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Séminaire BOURBAKI 
6 1 e année, 2008-2009, n° 1005, p . 221 à 255 

Mars 2009 

T O P O L O G I C A L M O D U L A R F O R M S 
[after H o p k i n s , Mi l ler , and Lurie] 

by P a u l G. G O E R S S 

I N T R O D U C T I O N 

In the early 1970s, Quillen [55] noticed a strong connection between 1-parameter 
formal Lie groups and cohomology theories with a natural theory of Chern classes. 
The algebraic geometry of these formal Lie groups allowed Morava, Ravenel, and 
others to make predictions about large scale phenomena in stable homotopy theory, 
and the resulting theorems completely changed the field. For example, the solution 
of Ravenel's nilpotence conjectures by Devinatz, Hopkins, and Smith ([18] and [29]) 
was one of the great advances of the 1980s. 

An example of a 1-parameter formal Lie group can be obtained by taking the 
formal neighborhood of the identity in a smooth algebraic group of dimension one. 
The additive group and the multiplicative group correspond to ordinary cohomology 
and complex i f- theory respectively, and the only other algebraic groups of dimension 
1 are elliptic curves. This class is different because elliptic curves can come in families 
over a base scheme S and the geometry of the fibers can vary significantly as we move 
through S. Thus there are many elliptic cohomology theories and it should be possible 
to produce them in families over schemes. In retrospect, the realization, by Hopkins 
and Miller, of a good theory of elliptic cohomology theories provided a centerpiece for 
the emerging field of derived algebraic geometry. 

Derived algebraic geometry has origins in a number of diverse sources. In geometry, 
there is the work of Serre on multiplicities in intersection theory [61] and the work of 
Illusie [33] on the cotangent complex. For an overview of the roots in stable homotopy 
theory, the article [27] is very useful. In algebraic If-theory, again originating with 
Quillen, it was important very early to consider algebraic varieties and schemes with 
sheaves of generalized ring objects and, indeed, it was mathematicians in this field 
who first wrote down a systematic theory [34]. Thanks to work of Toen, Vezzosi [66], 
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and Lurie [47], we now have a fairly mature theory. The purpose here is to concentrate 
on the example of elliptic cohomology theories; tha t is, I would like to make precise 
the following statement of a theorem of Mike Hopkins and Haynes Miller, as refined 
by Jacob Lurie: the compactified Deligne-Mumford moduli stack of elliptic curves 
is canonically and essentially uniquely an object in derived algebraic geometry. The 
homotopy global sections of this derived stack form the ring spectrum of topological 
modular forms. 

1. A N O V E R V I E W 

1.1. T h e m o d u l i s tack of e l l ipt ic curves 

In the late 1960s, Deligne and Mumford [15] defined a moduli object Mg for alge­
braic curves of genus g. Thus, morphisms X —> Mg from a scheme X to Mg are in 
one-to-one correspondence with smooth proper morphisms 

q:C—+ X 

of relative dimension 1 such tha t each fiber is a curve of genus g. It was known tha t 
Mg could not be a scheme; one way to see this is to note tha t automorphisms of the 
fibers of q do not vary nicely with the fiber. However, Deligne and Mumford noticed 
tha t Mg exists if we enlarge the category of schemes slightly to include what we now 
call Deligne-Mumford stacks. Prom this example, the whole theory of algebraic stacks 
emerged. There is an extremely brief exposition on algebraic stacks at the beginning 
of Section 3.1. 

Prom this collection, we single out the moduli stack M\,\ of elliptic curves. These 
are curves of genus 1 with 1 marked point; tha t is diagrams of the form 

Q 

c~<—^ X 
e. 

where q is a family of smooth curves of genus 1 over X and e is a section identifying 
a distinguished point in each fiber. A classical, but still remarkable, property of these 
curves is tha t C becomes an abelian group over X: there is a canonical commuta­
tive group multiplication on C with e as the unit. Furthermore, any morphism of 
elliptic curves is a group homomorphism. There are a number of reasons for singling 
out this stack: elliptic curves are central to algebraic number theory, for example. 
For algebraic topologists, the formal neighborhood Ce of e in C gives a family of 
1-parameter formal Lie groups ("formal groups") which, in turn , gives rise to a rich 
family of elliptic cohomology theories. 
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The stack M\,\ is not compact - more precisely, it is not proper over Z. Indeed, 
the morphism to the affine line 

j ' — • A 1 

which assigns to each elliptic curve C the j - invariant j(C) is almost (but not quite) 
a covering map. Deligne and Mumford found a canonical compactification MM of 
Mi,i which now classifies generalized elliptic curves with, possibly, nodal singulari­
ties. In an extensive study of this stack [16] Deligne and Rapoport showed tha t the 
j - invariant extends to a morphism 

jlMell—tV1-

1.2. D e r i v e d s c h e m e s 

The basic objects of algebraic geometry are schemes, which are locally ringed spaces 
(X, Qx) which are locally isomorphic to the prime spectrum of some ring. Thus, 
among other things, X is a space and Qx is a sheaf of rings on X . The basic idea of 
derived algebraic geometry is to replace rings by some more generalized ring object. 
For example, Serre [61] considered schemes with a sheaf of commutative differential 
graded algebras. This has the advantage tha t it is relatively simple to define and, 
indeed, over the rational numbers it is equivalent to the more general theory. However, 
commutative DGAs only have good homotopy theory when we work over the rational 
numbers; over the integers or in characteristic p a more rigid theory is needed. In 
his work on the cotangent complex, Illusie [33] worked with schemes with sheaves of 
simplicial commutative algebras. This was also the point of view of Lurie in his thesis 
[45]. However, there are basic examples arising from homotopy theory which cannot 
come from simplicial algebras - complex if- theory is an important example. Thus, 
a derived scheme (or stack) will be a scheme equipped with a sheaf of commutative 
ring spectra. I immediately remark tha t "commutative" is a difficult notion to define 
in ring spectra: here I mean " E ^ - r i n g spectra". The foundations of commutative 
ring spectra are forbidding, but I'll make some a t tempt at an exposition below in 
Section 2.1. 

A spectrum X has homotopy groups n^X, for k G Z. If X is a commutative ring 
spectrum, 7r 0X is a commutative ring and the graded abelian group 7r*X is a graded 
skew-commutative 7ToX-algbera. In particular, TT^X is a 7ToX-module. 

D E F I N I T I O N 1.1. — A derived scheme (X, 0) is a pair with X a topological space and 
0 a sheaf of commutative ring spectra on X so that 

(1) the pair (X, TTOO) is a scheme; and 
(2) the sheaf 7Tk& is a quasi-coherent sheaf of TTQ 9-modules. 
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It is somewhat subtle to define the notion of a sheaf of spectra; I will come back 

to tha t point below in Remark 2.7. One definition of "quasi-coherent" is to require 

the sheaf to be locally the cokernel of a morphism between locally free sheaves. On 

the spectrum of a ring R, these are the module sheaves which arise from i?-modules. 

There is a completely analogous definition of a derived Deligne-Mumford stack, except 

tha t now we must be careful about the topology we use to define sheaves: for these 

objects we must use the etale topology. 

There is a rich structure inherent in Definition 1.1. The homotopy groups of a 

commutative ring spectrum support far more structure than simply tha t of a graded 

skew-commutative ring; in particular, it is a ring with "power operations". See Remark 

2.6 below. Thus, if (X, 9) is a derived scheme, the graded sheaf 7r* 0 is a sheaf of 

graded rings with all of this higher order structure. 

1.3. Topolog ica l m o d u l a r forms 

On the compactified Deligne-Mumford stack MEM, there is a canonical quasi-

coherent sheaf u). If C is an elliptic curve over X , then C is an abelian variety 

over X of relative dimension 1 and we can construct the sheaf of invariant 1-forms 

UJC for C. This is a locally free sheaf of rank 1 on X and the assignment 

u)(C : X Meu) = Re­

defines a quasi-coherent sheaf on Meu- The sheaf w is locally free of rank 1, hence 

invertible, and the tensor powers u®k, fceZ, are all quasi-coherent. Here is the main 

result; see [26] and [46]. 

T H E O R E M 1.2 (Hopkins-Miller-Lurie). — There exists a derived Deligne-Mumford 

stack (Meee, &) so that 

(1) the underlying algebraic stack (Meu^o0) is equivalent to the compactified 

Deligne-Mumford moduli stack (Meee, &ea) of generalized elliptic curves; and 

(2) there are isomorphisms of quasi-coherent sheaves = tu®k and itzk+i® — 0. 

Furthemore, the derived stack (Meee, &) is determined up to equivalence by conditions 

(1) and (2), 

The doubling of degrees in (2) is quite typical: when the homotopy groups of a 

commutative ring spectrum X are concentrated in even degrees, then TT*X is a graded 

commutative ring, not just commutative up to sign. 

We can rephrase the uniqueness s tatement of Theorem 1.2 as follows: there is a 

space of all derived stacks which satisfy points (1) and (2) and this space is path-

connected. In fact, Lurie's construction gives a canonical base-point; t ha t is, a canon­

ical model for (Mee£, ©)• 

Here is a definition of the object in the title of this manuscript. 
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D E F I N I T I O N 1.3. — The spectrum t m f of topological modular forms is the derived 
global sections of the sheaf 9 of commutative ring spectra of the derived Deligne-
Mumford stack (Meu, 9). 

The spectrum t m f is itself a commutative ring spectrum and formal considerations 
now give a descent spectral sequence 

(1) Hs{MM,um) 7r 2 t - s tmf . 

This spectral sequence has been completely calculated in [7], [28] and [59]. 
The spectrum t m f is called "topological modular forms" for the following reason. 

One definition of modular forms of weight k (and level 1) is as the global sections of 
w®k over MM\ tha t is, the graded ring 

M*=H0{Meee,uj®*) 

is the ring of modular forms for generalized elliptic curves. This ring is well understood 
[14]: there are modular forms C4, CQ, and A of weights 4, 6, and 12 respectively and 
an isomorphism of graded rings 

Z [ c 4 , c 6 , A]/(cl -c2

6 = 1728A) ^ M*. 

Note 1728 = (12) 3 , indicating tha t the primes 2 and 3 are special in this subject. 
The modular form A is the discriminant and is the test for smoothness: a generalized 
elliptic curve C is smooth if and only if A(C) is invertible; in fact, Mi,i C Mett is 
the open substack obtained by inverting A. 

Modular forms then form the zero line of the spectral sequence of (1), at least up to 
degree doubling, and we can now ask which modular forms give homotopy classes in 
tmf . The higher cohomology groups of (1) are all 2 and 3-torsion and, as mentioned 
above, the differentials have also been calculated. Thus, for example, we know tha t 
A is not a homotopy class, but 24A is; similarly CQ is not a homotopy class, but 2c6 
is. The class C4 is a homotopy class. In the last section of this note, I will uncover 
some of the details of this calculation. 

1.4. I m p a c t 

Let me write down three areas of algebraic topology where t m f has had significant 
impact. I will go in more-or-less chronological order. 

Remark 1.4 (The Wit ten genus). — In his work in string theory, Wit ten noticed tha t 
one could define a genus for certain spin manifolds tha t takes values in modular forms. 
A compact differentiable manifold M has a spin structure if the first and second 
Stiefel-Whitney classes vanish and a spin manifold M is a manifold with a choice of 
spin structure. For spin manifolds there is a new characteristic class A which has 
the property tha t twice this class is the first Pontrjagin class. If A also vanishes, the 
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manifold M has a string s tructure. There is a cobordism ring MString* of string 
manifolds, and Wi t t en wrote down a rich ring homomorphism 

a* : MString*—> Q(g>M*, 

which we now call the Wi t ten genus. Let me say a little about his methods. 
Every modular form can be writ ten as a power series over the integers in q\ this 

is the g-expansion. One way to do this is to evaluate the modular form on the Tate 
curve, which is a generalized elliptic curve over Z[[#]]. This defines a monomorphism 
M* —• Z[[q]] but it is definitely not onto. For each string manifold, Wi t ten [67] wrote 
down a power series in q over the rationals and then used physics to argue it must be 
a modular form. 

Almost immediately, homotopy theorists began searching for a spectrum-level con­
struction of this map. By the Thom-Pontrjagin construction, MString* is isomorphic 
to the homotopy groups of a commutative ring spectrum MString and the Wi t ten 
genus was posited to be given by a morphism of ring spectra from MString to some 
appropriate ring spectrum or family of ring spectra; this is what happens with the 
Atiyah-Bott-Shapiro realization of the A-genus on spin manifolds. Motivated by this 
problem, among others, there were an early important work on elliptic cohomology 
theories and orientations and a major conference on elliptic cohomology theories in 
the late 1980s; [39] is a highlight of this period. There were also very influential pa­
pers in the following years. For example, the Bourbaki expose by Segal [60] has been 
especially important in the search for elliptic cohomologies arising from differential 
geometry and mathematical physics and the paper by Franke [20] gave a profusion of 
examples of cohomology theories arising from elliptic curves. 

The Wi t t en genus was addressed specifically in the work of Ando, Hopkins, Rezk, 
and Strickland. Earlier results are in [5] and [25]; the definitive results are in [4] and 
[ 6 ] . 

T H E O R E M 1.5. — The Witten genus can be realized as a morphism of commutative 
rinq spectra 

a : MSt r ing— • tmf . 

The map a is surjective on homotopy in non-negative degrees. 

Besides giving a rigid construction of the Wit ten genus, this has other consequences. 
Not every modular form is in the image, for example, as not every modular form is 
a homotopy class. On the other hand, there is a plenty of 2 and 3 torsion in bo th 
source and target and the map a detects whole families of this torsion. 

Remark 1.6 (Homotopy groups of spheres). — One of the fundamental problems 
of stable homotopy theory is to compute 7r*5, where S is the stable sphere; thus 
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7Tfc5 = colim7r n +fc.S n. This is impossible, at least at this point, but we can measure 
progress against this problem. Early successful calculation focused on the image 
of the J-homomorphism 7r*SO(n) —> 7r*5 n ; see [1] and [48]. There were many 
calculations with higher order phenomena, most notably in [53] and the work of 
Shimomura and his coauthors (see [63] and [62] among many papers), but the very 
richness of these results hindered comprehension. Using tmf , related spectra, and 
the algebra and geometry of elliptic curves, it is now possible to reorganize the 
calculations in a way tha t bet ter reveals the larger structure. See for example, [21], 
[23], and [8]. The latter, in particular, makes the connections with elliptic curves 
explicit. 

Remark 1.7 (Congruences among modular forms). — There is a remarkable inter­
play between homotopy theory and the theory of modular forms. For example, 
by thinking about the descent spectral sequence of Equation (1) above, Hopkins 
[26] discovered a new proof of a congruence of Borcherds [11]. We can also vary 
the moduli problem to consider elliptic curves with appropriate homomorphisms 
(Z/NZ)2 -> C ("level-structures"). This new moduli problem is Stale over Mi,i[l/N] 
and Theorem 1.2 immediately produces a new spectrum tmf[JV] in Z[l/iV]-local 
homotopy theory, which might be called topological modular forms of level N. There 
is a descent spectral sequence analogous to (1) beginning with modular forms of 
level N. This has been used to effect in [50] and [8]. 

More subtle connections and congruences emerge when we work p-adically. For 
example, the ring of divided congruences of Katz [36] appears in topology as the 
p-complete i f - theory of tmf . This observation, due to Hopkins, appears in [41] for the 
prime 2. More recently, Behrens [9] was able to explicitly compare certain congruences 
among modular forms tha t hold near supersingular curves with the intricate and 
beautiful pat terns in the stable homotopy groups of spheres tha t first appeared in [53]. 

2. B A S I C S F R O M H O M O T O P Y T H E O R Y 

2 .1 . S p e c t r a a n d c o m m u t a t i v e r ing s p e c t r a 

The need for a good theory of spectra arose in the 1950s while trying to find a 
framework to encode a variety of examples tha t displayed similar phenomena. In 
each case there was a spectrum', tha t is, a sequence of based (or pointed) spaces Xn 

and suspension maps 

Y>X — S1 A Xn —» Xn+\. 
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Here AAB is the smash product of two pointed spaces characterized by the adjunction 
formula in spaces of pointed maps 

m a p , (A A B , Y) * m a p , (A, m a p , (B,Y)). 

Example 2.1. — 1) The space S1 A A is the suspension of A and a basic example is the 
suspension spectrum T,°°A of a pointed finite C W complex A; thus, ( E ° ° A ) n = T^A 
is the i terated suspension. In particular, S = E° °5° . 

2) A generalized cohomology theory is a contravariant functor E*(—) from the 
homotopy category of spaces to graded abelian groups which takes disjoint unions 
to products and has a Mayer-Vietoris sequence. By Brown's representability theo­
rem there are spaces En so the reduced cohomology En(A) is naturally isomorphic 
to the pointed homotopy classes of maps A —> En. The suspension isomorphism 
EnA ^ E^ZA yields the map HEn -> En+1. 

3) The Thorn spectra MO and its variants such as MString. The n- th space of MO 
is the Thorn space MO(n) = T(^n) of the universal real n-plane bundle j n over the 
infinite Grassmannian. The map G r n ( E ° ° ) —• Gr n_|_i(R°°) classifying the Whitney 
sum e 0 7 n , where e is a trivial 1-plane bundle, defines the map 

S 1 A M O ( n ) ^ T ( e ® 7 n ) r ( 7 n + 1 ) = M O ( n + l ) . 

A basic invariant of a spectrum X is the stable homotopy groups 

7TkX = colim 7rn+kXn, kez. 

For example, the Thorn-Pontrjagin construction shows tha t 71-/-MO is the group of 
cobordism classes of closed differentiable fc-manifolds; it was an early t r iumph of 
homotopy theory tha t Thorn was able to compute these groups. 

Remark 2.2 (The stable homotopy category). — A basic difficulty was to decide how 
to build a homotopy theory of spectra. Seemingly anomalous examples led to some 
very ingenious ideas, most notably the "cells now maps later" construction of Board-
man and Adams [2]. The language of model categories gives a simple and elegant 
definition. We define a morphism / : X —> Y of spectra to be a set of pointed maps 
fn : XN —> YN which commute with the suspension maps. Next we stipulate tha t 
such a morphism is a weak equivalence if 7r*/ : TT*X = TT*Y. Bousfield and Friedlan-
der [12] showed tha t there is a model category structure on spectra with these weak 
equivalences, and we obtain the homotopy category by formally inverting the weak 
equivalences. 

There was a much more serious difficulty in the theory, however. Suppose tha t we 
have a cohomology theory E*(—) with natural , associative, and graded commutative 
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cup products 

EmX <g> EnX—• Em+nX. 

Then, by considering the universal examples, we get a map 

E m A En > En+m. 

Prom this we ought to get a map E A E —> E of spectra making E into a homotopy 

associative and commutative ring object. However, given two spectra X and Y the 

object {XmAYn} is not a spectrum, but a "bispectrum". We can extract a spectrum Z 

by taking Zk to be any of the spaces Xm A Yn with m + n = k with m and n non-

decreasing; if, in addition, we ask tha t n and m go to oo with fc, we get a well-defined 

homotopy type - and hence a symmetric monoidal smash product on the homotopy 

category. However, this does not descend from such a structure on the category of 

spectra. 

Worse, there were important examples tha t indicated tha t there should be such a 

structure on spectra. The Eilenberg-MacLane spectra HR, R a commutative ring, the 

cobordism spectrum MO and the complex analog MU, spectra arising from algebraic 

and topological if-theory, and the sphere spectrum S itself all had more structure 

than simply giving ring objects in the homotopy category. 

Remark 2.3. — The first, and still a very elegant, solution to this problem was due to 

Lewis, May and Steinberger [43]. The idea was to expand the notion of a spectrum X 

to be a collection of spaces {Xy} indexed on the finite-dimensional subspaces of the 

infinite inner product space R°°; the suspension maps then went Sv AX\y —• Xv<$w> 

where Sv was the one-point compactification of V. If X^ 1 < i < n are spectra, then 

Xi A • • • A Xn naturally yields a spectrum object over (R°°)n and any linear isometry 

/ : R°° (R°°)n then returns a spectrum f*{X\ A • • • A Xn) over R°°. The crucial 

observation is tha t the space £(n) of all such choices of isometries is contractible and 

the construction of f*(Xi A • • • AXn) could be extended to a construction of a functor 

(Xu • • • , Xn) *-+ £(n)+ A X1 A • • • A Xn. 

This functor, in the case n = 2, descended to the smash product on the homotopy 

category. More importantly, the collection of spaces £ = {£(n)} form an E00-operad. 

This implies tha t there is a coherent way to compose the above functors and tha t the 

action of the symmetric group on £(n) is free. 

We still did not have a spectrum level symmetric monoidal structure, but we did 

now know what a ring object should be. 
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D E F I N I T I O N 2.4. — A commutative ring spectrum is an algebra over the operad £; 

that is, an algebra for the monad 

X—> vn L(n)+AZn Xna. 

Here V is the coproduct or wedge in spectra; and Asn means divide out by the diagonal 

action of the symmetric group. We can also call a commutative ring spectrum an 

Eoo-ring spectrum. 

This definition has the distinct advantage of being a machine with an input slot; 

for example, this theory is ideal for showing tha t the Thorn spectra MO and MU are 

commutative ring spectra; similarly, the Eilenberg-MacLane spectra HR, with R a 

commutative ring, and S are easily seen to be commutative ring spectra. 

Example 2.5. — If ¿2 is a commutative ring, we could consider algebras over an 

^oo-operad in i?-chain complexes; tha t is, we could work with differential graded 

i^oo-algebras. However, in a very strong sense (the technical notion is Quillen equiva­

lence or equivalence of oo-categories) the category of differential graded EQQ-algebras 

over R has the same homotopy theory as the category of commutative iJjR-algebras 

in spectra, where HR is the associated Eilenberg-MacLane spectra. This is actually 

a fairly restrictive example of commutative ring spectra; many important examples, 

such as MO, MU, and If-theory are not of this type. I note tha t if R is a Q-algebra, 

then Eoo-algebras over R and commutative dgas over R also form Quillen equivalent 

categories. 

Remark 2.6. — Since the work of Lewis, May and Steinberger, many authors (in­

cluding May himself) have built models for the stable category which indeed have 

a symmetric monoidal s tructure. See [19], [31], and [51]. Then a commutative 

ring spectrum is simply a commutative monoid for tha t s tructure. However, it is 

only a slight exaggeration to say tha t all such models build an EQQ-operad into the 

spectrum-level smash product in some way or another; thus, the theory is elegant, 

but the computat ions remain the same. For example, the homotopy of an J^oo-ring 

spectrum is a commutative ring, but there is much more s tructure as well: the map 

in homotopy 

7 r * ^ ( n ) + A S n X A n - ^ 7 r * X 

adds power operations (such as Steenrod or Dyer-Lashof operations) to 7r*X. The 

spectral sequence 

Hp(En,irq(XAn)) 7rp+q£(n)+ ASn XAn 

makes the role of the homology of the symmetric groups explicit in the construction 

of these operations. 
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Remark 2.7 (Sheaves of spectra). — Once we have ring spectra, we must confront 

what we mean by a sheaf of ring spectra. There is an issue here as well. Suppose we 

have a presheaf 67 on X and {V^} is a cover of U C I Then if £7 is a sheaf we have 

an equalizer diagram 

ST(U) X—> vn L(n)+A. YlSTiViXuVj). 

The problem is tha t equalizers are not homotopy invariant. Again model categories 

help. We define a morphism of presheaves 6 —> £7 to be a weak equivalence if it 

induces an isomorphism 7r*£ —> 7r*£7 of associated homotopy sheaves. Thus, for 

example, a presheaf is weakly equivalent to its associated sheaf. The theorem, due to 

Jardine [34], [35], is tha t there is a model category structure on presheaves with these 

weak equivalences. A sheaf of (ring) spectra is then a fibrant/cofibrant object in this 

model category. This has the effect of building in the usual homological algebra for 

sheaves; tha t is, if £7 is a module sheaf and 57 —• J* is an injective resolution; then 

the associated presheaf of generalized Eilenberg-MacLane spectra KJ* is a fibrant 

model for K57. In this setting, global sections T(—) are inherently derived so I may 

write RT(-) instead. In good cases there is a descent spectral sequence 

Hs(X,7rT2-)^n-sr(&). 

2.2 . C o h o m o l o g y theor i e s and formal groups 

If E is a spectrum associated to a cohomology theory E*, we get a homology theory 

by setting E*X = ir*E A X+, where X+ is X with a disjoint basepoint. 

D E F I N I T I O N 2.8. — Let E*(—) be a cohomology theory. Then E* is 2-periodic if 

(1) the functor X i—• E*{X) is a functor to graded commutative rings; 

(2) for all integers k, E 2 k + 1 = £ 2 / e + 1 ( * ) = 0; 

(3) E2 is a projective module of rank 1 over E°; and 

(4) for all integers k, the cup product map (E2)®k —> E2k is an isomorphism. 

Note tha t E2 is an invertible module over E° and E~2 is the dual module. If E2 

is actually free, then so is Ei — E~2 and a choice of generator u G E^ defines an 

isomorphism £Jo[^ ± 1] — E*. This often happens; for example, in complex if-theory. 

However, there are elliptic cohomology theories for which E2 does not have a global 

generator. 

Prom 2-periodic cohomology theories we automatically get a formal group. Let 

C P 0 0 = Gri(C°°) be the infinite Grassmannian classifying complex line bundles. 

Then C P 0 0 is a topological monoid where the multiplication C P 0 0 x C P 0 0 -> C P 0 0 
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classifies the tensor product of line bundles. If E* is a 2-periodic homology theory, 

then E°CP°° is complete with respect to the augmentation ideal 

7(e)= f É°CP°°=Ker{E°CP°°XvnL(n)+AZmlkm } 

and, using the monoid structure on C P 0 0 , we get a commutative group object in 

formal schemes 

GE = Spf(£0CP°°). 

This formal group is smooth and one-dimensional in the following sense. Define the 

i^o-module by 

(2) u>G = / ( e ) / / ( e ) 2 S É°S2 S E2. 

This module is locally free of rank 1, hence projective, and any choice of splitting of 

1(e) —> CJG defines a homomorphism out of the symmetric algebra 

X—> vn L(n)+AZn Xna. 

which becomes an isomorphism after completion. For example, if E2 is actually free 

we get a non-canonical isomorphism 

E°CP°° = E°[[x]}. 

Such an x is called a coordinate. Whether GE has a coordinate or not, the ring E$ 

and the formal group determine the graded coefficient ring E*\ indeed, E2t+i = 0 and 

for all t e Z, 

(3) X—> vn L(n)+AZn Xna. 

Remark 2.9 (Formal group laws). — The s tandard literature on chromatic homotopy 

theory, such as [2] and [56], emphasizes formal group laws. If E*(—) is a two-periodic 

theory with a coordinate, then the group multiplication 

GExGE = S p f ( £ 0 ( C P ° ° x C P 0 0 ) ) Spí{E°CP°°) = GE 

determines and is determined by a power series 

x+Fy = Fix, y) € E°[[x,y]} * E°(CP°° x C P 0 0 ) . 

This power series is a 1-dimensional formal group law. 

Homomorphisms can also be described by power series, and a homomorphism 0 is 

an isomorphism if </>'(0) is a unit . 

Remark 2.10 (Invariant differentials). — The module UJGE ^ s defined as the conormal 

module of the embedding 

e : Spec(£°) S p f ( £ 0 C P ° ° ) = GE 
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given by the basepoint. This definition extends to any formal group G over any base 

scheme X and we get a sheaf LOG on X . It is isomorphic to the sheaf of invariant 

differentials of G via an evident inclusion LOG ~* Q^G/X- Here HQ/X is the sheaf of 

continuous differentials and q : G —• X is the structure map. 

If X = Spec(R) for some ring and G has a coordinate x, then the invariant differ­

entials form the free i£-module generated by the canonical invariant differential 

dx 

Fy(x,0) 

where Fy(x,y) is the part ial derivative of the associated formal group law. It is an 

exercise to calculate tha t if 4> : G\ —> G2 is a homomorphism of formal groups with 

coordinate, then dcj) : LOG2 ~* ^Gi is determined by 

(4) d(t>{rÌG2) = (t>,^)rÌGl. 

3. FORMAL GROUPS A N D STABLE HOMOTOPY THEORY 

3 . 1 . T h e m o d u l i s tack of formal groups 

Let Mfg be the moduli stack of formal groups: this is the algebro-geometric object 

which classifies all smooth 1-parameter formal Lie groups and their isomorphisms. 

Thus, if R is a commutative ring, the morphisms 

G : Spec(#)—> Mfg 

are in one-to-one correspondence with formal groups G over R. Furthermore, the 

2-commutative diagrams 

( 5 ) SpecfS) 

vc 

Spec(#i 

H 

vcc 

G 

correspond to pairs ( / : R —> 5, (j) : H >• f*G ) . 

Remark 3.1. — Schemes are defined as locally ringed spaces (X, 9x) which have an 

open cover, as locally ringed spaces, by affine schemes. Equivalently, schemes can be 

defined as functors from rings to sets which are sheaves in the Zariski topology and 

have an open cover, as functors, by functors of the form 

A h-> Rings(i2,74). 
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Stacks are a generalization of the second definition. A stack is a sheaf of groupoids 

on commutative rings satisfying an effective descent condition [40], §3. For example, 

Mig assigns to each ring R the groupoid of formal groups over Spec(iJ) ^ \ 

Algebraic stacks have a suitable cover by schemes. A morphism M —> 9f of stacks 

is representable if for all morphisms X —> Jf with X a scheme, the 2-category pull-

back (or homotopy pull-back) X M is equivalent to a scheme. A representable 

morphism then has algebraic property P (flat, smooth, surjective, etale, etc.) if all 

the resulting morphisms 

X x^M-^X 

have tha t property. 

A stack M is then called algebraic ^ if 

(1) every morphism Y —» M with Y a scheme is representable; and 

(2) there is a smooth surjective map q : X —> M with X a scheme. 

The morphism q is called a presentation. Note tha t an algebraic stack may have 

many presentations. If a presentation can be chosen to be étale, we have a Deligne-

Mumford stack. 

Remark 3.2. — The stack M$g is not algebraic, in this sense, as it only has a flat 

presentation, not a smooth presentation. If we define fgl to be the functor which 

assigns to each ring R the set of formal group laws over R, then Lazard's theorem 

[42] says tha t fgl = Spec(L) where L is (non-canonically) isomorphic to Z[£i, ¿2, • • • ]• 

The map 

f g l ^ Mig 

which assigns a formal group law to its underlying formal group is flat and surjective, 

but not smooth since it is not finitely presented. It is pro-algebraic however; tha t is, 

it can be wri t ten as the 2-category inverse limit of a tower of the algebraic stacks of 

"buds" of formal groups. This is inherent in [42] and explicit in [65]. 

Remark 3.3. — A sheaf in the /pgc-topology on an algebraic stack Mis & functor ¿7 

on the category of affine schemes over M which satisfies faithfully flat descent. For 

example, define the structure sheaf 0f g to be the functor on affine schemes over Mfg 

with 

9{g(R,G) = 9{g(G : Spec(R) M) = R. 

t1) As in [40], §2, we should really speak of categories fibered in groupoids, rather than sheaves of 
groupoids - for f*g*G is only isomorphic to (gf)*G. However, there are standard ways to pass 
between the two notions. 
(2) The notion defined here is stronger than what is usually called an algebraic (or Artin) stack, 
which requires a cover only by an algebraic space. Algebraic spaces are sheaves which themselves 
have an appropriate cover by a scheme. Details are in [40]. 
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A module sheaf £7 over 9%i is quasi-coherent if, for each 2-commutative diagram 

over M, the restriction map &(R, G) —> £7(5, H) extends to an isomorphism 

S®R &{R, G)^V{S,H). 

This isomorphism can be very non-trivial, as it depends on the choice of isomorphism (j) 

which makes the diagram 2-commute. 

A fundamental example of a quasi-coherent sheaf is the sheaf of invariant differen­

tials UJ on Mfg with 

U(R,G) =UJG 

the invariant differentials on G. This is locally free of rank 1 and hence all powers u;0n, 

n G Z, are also quasi-coherent sheaves. The effect of the choice of isomorphism in the 

2-commuting diagram on the transition maps for oj®n is displayed in Equation 4. 

3 .2 . T h e he ight f i l tration 

Consider a formal group G over a scheme X over Fp. If we let / : X —• X be 

the Probenius, we get a new formal group G^ = f*G. The Probenius / : G —> G 

factors through the relative Frobenius F : G —• G^p\ We know tha t if (j>: G —• H is a 

homomorphism of formal groups over X for which d(f> = 0 : a;^ —• cjg> there is then 

a factoring (j) = ipF : G —> H. Then we can test di/i to see if we can factor further. 

For example, let 4> = p : G —> G be the p-th power map. Then we obtain a factoring 

G 

P 

F 
gh 

Vi 
G. 

This yields an element 

dVi e Hom(o;Gf,^G(P)) 

and we can factor further if dV\ = 0. Since G is of dimension 1, OJG(P) = WQP; since 

UJG is invertible, 

Hom(o;G,a;|p) = Kom(9Xioj®p-1). 

Thus dVi defines a global section v\(G) of a;Gp 1. If ^ i (G) = 0, then we obtain a 

further factorization and a global section v2{G) G OJ®P _ 1 . This can be continued to 

define sections vN(G) G OJQP _1 and G has height at least n if 

«i(G) = --- = t;n_1(G) = 0. 

We say G has height exactly n if vn(G) : 0 x —> WOwcpn-1 1 is an isomorphism. Note tha t 

a formal group may have infinite height. 

The assignment G i—• v\(G) defines a global section vi of the sheaf a;(g>p_1 on the 

closed substack 

Fp®Mfg = M(l) CMfg 
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Indeed, we obtain a sequence of closed substacks 

ç M(n + 1) ç M(n) ç ç Mil) ç Mig 

where M(n + 1) C M(n) is defined by the vanishing of the global section vn of u®pn 1. 
Thus M(n) classifies formal groups of height at least n. The relative open 

tf(n) = M(n) - M{n + 1) 

classifies formal groups of height exactly n. One of Lazard's theorems [42], rephrased, 
says tha t $C(n) has a single geometric point given by a formal group G of height n 
over any algebraically closed field F of characteristic p. The pair ( F , G) has plenty of 
automorphisms, however, so ${(n) is not a scheme; indeed, it is a neutral gerbe. See 
[65]. 

Remark 3.4 (Landweber's criterion for flatness). — If G : Spec(R) —• M?g is any flat 
map, then there is a 2-periodic homology theory E(R,G) with E(R,G)o = R and 
with G as the associated formal group. Landweber 's Exact Functor Theorem gives an 
easily checked criterion to decide when a representable morphism 9f —> M?g is flat. 

Let 0n be the structure sheaf of the substack M(n) of Mfg. Then the global section 
vn G H°(M(n),Lj®pn~1) defines an injection of sheaves 

X—> vn L(n)+AZn Xna. 

This yields a short exact sequence 

0 _> uj®-(pn-i) gf 
On X—> vn L(n)+AZn X 

This identifies oo® (pn ^ with the ideal defining the closed immersion of M(n + 1) in 
M{n). 

Now let / : Jf —• Mfg be a representable morphism of stacks and let 

N{n)=M(n)xMi&N Ctf. 

Then Jf(n + 1) C 9f(n) remains a closed immersion and, if / is flat, then 

(6) ghh gjgj jmkjfghjj 

remains an injection. Landweber 's theorem now says tha t this is sufficient; tha t is, 
if for all primes p and all n the morphism of Equation (6) is an injection, then the 
representable morphism Jf —> M{g is flat. The original source is [38]; in the form 
presented here, it appears in [24] and [54]. 

Remark 3.5 (Chromatic stable homotopy theory). — The moduli stack Mig of for­
mal groups has not been shown to be a derived stack and it may not be. One tech­
nical difficulty is t ha t we must use the /p^c-topology on Mfg and there are many 
flat maps. Nonetheless, the geometry of the stack Mig has been successfully used to 
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predict theorems about large scale phenomena in stable homotopy theory. Here are 

some of the basic results. 

If Mfg could be lifted to a derived stack, there would be a descent spectral sequence 

Hs(Mig,uj^) X—> vn L(n 

This spectral sequence exists: it is the Adams-Novikov Spectral Sequence. It remains 

our most sensitive algebraic approximation to TT*S. The paper [53] initiated the 

modern era of calculations in stable homotopy theory; much of the algebra there is 

driven by Morava's meditations on the geometry of formal groups. 

Another example is the Hopkins-Ravenel chromatic convergence theorem. If we 

define 

U(n) = Mig - M(n + 1) 

to be the open substack classifying formal groups over schemes over Z( p ) of height at 

most n, then we get an ascending chain of open substacks 

Q ® JWfg ~ 14(0) Ç îl(l) X—> vn L(n)+AZn Xna. 

This sequence is not exhaustive: the additive formal group of ¥ p has infinite height 

and does not give a point in any 1l(n). 

Now let Gn : Spec(Rn) —• Mig be a flat map classifying a formal group of exact 

height n; this gives a 2-periodic homology theory E(Rn,Gn). Let LN(—) be the 

localization with respect to this homology theory. For example, LQX is the ratio­

nal localization and L\X is the localization with respect to p-local If-theory. Then 

chromatic convergence [57] says tha t for a spectrum X there is a tower 

L2X —> L\X —>• LQX 

under X; furthermore, if TTkX = 0 for k sufficiently negative and H*(X, Z( p )) is finitely 

generated as a graded Z( p )-module, then 

X—• h o l i m L n X 

is the localization with respect to #*(—, Z( p ) ) . 

Next we might like to decompose the LNX. For this we use the open inclusion 

i : 11(71 — 1) —> 11(71) and its closed complement $((71) C 1l(n). Recall $£(n) classi­

fies formal groups of exact height n and has a single geometric point given by any 

formal group Tn over a field F of characteristic p of exact height n. The classifying 

morphism Tn : Spec(F) —• Mfg is not flat, but the homology theory K(¥,Tn) exists 

nonetheless and is remarkably computable. These are the Morava K-theories. If we 
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write LK(n)(—) to denote localization with respect to any of these theories (all the 

localizations are equivalent), then there is a homotopy pull-back square 

LnX L>K(n)X 

En -1X 
Ln-iLK{n)X. 

The square can be deduced from [32]; the paper [30] contains a detailed analysis of 

a conjecture on how these squares behave. 

We are thus left with calculating the pieces LK^X. Here the theory is actually 

fully realized. This is the subject of the next subsection. 

3.3. Deformations and the local Hopkins-Miller Theorem 

We will need the language of deformation theory at several points; here it is used to 

explain how one might compute L # ( n ) X . Let M be a stack and AQ/¥ be an M-object 

over a field F. Recall t ha t an Art in local ring (R, m) is a local ring with nilpotent 

maximal ideal m. If q : R —> F is a surjective morphism of rings, then a deformation 

of AQ to R is an J^-object A and a pull-back diagram 

A0 A 

Spec(F) Spec(R). 

Deformations form a groupoid-valued functor De f^ (F , A0) on an appropriate category 

of Art in local rings. 

If T is a formal group of finite height n over a perfect field F, then Lubin-Tate 

theory [44] says tha t the groupoid-valued functor Def^fg(F, Y) is discrete; t ha t is, the 

natura l map 

Def^fK(F,T) 7r0Def^fg(F,r) 
def 

Isomorphism classes in Def ̂ fg (F, V) 

is an equivalence. Furthermore, 7r0Def^fg (F, T) is pro-represented by a complete local 

ring i?(F, T); t ha t is, there is a natural isomorphism 

TToDef^. ( F , r ) £ * S p f ( f l ( F , r ) ) . 

An appropriate choice of coordinate for the universal deformation of V over R(¥, T) 

defines an isomorphism 

W ( F ) [ [ u i , . . . , t i n _ i ] ] ^ i ï ( F , r ) 

where W(-) is the Wi t t vector functor. If Au t (F ,T) is the group of automorphisms 

of the pair (F, T), then Aut (F , T) acts on Def (F, T) and hence on JR(F, T). The formal 
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spectrum Spf(i2(F, Y)) with the action of Aut(F , Y) is called Lubin-Tate space; if we 

insist t ha t F is algebraically closed it is independent of the choice of the pair (F, T), 

by Lazard's classification theorem. See [22] for the following result. 

T H E O R E M 3.6 (Local Hopkins-Miller). — There is a 2-periodic commutative ring 

spectrum E(F, Y) with E(F, Y)Q = i?(F, Y) and an associated formal group isomorphic 

to a universal deformation ofY. Furthermore, 

(1) the space of all such commutative ring spectrum realizations of the universal 

deformation of (F, Y) is contractible; and 

(2) the group Aut (F , Y) acts on E(F, Y) through maps of commutative ring spectra. 

The assignment (F, Y) i—> E(F, Y) is actually a functor from a category of height n 

formal groups to commutative ring spectra. 

In [17] Devinatz and Hopkins show tha t when F contains enough roots of unity, 

there is a weak equivalence 

LK(N)X ~ holimAut(F,r)£(F, r ) A X 

for all finite C W spectra and, in particular, for X = S^3\ This gives, for example, a 

spectral sequence 

ff'(Aut(F,r),o;§t) X—> vn L(n)+AZn X 

where G is a universal deformation of Y. If p is large with respect to n, this spectral 

sequence collapses and there are no extensions and the problem becomes purely alge­

braic - if not easy. For n = 1 this happens if p > 2 and, if n = 2, we need p > 3 and 

in these cases all the calculation have been done. See [63]. The case p = 2 and n = 1 

is not hard; there has also been extensive calculation at p = 3 and n = 2. In both 

cases p-torsion in Aut(F , Y) creates differentials. As a sample of the sort of large-scale 

periodic phenomena we see, I offer the following classical result of Adams [1]. Let 

p > 2. Then 7TQLK^S = n-iLK^S = ZP and 7TkLK^S is zero for all other k unless 

k = 2pts(p-l) - 1, (*,P) = 1 

and then 

nkLK(1)S = Z/pt+1. 

All the elements in positive degree come from 7r*S itself; in fact, the natural map 

7r*S —> TT^LX(\)S splits off the image of the classical J-homomorphism. 

(3) There are technical issues arising from the fact that Aut(F, V) is a pronnite group and that we 
must use continuous cohomology. Again, see [17]. 
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4. CONSTRUCTION AND DECONSTRUCTION ON Melle 

4 . 1 . A rea l izat ion p r o b l e m 

If X —> Meu classifies a generalized elliptic curve C —> X, let J(e) C Oc be the 
ideal sheaf denning the identity section e : X —> C. Then J(e)/J(e)2 is an e*Ox~ 
module sheaf and thus it determines a unique Ox-module sheaf uc on X. This sheaf 
is locally free of rank 1. Even if C is singular, it is never singular at e and the smooth 
locus of C has the structure of an abelian group scheme of dimension 1 over X\ hence, 
UJC is isomorphic to the invariant differentials of C. The assignment 

U)ea(C : X—• Meli) = uc 

defines an invertible sheaf on Meii. 
More is t rue. If Ce denotes the formal completion of C at e, then Ce is a smooth 

1-parameter formal Lie group and LJC = ^ce • This da ta defines a morphism 

q : MM—• Mi* 

with the property tha t q*u = u)eu\ f°r this reason I will simply write UJM as u, leaving 
the base stack to determine which sheaf I mean. 

If C is a generalized elliptic curve over an affine scheme X and cue has a trivializing 
global section 77 : Ox —> then there is a choice of closed immersion C —• P2 over 
X with e sent to [0,1,0]. This closed immersion is defined by a Weierstrass equation 

Y2Z + axXYZ + asYZ2 = Xs + a2X2Z + a4XZ2 + a6Z3 

which is normally writ ten as 

y2 + a\xy + a3y = x3 + a2x2 + a4x + a6 

since there is only one point where Z = 0. This closed immersion is not unique, but 
is adapted to rj in the sense tha t z = —x/y reduces to 77 in u>c> Other choices of rj and 
the associated adapted immersion produce a different immersion; all such immersions 
differ by a projective transformation. Given 77 we see tha t the invariant differentials 
for the associated formal group Ce form the trivial sheaf; hence Ce can be given a 
coordinate. Once we have chosen a coordinate t and an immersion adapted to rj we 
have an equation 

z = t + ext2 + e2t3 + • • • 

since z is also a coordinate. Then we can uniquely specify the adapted immersion by 
requiring a = 0 for i < 3. From this we can conclude tha t the morphism Meu —> Mfg 
is representable. This argument is due to Hopkins. 

This morphism is also flat, by Landweber 's criterion 3.4. Indeed, in this setting 
the global section 

V1eH°(Fp®Mell,LJ®*-1) 
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is the Hasse invariant. A generalized elliptic curve C over X over ¥p is ordinary if 

V\(C) : 0 x —• is an isomorphism; on the other hand, if v\(C) = 0, then C is 

super singular and automatically smooth. We define Mss C Fp (g) J#£e^ to be the closed 

substack defined by the vanishing of v\ and then, over Mss, the global section 

V2 : 0ss Wop2-1 

is an isomorphism. This is a rephrasing of the statement tha t formal group of a 

supersingular curve has exact height 2. 

Remark 4-1 (The realization problem). — We can now ask the following question. 

Suppose <N —> Mig is a representable and flat morphism from a Deligne-Mumford 

stack to the moduli stack of formal groups. A realization of 9f is a derived Deligne-

Mumford stack (9f, 9) with 

irk& = 

W Nt, k = 2t\ 

0, k = 2t + 1. 

Does Jf have a realization? If so, how many are there? Better, what is the homotopy 

type of the space of all realizations? 

This question is naive for a variety of reasons. A simple one is tha t if 0 exists, 

then 7r* & will be a sheaf of graded commutative rings with power operations and, in 

general, there is not enough da ta in formal groups to specify those operations. In the 

case of the local Hopkins-Miller theorem 3.6 these operations are determined by the 

subgroup structure of the formal groups. See [3] and [58]. In the case of Meu, they 

will be determined by the Serre-Tate theorem and the subgroup structure of elliptic 

curves. 

The work of Mark Behrens and Tyler Lawson [10] solves the realization problem 

for certain Shimura varieties, which are moduli stacks of highly structured abelian 

varieties. The extra structure is needed to get formal groups of higher heights. 

The realization problem is essentially a p-adic question. If X is a scheme or a 

stack, let jn : X(pn) —• X be the closed immersion defined by the vanishing of pn. 

The formal completion of X at p is the colimit sheaf X£ = colimX(pn); as a functor, 

Xp is the restriction of X to rings in which p is nilpotent; thus X£ is a formal 

scheme over Spec(Z)^ = Spf(Zp). If ¿7 is a derived module sheaf on X, the derived 

completion of 57" is 

&p = holim(jn)#<7*5? 
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Then if £7 is a derived sheaf of modules on ffl, there is a homotopy pull-back square 

(7) £7" n P ^ P 

Q O H Q O (|| pJp) 

where Q ® ( - ) is the rational localization. Here I am regarding J7P as a sheaf on X; 

however, £7"p is determined by its restriction to Xp. 

The category of commutative ring spectra over the rational numbers is Quillen 

equivalent to the category of differential graded algebras over Q; hence, many ques­

tions in derived algebraic geometry over Q become classical. 

Example 4-2 (Meu over Q)- — If S* 18 a graded ring with So = R, then the grading 

defines an action of the multiplicative group Gm on Y = Spec(5*). Define Proj(5*) 

to be the quotient stack over R of this action on Y — {0} where {0} C Y is the closed 

subscheme defined by the ideal of elements of positive degree. Then 

Q ® jWetf = PrOJ(Q[C4,C6]) 

and the graded sheaf of rings Qfu^1] is a dga with trivial differential. This defines the 

derived scheme Q®Meee and the sheaf Q ® 9. Similarly Q®(Me£i)P = Proj(Qp[c4, c6]) 

and the map across the bo t tom in Diagram (7) will be the obvious one. I note tha t we 

can define Z[ l /6] ®Meu as Proj(Z[l/6][c4, c6]); however, we cannot define the derived 

scheme this way as the homotopy theory of commutative ring spectra over Z[ l /6] is 

not equivalent to a category of dgas. 

4 .2 . Lurie 's t h e o r e m a n d p-divis ible groups 

In this section, we pick a prime p and work over Spf(Zp); tha t is, p is implicitly 

nilpotent in all our rings. I will leave this out of the notation. 

D E F I N I T I O N 4 .3 . — Let R be a ring and G a sheaf of abelian groups on R-algebras. 

Then G is a p-divisible group of height n if 

(1) pk : G —> G is surjective for all k; 

(2) G(pk) = Ker(pk : G —• G) is a finite and flat group scheme over R of rank pkn; 

(3) colimG(pfc) ^ G. 

Remark 4-4- — 1) If G is a p-divisible group, then completion at e G G gives an 

abelian formal group Gfor Q G, not necessarily of dimension 1. The quotient G/Gfor 

is etale over i?; thus we get a natural short exact sequence 

0 —• Gfor -» G —• Get 0. 

This is split over fields, but not in general. 
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2) If C is a smooth elliptic curve, then C(p°°) = colim C(pn) is p-divisible of 

height 2 with formal par t of dimension 1. 

3) If G is a p-divisible group over a scheme X, the function which assigns to each 

geometric point x of X the height of the fiber Gx of G at x is constant. This is 

not t rue of formal groups, as the example of elliptic curves shows. Indeed, if G is 

p-divisible of height n with Gf o r of dimension 1, then the height of Gf o r can be any 

integer between 1 and n. 

D E F I N I T I O N 4 .5 . — Let Mv(n) be the moduli stack of p-divisible groups of height n 

and with dim Gf o r = 1. 

Remark 1^.6. — The stack Mp{n) is not an algebraic stack, but rather pro-algebraic 

in the same way Mfg is pro-algebraic. This can be deduced from the material in the 

first chapter of [52]. 

There is a morphism of stacks Mp(n) —> Mig sending G to Gfor- This morphism is 

not represent able. By definition, there is a factoring of this map as 

Mp(n)—> îl(n)—• Mig 

through the open substack of formal groups of height at most n. 

We now can state Lurie's realization result [46]. Since we are working over Z p , one 

must take care with the hypotheses: the notions of algebraic stack and étale must be 

the appropriate notions over Spf (Z p ) . 

T H E O R E M 4.7 (Lurie). — Let M be a Deligne-Mumford stack equipped with a for­

mally étale morphism 

M—• Mp(n). 

Then the realization problem for the composition 

M—> Mp{n)—• Mig 

has a canonical solution; that is, the space of all solutions has a preferred basepoint. 

It is worth emphasizing tha t this theorem uses the local Hopkins-Miller theorem 

3.3 in an essential way. 

Example 4-8 (Serre-Tate theory). — As an addendum to this theorem, Lurie shows 

tha t the morphism e : M —• Mp(n) is formally etale if it satisfies the Serre-Tate 

theorem. This applies to the open substack M\,\ of Mett and we recover the main 

theorem 1.2, at least for smooth elliptic curves. Then, in [46], Lurie gives an argument 

extending the result to the compactification MM. 

The Serre-Tate theorem asserts an equivalence of deformation groupoids; compare 

the Lubin-Tate result of Section 3.3. Let M be a stack over Mp(n) and A0/¥ be 
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an y^-object over a field F , necessarily of characteristic p since we are working over 

Spf(Zp). Then the deformations form a groupoid functor Defj%(F, A0) on Artin local 

rings. The Serre-Tate theorem holds if the evident morphism 

D e f ^ ( F , A o ) Def^P(N)(F ,eA0) 

is an equivalence. This result holds for elliptic curves, but actually in much wider 

generality. See [52]. 

Remark 4-9 (Deformations of p-divisible groups). — We discussed the deformation 

theory of formal groups and Lubin-Tate theory in Section 3.3; the theory is very 

similar for p-divisible groups. Let G be a p-divisible group over an algebraically 

closed field F . Then we have the split short exact sequence 

0 - * Gfor —> G —• Get -+ 0. 

Since Get has a unique deformation up to isomorphism, by the definition of etale, the 

deformations of G are determined by the deformations of Gfor and an extension class. 

Prom this it follows tha t the groupoid-valued functor Def^ ( N ) ( F , G) is discrete and 

7ToDef^P(N)(F, G) is pro-represented by 

jR(F, Gfor)[[£i, • • • ,£n-h]] X—> vn L(n)+AZn Xna.X—> v 

Note tha t this is always a power series in n — 1 variables. Using this remark it is 

possible to give a local criterion for when a morphism of stacks M —> Mp(n) is etale. 

It is in this guise tha t Lurie's theorem appears in [10]. 

4 .3 . D e c o m p o s i n g t h e s t r u c t u r e sheaf 

Both the original Hopkins-Miller argument and Lurie's derived algebraic geometry 

construction of the derived Meu rely on a decomposition of the moduli stack of elliptic 

curve into its ordinary and supersingular components. Specifically, let Mss C Meee De 

the closed substack of supersingular curves defined by the vanishing of bo th a fixed 

prime p and the Hasse invariant. There are inclusion of closed substacks 

X—> vn L(n)+AZn Xna.X—> v 

from this we get an inclusion of formal substacks M&s £ (Meu)p- Let M0rd £ (Meu)A 

be the open complement of MSs] thus, M0vd classifies ordinary elliptic curves over 

rings R in which p is nilpotent. If X is a sheaf on Meii, we obtain completions of X 

from each of these formal stacks, which we write LpX, LSSX, and LordX, respectively. 
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T H E O R E M 4 . 1 0 . — There is a homotopy pull-back diagram of sheaves of E^-ring 
spectra on Mea 

Lp9 Lss9 

Lord& LOTdLss9. 

This statement belies history: the original Hopkins-Miller proof used obstruction 
theory to build the sheaves Lord 9 and Lss 9 and the map across the bot tom of this 
diagram, thus building Lp9. Lurie, on the other hand, produces a candidate for Lp9> 
and then must show it has the right homotopy type. This is done by analyzing the 
pieces in this square separately. In either case, the pieces L0rd 9 and Lss 9 have intrinsic 
interest and the calculations of their homotopy types call on classical calculations with 
modular forms. 

4.4 . T h e supers ingular locus 

The description of Lss 9 begins with an alternative description of the stack Mss of 
supersingular curves. This is s tandard theory for elliptic curves; see [37], Chapter 
1 2 . Since the vanishing of the Hasse invariant of C depends only on the isomorphism 
class of the curve C, it depends only on the j- invariant of C as well. Write 

j : Fp <g> MM Fp <g> P1 = P1 

with j(C) = [c\(C), A(C)] and call the point [ 1 , 0 ] € P1 the point at infinity. If A(C) 
is invertible - tha t is, C is an elliptic curve - we also write 

j(C) = 4(C)/A(C) G A) = P1 - {oo}. 

A point in P1 will be ordinary if it is the image of an ordinary curve; supersingular 
otherwise. 

T H E O R E M 4 . 1 1 . — Fix a prime p. The point at oo in P1 is ordinary and there is a 
separable polynomial $(j) G Fp[j] so that C is supersingular if and only if j(C) is a 
root of 3>. All the roots of $ lie in FP2. 

For example, if p = 2 or 3 , then $(j) = j . The degree of $ is [(p — 1 ) / 1 2 ] + ep 
where ep is 0 , 1, or 2 depending on the prime. 

P R O P O S I T I O N 4 . 1 2 . — Let Rss = Fp[j]/($(j)). There is a 2-category pull-back 

Mss FP®MM 

Spec(i?ss) pi 

3 
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Furthermore, there is a supersingular curve Css over ¥P2 ® Rss which gives an equiv­

alence of stacks 

BAut{Css)~WP2 ® Mss. 

Here I have writ ten Aut(Css) for Aut(Css/(Fp2 ® Rss)). If G is a group scheme, 

BG is the moduli stack of G-torsors. 

To be concrete, write Gss = \J Ca where Ca is a representative for the isomorphism 

class of supersingular curves over Fp2 with j(Ca) = a. Then 

(8) Fp2 <g> Mss ^ £Aut (Ga/Fp2) . 

The algebraic groups Aut(Ga/Fp2) are all known. See [64], among many other 

sources. The difficulties and the interest lie at the primes 2 and 3 , where the Fp2 

points of Aut(Co/Fp) have elements of order p. For example, if p = 3 , 

Aut(C0/F9) //4 x Z / 3 , 

where /¿4 is the 4-th roots of unity. 

Let C : Spec(i?) —» MM be etale and I = I(B, C) C B the ideal generated by p and 

the Hasse invariant. Then B/I is a separable Fp-algebra and q*Ce is a formal group 

of exact height 2 . The evident extension of the local Hopkins-Miller Theorem 3 . 6 to 

separable algebras gives a sheaf 6SS of commutative ring spectra with 

6Ss(C : Spec(£) Meu)^E(B/I,q*Ce) 

and we have Lss9 — Sss-

It is straightforward from here to understand the homotopy type of the global 

sections of Lss0; indeed, we have 

RTLSS9 - holimG£(Fp2 ® ,RSS, (Css)e) 

where G = Gal(Fp2/Fp) x Aut(Css). 

The homotopy groups of this spectrum have been computed. If p > 5 this is fairly 

easy. If p = 3 the most explicit source is [21], and if p = 2 it is implicit in [28] 

although tha t source needs to be combined with [7] to get complete answers. 

4.5 . T h e ord inary locus 

For the sheaf Lord 9 we use the map Meu ~~> -^fg classifying the associated formal 

group to make preliminary computations. By construction, this morphism restricts 

to a morphism Mov& —> 2/(1) to the open substack of formal groups of height 1. 

The map 2/(1) —> Spf(Zp) is formally etale and has section g : Spf(Zp) —> 2/(1) 

classifying the multiplicative formal group (Grm. The map g is pro-Galois with Galois 

group Aut(Gm) = Zp , the units in the p-adics. We use this cover not to define Lord9 
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directly, but to first specify the resulting homology sheaf if* 0 , where if* is p-complete 

complex i f - theory (4). Prom this we then can construct Lord 9. 

Let R be a p-complete ring and let C : Spec(i?) —• Meu be an étale morphism. 

Consider the following diagram, where both squares are 2-category pull-backs 

SpŒ09(R,C) - Spf (V) S p f ( Z J 

Spec(i?) Melt • fhh 

fdfg 

This defines K09(R,C) and the ring V. The latter ring is Katz 's ring of divided 

congruences [36] - and, as it turns out, i fo tmf . Note tha t Spf(F) solves the moduli 

problem which assigns to each ring A with p nilpotent the set of pairs (C, 0) where 

C is an elliptic curve over A and (j) : Gm —* Ce is an isomorphism. By construction 

V —> K09(R,C) is étale. We extend the resulting sheaf of rings K09 to a graded 

sheaf if* 9 by twisting by the various powers of the sheaf of invariant differentials, as 

in Equation (3). 

The sheaf of rings KQ9 has a great deal of structure. First, it comes equipped 

with an action of Z* from the automorphisms of Gm. This gives the action of the 

Adams operations in if-theory. Second, and more subtly, there is an extra ring 

operation I/J which is a lift of the Probenius and commutes with the action of Aut(Gm). 

To construct tp, we use tha t if C is an ordinary elliptic curve, then the kernel of 

p : Ce —> Ce defines a canonical subgroup C(p) —> C of order p. Then tj) : V —• V is 

defined by specifying the natural transformation on the functor V: 

< / > ( C , 0 : G m ^ C ) = ( C / C ( p ) , G m ^ Gm/Gm{p)Mc/C{p))e). 

If C is an ordinary curve over an Fp-algebra ^4, then C/C(p) = C^; this explains 

why ip : V —> V is a lift of the Probenius. To extend ip to all of ifo 9, note tha t since 

V K09(R,C) is étale there is a unique morphism tp : K09(R,C) -> KQ9(R,C) 

lifting the Probenius and extending iponV. 

Since KQ9 is torsion-free, ip(x) = xp + p9(x) for some unique operator 0. All this 

structure extends in a unique way to if* 0, making this a sheaf of theta-algebras. By 

McClure's work [13], this is exactly the algebraic structure supported by i f*X when 

X is a commutative ring spectrum. The existence of Lord 9 is now guaranteed by the 

following result. 

T H E O R E M 4 . 1 3 . — The space of all sheaves of Lx^ylocal ring spectra X with 

K*X = K*9 as sheaves of theta-algebras is non-empty and connected. 

(4) Because we are working p-adically, K*X = n^LK^K A X, a completion of the usual if-theory. 
The issues here are very technical, but carefully worked out in [32]. 
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Any of these sheaves - they are all homotopy equivalent - gives a model for Lord 9. 

Lurie's work does better: it gives a canonical model. 

Originally, Theorem 4.13 was proved by an obstruction theory argument; the ob­

struction groups are computed using an appropriate cotangent complex for the sheaf 

KQO. This argument uses in an essential way tha t Meu is smooth of dimension 1 

over Z . At the crucial primes 2 and 3 there is a very elegant construction originating 

with Hopkins of L x ( i ) t m f itself which short-circuits the obstruction theory. See the 

paper by Laures [41]. 

Remark 4-14- — The homotopy groups of the derived global sections 

RT(LOTdO) ^ L x ( i ) t m f have been computed. For example, at the prime 2, we 

have 

ir*RT(Lold0) S (Z2[l/j})^{rì,v,b±1}/I 

where the completed polynomial ring on the inverse of the j - invariant is in degree 0 

and rj, v, and b have degrees 1, 4, and 8 respectively. The ideal / is generated by the 

relations 

2r? = t?3 = vn = 0 

v2 = 26. 

There is a map RT(Lor(\0) —> KO to the spectrum of 2-completed real If- theory 

which, in homotopy, is the quotient by the ideal generated by 

Remark ^ . i 5 . — To complete the construction of Lp9, we must produce the map 

Lord & —• LordLss0. To do this, we calculate K*LSS & as a theta-algebra and again use 

obstruction theory. The complication is tha t the lift i/> of the Frobenius on K*LSSQ 

is determined by the E ^ - r i n g structure on Lss0. For the algebra to work, we need 

to check tha t this is the same lift as tha t determined by the subgroup structure of an 

appropriate elliptic curve. To obtain the elliptic curve, we use the Serre-Tate theorem 

to show tha t the universal deformation of the formal group of a supersingular curve 

is actually the p-divisible group of an elliptic curve. Then we can apply the general 

theory of power operations in complex orientable homology theories as developed by 

Ando [3] and Rezk [58]. I have to thank Charles Rezk for explaining this to me. 

Lurie's construction avoids this question, because the map already exists. 

4.6 . D e r i v e d m o d u l a r forms a n d dual i ty 

The descent spectral sequence 

(9) Hs (Melle, XWOt) 7r2t_stmf 
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has been completely calculated and the homotopy groups of t m f exhibit a very strong 
form of duality not present in the cohomology groups of Mea> Let me t ry to give some 
flavor of the results. The first observation is tha t , by [14], we have an isomorphism 

M* = Z[c4,c6,A] X—> vn L(n)+AZn Xna. 

from the ring of modular forms of level 1 to the global sections. 

Next, the stack Meu is smooth of dimension 1 over Z and the cotangent sheaf is 
identified by the isomorphism 

to Melt/Z ~ ^ 0 - 1 0 

I learned this from Hopkins, and it can be deduced from [37], Chapter 10. There is 
an isomorphism Hx(Meiti, UJ®~10) = Z and a multiplication homomorphism 

(10) H1{MM,u®-k-w) X—> vn L(n)+AZn Xncx H°(MeU,u®-10) = z. 

If we invert the primes 2 and 3, Hs(MEM,w®*) = 0 for s > 1 and the multiplication of 
Equation (10) becomes a perfect pairing. Thus, if we invert 6 the spectral sequence of 
(9) collapses, there can be no possible extensions, and both the coherent cohomology 
of Meu and the homotopy groups of t m f exhibit a strong form of Serre-type duality. 
This is not very surprising as, when 6 is inverted, Meu is isomorphic to the projective 
stack obtained from the graded ring M*. See Remark 4.2. 

Over the integers, however, the behavior is more subtle. The bookkeeping at the 
prime 2 is difficult, so let me say what happens when 2 is inverted. The presence of 
an element of order 3 in the automorphisms of the supersingular curve at the prime 3 
forces higher cohomology. There is an injection 

( i i ) X—> vn L(n)+AZn Xna. X—> vn L(n)+AZn Xncx 

where X—> vn L(n)+AZn Xncx and (3 e H2(Meee,v®6) and R is the ideal of relations 

3a = 3(3 = a2 = CIOL = cx(3 = 0. 

The element a is the image of the Hasse invariant under the boundary map 

H°(F3®MEU,UJ®2) H\MeU,u,®2) 

and /3 is the Massey product (a, a , a). Both a and /3 arise from the homotopy groups 
of spheres. The ring M* is actually the coherent cohomology of a moduli stack of 
Weierstrass curves. See [7]. 

We now define a bigraded M*-module C* by the short exact sequence of 
M*-modules 

(12) o M; -> H*(MeU,u®*) - c ; o. 
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We then need to write down the M*-module C*. It will tu rn out tha t in any given 
bidegree one of (and possibly both) M* and C* is zero, so we get an unambiguous 
splitting of bigraded groups 

H*(Mell,«>®*) = M ; © C ; . 

It is not quite split as M*-modules as multiplication by A will link the two pieces. 

To describe the modules C*, we first note tha t the pairing of (10) is no longer a 
perfect pairing with only 2 inverted: it only induces an injection. First one computes 
C\ = HX(MM, U®*) if t < 0 and C\ = 0 otherwise. Now let Kl C Cl be the kernel of 
multiplication by /3. Then, the pairing induces a morphism of short exact sequences 
of graded M*-modules 

0 xcc dfg HomF3(F3[A],F3) - 0 

0 Homz(M*,3Z[ l /2] ) Homz(M*,Z[ l /2 ] ) HomF3(M*/3,F3) 0 

where the right vertical inclusion is induced by the quotient by the ideal (c4,C6) of 
M*. 

To complete the description of C* we extend the top short exact sequence of our 
diagram of M*-modules to a short exact sequence of M*-modules by 

o - Kl - c ; - + M ; M* HomF3(F3[A],F3)-+0. 

The extension of M*-modules in the exact sequence (12) is now determined by the 
requirement t ha t multiplication by A is surjective in positive cohomological degrees. 
In these degrees multiplication by c4 and CQ is necessarily zero, for degree reasons. 

There must be differentials in the descent spectral sequence (9). A classical relation, 
due to Toda, states tha t a/32 = 0 in homotopy; this forces d§ (A) = ±a/32 in the 
spectral sequence. This differential and elementary considerations dictate the entire 
spectral sequence. Let DM* C M* be the subring generated by c4, C6,3A, 3A2, and 
A3. The inclusion DM* C tmf* extends to a split inclusion 

DM: = DM4a1(3,x]/DR C tmf* 

where DR is the ideal of relations 

3a = 3/3 = Sx = eia — CI/3 = c%x = 0 

a2 = /35 = a/32 = x(32 = 0 

ax = /33. 
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The class x is the Toda bracket (a , a , / ? 2 ) and it is detected by a A in the spectral 

sequence. The inclusion DM* C tmf* of jDM*-modules has cokernel DC*. There is 

a short exact sequence of DM*'*-modules 

0 -> Kl -+ DCt DM* ®DM< H o m F , ( F 3 [ A 3 ] , F 3 ) - > 0 . 

Note tha t there is a quotient DM* —> F 3 [ A 3 ] ; this defines the module structure needed 

for the tensor product. 

Remark 4.16 (Duality for t m f ) . — At this point a new duality emerges - one not 

apparent before completing these homotopy theory calculations. A first remarkable 

feature is tha t DC* is in degrees less than —20 and DM* is concentrated in non-

negative degrees. In particular DM* is the homotopy groups of the connected cover 

of tmf . 

A second feature is that DM* and DC* are almost dual as Z)M*-modules. There 

are a number of ways to make this precise; a simple one is to say that for all primes 

p there is a homomorphism tmf_2i —» F p so the induced map given by the ring 

multiplication 

7T f c(tmf/p) » Hom(7T_/ c _2itmf /p,F p ) 

is an isomorphism. Here TMF/p is the derived global sections of the topological 

s tructure sheaf on ¥ p <g> Meu-

This duality has an elegant homotopy theoretic explanation, given by Mahowald 

and Rezk [49]; in tha t source, there is also a simple explanation of the number —21. 

In derived geometry, this number surely appears because the dualizing sheaf is u>®~10. 

However, I know of no explanation for the duality from the point of view of derived 

algebraic geometry. 
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