  YOXOP 
((e©id5 SnKP> 

We give examples of this trace in the next section. 
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CHAPTER 6 

CLASSICAL FIXED POINT THEORY 

This chapter implements the plan described in the introduction for proving Theo

rem D, the converse of the Lefschetz fixed point theorem that uses the Reidemeister 

trace. We use the dual pairs from Chapter 5 to interpret the fixed point invariants 

we defined in Chapter 2 as examples of the trace in bicategories with shadows. Then 

we use functoriality to identify the algebraic, geometric, and homotopy Reidemeister 

traces. 

In Chapter 5 we used the results on composites of dual pairs to produce new dual 

pairs. In this chapter we will use the corresponding results for the compatibility of 

composites of dual pairs and traces to compare the based and unbased versions of 

different forms of the Reidemeister trace. We also show how to use properties of the 

trace in bicategories with shadows to recover some standard fixed point theory results. 

6.1. The geometric Reidemeister trace 

In this section we define the unbased geometric Reidemeister trace using trace in 
a bicategory. For this invariant we use the topologized fundamental groupoid. 

Let / : M —> M be an endomorphism of a closed smooth manifold and 

UfM = { ( 7 , x ) e IIM x M|7(0) = f(x)}. 

There is a Hurewicz fibration txs:Ii^M^MxM given by 5(7, x) = x, £(7, x) = 
7(1). This defines a (IIM,£ x s)+-(IIM,J x s)+-bimodule (UfM,t x s)+ with the 

usual left action of IIM on itself and the right action given by first composing with 

/ and then composing paths. Then (IIM,s)+ 0 (II^M, £ x s)+ is equivalent to the 

right (IIM, t x s)+-module (II^M, s)+. The map / induces a map of right (IIM, t x 
s)+-modules 

U : (IIM, s)+ (IIM, *)+ 0 (II 'M, t x 5)+. 

If M is n-dualizable, the trace of /* is the stable homotopy class of the map 

Sn -> (Sn A (D/M, t x 5 ) + ) ) = Sn /\ ((UfM, t x a)+) 
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given by v (e[n(v),f(pf](v))],H[fp(rj(v)),p(rj(v))]) where H (f p(n(v)), p(n(v))) is a 
path from fprj(v) to prj(v) as in Lemma 3.1.4. 

Definition 6.1.1. — The unbased geometric Reidemeister trace, Ru,geo(f), is the ele

ment tr(/*) G 7rg(fn/AM x 5 ) + ) ) ) . 

Proposition 6.1.2. — A choice of base point * G M determines an isomorphism 

{SnA(n'M,tX8)+}^ViwiM.1jFn. 

Under this identification Ru>9eo(f) = R9eo(f). 

Proof. — In Lemma 5.4.2 we compared the dual pairs 

((ILM,8)+,TM8*S") 

and 

(M+,Tn*Sv) 

using a third dual pair, ((UMx,t)+, (xIIM,s)+). The dual pair 

((UMx,t)+,(xIlM,s)+) 

has the property that the evaluation is an isomorphism. Then the result follows from 
Lemma 4.5.6. • 

Remark 6.1.3. — The classical definition of the geometric Reidemeister trace de
scribed in Chapter 2 suggests that composites of dual pairs might be relevant since 
the geometric Reidemeister trace is defined using the index and information about the 
fundamental group. The index can be defined using the classical dual pair of a closed 
smooth manifold and the fundamental group information can be described using a 
standard dual pair related to the fundamental groupoid regarded as a monoid. 

6.2. The homotopy Reidemeister trace 

The Moore paths monoid can also be used to define a trace. Given a map / : M —• 
M, let 

7PfM = {(i,u,x) eTPM x M|7(0) = f(x)}. 

There are maps s,t: fP*M —• M given by s(^,u,x) = x and t(^,u,x) = j(u) and 

these define a (7PM, t x s)+-(7PM,t x s)+-bimodule (7Pf M,t x s)+ with the usual 

left action of 7PM and the right action of 7PM given by first composing with / and 

then composing paths. The right (7PM, t x s)+-module (7PM, s)+ 0 (7P]fM,t x s)+ is 

equivalent to the right (7PM, t x s)+-module (7P^M, The map / induces a map 

of right (7PM, t x s)+-modules 

/: (7PM,s)+ (7PM,s)+ 0 (7PfM,t x 

There is a map from the shadow of (7P^M,t x s) to 

AfM := { (7 ,u) G 0M|7(O) = /(7^))} ^ {a £ M7|a(0) = / ( a ( l ) ) } . 
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For n-simplices this map is defined by 

g>M B • • • R 7PM H 7PfM - » A / M 

(a i ,a2, . . . ,an,7) i-^ (aia2 .. .an7). 
This map is surjective. It is also an isomorphism on components: two paths 71 and 72 
m have the same image in 7To(A^ M) if and only if there is a path a from 71 (0) 
to 72(0) such that 71a is homotopic to /(a)72. This is similar to the comparison of 
C(7r^,7r) with ((TT̂ )) in Section 3.2. 

The trace of / is the stable homotopy class of the map 

Sn -+ Sn A AfM+ 

given by v 1—• (e(rj(v),fpr](v)),H(f(prj(v)),prj(v))), where rj is the Pontryagin-Thom 
map for an embedding M —• R n , e is the evaluation for the dual pair ( 5 ^ , S^), and 
H(f(prj(v)),prj(v)) is a path from fprj(v) to pr?(v) as in Lemma 3.1.4. 

Definition 6.2.1. — The homotopy Reidemeister trace, Rhtpy(f), is the trace of / . 

Proposition 6.2.2. — The map 

7Pf M - » UfM 

that takes a path to its homotopy class with end points fixed induces an isomorphism 

ns0(((PfM,t X 8)+}) - < P % , t X s)+}). 

The image of Rhtpy(f) under this isomorphism is Ru,9eo(f). 

Proof — In Proposition 3.2.3 we defined an isomorphism TTQ(X) = H0(X). The maps 
that define this isomorphism are all natural and so the following diagram commutes. 

7rg(((^M)}+) «q{V\<Pf M))+) Hq{H"{^ M))+) - H0((!?fM}+) 

ns0№fM}+) - nq(E%UfM}+) HqmufM}+) * H0(((nfM}+) 

Here q is chosen so that the Freudenthal suspension theorem implies that the first 
horizontal maps are isomorphisms. The second horizontal maps are the Hurewicz 
maps. The third maps are the homology isomorphism. The map HQ({£P^M}^) —> 

iJo(((II^ M))+) is an isomorphism since the map {7P^ M} —> ((11/ M)) is an isomorphisms 

on components. Then 

^(((^M))+)-<(((n/M))+) 

is also an isomorphism. 
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At the end of Section 5.4 we showed that the diagrams 

5 ° - S°M © UM © S" • ( Ä , s ) + 0 r M s ' S " 

(TLM,8)+QTM8*SV 

and 

TMa*Sv © (PM, s)+ + SNO L(PM, txs)+Q R(Ç>M, txs)+^Sn® (0M, t x s)+ 

TMs*Sv 0 (ILM, s)+ •*• Sn © L(IIM, txs)+Q R(UM, t x s)+ -*- 5n © (HM, t x s)+ 

commute. The diagram 

-(^M)S)+ 

(nM,a)+- (UfM,s)+ 

also commutes. The compatibility of shadows and these diagrams imply that the 
image of Rhtpy(f) under the map to components is Rgeo(f). • 

6.3. The Klein and Williams invariant as a trace 

To identify RKW(f) with Rhtpy(f) we need to fill in some of the details we omitted 
in Section 2.4. We will still not give a complete proof here. All of the details can be 
found in Section 8.2. 

Recall that SB is the unreduced fiberwise suspension. 

Proposition 6.3.1 (Proposition 2.4.4). — There is an isomorphism 

{SM,SM(T}(N(I)))}M = {S°,A'M+}. 

Sketch of proof. — Since M is a closed smooth manifold Corollary 5.1.3 implies there 
i« cm isrYmrvrnViism 

S°M,SM(T*f(N(i)))}M S {Sn,tS»®SM(r*f(N(i))) 

where v is the normal bundle of M. 
It remains to identify SM(rj(iV(z))). Let r be the normal bundle of the inclusion 

of the diagonal of M into M x M. The ex-space SMxM(N(i)) is weakly equivalent to 

A ! S T ^ ( ^ M , t x s ) + . 

Taking pullbacks of both sides gives a weak equivalence 

SM(HINli))) ~ A,5T A'M, . 
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Combining this with the isomorphism above, we have an isomorphism 

{S°M, SM(T}(N(i)))}M = {SN, S" ® A,5T IEI AFM+}. 

By construction of the IEI product S"№A\ST is equivalent to SU AMST and this bundle 
is trivial. So we have an isomorphism 

{S0MÌSM(T}(N{Ì)))}M = {SN,SNAAFM+}. • 

Theorem 6.3.2. — Let M be a closed smooth manifold and / : M —> M a continuous 

map. Under the identification in Proposition 6.3.1 

RKW(f) = Rhtpy(f). 

Proof. — To define the stable homotopy Euler class we used the map 

<r+ II a_ : S°M -+ rSMxMN(M x M - A ) . 

The corresponding map ç: —> A\ST 0 M+ under the identification in Proposi

tion 6.3.1 takes the section of to the section of A\ST 0 A^M+ and on the other 

copy of M, 

ç(m) = ((ra, /(m)), iJ( /(m),ra)) 

where i J ( / (m) ,m) is a path from f(m) to m as in Lemma 3.1.4. 

Let <t> denote the equivalence in Proposition 6.3.1. Then we have the following 

isomorphisms. 

[S°MÌSMFN(MXM-A)]M 

{S0M,SMf*N(MxM-A)}M 

D 

a , A ! ^ 0 A % ] M 

{ S ^ A , ^ 0 A / M + } M 

{5n, S" 0 SMf*N(M x M — A ) } ^ S" 0 AiST 0 A'M+} 
(100)* 

The map F is the stabilization isomorphism. The map D is the isomorphism that 

defines the dual pair (S^^tS^) as in Corollary 5.1.3. 

In the top left corner we have the stable cohomotopy Euler class and in the bottom 

right corner the corresponding map is 

Sn S» 0 S°M idoc S" 0 AiST 0 A'M+ ~ (Sv AM ST) © A'M+ ~ Sn x AF M 

This map is the trace of the map induced by / : M —> M on the space of free Moore 

paths in M. • 
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6.4. Duality for unbased bimodules enriched in chain complexes 

There is an unbased version of the algebraic Reidemeister trace which can be 
defined using the trace in a bicategory with shadows. This invariant was defined by 
Coufal in [4, 5] using a different approach. 

The unbased algebraic Reidemeister trace is an example of the trace in the bicate
gory of categories, bimodules and natural transformations enriched in chain complexes 
of modules over a commutative ring R. In this bicategory the 0-cells are categories 
enriched in chain complexes of modules over R. If si and 3$ are categories enriched 
in Ch# then si 0 8$ is the category with objects oh si x ob<^ and morphisms chain 
complexes given by the tensor product of the morphism chain complexes of si and 
3&. The 1-cells are enriched functors of the form 

si 0 ^op -> Chfi. 

We refer to functors of this form as ^-^-bimodules. The 2-cells are enriched natural 
transformations. We denote this bicategory SCM. 

The bicategory composition 0 is the enriched tensor product of functors. If 3C: si<g> 
&op QfrR and gf. gg^tfop QfrR are enriched functors J T 0 ^ is the coequalizer 
of the maps 

JJ <T(a, b') 0 &(b, b') 0 9(6, c) U*«®id ^ JJ ar{a, b) 0 &(b, c). 
M'eob(^) JJid®/̂  feGob(^) 

This bicategory is the 'many object' generalization of the bicategory of rings, chain 
complexes of bimodules and maps of chain complexes. A complete definition of this 
bicategory can be found in Section 9.2 or [38]. 

Let M be a connected CW complex and let ZUM be the category with objects the 
points of M and ZUM(x, y) the free abelian group on the homotopy classes of paths 
in M from x to y. We have forgotten the topology on IIM. 

We think of ZUM as a category enriched in chain complexes of abelian groups 
concentrated in degree 0. Define a right ZIIM-module 

<6M:ZUM ^Chz 

where (6M(x) is the cellular chains on the universal cover of M based at x. The action 
of a homotopy class of paths is the chain map that is induced by the action on the 
universal cover. 

Note that 
ZUM(X,X) ^ Zm(M,x) 

and 
(&M(x) = C*(M). 

Lemma 6.4.1. — The right ZUM-module "6M is dualizable if and only if the right 
Z7Ti(M, x)-module C*(M) is dualizable. 

Let M be a finite, connected CW complex. Then <&M(x) is dualizable as a right 
ZUM (x,x)-module for any x G M and *6M is dualizable as a right ZUM-module. 
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Proof. — For any x G M, the groupoid ZUM defines a ZUM-ZUM (x, #)-bimodule 
ZUM(x, - ) and a ZUM(x, z)-ZnM-bimodule ZUM(-,x). These form a dual pair 

( Z n M ( - , x ) , Z n M ( x , - ) ) . 

The coevaluation map 

r]: ZUM -> Z n M ( x , - ) 0 Z n M ( - , x ) 

takes a representative a of a homotopy class to (<^|[i,i] ° ° al[o,|]) where /3 is 
any path from to x. This is independent of the choice of j3 since different choices 
are identified by the 0 product. The evaluation map 

e: ZUM(-1x)®ZUM(x,-) -*ZUM(x,x) 

is composition. 
Note that *6M 0 ZUM(x, - ) is isomorphic to <&M(x) for any x G M and that 

the coevaluation and evaluation maps for the dual pair (Zn.M(x, —), ZIIM(—, x)) are 
isomorphisms. The first statement then follows from Theorems 4.3.3 and 4.3.4. 

For the second part of the lemma it is enough to show that one of the modules 
is dualizable. For any x G M, (6M(x) is a finitely generated chain complex of free 
Z7Ti(M,x)-modules and so is dualizable with dual Hom^1(M,a;)(§'M(a;),Zni(M,x)). 

Composing this dual pair with the dual pair (ZIIM(x, —), ZIIM(—, x)) gives a dual 
pair for %M. • 

This lemma is a special case of Lemma 9.2.5. 

Remark 6.4.2. — In the previous section we assumed that M was a closed smooth 
manifold. In this section we assumed that M is a connected finite CW complex. 
The different assumptions only reflect that these categories have different 'practical 
generalities' that we want to work in. 

6.5. The unbased algebraic Reidemeister trace 

Before we can define the unbased algebraic Reidemeister trace we need to define 
the shadow in the bicategory of enriched categories, bimodules and homomorphisms. 
Let X be an <^-^-bimodule. Then {X} is the coequalizer of the maps 

a,a'EA 
a a. a') <x> X(a.a' IIKA 

(AC^O7) cEA 
&(a,a). 

Let / : M —> M be a continuous map and /* the induced map on ZUM. Let U^M 
be the ZIIM-ZnM-bimodule defined by U^M(x,y) = ZUM(f(y),x) with action of 
ZUM®ZUM°v given by (7, a, /3) i-> (yaf(p)). The map f:M-+M defines a natural 
transformation 

U\%M-+ %f*M := VM 0 J7^M. 
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The trace of /* in the bicategory of enriched categories, bimodules, and natural trans
formations is a map 

Z — <Uf*ZIIM>. 

Definition 6.5.1. — The unbased algebraic Reidemeister trace of / , Ru>al9(f), is the 

image of 1 under the trace of /*. 

Remark 6.5.2. — Using a particular description of the coevaluation map for the dual 
pair (£?M, HomznM ( Z U M ) ) we can compare the unbased algebraic Reidemeis
ter with the unbased algebraic generalized Lefschetz number in [4]. Just as in Equa
tion 2.3.2, there is a map 

i/:l?M0 HomZnM(^M, ZUM) ^ HomznM(& M , *6M) . 

Since *6M is dualizable, this map is an isomorphism. We can chose the coevaluation 

for the dual pair (f?M, HomzriM (J?M, ZUM) to be 

Z ^ HomzriM ̂ M , ÏÏM) -^—^ %M © HomznM ZUM). 

Then unbased algebraic Reidemeister trace is the image of 1 under the map 

Z 

HomznM ^ M , %M) 

f* 

Homz H M ^ M , &+M 

Uf*ZIIM 

VSU M 0 HomznM ( f?M, ZUM))) 

v-1 

HomznM ( <& M, ZUM) © jg"*M 

The invariant defined in [4] is the image of /* under the map 

HomznM ( ^ M , &*M) % Cf* MO HomznM ( Z U M ) "(U^M)). 

The map /* is of the form described in Lemma 4.5.6 and the coevaluation for 

the dual pair (ZUM(x, —), ZUM(—, x)) is an isomorphism so we have the following 

corollary. 

Corollarv 6.5.3. — A choice of base point * G M determines an isomorphism 

<UfZIIM> —> <II1 (M1*)o> 

which takes Ru^(f) to RalHf) 
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6.6. The proof of Theorem D and some properties of the trace 

We can now give a conceptual proof of Theorem D. We will start by connecting 
the geometric Reidemeister trace with the algebraic Reidemeister trace. Here we use 
the functoriality of the trace in bicategories with shadows. 

The rational cellular chains functor is a symmetric monoidal functor which com
mutes with trace. We can use this functor to define a lax functor of bicategories 
C*(—; Q ) : *^Ex "~* ̂ Ch- A monoid si in Ex with projection map txs: si ^AxA is 
taken to the category with objects the set A (forget the topology). For a, o! G A, the 
morphism chain complex is 

C . ( ( t x a ) - 1 ( o , o ' ) ; Q ) , 

the rational cellular chains on the inverse image of (a, a'). An si - si'-bimodule 3£ with 
projection p x p' is taken to the bifunctor which on a pair of objects (a, a') € Ax A' is 
the chain complex C*((p x p/)_1(a, a'); Q). A map of modules is taken to the induced 
map on cellular chains. 

For any monoid si the map <\>̂  is the identity. For bimodules SC and <3f the map 
<\>3£^ is induced by the inclusion maps 

( W x v'ari1 (a,a') A (v<w x р'„ГЧа\а") -> p . r _ i о 0 (р'„ГЧа"). 

Lemma 6.6.1. — The functor C*(—;Q) defines a map 

H[Uf*M}-^(ZUf*M) 

and under this map Ru,9eo(f) = Ru,al9(f). The same functor defines a map 

Z |7 r iM*)-»fZ7TiM*!l 

Under this map Rgeo(f) = Ral9(f). 

We can now complete the proof of Theorem D from the introduction. 

Proof of Theorem D. — By Lemma 6.6.1 there is a map 

Z((7riM^))^((Z7riM^)) 

and under this map 
Ral9(f) = R9eo(f). 

Proposition 6.2.2 implies Rgeo(f) is zero if and only if Rhtpy(f) is zero. By Theo
rem 6.3.2 there is an equivalence 

SMf*N(M x M - A ) - A » 5 T 0 AfM+ 

and under this equivalence 
RKW(f) = Rhtpy(f). 

By Corollary 2.4.5 RKW(f) is zero if and only if / is homotopic to a map with no 
fixed points. • 
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In addition to demonstrating the compatibility of various forms of the Reidemeister 
trace, we can use the trace in bicategories with shadows to give new proofs of various 
basic results in fixed point theory. These results are applications of Lemmas 4.5.5 and 
4.5.4. 

Since these results follow from properties of trace in bicategories they hold for any 
of the forms of the Reidemeister trace. 

Corollary 6.6.2. — For a product of continuous maps 

/M * fN - M x N —> M x N 

of closed smooth manifolds, one of which is simply connected, 

R(fM x fN) = R(fM) x R(fN). 

This follows from Lemma 4.5.5 and is a very special case of results in [9,17,18,36]. 
According to [21,1.5.2] the Nielsen number satisfies a commutativity property. Let 

X and Y be compact connected ENR's and f: X —> Y, g: Y —^ X be continuous 
maps. Then N(g o / ) = N(f o g). We can recover this result from Lemma 4.5.4. 

Corollary 6.6.3. — If M and N are closed smooth manifolds and f: M N and 
g: N —> M are continuous maps, there is a bisection between the fixed point classes 
of f o g and go f and under this identification 

R(fog) = R(gof). 

In particular, N(f o g) = N(g o / ) . 

6.7. The Reidemeister trace for regular covering spaces 

In addition to the Reidemeister trace defined using the universal cover, there is a 
Reidemeister trace for all regular covering spaces. The theory for regular covers is very 
similar to the theory for universal covers, except maps do not always lift to regular 
covers. To resolve this problem, we will restrict attention to those maps that do have 
lifts. This means that for a normal subgroup K of TTIM we will only consider maps 
/ : M —• M such that (j)(K) C K. Here 0 is the same as in Chapter 2; it is the map 
induced on TTIM by / after choosing a base point and a path £ from that base point 
to its image under / . 

Definition 6.7.1. — [21, III.2.1] Two fixed points x and y of / : M —• M are in the 

same mod K fixed point class if there exists a lift of / to f/K: M/K —• M/K and 

lifts of x, y to x, y e M/K such that f /K{x) = x and f/K(y) = y. 

If K is the trivial subgroup of 7TiM, this is the usual definition of fixed point classes. 

Lemma 6.7.2. — [21, III.2.2] Two fixed points x and y are in the same mod K fixed 

point class if and only if there is path 7 in M from x to y such that 7/(7_1) is in K. 
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Since <t>{K) <zK,(j) induces a map <£: mM/K -> -K^M/K. Let (faM/IC)*} be the 
semiconjugacy classes of TT\M/K with respect to the induced homomorphism <f>. For 
each fixed point x pick a path 7X in M from the base point * to x. Then there is a 
well defined injection from the mod K fixed point classes of / to {(niM/K)^} that 
takes a fixed point x to the homotopy class of the path 7j VClaOO 

Definition 6.7.3. — The mod K geometric Reidemeister trace of / , R9^°(f), is 

mod K fixed point classes Fj 
iiF^.F^li^M/K)*)) 

For spaces with a universal cover there is a bijection between regular covers and 

normal subgroups of the fundamental group. These regular covers provide more ex

amples of dual pairs. 

Lemma 6.7.4. — Suppose M is a space with a universal cover M and M+ is dualizable 
as a -K\M space. If K <TTIM, then (M/K)+ is dualizable as a (TTIM)/K space. 

Proof. — This proof uses a composite of dual pairs. The group it\M/K has actions 

by 7TiM and TTIM/K on both the left and the right. We think of -K\MjK as a 

7TiM-7TiM/if-bimodule and tir\M/K as a 7TiM/if-7TiM-bimodule. Then 

(mM/K^timM/K)) 

is a dual pair. The coevaluation 

TTIM TTIM/K © tfaM/K) 

is the quotient map. The evaluation 

tfaM/K) © -KIM/K -+ mM/K 

is composition. 
Note that M+QfaM/K) is a cover of M corresponding to the subgroup K C is\M. 

Since both M+ and -K\M/K are dualizable Theorem 4.3.3 implies the composite M/K 
is dualizable with dual (tniM/K) © Tn*u. • 

The proof of Proposition 3.2.3 also implies the following result. 

Lemma 6.7.5. — The map induced on homology by the trace of f/K: M/K —> M/K 
is the Mod K geometric Reidemeister trace of f. 

Lemma 6.7.6. — The map (niM^} —> {{KIM/K^} that takes a semiconjugacy class 
to the corresponding mod K semiconjugacy class takes the Reidemeister trace of f to 
the mod K Reidemeister trace of f. In particular, the sum of the coefficients of the 
Reidemeister trace is the Lefschetz number. 

Proof. — The map used to define the Reidemeister trace is of the form described in 

Lemma 4.5.6 so this result follows from Lemmas 6.7.4 and 4.5.6. If K is niM the 

mod K Reidemeister trace is the Lefschetz number, so the sum of the coefficients of 

R9eo{f) is the Lefschetz number of / . • 
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CHAPTER 7 

DUALITY FOR FIBERWISE PARAMETRIZED MODULES 

In this chapter we describe fiberwise generalizations of some of the results from 
the previous two chapters. Unfortunately, since we are now interested in fiberwise 
maps not all invariants defined in Chapter 5 make sense. For example, it is no longer 
possible to choose a base point and so we will now only use unbased invariants. 
Another challenge, and benefit, of the fiberwise generalization is that the invariant 
that gives a converse to the fiberwise Lefschetz fixed point theorem, a generalization 
of the homotopy Reidemeister trace, is much richer than the classical invariant. One 
consequence of this is that it isn't clear what invariants, if any, deserve to be called the 
fiberwise geometric Reidemeister trace or the fiberwise algebraic Reidemeister trace. 
We describe one candidate invariant for the fiberwise geometric Reidemeister trace. 
This invariant was defined by Scofield. It does not give a converse to the fiberwise 
Lefschetz fixed point theorem. 

We define the fiberwise homotopy Reidemeister trace using the approach of the 
previous chapters. This invariant can be identified with the fiberwise invariant defined 
by Klein and Williams. The definitions of these invariants, their comparison, and even 
the proof that these invariants give a converse to the fiberwise Lefschetz fixed point 
theorem are almost identical to the approach in the classical case. 

7.1. Fiberwise Costenoble-Waner duality 

The bicategory we use to study fiberwise spaces is closely related to the bicategory 
Ex we used to study classical fixed point theory. The 0-cells are spaces over B. The 
1-cells are spaces over and under the 0-cells. The 2-cells are maps of total spaces that 
commute with the section and projection. This bicategory was introduced in [34], 
where a more sophisticated stable version was also studied. 

More formally, the 0-cells of Ex# are spaces over B. That is, a space C with a map 
C —> B. A 1-cell from C ^ B to D —» £Ms a space X and maps 

DXBC-Z-^X—^DXBC 
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such that the composite p o a is the identity map of D x B C. For two 1-cells X and 
Y from C to D, a 2-cell from X to y is a map f:X—>Y such that 

C xBD —>X — C x B D 

C xBD ^ Y xBD 

commutes. 
As in Remark 1.4.1, for a 1-cell X over C and D we require that X and C XB D 

are of the homotopy types of CW-complexes, the projection X —» C D is a 
Hurewicz fibration, and the section CXBD —» X is a fiberwise cofibration. When these 
conditions are not satisfied we implicitly use the model structures and approximation 
techniques from [34] to maintain homotopical control. 

The bicategory composition in Ex# is very similar to the bicategory composition in 
Ex. The external smash product of two 1-cells in Ex#, written Â , is defined by taking 
the fiberwise smash product over the 0-cells. This is not the fiberwise smash product 
over B. If X is a 1-cell from C to D and y is a 1-cell from D to E then we define 
X№Y, a 1-cell from C to E, as the pullback along A : D —» D XB D and then pushout 
along r: D —> B of XÂY. 

CxBE id xrxid 
C Xß D Xß E 

id X A x id 
C xB D xB D xB E 

XMY ( i d x A x id)*(XAY) XAY 

C Xß E 
id xrxid 

C Xß D Xß E 
id x Ax id 

C xB D xB D xB E 

The unit 1-cell associated to a 0-cell C —* B is (C, A)+ and we will denote this 17c. 

Definition 7.1.1. — A 1-cell X in EXB over C is fiberwise Costenoble-Waner n-
dualizable if there is a 1-cell Y over C and maps 

on 77 
xmtY and tY®X D!SnC 

such that 

SnB XX xoid (x B tY) B x 

x § ( ( y s X) 

id Be 

I B S " X B A,5g 

tY®S% 
i d № 

tY B (X B tY) 

(<rSid)7 (tY B X ) B 

eElid 

5"Bty AiSg B tr 
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stably commute up to fiberwise homotopy over C. 

To give examples of this kind of duality we will need to consider equivariant 
Costenoble-Waner duality. A bundle construction gives a connection between dual 
pairs in the bicategory GEx and dual pairs in the bicategory Ex#. 

Let G be a compact Lie group. There is a bicategory GEx with 0-cells G-spaces. 
The 1-cells in GEx are ex-spaces X with an action by G such that the section and 
projection maps are equivariant. The 2-cells are equivariant maps of total spaces 
that commute with the section and projection maps. The bicategory composition is 
induced from that in Ex. The group G acts by the diagonal action. 

This bicategory also has a stable version and duality in that bicategory has an 
interpretation as F-duality in GEx. 

Let Sv denote the one point compactification of a representation V of G. 

Definition 7.1.2. — [34, 18 .3 .1] A 1-cell X in GEx is V-dualizable for a representation 
V of G if there is a 1-cell Y in GEx and maps 

sv X®tY and tYMX D!SVB 

such that 

svmx-
r?E3id 

fX№tY)№X 

Z№(tY№X) 

id Se 

x®sv - XXD!SVB 

tY S 
id Er? 

tY №(X®tY) 

(crSid)7 (tY^X)MtY 

eSid 

SVMtY D!SVBWtY 

commute stably up to equivariant fiberwise homotopy. 

Theorem 5.1.2 has a generalization to the bicategory GEx. 

Theorem 7.1.3. — [34, 18 .6 .1 ] Let M be a closed smooth G-manifold embedded in a 
representation V. Then ( . 5 ^ , 5 ^ ) is a Costenoble-Waner V-dual pair. 

Let P be a principal G-bundle and B be P/G. Then there is a lax functor 

P: GEx —> Ex#. 

This functor takes a G-space F to P XQ F, where P XQ F is P x F quotiented by the 
diagonal action of G. On 1-cells and 2-cells P is also given by the functor P X G ( - ) , 
which converts an ex-G-space E over a G-space F into a 1-cell in Ex#. The section 
and projection maps of E over F induce section and projection maps for F(E) over 
B. 

Theorem 7.1.4. — [34, 19.4 .4] If(X,Y) is a dual pair in GEx, (P(X),P(F)) is a dual 
pair in Ex#. 
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Combining this theorem with Theorem 7.1.3 we have the following result. 

Corollary 7.1.5. — If p: M —> B is a fiber bundle with closed smooth manifold fibers, 
then the dual of (M, id)_j_ € Ex#(M, *) is the fiberwise one point compactification of 
the fiberwise normal bundle. 

The coevaluation and evaluation maps for this dual pair are similar to those for the 
dual pair in Theorem 5.1.2. The evaluation is defined using the following generalization 
of Lemma 3.1.4. 

Lemma 7.1.6. — [6, II.5.17] Let L —> B be a fiberwise ENR. Then there is an open 
neighborhood W of the diagonal in L xB L and a fiberwise homotopy Ht: W —> L 
such that Ho(x,y) = x, H\{x,y) = y and Ht(x,x) = x. 

Since fiberwise Costenoble-Waner duality is duality in a bicategory there are other 
descriptions of dual pairs. The only other characterization we will need is given in the 
following corollary. 

Corollary 7.1.7. — If (X,Y) is a Costenoble-Waner dual pair in ExB, then the co-
evaluation map of the dual pair induces an isomorphism 

{W 0 X , Z}M ^{W,ZO tY}B 

for W G ExB{B,B) and Z e ExB(M,B). 

1.2. Ranicki duality for fiberwise spaces 

The bicategory ^ E x B oi* monoids, bimodules, and maps in ExB is defined exactly as 
the bicategory c^ E x is defined. The bicategory composition and shadow are defined in 
analogy with the composition and shadow in Chapter 5. We also have comparisons of 
the bar resolutions and cyclic bar resolutions with colimits. Like dual pairs of spaces 
and dual pairs in Ex, the dual pairs in Ex# and dual pairs of modules in ExB are 
defined using n-duality. 

If M is a space over B, p: M —• B, instead of considering the topologized funda
mental groupoid or the free Moore path space we will use the fiberwise free Moore 
paths, 

<PBM = {(rf,u) e MapB(£ x [0,oo),M) x [0,oo)|7(t) = 7(1*) for all* > u}. 

This is a space over B with the map to B given by (7,1/) »-> P7(0). The space @BM 
is the free Moore paths in M that are each contained in a single fiber over B. For 

more details on MapB see [34, 1.3.7]. 

Lemma 7.2.1. — If p: M —* B is a fibration, the map 

t x s: @>BM -> M xBM 

given by (t x s)(j,u) — (7(1/), 7(0)) is a fibration. 

To minimize notation we will use paths rather than Moore paths in this proof. 
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Proof. — We must show that all diagrams 

X 
f 

3*RM 

to k (t,s) 

Xxl 
H 

M xB M 

have a lift A;. 

The map / has an adjoint / : X x I —> M which satisfies p(f(x, t)) = p(f(x, 0)) for 

all x € X , t £ I. Let H = H \ X B HQ. Since the diagram commutes / must also satisfy 

/ ( x , 0 ) = H0(x,0) and f(x, 1) = ff i(x,0) . Let J be the subset (0,7) U (7,0) U (1,7) 

of 7 x 7. Then a lift k in the diagram above corresponds to a lift k in the diagram 

X x J 
9 

M 

k 
P 

Xxlxl 
H 

B 

where g: J x X —> M is defined by 

g(x,0,s) = Ho(x,-8) 

g(x,t,0) = f(x,t) 

g(x,l,s) = £Ti(x,s) 

and H(x,t,s) = pHi(x,s). 
Let (f): X x J x I —»Xx7x7bea homeomorphism such that 

I x J - I x / x / 

*0 

XxJxI 

commutes. Then there is a lift k in the diagram 

XxJ-
9 

M 
in 

i XxJxI 

q Hoe 

P 

Xxlxl 
H 

B 

since p is a fibration, and k o <\> 1 defines the lift k. 
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Composition of paths gives a strictly associative product ^ S M X M ^ B M —> ^ M . 

The inclusion of M into PBM the unit. Adding a disjoint section to gives a 

monoid in Ex£. 

Recall that for a monoid si, R(si) is si regarded as a right ^/-module and L(si) 
is si regarded as a left si-module. 

Corollary 7.2.2. — Let M —• B be a fiber bundle with closed smooth manifold fibers. 

Then we have the following dual pairs. 

(i) (R{PBM,txs)+,L(PBM,txs)+) 

(ii) ({0>BM,s)+,TMs*Sti). 

Proof. — Here TMS*S^ is defined to be L(<PBM, t x s)+ ©S^f where vB is the fiber-

wise normal bundle of M over B and S^f is the fiberwise one point compactification 

of vB over M. 
The first of these dual pairs comes from the monoid (£PBM,t x s)+ as in 

Lemma 5.3.2. The second is the composite of the dual pairs 

(SM,tS^f) 

and 

(R(9>BMA x s)+,L(<PBM,t x 8)+). 
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CHAPTER 8 

FIBERWISE FIXED POINT THEORY 

In Chapter 6, the corresponding chapter for classical invariants, we described many 

invariants and gave several applications of trace in bicategories. This section is much 

shorter. One of the reasons is that based invariants cannot be defined for fiberwise 

space. Another is that is not clear what invariants should be the generalization of the 

algebraic and geometric Reidemeister traces. 

In contrast to the algebraic and geometric Reidemeister traces, the homotopy Rei

demeister trace has a straightforward fiberwise generalization. The invariant defined 

by Klein and Williams also has a fiberwise generalization and their proof of the con

verse to the Lefschetz fixed point theorem easily generalizes. 

8.1. Fiberwise fixed point theory invariants 

The fiberwise homotopy Reidemeister trace is based on the fiberwise free Moore 

paths monoid. This is the Nielsen-Reidemeister invariant defined by Crabb and James 

in [6, II.6] and in Section 8.3 it is identified with the invariant defined by Klein and 

Williams in [25]. 
Let M —> B be a fiber bundle with dualizable fibers and / : M —> M a fiberwise 

map. Then / can be used to define a module (£PBM, t x s)+ in ExB. This is analogous 

to the definition of (flfM,txs)+. The map / also defines a map of right (íPBM, t x s)+ 

modules 

/ : ( ^ A i , « ) + ( ^ B M , S ) + 0 {PfBM,t x 8)+. 

Since (flBM, S)+ is dualizable, the trace of / is defined. It is a fiberwise stable map 

over B, 

Sn x B-*(SnA(PfBM,t x 

As in Section 6.2, there is a map from the shadow of {$BM, t x 5 ) to the twisted path 

space, 

AfBM = {7 G M'|/(7(l)) = 7(0),P(7(0) = P(7(0)) for allí e / } . 
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Definition 8.1.1. — The fiberwise homotopy Reidemeister trace, RBpy(f), is the image 

of the trace of / in {SB,A^BM}B. 

The fiberwise homotopy Reidemeister trace is a very rich invariant and it should 
be possible to use this invariant to define other, simpler, invariants. One invariant we 
can extract from the fiberwise homotopy Reidemeister trace is the fiberwise Nielsen 
number defined by Scofield. 

The fiberwise homotopy Reidemeister trace is a map 

SnxB->SnAAfBM+. 

Each connected component of ABM has a map to B and so we get a map 

H0(B+) * Hn(Sn A (£+)) — Hn(Sn A A £ M + ) ®Hn(Sn A (B+)) 9* ®H0(B+) 

where <f> is induced by the decomposition of ABM+ into path components followed 
by the map to B. The image of this map on one component Ho(B) in ®HQ(B) is 
the fiberwise index of the corresponding 'fiberwise fixed point class'. The fiberwise 
Nielsen number is the number of fiberwise fixed point classes with nonzero index. 

Scofield showed this invariant does not give a converse to the fiberwise Lefschetz 

fixed point theorem. 

Example8.1.2. — [41, V.3.16] L e t / : S3xS3 — S3xS3 be the map /(&, z) = (6,624z). 
If S3 x S3 is a space over via the first coordinate projection, / is a fiberwise map. All 
maps fiberwise homotopic to / have a fixed point, but the fiberwise Nielsen number 
of / is zero. 

8.2. The converse to the fiberwise Lefschetz fixed point theorem 

In this section we describe the fiberwise generalization of Klein and Williams' proof 

of the converse to the Lefschetz Fixed Point Theorem. The intuition and general 

structure here are identical to that in Section 2.4. 

Proposition 8.2.1. — [12,25] Let M —> B be a continuous map. Then fiberwise homo-
topies of a fiberwise map f: M —> M to a fixed point free map correspond to liftings 
which make the diagram below commute up to fiberwise homotopy. 

M xB M - A 

M M xB M. 

Here Tf is the graph of f. 
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Proof. — Let (Top*/B) (M, M ) be the fiberwise maps M —• M that are fixed point 
free. Let projx: M X g M —> M be the first coordinate projection. We have the 
following map of fibration sequences. 

(Top7B)(Af, M){ (Top/B) (M,M) 

graph graph 

(Top/B)(Af, M XB M — A ) C (Top/B)(M, M xBM) 

P r ° J i * proj1# 

(Top/B)(M,M) = = (Top/B)(Af,M) 

rhe fibers are taken over the identity map. 
The top square is homotopy cartesian and so the homotopy fibers of the inclusions 

(Too* IBM M * M) -> (ToolBMMM) 

and 
(Top/5)(M, M xB M - A ) -+ (Top/5)(M, M XB M) 

coincide up to homotopy. 

We can convert this lifting question into a question about the existence of sections. 
For a fiberwise map / : X —• Y, let rs{f)'. Ns(f) —> Y be a Hurewicz fiberwise 
fibration such that 

X NB(f) 

f 
Y 

rb(f) 

commutes and X —• Ns(f) is an equivalence. Liftings up to fiberwise homotopy in a 
diagram 

Y 

f 

z 
9 

Y 

correspond to sections of the fiberwise fibration g*Ns{f) —> Z. 
Suppose p: E —• M is a fiberwise Hurewicz fibration over a space B. The unreduced 

fiberwise suspension of E over M is the double mapping cylinder 

SME := M x { 0 } Up E x [0,1] Up M x { 1 } . 

This has a map to M. Let 
cr_,cr+ : M -> SME 

be the sections of SME —• M given by the inclusions of M x { 0 } and M x {1} into 
SME. 
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Proposition 8.2.2. — IfE—>M admits a section then cr_ and o~+ are homotopic over 

M. 

Conversely, assume M —> B is a fibration, p: E —• M is (r + 1)-connected, and M 

is a cell complex over B of dimension less than or equal to 2r + 1. If a- and o~+ are 

homotopic over M, then p has a section. 

For the definition of a cell complex over B, see [34, 24.1]. 

Proof. — If E —> M admits a section ç this section defines a map 

SMS SMM = M x l - > SME 

which is a homotopy over M between cr_ and cr+. 

Let X i = M Up (E x [0,1/2]) and X2 = M Up (E x [1/2,1]). Then 

SME = Xi UEx12) X2. 

Since p: E —> M is (r + l)-connected the pairs (Xi,2£) and (X2,E) are also (r + 

l)-connected. By the Blakers-Massey Theorem, for any choice of base point, 

7Ti(Xi,E) —• 7ri(SME,X2) 

is an isomorphism for i < 2r + 2 and a surjection for i = 2r + 2. 

From the pairs (Xi,E) and (SME,X2) we get two long exact sequences of homo

topy groups for any choice of base point in E 

> m(E) -+ T T ^ X I ) -+ ^ ( X x , E ) T T i - i ^ ) - + • • • 

• • * —• ^ ¿ ( ^ 2 ) —• ^Ï(SME) —• TTI^SME, X2) —• 7T?;_i(X2) - » • • ' 

Diagram chasing and the isomorphism from the Blakers-Massey Theorem give an 

exact sequence 

7T2r+l(i?) —• 7r2r+l(Xl) ® ^ r + l P ^ ) ~ • ^2T+I{SME) —• 7T2R(E) 

The exact sequence continues to the right but does not continue further to the left. 

Using the retractions of X i and X2 to M we get an exact sequence 

7T2r+1(E) 7T2r+l(M) 0 7T2r+l(M) -> 1T2r+l(SME) - > 7T2R ( £ ) - • • • • . 

We would like to compare i£ to the homotopy pullback of the maps cr_ and a+. 

The homotopy pullback P is the pullback in the diagram 

P ^ ATM 

a*r (a+) r(<r+) 

M—^SME 

where r (a+) : A T M —> SME is the map <r+: M —> S M ^ converted into a fibration 

(not necessarily a fiberwise fibration). The map crlr(a+): P —» M is also a fibration 

with the same fiber. 
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For any choice of base point in P we get two long exact sequences associated to 
these fibrations 

y in(F) - <Ki{NM) -+ iri(SME) -> 7Ti—i(F) - • •. 

• • • - 7Ti(F) - 7T , ( M ) - T T ^ P ) - 7Ti_i ( P ) - • • • 

where F is the fiber of r(c7_|_). The same diagram chase as above gives a long exact 
sequence 

y ^ ( P ) - m(M) e ^(M) T T ^ S M ^ ) 7T,_i ( P ) - > • • • 

The diagram 

E 
P 

M 

P a-

M ^ ^ S M E 

is commutative up to preferred fiberwise homotopy given by the homotopy from <J_ 
to 0 + and so there is a map q: E —> P such that 

E 
Q 

P 

P a-r(a+) 
M 

commutes. In particular, q is a fiberwise map over B. By comparing our exact se
quences we see that for any choice of base point in E, : iti{E) —> ̂ ( P ) is a bijection 
for i < 2r + 1 and a surjection for i = 2r + 1. 

If [—, — ]B denotes (unsectioned) fiberwise homotopy classes of fiberwise maps, the 
fiberwise Whitehead theorem [34, 2 4 . 1 . 2 ] and the fact that the map E —> P is ( 2 r -h 

l)-connected imply that 
q*: [M,E]B^[M,P]B 

is a surjection. The fiberwise homotopy between the sections cr_ and cr+ defines a 
fiberwise map h: M —> P and so there is a fiberwise map ^: M —» E such that 
qs: M —• P is fiberwise homotopic to h. Then 

i d M —B cr_r(o~+) o h ~R o_r(o+ ) o o o ç ~ B p o ç 

We can use the fiberwise homotopy lifting property of p to deform into an actual 
section. • 

We now assume that all spaces over M are sectioned and all maps over M preserve 
this section. In particular, SME is an ex-space over M with section cr_ and the 
notation [—,—]# is now used for the sectioned fiberwise homotopy classes of maps. 

There is a fiberwise fibration replacing the inclusion 

i:MxBM-A^MxBM 
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that is also a Hurewicz fibration of spaces. Since i can be replaced with a map that 
is both a fibration and a fiberwise fibration 

SoMSMrf , (NM(MxBM- A))]M 

is both the fiberwise homotopy classes of maps and the maps in the homotopy category 
for a model structure, see [34, 9.1]. This connects the geometric description above with 
duality in Ex. 

The candidate for the fiberwise fibration replacing i is the map 

(M xB M - A ) XMXBM PB(M xBM) ^ M xB M 

where (M xB M — A ) X M X B M PB(M XB M) is 

;((mi,ra2),7) e (M xB M - A) x PB(M xB M)|7(l) = (mi,m2) 

and the map to M x B M is given by evaluation at 0. For this result we use the path 
space rather than the space of Moore paths. 

We need a preliminary lemma. 

Lemma 8.2.3. — Suppose pi: E\ —• B and p2: E2 —> B are fibrations and / : 2?i —• 
E2 is a map over B. Then the map 

s: Ex xE2 PBE2 = {(e)7)|7(l) = №} - E2 

given by (e, 7) i-> 7(0) is a fibration. 

Proof. — Recall that PBE2 is the subspace of paths in E2 consisting of paths 7 such 
that p2{l{i)) = p2(7(0)) for all t <E /. 

TTIP snarp Et x cv P D R O IS t.hfi nnllhark of 

PREO 

txs 

Ei xB E2 f viH E2 x B E2 

and the map Ei x E2 PBE2 —> E2 is the composite of 

id x s : Ei x E2 PBE2 -> Ei x B E2 

and the second coordinate projection 

proj2: Ei xBE2 E2. 

So it is enough to show that both of these maps are fibration 
The projection map is a fibration since it is the pullback 

Ei xBE2 -Eh. 

proj2 

Eo -
P2 

Pi 

E 
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along a fibration. Lemma 7.2.1 shows that t x s: PBE2 —• E2 x B E2 is a fibration. 
This implies E\ xE2 PBE2 ^ Ei xB E2 is a fibration. • 

Lemma 8.2.4. — Let p: M —> J5 6e a /i&er bundle. Then there is a fiberwise fibration 
replacing the inclusion 

MxBM-A-*MxBM 

that is also a Hurewicz fibration. 

Proof. — Since p: M —> B is a bundle there is a cover {Ui} of B and homeomorphisms 
fi: p~x(Ui) —> F x 17». The maps are maps to a product so projection to F gives 
maps 

fi,F: p-1 (Ui) — F. 
The fiber product q: MXBM —> B is locally trivial with respect to this open cover 

and the trivialization homeomorphisms are 

fi,F x fi,F x p: q-\Ui) ->FxFxUi. 

These homeomorphisms restrict to give a local trivialization of 

MxBM - A - > 5 

since the maps f^p are injective. So M x # M — A—> B is a fiber bundle with fiber 
F x F — A . Then Lemma 8.2.3 completes the proof. • 

Under the assumptions in Proposition 8.2.2, the fiberwise Preudenthal suspension 
theorem gives the following isomorphism: 

[S%,SME]M — {S°M,SME}M-

If we further assume that M —> B is a space over B such that is Costenoble-Waner 
dualizable in Ex^ with dual TM,B, then we have an isomorphism 

( 4 , SME}M — {SB, TM,B 0 SME}B> 

Definition 8.2.5. — [25, 4.3] Let E and M be as in Proposition 8.2.2 and assume 5 ^ 
is Costenoble-Waner dualizable in Ex^. The fiberwise stable homotopy Euler charac
teristic of p: E —• M is the class 

XB(p)e{SB,TMJB®SME}B 

which corresponds to the map 

< 7 + I I G - : —> SME 

via the isomorphisms above. 

If M is a space over 5 , / : M —> M is a fiberwise map, and 

i:MxBM-A-+MxBM 

is the inclusion we denote the fiberwise stable homotopy Euler characteristic of 
rfrB(t) by R™(f). 
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Corollary 8.2.6. — Let / : M —> M be a fiberwise map of a smooth fiber bundle with 
closed smooth manifold fibers F. If dim(B) < dim(F) — 3, the map f is fiberwise 
homotopic to a fixed point free map if and only if RBW {f) *5 trivial. 

Remark 8.2.7. — In [12] Fadell and Husseini denned a different fiberwise invariant 
using obstruction theory. For this invariant they require that the dimension of the 
fiber is at least three. 

8.3. Identification of RKW with RHT™ 

Let TB be the fiberwise normal bundle of the inclusion of the diagonal into MXBM. 

Regard the sphere bundle S(TB) and the disk bundle D(TB) as spaces over M x ^ M by 
inclusion. Let NBS(TB) and NBD(TB) be the total spaces of the fiberwise fibrations 
corresponding to the inclusions. Also using this notation, let NB(M X B M — A ) be 
the total space of the fiberwise fibration corresponding to M XB M — A — > M x # M . 

Lemma 8.3.1. — As an ex-space over M XB M, SMXBMNB{M XB M — A ) is weakly 
equivalent to A\STB 0 {<PBM,t x 

Proof. — There is a fiberwise homotopy cocartesian square 

S(TB) D(TB) 

M xB M - A ^ M xB M 

This is a diagram of inclusions over M XB M. Replacing all of the maps to M xB M 
by fibrations, we get the following fiberwise homotopy cocartesian square. 

NBS(TB) NBD(rB) 

NB(M xB M - A ) ^ M XB M 

The fiberwise homotopy cofiber [6, II.2.1] of the bottom arrow is 

SMXBMNB(MXBM-A) 

This is weakly equivalent to the fiberwise homotopy cofiber of the top arrow. 
The top arrow is a fiberwise cofibration. To see this, observe that the inclusion 

S(TB) —> D(^) is a cofibration. Pulling back along 

s: 9>B{MxBM)^MxBM 

preserves cofibrations and in this case converts a cofibration into a fiberwise cofibra
tion. The fiberwise homotopy cofiber of NBS(TB) —> NBD(TB) is weakly equivalent 
to its fiberwise cofiber. The fiberwise cofiber is 

NBD{TB)I ~ = { ( 7 , t i ) e &B(M XB M ) | 7 ( t i ) G D(rB)}/ - . 
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Here ( 7 i , t * i ) ~ ( 7 2 , ^ 2 ) if 7 i f a i ) , 72 (^2 ) G S(rB) and 71(0) = 72(0). 
There is a map 

NBD(rB) № A f , t x s) xM (f l (TB),Aop) xM № M , t x 5 ) 

given by 

( ( 7 i , 7 2 ) , u ) ( 7 2 " 1 , ( 7 i ( t x ) , 7 2 ( t x ) ) , i f ( 7 i ( ^ ) , 7 2 ( ^ ) ) 7 i ) -

The path # ( 7 1 ( ^ 1 ) , 72 (^2 ) ) is as in Lemma 7.1.6. This map descends to an equivalence 

NBD{TB)/ — • (0>BM,t x 8)+ 0 A{STB 0 (0BM, t x 5)+. 

The inclusion of M into ^ M a s constant paths defines a map 

( M , A ) + ^ ( ^ B M , * X S ) + . 

This map is an equivalence and so there is an equivalence between NBD(rB)/ ~ and 
A , S T B 0 ( ^ M , t x 5 ) + . • 

When we defined the stable homotopy Euler characteristic we pulled the fibration 
back before taking the fiberwise suspension. These operations commute, so we have 
a weak equivalence between SM/*N(M xB M — A ) and A\STB 0 A^M+ where 

AfBM = { ( 7 , t i ) G PBM\f(<y(u)) = 7(0)}. 

This is a space over M by 7 i-> 7 ( 1 1 ) . 

Theorem 8.3.2. — Le£ M B be a smooth fiber bundle with closed smooth manifold 
fibers and f.M^Ma fiberwise map. Then there is an isomorphism 

{S°B,TM,B © SME}B = {S°B, SN AB AFBM+}B 

and under this isomorphism 

R§w(f) = RBtpy(f)-

Proof — To define the stable homotopy Euler characteristic we used the map 

a+ II a_ : S°M -» /*SMXBMNB(M X b M - A ) . 

The corresponding map - » A\STB 0 A^M+ takes the section of to the 

section of A\STB 0 A^M+. On the other copy of M, <; is defined by 

c(m) = ((ra, /(ra)) ,#(/(ra) ,ra)) 

where H is as in Lemma 7.1.6. 
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Let <j>B be the weak equivalence of Lemma 8.3.1. Then the following diagram of 
somorphisms commutes. 

[S°M,SMf*NB(M xBM- A)]M 
<PB* 

S°M,A,ST* ®ABM+]M 

S0M,SMrNB(MxBM-A) M 
<PB* 

a 

;5k,AIST*©A£M+ M 

S%,TMtB 0 SMf*N(M x M - A) E 

(id 0 0 B ) . 
S ^ T M ) ß 0 A ^ 0 A ^ M + ; 

The stabilization map F is an isomorphism because of dimension assumptions. The 
map D is the isomorphism from Corollary 7.1.7. 

In the top left corner we have the stable cohomotopy Euler class and in the bottom 
right corner the corresponding map is 

s°B 
m 

TM,B 0 SM 
id 0ç 

FM,B 0 &\STBeAfBM+ SnABABM+ . 

This map is the trace of a lift of / : M —> M to the space of fiberwise Moore paths. • 

Proof of Theorem E. — By Theorem 8.3.2 

KB thpy (/) = 
r>KW 
tiB (/)• 

By Corollary 8.2.6, RB™"(/) is zero if and only if / is homotopic to a map with no 
fixed points. • 
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CHAPTER 9 

A REVIEW OF BICATEGORY THEORY 

In this chapter we will give several examples of bicategories with shadows. We used 
the bicategories in Sections 9.2 and 9.3 earlier. The bicategory in Section 9.1 is not 
necessary for what came earlier, but it may be helpful as an alternative source of 
motivation. Additional information about these types of constructions can be found 
in [38]. 

The first example, in Section 9.1, can be interpreted as a generalization of the bi
category of rings, bimodules, and homomorphisms to a symmetric monoidal category 
that is not the category of abelian groups. 

The example in Section 9.2 is also a generalization of the bicategory of rings, 
bimodules, and homomorphisms and of the example in Section 9.1. It is an enriched 
version of the bicategory of categories, bimodules, and natural transformations. In 
this context a bimodule is an enriched functor 

si ® ^op -> Y 

where Y is a symmetric monoidal category and srf and 38 are categories enriched 
in Y. This is the 'many object' version of the bicategory of rings, bimodules, and 
homomorphisms and was used to define the unbased algebraic Reidemeister trace. 

The last example comes back to the definitions of Section 9.1 and is a generalization 
of these definitions from symmetric monoidal categories to bicategories. 

9.1. Bicategory of enriched monoids, bimodules, and maps 

In this section and the following section we will describe two bicategories that can 
be defined from a symmetric monoidal category. These bicategories all have shadows 
and any symmetric monoidal functor induces a lax shadow functor of the associated 
bicategories. 

In this section and Section 9.2 let Y be a symmetric monoidal category with unit 
object / , tensor product 0 , and symmetry isomorphism 7. The category Y must also 
have all colimits. 

A monoid in Y is an object A in Y with maps /x: A® A —• A and t: I —> A which 
are unital and associative. An A-B-bimodule is an object X in Y with a pair of maps 
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KA ' A 0 X —» X and KB - X 0 B —• X that are unital and associative with respect 
to the maps /x and i for A and B. We also require that 

KB{KA ® idß) = « A ( K M 0 « B ) . 

Let X and V be A-#-bimodules. A map / : X —• y in Y is a map o/ bimodules if 
the following* diagram 

A<x>X ka X 

id<£)f 

AOY ka 

f 

Y 

and the corresponding diagram for the map K>B commute. 

Definition 9.1.1. — Let X be an A-#-bimodule and Y a £-C-bimodule. Then X © Y 
is the coequalizer 

X&B&Y 
/Cß0id 

id <g)/Cß 
X " ® 1 

7T 

1 0 7 . 

If A 0 — preserves coequalizers, X 0 y is a left A module and the map 

A < g ) X © y - > X 0 y 

is induced by the map KA ® id- The right C module structure is similar. 
Define a bicategory jVy with 0-cells the monoids in Y and <Ay(A, B) the category 

of £-A-bimodules and bimodule maps. The 0 product is described in Definition 9.1.1, 
and the unit functor associated to a monoid A is that monoid considered as an A-A-bi-
module using the monoid multiplication ¡1.^ 

Duality in this bicategory was considered in [37, 2.1]. 

Definition 9.1.2. — For Z G <Ay(A,A) the shadow of Z , ((Z)), is the coequalizer 

A 0 Z 
KA 

«A7 z <Z> 

The target of the shadow is the category ~f. 
Let X be an -A-B-bimodule and Y a B-A-bimodule. Noting that 

A ® (X © Y) Si (A <g> X) 0 y, 
the natural transformations 0ß ^ are induced by: 

A®XQY XQY iX © Y) 

0B,A 

(YQX)) 

W An alternative bicategory composition and shadows for these 0-cells, 1-cells, and 2-cells is de
scribed in [35]. This is related to the homotopy colimits we used earlier. 
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where the map l 0 7 - > ( ( y 0 X} is induced by the composite 

X 0 Y -+ Y 0 X -> Y 0 X -> (Y 0 X)). 

Let Ab be the category of abelian groups. The monoids in Ab are the associative 
rings with unit and 0 is the usual tensor product over a ring. The bicategory «ŷ Ab is 
Mod, the bicategory of rings, bimodules, and homomorphisms. If R is a commutative 
ring and Mod# is the symmetric monoidal category of R modules, the bicategory 
^%AodR is the bicategory with 0-cells algebras over R, 1-cells bimodules and 2-cells 
homomorphisms. 

Let Ch be the category of chain complexes of abelian groups and chain maps. A 
ring R, thought of as a chain complex concentrated in degree 0, is a monoid in Ch. 
Then <yych(Zy R) is the category of chain complexes of left i2-modules and chain maps. 
The functor 0 is the usual tensor product of chain complexes over R. 

Definition 9.13. — Let F : y —» be a lax monoidal functor. Define a lax functor 
of bicategories J/y —> JV<% as follows. 

(i) If A is a monoid with composition fjt : A 0 A —• A and unit i : I —> A then FA 
is a monoid with composition 

FA 0 FA 
o FIA 0 A 

F(a) 
F 

and unit 

I' F(I) 
FU) 

F(A) 

(ii) If X is an A-J9-bimodule with action KA> A<8>X —• X by A and action « 5 : XO 
B X by B then FX is an FA-FB-hìmoàvle with action F(KA)<I> by F (A) 
and action F(KB)(/> by F(B). 

(iii) The natural transformations (f>x,Y are induced by 0. 
(iv) The natural transformations </>A are the identity. 

Lemma 9.1.4. — The lax functor induced by a lax symmetric monoidal functor is a 
shadow functor. 

Proof. — The natural map {FX} —> F{X} is defined using the following diagram. 

FXOFA 
F(Ka)4> 

F(KA)Oy 
FX •{FX) 

o 

F(X <g> A) 
F(KA) 

F(KA)7 
FX F<X> 
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9.2. Bicategory of enriched categories, bimodules, and maps 

In some ways the example in this section is modeled on the 2-category of categories, 
functors, and natural transformations, but this is not the most helpful motivation. It 
is much more useful to think about the bicategory of rings, bimodules, and homomor
phisms and view these bicategories as "many object" generalizations. 

A category srf is enriched in V if for each a, b G o b ( j ^ ) , srf{a, b) G ob(y) and for 
a, 6, c G ob(j2/) composition 

srf(b, c) 0 <s/(a, b) —• ̂ ( a , c) 

is a map in y. We also require that for each a G o b ( ^ ) , there is a map J — » « 2 ^ ( a , a) in 
y and these maps and the composition maps satisfy unit and associativity conditions. 
For more details see [24, p. 23]. 

For two enriched categories si and 38 ̂  an enriched srf-S3-bimodule is an enriched 
functor .ST: <g>88op —> y. It consists of an object ^T(a, 6) in y for each a G o b ( ^ ) , 
6 G ob(38) and maps 

/c: ^(a,a') X B (b,b') - y(^(a,bf),^(a\b)) 

in These maps must be compatible with composition and the unit objects in srf 
and 38. Functors of this form are sometimes called distributors or profunctors. 

As discussed in the beginning of this section, these objects should be thought of as 
many object generalizations of monoids and bimodules. This is reflected in the use of 
the term bimodule here and is compatible with the previous use in the sense that a 
category with one object enriched in y is a monoid in y and a bimodule (enriched 
functor) from a pair of categories each with one object is a bimodule (1-cell in *Ay). 

Let c ^ T , ^ be ^-^-bimodules. An enriched natural transformation is a collection 
of morphisms in y 

{Saib: StT(a,b) -> ^ ( a , 6 ) G Mory}aeob(^) ,beob(m 

such that the diagram below commutes for all a, a! G ob(«0/) and b, b' G ob(38) 

fi/(a, a') 0 88(b, b') y{3C{a, V), «T (a', b)) 

v(idaa',b 

V{&{a>V\&{a'bX 
v(la,b',id 

y{X{a,V)&{a',b)) 

Definition 9.2.1. — Let SC be an srf-38 bimodule and <8( a 38-^ bimodule. Then 
3C 0 <3( is the coequalizer of the maps. 

b,b(Eob (B) 
&(a,b')®a(b.b')®&(b,c) 

K f̂<g)id 

id ®Kgg idxKB 
3F(a,b)®&(b,c). 
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If coequalizers are preserved by the tensor product, 5 " 0 ^ is an si-^ bimodule. 
The ^-^-bimodule structure is induced by the map 

si {a, a') 0 if (c, d) —^ Y{X(a, b) 0 &{b, c ') , ^ ( a ' , 6) ® ^ ( 6 , c)) 

• >- Y(X(a, b) 0 ^ ( 6 , c'), SC 0 ^(a, c')) 

This is the usual tensor product of functors except the first coproduct is indexed 
over pairs of objects rather than morphisms since &(b, bf) is an object in Y rather 
than a set. 

We define a bicategory Sy with 0-cells categories enriched in Y, 1-cells enriched 
bimodules, and 2-cells enriched natural transformations. The 0 product for Sy is given 
in Definition 9.2.1. For any category si enriched over Y define an ^-^-bimodule by 
U^(a,af) = s/(a\a) G Y. The associativity of composition gives a single map 

si {a, a') 0 si(b', a) 0 si(b, b') -> si(b, a'). 

Using symmetry and the Y(—, —) — 0 adjunction, we get a map 

s/(a, a') 0 ¿/(6,67) -> Y(si{b'y a), si{b, a')). 

The target of this map is Y(U^(a,b,)JU£/(a\b)) and this gives the required action. 
This is the unit functor for Sy. 

This bicategory also has shadows. 

Definition 9.2.2. — [4, 2.2.5] Let 2f: si 0 siop -+ Y be an ^-^-bimodule. The 
shadow of «2?, ((< )̂), is the coequalizer of the pair of maps 
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a,a'€:£f 

si la. a') <» jSfYfl. kA 

(kAoy) aEA 
3?(a,a). 

The target of the shadow is the category Y. A composition of maps similar to those 
used in jVy induces the maps in Sy. 

The bicategory Mod of rings, bimodules, and homomorphisms is the bicategory 
.y^Ab- The corresponding bicategory S^b is less familiar. We can think of the 0-cells in 
<^Ab as rings with many objects and the 1-cells as modules with many objects. For an 
enriched category the abelian group structure on the horn sets gives the "addition" and 
the category composition gives the "multiplication". Similarly, we think of an enriched 
functor with target Ab as a module with many objects. The addition comes from the 
horn sets enrichment and the action of the category corresponds to the action of the 
ring. 

Let Y be symmetric monoidal categories and F: Y —> ^ be a lax symmetric 
monoidal functor. For a category si enriched in Y define a category F(si) enriched 
in ^ with the same objects as si and with morphisms defined by 

F(si){a,a') = F{si{a,a')). 
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Composition in F(s/) is defined by 

F{s/)(a',a")®F(£/)(a,a') F(stf(a,a")) 

F(fi/(a',a"))®F(fi/(a,a')] 'F{$/(af,a")®stf{a,a')) 

Let X be an ^-^-bimodule. Then F{X) is the F(^)-F(^)-bimodule defined 
by F{$r)(a,b) = F{3£{a,b)). The action of F(stf) and F(3B) is given by 

F(£/)(a,a')®F(âB)(b,V) y{F(X{a,b')),F{X{a',b))) 

F(stf(a,a')®âê{b,V))-
FM 

F(V{%{a,b'),3£{a!,b))) 

Definition 9.2.3. — Given a symmetric monoidal functor F: Y —» define a lax 
functor of bicategories Sy —* S% as follows. 

(i) The function obSy —> ob<£^ is given by srf »-> F(g/). 
(ii) The functor Sy(stf,d8) -> Ey (F(A), F(B)) is given by composition with F. 

(m) The natural transformation </>x,y is induced by 0 via the composites 

(a, 6)) 0 F ( ^ ( 6 , c)) A F(<2T (a, b) 0 ^ ( 6 , c)) -> F(ÄT 0 SOfa, c). 

The natural transformation CJ>A is the identity. 

Lemma 9.2.4. — A lax functor Sy —• S<% induced by a symmetric monoidal functor 
F: Y —• is a shadow functor. 

Proof. — The natural transformations ip^/i {F(X)} —• F{X} are induced by the 

composites F3C{a, a) -+ F(]J SC(a', a')) F((JT)). • 

Lax functors of bicategories give one way of comparing dual pairs, but as in The

orem 4.3.3, composites of dual pairs give another way. In this bicategory there is one 

example of a composite of dual pairs that is particularly relevant. 

Let ^ —> srf be an enriched functor. If X is a ^-^-bimodule let 3£<& be the 

^-^-bimodule defined by 5£*{b,c) = 3C{b^(c)). If <& is an ^-^-bimodule let ^ 

be the ^-^-bimodule defined by (c, 6) = ^ ( $ ( c ) , 6 ) . In particular, $ can be used 

to define an j^-^-bimodule U^ç> and a ^-^-bimodule ^U^. These bimodules form 

a dual pair with coevaluation 

n : Uc — oUA O UAo 

induced by the functor $ and evaluation 

e : UAo O oUA —> UA 

which is composition in srf'. 
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Lemma 9.2.5. — Let V be a symmetric monoidal category and srf', 88, and ^ be cate
gories enriched in V. Suppose Q: C -> A is an enriched functor and X is a 88-^-bi-
module with dual & and coevaluation and evaluation maps 

UB 
a f 0 f and YOX 9 

UC. 

(i) / / $ has right adjoint \£ : srf —• then 3£<& is dualizable with dual U#/<$> 0 <3f. 
(ii) If^ is also a left adjoint for then 3£<& is dualizable with dual yty'. 

(iii) Suppose \I> is both left and right adjoint to 3>. Given a 2-cell 

f: YO2 — > 8 » Q & 

let ? be the 2-cell 

wYO2 
fw--

* ^ 0 ^ 

wPOUC OY 
id ©»7©id 

Pw0 ̂ Y 

PO oUA OUA oOY 

Then 

<2> 

tr(f) 

<P> <POUC> 
((id G)n)) 

[&> 0 UA 0 

1*0*} 

<UAo OPO oUA> 

is the trace of f. 

In Lemma 6.4.1 we proved a special case of this result. The following corollary of 
Lemma 9.2.5 generalizes Lemma 6.4.1. 

Corollary 9.2.6. — Let H be a connected groupoid enriched in V and X: U —• 
a right U-module. If 3£{x) is dualizable as a right U(x,x)-module in ^Yy for some 
x G II then X is dualizable in Sy. 

If ^ is a H-U-bimodule, f: 3£ —> X 0 8? is a map of right modules, and 
fx: X(x) —» («2T 0 &)(x) the map f restricted to x G obll, then tr(/) = tr(/x). 

9.3. Bicategory of bicategorical monoids 

In this section we generalize both the bicategory from Section 9.1 and the bicate
gory of monoids, bimodules, and maps in Ex and Ex# from Chapters 5 and 7 to any 
bicategory. 

Remark 9.3.1. — There is one important difference between this section and Chapters 

5, 6, 7, and 8. In Chapters 5, 6, 7, and 8 we used homotopy colimits. In this section 

we will use colimits. Despite this difference, many of the results in this section have 

analogues in Chapters 5, 6, 7, and 8. 
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This bicategory includes many of the best features of the two previous examples 
and additional elements that are necessary for topological applications. As we saw in 
Chapters 5 and 7 this bicategory eliminates the need to choose base points but retains 
the structure necessary to define topological duality. 

In this section W is a bicategory with bicategory composition 13. The horn cate
gories of iff must have all coequalizers. 

Definition 9.3.2. — Let A be a 0-cell in W. A monoid in W is a 1-cell si e W{A, A) 
with 2-cells 

UA- fi/ and /Mfii- fii 

which are unit al and associative. That is, 

fi/ 9* UA B si noid 
fi/Mfi/ 

li
si 

and 

s/ = s/ № U A 
idx s/№st si 

are the identity map of si and 

fi/^fi/^fii 
uBid 

fi/^fi/ 

id El/* 

fi/^fii idx fii 
commutes. We call i the unit and ¡1 the composition. 

The simplest example of a monoid is the 1-cell UA for a 0-cell A in W. The unit 
map is the identity and the composition is the unit isomorphism. 

Definition 9.3.3. — Let si and 38 be monoids in W. An s/-38-bimodule in W is a 
1-cell X e W(B, A) and two 2-cells 

KA: fi/MX X 

and 

KB: X№38-+ X 

that are unital and associative with respect to the monoid structure of &/ and 38. We 
also require that the actions of KA and K,B commute. 

Any 1-cell X in W(B,A) is a L^-^B-bimodule. The monoids UA and UB act by 
the unit isomorphisms. Any monoid si is an ^-^-bimodule with the left and right 
actions given by \x. 

By neglect of structure an ^-^-bimodule X is also a left ^-module or a right 
^-module. Let LX be the monoid X regarded as an ^-L^B-bimodule with left action 
given by K and right action the unit isomorphism. Let RX be the monoid X regarded 
as a C/^-^-bimodule with left action the unit isomorphism and right action K. 
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Definition 9.3.4. — Let si and 88 be monoids and X and <3f be ^-^-bimodules. A 
map of bimodules is a 2-cell / : X —• <3f such that 

si®X —^ X 

id 13/ 

siRW 
K 

•9 

and the corresponding diagram for 88 commute in W(B,A). 

Definition 9.3.5. — Let si, 88, and ^ be monoids, X be an ^/-^-bimodule, and W 
be a ^-^-bimodule. Then 0 ^ is defined by the coequalizer 

X®88®& XXY XOY 
in >T(C,A). 

If the product preserves coequalizers, 5* 0 ^ is an j^-^-bimodule. The left si 
action is induced by the left action of si on X. The right ^ action is induced by the 
right action of on W. 

If 88 is the monoid UB then X 0 <3( = X M 9. 
This defines a bicategory jjtyr with 0-cells monoids in W, 1-cells bimodules in W, 

and 2-cells maps of bimodules. The unit for a monoid si is given by regarding that 
monoid as a bimodule over itself. The bicategory composition is 0 . 

In the bicategory jHyr we have some very simple examples of dualizable objects 
given by the monoids of W. 

Proposition 9.3.6. — For a monoid si, (R(U*), L(U*)) is a dual pair. 

Proof — Let N(U#/) be si regarded as a f/^-C/^-bimodule. Then the unit map 

L:UA-*N(U*) 

is a map of (7^-î/^-bimodules. The associativity diagram for the composition JJL implies 
that 

Ai : LIU*) 0 RIU*) = LIU*) M R(U*) -> U* 

is a map of ̂ -^-bimodules. The unit conditions imply the composites 

R(U*)^UAoR(U*) noid N(U^)QR(U^) 
u R(UA) 

MU*) * UVJ\ © UA idoi L(U^)QN(U^) k L(UA) 

are identity maps. 
The coevaluation map 

rj: UA -> N{11*) = R(Uj) 0 L(U*) 

is the unit. The evaluation map 

E : L(UA) O R (UA) = L(UA) X R(UA) —> UA 
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is the composition. The diagrams demonstrating that this is a dual pair commute by 
the unit and associativity conditions of the monoid. 

R(UA) UAQR(U*) 
tG)id 

N(UA) O R(UA) 

id 

R(UA) 

u 

u 
R(U*) © U* 

id 0/i 

oid 

R(U*) © L(U*) © R{U*) 

MU*) L{U*) © UA 
id©*. 

L (UA° O N(UA) 

id 

L(U*) 

u 

u 
U*OUL(si /x0id 

id ©9* 

L(U*)QR(U*)®L(U*) 

Lemma 9.3.7. — Suppose W is a bicategory with shadows [[—]]. If the target of the 
shadow [[—]] has all coequalizers then My/ is a bicategory with shadows. 

Proof. — Let T be the target of the shadow [[—]]. The shadows of Jty/, ((—)), are 
defined by the coequalizers 

[ [ £ / B ar\] im <Z> 

in T . The composite 

||XXY|| ||YXX| \[& © ar\] {& © se) 
induces a map 

Lx 0 <&]] —• 0 X\ 

This map induces the isomorphisms 0® *. 

Note that the shadows constructed in Section 9.1 are of this form. A symmetric 
monoidal category V is a bicategory with a single 0-cell and the identity functor 
defines shadows for this bicategory. The shadows constructed in Chapter 5 for the 
bicategory #̂EX are also of this form. The functors [[—]] are nA*. 

Lemma 9.3.8. — Let W and % be bicategories. A lax functor F: W —> of bicate

gories defines a lax functor ^F: —* . 

If the shadows of are defined as in Lemma 9.3.7 and F is a shadow functor 

then is a shadow functor. 

Proof — The functor takes a monoid si to the monoid Fsi with unit 

UFA -> F(UA) - Fsi 

and composition 

Fsi El Fsi -> Fisi M si) -* Fsi. 

An j^-^-bimodule X is taken to the F^-F<^-bimodule FX with actions 

Fsi H F^T — El <T) -> F , T 
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FX №F&-> F{X FX 
The map FX El F& -> F(X H W) induces a map 

FX QF& ->F(X ®&). 

If shadows in Jtys are denned from the shadows of W and F is a shadow functor, 
is a shadow functor. The ma,ps{FX}^ F{X}aie induced by the corresponding 

maps 

rim • 
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