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EXTENSIONS FOR SUPERSINGULAR
REPRESENTATIONS OF GL2(Qp)

by

Vytautas Paskiinas

Abstract. — Let p > 2 be a prime number. Let G := GL2(Qp) and #, 7 smooth
irreducible representations of G on Fp-vector spaces with a central character. We show
if 7 is supersingular then Extg (r,7) # 0 implies 7 2 7 and compute the dimension
of Exté(‘n‘,ﬂ'). This answers affirmatively for p > 2 a question of Colmez. We also

determine Extlc (r,m), when 7 is the Steinberg representation. As a consequence of
our results combined with those already in the literature one knows the extensions
between all the irreducible representations of G.

Résumé (Extensions aux représentations supersinguliéres de GL2(Qp)). — Soit p > 2 un
nombre premier. Soient G := GL2(Qp) et m, 7 des représentations lisses irréductibles
de G sur des Fp-espaces vectoriels avec caractére central. Nous montrons que si 7 est
supersinguliére alors EXtIG(T, m) # 0 implique 7 2 7 et nous calculons la dimension
de Exté (m,m). Cela répond par l'affirmative pour p > 2 & une question de Colmez.

Nous déterminons aussi Extb(r, m), quand 7 est la représentation de Steinberg. En
conséquence de nos résultats, combinés avec ceux de la litérature, nous connaissons
maintenant les extensions entre toutes les représentations irréductibles de G.

1. Introduction

In this paper we study the category Repy of smooth representations of G :=
GL3(Q,) on F,-vector spaces. Smooth irreducible F,-representations of G with a
central character have been classified by Barthel-Livne [1] and Breuil [4]. A smooth
irreducible representation m of G is supersingular, if it is not a subquotient of any
principal series representation. Roughly speaking a supersingular representation is an
Fp—analog of a supercuspidal representation.

Theorem 1.1. — Assume that p > 2 and let 7 and 7 be irreducible smooth represen-
tations of G admitting a central character. If w is supersingular and Extb(T, ) #0
then T & w. Moreover, if p > 5 then dim Exté(ﬂ', ) = 5.
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318 V. PASKUNAS

This answers affirmatively for p > 2 a question of Colmez, see the introduction
of [7]. When p = 3 there are two cases and we can show that in one of them
dim Extg(,7) = 5, in the other dim Ext}, (7, 7) < 6, which is the expected dimension.
We note that if 7 is a twist of Steinberg representation by a character or irreducible
principal series then Colmez [7, VIL.5.3] and Emerton [8, Prop. 4.3.14] prove by
different methods that Extg(7,7) = 0. Our result is new when 7 is supersingular or
a character.

We now explain the strategy of the proof. We first get rid of the extensions coming
from the centre Z of G. Let ( : Z — F: be the central character of m, and let
Repg ¢ be the full subcategory of Reps consisting of representations with the central
character (. We show in Theorem 8.1 that if Extg(7,m) # 0 then 7 also admits
a central character (. Let Ext};’c(r, m) parameterise all the isomorphism classes of
extensions between 7 and 7 admitting a central character (. We show that if 7 2 7
then Extéyg(r, m) = Extg(7,7) and there exists an exact sequence:

(1) 0— ExtIG’C(W, m) — Extg(m,7) — Hom(Z,F,) — 0,

where Hom denotes continuous group homomorphisms. Let I be the ‘standard’ Iwa-
hori subgroup of G, (see §2), and I; the maximal pro-p subgroup of I. Since ( is
smooth, it is trivial on the pro-p subgroup I; N Z, hence we may consider { as a
character of ZI;. Let % := Endc;(c-Inngl ¢) be the Hecke algebra, and Mod s the
category of right /#-modules. Let .# : Repg ¢ — Mod» be the functor

I(k) =kl = Homc,v(c—Inng1 ¢, k).

Vignéras shows in [18] that .# induces a bijection between irreducible representations
of G with the central character ¢ and irreducible #-modules. Using results of Ollivier
[13] we show that there exists an Fy-spectral sequence:

(2) Extly (S (1), R? £ (7)) => Extg (r, 7).
The 5-term sequence associated to (2) gives an exact sequence:
3) 0— EXt};f(J(T), F(m)) — EXté»C (1,7) — Hom e (F (1), R! S ().

Now Extl,(.#(7), #(r)) has been determined in [6] and in fact is zero if 7 % 7. The
problem is to understand R' .# () as an J#-module.

We have two approaches to this. Results of Kisin [10] imply that the dimension
of Extg(m,m) is bounded below by the dimension of Extglg% (p, p), where p is the

2-dimensional irreducible F,-representation of “q,, the absolute Galois group of Qp,
corresponding to m under the mod p Langlands, see [5], [7]. (Excluding one case when
p = 3.) Let J be the image of Extlc,g(vr,w) — Hom g (F (), R! #(x)). Using (1)
and (3) we obtain a lower bound on the dimension of J. By forgetting the /#-module
structure we obtain an isomorphism of vector spaces:

R' #(x) = H(I,/Z,7),
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EXTENSIONS FOR SUPERSINGULAR REPRESENTATIONS OF GL2(Qp) 319

where Z; is the maximal pro-p subgroup of Z. The key idea is to bound the dimension
of HY(I/Z,,) from above and use this to show if .#(7) was a submodule of R! .# ()
for some 7 2 7 then this would force the dimension of J to be smaller than calculated
before.

At the time of writing (an n-th draft of) this, [10] was not written up and there
were some technical issues with the outline of the argument in the introductions of [7]
and [9], caused by the fact that all the representations in [7] are assumed to have a
central character. Since we only need a lower bound on the dimension of Extlc(ﬂ', )
and only in the supersingular case, we have written up the proof of a weaker statement
in the appendix. The proof given there is a variation on Colmez-Kisin argument.

In order to bound the dimension of H'(I;/Z;, ) we prove a new result about the
structure of supersingular representations of G. Let M be the subspace of 7 generated
by mt and the semi-group (1’0N Zp )- One may show that M is a representation of I.

Theorem 1.2. — The map (v,w) — v — w induces an exact sequence of I-representa-
tions:

01
where IT = .
p

We show that the restrictions of M and M/m!t to INU, where U is the unipotent
upper triangular matrices, are injective objects in Rep;ny. Iff ¢ : [ — F: is a smooth
character and p > 2, using this, we work out Ext}/z1 (¢, M) and Ext}/z1 (¢, M/m'r).
Theorem 1.2 enables us to determine H'(I;/Z;, ) as a representation of I, see The-
orem 7.9 and Corollary 7.10. Once one has this it is quite easy to work out R' .# ()
as an J¢-module in the regular case, see Proposition 10.5, without using Colmez’s
work. It is also possible to work out directly the #-module structure of R' .# ()
in the Iwahori case. However, the proof relies on heavy calculations of Ext}<(1,7r)
and Ext} (St,7), where K := GLy(Z,) and St is the Steinberg representation of
K/K; =2 GL(Fp). So we decided to exclude it and use “stratégie de Kisin” instead.

The primes p = 2, p = 3 require some special attention. Theorem 1.2 holds when
p = 2, but our calculation of H(I;/Z;,n) breaks down for the technical reason
that the trivial character is the only smooth character of I, when p = 2. However,
if p = 2 and we fix a central character ¢ then there exists only one supersingular
representation (up to isomorphism) with central character (. Hence, it is enough to
show that Extg (7, 7) = 0 when 7 is a character, since all the other cases are handled
in [7, VIL5.3], [8, §4]. It might be easier to do this directly.

Let Sp be the Steinberg representation of G. After the first draft of this paper,
it was pointed out to me by Emerton that it was not known (although expected)
that Extg(n,Sp) = 0, when  : G — F: is a smooth character of order 2 (all the
other cases have been worked out in [8, §4], see also [7, §VIL.4,§VIL5]). A slight
modification of our proof for supersingular representations also works for the Steinberg

0>t > Mell.M -7 —0,
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320 V. PASKUNAS

representation. In the last section we work out EXté;(T, Sp) for all irreducible 7, when
p > 2. As a result of this and the results already in the literature ([6], [7], [8]), one
knows EXtIG(T, ) for all irreducible 7 and 7, when p > 2. We record this in the last
section.

Acknowledgements. — The key ideas of this paper stem from a joint work with
Christophe Breuil [6]. I would like to thank Pierre Colmez for pointing out this
problem to me and Florian Herzig for a number of stimulating discussions. I would
like to thank Gaétan Chenevier, Pierre Colmez and Mark Kisin for some very help-
ful discussion on the “stratégie de Kisin” outlined in [7] and [9]. This paper was
written when I was visiting Université Paris-Sud and IHES, supported by Deutsche
Forschungsgemeinschaft. I would like to thank these institutions.

2. Notation

Let G := GL2(Qp), let P be the subgroup of upper-triangular matrices, T' the
subgroup of diagonal matrices, U be the unipotent upper triangular matrices and
K := GLy(Zy). Let p := pZ, and

X
I:= Zp Ly , I := 1+p 2y , Kp:= 1+p P .
P Z p 1+p p 1+4+p

For A € F, we denote the Teichmiiller lift of A to Z, by [\]. Set

H:= {(%\] [2]> ;A,uEIF;(}.

Let a: H — F: be the character

Further, define

n=(o) () ()

For A € F: we define an unramified character py : Q) — F; , by z - \val(@),

Let Z be the centre of G, and set Z; := ZNI. Let G° := {g € G : detg € Z)}
and set Gt := ZG°.

Let ¢ be a topological group. We denote by Hom(%,F,) the continuous group
homomorphism, where the additive group Fp is given the discrete topology. If ¥ is a
representation of ¢ and S is a subset of ¥ we denote by (¢..5) the smallest subspace of
¥ stable under the action of ¢ and containing S. Let Repy be the category of smooth

representations of ¢ on F,-vector spaces. If 2 is the centre of 4 and { : & — F: is
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EXTENSIONS FOR SUPERSINGULAR REPRESENTATIONS OF GL2(Qp) 321

a smooth character then we denote by Repy . the full subcategory of Repy consisting
of representations with central character (.
All the representations in this paper are on [F,-vector spaces.

3. Irreducible representations of K

We recall some facts about the irreducible representations of K and introduce some
notation. Let o be an irreducible smooth representation of K. Since K; is an open
pro-p subgroup of K, the space of K;-invariants 0¥ is non-zero, and since K; is
normal in K, 0% is a non-zero K-subrepresentation of o, and since ¢ is irreducible
we obtain ¢%1 = . Hence the smooth irreducible representations of K coincide with
the irreducible representations of K/K; = GLy(F,), and so there exists a uniquely
determined pair of integers (r,a) with 0 <r <p—1,0<a < p— 1, such that

o = Sym" Ff, ® det®.

Note that 7 = dimo — 1 and throughout the paper given o, r will always mean
dim o — 1. The space of I -invariants ot is 1-dimensional and so H acts on ¢’* by a
character x, = x. Explicitly,

A0 ey e
X((0 M))—/\(/\u)-

We define an involution o +— & on the set of isomorphism classes of smooth irreducible
representations of K by setting

& := Sym? "1 F, @ det"*°.

Note that xs = x5. For the computational purposes it is convenient to identify

Sym" Fzz, with the space of homogeneous polynomials in F,[z,y] of degree r. The
action of GLo(Fp) is given by

b
(a d) . P(z,y) := P(az + cy, bz + dy).
c

With this identification ¢!t is spanned by z".

Lemma 3.1. — Let 0 < j <r be an integer and define f; € Sym" FZ ® det® by

(1A,
fj1=2)\p1‘7<0 1)393.

A€EF,

Ifr=p—1andj=0 then fo = (—1)**1(z" +y"), otherwise f; = (—1)**1 (7 )aiy™7.
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322 V. PASKUNAS

Proof. — It is enough to prove the statement when a = 0, since twisting the action
by det® multiplies f; by (dets)® = (—1)*. We have

(4) =) W10z +y)m =) (z> (D apmtFind gyt

AEF, =0 A€F,

If @ > 0 is an integer then A, := AeF, A* 18 zero, unless a > 0 and p — 1 divides a,
in which case A, = —1. Note that 0° = 1. If a = p—1+14 — j then A, # 0 if and only
ifi=jori—j=p—1, which is equivalent to r =i = p — 1 and j = 0. This implies
the assertion. O

Let F,[[I N U]] denote the completed group algebra of I N U. Since INU = 7,
mapping X to (1) — 1 induces an isomorphism between the ring of formal power
series in one variable F,[[X]] and F,[[I N U]]. Every smooth representation 7 of I NU
is naturally a module over F,,[[INU]], and we will also view T as a module over F,[[X]]
via the above isomorphism.

Lemma 3.2. — Let " € Sym" Ff, ® det® then X"sz" = (—1)%rlz".

Proof. — We have sz" = (—1)%y". If 0 < i < 7 then X .2" %! = 2" (y + 1) —
2"yt = Tty 4 Q) where @ is a homogeneous polynomial of degree r, such
that the degree of @ in y is less than ¢ — 1. Applying this observation r times we
obtain that X" .y" = rlz”. O

4. Irreducible representations of G

We recall some facts about the irreducible representations of G. We fix an integer
r with 0 < r < p— 1. We consider Sym” Fzz, as a representation of K Z by making p
act trivially. It is shown in [1, Prop. 8] that there exists an isomorphism of algebras:

Endg(c-Ind$ ; Sym™ Fy) 2 F, [T

for a certain T € Endg(c-Ind$ , Sym” Ff,) defined in [1, §3]. One may describe T as
follows. Let ¢ € c-Indf{ 7z Sym” Ff, be such that Suppp = ZK and (1) = z". Since

—2
( generates c—Ind% 2z Sym” F,, as a G-representation T is determined by T'p.

Lemmad4.1. — (i) If r =0 then

Ty =1y + Z <(1) [i\]> tp.

AEF,

Ty = Z ((1) [/1\]) tp.

(if) Otherwise,
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EXTENSIONS FOR SUPERSINGULAR REPRESENTATIONS OF GL2(Qp) 323

Proof. — In the notation of [1] this is a calculation of T'([1,e5]). The claim follows
from the formula (19) in the proof of [1] Theorem 19. O

It follows from [1, Thm. 19] that the map T — X is injective, for all A € Fp.

Definition 4.2. — Let w(r,\) be a representation of G defined by the ezact sequence:
—g T-A _
0 — c-Ind§, Sym" ]Ff, —> ¢-Ind$ Sym” ]FIZ, —7(r,\) —>0.

Ifn: Q) — F: is a smooth character then set w(r,\,n) := w(r, A) ® n o det.

It follows from [1, Thm. 30] and [4, Thm. 1.1] that n(r, A) is irreducible unless
(r,A) = (0,£1) or (r,A) = (p — 1,£1). Moreover, one has non-split exact sequences:

(5) 0— pyrodet - w(p—1,+1) - Sp® py; odet — 0,

(6) 0— Sp® p+y odet — m(0,£1) — pyq odet — 0,

where Sp is the Steinberg representation of G, (we take (5) as definition) and if
A€ F: then py : Q) — F:, z — A2(®) Further, if A # 0 and (r, A) # (0,%£1) then
[1, Thm. 30] asserts that

(7) 7(r,A) =2 Ind$ py-1 ® paw”.

It follows from [1, Thm. 33] and [4, Thm. 1.1] that the irreducible smooth represen-
tations of G with the central character fall into 4 disjoint classes:

(i) characters, n o det;

(ii) special series, Sp ® 7 o det;
(iii) (irreducible) principal series 7(r,\,n), 0 <r <p—1, X #0, (r,A) # (p—1,£1);
(iv) supersingular 7(r,0,7),0<r <p—1.

4.1. Supersingular representations. — We discuss the supersingular represen-
tations. Breuil has shown [4, Thm. 1.1] that the representations m(r,0,n) are irre-
ducible and using the results [1] classified smooth irreducible representations of G
with a central character.

Definition 4.3. — An irreducible representation m with a central character is supersin-
gular if 1 2 w(r,0,n) for some 0 < r < p—1 and a smooth character 7.

All the isomorphism between supersingular representations corresponding to dif-
ferent r and 7 are given by

(8) 7"(7',0777) = 7"("'10,77!1—1) = ﬂ'(p -1- T,Oanwr) = 7r(p -1- r, Oa nwr/-l'—l)

see [4, Thm. 1.3]. It follows from [1, Cor.36] that an irreducible smooth representation
of G with a central character is supersingular if and only if it is not a subquotient of
any principal series representation.
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324 V. PASKUNAS

We fix a supersingular representation © of G and we are interested in Exté (,7),
where 7 is an irreducible smooth representation of G. If n : G — F: is a smooth

character, then twisting by 7 induces an isomorphism
Exty(7,7) 2 Exth (7 ® 0,7 @ n).

Hence, we may assume that p € Z acts trivially on 7, so that = & =(r,0,w?), for
some 0 <r <p-1,and 0 < a < p—1. It follows from [4, Thm. 3.2.4, Cor. 4.1.4]
that m!1 is 2-dimensional. Moreover, [4, Cor. 4.1.5] implies that there exists a basis
{vs,v5} of 7!t such that Ilv, = vz, Ilvs = v, and there exists an isomorphism of
K-representations:

(Kvo) 2o, (K.vs) 23,

where o := Sym" FZ ® det”. The group H acts on v, by a character x and on vz by
a character x°. Explicitly,

©) x( ([3] ° )) = N (W), VA EES.
[w]

Lemma 4.4. — The following relations hold:

— (__1\a+1 p—1—r 1 [)‘] Ve
(10) vo = (=1)*"1 3 A (0 1>tay

AEF,

1 A1 [A
(11) vy = (—1)"tet Z)\ (0 [1]) tug;

A€EF,
(12) XTtvs = (=1)%rlv,, XP1""ty, = (=1)" % (p -1 —r)lv;.

Proof. — Since tvy; = sllvz = sv, this is a calculation in Sym" Ff, ® det®, which is
done in Lemmas 3.1 and 3.2. O

Definition 4.5. — M :=<(T£ le)w11>, M, :=<(";N le)vg> and M; :=<<P;N le)va>.

Lemma 4.6. — The subspaces M, M,, Mz are stable under the action of I.

Proof. — We prove the statement for M, the rest is identical. By definition M is
stable under I NU. Since I = (I N P*)(I NU) it is enough to show that M is stable
under I N P°. Suppose that g; € INP*, go € INU. Since I = (INU)(IN P*) there
exists ho € INU and hy € I N P*® such that g;go = haoh;. Moreover, for n > 0 we
have t~"(I N P*)t" C I. Hence, if v € 7% then (t""h;t")v € 71* and so

91(g2t™) = hohyt™v = hot™(t "hyt")w € M, Vv €zl
This implies that M is stable under I N P*. O
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EXTENSIONS FOR SUPERSINGULAR REPRESENTATIONS OF GL2(Qp) 325

The isomorphism 7(r,0,w?) & w(p—r —1,0,w"*?) allows to exploit the symmetry
between M, and Mj. In particular, if we prove a statement about M, which holds
for all o, then it also holds for M; (with o replaced by &).

Proposition 4.7. — The triples x — M, and x° — Mj; are injective envelopes of x
and x° in RepH(Ian)' In particular, Mg‘nU = Fpv, and ME{‘”U = Fpus.

Proof. — We will show the claim for M,. The relations (12) imply that

Ve = (—1)7rl(p — 1 — r)IXTHPP-1=T2y
For n > 0 define \,, := ((=1)"r!(p—1-7))", €0 := 0 and e, := r+p(p—1—r)+p?en_1.
Further define M, , := ((I; N U)t*"v,). Since "y, = )\1X”2n51t2("+1)v0, M, is
contained in M, ,4+1 and hence

M, =1lim M, .

n

Since v, = A, X®t>"v, and Xv, = 0 we obtain an isomorphism M,, =

F,[X]/(Xe*!). In particular, for all n > 0 we have M2}V = Fpv,, and so

MAU = Fv,. Given m > 0, set %p = (§ "lm ), choose n such that e, > p™ and
define M., := ((I; NU) . Xe~*+17P"¢2my,). Then M}, = Fp[X]/(X?") = M¥ is
an injective envelope of x in Repy(r,nv)/,,- Since M, = lim M, ,, we obtain that

M, is an injective envelope of x in Repy (s, nv)- O

Lemma 4.8. — Let n > 0 be an odd integer then t"v, € M; and t"vs; € M,. Hence,
tM, C Mz and tMz C M,.

Proof. — It follows from the definition that t2M; C Mj. Hence, it is enough to
consider n = 1. Applying t to (12) we obtain tv, = (=1)2(r!)"1XP"t?v; € M;.
If k,m >0 are integers and m even then we have t(X*t™v,) = XP¥t™(tv,)
and since tv, € M; and m is even we obtain t(X*t™v,) € Mj;. The set
{X*t™v, : k,m >0,2|m} spans M, as an Fp-vector space. Hence, tM, C Mj;.
The rest follows by symmetry. O

Lemma 4.9. — We have sv, € M, and svz € M.
Proof. — Since sv, = sllvz = tvs this follows from Lemma 4.8. O
Lemma 4.10. — M is the direct sum of its I-submodules M, and M.

Proof. — Proposition 4.7 implies that (M, N M3)"* = M OM;‘ = Fpv, NFpvs = 0.
Hence M, N M; = 0 and so it is enough to show that M = M, + Mj5. Clearly,
M, C M and Mz C M. Lemma 4.8 implies M C M, + M;. O

Definition 4.11. — We set n, :== M, +1I1. Mz and 75 := Mz + 1. M,.

Proposition 4.12. — The subspaces 7, and 75 are stable under the action of G*.
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326 V. PASKUNAS

Proof. — We claim that sm, C m,. Now s(IIM;) = tM; C M, by Lemma 4.8. It
is enough to show that sM, C 7,. By definition of M, it is enough to show that
s(ut"v,) € 7, for all u € I; NU and all even non-negative integers n. Lemma 4.9
gives sv, € M, and if n > 2 is an even integer then st"v, = IIt"lv, € IIM; by
Lemma 4.8. Since s(K1 NU)s=I;NU® for all w € K; NU, and n > 0 even, we get
that sut™v, € 7,. f u € (I;NU)\ (K1 NU) and n > 0 even, then the matrix identity:

S ERGE Y

implies that sut”v, € M,. This settles the claim. By symmetry n; is also stable
under s, and since m, = IIm;, we obtain that 7, is stable under IIsII-!. Lemma 4.6
implies that 7, is stable under I. Since s, IIsIT~! and I generate G°, we get that 7,
is stable under G°. Since Z acts by a central character, 7, is stable under G = ZGP°.
The result for 75 follows by symmetry. O

5. Extensions
In this section we compute extensions of characters for different subgroups of I.

Definition 5.1. — Define functions k¥, €, &' : Iy — Fy, as follows, for A= (2%) € I
we set
KY(A) =w(®), e(A)=wp (a-d), r(4)=wp '),

where w : Z, — F, is the reduction map composed with the canonical embedding.

Proposition 5.2. — If p # 2 then Hom(l1/Z1,F,) = (k*,&'). If p = 2 then
dim Hom(I,/Z,,F,) = 4.

Proof. — Let ¢ : I1/Z; — F, be a continuous group homomorphism. Since I; NU =
I, NU?® = Z, there exist A\, u € Fp such that ¥|r,nv = Ak® and ¥|1,nvs = pkt. Then
¥ — A&¥ — pkt is trivial on I; NU and I, N U®. The matrix identity

14) 1 gy (1 o) 1 0\ ((1+ap) g
0 1/\a 1) \a(l+aB)! 1 0 (1+ap)™!

implies that I; NU and I; NU*® generate I; NSL2(Q,). So 9 — Axk* — k! must factor
through det. The image of Z; in 1+p under det is (1+p)2. Ifp > 2 then (1+p)2 =1+p
and hence ¢ = A&* + px'. If p = 2 then dim Hom((1 + p)/(1 +p)%,F,) = 2. O

Lemma5.3. — Assume p>2  then Hom((I; NP)/Z,F,) = (k%) and
Hom((I; N P*)/Zy,Fp) = (k' ¢).

Proof. — Let ¢ : (I N P)/Z; — F, be a continuous group homomorphism. Since
I, NU = 7, there exist A € F,, such that ¥|;,nz = Ax*. Then ¥ — Ax* is trivial on
I; NU, and hence defines a homomorphism (I; N P)/Z; (I, NU) = (T'N1)/Z; — F,.
Since p > 2 we have an isomorphism (T'N1;)/Z; = 1+ pZ, = Z,. Hence, there exists
[TAS Fp such that ¢ = ue + Ax"™. Conjugation by II gives the second assertion. O
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Proposition 5.4. — Let x,vy : H — F: be characters. Ext} /2, (¥, X) 1s non-zero if and
only if ¥ = xa or ¥ = xa~'. Moreover,
(1) if p > 3 then dimExt}/Z1 (xa, x) = dim Ext‘,}/z1 (xa™1,x)=1;
(ii) if p =3 then xa = xa~! and dim Ext}/z1 (xa,x) =2;
(iii) if p=2 then x = xa = xa~' =1 and dimExt, (1,1) = 4.

Proof. — Since the order of H is prime to p and I = HI; we have

Ext} )z, (v,x) 2 Homp (4, H'(I/Z1, X))
Now HY(I,/Z;,x) & Hom(I,/Z,,F,), where if £ € H_om(Il/Zl,Fp) and h € H then
[h+€](w) = x(h)é(h~tuh). The assertion follows from Proposition 5.2. a

Similarly one obtains:

Lemma5.5. — Let x,v: H — F: be characters and let % = ((1) Plk ) for some integer

k then Extlq, (¥, ) # 0 if and only if ¢ = xa~'. Moreover, dim Ext}q (xa™', x) =

1.
Lemma 5.6. — Let x, : H — F: be characters and let U = (plk %) for some integer
k then Ext}q, (v, x) # 0 if and only if ¥ = xa. Moreover, dim Ext}4, (xa, x) = 1.

Lemma 5.7. — Assume p > 2 and let x,v : H — F: be characters then
Extb-mp)/zl (¥, %) # 0 if and only if ¥ € {x, xa~1}. Moreover,

dim Ext(;np /7, (xe ™, X) = dim Ext{;py /7 (X, X) = 1.
Lemma 5.8. — Assume p > 2 and let x,vv : H — F: be characters then
Ext%hﬂp)/z1 (¥, x) # 0 if and only if Y € {x, xa}. Moreover,

dim Ext {1 pe)/z, (X, X) = dim Ext(;psy /7, (X, X) = 1.
Proposition 5.9. — Let x : H — F: be a character and let x — J, be an injective

envelope of x in Repy(1,nuy, then (Jx/x)“”U is 1-dimensional and H acts on it by

xa~'. Moreover, xa~' — J,/x is an injective envelope of xa™' in Repy (1, nv)-

Proof. — Consider an exact sequence of H(I N U)-representations:
0—x—Jy— Jy/x—0.

Since J, is an injective envelope of x in Rep;~y taking I; N U invariants induces
H-equivariant isomorphism (J, /x)*"V = H(I; N U, x). It follows from Lemma 5.5
that dim(J,/x)""Y = 1 and H acts on (J,/x)*"U via the character ya™!. Let
Jya-1 be an injective envelope of xa~! in Rep H(I,nU)» then there exists an exact
sequence of H(I; N U)-representations:

0— Jy/x = Jya-1 = Q@ —0.
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Since J, -1 is an essential extension of ya™", we have J;;n_({ = ya~!. Hence taking

(I:NU)-invariants induces an isomorphism Q"1"V = HY(I,NU, J, /x) = H*(I;NU, x).
Since 1 NU = Z, is a free pro-p group we have H2(I; N U, x) = 0, see [17, §3.4].
Hence Q1*"V = 0, which implies Q = 0. O

1

Lemma 5.10. — Let . : J — A be a monomorphism in an abelian category <. If J
is an injective object in </ then there exists o : A — J such that o0 o1 = id.

Proof. — Since J is injective the map Homy (A, J) — Homy (J, J) is surjective. [

6. Exact sequence

Let 7w := w(r,0,n) with 0 < r < p — 1. We use the notation of §4.1, so that
o := Sym" FIZ, ® det®, with det* = nodet|x, and x : H — F: a character as in (9).
We construct an exact sequence of I-representations which will be used to calculate
HY(I,/Zy,7).

Lemma 6.1. — Ifr # 0 then set

W 1= Z APTT ((1) [i‘]) tvg + ( Z 1) Vg

A€F, HEF,

Then w, is fized by I N P° and

If r =0 then set

Wy 1= Z A ((1) (1] tp[)\]> t2v,.

A LEF,

11 10 )
We = Wy + Vg, Wy = Wy — Vg

weFp

Then

Ifaelz]+p, B €yl +p then

1+ pa 0 _ B
( 0 ) +pﬁ) We = wy + (2 y)(fz_;p wVs.

Proof. — We set w := w,. Suppose that r # 0. Now tvs; = sllvz = sv,. Hence, if

we identify v, with " € Sym" Ff, ® det® then Lemma 3.1 applied to j = r — 1 gives
w = —(—1)%rz"~ly. This implies the assertion.
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Suppose that r = 0 and let P(X) := w € Z[X], then [16] implies that

11 1 1+[u]+p[/\]
(o 1) Z( )

(15)
( u+1]+p[/\+P( )1)

tzva.
7/1‘EFP

Hence,

1 L [p+pA+Pp—-1)]) .
(o 1)e= 3 M) e

A uEFp

1 AN
_ Y (- Pu-1) (0 [u]+1p[ 1)t

A u€F,

1 (W] +pA]) 2
(16) MXE:F P(u (0 . )t
Z P (1 [l:]> t’U&

ueF,

+()_ Pu—1))v,

neF,
where the last two equalities follow from (10), (11). If p = 2 then P(X — 1) =
1 — X, otherwise P(X — 1) = Y P~ 11 p~t <p) X*(—1)P~*. Hence >per, P(u—1) =
1 14

~ Spery 7 = 1

1 2
Now t2v, is fixed by (0 pl ) and I; N P?, so the matrix identity

) (1 0) (1 a):<1 a(1+aﬂ)_1> ((1+aﬁ)‘1 0 )
B 1)\0 1 0 1 B 1+aB

implies that

1 [l +pA=w\
SRR e |
(18)
— Z ()‘+/"'2) (z') [/‘l‘]tp[)\]) t2v¢,=w—(z,u2)vg.

A\u€eF, HeF,
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If « € [z] + p and B € [y] + p then the same argument gives

1+ pa 0 w— Z A 1 [p]+pA+ p(z —y)] 20
0 1+ppB 0 1 ’

A u€F,

=wt @-y)(Y w. O

uely

Proposition 6.2. — We have (M, [Fpv,)1"V = (M, /Fyv,)Tt. Moreover, let A, be
the image of (M, /Fpv, )1t in H'(I1,1) = Hom(Iy,F,). Then the following hold:
(i) if either r # 0 or p > 3 then A, = F x%;
(ii) if p=3 and r = 0 then A, = F,(k* + &');
(iii) if p=2 and r = 0 then A, = Fp(k* + &' +¢).

Proof. — 1t follows from Proposition 5.9 that (M, /F,v,)"*"Y is 1-dimensional. Since
(M, /Fpv,)Tt # 0 the inclusion (M, /Fpv,)"t C (M, /Fpu,)t"Y is an equality. The
image of w, of Lemma 6.1 spans (M, /F,v,)!* and the last assertion follows from

Lemma, 6.1. O
Theorem 6.3. — The map (v, w) — v — w induces an exact sequence of I-representa-
tions:

0ot S Mell.M — 7 — 0.

Proof. — We claim that M NTI. M = nl*. Consider an exact sequence:
07t S MNII.M - Q — 0.

Since M NII. M is an I;-invariant subspace of 7, we have (M NII.M)" C 71, Since
M NII.M contains 71t the inclusion is an equality. Hence, by taking I;-invariants
we obtain an injection 8 : Q* — H(I;,n") = Hom(I;,F,) ® Hom(I;,F,). The
element IT acts on H!(I;,7") by IL. (1, %2) = (¥&, 41). Let A, (resp. Aj) denote
the image of (M, /Fpv,)" (resp. (M5 /Fpvs)"*) in Hom(I1,Fp). Let A be the image
of (M/m1)1x in HY(I;,n™) so that A = A, @ As. By taking I;-invariants of the
diagram

0——srh— ~MNI.M Q 0
0 i M M/7T11—>-0

we obtain a commutative diagram:
QI ——H' (I, 71)
id

(M /a1 2o gL ohh).
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and hence an injection (QT) — A. Acting by II we obtain an injection 9(Q’*) —
IT.A. We claim that ANII.A = 0. We have
ANIT.A= (A NITL.Az)® (A NI A,).

By symmetry we may assume that r < p — 1. Proposition 6.2 applied to M,
and Mj; implies that that if » # 0 then A = Fp/i“ @ Fp/-;“, hence II. A =
Fp(6*)! @ Fp(k*)! = Fpr! @ Fpr!, so that ANII.A = 0. If r = 0 then Propo-
sition 6.2 implies that A = Fy(k* — (¥ ,er, #2)K + (Cuer, #)e) ® Fpr*, hence
. A = Fpr! @ Fp (k! = (T uer, #2)E* = (X uer, #)€), again ANTL. A = 0. Note that
if r = 0 then we have to apply Proposition 6.2 to Mz withr =p—1,and p—1 # 0.
This implies that Q’* = 0 and hence Q = 0.

Since G1 and II generate G, Proposition 4.12 implies that 7, + 75 is stable under
the action of G. Since 7 is irreducible we get m = 7w, +m5. This implies surjectivity. O

Corollary 6.4. — We have M, NIl. Mz = 7r{,1 = vag and MzNII.M, = wél = va;,.

Proof. — It is enough to show that 71t = F,v,, since by Theorem 6.3 M, NII. M5

o
is contained in 7. Suppose not. Clearly v, € 7,, so since 7* is 2-dimensional,

we obtain that vz € m,. Then there exists u; € M, and uy € Il . M5 such that
vs = uy +up. Souy € II.MzN(M,+Mj;) C w't by Theorem 6.3. Hence uz = \v, for
some \ € Fp, and so ugs € M, and so vz € M,. This contradicts M, "Mz =0. O

Corollary 6.5. — As G -representation  is the direct sum of its subrepresentations
Ty and 5.

Proof. — It follows from Theorem 6.3 that 7 = 7, + m5. Now
(me Nws)l = 7r£1 n ﬂél = Fpv, N vaa =0.
Hence, 7, N 75 = 0. O

Corollary 6.6. — We have m = Indg+ Ty & Indg+ 5.

7. Computing H'(I1/Z1,)

We keep the notation of §6 and compute H'(I,/Z;,n) as a representation of H
under the assumption p > 2.

Lemma 7.1. — Assume that p > 2. Let ¢,x : H — F: be characters. Let N be
a smooth representation of (I N P)/Zy, such that N|g(,nuy s an injective envelope
of x in Repy(s,ny)- Suppose that Ext%mp)/zl (¥,N) # 0 then ¥ = x. Moreover,
Ext%mp)/zl (x,N) = Ext%mp)/z1 (X, x) is 1-dimensional.

Proof. — Suppose that we have a non-split extension 0 - N — E — ¢ — 0. Since
N|u(1,nv) is injective Lemma, 5.10 implies that the extension splits when restricted to
H(I;NU). Hence, there exists v € ET*"U such that H acts on v by ¢ and the image of
v spans the underlying vector space of ¢. If v is fixed by I; NT, then since I; N T and
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H(I; NU) generate I N P we would obtain a splitting of E as an I N P-representation.
Hence, there exists some h € I; N T, such that (h — 1)v € N is non-zero. Since h
normalizes I; NU and v is fixed by I; NU, we obtain that (h—1)v € N7V, Since H
acts on v by ¢ and T is abelian, we get that H acts on (h—1)v by 9. Since N|g(1,nv)
is an injective envelope of x we obtain that x = .

By Proposition 5.9, N/x is an injective envelope of xa~!. Since p > 2, x # xa~
and so Homnp(x, N/x) = Ext%mp)/z1 (x,N/x) = 0. So applying Hom;np(x,.) to
the short exact sequence of (I N P)/Z, representations 0 — x — N — N/x — 0 gives
us an isomorphism Extgim;,)/z1 (x,N) = EXt%InP)/Zl (x,x). Lemma 5.7 implies that
these spaces are 1-dimensional. O

1

Proposition 7.2. — Assume that p > 2. Let ¥,x : H — F: be characters. Let N
be a smooth representation of I/Z,, such that N|g(,nyu) 15 an injective envelope of
X i Repy(r,nv)- Suppose that Ext}/zl (¥,N) # 0 and let & be the kernel of the
restriction map Ext;}/z1 (¢,N) — Ext%mp)/zl (1, N) then one of the following holds:
(i) #f £ #0 then ¢ = xa;
(ii) of H =0 then ¢ = x.
Moreover, dim Ext} /7, (xa, N) = 1, and let R be the submodule of N, fitting in the
exact sequence 0 —» NIt — R — (N/NT\)1 — 0, then there exists an eract sequence:

0 — Homy(x, xa~?) = Ext},z, (x, R) = Ext/z, (x, N) = 0.

Proof. — Suppose that £ # 0 then there exists a non-split extension0) - N — E —
¥ — 0 of I/Z;-representations, which splits when restricted to I N P. Hence, there
exists v € ET*"F such that H acts on v by ¥ and the image of v spans the underlying
vector space of 1. Let k be the smallest integer k£ > 1 such that v is fixed by (:k 2)
If k = 1 then v is fixed by I N U®. Since I N U® and I N P generate I, we would
obtain that I acts on v by 1 and hence the extension splits. Hence, k is at least 2.
Set % = (pkl—l (1)) Our assumption on k implies that v’ := (pkl—l ?)v —v € Nis
non-zero. The matrix identity (14) implies that v’ is fixed by I; N\U. Since N11"V s 1-
dimensional and H acts on N':"U by y, we obtain a non-zero element in Exty;4, (¥, X)-
Lemma 5.6 implies that 1 = ya. Let ¥ be the image of v in E/N%i. Again by
Proposition 5.9 (N/N11)117V js 1-dimensional and H acts on (N/NT1)10U by yao =1, If
the extension 0 — N/N©t — E/NT* — 4 — 0 is non-split, then by the same argument
we would obtain a non-zero element in Extyq,(xa, xa™?), where %’ := (,=m 9 ), for
some m > 1. This contradicts Lemma 5.6, as p > 2 and so « is non-trivial. Hence we
obtain an exact sequence:

(19)  0— Homs(xa,xa™ ") —= Extj,z (xa, x) — Exty)z, (xa, N) — 0.

If p > 3 then dim Hom;(xa, xa™!) = 0 and dimExt}/Z1 (xa,x) = 1. If p = 3 then

dim Homj (xa, xa~ ') = 1 and dim Ext}/z1 (xa, x) = 2. Hence, dim Ext}/zl (xa,N)=1.
Assume that ¥ = 0. Since we have assumed that Ext}/zl(w,N) # 0

we obtain that Ext%mp)/zl (¥,N) # 0 and Lemma 7.1 implies that ¢ = x
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and dim Ext} ;z;(x,N) < 1. Suppose that there exists a non-split extension
0 - N - E — x — 0 of I/Z;-representations, which remains non-split when
restricted to I N P. Let w; be a basis vector of NI'"U. Lemmas 7.1, 5.7 and 5.3
imply that there exists v € E such that H acts on v by x and for all g € I; N P we

have gv = v + £(g)w;. In particular, v is fixed by I N U and (1*3’2 H?pz ). As before,

let k be the smallest integer £k > 1 such that v is fixed by (plk (1)) We claim that
k = 2. Indeed, if k > 2 then let v’ := (pkl—l 9)v—v. Then ' € N is non-zero, and the
matrix identity (14) implies that v’ is fixed by I; NU. Since N11"U is 1-dimensional
and H acts on N'"U by y, we obtain a non-zero element in Ext}, (X,x), with
U = ( pkl—l 9). Lemma 5.6 implies that x = xa. Since p > 2 this cannot happen.

Consider u := (5 9)v — v. Using (14) and the fact that k > 2 we obtain

11y _ 1 0\ (1+p 1 .
01/  \p+p?! 1 0 (1+p?

(20)
:( 1 0)(v+2w1)—v=u+2w1.

p(l+p)~t 1
Since 2w; # 0 we get u # 0 and so k = 2. By Proposition 5.9 (N/F,w;)2" is
1-dimensional. This implies that (N/Fpw;)1"Y = (N/Fpw;)"t and the image of u in
N/Fpw; spans (N/Fpw;)"Y. If we set R := (w;,u) then by construction we obtain
that the map Ext} 1z, (X, N) — Ext] /2, (X, N/R) is zero. Proposition 5.9 implies that
(N/R)" is 1-dimensional and H acts on it by a character ya~2. This implies the
claim. a

Corollary 7.3. — Assume p > 2 then the restriction maps

Ext?, 7, (X, X) = Ext{1npey/z, (X X),
2 2
Ext7/z, (x: x) = Ext{1npy/z, (X, X)
are injective.
Proof. — Consider the exact sequence of I-representations 0 — x — Indfn ps X —

@ — 0. Iwahori decomposition implies that

(Indfnps X) (1 N0y = Indj "y,

and hence it is an injective envelope of x in Repy (;,ny)- Proposition 5.9 implies that

QlH(1,nv) is an injective envelope of xa~ ! in Repy(1,nvy- Since p > 2 Lemma 5.4

implies that Ext} /2, (x, x) = 0, so using Shapiro’s lemma we obtain an exact sequence:
Ext{inpsy;z, (% X) = Extl/z (x, Q) — Ext]/ 7, (x,x)

— Bxt{rnpey/z, (X X)-

Now dim Ext%mpg)/z1 (x,x) =1 and dim Ext}/z1 (x, @) = 1 by Proposition 7.2. This
implies the result for I N P°. By conjugating by II we obtain the result for INP. O
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Corollary 7.4. — Assume p > 2 and let N be as in Proposition 7.2 then
dim Ext} /2, (X, N) =1, the natural maps

(21) Ext/z, (x, x) = Ext};z (x, N),
(22) Ext} 7, (x, N) = Ext(;np)z, (X, N)
are injective and (22) is an isomorphism.
Proof. — We have an exact sequence:
EXt}/Zl (X? N) — EXt} Z1 (X? N/X) - EXt% Z1 (Xy X)'
/ /

Proposition 5.9 and Lemma 7.1 imply that Ex‘c%m py/z, (Xs N/x) = 0. The commuta-
tive diagram:

EXt}/Zl (X7 N/X) EXt%/Z (X7 X)
k B

0
Ext(1np)/z, (X, N/X)—— Ext{1npy /2, (X, X)

and Corollary 7.3 implies that Ext}/z1 (6, N/x) — Exti/z1 (x,%) is the zero map.
Hence, (21) is injective and

dim Extj, z, (x, N) = dimExt7/z, (x, N/x) = 1,
where the last equality is given by Propositions 5.9 and 7.2. We know that
Ext}/z1 (x,N) # 0. So if (22) is not injective, then Proposition 7.2 gives x = xa,

but this cannot hold, since p > 2. Since both sides have dimension 1, (22) is an
isomorphism. O

7.1. p = 3. — The case p = 3 requires some extra arguments. If you are only

interested in p > 5 then please skip this subsection.

Lemma 7.5. — Assumep = 3 and let N be as in Proposition 7.2 then the composition:

d R
Ext}/z1 (xo, N/x)—— Ext?/z1 (x, x) —== Ext?mp)/zl (xa, x)
is injective, where O is induced by a short exact sequence 0 - x — N — N/x — 0.

Proof. — Since p = 3 we have o = o~ ! and hence it follows from the Corol-
lary 7.4 that dimExt}/Zl (xa,N/x) = 1. Corollary 7.2 implies that the restric-

tion map Ext}/z1 (xa, N/x) — Extzmp)/z1 (xa, N/x) is injective. Moreover, Lemma
7.1 gives Ext%mp)/zl(xa,N) = 0, and so the map 0 : Ext%mp)/zl (xa,N/x) —
Ext%m p)/z, (X@, X) is injective. The assertion follows from the commutative diagram:

2]

Ext}/z, (xa, N/X) Ext},z, (xa, X) O

(22) | Res tRes

8
Ext{;np);z, (X, N/X) > Ext{;p) /7, (X, X)-
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Lemma 7.6. — Assume p = 3 and let N be as in Proposition 7.2. Assume that
NEK > Indﬁ, K, X as a representation of I, then the composition:
) R
Ext )z, (xa, N/x)—— Ext} 5 (xa, X) —> Ext{1pey, 2, (X, X)
is zero, where 0 is induced by a short ezact sequence 0 —» x - N — N/x — 0.

Proof. — Since p = 3 we have @ = o~! and hence it follows from the Corollary 7.4

that dim Ext} z,(xa, N/x) = 1. Let A be the image of the restriction map

A = Im(Ext; )z, (x@, N/x) = Ext{;nps)/z, (X2 N/X))-
We claim that A is contained in the image of the natural map
(23) Ext{;npe)/z, (X2 N) = Extinpey, 7, (xe, N/x)-
Since p = 3 we have dim N1 = 3 and so the image of NX1 in N/N' is a
2-dimensional I-stable subspace. Since it follows from Proposition 5.9 that
(N/NT)i and ((N/N%1)/(N/NT)1)li are 1-dimensional we obtain an exact
sequence 0 — N1t — NXi — R — 0, where where R is the subspace of N/x defined
in Proposition 7.2 (with N/x instead of N). Since N¥1 2 Ind} K, X We get:
N ape 2 x © xa ® X = x ® Rlinpe.

Let ¢ be the composition:

Ext{;nps),;z, (X R) = Ext{1npe)/z, (xo, N¥1) —

Ext{;npe)/z, (X0 N) = Extiinpsy, 2, (xat, N/X).

Then we have a commutative diagram:

7.2

EX'ﬂ}/zl (xa, R) EXt}/z1 (xa, N/x)

L Res l/ Res

[
Ext{nps)/z, (X, R) —— Ext{npeyz, (X, N/X).

The top horizontal arrow is surjective by Proposition 7.2. Hence, A equals to the
image of ¢ o Res. Since the image of ¢ is contained in the image of (23) we get the
claim. The assertion follows from the commutative diagram:

Ext}/z, (xa, N/x) Ext},z, (xa, X)

l/ Res l/ Res

P)
Ext(nps)/z, (X@, N/X)— Ext{inps); 2, (X X),

since the claim implies that the composition 8 o Res is the zero map. O
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Lemma 7.7. — Assume p = 3 let Ny, and N, be as in Proposition 7.2 with respect to
x and x°. Further assume that N;g‘ "=’ Indfi- K, X° as a representation of I, then the
natural map

(24) Ext];z, (xa, x) = Bxt])z, (xa, Ny) ® Ext}; 7, (xa, Ny:)
is injective, where N,I(Is denotes the twist of action of I on Nys by II.

Proof. — Applying Hom;,z, (xa,.) to the short exact sequence 0 — x — N, —
Ny/x — 0 gives a long exact sequence. Equation (19) shows that the map
Ext} /2, (X, X) — Ext} /2, (xe, Ny) is surjective, which implies that

Ker(Ext7/z, (xa, X) — Ext],z, (xa, Ny)) 2 Extyz, (xa, Nx/x)-

If we replace N, with NV,s and x with x° the same isomorphism holds. Twisting by
IT gives:

Ker(Ext?,z, (xa, x) = Bxt}/z, (xa, N)) = Ext /5, (xo, Nis /x).
Lemma, 7.5 implies that the composition
Resod : Ext}/z1 (xa, Ny /x) — Ext?mp)/zl (xa, x)
is an injection. And Lemma 7.6 implies that the composition
Resod : Ext}/z1 (xe, Nfs/x) — Ext%mp)/zl (xo, x)

is zero. Hence, (9(Ext}/z1 (xa, Ny /x)) N B(Ext}/z1 (xa, NX/x)) = 0 and so the map
in (24) is injective. a

Lemma 7.8. — Assume p = 3 and r = 0 then Mj; satisfies the assumptions of
Lemma 7.6.

Proof. — Now ((I N U)tv,) = (Isvs) = St|; = Indfj,K1 Xx°® as a representation of

I, where St = Sym? F§ is the Steinberg representation of GLy(F3). Hence we have
an injection Indfi K, X° — Ms. Since M;|g(ny) is an injective envelope of x° in

Repy (1ny) We obtain that MENU Indgggz)(]) Xx° as a representation of H(I NU).
Hence dim M&Kan = 3 and so we obtain M;{‘OU = Mg{l = Inde[K1 x°. a
7.2. — Using the lemmas above we prove the main result of this section.

Theorem 7.9. — Assume p > 2 and let ¢ : H — F: be a character, such that
Ext}/z1 (¥, 75) # 0. Then ¢ € {xa,x}. Moreover,

(i) dimEXt}/Zl (X To) = 2;

(i) f p>3 orp=3 and r € {0,2} then Ext}/z1 (xa, ) =0;
(iii) if p=3 andr =1 then dimExt}r/Z1 (xo,ms) < 1.

ASTERISQUE 331



EXTENSIONS FOR SUPERSINGULAR REPRESENTATIONS OF GL2(Q,) 337

Proof. — Corollary 7.4, (21) gives injections:

EXt%/Zl (X’ X) g EXt?/Zl (X7 Mo‘)v
Ex'ﬁ/z, x6x) = EXt?/z1 (x, IT. M5).

Moreover, Ext} /24 (x,x) = 0. Corollary 6.4 gives a short exact sequence 0 — x —
M, ®Il.M; — 7, — 0, which induces an isomorphism:

Ext} )z, (X, Mo) ® Ext}/z, (x, 11 M) = Exty 7, (X, 7o)-

Corollary 7.4 implies that dim Ext} 12, (X, Tg) = 2.
Assume that ¢ # x. From 0 - M, — 7, — (Il. M3z)/x — 0 we obtain a long
exact sequence:

HOHII("/’»XQ) — EXt}/Zl (’/’, Ma) '—)EXt}/Zl (d"a 776) d
Ext},z, (%, (IL. M5)/x).

If EXt}/zl(d’, M,) # 0 then Proposition 7.2 implies 9 = xa. Similarly, if
Ext}/zl('w, (IT. M;)/x) # 0 then v = (x*a ) = xo. Hence, ¥ = xa and
dimExt}/z1 (xo,ms) < 1.

If p > 3 then Proposition 7.2 implies that Ext} /z,(xe, Ms/x) = 0. Hence the
exact sequence 0 — II. M; — 7, — M, /x — 0 gives an exact sequence:

Hom(xa, xa ') < Exty,z, (xe, IT. Ms) — Extj,z, (xa, 75)-

Since p > 3 Proposition 7.2 implies that Ext} z,(xe,I1« M) = 0 and hence
Ext}/z1 (xa,my) = 0.
Assume that p = 3 and r = 0 Lemmas 7.7 and 7.8 give an exact sequence:

EXt}/Zl (XOt, X) — EXt}/Zl (Xaa Ma SII. M&) - EXt}/Zl (Xaa 7rcr)'

Since p=3 we have dimExt} sz,(xa,x) =2 and Proposition 7.2 gives
dimExt}/Zl (xa,M, ® 11 . M5) = 2. Hence Ext}/zl(xa,m,) = 0. Since p = 3
and r = 0 we have (xa)! = xa, x = x® and since 75 = Il . 7,, we also obtain
Ext}/z1 (xa, m5) = 0, which deals with the case p =3 and r = 2. O

Corollary 7.10. — Assume p > 2 and let ¢ : H — F: be a character. Suppose that
Hom; (v, H*(I1/Z1, ™)) # 0 then ¢ € {x,Xx°}. Moreover, the following hold:

(i) ifp=3 and r =1 then dim H'(I,/Z;, ) < 6;
(ii) otherwise, dim H(I;/Zy,m) = 4.

Proof. — By Corollary 6.5 m & 7, @ 75 as I-representations. The assertion follows
from Theorem 7.9. We note that if p =3 and r = 1 then ya = x° and x°’a=x. O
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8. Extensions and central characters

We fix a smooth character { : Z — F: and let Repg . be the full category of Repg
consisting of representations with central character (. Let V be an Fp-vector space
with an action of Z, given by zv = ((2)v, for all z € Z and v € V. Then Ind§ V is
an object of Repg ., moreover given 7 in Repg . by Frobenius reciprocity we get

(25) Homg (7, Ind$ V) = Homz(m, V) Homﬁp(ﬂ, V).

Hence, the functor Homg(.,Indg V) is exact and so Ind§ V is an injective object
in Repg (. Further, if V is the underlying vector space of 7 then we may embed
7 Ind§ V, v — [g — gv]. Hence, Repg ¢ has enough injectives.

For 71,72 in Repg  we denote Eth,c (m,ma) := R! Hom(7;,m2) computed in the
category Repg ..

Proposition 8.1. — Let m, and my be irreducible representations of G admitting a cen-
tral character. Let { be the central character of ma. If Exté(ﬂ'l,ﬂ'g) # 0 then ( is
also the central character of my. If my 2 mo then Ext};’c(ﬂ'l,wz) = Extlc(m,wz). If
T1 &2 my then there erists an eract sequence:

0— EthG’C(ﬂ’l,ﬂ'Q) — Extg(my, m2) — Hom(Z, Fp).
Moreover, if p > 2 then the last arrow is surjective.

Proof. — Suppose that we have a non-split extension 0 — 7 — E — m; — 0 in
Repg. For all z € Z we define 6, : E — E, v — zv — {(z)v. Since z is central in
G, 0, is G-equivariant. If §, = 0 for all z € Z then E admits a central character (,
and hence ( is the central character of m; and the extension lies in Ext%;yc(ﬂ'l, ma). If
0, # 0 for some z € Z then it induces an isomorphism m; = my.

We assume that m; 27y and drop the subscript. Then (25) gives
Homg(ﬂ',Indg ¢) & n*. Fix a non-zero ¢ € Homyz(m, (). Since 7 is irreducible
we obtain an exact sequence:

(26) 0—-75mdf¢—Q—0.

Since IndgC is an injective object in Repg ., and (26) is in Repg . by applying
Homg(7,.) to (26) we obtain an exact sequence:

(27) ™ — Homg(m, Q) — Ext};yc(w, m) — 0.

If we consider (26) as an exact sequence in Repg then by applying Homg(7,.) we get
an exact sequence:

(28) 7 — Homg(m, Q) — Extl(r, 7) — Extl(n, Indg ¢).
Putting (27) and (28) together we obtain an exact sequence:
0— Extac(ﬂ, ) — Extg(m, ) — Extg(m, Ind§ ¢).

Let 0 — IndCZ;C — E — 7 — 0 be an extension in Repy. Forallz€ Z,0,: E - E
induces 0,(E) € Homg(,Ind§ ¢). Now 0, (E) = 0 for all z € Z if and only if E has
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a central character ¢, but since Indg ¢ is an injective object in Repg . Lemma 5.10
implies that the sequence is split if and only if E has a central character . Now
6z1z2 (’U) = 2129V — <(21Z2)’U =2 (Z2’U — C(Zg)v) + Z1C(272)1J — ((2122)1)

= ((21)02,(v) + {(22)0:, (v).

Hence, if we set ¥ (z) := ((2)716,(E), then (29) gives ¥g(2122) = ¥ (21) + ¥E(22).
Hence, the map E — v induces an injection Extg(, Indg ¢) — Hom(Z,n*). The
image of

(29)

Extg (7, ) — Ext} (r, Ind§ ¢) < Hom(Z, 7*)

is contained in Hom(Z,F,¢), which is isomorphic to Hom(Z,F,). To a continuous
group homomorphism ¢ : G — F, we may associate an extension (%) ® m. The
image of this extension in Hom(Z, Fp) is equal to the restriction of ¢ to Z. If p > 2
then the restriction map induces a surjection Hom(G, F,) - Hom(Z, F,), which yields
the last assertion. O

Proposition 8.2. — Let w := 7(r,0,7n) and ¢ the central character of m. Assume that
p> 2 and (p,r) # (3,1) then dim Extb,c(w,ﬂ') > 3.

Proof. — This follows from [10, 2.3.4]. g

Remark 8.3. — At the time of writing this note, [10] was not written up and there
were some technical issues with the outline of the argument given in the introductions
to [7] and [9]. Since we only need a lower bound on the dimension and only in
the supersingular case, we have written up another proof of Proposition 8.2 in the
appendiz. The proof given there is a variation of Colmez-Kisin argument.

9. Hecke Algebra

Let ¢ be the central character of 7. Let J# := Endg(c—Inngl (). Let . : Repg ¢ —
Mod s be the functor:

SF(n) =nal = Homg(c—Inngl ¢, m).
Let J : Mod s — Repg ¢ be the functor:
T (M) = M ® c-Indg,, C.

One has Hom (M, # (7)) = Homg(J (M), 7). Moreover, Vignéras in [18, Thm. 5.4]
shows that .# induces a bijection between irreducible objects in Repg , and Mod .

Let Repg’c be the full subcategory of Repg . consisting of representations generated
by their I1-invariants. Ollivier has shown [13] that

(30)  :Repd ( — Mody, 7 :Modsy — Repg .
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are quasi-inverse to each other and so Mod s is equivalent to Repg’c. In particular,
suppose that 7 = (G .77), 7 in Repg . and let m; := (G .7") C 7 then one has:

Homg(r,7) & Homg(7,71) & Hom s (# (1), £ (m1))

(31) & Hom (I (1), Z(T))

and the natural map J #(7) — 7 is an isomorphism.
Let J be an injective object in Repg ¢, then the first isomorphism of (31) implies
that J; := (G .J") is an injective object in Repg’c. Since & and £ induce an

equivalence of categories between Mod s and RepIG"( we obtain that #(J;) = #(J)
is an injective object in Mod . Hence, (31) gives an E,-spectral sequence:

(32) Extly (£ (7),R? # (1)) = EXtEJ:Z(T, )

The 5-term sequence associated to (32) gives us:

Proposition 9.1. — Let 7 and m be in Repg . suppose that T is generated as a
G-representation by 7' then there exists an exact sequence:

0 — Extly (£ (1), #(7)) — EXté,C (1,m) = Hom e (F (1), R' #(n))

33
(33) — Ext%, (S (1), £ (7)) - Ext (1, 7)

It is easy to write down the first two non-trivial arrows of (33) explicitly. An
extension class of 0 —» #(n) —» E — (1) — 0 maps to the extension class of
0> FF(n) > J(E) > TF(7) — 0. Let € be an extension class of 0 - 7 — k —
7 — 0. We may apply £ to get

O

(34) 0—= () I (k) —> I (1) —<=R1.¥ (7).

The second non-trivial arrow in (33) is given by € — &..

We are interested in (32) when both 7 and 7 are irreducible. We recall some facts
about the structure of # and its irreducible modules, for proofs see [18] or [14, §1].
As an Fp-vector space J# has a basis indexed by double cosets I;\G/ZI;, we write
T, for the element corresponding to a double coset I;gZI;. Given 7 in Repg ., and
v € w11, the action of T} is given by:

(35) Ty = Z ug~tv.
u€l/(IiNg~111g)

Let x: H — F: be a character then we define e, € S by

1
ey = — x(h)Th,.
X lHI}g{()h

Then e,ey = ey if X = 9 and 0 otherwise and it follows from (35) that 7'te, is
the x-isotypical subspace of m!t as a representation of H. The elements T},,, Ty and
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ey, for all x generate J# as an algebra, and are subject to the following relations:
Ta =<

(36) exTn, = Tn,exe, €T =Tueys, exTo, = —exexsThn,.

Note that e,ey: = e, if x = x° and eyey. = 0, otherwise. We let J#* be the

subalgebra of J# generated by T, , TuTn, Ty ! and ey for all characters x. One may
naturally identify J#* = Endg+ (c—Indg}L1 ¢).

Definition 9.2. — Let 0 <r < p—1 be an integer, A\ € F, and 0 : Qy — F: a smooth
character, and let { be the central character of w(r,\,n) then we define F-modules
M(r,A) = w(r, ), M(r,\,n) = n(r,\,n)".

Assume for simplicity that {(p) = 1 then it is shown in [6, Cor. 6.4] that M(r, A, n)
has an Fp-basis {v1, v2} such that
(i) viexy =v1, v Tn =va, vUzeys = vz, v2Tm = v; and such that v;T,, = —v;
if r=p—1and v;T,, = 0 otherwise.
(i) vo(1+Ty,) = n(=p~1)Av; if r = 0 and v2T,,, = n(—p~1)Av; otherwise,

where x : H — F_: is the character x(( [3] [2] )) = A™n([Au]). If A = 0 so that m(r, A, )

is supersingular, then v; = v, and ve = v;.

Lemma 9.3. — Let w be a supersingular representation of G then

(i) if r € {0,p — 1} then

(a) dimExtL, (7, 711) =1;

(b) Extly(r!t,*) =0 fori > 1;
(ii) otherwise, dim Ext}%p(ﬂ'h,‘n“) =2.

Proof. — [6, Cor. 6.7, 6.6]. O

We look more closely at the regular case. Let m be supersingular with 0 < r < p—1
and assume for simplicity that p € Z acts trivially on 7. For (A;, A2) € Ff, we define
an J¥-module Ej, », to be a 4-dimensional vector space with basis {vy, vys, Wy, wys }
with the action of J# given on the generators

(37) WyTn, = AiUys, WysTn, = Aovy, Vy3Tn, = VysTp, =0

and wyTn = wys, VT = Vys, Wyey = Wy, Uyey = Uy, for P € {x,x°}. Then
(vy, Uys) is stable under the action of 7 and we have an exact sequence:

(38) 0— F(m) > Exjz — F(m) >0

The extension (38) is split if and only if (A, A2) = (0,0). It is immediate that the
map Ff, — Extl,(F (), #(r)) sending (A1, A2) to the equivalence class of (38) is an
isomorphism of F,-vector spaces.
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Lemma 9.4. — Let A€, then

c-Ind$, o

c-Ind% , &
T2

(39) T (Bo) = )

T (Expo) =

where T, € Endg(c-Ind$ , o) is given by Lemma 4.1.

Proof. — Let ¢ € c-Ind$, o such that Suppy = KZ and ¢(1) spans o’t. Let
G

T = ﬂ(l%g—)d and v the image of ¢ in 7. Then 7 = (G.v) = (G.77). And so it

is enough to show that .# () & Eq x. Since T, : ¢-Ind$ , 0 — ¢-Ind$ , o is injective

-Ind$
and T = %Z—U, we have a an exact sequence
o
(40) 0-mT—>7—-o71—0

and we may identify the subobject with T, (7). Now, v, Ilv, T,(v) and T,(Ilv) are
linearly independent and I;-invariant. Thus dim 7/t > 4 and since dim 7t = 2 we
obtain an exact sequence of J#-modules

(41) 0— F(m) = I(1) > F(m) =0

Hence, (1) & E), , for some A;,A\2 € F,. Since 0 & (K.¢) = (K .v) and
(K .T,(v)) 2 T,((K .v)) 2 0, [14, 3.1.3] gives

(42) vey =v, (To(v))ex =T5(v), vTn, = (Te(v))Tn, =0.

Hence, A\; = 0. If \; = 0 then (41) would split and so would (40). Hence, Az # 0. We
leave it to the reader to check that for any A € F: , Eox = Eg 1. O

Lemma 9.5. — If E = E), »,, M)z # 0 then dim Extl,(E, #(n)) = 1.

Proof. — Applying Hom s (*, # (7)) to (38) gives an exact sequence
Hom s (F (1), (7)) < Extlhy, (F(7), # (7))

(43) 1 1
— Extby (B, #(r)) — Exthe(F (), 4 (r))

Hence, dim Ext},(E, .# (7)) = 1 + dim T, where T is the image of the last arrow in
(43). Yoneda’s interpretation of Ext says that T # 0 is equivalent to the following
commutative diagram of ##-modules:

0 — H(m) f(fr) 0
0 — S(m) B E 0

with A non-split. Then A = E,, ,,, for some 1, us € Fp. The condition vT2, = 0
for all v € B is equivalent to u;As = 0 and p2A; = 0. Since A\ Ay # 0 we obtain
1 = p2 = 0 and hence a contradiction to a non-split A. |
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10. Main result

Let 7 an irreducible representation with a central character {. A construction of
[14, §6], [6, §9] gives an injection m — , where Q2 is in Repg  and |k is an injective
envelope of sock 7 in Repg .

Lemma 10.1. — If ™ = n(r,0,m) with0 < r < p—1 then Q1* = Ej, 5, with A1 A2 # 0.
Otherwise, Q' = 7l1,

Proof. — Let o be an irreducible smooth representation of K and Injo injective
envelope of o in Repy . If 0 = x odet or ¢ = St ® x o det then dim(Inj o)l =
dimo” =1 and dim(Inj o)"* = 2 otherwise, [14, 6.4.1, §4.1]. If 7 is either a character,

special series, a twist of unramified series or m# & 7(0,0,7) then sock 7 is a direct
summand of (1 & St) ® x o det. Hence,

Q1 = (socg V) = (sockx m) C ot C QN

and so 71t = Q1 If 7 is a tamely ramified principal series, which is not a twist of
unramified principal series, then dim 77t = 2 and socg 7 is irreducible, so dim Q* = 2.
Finally, if 7 & 7(r,0,17) with 0 < 7 < p — 1 then it follows from [14, 6.4.5] that

Qo Ey, », With Mg # 0. O
Proposition 10.2. — Let 7,7 be irreducible representations of G with a central char-
acter, and let ¢ be the central character of w. Suppose that Extb(*r, ) #0. If

(44) ExtIGYC (1,7m) = Hom e (F (1), R? F(m))

is not surjective then 7 2 7 = 7(r,0,n) with0 <r <p— 1.

Proof. — We note that Proposition 8.1 implies that ( is the central character of 7.
Since Q| is an injective object in Repg ¢, [, is an injective object in Repy, .
Hence, R! .#(2) = 0 and we have an exact sequence:

(45) 0— F(r) = Z(Q) - Z(Q/r) - R #(7) — 0.

Assume 7 2 7(r,0,m), 0 < r < p— 1. Let & € Homyu(F(7),R'.# (7)) be non-

zero. Suppose that 7 2 7w then Extlﬁo(ﬂ(r), F(m)) =0, [6, 6.5], Lemma 10.1 implies
F(Q)/SF(r) =2 F(r). So we have a surjection

(46) Hom s (F (1), (/7)) — Hom e (F (1), R* Z(7)).
Further, we have an isomorphism
(47) Homg (7, Q/7) & Hom e (S (1), £ (Q/7)).

Choose ¢ € Homg(7,Q/7) mapping to @ under the composition of (47) and (46).
Since 7 is irreducible, by pulling back the image of i we obtain an extension 0 —
m — Ey — 7 — 0 inside of Q. By construction, (44) maps the class of this extension
to 0.

If 7 % m(r,0,n) with 0 < r < p—1 then Lemma 10.1 says that .#(Q/7) = R! .#(r)
and arguing as above we get that (44) is surjective. ]
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Corollary 10.3. — Let w, T be irreducible representations of G with a central character,
and suppose that 7 is supersingular with a central character {. If Exté(r, m) #0 and
T2 7 then

Exty (7, 7) = Hom e (F (1), R (n)).

Proof. — Proposition 8.1 implies that the central character of 7 is ¢ and Exté (r,m) =
ExtIG,C('r, 7). By [6, Cor.6.5], Extl.(#(7),.# (7)) = 0. The assertion follows from
Propositions 9.1, 10.2. O

Lemma 10.4. — Let m and T be supersingular representations of G with the same
central character. Suppose that mi* = 711 as H-representations then m = 7.

Proof. — It follows from the explicit description of supersingular modules M (r,0,7)
of 7 in §9 or [14, Def.2.1.2] that .# (1) = #(7) as S#-modules. Hence, 7 & J ¥ (1) &
TSI (m) & . a

Proposition 10.5. — Let m = w(r,0,n) with 0 < r < p — 1, and let { be the central
character of m. Assume that p > 5 then R #}(r) = # () @ S ().

Proof. — Corollary 6.6 implies that we have an isomorphism of #*-modules
R! 7 () = R' #(n,) ® R' #(75). Let v € R' #(m,) it follows from Theorem 7.9
that ve, = v. Since 0 <7 < p—1 we have x # x° and so vey: = 0. Since T,,, € H#'t,
vT,, € R' #(n,) and hence vT,, = vT,, ey = veysTn, = 0. So Ty, kills R .#(m,)
and by symmetry it also kills R* .# (). Theorem 7.9 gives dimR* .#(n,) = 2. If we
chose a basis {v,w} of R* .#(7,) then {vTi,wTn} is a basis of R .# (7). And it
follows from the explicit description of M (r,0,7) in §9 that (v,vTr) is stable under
the action of ¥ and is isomorphic to M(r,0,7). ]

Proposition 10.6. — Let m and ¢ be as in Proposition 10.5 and let T be an irreducible

representation of G with a central character (. Assume p > 2 and 7 ¥ 7 then
Hom s (#(7),R! # (7)) = 0.

Proof. — Assume that Hom y(.#(7),R! # (7)) # 0 if p > 5 then Proposition 10.5
implies that #(7) & #(w), and hence 7 = 7. Assume that p = 3 then the assump-
tion 0 < 7 < p— 1 forces r = 1. Corollary 7.10 implies that 7/ = x @ x® as an
H-representation, where x is as in (9). It follows from Lemma 10.4 that 7 cannot
be supersingular. Since x # x° we get that 7 is a principal series representation.
Corollary 10.3 implies that Exté(T,w) # 0. Let n be one of the characters w o det,
p—1 odet, wu_1 odet. Since p = 3 and r = 1, (8) gives 7 = 7 @ . Twisting by 7
gives Extg (T ® n,7) # 0, and hence Hom (& (7 ® n), R # (7)) # 0. Since p > 2 [1,
Thm. 34, Cor. 36] imply that 7 % 7®n and so Z(7) % F(7®n) as #-modules. This
implies that dim R! .#(r) is at least 4 x 2 = 8, which contradicts Corollary 7.10. O

Theorem 10.7. — Assume that p > 2 and let 7 and 7 be irreducible smooth repre-
sentations of G admitting a central character. Suppose that w is supersingular and
Extg(7,7) # 0 then T & .
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Proof. — If 0 < r < p — 1 the assertion follows from Corollary 10.3 and Propo-
sition 10.6. Suppose that r € {0,p — 1}. Let J be the image of EXtIG’C(ﬂ',ﬂ') —
Hom s (# (), R #(x)). Then it follows from Propositions 8.2, 9.1 and Lemma 9.3
that dimJ > 3—1 = 2. Hence, . (7)®.# (r) is a submodule of R! .# (). By forgetting
the action of J# we obtain an isomorphism of vector spaces R' .#(r) & H(I,/Z;, ).
Corollary 7.10 implies that dim R' .#(7) = 4. Since dim .#(7) = 2 we obtain

(48) R #(7) = (7)) ® F (7).
Corollary 10.3 implies the result. O

Remark 10.8. — We note that the proof in the regular case 0 < r < p — 1 is purely
representation theoretic and makes no use of Colmez’s functor. The Iwahori case
r € {0,p — 1} could also be done representation theoretically. One needs to work out
the action of ¢ on H'(I1/Z1,m). This can be done, but it is not so pleasant, in
particular p = 3 requires extra arguments.

Lemma 10.9. — Let m = w(r,0,n) with 0 <r <p—1, then
dim £(Q/7) . exTn, > 1, dim I (Q/7).exsTn, > 1.

Proof. — We have an exact sequence of K-representations:
(49) 0 — 71 - QK 5 (Q/m)Kr

Since Q|x = Injo ® Inj &, we have Q%1 2 injo @ inj &, where inj denotes an injective
envelope in the category Repg/k,, [14, 6.2.4]. In [6, 20.1, §16] we have determined
the K-representation 7K1 = 751 @ 751, It follows from the description and [6, 3.4,
3.5] that 751 is isomorphic to the kernel of injo — Ind¥ x. Hence, (22/7)%" contains
Ind¥ x ®Ind¥ x* as a subobject and so (/7)™ contains V := (Ind¥ x @ Ind¥ x*)".
Moreover, V is stable under the action of T},,, and dim Ve, T,,, = dimVe,sT,, =1,

[14, 3.1.11]. This yields the claim. O
Proposition 10.10. — Let m =2 7w(r,0,n) with0<r <p—1. Ifp > 5 then

(50) dim Extj/z, (0,7) <2, dimExty , (5,7) < 2.

If p =3 then

(51) dim Exty/z, (0,7) <3, dimExty , (5,7) < 3.

Proof. — We have Homgz, (o, 7) = Homg/z, (0,), since by construction socg € =
sock m. Moreover, since Q| is injective in Repy . we have Ext}{/zl (0,9) = 0. Hence,
(52) Homg/z, (0, Q/7) = Ext}qzl (o, ).

It follows from [14, 4.1.5] that if x is any smooth K-representation then one has
(53) Hompg, 7, (0, k) = Ker(9 (k)ey -5 .7 (k)exe)-

Now Lemma 10.9, (52) and (53) imply that

(54) dim Ext}{/zl (0,m) < dim S (Q/m)ey — 1 = dimR' #(7)e,.
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It follows from Theorem 7.9 that if p > 5 then dimR' .#(n)e, = 2 and if p = 3 then
dimR' #(n)e, < 3. The same proof also works for &. O

Proposition 10.11. — Let 7 =2 7(r,0,n) with0<r <p—1. If p > 5 then

(55) dim EXtIG)C(ﬂ', ) < 3.

If p=3 then

(56) dim Extg o (7, 7) < 4.

Proof. — Recall that we have an exact sequence:

(57) 0— c-Ind§, o EN ¢Ind$, 0 — 7 — 0.

Applying Homg(*,7) to (57) gives an exact sequence
(58) Homg(c-Ind$ , o, 7) — Extb’c(ﬂ, ) — Extac(c—lndf{z o, ™).

We may think of this exact sequence first as Yoneda Exts in Repg ¢, but since Repg .
has enough injectives Yoneda’s Ext™ is isomorphic to R™ Hom = Ext¢ .. For any A
in Repg . we have

Homg (c—Ind%Z o,A) = Homg/z, (0,FA),

where F : Repg . — Repg  is the restriction. The functor F is exact and maps
injectives to injectives, hence

(59) Extg o (c-Ind% 5 0, A) = Ext} /5 (0,FA).
Now (58), (59) and Proposition 10.10 give the assertion. |

The same proof gives:

Corollary 10.12. — Letn > 1 and 7 = %Z—” orT = %L&. If p > 5 then

dim Exté,c (r,m) < 3; if p=3 then dim ExtIG’C(T, ) < 4.

Theorem 10.13. — Assume p > 2 and m = «(r,0,n) supersingular. If (p,r) # (3,1)
then dim Extlc’c(w, ) = 3.

Proof. — Proposition 8.2 or §A gives dimExtac(Tr,ﬂ') >3 Ifo<r<p-1
then equality follows from Proposition 10.11. If r = 0 or r = p — 1 then
Ext%,(F(r), #(r)) = 0 and Exth,(#(n), #(r)) is 1-dimensional by Lemma
9.3. Hence, (48) and (33) give dim Extac(vr,w) =3. O

For future use we record the following:

~

Proposition 10.14. — Assume p > 2 and @ = w(r,0,7n) supersingular. Let 0 —
F(r) - E — F(n) — 0 be a non-split extension of 5€-modules. If (p,r) # (3,1)
then dim Exté,c(g(E), m) < 3.
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Proof. — If (p,7) # (3,1) then we have R'.#(r) = #(r) ® #(r) and so

dim Hom ¢ (E,R' # (7)) = 2. So if dimExtl,(E, #(7)) < 1 then (33) allows

us to conclude. If » = 0 or r = p — 1 the latter may be deduced from Lemma 9.3. If

0<r<p—1and E & E), ), with A;Ay # 0 then this is given by Lemma 9.5. If
G =

A1A2 = 0 then J(E) & %%L” or %ﬂ and the assertion is given by Corollary

10.12. O

11. Non-supersingular representations

We compute Extb’c(f, m), when 7 is the Steinberg representation of G or a char-
acter and 7 is an irreducible representation of G under the assumption p > 2. The
results of this paper combined with [6] give all the extensions between irreducible
representations of G, when p > 2. We record this below. A lot of cases have been
worked out by different methods by Colmez (7] and Emerton [8]. The new results of
this section are determination of R! .#(Sp), where Sp is the Steinberg representation,

and showing that if n : G — F; is a smooth character of order 2 then Exté(n, Sp) = 0.

Proposition 11.1. — Assume p > 2 and let ¢ : H — F: be a character. Suppose that
Ex‘c}/z1 (v, Sp) # 0 then v = 1 the trivial character. Moreover, dim Ext}/Zl(l, Sp) = 2.

Proof. — 1Tt follows from (7) that w(p — 1,1) = Ind$ 1. By restricting (5) to I we
obtain an exact sequence of I-representations:

(60) 0—-1—1Ind! . 1®Indf p1 - Sp—0.
If we set M := Indj.p, 1 then Indj p1 = M and Mgy = Indg(mu) 1is
an injective envelope of 1 in Repgy(;ny). So (60) is an analog of Theorem 6.3. The

proof of Theorem 7.9 goes through without any changes. For p = 3 we note that
MK = Ind}, k, 1 and hence M satisfies the assumptions of Lemma 7.7. O

Let w : Q) — F: be a character, such that w(p) = 1 and w|Z; is the reduction
map composed with the canonical embedding.

Proposition 11.2. — Assume p > 2 then R' #(1) = M(p — 3,1,w) and R' #(Sp) =
M(p—1,1),
Proof. — Recall (5) gives an exact sequence
(61) 0—-1-7(p—-1,1) > Sp—0.
Applying .# to (61) we get an exact sequence:
0—R' (1) -» R #(n(p —1,1)) — R* #(Sp).

Now [6, Thm. 7.16] asserts that R' #(7(p—1,1)) = M(p—3,1,w)®M(p—1,1). Now
H acts on R* .#(1) and R' #(n(p — 1,1)) via h + Tj-1. It follows from Definition
9.2 that

Mp-1,1)=191, M@p-3,l,w)=Zada’
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as H-representations. Propositions 5.2, 5.4 imply that
R' #(1) = H'(I,/Z1,1) = Hom(I,/Z1,F,) = (k% k') 2 a®a™?

as H-representations. Since p > 2 we get R' .#(1) = M(p—3,1,w). Then M(p—1,1)
is a 2-dimensional submodule of R .# (Sp). However, Proposition 11.1 implies that
R! .#(Sp) is 2-dimensional, so the injection is an isomorphism. |

Lemma11.3. — Let M be an irreducible s#-module. If Extl.(M,#(1)) or
Extl, (M, #(Sp)) is non-zero then M € {#(1),.#(Sp)}. Moreover,

dim Extl,(#(1), #(Sp)) = dim Ext},(.#(Sp), £(1)) = 1.
If p > 2 then Ext},(#(1), #(1)) and Ext},(.#(Sp), #(Sp)) are zero, and if p = 2

then both spaces are 1-dimensional.

Proof. — Recall that (6) gives an exact sequence:

(62) 0—Sp—w(0,1) - 1—0.

Applying .# we obtain an exact sequence:

(63) 0— #(Sp) » M(0,1) - #(1) — 0.

If Extl,(M,#(Sp)) # 0 and M 2% .#(1) then from (63) we obtain that
Extl, (N, M(0,1)) # 0, and [6, Cor.6.5] implies that M is either a subquotient
of M(0,1) or a subquotient of M(p — 1,1). Hence M = .#(Sp). Using (61) one
can deal in the same way with Ext}, (N, #(1)). Since .#(1) and .#(Sp) are one

dimensional, one can verify the rest by hand using the description of 7 in terms of
generators and relations given in (36). O

Let m and 7 be irreducible representations of G admitting the same central char-
acter (. Assume that 7 is not supersingular. When p > 2 for given m we are going
to list all 7 such that Exté,c(r, 7) # 0. If one is interested in Extf (7, 7) then this
can be deduced from Proposition 8.1. If n : G — F: is a smooth character then
Extac('r QnmTRN) X Extac(r, 7). Hence, we may assume that = is 1, Sp or
m(r,A) with A # 0 and (r,\) # (0,%1), (r,A) # (p — 1,£1). Recall if A # 0 and
(r,A) # (0,%£1) then [1, Thm. 30] asserts that
(64) 7(r,A) = Ind$ py-1 ® prw’”.

It follows from (64) that if A # +1 then 7(0, ) & n(p — 1, A). Hence, we may assume
that 1 < r < p— 1. Propositions 9.1 and 10.2 gives us an exact sequence:
(65) Exthy (F(1), (7)) — Ethcyc(T, 7) — Hom e (F (1), R* F(x)).

Theorem 11.4. — Let 7, 7 and ¢ be as above. Assume thatp > 2 and ExtIG,C(T, ) # 0.
Let d be the dimension of Extac(r, ).
(i) #f m & 1 then one of the following holds:
(a) 7= Sp, andd=1;
) p>5,7=n(p—3,L,w)2hdwew ! andd=1;
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(c) p=3, 7=Sp®wodet andd =1;
(ii) ¢f m 2 Sp then 7 =1 and d = 2;

Proof. — This follows from (65), Lemma 11.3 and Proposition 11.2. We note that if
p = 3 then m(p—3, 1,w) is reducible, but has a unique irreducible subobject isomorphic
to Sp ® w o det. O

For the sake of completeness we also deal with Extac('r, m) when 7 is irreducible
principal series. We deduce the results from [6, §8], but they are also contained in [7]
and [8].

Theorem 11.5. — Let w, T and ¢ be as above. Assume that p > 2, © = 7(r,\) with
1<r<p-1,A EF: and (r,\) # (p—1,%1). Then

Extlac(ﬂ'('r, A), m(r,A)) & Hom(Q;,Fp).

In particular, dimExtIG’C(n(r, A),m(r,A)) = 2. Moreover, suppose that T % 7 and
Extlcyc(r, m) # 0. Let d be the dimension of Extéyc(r, m) then one of the following
holds:
(i) i (r,A) = (p — 2,%1) then such T does not ezist;
(i) if (r,A) = (p—3,£1) (hencep >5) then T2 Sp @ w~lpui; odet and d = 1;
(iii) otherwise, 7 = m(s,A\"1,w™*1), where0 < s < p—2 and s = p—3—r (mod p—1),
andd=1.

~

Remark 11.6. — Note that if # = w(r,\) is as in (i) and we write m =
Ind,cév 1 ® how™1, then it follows from (64) that w(s,\~1, w"+!) = Indg Yo ® Yrw L.

Proof. — The first assertion follows from [6, Cor.8.2]. Assume that 7 2 7 then it
follows from [6, Cor.6.5, 6.6, 6.7] that Extl,(.#(7),.#(r)) = 0. Hence, (65) implies
that Extac(T, 7) = Homy(F(7),R' #(n)). The assertions (i),(ii) and (iii) follow
from [6, Thm. 7.16], where R' .#(r) is determined. The difference between (ii) and
(iii) is accounted for by the fact that if » = p — 3 then s = 0 and if A = £1 then
7(s, A" w'tl) = 7(0,4£1,wP~2), which is reducible, but has a unique irreducible
submodule isomorphic to Sp ® w™!uy; o det. a

Appendix A
Lower bound on dim Ext} (7, )

Let F be a finite field of characteristic p > 2 and W (F) the ring of Witt vectors.
Let 0 <r < p—1 be an integer and set
G
() = c-Ind% , Sym" F?
(T)
We note that the endomorphism T is defined over F, see [1, Prop 1]. In this section,

we bound the dimension of Extg(7(r), 7(r)) from below, using the ideas of Colmez
and Kisin. Let L be a finite extension of W (F)[1/p] and & the ring of integers in L.
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Let ¢, be the absolute Galois group of Q,. Let Rep, G be the category of O[G]-
modules of finite length, with the central character, and such that the action of G is
continuous for the discrete topology. Let Rep, %, be the category of &%, ]-modules
of finite length, such that the action of ¥, is continuous for the discrete topology.
Colmez in [7] has defined an exact functor

V :Rep, G — Repy %, -

Set p(r) := V(= (r)), then p(r) is an absolutely irreducible 2-dimensional F-represen-

tation of ¥p,, uniquely determined by the following: detp = w™t1; the restriction of

p to inertia is isomorphic to wi*! ® wE"Y) where ws is the fundamental character

of Serre of niveau 2. In the notation of [5], p(r) = indwj**. We note that since, m(r)

and p(r) are absolutely irreducible, the functor V induces an isomorphism:
(66) Homg(n(r), n(r)) = Homg, (p(r),p(r)) = F.

Let n : 9%, — O be a crystalline character lifting ¢ := w" the central character of
m(r). We consider 7 as a character of the centre of G, Z(G) = Q; via the class field
theory. To simplify the notation we set m := 7(r) and p := p(r). Let Repy” G be the
full subcategory of Rep, G, such that 7 is an object in Repy;” G if and only if the
central character of 7 is equal to (the image of) 7, and the irreducible subquotients
of T are isomorphic to 7. We note that Repy;” G is abelian.

For 7 and & in Repl;” G we let Extg(k,7) be the Yoneda Ext' in Rep;” G, so an
element of Extj(k, ) can be viewed as an equivalence class of an exact sequence

(67) 0—-7—>FE—Kk—0,

where F lies in Repy;” G. Applying V to (67) we get an exact sequence 0 — V(1) —

V(F) — V (k) — 0. Hence, a map
(68) Extg(k, ) — Ext}%p (V(k), V(7)).
A theorem of Colmez (7, VIL.5.3] asserts that (68) is injective, when 7 =k = 7.

Lemma A.1. — Let T and k be in Repg77 G then V induces an isomorphism, and an
injection respectively:

Homg(k, ) & HomgQp (V(k),V(1)),

Extg(k, T) — Extlg% (V(k), V(1)).
Proof. — We may assume that 7 # 0 and k # 0. We argue by induction on £(7)+£(x),
where £ is the length as an &[G]-module. If ¢(7) + £(k) = 2 then 7 = k = 7 and the

assertion about Ext' is a Theorem of Colmez cited above, the assertion about Hom
follows from (66). Assume that £(7) > 1 then we have an exact sequence:

(69) 07 >7—>m—0.
Since V is exact we get an exact sequence:

(70) 0— V(') = V(1) = V() — 0.
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Applying Homg(k,.) to (69) and Homg, (V(k),.) to (70) we obtain two long exact
sequences, and a map between them induced by V. With the obvious notation we
get a commutative diagram:

0 A° B c° Af Bl C’[f
0 0 B° €0 ! B! €.

The first and third vertical arrows are isomorphisms, fourth and sixth injections by
induction hypothesis. This implies that the second arrow is an isomorphism, and the
fifth is an injection. Hence,

Homg(k, ) & HomgQp (V(k),V(7)),
Exty(k,7) — Ext}%p (V(k), V(7).

If (r) = 1 and 4(k) > 1 then one may argue similarly with Homg(.,7) and
Homg, (., V(7). a

From now on we assume that (p,r) # (3,1). Let Repg"” %, be the full subcategory
of Rep, ¥, , with objects p’, such that there exists 7’ in Repy” G with p' = V(n').
Lemma A.l1 implies that V induces an equivalence of categories between Rep;;”7 G
and Repy"” %g,. In particular, Repy” %, is abelian. We define three deformation
problems for p, closely following Mazur [12]. Let D* be the universal deformation
problem; D“" the deformation problem with the determinant condition, so that we
consider the deformations with determinant equal to wn, [12, §24]; D™" a deformation
problem with the categorical condition, so that we consider those deformations, which
as representations of €[%g,] lie in Repg” %,, [12, §25], [15]. Since p is absolutely
irreducible, the functors D%, D“" D™" are (pro-)representable by complete local
noetherian &-algebras R*, R¥", R™" respectively. By the universality of R* we have
surjections R* —» R“"7 and R* — R™".

For p' in Repy %, we set hi(p') := dimp H(%g,,p'). Let V be the underlying vec-
tor space of p, the ¥, acts by conjugation on Endr V. We denote this representation
by Ad(p), in particular Ad(p) = p ® p*. Local Tate duality gives

R(p®p*) =h(p®p* @w) = dimHomgQP(p,p(X)w).

Now [4, Lem. 4.2.2] implies that p & pQuw if and only if p = 2 or (p,7) = (3,1). Since
both cases are excluded here, we have h?(Ad(p)) = 0. Since p is absolutely irreducible
h%(p ® p*) = 1. The local Euler characteristic gives:

4=dimp® p* = -k’ (p® p*) + h' (p® p*) — K*(p ® p*)
and so h'(Ad(p)) = 5. Since p > 2 the exact sequence of ¥y, -representations:
0 — Ad%(p) — Ad(p) Ao )

splits. Hence h'(Ad°(p)) = 3 and h?(Ad°(p)) = 0. It follows from [11] that R* =
O|[t1,...,ts]] and R¥" = O[[t1, t2,t3]].
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Inverting p we get surjections R*[1/p] - R“"[1/p] and R*[1/p] -» R™"[1/p], and
hence closed embeddings

Spec R“"[1/p] — Spec R*[1/p], Spec R™"(1/p] — Spec R*[1/p].

Let z € Spec R“"[1/p] be a closed point with residue field E. Specializing at z
we obtain a continuous 2-dimensional E-representation V, of %g,. Suppose that V,
is crystalline, and if A;, Ao are eigenvalues of ¢ on Derys(Vy) then A1 # Ay and
A1 # AopT! then Berger-Breuil in [3] associate to V, a unitary E-Banach space
representation B, of G. Choose a G-invariant norm on B, defining the topology
and such that ||B,|| C |E| and let BS be the unit ball with respect to || . |. Berger
has shown in [2] that B ® 5, F = 7 as G-representations. The constructions in [3]
and [7] are mutually inverse to one another. This means

V2 = E ®g, lim V(B /w} By).

Hence, every such z also lies in Spec R™"[1/p]. A Theorem of Kisin [10, 1.3.4] as-
serts that the set of crystalline points, satisfying the conditions above, is Zariski
dense in Spec R“"[1/p]. Since Spec R“"[1/p] and Spec R™"[1/p| are closed subsets of
Spec R*[1/p], we get that Spec R“"[1/p] is contained in Spec R™"[1/p]. Since R“"[1/p]
is reduced we get a surjective homomorphism R™"[1/p] - R“"[1/p]. Let I be the
kernel of R* —» R™" and let a € I. The image of a in R™"[1/p] is zero, hence a maps
to 0 in R“"[1/p]. Since R“" is p-torsion free, the map R“" — R“"[1/p] is injective,
and hence the image of a in R“" is zero. So the surjection R* — R“" factors through
R™" — R“". Let m, , and m,, be the maximal ideals in R™" and R“" respectively.
Then we obtain a surjection:
My My

wrR™ +m2 | - w R +m?,

(71) D™"(Fle])* = = D*"(Flel)”,

where F[¢] is the dual numbers, €2 = 0, and star denotes F-linear dual. It follows from
(71) that dimy D™"(F[e]) > dimp D“"(F[e]) = 3. Now D*(F[e]) = Ext]}?[%p](p, p), 12,
§22| and so D™"(F[e]) is isomorphic to the image of Extac (m,m) in Ext]}[g@p](p, p) via
(68), where Extgic(w, m) is Yoneda Ext in the category of smooth F-representations
of G with central character (. Now, [7, VIL.5.3] implies that the map Extac(w, ) —
Ext[}[g@p](p, p) is an injection. We obtain:

Theorem A.2. — Let m be as above and assume that (p,v)# (3,1) then
dimp Exté,c(w,'/r) > 3.
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