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HIDDEN STRUCTURES ON SEMISTABLE CURVES 

by 

Robert Coleman & Adrian Iovita 

Abstract. — Let V be the ring of integers of a finite extension of Q P and let X be 
a proper curve over V with semistable special fiber and smooth generic fiber. In 
this article we explicitly describe the Frobenius and monodromy operators on the 
log crystalline cohomology of X with values in a regular log F-isocrystal in terms of 
p-adic integration. We have a version for open curves and as an application we prove 
that two differently defined -invariants, attached to a split multiplicative at p new 
elliptic eigenform, are equal. 
Résumé (Structures cachées sur les courbes semi-stables). — Soit V l'anneau des entiers 
d'une extension finie de QP et soit X une courbe propre sur V à fibre spéciale se­
mistable et à fibre générique lisse. Dans cet article nous décrivons explicitement les 
opérateurs de Frobenius et de monodromie sur la cohomologie log cristalline de X à 
valeurs dans un log F-isocristal régulier, en termes d'intégration p-adique. Nous pro­
posons une version pour les courbes ouvertes et en guise d'application nous prouvons 
que deux ^-invariants définis de façon différente, attachés à une forme modulaire 
nouvelle multiplicative en p, sont égaux. 

1. Introduction 

Let K be a finite extension of Qp and X an algebraic variety over K. As Illusie 
remarked in Cohomologie de de Rham et cohomologie étale p-adique [I], "le groupe 
H\R(X/K) se trouve muni d'une structure plus riche qu'il n'y paraît de prime abord." 
This "hidden structure" has been discussed by many people including Berthelot and 
Ogus [BO] when X is proper with good reduction and more generally by Hyodo and 
Kato [HK]. In this paper, we expose it in the relative situation over a curve with semi-
stable reduction using residues and p-adic integration. More precisely we study de 
Rham cohomology of a semi-stable curve with coefficients in the relative cohomology 
of a smooth proper family over that curve. The information on crystalline and de 
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180 R. COLEMAN & A. IOVITA 

Rham cohomology of a curve with semi-stable reduction supplied by this article is 
similar to that of the theory of vanishing cycles for ^-adic cohomology. 

Suppose K has residue field k and ring of integers V. Let W := W(k) denote the 
ring of Witt-vectors with coefficients in k, KQ its fraction field and we denote by a the 
Probenius automorphism of KQ. Let CK be a smooth projective curve over K with a 
semi-stable model C over V. By this we mean that locally C is smooth over Spec(F) 
or etale over Spec (V[-X", Y]/(XY — 7r)), where 7r is a uniformizer of V. Denote by 
C := C xSpe c(V) Spec(fc), its special fiber and by Sing, the singular sub-scheme of C. 

Then the vector space H\R(CK) has enough hidden structure so that one can 
recover the corresponding representation of GK = Gal(K/K) on the etale cohomology 
of Cj(, a la Fontaine. I.e. besides the Hodge filtration it has a .Ko-lattice (the log-
crystalline cohomology of C with Qp-coefficients) with linear monodromy and cr-semi-
linear Probenius operators. One can use this to describe the representation. This is 
true much more generally (see for example [18] and [39].) 

Let g: Z —• C be a flat proper morphism. Suppose P is a sub-scheme of C, finite 
and etale over V whose reduction is disjoint from Sing. Let Cx be the log formal 
scheme over V associated to the pair (C, P) (i.e. the formal completion of C along 
its special fiber together with the log-structure associated to P). Denote g~1(P) by 
Dp and let Zx be the log formal scheme over V associated to the pair (Z, Dp). We'll 
abuse notation and also let g: Zx —• Cx denote the morphism of log formal schemes 
induced by g. Then Dp is a divisor of Z and we will suppose from now on that DpUZ 
is a reduced divisor with normal crossings. Here Z is the special fiber of Z. Suppose 
that the restriction of g induces a smooth proper map (Z\Dp) —• (C\P). Then, 
under all of the assumptions above g: Zx —> C x is log smooth. 

For example, if C = X(N,p) := Xi(JV) x x ( 1 ) X 0 (p) where (N,p) = 1 and N > 4, 
Z = E(N,p), the universal generalized elliptic curve over C with level structure and 
/ : Z —• C is the natural map, then if one takes P to be the divisor of cusps on C, 
the quadruple (C, Z, f, P) satisfies the above conditions. 

I fM, j>0 , Shij(Z/C,P) will denote the h-th hypercohomology group of the com­

plex of sheaves, SymjG^Z/CP) Sy-^° SymP&iZ/CP) ® nJ, / J C(log(Px)), where 

&{Z/C,P) = K®V R ^ ^ x / c x = K®V WdR(Zx/Cx) 

and D is the Gauss-Manin connection. 
The group Shi:>(Z/C1P) naturally has a Hodge filtration which we call 

<^rhlj,*(Z/C,P). After choosing a branch of the p-adic logarithm on KX, we 
will use the rigid geometry of Z/C and p-adic integration to produce a l^o-lattice 
SiJt

j(Z/C,P) in Shij(Z/C,P), a linear operator Njf* on this lattice and make a 
a-semi-linear operator Nj?1 on Shij(Z/C,P) such that N^Q^ = pQ^Nj?1. 

A four-tuple (M, F, TV, where M is a finite dimensional vector space over KQ, F 
and N are cr-semi-linear and respectively linear operators on M such that NF = pFN 
and F is a decreasing exhaustive filtration of MK := M<S)K0K by K-vector subspaces 
is called a filtered, Probenius, monodromy (FFM) module over K (see [19]). The 
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category of FFM-modules is an additive, tensor category with kernels, cokernels and 
a notion of short exact sequences but it is not abelian. Its subcategory of weakly 
admissible modules (which are now known to be admissible by [13]) is abelian, see 
also [19]. To a (^-representation of G#, Fontaine associated an FFM-module and if 
this representation "comes from geometry" one can recover it from the FFM-module. 

In particular, if g : Z —> C is as above then 

M^t

j(Z/C,P): (S?BiJ(Z/C,P) <3>INT Nint J^>(C,P)) 
is an FFM-module over K. 

We will prove, 

Theorem 1.1. - The FFM-module Mhij 
int 

WC,P) is the one associated to 

Yhii{Z/C,P) := Hhet((C - P^Sym ' iÄV . aQp)) 
via Fontaine theory. In particular, 

Yhij(Z/C,P) ^ (Bst®(M?niJ(Z/C,P))) &=Id,N=0 nFil0 

{BÍK®KM№J{Z/C,P)K). 

We obtain our theorem from results of Faltings [17], which we now describe. 
Let us denote by C* the scheme C with the inverse image log structure from C x . 

Suppose £ is a filtered logarithmic F-isocrystal on C . Such an object associates 
to the "enlargements" (thickenings) of C (see [32] for the non-logarithmic case and 
[16], [34],[35] in general) coherent sheaves in a compatible way. We will recall the 
precise definitions in Sections 3.3 and 6. The notion of an F-isocrystal and it's initial 
development is due to Berthelot and Ogus [2], [32]. The notion of a filtered loga­
rithmic F-isocrystal was defined by Faltings in [16] and developed by Shiho in [34] 
and [35]. In particular, one gets from £ a coherent sheaf £q* on Ck with an inte­
grable connection D with logarithmic singularities at P. Therefore, if g, Z, C and P 
are as above, there is a filtered log-F isocrystal <^¿/C on C which associates to the 

enlargement Cx, SymjG^Z/C, P). 
In [17], Faltings associated étale local systems on C, h(S>) to certain (very 

special) filtered log-F isocrystals, £\ and made families of FFM-modules, 
(Hdeg(E),Qdeg,Ndeg,Fh,deg (see Section 2.1 for more details). Let us very briefly 

describe Hdeg(E) It is the log crystalline cohomology on C, with a certain log 

structure C * A , with values in £\ As C is a reduced divisor with normal crossings in 
C, let C x x be C with the log-structure induced by C U P. Let C X X be C with the 
pull back log structure. Similarly, let Spec(F) x be Spec(F) with the log structure 
given by the closed point, let Spec(fc)x be Spec(/c) with the pull-back log structure 
and let Spec(PF) x be Spec(VK) with the Teichmuller lift of the log structure on 
Spec(fc)x. Then £ is a filtered log F-isocrystal on C** over Spec(VT)x and we set 
H%eg(£) := ^ r i s ( C X X / S p e c ( W ) x , ^ ) for h > 0. It is proved in [17] that the Stale 
cohomology H^t((C — P)j^,h(£)) and these FFM-modules are associated to each 
other via Fontaine's theory. In the case, C = EijZ/C Hdeg (E)Oko K= Shij(Z/C,P), 
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182 R. COLEMAN & A. IOVITA 

Fdge is the Hodge nitration and H^C - P)j?,US)) = rhij(z/c,p). In this 

paper, we will extend the definitions in [CI] of FFM-modules H^nt(S) to regular (see 

Section 6) logarithmic F-isocrystals & on C over Spec(VT) and prove 

H*(s ) = HU*) 

for all h > 0, when all the irreducible components of C are absolutely irreducible. 
We have several applications of our theorem. We first point out that our descrip­

tions of the operators $ 1^ l t, A^ n t are more explicit than those of the corresponding 
operators defined by Hyodo-Kato in ([23]) and Faltings in ([17]). If C = X(N,p), 
with (N,p) = 1 and N > 4 (see the notations above) and S = Sym j G 1 (E/C, P) then 
we prove that the rank of N*e* on H^ÇÇ* '* /Spec(W) x ,gy>-new is exactly half 
the dimension over Ko of this vector space (see Corollary 7.4.) As a consequence we 
derive that if / is a p-new cuspidal eigenform of weight k = j + 2 on X(N,p) and Vf 
denotes the p-adic G^-representation attached to / , then Vf is semi-stable but not 
crystalline (Corollary 7.5). This was proved in [33] in a very indirect way, using the 
local Langlands correspondence and results of Carayol on the rank of the monodromy 
operator on the £-adic (£ ^ p) Weil-Deligne representation attached to / . 

Our main result is also used in [24] in order to give an explicit description of the 
image of the p-adic Abel-Jacobi map applied to Heegner cycles on certain Shimura 
curves in terms of extension classes in the category of FFM-modules. In particular a 
p-adic Gross-Zagier formula for higher weight modular forms is proved in that paper. 

Finally, another application of our results is to get an explicit description of the 
Mazur-Tate-Teitelbaum J?F-invariants which we now describe. 

Suppose now that k > 0 is an integer and (M, F, N, c P m ) is a FFM-module over 
K such that &%M is MK for i < k and it is 0 for i > k + 2. Suppose Jff is a 
commutative Zp-algebra free of finite rank which acts on M such that J^" f c + 1M is a 
rank 1 Jtfq := Jtf 0 Qp-submodule, 

MK = &k+1M 0 (N ® 1K)MK 

and JV <8> I * : J ^ + 1 M —• (N <8> 1K)MK is a non-zero J#qp-isomorphism. Then, if 
v G M is an eigenvector for F such that (N (g> \K)MK = ^qp • Nv, the ^-invariant 
Jjf(M) of (M, F, AT, &(D)M) is the unique element in JfQp such that 

v - ^(M)Nv e J?k+1M. 

The general definition of an jSf-invariant becomes arithmetically significant when 
we attach it to a cuspidal newform on X(N,p) of weight k + 2 (as above), with k > 0 
even, which is split multiplicative at p. This means precisely that ap = pkl2 (see 
[29].) The quest for an Jzf-invariant which is intimately connected to the relationship 
between complex and p-adic L-functions was initiated by Mazur-Tate-Teitelbaum (86) 
in [30]. There, a definition in the weight 2 case was offered. Its relationship with values 
of L-functions was established by Greenberg and Stevens using Hida theory (91) in 
[20]. Teitelbaum proposed the first definition in the higher weight case under some 
restrictions on the level using the uniformization of Shimura curves by the p-adic 
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upper half plane (90) in [38] (his definition does not involve a FFM-module but see 
[24]), the first author of the present paper offered a definition using the FFM-module 
M^t

j(E(N,p)/X(N,p), Cusps) and 3tf is the Hecke-algebra acting on X(N,p), in [8]. 
Finally, Fontaine-Mazur defined an ^-invariant associated to a cusp form as above 
using the FFM-module Dst(V), where V is the local Galois representation attached to 
the cusp form and Dst is Fontaine's functor (see [19]) in [29]. The algebra Jf? is again 
the Hecke algebra acting on X(N,p). K. Kato, M. Kurihara and T. Tsuji established 
the connection between the «if-invariant of Fontaine and Mazur and special values of 
the complex and p-adic L-functions while G. Stevens has established the connection 
between the J^f-invariant defined in [8] and special values of the complex and p-adic 
L-functions using p-adic families of modular forms, see [37]. The result of Kato, 
Kurihara and Tsuji has not yet been published. The present paper together with 
the results in [24] establishes the equality of all the j£f-invariants (whenever they 
are defined). Of course, the results of Kato-Kurihara-Tsuji and Stevens togeher also 
imply (indirectly) the equality of the Jjf-invariants defined in [8] and the corresponding 
Fontaine-Mazur Jzf-invariants. 

We mention that P. Colmez also proved (in [12]) a formula giving the ^-invariant 
of Fontaine-Mazur as derivative of a family of eigenvalues of Frobenius. Together with 
the result of Stevens mentioned above involving the ^Sf-invariant defined in [8], this 
gives another local proof of the equality of the two «5?-invariants we consider. 

In [21] Grosse-Klonne extended the Hyodo-Kato theory and showed that there are 
natural Frobenius and monodromy operators on the de Rham cohomology of a quite 
general rigid space. He has been able to explicitly compute these when the space is a 
quotient of a p-adic symmetric domain. 

Writing this paper we had two options, namely to present the definitions, state­
ments and proofs in the most general case (the logarithmic case), which would have 
made the notations very complicated and would have obscured the ideas of the 
proofs or, to first present some of the definitions, statements and proofs in the non-
logarithmic case, then to give the definitions and make the precise statements in 
general and leave it to the reader to check that the same proofs go through with the 
obvious adjustments. We choose to do the latter. 

Acknowledgements. — We would like to use this opportunity to thank the referee 
of the first draft of this paper for the careful proofreading of the text and the lengthy 
report which pointed out a few serious mistakes and many small ones. In some cases 
solutions were offered to overcome the problems and many suggestions were made for 
the improvement of the presentation. We re-wrote the paper largely following the 
referee's suggestions. 

Thus, it should be understood that the paper owes much to this report and we are 
very grateful to its author for his/her help. 

Some of the re-writing of the paper was done while the second author was a visitor 
of the École polytechnique, Paris and of Université Paris 13, Paris. He is very grateful 
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to these institutions and to his hosts Pierre Colmez and Jacques Tilouine for their 
kind hospitality and encouragements. 

We thank Christophe Breuil and the editors of Astérisque for gracefully extending 
submission deadlines. 

2. Definitions of the operators 

Let K, V, k, W, KQ, CK, C, P, C, P be as in Section 1. Let us recall that we suppose 
that the reduction of P , P does not meet the singular divisor of C. We endow the 
formal completion of C along its special fiber with the natural log structure defined 
by the divisor P and denote the resulting formal log scheme by CX. We let CX denote 
the log scheme C with the inverse image log structure. We also denote by CXX the 
formal completion of C along its special fiber with log structure given by the divisor 
with normal crossings P U C. We denote CXX the scheme C with the inverse image 
log structure. Let § be a filtered log F-isocrystal on Cx . We fix a uniformizer n of 
K and fix the branch, log, of the p-adic logarithm in KX such that log(7r) = 0. Then, 
if £ is regular (see below) there are two ways to attach a family of FFM-modules to 
<f, as we shall explain below. 

2.1. The definition via degeneration. — We first briefly review the definition 
given by G. Faltings in [17]. We give more details in later sections. By deformation 
theory, the pair (C, P) can be regarded as the fiber at the point n of 5? := Spf(W[[t]]) 
over W, of a pair (X,P) consisting of a family of curves X defined over L and a 
smooth divisor &. of X over 5?. Let Xx denote the log formal scheme X with the log 
structure given by the divisor &. Let / : X —> 5? denote the structure morphism. 
Let & denote the fiber of this morphism at t = 0. Then & and Y are disjoint and 
<3f is a divisor of X with normal crossings. We denote by Xx x the formal scheme X 
with the log structure associated to the divisor & U <&. If we let X = 3t r i g , S = ^rig 
and Prig :— Px denote the rigid analytic spaces over KQ associated to X,P and & 
respectively and if / : X —• S is the induced morphism then we have 

i) X —> Spec(ifo) is smooth 

n) Y := /-1(0) = ^ r i g is a semi-stable curve over KQ 

iü) P 0 := Px H Y is dis i oint from the singular divisor of Y 

iv) f\x. : X* = (X - Y) —• S* = (S - {0}) is smooth. 

The evaluation of <§ on X x is a coherent ^ - m o d u l e ^ x ? w ^ h a relative, logarithmic, 
integrable connection Dx/s- Let us denote by i^x/s ^ne comPlex 01 sheaves on X 

4* °^ &x* ®ex ^ / s(log(yuP x)) 
The relative connection Dx/s 1S induced from the absolute connection: 

<%x ^ ° <^x E x x O x ^ / X o ( l o g ( P x ) ) 
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by composing with the natural map: Q 1 

LLX/K0 

( l o g ( P x ) ) ^ ^ / 5 ( l o g ( F u P x ) ) . 

See Section 3.3 and Section 6. We denote by EI* the i-th logarithmic relative de 
Rham cohomology group of X/S with coefficients in ¿>x* > i-e- the sheaf Wf*{K^^) 
for i = 0,1,2. For every ¿, HP is a free ^s-module with an integrable, regular-singular 
connection 

Vi'.W —-ff ®ûs Íl| / l f o(log0). 

Fix a parameter t on 5, with t(0) = 0. The Frobenius on S together with the 
Frobenius (p on S which sends t to tp and acts on the coefficients as the absolute 
Frobenius on Ko, endow HP with a (^-semi-linear, horizontal (with respect to V») 
Frobenius operator 

$»: <p*HP —»HP. 

If s is a point of 5, let His denote the fiber of HP at s. The i-th logarithmic de 
Rham cohomology of CK, with coefficients in <?Cx, HL

DR(CK,&c*) is canonically 
isomorphic to M .̂ (Recall, P is the fiber of Px at 5 = 7r.) We denote these groups by 
iP(C, P, <?). On the other hand, WQ is canonically isomorphic to the logarithmic de 
Rham cohomology of Y with coefficients in <f̂ x , i.e. the i-th hypercohomology on Y 
of the complex of sheaves 

Eyx Dy/W Ey xOey Ayxx/Spf(W)x, 

where Yxx is the formal scheme with the inverse image log structure from 3 t x x . 
We denote this group by Hl{Y, P 0 ,E) 

Now let H\eg(g) denote the FFM-module ( i P ( y , P 0 , <f), $ f g , iV"f e g , J^ e g ) , where 
the operators are defined as follows 

the monodromy operator: NDEG = Res 0(V ¿) : H* (Y, P 0 , <?) — / P ( F , P 0 , <f ), 
and 

the Frobenius operator: <£d e g 

г 
= Qi|Hi(Y,Po,S) : Hi(Y,Po,E) ---> Hi(Y,Po,E) 

These operators satisfy Ndeg^deg Ndeg^deg 

We still have to define the filtration on (HL

DEG(S>))K := fP(Y,P 0,<?) % 0 if. For 
this let us recall from [4] (this was also proved in [17]) that the triple (HP, Vf,$») is 
determined by the triple ( iP(y, P 0 , <f), ivf e g , $ ? e g ) . More precisely we have a natural, 
horizontal, Frobenius-equivariant isomorphism of ^5-modules 

(H\ Vi, *i) * (ff'iK, Po, <?) 0s, (Vi)', <8> ¥>), 

where the connection (V¿)' is defined by, 

{Vi)'(h®x) = iVfeg(/i)®2 
dt 

t 
/idx, for all /1 e H1 (Y, PQ,£),X section of ûs. 

Here a few comments are in order. For i = 0,2 the pair (HP,V^) is very simple. 
Namely, let i = 0. Then M° = (gXx (X))Dx/s =: J 5 x / 5 and the connection V 0 is the 
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composition 

Ex/s Dx/ko Ex/s ®ûs Ex,s®üs ÎÏ5(log(0)), 

where T>X/KQ is the absolute connection mentioned at the beginning of this sec­
tion. Therefore N{feg = Reso(Vo) = 0 and so applying the above we get that 
M° ^ H°(Y,P0,£) ®k 0 &s and (V 0 ) ' (therefore also V 0 ) is the trivial connection. 
The same happens for i = 2 by Poincaré duality (see [17]). 

Vi is not trivial in general so let us define Hlog = H 1 (g)̂ >s &s[£(i)], where £{t) is 
a variable. We endow H,1 with the connection Vi(log) := Vi <g> 1 + 1 0 d where 

d : ûs№] — ûs№] ®0s iìW o(log(0)) is defined by d(£(t)) = 1 (8 
dt 

t 
For all h e H1 (Y, P 0 , S) the sections of M¡og 

h®l-N*eg(h)®£(t) 
are horizontal for Vi(log) hence the connection Vi(log) is trivial. 

Therefore, letting EH]og = HP if i — 0,2 we have for i = 0,1,2 and every if-point 
s / 0 of S natural identifications (by parallel transport, see [14]) 

№egW)* = H\Y,P0,S) ®Ko K - (Hfog)s 

where by (Hf ) s we denote the pull back of Hilog by the map ^[-£(£)] —• K send­
ing t —> 5 and -£(£) —> log(s), where let us recall that the branch of the logarithm 
chosen at the beginning of this section is such that log(7r) = 0. In particular, for 

s = 7T we have (Hlog*),=Ht=HdR(C K ,£ c «{\og{P)) and we define the filtration on 

(HLA<?))K 
to be the inverse image under this isomorphism of the Hodge filtration 

on HdR(CK,<?c«(log(P)) 

Remark 2.1. — Actually Faltings does not mention the basis of horizontal sections 
defined above in [17] and it seems to us that he does not identify fibers ofW[og (see 
also the remark before Lemma 2.1 in [17]J. 

2.2. The definition via p-adic integration. — We generalize the definition given 
in [8] when & is regular. As pointed out above, the evaluation of § on C x is a co­
herent <^c*r-module with a regular singular (at P) integrable connection D: SCx —• 

Ecx Oack fl* Ck/K(log(P)) Recall that we have denoted by iP(C,P,é>E) the if-vector 

spaces HdR{CK,êc,{\og{P)) for i = 0,1,2.. The following lemma will be proved in 
Section 3.3 

Lemma 2.2. — The connection D has a basis of horizontal sections on every residue 
class ofCx-

We'll assume that the components of C are smooth, absolutely irreducible and 
there are at least two of them. Also suppose that the singular points of the reduction 
are defined over k. 
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For i = 0,2 we have the if 0-lattices in iP (G, P,E) HU£) := Hcris(Cxx ,E) with 
the respective Frobenii and zero monodromies. The nitrations on iP(G, P, &) are the 
respective Hodge nitrations. 

For i = 1 the situation is more complicated. For an admissible covering Of of a 
rigid space let G := G(@) be the graph whose vertices v(G) are the elements of @ 
and whose oriented edges e{G) correspond to ordered triples e := (U, V, W) where 
U 7̂  V G @ and A e := W is a connected component of U D V. Also, if e is such 
an edge then its origin a(e) is U and its end b(e) is V. We set r(e) = (V, 1/, W). If 
v G t>(G(^)) we will denote by Uv the element of @ corresponding to it. We choose 
and fix a system of representatives e(G) of the quotient set e(G)/r. 

Consider 

if = {red 1Z: Z is a component of C}, 

where red: G^ = G r i g —• G is the reduction map. Then C is an admissible open 
cover of CK by wide opens (see [7]). Let G = G(^) , v(G) be the vertices of G and 
e(G), the edges of G. If v G t/(G), G v will denote the corresponding component of 
G. We also set Gj = CV — \JW^V CW. In this situation, for each e G e(G), A e is an 
oriented wide open annulus. Given Lemma 2.2, there is a natural residue map 

Res e : HlR{Ae, Sc, ) S H°dR{Ae, Sc, ) = (<?c*\At)
D. 

We will sometimes abuse notation and allow Res e to denote the composition of Res e 

with the natural map from HL(C, P, S) to H^R(Ae, $c* )• 
Elements of HL(C, P, S) are represented by pairs of collections 

(Wv}vev(G)Afe}eee(G)) 

where w„ € (^c®^)(logF,))(C/„) and / e e £{Ae) are such that 

wa(e)U e - ^ö(e)Ue = £>/e 

for all e G e(G). We denote P DUV by P v . From the Mayer-Vietoris exact sequence 
corresponding to the covering ^ we get a short exact sequence 
(1) 

0 - (eeee(G)H2R(Ae, <?c* ))/(®vev{G)H%R(Uv, Sc, (log(Pv)))) H\C,P,£) 

A Ker(© v € v ( G ) Jf^C^, (?CX (log(Pv))) - E e €e(G)^Ä(^e, Ecx)) - 0. 

First, let us observe that the left and right terms in the exact sequence (1) have 
natural ifo-lattices, with Frobenii. To see this, note that H®R(Ae,$cx) contains a 
natural TiTo-teittice, namely H®ris(xe, <?), where xe is the point of G corresponding to 
the edge e, and it has a natural Frobenius. Therefore we get a natural Ko-lattice with 
a Frobenius on the left module of the exact sequence (1) which will be denoted H0,1(C) 

and Fo,CRIS respectively. Moreover, for v G v(G), H\R(UV, 0-°&(Pv))) contains a 
natural ifo-lattice with a Frobenius, namely the first log crystalline cohomology with 
coefficients in <§ of the component corresponding to the vertex v, G * x where the log 
structure is the one induced by the log structure on G X X . See [16]. Therefore, the 
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right module of the exact sequence (1) has a natural if 0-lattice, denoted i f 1 , 0 (C), with 
a Probenius denoted i*i,Cris- To define a if 0-lattice, Hlnt(£) of Hl(C,P,$), together 
with a Probenius operator ^y1* and a monodromy operator N[nt we'll first split the 
exact sequence (1) by defining a section s of i. This can be done if the log F-isocrystal 
£ is regular. 

X 

Definition 2.3. — We say that the log F-isocrystal § on C is regular if for every 
v G v(G) and x closed point of Cv — P the characteristic polynomials of Probenius on 
Hcris (x,E) and Hcris (CXXx,E) are relatively prime. 

Remark 2.4. — It will be proved in Section 6 that the definition (2.3) is satisfied by all 

log F-isocrystals onCX coming from a family of schemes Z —• C as in the Section 1. 

For the rest of the section we'll assume that § is regular. Let UJ G HX(C, P,£cx) De 
represented by the hypercocycle ({UJv}v, {fe}e) as above. If v G v(G) one can define 
a p-adic integral of uv, Xv, on Uv — Pv, which depends on our choice of the logarithm 
and is well defined up to a rigid horizontal section of Ecx|Ux (see Section 5.2). Then 
s(u) will be represented by the cocycle ({ge}e), where 

9e = fe~ (Aa(e)Ue _ ^6(e)UJ. 

Let u be the corresponding section of 7. Then define H^nt(£) to be the FFM-mod-
ule, where the underlying if 0-vector space is L(H0,1 (C)) + u(H1,0(C)) and the Probe­
nius operator, $\nt(üú), is 

¿(íb,cris(*M) + ^*l,cris(7M)-

Moreover, the monodromy operator, N[nt, is defined to be the composition 

¿0 0 e G e ( G ) Res e . 
The operators satisfy the relation, 

jyint̂ int p^N[nt. 
Finally the filtration on МЯ°. 1(С)) + и (Я 1 ' ° (С)) )®Хо^ = Я 1 ( С , Р , Л is the Hodge 
filtration. 

Remark 2.5. — The same construction can be performed for every fiber Xs where 
s e S* = S — {0}, i.e., we have residue maps R e s ^ , monodromy operators NffK and 
Frobenii Qint 

(is) 
for i = 0,1,2. 

The main result of this paper is 

Theorem 2.6. — Suppose that £ is a regular filtered log F-isocrystal on C . Then the 
isomorphism Н*(У,Р0,£)®к0К^Hlog)T? obtained by parallel transport yields an 
isomorphism of FFM-modules H<{g)s¿HU*'. 

Remark 2.7. — Actually regularity is only needed in order to compare the Ko-lattices 
and the Frobenii. We shall prove the equality of the monodromy operators (tensored 
with the identity of K) without any restriction. 
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Theorem 2.6 is an easy consequence of the definitions for i = 0,2. The next sections 
of the paper will be devoted to the proof of this theorem for i = 1. We'll first prove 
the theorem (2.6) in the non-logarithmic case (i.e. P is the void set) and then we'll 
provide all the necessary definitions and results so that the reader should be able to 
fill in the details of the proof in the logarithmic case. 

3. F-Isocrystals 

3.1. Formal schemes, rigid analytic spaces and weak completions. — In this 
section we review some constructions and results on formal schemes, rigid analytic 
spaces and weak completions which will be used later in the paper. 

3.1.1. The functor rig. — We recall a standard construction in rigid analytic geome­
try, the functor "rig" (for more details see Section 02 of [1] or [25]). This is a functor 
from the category of locally noetherian formal ^-schemes (or formal VF-schemes) to 
the category of rigid analytic spaces over K (respectively K0). 

Let X be a locally noetherian formal scheme over Spf(F) (the case where V is 
replaced by W is treated in the same way) having the property that the scheme 
(X, &x/Jf)red is locally of finite type, where ^ is an ideal of definition of X. To the 
formal scheme X we attach a rigid analytic space X := Xng over K as follows. 

We first suppose that X is affine, X = Spf(A), let / = H°(X,<#) and fix 
/i> /2» • • • ? /r a set of generators of the ideal I. For every n > 1 define the F-algebra 

Bn := A(TltT2,,..,TP)/(/r - ttTl/2" - 7rT2,..., f? - 7rTr), 

where 7r is a uniformizer of V, and as usual, A(Ti, T 2 , . . . , Tr) denotes the p-adic 
(or 7r-adic) completion of the polynomial ring A[Ti,T2,... ,T r ] . The conditions on X 
imply that the ^-algebra 

Bn/7rBn 9Ê A/(TT, J? , / 2

n , . . . , f?)[Tu T 2 , . . . , T r] 

is of finite type which implies that Bn itself is topologically of finite type. Therefore 
Bn <S>v K is a Tate-algebra over K. For m > n > 1 we have canonical F-algebra 
homomorphisms # m —• Bn sending Ti —> fla~nTi for all 1 < i < r. The induced 
morphism of affinoids Spm(P n 0 K) —• S p m ( # m (8) K) identifies the source with 
the affinoid sub-domain of the target given by \fi\ < |7r| 1 / / n, 1 < i < r. We define 
X := Xng to be the inductive limit of Spm(2?n (g) K), where these affinoids form, by 
definition, an admissible covering of X. In fact one can prove that Xrig is independent 
of the ideal of definition J? and of the choice of generators /1 , / 2 , . . . , fr and that it 
is functorial in X. 

If the ideal of definition of X is 7r&x, i-e- 3t is a p-adic formal F-scheme topologically 
of finite type, then Xrig is the usual "generic fiber of X" a la Raynaud. 

Let X, Xrig be as above. Then one can define a reduction (or specialization) map 
red : Xrig —• X as follows. For m > n > 1 the natural F-algebra homomorphisms 
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A —• Bm —• Bn induce the following commutative diagram: 

S p m ( £ m 0 if) red Spf(B m ) — X 

Spm(B„ <g> K) red Spf(S n ) —> X 

Here the morphisms red : Spm(jBn 0 if) —• Spf(£?n) are the usual reduction maps 
for p-adic formal schemes and their generic fibers, i.e. denned as follows. Let 
x G Spm(P n 0 if) be a point and let mx be the respective maximal ideal. Then 
K{x) := (jBn 0 K)/mx is a finite extension of if and we have F-algebra morphisms: 
Bn —• Bn®K —> if (x). We define red(x) to be the point of Spi(Bn) corresponding 
to the unique closed point of the finite, local F-algebra which is the image of Bn in 
K(x). 

The morphism red : Xrig —• X is obtained by gluing the morphisms 
Spm(P n 0 if) —• X in the above diagram. 

For a general X, we obtain £rig and the morphism red : XTlg —• X by taking an 
affine cover {Ui}i of X and gluing ^Ung and reding. 

Under the notations and hypothesis at the beginning of the section, let Z be a 
closed sub-scheme of (X, &x/<#). We denote by X/z the formal completion of X 
along Z. We have canonical morphisms X/z —• X and (X/z)rig —• XTlg. The image 
of the latter morphism is an admissible open subset of Xrig which may be canonically 
identified with r ed _ 1 (Z ) :=]Z[X (see Proposition 0.2.7 of [1]). 

3.1.2. Formal models. — Let X be a p-adic formal F-scheme (or VF-scheme), sepa­
rated and topologically of finite type and let X := XTlg. Assume that X is reduced 
and let U be an admissible affinoid open of X. 

Lemma 3.1. — There is a canonical p-adic formal scheme It over V (respectively over 
W), depending on X, with a morphism ii —• X whose generic fiber is the inclusion 
U C X. 

Proof. — Let, as usual X\ denote the special fiber of X and consider an affine open 
covering of £ i , {Vi}i. Let Ui ~ red - 1(VS) n U C U, the family {Ufo is an admissible 
covering of U and let us denote by Hi := Spf (Ai) where Ai is the sub-ring of functions 
of &u(Ui) bounded by 1 (we say that il^ is "the canonical formal model" of Ui). Let 
Vij be the inverse image of V$ C\Vj under the map of special fibers (iit)i —> X\. Then 
Ui D Uj = ved^1 (Vij), where red^ : Ui —• ik is the reduction map and the canonical 
model of Ui fl Uj is the formal open sub-scheme of Hi whose support is Vij Therefore, 
one can glue the formal schemes Hi along the canonical formal models of Ui fl Uj and 
obtain the required formal model of U. This is independent of the covering {Vi}i, as 
one may take the covering of X\ consisting of all the affine open sub-schemes. 

These formal models of affinoid opens of X have the following functorial property. 
Let X, X' be p-adic formal schemes, separated, topologically of finite type over 

V (or W) and let X = Xvig,X' = X'rig and assume that X,X' are reduced. Let 
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17, U' be admissible affinoid opens of X respectively X' and assume that we are given 
morphisms / : Uf —• U and g : (£')i —• (X)i such that the following diagram 
commutes. 

U' C X' i 2 i (£')i 

/ 1 <?l 

[/ c x m> (X)i 

Then there exists a canonical morphism h : it' —• il inducing / on generic fibers and 
such that hi : (ii')i —> (iX)i is compatible with 

3.1.2.1. Logarithmic structures. — In this section we'd like to recall some basic no­
tions in the theory of log schemes from [26], [23], Sections 2.8, 2.9 and [34]. 

Suppose A is a scheme (or a formal scheme or a rigid space). A morphism of 
sheaves of monoids on the Zariski site of A, a: M —• & A , will be called a pre log 
structure on A. Call the pair (A, a) a pre log scheme (or formal pre log scheme) and 
denote it Ax and denote M, MAx. A pre log scheme (A, a) is called a log scheme 
if a induces an isomorphism a _ 1 ( ^ ) = G\. The sheaf of log one forms uAx on A 
associated to a is the quasi-coherent sheaf QA®@A®G*A MA* subject to the relations 
a(m) 0 ra = da(ra), for m £ M^x. One has a natural derivation on the exterior 
algebra of coAx over 6A such that d(l 0 m) = 0, for m G MAx . 

If P is a divisor on A, Mp is the sheaf MP(U) = ÛA{U) n 0*A(U - P) and 
ap: Mp —• ÛA is the inclusion, then Ap =: (A,ap) is a log-scheme which is fine 
("coherent" and "integral"). If A is noetherian and reduced and if A is a variety UJAX 

is naturally isomorphic to Sl\(log P). If P — 0 , ap is called the a trivial log structure 
on A. 

G. Faltings defines and uses a more restricted notion of log-structures in [16] and 
[17] (see the appendix of [26] for the precise relationship between the two notions.) 

Henceforth, all log structures will be fine. 
Let T x be a formal log scheme. Let us denote by To the reduced sub-scheme of 

the closed sub-scheme of T corresponding to the ideal sheaf PUR- We have a closed 
immersion 

i : T 0 —> T 

and we'll let T 0

X be the log scheme corresponding to the log structure on TQ 

Rl(MTx) —> i~L{ÛT) —• ÛTO-

We use, as in [26] the notation u~l for the inverse image of a sheaf and L* for the 
inverse image of a log structure. 

Let now g: Ux —> Tx be a morphism of formal log schemes, g = (f,h) : 
Here / : U —• T is a morphism of formal VF-schemes and we (U,Mux)->(T,MTx) 
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have a commutative diagram 

f^Mrx h Mu 

Г 1 UT — 6v 

and also 
U -f-> T 

l' l 
Uo To 

Therefore, we have a commutative diagram 

fo-1 (l-1MTx) {L')-lrlMT, (t')-lMux 

/ о - 1 ( i - 1 ¿ir) (L')-1 f-1QT (C')-1 OU 

/о-1 (i-1 ¿ir) 0Uo 

which defines a morphism 9o ' UQ -* TQ 

Definition 3.2. — Let XX,YX be schemes or formal schemes with fine log structures 
and let M —> 6x (respectively N —> &y) denote the morphisms of monoids on X 
(respectively onY) giving the log structures. Let f : Xx —• Yx be a morphism. 

i) We say that f is a closed immersion if the underlying morphism of schemes 
X —> Y is a closed immersion and the map f*N —> M is surjective. 

ii) We say that f is an exact closed immersion if f is a closed immersion and the 
map f*N —> M is a bisection. 

Definition 3.3. — Let as above Xx , Y X be schemes or formal schemes with fine log 
structures given by the sheaves of monoids M respectively N and let f : Xx —• Yx be 
a morphism. We say that f is smooth (respectively étale) if the underlying morphism 
of schemes X —• Y is locally of finite presentation and for any commutative diagram 

T x s > Xx 

ii if 
Ix t > Yx 

where i is an exact closed immersion such that the ideal of T' in T is nilpotent, 
there exists locally on T a morphism (respectively there exists a unique morphism) 
g : Tx —> Xx such that gi = s and fg = t. 

See [23] 2.9 for other equivalent formulations of Definition 3.3. 
Moreover we have the following result from [261 4.10: 

Lemma 3.4. — If f : Xx —• Yx is a closed immersion, then there exists locally on 
X a factorization of f as: Xx —^ Tx Yx where Tx is a fine log scheme, t is 
an exact closed immersion and g is an etale morphism. 
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3.1.3. Fibrations and rigid analytic Poincaré lemmas 

3.1.3.1. — Let us first consider a smooth affine scheme Z of finite type over k and 
let i : Z —> ¿7 and i : Z —> £?' be closed immersions of Z into smooth p-adic 
formal affine schemes over W. Let us assume that we have a smooth morphism of 
formal schemes u : F' —> F' such that u o ¿/ = ¿. Let ¿57-, ^/Z denote the formal 

completions of F' respectively SÏ along Z and let r := (PL)** and T := ( № ) r i g . 
Then locally on T' we have integers d and natural isomorphisms Tf = TXx0Sd, where 
let us recall that S is the open unit disk over Ko, such that the following diagram is 
commutative 

V —> TxKoSd 

u , 
T = T 

In the above diagram the right vertical map is the natural projection. For a proof of 
the result see [1] Theorem 1.3.2. An easy consequence of this result on "fibrations" is 
the following 

Lemma 3.5 (Smooth Poincaré lemma). — Let the notations be as at the beginning 
of this section. Let £ denote an isocrystal on Z/W (see Section 3.3) and let us 
consider the de Rham complexes of sheaves on T' and T denoted DR(T',$)* and 
DR(T,E) obtained by evaluating <£ at the enlargements Sf/z and S^/z- The morphism 
u : F'—•ST induces a morphism of complexes DR{T,£)* —•u*DR(T ' ,E) which 
is a quasi-isomorphism. 

We'd like to recall the similar result in the relative situation and with log structures 
from [34], [35] and [36]. 

Let us now recall that we have denoted 5? — Spf(W[[£]]). Let us endow this formal 
scheme with the fine log structure given by the divisor t = 0 and denote this log formal 
scheme by yx. The closed immersion Spec(&) —• 5? given by t —> 0 endows Spec(fc) 
with the pull-back log structure. Let Zx be a fine, smooth, affine log scheme over 
Spec(fc)x and let i : Zx —• STX and if : Zx —> 3?'x denote exact closed immersions 
over Sfx into smooth, affine log formal schemes (we assume that F' ST' are endowed 
with the (£,p)-topology). Suppose that u : S?,x —> £?x is a morphism of log formal 
schemes over Fx such that u o ¿/ = ¿. Let &17, 3"iz denote the completions of 2?' 

respectively F' along Z and let \Z*[T>:= ari \rig 
^ IZi ' |Zx[T:= № ) r i g denote the tubes 

of ZX relative to T,x and T respectively. We denote by ^z^y, ^ e sheaf on }ZX[T> 

given by: fi^/ )x/^x ®w &o and similarly for ^ Z

X [ T ' Then we have the following 
log Poincaré lemma. 

Proposition 3.6 (Lemma 2.2.15, [34]). — Let <§ be an isocrystal (without log structures) 
on Z. If u is a smooth morphism of log formal schemes then the natural morphism 
of de Rham complexes 

DR(T, gy <%/z ® ^ / z W]V[T —• u*(DR(T',gy := ë*r/z 0 ^ LO*Z*[T,)' 
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is a quasi-isomorphism. 

3.1.4. Weakly Complete Algebras 

3.1.4.1. Weakly complete liftings. — In this and the next sections we prove an im­
portant generalization of the "weak lifting theorem" (theorem A.l of [5]) and give a 
geometric interpretation of it (in §3.1.5). 

We start with some notations which will be used as such only in this section. Let 
R be a complete local ring of characteristic (0,p) with maximal ideal p. If n is a 
non-negative integer set Rn := R(T\,T2,..., T n ) . Fix now k a non-negative integer. 
For an Pfc-algebra A, the weak completion A^ of A is the smallest sub-algebra of the 
p-adic completion of A which is p-adically saturated and contains the elements 

(/1,...,tn)€N« 

ril,...,inai ' ' ' an 1 

for any dj G pA, 1 < j < n and r^,...,^ G Rk- (When R is discretely valued this 
is equivalent to the notion of weak completion of A over (R,p) in [31], §1.) The 
algebra A is weakly complete over R^ if A = A^. Let Am := A[xi,X2, • . . ,xm] and 
Rk,n = (Rk)n- A quotient of Rk,n for some n by a finitely generated ideal is a semi-
dagger algebra over Rk, [10]. Such algebras are weakly complete. Denote A := A/pA. 
If / : A —• B is a homomorphism of semi-dagger i?fc-algebras, we say B is formally 
smooth over A if B is smooth over A and 

Annjg(p) = AnnA(p)B, 

for all p G R. 

Theorem 3.7. — Suppose A, B, C and D are flat semi-dagger algebras over R^ and we 
have a commutative diagram 

A —> C 

l Ï 
B — • D 

Suppose, in addition, C —> D is surjective, B is formally smooth over A and there 
exists an Rk-algebra homomorphism s : B —> C which commutes with the reduction 
of the above diagram. Then there exists an Rk-algebra homomorphism s : B —• C 
which lifts s and commutes with this diagram. 

Sketch of proof The proof of the less general result Theorem A.l of [5] translates 
easily. We first outline the proof. 

There exists an integer n and G i , . . . , G m G A\ so that we can take B = 
Al/(G1,...,Gm). Let g and V be the compositions A\ —• B —• D and An —• 
B —> C respectively. Let I be the kernel of C —• D. Let X : = ( # i , . . . , xn) G A™ 

and G = (G i , . . . , G m ) . First one shows there exists an fifc-algebra homomorphism 
VQ : A ^ —> C over R^ which lifts V such that VQ = g(modI). Now one shows there 
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exists an n x m matrix TV an m x m matrix Q and an m-tuple of m x m matrices M 
with coefficients in A^n such that 

G(X + GN) = GMG1 + GQ 

where Gl is the transpose of G and the coordinates of Q are in pA^. Now for a 
non-negative integer s set 

Vs+1 = VS(X) + G(VS(X))N(VS(X)). 

The Vs converge to the required F as s goes to infinity. The proof of which we now 
explain: 

Lemma 3.8. — Suppose f : A —> B is a surjective map of Rk-semi-dagger algebras. 
The kernel of f is a finitely generated ideal. 

Proof. — Without loss of generality may suppose that A = Rk,a and B = i?fc,&/J, 
where J is a finitely generated ideal of Rk,b- Let us denote by g : Rk,b —• B the 
natural map (in particular J is the kernel of g) and call the "weak" variables in Rk,a 

and Rk b by xi,... ,xa and respectively 2/1,...,yb. Let h : Rkb —• Rk a so that 
f(h{x)) = g(x), h(yi) e Г\дЫ)1Л< i < b. Let x'i e griffa))- The kernel of / 
is generated by h( J) and the finite set [xi h(Xi)}i=iiCL. 

In the notations of Theorem 3.7, because B is formally smooth over A, we may 
write B = Al/(G1,...,Gm) Let q and V be the compositions At —> В — Л and 
A n —- В ^ С respectively. Let / be the kernel of the homomorphism С —• D 
and let X = (xu...,xn)eAZ 

Lemma 3.9. — There exists VQ : ̂  —• C over Rk which lifts V such that 
V0 = g(modI). 

Proof. — Let gr{X) be an element of Cn such that 

g'(X) = g(X)moàI 

and define a homomorphism V : At —• С in the natural way. Similarly there is a 
homomorphism V : Ai —> С which lifts V, 

V = ^ m o d ( p , / ) C n . 

We can write 
V'(X)-g'(X) = a-b, 

where a G pCn and b G ICN. Let VQ : A \ —• С such that V0(X) = V'{X) - a. 

Let G = (G ì , . . . , G m ) and X = (xi,.. .,xn). Formal smoothness implies 

Lemma 3.10. — There exists a n x m matrix N an m x m matrix Q and an m-tuple 
ofmx m-matrices M over A^ such that 

G(X + GN) = GMG1 + GQ 
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where G1 is the transpose of G and the coordinates of Q are in pA^n. Here we think of 
each G as a row vector of functions of X and by the notation G(X + GN) we mean 
the composition of functions . 

For an integer s > 0 set 

Vs+AX) := V9(X) + G(VJX))N(VS(X) 

Suppose Q1V0(G) = Omodq for q G pi? Then for s > 1, 

V8+1(X) - VS(X) = ((GMG1 + GQ)(V,_i(X)))JV(V f l(X)) - 0 mod qs+1. 

This is enough to show that the sequence Vs converges p-adically. We will now give 
some idea about why it "weakly converges". 

I frGp^, r > l , let RkiU(r) denote the sub-ring of Rk n consisting of series which 
converge on Bk[l] x Bn[r]. I f / Rk,n • A is a surjection and r > 1, let A(f, r) 
denote the subring f(Rk n(0) and for F € A(fir) set 

| | F | | / i r = max{||G|| r | G G i ï M ( r ) , / ( G ) - F } . 

Choose once and for all surjective homomorphisms 

a —• A and Rkh —• C. 

Let Rk,a+n • be the induced surjection. If e : Rk,c —• ^ is one of these 
homomorphisms, let 

E(r) = E(e,r) and II 11 T* — H I |E,R • 

We can show there exist real numbers u > 1, d > 0, and L < 1 such that for 1 < t < u 
the entries of N and G lie in Al (u) and 

M vjAUt")) c C M , 

(ii) | | V s ( X ) - V o P O | | t < L 
(iii) \\G(Vs(X))\\t < L*\\G(V0(X))\\t, 
(iv) L > \\N(VJX))\\t\\G(Vo(X))\\t, 
(v) V- = Vo(modJ) 
Now, (iii) and (iv) imply the sequences Ws|A+n(td) converge to continuous homo­

morphisms Vt : AUtd) — C(t) for 1 < t < u, compatible with decreasing t. Let 
V : Al — > C be the direct limit of these V*. Condition (ii) implies that V lifts V, 
(iii) implies G(V(X)) = 0, so F factors through a a morphism B —• G which lifts 
B —> C and finally (v) implies this morphism commutes with the diagram. 

Remark 3.11. — A statement needed to prove (iv) which is analogous to a result used 
but not stated explicitly in [5] is, with notation as in the proof of lemma A-8 of [5], 

\\KF)\\a,t < \\F\\f,t*. 

Corollary 3.12. — Suppose R is discretely valued and B is a flat, formally smooth 
semi-dagger algebra over Rk- Then B is very smooth over (Rk^pRk) in the sense of 
[31], Definition 2.5. 
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Corollary 3A3. — Suppose R is discretely valued and B and C are flat Rk semi-
dagger algebras, formally smooth over Rk and there exists an Rk-algebra isomorphism 
s : B —> C. Then there exists an Rk-algebra isomorphism s : B —> C lifting s. 

Proof. — This follows from the previous corollary and the proof of Theorem 3.3 of 
[31]. • 

3.1.4.2. Weak completions. — Let the notations be as in §3.1.4.1. In this section, 
given a finitely generated Rk-algebra A , we give a geometric interpretation of the ring 
A* ®R K, which will be used later in the article. 

Suppose R is discretely valued. 

Proposition 3.14. Let A be a finitely generated flat Rk-algebra. Set A = A/pA: 

A = lim A/pnA, U = Svec(A) 
--,n 

U = Spi (A) and U = Sped A). Let g : U —> X be an 

open immersion of U into a scheme X proper and flat over Rk • Let X be the formal 
completion of X along its special fiber and UK =W[£. Then A^ <8>R K = lim A(V), 

where V ranges over all affinoid strict neighborhoods ofUx in XK and A(V) denotes 
the affinoid algebra ofV. 

Proof. — Let Z be the complement of U in X with the reduced closed sub-scheme 
structure and let Z be its reduction modulo p. Let 7r be a uniformizer of R. Suppose 

is an affine cover of X and suppose that /¿1,..., fini £ &x G ^ D are sucn {Wi}i 
that / a , . . . , fin generate the ideal in QWi defining Z fl W». For A G pQ, |A| > kl, 
let V\ be the union over all i of 

[x G]Wi[| there exists j , 1 < j < n* such that \fj(x)\ > A}. 

As in [1] §1.2, the Va's are independent of the choices and form a co-final system of 
strict neighborhoods of UK in XT^. Then we see that V\ is contained in U^S(<Z XT^). 

This implies that the inductive limit we consider does not depend on the choice of 
the embedding U —• X. Choose a presentation A = Rk[T\,... ,T n ] /7 , which gives a 
closed immersion U —• A^ f c and let X be the closure of U in P^ f c . Then we see that 
A(V\) is isomorphic to (Rk{Ti,..., Tn)\/I) ®R K, where Rk(Ti,..., Tn)\ denotes the 
ring of power series over Rk converging on the closed disk {(y,x) G Kk+n \ \y\ < 
1, \x\ < 1/A}. Hence its inductive limit coincides with ( i fop i , . . . ,T n]V-0 ®R K = 
At ®R R. 

Remark 3.15. It is possible to improve this result. If Z C X are affinoids, set 
\g\z = sup{\g(x)\ x G Z} and 

AZ(X) = {fe A(X) \f\z < 1}. 

Then we can show, in the above notation 4t -= l i m A Ù K ( V ) , where as before V 

ranges over all strict affinoid neighborhoods of UK in XK if A , A are normal, X is 
reduced and U is irreducible. 
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3.2. The geometry of the family. — Let us resume the notations of the intro­
duction. We'll briefly recall from [17] how the family of curves X —> S in Section 2 
is constructed. In this section we assume that P is empty. 

As C is regular, C is a reduced divisor with simple normal crossings and each 
singular point is fc-rational we may find a deformation of C, X -> y := Spf(W[[t]]) 
with the following properties 

• X is defined over W 
• the curve C is the base change of X by the map W[[t]] —» V sending t to 7r. 
• Zariski locally X is smooth over W[[t]] or isomorphic to W[[t]](x, z)/(xz — t). 
Let X := Xrlg —• S := ^Tlg as defined in Section 3.1. In this particular case 

the general construction gives the following. Let <̂ b : = W[[t]] and for each integer 
n > 1 let 3tn := W[[t]](T)/(tn -pT): it turns out that Rn is the p-adic completion of 
W[t,T}/(tn-pT) and that we have natural maps 

• âên -+ V defined by t -> 7r, T -» 7rn/p for all n >[if : K 0 ] 
and 
• ^ n + i -+ ^ n over W[[t]} defined by T -+ tT. Denote by X n , X0 xSpf^0 Spf^ n . 
Let, for n > 1, X n and Sn denote the generic fibers of the p-adic formal schemes 

Xn and Spf (^ n ) and let 

X lim Xn and S := lim Sn 

—•,71 —•,71 

The rest of this section will be devoted to understanding the rigid analytic structure 
of the family X/S. As Sn := S p m ( ^ n <g> K0) is defined by \t\ < | p | 1 / n , it follows that 
Sn is the affinoid disk centered at 0 of radius \p\lj/n and therefore S is isomorphic to 
the open disk of radius 1 centered at 0. 

In [7] (see also [9]) a one-dimensional wide open was defined to be a rigid space 
which is isomorphic to the complement in a proper curve of a "discoid subdomain." 
We now define a wide open, in general, to be the rigid space associated to a complete, 
flat, topologically finitely generated, semi-local ring over W (or over V) (see §7 of 
[25]). Residue classes of affinoids are wide opens. One can show ([11]) that such 
spaces have a finite number of irreducible components. We suspect, when they are 
smooth, that they have finite dimensional de Rham cohomology. 

First, as X is a deformation of C, the ideal t&x + pOx of 0% is an ideal of defi­
nition for this formal scheme and the closed sub-scheme of X defined by this ideal is 
isomorphic to C as schemes over k. Therefore, by Section 3.1 we have a reduction 
map red: X —> C, and we define the covering of X: 

:= {red 1Z \ Z is an irreducible component of C}. 

This is an admissible open cover of X. If v is an irreducible component of C, we 
denote by Uv G ̂  the corresponding open and if e is a singular point of C we let 
Ae = r ed _ 1 ( e ) . We'll see in Section 3.5 an interpretation of these notions in terms of 
graphs. 
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Moreover, if s G 5*, then the restriction (i.e. base change) of C to the fiber Xs 

is an admissible covering ^ of Xs described in Section 2.2 for s = TT. For every v 
irreducible component of C let us denote by 

Zv :— Uv — I I Uw. 

w 

Then Zv is a rigid space over 5 such that all of its fibers are affmoids for all v. Let e 
be a fixed singular point of C. Then we have 

Lemma 3.16. — There are functions xe and xT(e) on Ae = AT^ such that xexT^ = t, 
\xe(u)\ —» 1 as u approaches Za(ey Moreover, the map a —> (xe(a),xT^{a)) maps 
Ae isomorphically to the open unit ball in A^ o , i.e. the rigid subspace of K2

Kq defined 

by 
{(x,z): \x\ < 1 and \z\ < 1}. 

Proof — This follows easily from the fact that the singularities of X/S are given by 
local equations of the form xz = t. 

Let us recall that Y is the fiber of X/S above 0 G S. Let L be a finite, non-trivial, 
totally ramified extension of KQ and TTL a uniformizer of L . Let also &:= Sj>f(0Lly)) 
denote the formal scheme whose generic fiber is the closed disk centered at 0 of radius 
|tt l |. If n>[L:K0] we have a natural morphism è : SB —• Spf(^n) —•C induced 
by the morphisms Ro ----> Rn -------> OL<L> given by t —> 7TLy and F ---> (TnL/P)yn 
whose generic fiber induces B := BL C S. We denote by Xö$ := X n x S p f ( ^ n ) SS, 
which is independent of n > [L : Ko]. Let us remark that by [25] 7.2.4, we have 

(X^^XxsB which will be denoted XB-

Lemma 3.17. — In the notations above there is a natural isomorphism 

a : C x Ai —> (Xm)i as schemes over Ak 

where let us recall, k is the residue field of K and if Z is a formal scheme over QL, 
Z\ denotes the closed formal sub-scheme of Z of ideal TTL&Z• 

Proof. — The special fiber of the map <\> defined above. 01 : S6X = H —• yi = 
Spf(&[[£]]) is the constant map, induced by the map sending t to 0. 

Then (XB)1 = (Y)1 X Ai = С X AL where let us recall @f is the fiber at 0 of 
X — + y . 

Proposition 3.18. — Let L, 7TL, S§, B be as in Lemma 3.17. Then, for every vertex v 
of G there is an admissible wide-open strict neighborhood Wv of ZV^B := ZV x$ B in 
Uv B Uv Xs B, and for every s G B an isomorphism 

av,s •= ctLìVìS : WVìS x B = WV over B, 

lifting the isomorphism 

£l : C° x A*. = (ZV)! 
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given by Lemma 3.17. We have denoted by WViS the fiber ofWv at s and by C°V the 
complement of singular points of C in the component CV corresponding to v. 

Proof. — Let 3f&iV denote the formal model of ZB,V in XB which is the formal 
spectrum of the ring of integral valued rigid functions on ZB,V> AS the special fiber of 
ZV,B with respect to the ideal generated by (£, TTL) is the affine scheme CV of finite type 

over k, Zv B is an affinoid over B. By Lemma 3.17 we have (LB,v)1 = Cov x A1k We 

also have an isomorphism Bv,s: (Lv,s x B)1 = Cv x A1k where 3?v s is the fiber of LB,v v 

at s e B. Now using Theorem 3.7 the isomorphism between (2f@iV)i and (2fVl3 x 3S)\ 
lifts to an isomorphism over B of 5 ^ v and (2FVlS x B)• From Proposition 3.14 and 
Theorem 3.3 of [31] we deduce /3VjS lifts to an isomorphism over B of strict affinoid 
neighborhoods T of ZB,V in UB,V and TS x B of ZV,S x B in UVIS x 5 , over £?, where 
TS denotes as usual the fiber of T at s. By Lemma 3.1, TS has a canonical, p-adic 
formal model 2?s over ^ (F being the residue field of s) with a morphism S?s —• Xs 
which induces the inclusion TS C UVJ3 C XS. This morphism induces a morphism 
between the special fiber T of ^ and C. (In fact this morphism identifies T with a 
certain blow-up of the component CV of C corresponding to v.) Let TV denote the 
component of T isomorphic to CV under this morphism. 

Now, let & := <5?sx&, then ^rig = Ts x B = T. We define Wv to be the inverse 

image under the reduction T - ^ ì T of the component Tv of T, i.e. Wv :=]TV[&. 
Similarly, let WVi3 be the inverse image under the reduction Ts - ^ ì T of TVi i.e. 
WVi3 :=]Tv[*rs. Then both Wv and WVìS x i? are wide open spaces over B containing 
ZVÌB and contained in T c Uv,B, respectively TsxB C UViSxB, which are isomorphic 
under the restriction of the above isomorphism between T and Ts x B. 

We have the following very easy consequence of the proof of Proposition 3.18, which 
we record for later use. 

Lemma 3.19. — There are canonical, isomorphic formal models Wv, Wv,s x B of the 
wide opens Wv, WVjS x B in Proposition 3.18, which are wide open enlargements of 
CV (and so of C). Moreover, there is a (non canonical) morphism of formal schemes 
Wv —• X@ over SS whose generic fiber is the inclusion Wv C XB and whose special 
fiber is the morphism CV C C. 

Proof. — Let us consider the formal scheme Wv := ^jfv i-e. the formal completion 
of the formal scheme F defined in the proof of Proposition 3.18 along the closed 
sub-scheme Tv. Then Wng = Wv as rigid spaces over B. Let us remark that 
Wv 9È Wv,s x SB, where W — *T /Tv is the formal completion of 3FS along Tv. 

The composition Tv — CV >• C makes the formal schemes Wv and Wv s wide open 
enlargements of CV and of C such that WV = Wv,s x SS as formal schemes over 38. 
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Remark 3.20. — In the notations of Proposition 3.18 where now s — 0, the following 
diagram commutes 

wv XB 

mod7TL С х А 

PI 
WV,Q YL 

mod7TL c. 

Proof. — The commutativity of the diagram follows from the fact that if we denote 
by ¿0 : YL —> XB the map induced by the the embedding of Y into X as its fiber 
at 0, the following diagram commutes 

XB —• CxA\ 

¿0 Î 

YL —+ C. 

Remark 3.21. — Let B be as in Proposition 3.18. Then we have, 

MB 9* HL

DR{XB/B, ( ^ x | x B ) ( l o g y ) ) . 

3.3. Isocrystals. — Our main references for F-isocrystals are [32], [17], [16], [1] 
and [34]. Let us briefly recall the definitions, in the cases in which we need them. 
Suppose that Z is a scheme over k and fix L a finite, totally ramified (possibly trivial) 
extension of KQ and let GL denote its ring of integers. Let us recall that if L = if0, 
6L = W and if L = K then &L = V. 

We begin by recalling the category of €?L-enlargements of Z, on which the F-iso­
crystals take their values. First if ST is a p-adic formal scheme over ^ we denote by 

the reduced closed sub-scheme of the closed sub-scheme of & defined by the ideal Fo 
pQY 

Definition3.22. — A ^-enlargement of Z is a pair (&,z&) consisting of a flat 
p-adic formal &L-scheme 2f (i.e., each open affine is isomorphic to SpfR where R is 
a quotient of &L{X\, . . . , X n ) for some n) together with a @L-morphism z*r : <% —• 
Z. A morphism of &L-enlargements {^'^z^T) —• (&,z&) is an &L-morphism 
g: 3?' —• ST such that z& o g0 = zg->. 

Let, more generally, & be a locally noethering formal scheme over 6^. We denote 
by Ĉo the reduced sub-scheme of the closed sub-scheme defined by an ideal of definition 
of &. Let as above Z be a scheme over k. 

Definition 3.23. — By a wide open &L-enlargement of Z, we mean a pair (&,z&) 
where 2? is a formal scheme such that the affine open sets are isomorphic to SpfR 
where R is a quotient of &L(X\, . . . , X m ) [ [Vi , . . . , VN}] for some m and n and zy : 

—• Z is a morphism of &L -schemes. The morphism of wide open enlargements 
is defined as in Definition 3.22. 
Fo 
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As in Section 3.1 one can attach a rigid analytic space over L, ^ n g , to a formal 
^-scheme as in the Definition 3.23. It satisfies the following universal property: if 
ST is an affine formal scheme, say ST = Spfi?, there is a unique pair (L^, ^ r i g ) which 
is the final element in the category of pairs (h,X) where X is rigid space over GL 
and h is a continuous ^-homomorphism from R into H°(X, Gx)> A morphism in 
this category (X,h) —• (Y,g) is a morphism / : X —» Y such that h = f* o g. See 
Proposition 0.2.3 of [1] for a discussion of this when n = 0. The tubes of Berthelot 
(see ibid.) are examples of these spaces. 

Examples i) Let X, y,Xn be as in Section 3.2. Fix n > 1. As t generates the 
nilradical of &n/pMn, we have that (Xn)o is the closed sub-scheme of Xn defined by 
the ideal generated by p and t. As a consequence we have a natural VF-morphism 
Zn ' (Xn)o —• C. Therefore the pairs (X n , zn) are W-enlargements of C for all n > 1 
and the morphisms Xn+\ —> Xn induce morphisms of VF-enlargements of C. 

ii) On the other hand ( ^ , z y ) is a wide open enlargement of Spec(/c), where 
zy : yQ = Spec(W[[t]]/tW[[t]}) 9É Spec(fc) 

iii) As 7r generates the nilradical of V/pV, Co is the closed sub-scheme of C cor­
responding to the ideal irGc- AS a consequence we have a natural isomorphism 
ZQ : Co = C, which makes (C,zc) into a VF-enlargement of C. 

iv) We can make the fibered product of two wide open enlargements , s) and 
(&,t) of Z, yx&. It equals (U,u) where U is the completion of 5? x 2? along 
(s,t)*A(Z) and u is the composition 

Uo = M )*A(Z) ^ y Q x ^ o ^ S o ^ Z . 

The existence of this fibered product is the main reason we consider wide open en­
largements. 

Definition 3.24. — An isocrystal & on Z/GL is the following set of data: 
(i) For every 6\-enlargement (£?,z*r) of Z a coherent sheaf of L<g>@L G'^--modules 

£{sr,z*r)- In general and if there is no ambiguity this module will be denoted by Eg 
(ii) For every Gj^-morphism of enlargements of Z, g: (<3T',z^>) —> (L, zy) an 

isomorphism of L®@L G-modules: 9g: g^Sg- —• $&>. The collection of isomor­
phisms {6g} is required to satisfy the cocycle condition. 

A morphism of isocrystals a: $' —> S is a collection of homomorphisms 
compatible with the isomorphisms 6g, for all g. a,L: E'y ---> Ey 

For example, there is a natural isocrystal on Z/W denoted GZ/K0 whose value on 
an enlargement (&,z&) is G g- <8>w Ko- We call a direct sum of such isocrystals a 
free isocrystal on Z/W. Because every enlargement of Spec k factors through SpfW, 
every isocrystal on a point is free. 

Because the rigid space attached to a wide open enlargement may be admissibly 
covered by the rigid spaces attached to enlargements, the cocycle condition allows 
us to evaluate an isocrystal on a wide open enlargements (&,z&) to get a coherent 
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sheaf £{3R,ZSR) on ^ r i g . (See Remark 2.3.4 of [1] for a discussion of this in the case of 
tubes.) 

We'll now define F-isocrystals. 

Definition 5.25. — An F-isocrystal on Z/W is an isocrystal £ on Z/W together with 
an isomorphism of isocrystals F: F £ —> £\ 

Let us recall what F* means (see [32]). First we will recall a familiar notation, if 
M —> Spf(W) is a formal scheme and r: W —• W is an automorphism we define 
ol(t) : Mr —• M by the Cartesian diagram 

мт 
a(r) 

M 

Spf(wo Spf(wo. 
where we also use r to denote the corresponding endomorphism of SpecVF. If / : 
M —> M' is a morphism of formal schemes over Spf(I^) we also define fr : Mr —• 
(M'Y by functoriality. 

Let now cr : W —> W be the Frobenius automorphism and F : Z —> Za be 
the absolute Frobenius. For every enlargement (<&",z&) of Z, ( ^ , F o z&) is an 
enlargement of Za and (Fo-1, (F o z^)a ) is again an enlargement of Z. Then 
F (£) is the isocrystal on Z whose value on (J, zy) is a(o)*E(yo-1,(Fozy)o-1). 

Remark 3.26. — (a) Clearly the map of sections, a®a —> aaa, defines an F-isocrystal 
structure on Gz/Ko-

(b) If f: U —> Z is a morphism of schemes over k and £ is an F-isocrystal on 
Z/W, there is a natural F-isocrystal on U/W, f*£, whose value on an enlargement 

(J, zy) is E(y, fozy). 
(c) In [32] and [17] the object defined in Definition 5.4 is called "convergent isocrys-

tal" and the object defined in Definition 3.25 is called "convergent F-isocrystal". 
(d) In Section 2.1 we have used a filtered F-isocrystal £ on Z. As we don't need 

to prove anything about the filtration in this paper we will not define this notion here. 
For the appropriate definition see [17] or [24]. 

(e) Let £ be an F-isocrystal on C/W. For each n > 0, £xn can be seen as a 
sheaf on the nilpotent site of Xn, or what is the same thing, as a K$ 0w &xn -module 
with an integrable, convergent connection Dn. The F-structure gives, for each open 
affine formal sub-scheme il of Xn with a lift of Frobenius (pa, a horizontal Frobe­
nius $n(6ii): d*Dn —> Dn on i l r i g . Moreover the morphisms of W-enlargements 
(Xn+i, zn_|_i) > (3£ n,£ n) induce isomorphisms &n'- (£xn+1,Dn+i) — {£n,Dn) there­
fore we obtain in the limit a coherent sheaf of @x-modules £%, together with an 
integrable connection Dx/Ko: &x — • &x ® ^x/KN> which is compatible with Frobenii 

associated to local lifts of Frobenius. We will denote by the same symbol the composi­

tion 
Dx/Ko • «x — ® ^X/K0 — «x ® Í í^ / / C o ( logy) . 
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We also get a relative connection by composing 

Dx/s: Ex D-^° S* ® 0^/Ko(logy) —> Ex ® iï^/s(logy). 

IfS> = GZ/KQ) we will denote DX/K0 and Dx/s by &X¡Kq and dx/s respectively. 
(f) $c, by the same arguments as above can be thought of as a coherent sheaf 

of ÜcK-modules with a convergent, in the sense of [32], integrable connection D. 
Moreover, the closed immersion g: C —• X identifying C with the fiber atn ofX and 
which is a morphism of enlargements, induces an isomorphism Og: g^Sx = §c- 2.2.) 

Because every isocrystal on a point is free we have, 

Proposition 3.27. — Let S be an isocrystal on C. Then ((^X^X/KQ) has the property 
that for every residue class M = red^1(x), with x G C, of X, the ÛM-module with 
connection (&X\M№x/K0) has a basis of horizontal sections. 

Lemma 2.2 of Section 2.2 follows. 

3.4. Cohomology of an F-isocrystal. — We will recall here some constructions 
from [1] and [34],[35] and [36] which will be used later. 

3.4.1. — Let Z be a smooth, proper scheme of finite type over k and S an isocrystal 
on Z/W. We will recall the definition of Hlcris(Z/W, <?), for i > 0. 

We choose an affine open covering {Ui}\<i<s of Z, and for each Ui a closed immer­
sion into a smooth affine formal W^-scheme T{. For each subset J of {1 ,2 , . . . , s} we 
denote by Tj the completion of the fiber product of the T/s for j G J along HJ^JUJ. 
For each J consider the de Rham complex H0(r;s,e?Tj®n-Tli ) and connect them 
by the Cech differentials to make a double complex. We define Hlris(Z/W,<£) to 
be the 2-th cohomology group of this double complex. To show that this is inde­
pendent of the choices of a covering {Ui}i and the formal schemes {Ti}$, we take 
another pair of such iukh<k<t and closed immersions of the Ui into smooth, affine 
formal VF-schemes Ti. To compare the constructions for the two choices consider 
the third, {Ul'k ••= Ui xz U'k}i>k and T"k := Ti x T'k If, say J C {1 ,2 , . . . , 5} and 
# C { l , 2 , . . . , t ] we have smooth morphisms of formal VF-schemes u T iff . rp 

JxK > 1J 
and v: T"i x--->Tk and by the Poincaré lemma recorded in Section 3.1, the pairs of 

de Rham complexes of sheaves DR(Tj,E)*:= £т'к ® Í2(T/ ущ/Ко and u«*DR(rjxK,£)' 
and DR{T'K,Sy)* £т'к ® Í2(T/ ущ/Ко EES! vl*DR(T>JxK,<?) are quasi-isomorphic 
and so finally the cohomology of the double complexes constructed from them are all 
quasi-isomorphic. 

3.4.2. — We will now recall the definition of log crystalline cohomology over a (cer­
tain) base. Let yx denote the formal scheme Spf (W[[t]]) with the log structure given 
by the smooth divisor t = 0. Let Spec(A:)x be the scheme Spec(fc) with the inverse 
image log structure under the map induced by the natural morphism W[[£]] —• k 
sending t to 0. Let Zx be a fine, log smooth, log proper scheme over Spec(fc)x, which 
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we'll regard as a log smooth scheme over J*. Let £ be an F-isocrystal on Z/W 
(without log structure). We'll recall the definition of HlCTis(Zx / <9*x, £). It is a sheaf 
of ^-modules on S, where let us recall S = J^rig. In fact Hlcris(Zx/Spec(k)x, g) is 
an F-isocrystal on Spec(fc) and Hlcvis{Zx/<9?x, S) is its evaluation on the wide open 
enlargement 5? of Spec(fc). 

Let now {Ui}i<i<s be an affine covering of Z such that U* is a log smooth, fine, 
log affine scheme over Spec(A;)x, where the log-structures are the induced ones. For 
each 1 < i < s choose closed S?X -immersions U* —• Ti into log smooth, fine, 
log affine formal schemes over S?X. For each J c {1 ,2 , . . . , s) let Tj denote the log-
formal scheme which is the log-completion along Uj := HJCJU* of the fibered product 
over yx of the Tx% j e J. For every admissible affinoid B c 5, let DR(Tjg xs 
B,<gy denote the relative (to Sx) log-de Rham complex of sheaves on Tjlg XsB with 
coefficients in STj. We define the log rigid (or analytic) cohomology Hlclis{Zx /yx, S) 
to be the sheaf on S associated to the pre-sheaf B — ^(([/.)zar,red*D^(T.rig x5 
B,E)*) 

It is shown in [34] and [35] (using Proposition 3.6) that the definition is independent 
of choices. 

Let us now assume that Zx has a log smooth, exact global lifting Xx over yx 
and we write as usually X := £ri«,S:= yrig. 

Lemma 3.28. — We have a natural isomorphism of sheaves on S, H^ris(zx/^x,^) = 
HdR( X*/S*,Ex) Here Sx is the evaluation of S at the enlargement X of Z, seen 
as a coherent sheaf on X := XTlg with an integrable connection. 

Proof. — Let {Ui}l<i<s be an affine open covering of Z, let Ti be the open log-formal 
sub-schemes of Xx whose underlying topological space is the same as Ui For each 
J C {1 ,2 , . . . , s} define Uj and Tj as above. We also define Tj to be the open log 
formal sub-scheme of Xx with underlying topological space Uj. The diagonal induces 
a log-smooth morphism A j : Tj —• Tj compatible with the embeddings of Uj and 
for each admissible affinoid open B C 5, we get quasi-isomorphisms for the relative, 
log de Rham complexes of sheaves 

red*DR(TTjë xs B,£) —• red*DR((T'j)rië xs B,£). 

The Cech complex of the latter complex computes H'dn(X*/y*,<?x)(B). as 
H*dR(X/S,é?x) is a coherent sheaf and B is affinoid. Therefore the association 

B Hi((C/.)zar,red*^(Tr7ig xs fl,<f)) 

is already a coherent sheaf and we have an isomorphism HÌR(X*/S*,*X) s 
HiTis{z*/y*,s). 

3.4.3. — In the assumptions of Lemma 3.28 and for i = 1 let us give an explicit de­
scription of the inverse of the isomorphism a : Hlclis(Z»/y\<?) S HdRUX*/S*,£X) 
in that lemma in terms of hyper-cocycles. Let, as in the proof of Lemma 3.28, 
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{Ui}l<i<s be an affine cover of Z and let B C S be an admissible affinoid open. An el­
ement x of H\K(X*/S\g)(B) is then represented by a 1-hypercocycle (o^, ) where 
Ui e ifü((^)ng x s B , S T [ ® JlJT,)rig/5x) for 1 < i < s and / ^ я ° ( ( ^ Г х а в , 4 ) 
for 1 < i < j < s such that V(o;ì) = 0 for all 1 < i < 5> Uil^.yig ~Lüj\{T'ijy^ — V(/ij) 
and for all 1 < i < j < k < s we have fij\{T'..KYI9 + Jjk\{T'IJKYI9 - Jik\{T'IJKY^ - 0. 

Let as in the proof of Lemma 3.28, for every 1 < i < s, Ti = Ti and 
Tij := (Г- Хух Т0)/щ. i.e. T -̂ is the formal completion of T[ xSx Tj along Uij. 

We have a natural commutative diagram 

(^•)rig A №')rig 

TT« 
№')rig Trig 

and a similar one replacing i by j . Here 7^ is induced by the natural projection 
T! x^x T'A —• T[ = T< which factors naturally through the formal completion of 
T[ x ^ x Tj along 17^. 

Lemma 3.29. — In the notations above, for each 1 < i < j < s there is a unique 
hijZH^TÏfxsB,^) such that 

a) A*(hii) = 0 
and 
b) <(^|(T'.)rig) - ^(^t|(7V )'is) = Vij(hij). Here Vij is the connection on STÌÓ . 

Proof. — As A is log-smooth we may apply Proposition 3.6. Namely, let 
Tj := n*(Ui\(T; )rig) - 7T*(^|(T')rig)- Then Vij(r/) = 0 and moreover the above 

commutative diagram implies that A* (77) = 0. Therefore, locally on T*lg, there exist 
a*/s sections of STIJ such that Vij(ofj) = 77. As 0 = A*(V^(a^)) = V(A*(a^)), a -̂
can be chosen such that A*(a^) — 0. For example replace aij by aij — 7r*(A*(aij)). 
The conditions V ^ a ^ ) = n and A*(a^) = 0 determine the a^'s uniquely, so they 
glue to give a section hij of STIJ over T-rjg satisfying the right properties. 

Now back to our original problem: to explicitly describe the isomorphism 
HlR(X*/S*,gx) — ^ i s ( z x / y x / ) . We have started with an element x of the 

first group represented by the 1-hyper-cocycle (c^, fij)(i,i<j)- ror each 1 < % < j < s 
we determined the sections h^ as in Lemma 3.29. Let us remark that for each i < j 
we have the following calculation: 

7Г*(̂ )-7Г*Ц-) = ir*(ui) - 7r*(a;¿|(T/.)rig) + 7r*(í̂ |(7v.)rig) - iTjíWj) = Vijihij) + TT*(V(/¿J). 

Moreover, for l < i < j < k < s the section hijk £ H°(T;;t,<?Tijk) defined by 

hijk '•= <j(hij) + 7T*k(hjk) - ir*k(hik) satisfies: A*(/iiiJfe) = 0 and Vijfe(ftijfe) = 0. 
Therefore h^k = 0 and so finally (o;i,ftij + KJ(FIJ))(I,I<J) is a 1-hyper-cocycle for the 
complex DR(T.,ëy whose image in H^(Zx/yx, <?) is a~l{x) 
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3.4.4. — In the notations and assumptions at §3.4.3 above let us assume that for 
each 1 < i < s we have a lifting of Frobenius on Ui, Fi : Ti —> Ti compatible with 
the lifting of Frobenius F&> : 5? —• 5?. Fy is defined as the arithmetic Frobenius a 
on W and by Fy(t) = tp. Since Ti is affine and log smooth such liftings Fi always 
exist. Let us now assume that £ is an F-isocrystal on Z/W. Then one defines a 
natural homomorphism, Frobenius, 

$ : F> i4 i s (Zx /^x ,<T) — HLIS{Z*/y*,£), 

which is independent of all the choices. Let i = 1 and assume that ZX has a log-
smooth global lifting Xx/yx. We'll describe $ on H\K(XX/SX, £x) under the iden­
tification a : HLYIS{Zx/yx,£) £ H\K(XX/Sx,£x). Let B C S be the affinoid 
disk centered at 0 of radius r and let B' — Fy(B) C S be the affinoid of radius 
rP. x E H\K{XX/SX,£X)(B'), then we'd like to express $(x) := a ^ a - 1 ^ ) ) ) € 
i^R(Xx/5x,Suppose we fix an affine cover {Ui}i<i<s of Z and use all the 
notations at b) above. If x is represented by the hypercocycle (ui, fij)(i,i<j) cor­
responding to B' let hij be as in Lemma 3.29. Then 3>(x) is represented by the 
hypercocycle 

(Zx/^x,^) S ^R(XX/5X,^) = H\R{XIS,Sx{\og{Y)). 

corresponding to B. 

3.4.5. — Finally, let us recall the notations of Section 3.2. We have the morphism of 
formal schemes / : X —• 5? and we denote by <3( = X x Spf(W), where the map 
Spf(VF) —> y is induced by the W-algebra homomorphism W[[t]] —> W sending t 
to 0. In other words W is the fiber of / at the point "0" of Y. Given the description of 
/ in Section 3.2, Y is a divisor of X with normal crossings (the irreducible components 
of Y are smooth and the singular points defined over W). Let us fix on X the log 
structure corresponding to the divisor <3f and denote this log formal ^-scheme Xx. 
Let us endow Y with the pull-back log structure and denote it & x . Let us remark 
that C is a divisor with normal crossings of C, endow C with the log structure defined 
by this divisor and by C the log scheme C with the inverse image log structure. 

Then: / is a log smooth morphism Xx —• yx, which is a log smooth lifting of C 
over yx as at 2) b) above. Finally &x is a log smooth lifting of C* over Spi(W)x 
(this last log structure is given by the smooth divisor p = 0). Therefore, 1) and 2) 
above imply that if £ is an F-isocrystal on Z then we have natural isomorphisms 

friu,(Zx/Spec(*)x,^) - Jffc1ris(^x/Spf(W)x,#) = HlR(Y*/K0,^). 

and 

Fc1ris(Zx/^x,^) S ^R(XX/5X,^) = H\R{XIS,Sx{\og{Y)). 

Moreover if we give ourselves local liftings of Frobenius as in 2) c) above all the 
isomorphisms are compatible with the Frobenii. 
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3.5. Hypercocycles and Mayer-Vietoris exact sequences. — In this section 
we collect a number of technical results showing how to relate Mayer-Vietoris exact 
sequences and representatives of de Rham cohomology classes for different admissible 
coverings. 

3.5.1. 3.5.1 Coverings and Graphs. — Let T be a rigid analytic space over K and let 
Q) — {Ua}aei be an admissible covering of T. We will suppose that all our coverings 
satisfy the assumption: 

(*) Ua n Up H U1 is void for all a # B # Y# a E I 

We attach to @ a graph G = G(@) whose vertices v(G) are the elements of @ 
and whose oriented edges e(G) correspond to triples e = (U, V, W) where U ^ V G S> 
and Ae := W is a connected component of U D V. If v is a vertex of G we denote 
Uv the element of d corresponding to it and also if e = ([/, V, W) is an edge then its 
origin a(e) is U and its end 6(e) is V. If U D V is connected we denote the edge e by 

[a e , 6(e). 
We denote T : C(G) _ > e(G) by r(c = (U, V, W)) = (V, U, W) and we choose once 

for all a system of representatives e(G) of the quotient set e(G)/r. 
Let G be a graph. A local system F on G is the following collection of data: 
a) for each vertex v G v(G), an abelian group Fv, 
b) for each oriented edge e G e(G), an abelian group Fe, 
c) if e G e (G), group homomorphisms <Pa(e) : ̂ a(e) > -̂ e an<¿ ^ò(e) : ̂ b(e) > ^e-
To a local system F on the graph G we associate the complex of abelian groups 

C # ( G , F ) : C°(G,F) = ®vev(G)Fv C1(GiF) = 0eGe(G)Fe, 

where (d(a^)v€v(G!))e := V?a(e)(̂ o(c)) ~ ^6(e)(^ò(e)) for e G e (G). Let HBetti (G,F):= 

HHCm(G,F)) for z > 0 , 
Let us now suppose that the graph G is the graph associated to an admissible cover 

@ of the rigid space T and that (F,V) is a pair consisting of a coherent sheaf ^* of 
^r-modules with an integrable connection V, then we have a natural family of local 
systems Fj on G and Betti cohomology groups Hl'i(@,(F V)), for i > 0,jf > 0, as 
follows: 

a) for v G v(G) set FI|V := HjdR{Uv,&\Uv), 
b) for e G e(G) set FI|V := HjdR{Uv,&\Uv), 

C) for e G e(G) <¿>a(e), <¿>6(e) are pull-backs induced by the open immersions 
Ae C Ua(e) and Ae c Í76(c) 

Then ^'(®,(^V)) :=^èetti(G,^). 
Remark 3.30. — VKe ftave ¿/¿e following variant of the definitions above. Suppose that 
¿fx := (3F,M) is a log formal scheme over Spf(V)x such that ^ng = T as rigid 
spaces over K. Suppose that (£i, Viog) is a pair consisting of a coherent sheaf & of 
Ü&-modules and a logarithmic integrable connection V w on it. Then one denotes 

J^ = ^ g , V = (Viog)rlg and one has, for each i > 0 the local systems -Fïjog obtained 
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by taking the logarithmic de Rham cohomology with coefficients in V) and the 
Betti cohomology groups Hi,j (D,F):= HiBetti (G,Fi,log). 

Remark 3.31. — If the assumption (*) is not satisfied by the covering @ but the cov­
ering is finite (i.e. the index set I is finite) one may attach to it a finite dimensional 
simplex, local systems on the simplex and the corresponding Betti cohomology groups. 

3.5.2. Hypercocycles and Mayer-Vietoris exact sequences attached to a covering. — 
Let T be a rigid analytic space over K and 2) := {Ua}aei an admissible covering 
of it which satisfies the assumption (*) above. Let (^", V) be a pair consisting of a 
coherent sheaf & of ^-modules which is locally free and an integrable connection V 
on it. 

Consider the diagram of rigid spaces and maps: 

TV(G) — ^vGv(G)Uv • T <r^— Te(Q) := neEe(G!)Ae 

We have then an exact sequence of sheaves on T: 

0 — & — Uf*& — g*g*& —- 0. 

If for v G v(G) and e G e (G) we denote by Fv:= F|Uv respectively Fv:= F|Ae 
then the exact sequence above becomes 

0 — & —> f*(®vev(G)^v) —+ <7*(eeGe(G)^e) — 0. 

This induces an exact sequence of de Rham complexes and therefore an exact sequence 
of cohomology groups (the Mayer-Vietoris exact sequence): 

0 — / ^ ( T , ^ ) ®vev(G)H¡R(Uv,&) ®eZe(G)H°dR{Ae,&) 

HdR (T,F) ®vev(G)H¡R(Uv,&) ®eZe(G)H°dR{Ae,&) 

Using the graph and Betti cohomology notations in §3.5.1 we can re-write the Mayer-
Vietoris exact sequence as the following short exact sequence 

0 —• H1,0(^,^) —> H¿R(Tyc?) —• H0,1(@,^) —• 0. 

Let us keep the notations T, f̂ , (J^", V) as at the beginning of this section. In order 
to explicitly calculate the cohomology groups H^R(T, we use the following double 
complex: 

C#'* : 
®e€e(G)^e 

V 
®e€c(G)^c®ilie 

V ®eee(G)<Pe®n2Ae V 

Tí Tí U 

®vev(G)<^v V ®eee(G)<Pe®n2Ae 
V ®eee(G)<Pe®n2Ae V 

where Fe respectively &v denote H°(Ae,^) respectively H°(UV1^) for e G e(G) 
and v G v(G). Moreover the Cech differentials 5 are defined by: S((xv)vev(G))e = 
^o(c)Ue - xb(e)ÌAe, for e G e(G). The single complex 

K'(T,( F V)) : K° D° K1 D1 K2 D2 • • • 
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attached to the double complex G** is defined by: К0 :— ®V£V(G)<^v> К1 :— 
(e,ev(G)^0^Je(eeGe(G)^e^J) and ^2 := (e,ev(G)^0^Je(eeGe(G)^e^J) 
etc. and 

A)(0&v)v€v(G) = ((V(a?t;))t;€w(G))(^o(e)|Ae _ x6(e) Ue)e€e(G)) 

^l((^w)wGv(G)j (/e)eee(G)) = ((V(wv))t;Gt;(G)> (wa(e)Ue -^6(e)Ue ~ V(/C))E€E(G)) 

-D2((^v)vGv(G)j (^e)eGe(G)) = ((V(r/v))vGv(G), (^o(e)Ue - ^6(c)Ue - V(a;c))e€e(G))-

Then we have ffÌfl(r,^) = K e r ( A ) / I m ( A - i ) , for z > 0, where we set K-1 = 0, 

.D_i = 0. In particular, cohomology classes in HdR(T, are represented by 1-hyper-
cocycles, i.e. families of elements ((wti)t)6t)(G)»(/e)ege(G)) where 
vv G &v®iìu , /v G J ^ , for v G v(G),e G e(G), which satisfy V(u;v) = 0 for ail i; and 
^û(e)Ue -^6(e)Uc = V(/c) for ail e. 

Remark 3.32. — Wztft £/ie notations above, let us assume that the open sets Ua and 

Ae are acyclic for coherent sheaf cohomology. Then the maps f : H^°{9^) —• 
HiR{Z, &) and g : H^Z, &) —* H*>\@, &) defining the Mayer-Vietoris sequence 
are given in terms of hypercocycles as follows. 

a) If the cocycle (xe)eee(G) G @eee(G)H%R(Ae,&) represents the cohomology class 
x G Hx$(@,&), let us remark that by the assumptions above the xe G &e such that 
V(a?c) = 0. Therefore f(x) is the class of the 1-hypercocycle ((Qv)vev(G), (xe)eee(G))-

b) V ((u;v)v€v(G),(fe)eee(G)) is a 1-hypercocycle representing the class y in 
H¡R(Z,á?) then g(y) is the image of (wv)vev(G) ^n the group ®vsv{G)H\R{Uv,&), 
which is actually in HQ,1(£ï, 

Remark 3.33. — We have variants of these constructions for the logarithmic situa­
tion described in Remark 3.30. We need only replace the sheaves and modules of 
differentials ftlUv, QlA by the sheaves and modules of logarithmic differentials. 

3.5.3. Examples of coverings in our setting 

3.5.3.1. First example. — Let us now recall our geometric situation from §3.2. Let 
red : X —• C and for all s G S — {0}, reds : Xs = X Xs s —• C denote the reduction 
maps. Let (and for every s G S — {0}, denote the admissible covering of X (re­
spectively of Xs) defined by ^ := {red_1(Z) where Z is an irreducible component of C} 
(respectively V. := { r e d ; 1 ^ ) where Z is an irreducible component of G}). Then we 

have G := G(#) = G(Va) for all 5 G S - {0}. We fix once for all a choice of a 
system of representatives e(G) of e(G)/r, see §3.5.1. Let us also remark that as G is 
a semi-stable curve ^ and fêg satisfy the condition (*) of section §3.5.1. We use the 
following notations: for all v G v(G) we denote by Uv C X the corresponding open set 
of ^ and for every s by Uv* = Uvxss = UvnXs c Xs the respective open set of ^ . 
Similarly, if e G e(G) we denote by Ae = Ua(e)nUue\ and for every s G S — {0} we let 

Ae,s := Aexs s = AenXs = Uare)ìSnUbre)ìS. We'd like to recall that these coverings 
have already been defined in Section 3.2 and although the language of graphs was not 
used there, the definitions are the same. 
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3.5.3.2. Second example. — We keep the notations of section §3.5.3.1. For each 
v G v(G) let as in section §3.2, 

ZV :— UV — Î J UW. 

w 
w#v 

Now, for each v G v(G) consider a strict neighborhood Tv of ZV in UV, which is 
wide open and such that Tv fl Tw = (j) if v ^ w. Let us recall that Tv is a "strict 
neighborhood" of ZV in UV means that the pair {T v, UV — ZV} is an admissible cover 
of UV. 

Such T's exist and let C':={T,s,Ae}v,e where v ranges over v(G) and e over e(G) 
Then ^ is an admissible covering of X by wide open sets. This cover is a refinement 
of fé7 and is appropriate for computing de Rham cohomology as the open sets are 
acyclic for coherent sheaf cohomology. We denote G(^ ' ) by G' and let us remark 
that: v(G') = v(G) II e(G) and e(G') = e(G) II e(G). We choose e(Gf) = e(G) II e(G) 
as follows. If e G e(G) then (a(e),e) and (e,6(e)) belong to e(G'). 

Moreover, as in section §3.5.3.1 if s G 5 (here 5 may be 0) we denote by ^ := 
{Wv,s,Ae,s}v,e where 

: _ Tv Xs s — Tv n Xs for all V G v(G). Then ^ is an 
admissible covering of Xs and G(Vs) = G(V) = G'. 

3.5.3.3. Third example. — Let L be a totally ramified, non-trivial extension of K, 
as in section §3.2 and let B = BL C 5 denote the affinoid disk of centre 0 and radius 
|7Tl| as in Lemma 3.17. By Proposition 3.18, for every v G v(G) there exists a wide 
open neighborhood Wv of ZV,B •= Zv XS B in UVJB •= UV Xs B and for all s G 5 an 
isomorphism over B: 

aViS : Wv * Wv,s X B. 

Set C"B= {Wv, Ae, B}v,e, where v and e run over v(G) and e(G) respectively and 
AGiB := A c x 5 5 . Then ^ is an admissible covering of XB and if s G 5, C"s := 

{Wv,s,Ae,s}v,e is an admissible covering of Xs. Then a m = < W ) = G' 

3.5.4. Changing coverings. — Let us fix £ a VF-isocrystal on C. Let us also fix a 
closed point 5 G S — {0} defined over the finite extension F of KQ. Then one can see 
s as a W-algebra, homomorphism W[[i\] —> up. If we denote by Xs := X Xs s and 
by Xs .*= X xspf(W[[t]] 5? then Xs is the generic fiber of Xs. We denote by (<?s, J9S) the 
evaluation of S at the enlargement 3ES of G, seen as a coherent sheaf <§s on Xs with 
an integrable connection Ds. Fix the coverings ^ s :— {C/^^j^ as in section §3.5.3.1 

and ^5 •— {^V,S) A e ? s } v ? e as in section §3.5.3.2 of graphs G and G' respectively. To 
simplify, for the next lemma we omit s from the notation i.e. we will use UV, Ae, Tv to 
denote UVJ8, -A e ? s, TVj3. For i > 0, let ^ denote the local systems on G respectively 
G' associated as in section §3.5.1 to {£S,DS). We define the maps of abelian groups 

foi: C°(G,<?i) — C°{G\Sr) 

f1i: C\G,Si) — Cl{G',£¡) 
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by fi((Mv) = {{Xv\tv)v, 
^o(e)Ue +^6(e)Ue 

2 
e) and fi((Ve)e) = 

,ye\Ta{e)nAe 

2 

2/e|Tb(e)nAe 

2 e 
where everywhere i? and e run over v(G) and respectively e(G). 

Lemma 3.34. a) fP f.1 define morphisms of complexes ft C'(G,gi) — 
C{G',gr). 

b) For i = 0 , 1 / * induce isomorphisms 0.1(Cs,Es) = H0.1(C's,Es) and 
H0.1(Cs,Es) = H0.1(C's,Es) (me notations being as in section $3.5.1) 

C) J/ ((«„)„, (/e)e) is a 1-hypercocycle for the complex Ss ®ÛXs si9Xs/F corre­

sponding to the covering ff*, then the co-chain ({wv\tv)v, 
^o(e)Ue +^6(e)Ue 

2 e' 
'•̂ elTa(e)nAe 

2 
fe\Tb(e)nAe 

2 e 
¿5 a 1-hypercocycle for the same complex associated to the 

covering , which represents the same cohomology class in H\R{XS/F,£S). 
d) The isomorphisms atb) make the following diagram of Mayer-Vietoris sequences 

commute. 

0 Hl'°(f£a, &s) HdR(Xs/F,£s) Ho,1(Cs,Es) 
0 

0 Hl'°(f£a, &s) HdR(Xs/F,£s) Ho,1(Cs,Es) 0 

Proof. — We'll only sketch the prove of the fact that the morphism of complexes f? 
induces an isomorphism f:H°>1(V,,£.)*<H0-1{V'fil,) The main observation is that 
as Uv,Tv,Ae are wide opens, they are acyclic for coherent sheaf cohomology and so 
HdR&v i&s\uv)i HdR (Tv , Ss \tv ), HdR (Ae, Ss \Ae ) can be calculated as hypercohomol-
ogy of the de Rham complex relative to the admissible covering {Uv} respectively 
{Tv}, respectively {Ae}. Moreover the first groups could also be calculated relative 
to the admissible covering [TViUv — Tv — Ueee(G),v=o(e),v=6(e)^e} olUv. 

Let us show the injectivity of / . Suppose that (xv)v eC°(GìS1) = ^vH1dR(UVìS3\Uv) 
is such that 

a) d((xv)v) = 0 
and 
b) f((xv)v) = 0mC°(G',&). 
Let w„ e H°(Uv,£,®nljv/F) be a representative of xv € H\R{Uv^s\Uv) Con­

dition a) implies that for all e G e(G) there is a section ue € H°(Ae,Ss\A) such 
that <*>a(e)Ue -^6(c)Ue = D(ue), Prom condition b) we deduce there exist sections 

uv G Hö(TViSs),we G Hö(Ae,Ss) such that Ds(uv) = uv\Tv,Ds(we) = o;a(e)Ue + 
^6(e)Ue, for all ve v(G)ìeee(G). This implies that the hypercochain 

(Da(uv),D8((we + wc)/2), Ds((ue - we)/2), KUenrfl(e) - (K* + wc)/2)UenTa(e)), 

(ue - we)/2)\AenTa(e) - uv\AenTa{e))e£e{G)ìe==a{e)ìe=b{e) 

is a hypercocycle for the covering {Tv,JIeeefQ\v = a(e\v = Ue\Ae} of Uv representing the 
class xv. Therefore xv = 0 for all v G v(G) 
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For the surjectivity of / one makes similar calculations which we leave, together 
with the rest of the proof, to the reader. 

Let us now fix L, B as in section §3.5.3.3. Let us also fix an isocrystal S onC and 
denote $B its evaluation on the enlargement Xb (for notations see the section §3.2). 
Let us recall (see ibid.) that we have an absolute connection, DB and a relative one 
DXB/B on EB For i > 0 let us denote by Elahs (respectively Elel) ^ne l°cal system 
on G' defined by: 

a) if v G v (G) then Kb.» •= H¡R(Wv/L,^B\Wv(log(Y nW„))) and if e G e (G) 
then Kb.» •= H¡R(Wv/L,^B\Wv(log(Y nW„))) 

b) if e G e(G) then E1abs;a(e),e H¡R(Wa{e) n AC|B/L, <?ß(log(y H Wa{e) H AetB))) 

and -̂ abs;e,ò(e) H*dR(Wb{e) fi AetB/L, ^ ( l o g ( r H W6(c) n i4CfB)); 
c) the maps are induced by the obvious restrictions. 
We have similar definitions, using relative de Rham cohomology over jB, for the 

local system ^rei-
We denote the the cohomology groups Hi,j (C"B, E*) HBetti(G', El) for 

* G {abs, rei} and remark that Hi,j (C"B, Erel) are &B-modules. 

Proposition 3.35. a) Hi,j (C"B, Erel) are free &B-modules of finite rank for all 0 < 

i,j < 1, i^j- Moreover if s G B then we have Hi,j (C"B, Erel) = Hi,j (C"s,Es) oLQB 
for i,j as above. 

b) Let us denote by V*J the natural connection over KQ of the modules 
H^{V"ETel) whose space of horizontal sections is H^W^o) forO < i,j < 1 

i # j Then for every s G B — {0} we have parallel transport isomorphisms 
Hi,j(Cs,Es) s Я«(<Г8",<%) s Я^(^0",#о) ®к0 F., where Fs is the residue field of s 
andi,j are as above. 

c) The natural morphisms in the "relative Mayer-Vietoris" exact sequence 

0 —• i f 1 ' 0 ^ ^ , ETe\) - HlR{XB/B,¿?B(}og{Y))) • H1'0^^, Ere\) —• О 

are horizontal. Here the connection VB on the WB = HlR{XB/B,£B{\og{Y))) is the 

Gauss-Manin connection 

Proof. — a) Fix s G B. Let us recall from Lemma 3.19 that the rigid spaces Wv, Wv^s 
have canonical formal models WV,WV,S with an isomorphism Wv = WViS x SB and 
natural morphisms 

Cv —> 'Wy —• %B 

Gv • ^t;,s ^ Xs 

The first vertical maps are closed immersions and the last two vertical maps are 
the natural inclusions into Wv and 31 & of their fibers at s. Thus Wv and WVi3 are 
wide open enlargements of C. As £ is a W-isocrystal on C, we may evaluate it at 
WV and Wy^s to obtain pairs {e>V,DV) and {£S,DS) consisting of coherent sheaves of 
üwv-modules, respectively &wv,s-modules, with convergent integrable connections. 
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Prom the diagram above and its image under the functor "rig" we obtain: (E, Dv) = 

(£B,DB)\WI and (E, Ds) = (Exs, Dxs)|Wv,s 
Moreover, if we denote by /3 : Wv —• Wv^s the natural projection, the commutative 

diagram in Remark 3.20 implies that fi*($s,Ds) = (£y,Dv). Thus for all connected 
affinoid B' c B we have H%dR(Wv/B,£v)(B') 9* HxdR(Wv,8,£a) <g>L GB> for i = 0,1. 
Since for all e G e(G) Ae^B is contained in a residue class, Se \— <§B\A& B has a 
basis of horizontal sections for the absolute connection DB. Hence similarly, for all 
connected affinoid B' C B we have HUAeiB/B,£e)(B') s mR{AetS,Ss) ® ^B , for 
i = 0,1. Finally as Ae>£ Pi Wa(e) and Ae?# fi W&(e) are contained in A€fB the same 
result holds for the cohomology of these spaces with values in Se. We deduce that 
HUAeiB/B,£e)(B') s mR{AetS,Ss) ® ^B for 0 < U < 1 , i ^ j . 

b) is now clear and in order to prove c) let us first recall the definition of the 
Gauss-Manin connection in our setting. 

We have a natural exact sequence of de Rham complexes of sheaves 0 1 1 I 5 

0 — /*(«Li(logO) ® Qx^BilogY)-1 ® SB —> 
WXB/Ko(logY) ® <?s — ft* /B(logF) ® EB ------> 0 

where we have denoted / : XB —• B the structure morphism. Then the Gauss-Manin 
connection 

VB:HldR{XB/B,£B(\og(Y))) HldR{XB/B,SB(\og{Y))) ® ftB/i(logO) 

is the connecting homomorphism in the long exact sequence for hyp er cohomology. 
Let us calculate the connection explicitly in terms of hypercocycles. For this 

let t denote a parameter of B at 0 and let x e H\dR)(XB/B,£B(\og{Y)))(B) 
Let us suppose that x is represented by the following hypercocycle for the cover­
ing K' (K)t , ,(o;c)e,(/e,/e)c). where v runs over v(G) and e over e(G). Here 
w„ € H°(Wv,flw,B(ìogWv,0) ® EB) we € iì0(Ae,B,fìAeB/B(log^e,o) ® 
/eGff°(i4e,BnlVo(e),^B) and /eGff°(i4e,BnlVo(e),^B) satisfying the relations: 

a) DXB/B(UJV) = DXB/B(UE) = 0 for all v,e. 

b) ^a(e)|wa(e)nAe,B -^e|^a(e)nAe.B = DXB/B(fe) and 

^e|wb(e)nAe,B -^b(e)|wb(e)nAe.B = DXB/B(fe) for all e. 

Now we choose lifts of uov and o;e to absolute forms, i.e. we choose 
Qv G Hö(Wv,nlWv/Ko(\ogWv,0)®<?B) and respectively ûeeH\AeiB,tt\JK(\og(Aev)®ëB) 

which project to u)v and respectively uoe and define the sections 
rjv G H°(Wv,n\y/R{logWVt0) ® £B),Tìe G H°(Ae,B,n\ ß/ß(logAe,o) 0 SE) 
9e G H°(Wa(e)nAeìB,SB),ge G H°(Wb(e)nAeìB,£B) by the relations. 

i) DB(UJV) = nv A dy/y, DB(ue) = r]e A dy/y for all v, e. Here i/ is a parameter at 
0 on B. 

ii) ÄA(E)\WA{E)NAE,B-ÙE\WA(E)NAE,B 
DB(fe)=9edy/y for all e. 

iii) ÄA(E)\WA{E)NAE,B-ÙE\WA(E)NAE,B DB(fe)=9edy/y for all e. 

Then the hyper-cochain {(Vv)v,(rle)e,(9e,9e)e) is a hypercocycle and its cohomol­

ogy class ®dy/y represents Vß(x). 
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Using this the proof of c) is a simple calculation which we leave to the reader. 

We have the following easy consequence of Proposition 3.35. 

Lemma 3.36. — Suppose we have two choices {WV}V£V^Q) and \Wv}vev{G) AS ^N 
Proposition 3.18. Let *ê := {Wv, AE,B}v,e and c£' ':= {W'v, Ae^}v,e, where v,e run 
over v(G) and respectively e{G), be the corresponding admissible covers of XB- Then 
we have natural isomorphisms of @B-modules: 

H^{V,Eveì)^H^{r,Eveì) for 0 < i,j <1, i # j. 

Proof. — Let 0 7̂  s G B. Then we have natural isomorphisms of ^-modules . 

Hi,j (C, Erel) = Hi,j (Cs, Es) O QB and Hi,j (C, Erel) = Hi,j (Cs, Es) O QB 

for 0 < ij <l,i^ j . 

Therefore it is enough to compare the groups Hl'J(^s^ &s) and Hh3(^, &s) and we 
may suppose that W'v s C WVjS for all v (if not take the intersections). 

For the rest of the proof, in order to ease the notations we'll drop s from the 
notations everywhere, i.e. rename S = £S,WV = WV,S,WV = W'Ae = A€iS 
<io — 'io s, <io' — , D — Ds etc. The natural inclusions Wv C Wv induce by pull-back 
maps Hi,j (C,B) ----> Hi,j (C',B) which make the following diagram commutative. 

0 —• H1'0^^) —• H\R{Xa,£) —> H^1^^) 0 

a 7 

0 —• H1'0^^) —• H\R{Xa,£) —> H^1^^) ------------------------->0 

So it is enough to prove that a is an isomorphism. Let us remark that as Wv is a strict 
neighborhood of Zv in Uv (recall that we suppressed "s" from the notation), the set 

{Wv,ilv=a{e),v=b{e)Ae} is an admissible covering of Uv. As Wv is an admissible open 

of Uv, the set {W^Uv=a(e)ìV=b(e)Ae H Wv} is an admissible covering of Wv. But S 
has a basis of horizontal sections on Ae fl Wv for all e G e(G), therefore the restriction 
H°(WVi£)D — H°(WV,£)D is an isomorphism for all v G v(G). It follows that a 
is an isomorphism. 

Let us fix a collection {Wv}vev(G) as m Proposition 3.18 and let 5 G B (s may be 
0). We consider again the admissible coverings C"B of XB and C"s and the respective 
Mayer-Viet oris exact sequences. Pull back by the closed immersion XS —• XB 
provide vertical maps in the following diagram: 

0 Hl$(%/B,ë) H\R{XBlB,gB{\og(Y))) H^{^IB,S) —• 0 

v------> Hl$(%/B,ë) HlR(Xs^s(\og(YnXs))) H^{^I",S) —• 0 

If s ^ 0 the log structure on XS is trivial. 

Lemma 3.37. — The above diagram of Mayer-Vietoris exact sequences is commuta­
tive. 
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Proof. — The proof follows immediately from the definitions and we leave it to the 
reader. 

4. The Monodromy Operators 

4.1. The global residue. — Let us fix the covering C' = — №>^e}v€v(G(X)),e€e(G(X)) 
as in section §3.5.3.2, G' denote the graph of this cover and assume that S is an 
isocrystal on C i.e we assume that P and hence the log structure induced by it is trivial 
in this chapter (notations as in section §1.) We denote (Ex, DX/KO) its evaluation on 
the wide open enlargement X and by Dx/s the associated relative connection. Let 
us also recall that we defined on X the log structure given by the normal crossing 
divisor W := XQ, on <3f itself the inverse image log structure defined by the closed 
immersion Y = X$ —• X, and on y the log structure given by the divisor t = 0. 
The log schemes thus defined are denoted 3CXX,^XX,^X. We denote ttlxxx/sx := 
( ^ X x / ^ x ) r i g = ^ / S ( l 0 g ( y ) ) and Ayxx/ko:= (Aiyxx/W*)rig = Aiyxx/Wx QWKo. 
for i > 0. 

Let us first fix e G e(G) and recall that the sheaf SX\A& has a basis of horizontal 
sections for DX/s- We denote such a basis by {e i , . . . , ea}. Then using Lemma 3.16 
every element u ;€f r°(Ae , ^®î ï5c /s ( log(y) ) ) can be written 

UJ = 
a 

i=l 

Ei Q 

n,ra>0 
ai,n,m 

n m 
XeXr(e) 

dx/Sxe 

Xe 

where â n,m £ KQ are such that the power series converge on AE. We recall that the 
variables #C,£T(C), defined in Lemma 3.16 satisfy xexT^ = t. Thus we define 

Rese(o;e) 
4 
^2 

a 

i=l 
Ct|Ta(e)nAc 

n>0 
ai,n,ntn)), 

1 
2 

a 

i=l 
£iWb{e)nAe 

n>0 

ai,n,ntn)), 

€ H^R((Ta(e) n Ae)/S, êx) © HüdR((THe) n Ae)/S, <&). 

Therefore, for every e G e(G), Rese can be seen as an ^- l inear homomorphism 

HlR{AJS,Sx{\og(Y))) H°dR((Ae n To(e))/S, SX) © H°dR(Ae n Tb(e)/S, SX). 

Similarly, let 0̂ — №>,0j ^e,o} be the intersection of the covering with Y. It is 
an admissible cover of Y by acyclic wide opens. Let us fix e G e(G) and x, y be the 
restrictions of xe and xr(e) to AE^ respectively. Denote by SQ the evaluation of S at 
<3( and let a; G iï" (Ae?o, 0 ^yxx /Xn)' Then 

a; = 
a 

a=l 

Ea Q 

n>0 

Qa,nXn 
dx 

a: 
n>0 

ßa,nVn) 
dy^ 

y 
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where ( eo}l<a<s is a basis of horizontal sections of <§bUco- As xy = 0 on Ae$, 
dx/x = —dy/y and we define 

Rese(ù;) = 
1 

2 

s 

a=l 
e°a(aaio - pa,o) <4e,0nTa(e))0 

1 

2 

s 

a=l 
e°a(aa,o -/?a,o) ^e,OnTfc(e))0) 

E H%R(Aefi n Ta(e)/K0, S¡>) e H$R(Ae,o n Tb{e)t0/K0, S¡>) 
Thus we defined a Ko-line&T homomorphism 

Res e 
H\R{A*¿/K0,£0) H%R(Aefi n Ta(e)/K0, S¡>) e H$R(Ae,o n Tb{e)t0/K0, S¡>) 

for every e G e (G). 
Now we define residue maps Res and respectively Res^ by the compositions: 

U = H1

dR(X/S,MH(Y))) ®eee(G) (H¡R(Ae/S, ¿k(log(Y П Ae))) 0 e Re S E JJ^fi^CG1 J£ 

and 

H1 (Y, g) : = Я ] я ( У х х / * о , а Ь ) ®eee(G)HdR(A*0 /K0, SQ) 0 e Res e Jjì-FIFCGL 

In the above sequences, the first arrows are restrictions. 

Remark 4.1. — Let L,B be as in section §3.2. Then we immediately obtain an 
&B-linear residue map Res B := Res ®ûs 0B : MB —• H1'0^, Erel). 

Remark 4.2. — Let 

(2) ( K ) w , ( w e ) c , ( / e , / e ) e ) 

6e a hypercocycle for the complex of sheaves SX ® n*x/s(iog(Y)) with respect to the 

covering c£', representing a cohomology class x G HI. Here uv G é?x(Tv) (g) fîy / s , 

ue £ ^x(Ae)^Q1

Ae/s(\ogY), fe e 4 ( T a ( e ) n 4 e ) and / e G 4 f f i ( e ) n 4 e ) and they 
satisfy the cocycle conditions. 

We may express Res defined above explicitly in terms of cocycles as follows: Res(x) 
is the image in H1,0^', Ere\) of the cocycle (Rese(u;e))cee(G)-

Next we would like to describe the fibers of Res. Let 5 G S — {0} and ^ the 
covering of the fiber Xs obtained by intersecting the open sets of C' with Xs. Let 
also Cs be the intersection of the covering ^ (defined in Section 3.5.3.1) with Xs. 
Both ^s^s are admissible covers of Xs by acyclic wide open subsets and ^ is a 
refinement of Cs Let us consider the graphs associated to these covers, i.e., G' and 
G respectively. We have (see Remark 2.5) 

Lemma 4.3. — Let s G S — {0}. Then under the identification between i / 1 ' 0 ^ , <?s) 
and Hx^(^'s,$s) in Lemma 3.34 (Res) s = R e s ^ , where (Res) s is the fiber of Res at 
s and for the notation R e s ^ see Remark 2.5. 

Proof. — This follows from the definitions and the explicit description of the isomor­
phism in Lemma 3.34 and we leave the details to the reader. 
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Now let us concentrate on describing the fiber (Res)o of Res at s = 0. Let us 
first remark that from the definition of an isocrystal and the definitions of the log 
structures on ï , ^ , y we have natural isomorphisms 

(¿>X ®áx ^5fxx /Зх ) ®ÛX @Y — $0 ®ÛY ^ухх / x 0 ' 
for i > 0. Let j : Y C X be the natural inclusion. 

Lemma 4.4. (Res)o(x) = Res(°\j*x) for all x section o/HL 

3 
Proof. — The inclusion j induces an isomorphism M/tM. = if (Y, <£) therefore it 
is enough to prove: if x E HI then we have j*(Res(x)) = Res^( j*x) . Let x be 
represented by a hypercocycle as in formula (2) above. Then for each e G e(G) we 
have 

we = 
a 

i=l 

E(e) Q 

n,ra>0 

(e) 
i,n,m 

XeXr(e). 
dx/s{Xe) 

XE 

where {Ei(e)} is a basis of horizontal sections of SX\A€ for all e and i,n,m G i^o are 
such that the power series converge on A e . With these notations we have Res e(u; e) = 

1 
2 

Eai=1 Ei(e) Ta(e)nAe 

y n *n 

,n>0 Uji,n,nL 5 1 
2 Eai=1 Ei(e) Tb ( e )nA e 

,n>0 ai,n,nL Now 

j*(Res(w)) - Image(Res e ( a ; e ) ) e G e ( G ( x ) ) (mod tH1'0^',Erel)) 

1 
2 

a 

2=1 

j (Ei(e)) 4,0nT a( e ) ] 0 

f(ele)) 1 
2 1 

a 

2=1 
f ( e l e ) ) ^e,0nTb(e)jC 

a ( e ) Ì)e. 

On the other hand, j*(x) is represented by the hypercocycle 
{(i*K))«,0'*(We))e,(j*(/e),i*(/ e)e}. In particular, for every e G e(G) let us 
denote by y e , y T( e) the images j*(xe) and respectively j*(x r ( e ) ) - With these notations 
VeVr{e) — 0 and we have 

j * K ) = 
a 

i=1 

f(4e)) (a{e) -
№,0,0 n>l 

fl(e) l/n-ai,n,0#e 
m>l 

(e) m 
az,0,mi/r(e) 

d(2/c) 
2/e 

so 

Res(°)(j*(x)) 
1 
2 

a 

¿=1 
f ( 4 e ) ) 4e,0nra(e); 

to 
oai,0,0' 

1 
21 

a 

i=1 
f ( 4 e ) ) l^e,0nTb(e))0 

a ( e ) Ì j*(Rese(a;e)). 

Let us define by N0 : H
l(Y, S) —> Hl(Y, S) the composition (Res) 0 o ¿0 where 

i{):H^^'SQ)^H\Y^) 
is the map induced from the Mayer-Vietoris exact sequence for Y and the covering 

We have the following 
C'o 

Proposition 4.5. — The us-linear map Res is horizontal with respect to the connec­
tions, i.e. Res: (M, V) —• ( t f 1 ' 0 ^ ' , £ r e i ) ) , V 1 ' 0 ) satisfies Res o V 1 ' 0 = V o Res. 
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Proof. — Let # E HI be represented by a hypercocycle as in formula (2). We have 
V(x) = y<8> dlog(£), where y is represented by a hypercocycle ((r]v)v, (rje)e, {ge,9e)e) 
as in the proof of Proposition 3.35. To calculate Res(?/) we only need to look at the 
r/e's. To start with, we may write 

0JE = 

A. 

i=l 
ti 0 Ti(t) 

dx/s(Xe) 

xe 
f Dx/s(Ge), 

where {ei}i=i^a is as before a basis of horizontal sections of $x over Ae, ri(i) E &s(S) 
and Ge E (ox(Ae). Then, let us denote by 

u>e: = 
A 

i=l 

€i ®ri(t) 
àX/Ko(xe) 

ve 
+ Dx/Ko(Ge). 

It is a lift of uje to "absolute differentials", i.e., to £x{Ae)®n\e/Ko{\ogY). Then rje 

may be chosen such that 

ne A dlog(t) = DX/K0(äe) = 
A 

i=1 
ei®tr[{t) 

dx/K0(Xe) 

xe 
>\ diog(t) 

therefore 

Rese(rje) 
1 
2 

A 

i=1 
C.UcnTa(c)^(t) 

1 
2 

A 

i=l 
CtUcnTb(c)^t(*))' 

On the other hand 

V(^oResH) = V[((0v)„(0e)e, 
.1 
2 

a 

i=l 

*i\AenTHe)®ri(t)) 
1 
2 

A 

i=l 

*i\AenTHe)®ri(t))e)] 

= [((0t,)v,(0c)CJ 
1 
2 

A 

1 
c.UcnTa(c) ®trï(t). 

1 
2 

a 

i=l 
€<Uenr6(e) 0^(*) )e ) ® dlog(t). 

This proves the proposition. 

Proposition 4.6. — Under the parallel transport isomorphism of Theorem 2.6, NQ 0 
id# zs identified with ATint. 

Proof Let AT : HI — • HI be the composition H -Res-> H1.0 (C', Erel) ----> H where 
the second morphism is the one coming from the Mayer-Vietoris sequence (see section 
§3.5.2). Then by Proposition 4.5 N is horizontal and hence it induces a homomor­
phism N (Elog)v — (MloK)v. By Lemma 4.3 and Lemma 4.4 the following diagram 
is commutative 

H\Y,£) * (Mlog)v — H\CK,&) 

Noi Ni Nint i 

H\Y,&) £* (Mlog)v — H\CK,&). 
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4.2. The proof of the equality of the monodromy operators. — The main 
result of this section is 

Theorem 4.7. — Under the notations of section §^.i we have iV0 = iVdeg. 

Proof. — We will extend scalars to a finite, non-trivial, totally ramified extension L of 
KQ and let B = BL C S be the affinoid disk as in Lemma 3.17. Recall Proposition 3.18 
i.e., for all v G v(G) there is a wide open neighborhood WV of ZVÌB in UVÌB and an 
isomorphism over B 

OLv = OLva :Wv = Bx Wvn, 

where WVio = Wv fl Y. Let pr i 5 i = 1,2 be the i-th. projection composed with av, i.e., 
prx : Wv —> B, pr 2 : Wv —> Wv$. As a v is an isomorphism over B, pr x is the structure 
morphism of Wv over B. 

Let us now fix v and let U = a~1(Uo x 5 ) where Uo C W v fi Y is any admissible 
open subset. We have 

Lemma 4.8. — a) The canonical isomorphism 

A1U*/L = pr*1AB*/L Opr*2A1Uo/L' 

where U* = U — UQ and B* = B — 0, induces an isomorphism of sheaves on U: 

i îU( logy)^ pr*i iB/L( l o gO)epr3i i^ o / L . 

b) The isomorphism at a) induces an isomorphism of sheaves: 

f^ / B ( logY)^=pr^ o / L ) 

and an isomorphism of ÛB(B)-modules 

i^ / B (lo g r)(t/) * áB{B)®üx

Uo/L{U0) 

where <g> denotes completed tensor product. 

Proof. — For a) it is enough to see that we have an isomorphism of "pairs" 

(U,U0) = (B,{0})x(U0,4>), 

where <f> is the void set, i.e., that U = B x Uo and under the above isomorphism 
U0 s ({0} x Uo) U (B x 4>). 

For b) let us notice that we have an isomorphism of sheaves on U: 

SÏu/bQosY) * iîi,/L(logy)/prîiii,(logO) S pr^ U o / i ( logy) . 

Now the lemma follows easily. 

Let us recall from section §3.5.3.3 that the set C"B : = {W^j-Ae,fî}v€v(G),e6e(G) is an 
admissible cover of XB := X XS B. Prom Lemma 4.8 it follows that for all v G v(G) 
and U C Wv as above, the canonical projection: 

iî^ / L(logr)(tf) — ^Wv/B{\ogY){U) 
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has a natural section, call it sv with the property that its image is a submodule of 
A1Wv/L(U) Therefore for every section UJ of A1Wv/B(logY) we have a lift of it SV(UJ) 

to absolute 1-forms, which is a regular absolute one-form by the remark above. 
Moreover, if say e G e(G) then we also have a natural choice of a lift to absolute 

forms as follows. Let us recall that we have 0B(B) = L(y) with the restriction 
0S(S) —• &B(B) given by: t —• nLy. Let c : = |TTL| < 1. 

Lemma 4.9. Le*ù;GÎîi e i B / B(logy)(i4e fB), then we can write UJ = r(y) 
dx/s(Xe) 

xe 

dx/s(ue) where r(y) is a global section of &B and ue G ^ I b ( 4 , B ) . 

Proof. — For this proof let us denote U := AB,B and A(U) := &xB(U), x = xe and 
z = x r ( e ) . By Lemma 3.16, the natural functions x,z EA(U) satisfy xz = TTLV and if 
/ G A(U) then / may be written 

/ = 
oo 

n=0 

OijiX 
oo 

m=l 
ft 2 m 

with an,bm G &B(B) and such that, for every r such that c < r < 1 the sequences 
| û n | s ^ n —• 0 and \bn\B(c/r)n —> 0 as n —• oc 

Therefore v = fd\j/B(x)/x = du/B(g) + aodV/B(x)/x. where 

9 = 
oo 

n=l 
n 

anxn 
oo 

m=l 

bm 
m 

zm G A(C/). 

This proves the lemma. 

A lift to absolute 1-forms of UJ as in Lemma 4.9 is then defined by: 

ue: =r(y) 
dx/K0 {xe) 

Xq 
fdx/Ko(^e). 

Proof of Theorem J^.l. Let x G HB be represented by the hypercocycle 
(K)t;,(a; e) e,(/e,/)e) with respect to ^ (as in in Formula 3.3.2). Let us re­
call that v runs over v(G) and e over e(G). Then ue can be written as 

we= 
a 

i=l 
ti <8> (rc,i(î/)) 

dx/s(Ze) 

Xe 

+ Dx/s(Ei)) = 
a 

i=l 
e. ® (re,t(y)) 

^X/s(^r(e) 

r̂(e) 
-f Dx/s№)), 

where {e^}i<i<a is a horizontal basis of <£#U B , ^ £ ^B{A&^B) for all i and re,i(y) 
are global sections of OB The variables # e and # r ( e ) have been defined in Lemma 3.16 
and their restrictions to AE,B satisfy xexT^e) = T^LV-

We want to calculate V(x) and its residue. V(x) is represented by the hypercocycle 
({Vv)v, (Ve)e, (9e,9e)e), where 

Dx/K0(sv(w)v) = Vv A dlog(y) and Dx/sfie) = Ve Adlog(2/), 

for v G v(G) and e G e(G). Also 

Me)k(e))Ue,BnW r

f l ( e ) -^cUe,BnWa(c) ~ Dx/Sife) =9ed\0g(y), 
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and 

Ùe\Ae,BnWHe) ~ Sb(e)(vb(e))\Ae,BnWHe) Dx/S(fe) =9edl°g(y) 
Let us recall that SV(LJV) is always a regular 1-form. Also, 

àe\Ae,BnWa{e) r(y) 
dx/K0(xe) 

xe 
+• ^X/Ko (Це) 

is also regular as x G is invertible on Ae^B H Wa(e). On the other hand we have 

Ve\Ae,BnWhie) r(y) 
dx/Ko(xe) 

Xß 
+ dx/K0{Ue) =r(y) d(y) 

y 
-r(y) 

dx/K0(^r(e)) 
Ят(е) 

+ ^X/K0(^e), 

and the form -r(y) ^X/KQ(̂ R(E)) 
Ят(е) + dx/K0(ue) is regular on W^e) fl Ae?# because the 

function xr(e) is invertible on this open set. 
Therefore we have: Resy=o(rjv) = Res2/=o(^e) = 0 for all v G v(G),e G e(G), 

Res^olSW = 0 and Resy=o(0c) £?=i rc,»(0)ei|Ae)Bn^(e) for e G e(G). Thus, we 
have that Resy=o( v(x)) is represented by the hypercocycle 

((0t,)v,(0c)e,(0c, 
a 

i=l 
reA°)€i\Ae,BnWb(e))e) 

whose cohomology class in H 1(Y1 S) ®#0 L is the same as the class of 

{(Pv)v,(0e)e: 
1 

2 

a 

i=l 
re,i(fy€i\Ae,BnWa{eV 

1 

2 

n 

i=1 

reAQ)ei\Ae,BnWHe))ej 

which is 
Res(#) (modyHß). 

This proves that Ndeg®K0id-L = No®K0idL. As iVdeg and NQ are both endomorphisms 
over KQ of the finite dimensional KQ vector space H 1(Y, and as they become equal 
after base change to the extension L oi KQ, they are equal. This ends the proof of 
Theorem 4.7. 

5. Frobenii 

5.1. Frobenius and ifo-structures on HL/J]{^€s,$s). — In this section we supply 
a number of details needed in section §2.2. Namely let us resume the notations 
of section §3.2. Let X —> S be our family of curves, ^ = {Uv}vev{G) De the 
admissible covering of X defined there. Fix s G S a point such that s ^ 0 and for 
an object M over S Ms will be the fiber of M over 5. Let ^s := {UVIS}VEV(G) and 
if e = [u,v] G e(G) then Ae?s = Ae xs s = UUiS fl UViS- Let us also denote by 5 the 
image under red : S —• 5? = Spf(W[[t]]) of the point s e S and by XS := X <g)̂  s. 
In particular if s = 7r, then XS = CK and XS = C in section §2.2. Let <? denote an 
F-isocrystal on C and let Ss denote the evaluation of § on the enlargement XS. 

We will define the canonical KQ-structures and Frobenii on H1,0(ffs, Ss) and 
H^0(%,^8) needed in section §2.2. 
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For the rest of this section we fix s and denote Uv s, Ae s simply by Uv,Ae. 

Lemma 5.1. — Suppose that the residue field of s is L. For every e G e(G) we have a 
canonical isomorphism of L-vector spaces 

H°ris(e/W,<?) ®Ko L s H°dR(Ae,£s\Ae), 

where above e denotes the singular point of C corresponding to the edge e. 

Proof. — As mentioned before, Ae is a wide open enlargement of e G C, i.e. let us 
consider the formal completion of Xs along e, (Xs)/e. It is a formal scheme such that 
¥ \riê ~ A 

s) le — e ' Therefore é>s\AE = &{XS)/E and H°ciis(e/W, S) ®Ko L * H°dR(Ae, SS\AC). 

Let us remark that the isomorphism of lemma 5.1 endows H%R(Ae, SS\A&) with a 
canonical i^o-structure and a Frobenius, namely H®ris(e/W, S) with its Frobenius, (jPe. 

Let us fix v G v(G) and Cv the component of C corresponding to v. Let is denote 
by C*X the log scheme Cv with log structure given by the smooth divisor of the 
singular points in C belonging to Cv. 

Lemma 5.2. — In this lemma s may be 0 . For i = 0 , 1 we have natural isomorphisms 
of L-vector spaces 

HÏris(C;x/W,£) ®Ko L * HdR{Uv^s\Uv) 

Proof. — Let red : Xs —• C denote the reduction map and let Zv = ved-^cl), 

where Cov is the complement in Cv of the singular points in C. Then Zv is an 

underlying affinoid of Uv with good reduction (its reduction is Cov). Let us denote 

by Singv := Cv — Cv. As Cv is a smooth proper curve over k, there exists a pair 
( C , Q) consisting of a smooth proper curve C' over OL and an etale divisor Q on C' 
such the special fiber of (C',Q) is (Cv, Sing^). Let us denote C' :— C'— the formal 

completion of C' along its special fiber, let C'L \— (Cf)Tlg and red : C'L —> Cv be 

the reduction map. If we denote Z' := r e d " 1 ^ ) then Zv = Z'v and we'll identify 
the two. We claim that we may choose the pair (C",Q) such that the isomorphism 
Zv = Z'v extends to an open immersion Uv C'L. This can be seen as follows: let 
us "add the affinoid disks to Uv to close the holes". We obtain a smooth proper rigid 
curve with a smooth proper formal model whose special fiber is Cv. This formal 
model is algebrizable, i.e. it is the formal completion along reduction of a smooth 
proper curve over GL, which may be taken to be C'. In any case, the open immersion 
Uv ^ C'L has the property that its complement is a disjoint union of affinoid disks, 
containing Q and each contained in the residue class of the points e G Singv. 

We have the natural morphisms of formal schemes over GL'-

С Cv ^ С', 

which make C' an enlargement of C. Let us denote by <§c' the evaluation of £ on 
this enlargement. It is a coherent sheaf with connection on C'L. 
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Claim 1. — &c\uv is isomorphic to £s\uv as coherent sheaves with connections. 
To see this let us first recall that we have open immersions Uv c—> Xs and Uv ^ C'L 

and XS,C'L have formal models £S,C" respectively. Moreover, by the description of 
the embedding Uv C'L given above the following diagram commutes 

Uv — Xs - Ä с 

Uv — cL red -f, • 

Let now V C Uv be an admissible open. By applying lemma 3.1 we obtain canonical 
formal models V1 —• C' and V —> Xs and by the diagram above and section 3.1.2 
we obtain a natural morphism y1 —• y inducing the identity on generic fibers and 
such that the following diagram of special fibers commutes 

y' > y 

Cv ^ C 

Thus we obtain a diagram of enlargements 

(V' --> V') 

(Cv — C') 

(V --> V) 

(C ^ Xs) 

which shows that Sc and <£s coincide on V. This proves the claim. 
Let CyX and Cfxx denote the scheme Cv, respectively formal scheme C with log 

structures given by the divisor Singv, respectively by the divisor Q. Now let us see 
that we have natural morphisms 

Wclis(C*xIW,S) ®Ko i^Hltis{cxvxiâL,s)^ HdR(C'L,gc>(\og(Q)) —V HdR{Uv,Ss\Uv), 

the first two being naturally isomorphisms. 
In order to prove the lemma let us remark that we have natural isomorphisms of 

L-vector spaces HldR{CfL - Q,£c>\ct-q) = HlR(CL,<gc>(\og{Q))) for i = 0,1. We 

will prove 

Claim 2. — Restrictions induce isomorphisms between HdRÌCL - Q^C'\C'-Q) = 

H*dR(Uv,<?s\uv) for all i > 0. 
For i = 0 the statement of the claim is clear. The proof of the claim for i = 1 is 

by an excision argument presented in theorem 4.2 of [7] for the case of trivial § . The 
main idea is for a rigid analytic space M to find good definitions of "closed subsets" 
and their "admissible open neighbourhoods" and to use the Gysin long exact sequence 
as in [22]. 

We say that a subset Z of M is closed if it is the complement in M of an admissible 
open subset. Given such a Z, we say that U is an admissible neighbourhood of Z if 
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U is a strict neighbourhood of Z in M. Let us recall that this means Z C U, U is an 
admissible open of M and the family {£/, M — Z} is an admissible covering of M. 

Now if & is a sheaf of abelian groups on M we define TZ(M,F) to be the sections 
s G <^{U) supported in Z for any strict neighbourhood U of Z. The functor ^ —> 
TZ(M,F^) is left exact and therefore if & 9 is a complex of sheaves on M we define 
the hypercohomology groups with supports, WZ(M,F*) to be the hyper-right derived 
functors of T^(M, —). By corollary 1.9 of [22] if F* is a complex of sheaves on M 
we have a long exact sequence (the Gysin sequence): 

0 —• H^(M, F*) —• H°(M, J^ 0 ) —• M°(X - Z, F*)—• H^(M, F*)—• • • • 

Moreover, if U is a strict neighbourhood of Z in M we have excision, i.e. canonical 
isomorphisms 

Hiz(M,F*) = Hiz(U,F*) for all i > 0. 

Let us now apply this theory to M = C'L-Q, Z = (C'L-UV)-Q. Let us remark 
that C'L — Uv is a disjoint union of closed disks contained each in the residue class of 
one point of Singv and containing exactly one point of Q. So in fact Z = M — Uv 

is closed in M. Let us denote by (E,D) = (SC'\M^D\M) the restriction to M of the 
coherent sheaf with connection (EC',D) and let 9 ' :=E®eM STM/L. The interesting 
part of the Gysin sequence reads: 

MZ(M, R ®eM WM/L) —» Hl

dR{C'L - Q, E) HlR{Uv,E\Uv) —> W%{M,E®eM STM/L). 

Let us now explicitly calculate Wz{M,E®e„WM/L). Let Ul denote a disjoint union 
of wide open disks in C'L containing C'L — Uv and contained in the union of the residue 
disks of the points of Sing v. Then U' — Q is a strict neighbourhood of Z in M and 
excision implies 

Щ{М,Е®ем^м,ь) = MZ(U' - Q,E\u..Q ®ev,_Q (T(u,-Q)/L) for all i > 0. 

The Gysin sequence for the pair (Uf — Q,Z) and the restriction of E to U' — Q which 
we denote by E' gives 

0 _ > M°Z(U' -Q,E>® ST(U,_Q)/L) — H°dR(U' - Q, E') — H°dR(U' - Z, E') — 

— M^(C/' -Q,E' ® n*(u,_Q)/L) — tf^(t/' - Q, £") — i ï d y * 7 ' - Z, £ ' ) . . . 

First let us remark that as U' is contained in a union of residue classes, (E\u', D\u') 
has a basis of horizontal sections. Let us denote by ED := HdR(U', E\j'). Second let 
is remark that U' — Q is a disjoint union of punctured disks containing the disjoint 
union of wide open annuli U' — Z. Therefore we have the following commutative 
diagram where the horizontal arrows are induced by restrictions and the last vertical 
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ones are residue maps. 

H\R{U'-Q,E') HdR{U'-Z,E') 

H\R{U'-Q) ®L ED HUU' - Z) ®L ED 

H°dR(U'-Q,E>) = ED = H°dR(U'-Z,E') 

As the residue maps for punctured disks and annuli are isomorphisms the first hori­
zontal arrow is an isomorphism and the Gysin sequence for (Uf — Q, Z) above implies 
that WZ(M, E ®eM £TM/L) = 0 for all i > 0. This proves the claim. 

Claim 3. — We claim that for i = 0,1 the composed isomorphism 

HiHs(C
x

v

x/ÛL,£) <* HlR{Uv,Ss\Uv) 

is independent of the choice of C' and the choice of embedding UV C'L. 
The proof of this claim is standard: suppose (C", Q") is another such pair defined 

over GL, with an embedding UV C'[. We let C\ to be the formal completion along 
CV of the fiber product C x C". By the Poincaré lemma we have isomorphisms 

Hl

dR(C'L, Sc log(Q)) — ^ f l ( ( ^ i ) r i s , SCl (log(Q U Q")) HdR(CL<?c»(log(Q")), 

compatible with the homomorphisms from HdR(Uv,&s\uv) induced by the immersions 
Uv <-> C'L1 Uv — C'l and the diagonal immersion Uv - (Ci)"«. 

As before the isomorphisms in lemma 5.2 endow the L-vector spaces HdR(Uv,&s\uv) 
with natural ifo-structures with Frobenii, namely Hcris (Cxx,E) for i = 0,1 with their 
Frobenii. 

For e G e(G) let us denote by é>e := £S\A& and let us now concentrate on the 
L-vector space HdR(Aei Se). These spaces do not have an interpretation as crystalline 
cohomology groups, nevertheless we have residue isomorphisms 

ReSe-.tf^Ae^e^tfVe,^), 
and may define the ÜVstructure of the domain to be the inverse image of the ÜVstruc-
ture of the target, i.e. to be Res-\Hlis{elW,e)). Moreover let us endow this 
i^o-structure with a Frobenius (jre defined by $\ = pRese o ^ o Res e . We have 

Lemma 5.3. — Let e G e(G) and suppose the vertex v G v(G) is the origin or the end 
of e. Then, for i = 0,1 the natural restriction maps: 
respect the Ko-structures and the Frobenii. 

Hl

dR(Uv,é>s\uv) —y H%

dR(Ae,Se) 

Proof. — For i = 0 this follows from the commutativity of the diagram 

HdRÌUv^s\uv) H°dR(Ae^e) 

H°CTis(C*X/W,£) ®KoL H°ciis(e/W,£) ®KoL 
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where the lower horizontal map is the restriction Hi-ls{C:*/W,£) —> H°ris{e/W,g) 

tensored with L over KQ. 
For i = l we'll use residues. First we have a natural residue map Res which makes 

the following sequence exact: 

0 — Hl,ls{CvlûL,S) tfcris(Cr/W,£) ^ ®e^H°ctis{e/W,S){l)-

Here the twist by 1 refers to a twist as filtered, Frobenius modules. Moreover, the 
following diagram of L-vector spaces with exact rows is commutative 

0 — Hl,ls{CvlûL,S) Hl,ls{CXvXlâL,£) ^ eeGsingv̂ c0ris(e/̂ L )̂ 

0 — Hl,ls{Cv,EC') HdR{C'L,gc>(\og{Q))) ^ 0p€q№Op 

o —, HdR{cviâL,gc>) HdRÌUv^s\uv) ^ eeGSingv^i?(^e, <%UJ 

where: 
• The map Res HdRÌUv^s\uv) • ®eeSingvH^R{Ae^e) in that diagram is the 

composition of the restriction HdR(Uv,&s\uv) > ^eeSingH^Ae^e] and the direct 
sum of the residue maps Rese H\R{Ae,£e) ^ H»R{Ae,£e). 

and 
• If we denote by 6°, 61 the natural Frobenii on H°tis(e/W,£) and H°tis(Cxx/W,£) 

respectively and by Rese Hi-ls{C:*/W,£) —> H°ris{e/W,g) then we have: 
ReSgC/!)1 = p0°Rese 

These facts prove the lemma for i = 1. 

5.2. F-isocrystals. — Let us go back to our notations of section 5.1: X —• S is 
our family of curves over the wide open unit disk, s € S — {0} is a point defined over 
L, Xs the fiber of X over s, Xs the canonical formal model of Xs over &L (defined in 
section 5.1) and C the special fiber of Xs. For v £ v(G) let Cv denote the component 
of C corresponding to v and Cv the complement in Cv of the singular points of C. 

Then the composition Cv e—> C °—> Xs is a closed immersion of formal schemes 

over 0L and Cv <^-> Cv is an affine open, therefore we denote U = Uv = red-1(Cv) = 

( X « ) / c J n g and z = zv= r e d _ 1 ( C J . Then U is a one-dimensional wide open of Xs 

and Z C U is a an underlying affinoid with good reduction. 

Let U —• U xSpm(L) U be the diagonal embedding. It is locally a closed immersion 
so let us denote by Av the formal neighbourhood of the diagonal i.e. the completion 
of U xSpm(L) U along the diagonal morphism. Let 7ri,7r2 : U xSpm(L) U —> U denote 
the two projections. 

If M is a locally free, coherent sheaf of ^ -modules on U with an integrable 
connection D there is a unique horizontal isomorphism 

h: TTIM\Au ^TT;MAU 
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which restricts to the identity on U. Locally on U we may assume that fi^/L is a 
free ^[/-module generated by dt, let d denote the derivation dual to dt and also by 
d = DQ : M —• M the induced morphism. Let us denote by u = T*1(t) — TT^ (t) seen 
as a rigid function on A^. With these notations, h is given (locally) by formulae 

/i(7rTra) = 
oo 

n=0 

un 

n! 
7T2*(^m), 

for m (local) section of M. 
Now let us look at the sequence of morphisms: 

CV A > CV Xspec(k) CV ^> X2

S :— Xs Xspf( L̂) Xs. 

The composition is a closed immersion so let us define 

Ac/ :=]CV[X2 = ((^)/c„) r i g-

Let us remark that Au is a tubular neighbourhood of the image under diagonal of U 
in Xs x S p m ( L ) Xa. 

Definition 5.4. — We say the pair (M, D) is a convergent isocrystal on (J7, Z) if 
h extends to AJJ (the extension is unique if it exists). 

Here are a few easy but very useful consequences of the definition. Suppose that 
(M, D) is a convergent isocrystal on (U,Z). If / , g: T —> U are two morphisms from a 
rigid space T into U such that (f,g)(T x T) Ç Ay, let Xf,g = {f,g)*h: f*M - g*M. 

As h is an isomorphism Xf ,g 1S an isomorphism of sheaves. 

Lemma 5.5. — The restriction of (M, D) to any residue class of (W, X) is trivial. 

Proof. — Let U be a residue class of (W,X). If there exists a point P € U(K), 
let / , g: U —> W be the morphisms, the identity and x —> P , respectively. Then 
f*M = M\u, g*M is trivial and x/p is an isomorphism. 

In general, base change to a Galois extension L of K such that U(L) ^ 0 , proceed 
as above for each irreducible component of UL and then take invariants. 

Let us recall that Cov is a smooth affine curve over k contained in the smooth 
projective curve CV; therefore there is a smooth affine scheme of finite type over GL, 
Spec(A) lifting CV. The 7T£-adic completion of A is isomorphic (non-canonically) to 
the ring of rigid functions on Z bounded by 1. Fix such an isomorphism and identify 
the two. Via this identification, proposition 3.14 (where Rk is been replaced by GL) 
gives 

SpmM f ®ÛL L) = lim H°(T,Gn) 
->T 

where T ranges over all strict affinoid neighbourhoods of Z in U. We have natural 
restriction maps Gu(U) —• H°(T, G\j) which induce an ^-a lgebra homomorphism 

Gu(U)^Ai®ÛL L. 
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Therefore if (M,D) is a locally free coherent sheaf of ^/-modules on U with an 
integrable connection we denote 

Mf := H°(U, M) ®Gu (A* <g> L). 

It is a projective A* 0 L-module with an integrable connection 

L>t : Mf —> Mf ®At<g)L fi(At®L)/L» 

induced by £>. We have a description of Q1 
i¿(At®L)/L 

as l i m t f ° ( T , i ^ ) where T runs 

over the strict affinoid neighbourhoods of Z in U (see [1], section §2.5.) 

Let UQ 7*o k 770 be a morphism of schemes over k, let A, A' be smooth ¿^-al­

gebras of finite type such that Spec(A) and Spec(A') lift Cv and let u : A^ —> A t 
be a ^-a lgebra homomorphism lifting the A:-algebra homomorphism corresponding 
to UQ (see for example theorem 3.7.) 

Define the category Mic^t®L to be the category of finitely generated projective A* (g> 
L-modules with integrable convergent connections. Then the ^-a lgebra morphism u 
defines a functor which preserves convergence u* : MicAf^L —* ^CA*®L and which 
is an equivalence of categories if 0̂ is a isomorphism. 

In particular for u0 = id-^o, we see that (M\D^) is independent of the choice of 
V 

the lifting A. 
Also, let us first fix a : GT, —• @L an automorphism which lifts Frobenius of k. 

Let f:= [k:Fp] and denote by F = Frob* : Cv —> Cv. Then F{ci) c c: and let 
(j) : A* —> A* be a lift of F over a. 

Definition 5.6. — A convergent F-isocrystal on (17, Z) is the following family of data 
• A convergent isocrystal (M, D) on ([/, Z) 
and 
• a horizontal isomorphism F+ : 0*(Mt,Dt) _ > (Aft,£>t) for every morphism 

ó : A* —• At which is a lifting of F. 

Let us remark that if 0i,02 are two liftings as in definition 5.6 we have F^2 = 

F<t>i °X<j>i M-
Let now & be an F-isocrystal on C. Let us recall that the formal completion of 

Xs along the closed sub-scheme Cv, iiv := (%s)/cv 1S a smooth formal scheme over 
&L such that il"g = Uv = U. Let us denote by ($V,DV) the evaluation of £ on ity, 
which is a wide open enlargement of C. Here (<^, Dv) is a pair consisting of a locally 
free, coherent ^ - m o d u l e with integral convergent connection Dv (convergence follows 
from [1] 2.2.2 and 2.3.4.) Moreover by definition 3.4 it follows that if óv : ÍL —> iL 
is a lifting of F then we have an isomorphism F+v:Q*v(ExDV)—*(£V,DV). 

We therefore clearly have 

Lemma 5.7. — The pair (£V,DV) is a convergent F-isocrystal on (U,Z). 

In fact by [1] corollary 2.5.8 the data of the F-isocrystal {£V,DV) is equivalent 
to the data: (M, D) where M is a finitely generated projective A^ ® L-module, D : 
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M ----> M OatoLA1(A+ol)/L is an integrable connection such that if 0 : A^ —> A^ is 
a lifting of F , there is a horizontal isomorphism $ 0*M —• M The convergence of 
the connection is a consequence of the existence of 

We need to consider one example of a relative convergent isocrystal. Let as above Z 
be our affinoid over L and / G &z(Z)*, \f\ < 1- Let An be the rigid analytic space 
over L in Z x BL whose Cp-points are {{z,b)\ \f{z)\ < \b\ < 1}. This is a family of 
annuli over Z. Let T be the rigid function on An defined by T(z, b) = b and AAN/Z be 
the neighbourhood of the relative diagonal AAn/z m An x z An over Z whose points 
are 

{(x,y) e Anxz An xT{x) 
T(y) 

- 1 | < 1 } . 

The diagonal morphism An —• An Xz An is a closed immersion. We denote 
by AAn/z the formal completion of An Xz An along its image. Let 7Ti,7T2 denote 
the natural projection from An Xz An to An. Suppose M is a coherent sheaf of 
^n-modules, D:M-^M ®ВАП fi* a (relative) integrable connection over Z 
and such that the formal horizontal isomorphism Л:тгТМ|я -nr íMI-f 

1 'Длп/Z 2 'Длп/Z 
which 

is the identity when restricted to AAN/Z extends to AAnjZ (i-e. (M, D) is a convergent 
isocrystal.) 

Then we have 

Lemtna 5.8. — Suppose that (M, D) is a locally free sheaf of Ó\n-modules on An with 
a relative, integrable convergent connection D as above. We use h to identify TT^M 
and 7r|M on AAn/z- Let UJ be a section of M <S>^An ^\n¡Z' Then there is a unique 
section e of 7rUM) on AAN/Z such that 

7rîX?(c)=7T1*(W)|ÂAii/z T*2(w)|Aan/z' 

and such that e\AAn/z = 0. 

Proof. — For simplicity let us denote for this proof U := AAU/Z- We claim that 
we have a natural isomorphism (\> : U = An xSp(L) SL as rigid spaces over Z, where 
let us recall SL is the wide open unit disk over L . The isomorphism and its inverse 
i\) : An xSv(L) SL —• U are defined as follows 

4>((z,b),(z,b')) := ((z^b'b-1) and 1>((z,b),a) = fc6),(*,(l + a)&). 

This implies (see lemma 3.5 in section §3.1.3) that for any admissible affinoid open V 
of An the morphism of complexes 

(M ® SlAn/z)(V) — « ( M ) ® tollz){*?<y) n U) 

is a quasi isomorphism and hence pull-back by the diagonal immersion 

A* : (TTÎ(M) ® Ü'U/Z){^\V) n tf) — (M ® SlAn/z)(V) 

is a quasi-isomorphism. In degree 0,1 this implies that for any section n e (7TÎ(M) 0 
%/z)^i(V)nU) such that D(j]) = 0 and A*(77) = 0, there exists a unique section 
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e G 7r1*(M)(7T1-1(F)nC/) such that D(e) = 77 and A*(e) = 0. Now we apply this 
to the case 7Tj~ (V) n U = aï {V) n V and n = T*1(w) - T*2(w) for a section UJ G 
(M®n\N/Z)(V) 

Remark 5.9. — In the notations of lemma 5.8 M has a basis of horizontal sections 
on An. 

Proof. — Let V be a finite Galois extension of L such there exists a section s : 
ZL' —> AUL' of the structure morphism g : AUL' —> Z^ (the subscript L' denotes 
extension of scalars to V). For example, suppose there is a 60 € M\(Lf) such that 

1/1 < m < 1. We may define s by s(z) = (z,bo) and thus we have a morphism 
u =: (idAm s) • An = An Xz Z —• U. Then u*h gives a horizontal isomorphism of 
ML> to the module with trivial relative connection g*s*ML', defined over L'. Now 
take Gal(L'/L) invariants to get a basis of horizontal sections of M. 

Let us also notice that remark 5.9 implies that in lemma 5.8 one could reduced to 
the case where (M, D) is trivial and then prove the lemma by elementary calculations. 

5.3. Lifts of Frobenius. — Recall X —• S is a family of curves over the wide 
open unit disk and £ is an F-isocrystal on C. We have defined a Frobenius ip : S —> S 
over the absolute Frobenius a on Spec(i^o) in section 2.1 and £ comes equipped with 
an isomorphism of isocrystals on C 

F :F* {£)—*£ 

where F is the Probenius on C over the absolute Probenius a on Spf(VF). 
Using F we have defined a Frobenius operator $1 : ^*M1 —• M1 in section 2.1. 

Let f := [k : ¥p]. We will give an explicit description of the "linearized Frobenius", 
using "local lifts of Frobenius" to X. 

Recall, from section 3.2, the admissible cover of X, c€' = {Tv, Ae}vev(G),eee(G)- We 
intend to construct local lifts of F, so we will need to refine this cover in two ways. 
First let L be a finite, non-trivial, totally ramified extension of KQ and B1 = BL the 
affinoid disk around 0 of radius |7T£,|, where TTL is some uniformizer of L . Let B2 be the 
affinoid disk around 0 of radius \KVL |, where / = [A; : F]. Then ip = (ff®K0idL, maps 
B1 to B2. Similarly, let F*k{&) denote the isocrystal on C defined by: F*k{&){r,zT) = 

Qf1 

(̂T,FfcozT) where let us recall that F h = F is the Frobenius endomorphism over k 

of C, and by Fk:(Fk)*(£)-^£ the /-iterate of F. 
For the rest of this chapter we use the following notations: for every v G v(G),i = 

1,2 let Zi := Zv xs B\ UBi„ := Uv xs B\ A\ := Ae xs B\ 
We have 

Proposition 5.10. — a) For every v G v(G) there exist wide open strict neighbourhoods 
VI C UBiiV ofZl over B% and a rigid morphism 4>v : Ul —> U* over ij), i.e. such 
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that the following diagram commutes 

U1v ФУ X U2 

B1 W B2 

b) The morphism <\>v at a) is a lift of Frobenius i.e. the following diagram commutes 

U1v X ^ c 

<t>v Ff| 

u2 X ^ C 

Proof. — For i = 1,2 let Wl denote wide open strict neighbourhoods of zi in Ug<v 
such that there exist isomorphisms of rigid spaces over B% (see proposition 3.18) 

al : WÌ * Wìfi x B\ 

where W*0 is the fiber at s = 0 G Bl of W%. Then W^0 is a wide open strict 

neighbourhood of ZVÌQ in UVio- As Zy,0 — ]СуЫо1 as in the discussion after the proof 
of lemma 5.5 let A be a smooth ^-a lgebra of finite type such that Spec(A) is a 
lifting of C°v. We identify A^ with a sub ^-a lgebra of the ring of rigid functions on 
ZVj0 and let $v : A^ —• A^ be a lifting of F : Cv —> Cv. We may choose strict 
affinoid neighbourhoods Tl of Zv$ in W^0 such that ^(T1) c T j . As in the proof of 
proposition 3.18 define wide open neighbourhoods Ul0 of Zlv Q in W^0 over B% such 
that $v(Uv0) cUy0. For later use let us remark that we may choose U%0 such that 
Uy Q — Zv$ is a disjoint union of wide open annuli. Let now Ul := (al)-\Ut0 x J3<) 
and <t>v \Ul —• U2 the morphism (j)v = a2v o($v,<0)° (al) 1 By definition we have 
the commutative diagram 

U1v ФУ ^ U2 

ai I [a2 
U,o x B1 (Qv,W) Ko x B2 

compatible with the projections to B1 respectively B2. The conclusion follows. 

We now give a general definition of a "lifting of Frobenius" and some of its proper­
ties. 

(1) For two admissible opens Ul C XBi, i = 1,2, we say that an L-morphism 
(j> : U1 — U2 is a lifting of Frobenius over tj) : B1 —• B2 if the following two natural 
diagrams commute 

ul -U u2 

B1 ^ B2 
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and 
U1 — Xgi ^ (3t»i)i = C x A [ 

Q| Fi i 

1/2 ^ xB> ^ (X^h = C CxAl 

Let us recall that in the second diagram &% denote the natural formal models of B% 
defined in section 3.2 and (X@i)i the closed sub-schemes of X@i defined by the ideals 
TCL&x^i, for z = 1,2. F denotes the absolute Frobenius of C x A\. 

The commutativity of the above two diagrams is equivalent to the commutativity 
of the diagram: 

Iji ^ x red c 

4>l Ff I 
[/2 ^ X red С 

(2) For any lifting of Frobenius 0 : U1 —• U2, we have a canonical horizontal iso­
morphism F<f> : </>*(̂ je|c/1) — ^x\u2- Here £x denotes the evaluation of the F-isocrystal 
£ on the (wide open) enlargement X of C. 

Proof. — First let us assume that U1,!!2 are affinoids. Let ty1,^/2 be the canonical 
formal models of of Ul ,U2 constructed as in lemma 3.1 using the p-adic formal models 
X@i,X@2 over &L. Moreover the commutative diagram in (1) above and the remarks 
after the proof of lemma 3.1 provide a morphism <p : fy1 —• ̂ 2 whose generic fiber 
is (f> and which induces F in the special fiber. Now S'xlu1»<l>*(^xlu2) are m fact 
isomorphic to the evaluations of £ , respectively of (F^)*(£) on the enlargement fy1. 
Now the definition of the F-isocrystal £ provides the F^. 

In general, choose an admissible affinoid covering of U2 and an admissible affinoid 
covering of U1 which refines the inverse image under <j> of the covering of U2. The 
functorially of the construction in lemma 3.1 imply that the local F^'s glue. 

(3) If 6, ó' : U1 —• U2 are two liftings of Frobenius there is a canonical horizontal 
isomorphism X*,*' : <t>*(#x\u*) — 4>'*(#x\u*) compatible with F^^Fp. For three 
liftings, they satisfy the cocycle condition. 

Proof. — This follows from the fact that 4>*(£x\u2) is canonically isomorphic to the 
evaluation of (F )*(£) on the enlargement V1 defined in the proof of (2) above and 
again from the properties of F-isocrystals. 

Let Ul * = 1,2, vev(G) denote admissible open subsets of XBi over Bl whose 
properties were proved in proposition 5.10. In fact we will choose the 17*'s as in 
the proof of proposition 5.10 i.e. such that for every v G v(G), i = 1,2 there are 
isomorphisms of rigid spaces over fl*: al'.Ul^Ul^xB1 where Uxv 0 are the fibers of 

Uiv at s = 0 and they are wide open strict neighbourhoods of ZVi0 in W*0. Moreover, 

Uy,0 ~ Zv,0 is a disjoint union of wide open annuii. 
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Let us note that fé7* = {Ul,Ale}vev(G\eee(G\ where i = 1,2 are admissible covers 
of XBi by acyclic, admissible open subsets. For every e G e(G) we have morphisms 
0e : ^ — ^ , over ^ B1 -^B2 defined by 0e(xe) = xf and 0e(zT(e)) = Xr(eY 

Let Fv,Fe denote the Frobenii provided by (2) above. 

Fv : (pKS'xlu^) —• &x\ui for all v 

and respectively 
Fv : (pKS'xlu^) —• &x\ui for all e. 

The description of the Frobenius ФF Ф*ШВ2 > И В 1 . — We can now give 
the description of the Frobenius operator. Let ^ — {^>^e}v€v(G),eGe(G) be the 
respective open covers of XBi. 

Recall, S is an F-isocrystal on C and let Fv,Fe be as above. Let u G MB2 — 
HUXB,/B*,*x(log(Y))) be represented by the hypercocycle with respect to cê2\ 

((Uv)vev(G)i (ü>c)e€e(G)> (/e)e€e(G)> (/e)eGe(G)) 

Now we define a hypercocycle of the relative de Rham complex of S'x with respect to 
fé71 whose cohomology class in MBi represents Qf1 (W*w) 

Let us remark that for e G e(G) we have (see the proof of proposition 5.10) 

U2a{e)nAl (U2nA2)xB2 {\a\ < \xefi\ < 1} x B2, 

where xe o is the restriction of xe to Ae o and a € L is such that 
|Tpf 
L < \a\ < 1 Thus 

the rigid space An U2nA2e is a family of annuii over the affinoid Z = B2 and 
we may apply lemma 5.8 to the sheaf with relative connection (4|in,^XB2/B2)' We 

let Д(^,ИПА>)/В» denote the neighbourhood of the relative diagonal in An x Bi An 
defined in that lemma. There exists a unique section ee G sx(A(Ua(e)^A2e/B2) such 
that 

^lDXB2/B^{^e) = *l(«>a(e)\zu2 Ai/B2) 
a(e) e 

T*2(wa(e)|AU2a(e)aA2a/B2) 

and whose restriction to the diagonal vanishes. 
Let us define 

vv = Fv((j)l(uv)), ve = Fe{pe(u;e)) he = A*(Fa(e) O 0* a(e) Fe O 0e*)(6e) + Fe(#( /e)) , 

he := A*(Fb(e) o # Fe o #)(Cc) + Fe(ct>*e(fe)). 

Then the collection ((I/v)u6i;(G)> (^OeGe^)» (fte)eGe(G)» (̂ e)eGe(G), is a hypercocycle 
for the relative logarithmic de Rham complex of <5r on A R I / 5 1 with respect to the 
covering <̂ ?1. Its cohomology class depends only on UJ and is equal to Qf1(w) 

To see this let us recall the notations and results of section 3.4.3. Namely let us 
recall that we denoted Xxx the formal scheme X with log structures on Y, let ^ x 
denote the formal scheme 5? = Spf(W[[£]]) with log structures at t = 0 and let C 
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denote the scheme C with inverse image log structure from 3£xx. If for e G e(G) 
we denote also by e the singular point of C corresponding to the edge e we have 

rX)/e)r,g=4 and 

((Xxx x Cx XXX)/e)rig S ß 2 " А(1/=(Е)ПЛ2)/В2. 

Clearly, under the identification of 

HdR(X/S,Mlog(Y)) = Hlclis(Cxx/S\£), 

in section 3.4.3, after restricting to B1 ,B2 respectively, the image of the linearized 
crystalline Frobenius Qf is exactly the one defined above in terms of hypercocycles. 

Remark 5.11. — Let us recall from section 2.1 that $ induces $deg on H1(Y,S>) and 
that it is horizontal with respect to the connection, i.e. we have 

($ o </?*) o V = V o 

Here we have dropped the index (respectively upper index) 1 from the notation. There­
fore we also have 

( $ / o ^ ) o V = V o $ / . 

5.4. Integration. — The theory of p-adic integration of convergent F-isocrystals 
on curves is the generalization of that developed by the first author in [8] (see also 
[6].) For the convenience of the reader we will briefly review the theory in what follows 
and prove the necessary generalizations. 

Let us go back to the notations of section §5.2, i.e. let s G 5, Xs is the fiber of X 
over s defined over L and let us fix v G v(G). Let us consider the pair ({/, Z), where 
JJ = UV^S,Z = ZViS. Let us recall that Z is an affinoid over L with good reduction 
and U is a wide open neighbourhood of Z in Xs such that U — Z is a disjoint union 
of wide open annuli. 

Let (M,D) be a convergent F-isocrystal on (U,Z). An admissible open subset T 
of U will be called a residue class of (U, Z) if T is a residue class of Z or a connected 
component of U — Z. Lemma 5.5 implies that the restriction of (M, D) to every 
residue class of (£/, Z) is trivial. We now define the sheaf Mflog with connection Dûog 
on C7, as follows: we choose a branch log of the p-adic logarithm on L* and define for 
an admissible open V of U 

M«°s(V) = T[M(VT) ®Cvt &u{VT)\\og{f)]feeu(VTV 
T 

where T runs over the residue classes of ([/, Z) and VT = V fl T. Here, for every V 
and T as above ^t/(VrT)[log(/)]^6^>[/(v'T)x is the sub-ring of the ring of locally analytic 
functions on VT generated by &U(VT) and the functions log(/) for / G &u(V)X. The 
connection extends naturally to this sheaf. Let ^ ( M ° ) be the naturally induced de 
Rham complex of sheaves on U, where o = nothing or flog. Here we have denoted 
by il\j(M°) := % (g)^ M° for i = 0,1. Let (M°)t denote the pullback of M° to 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010 



236 R. COLEMAN & A. IOVITA 

Zt and let HHM°,D) := H*(nî7((M°)t)). Suppose 6 is a lifting of Frobenius to Zt 
as in section 5.2. Then as explained in [Cl, §7] 0 induces endomorphisms (ipl)° of 
W(M°,D) (morally, (0*)° = FA O </>*). 

Note that H1 (Mûog, DRog) = 0. We have 

Theorem 5.12. — Let UJ G Q}j(M)(U). We denote by [UJ] its image in i71(M, D). 
Suppose that there is a polynomial G(t) with coefficients in L such that 
(a) G((j)l)([u\) = 0 and (b) G((0°) flog) is an isomorphism. 
Then there exists a section u o / M flog([/), unique up to a horizontal section of M on 
U such that 
i) D(u) = UJ 

ii) G(F(f) o (t>*)(u\Xi) is overconvergent on X. 
Moreover, u does not depend on the choice of <j> or G(t). 

The existence and uniqueness is, up to notation, Theorem 7.4 of [CI] (the notion of 
regular singular annuli is subsumed by Lemma 5.1). The independence follows from 
the fact that the map (</>2)° does not depend on the choice of (j) and we may choose 
for G(t) the minimal polynomial of 01 acting on the finite dimensional space spanned 
by the classes of the images of u, F^ o </>*u, (F^ o C/)*)2UJ, . . . in iJ*(M, D). 

5.5. The Frobenius Operators 

Definition 5.13. — We say that the F-isocrystal £ on C is regular if for every vertex 
v G v(G) the characteristic polynomials of Frobenius on H®ris(x, S) and H^T[s(C^ *, S) 
are relatively prime for all closed points ix : x —> Cv. We have denoted, as in section 
§5.1 by Cv the irreducible component of C corresponding to v and by C** the log 
scheme Cv with log structures given by the divisor Singv 

We have 

Lemma 5.14. — Let C be the curve over V with semi-stable reduction introduced in 
the introduction, let g : ST —• C be a smooth proper morphism and let us consider the 
F-isocrystal on C, := R'g* crisper) Then SymJ(t^f?ï) is a regular F-isocrystal 
for i,j > 0. 

Proof. — Let & denote the special fiber of 3?v the pull back of —• C by 
CVCC 

The Leray spectral sequence for log crystalline cohomology in the relative situation 
gv : % —• Cv for log structures on Cv given by Singv and on % given by the fiber 
above Sing^, reads 

Ei,j HHCXX, Rj9v. crla..(^.*.)) => Hi+j(Fcxx, Qp) 

Let us first remark that J4?J = Rjgv,cris,*{&3-v) is the pull back of H j by the inclusion 

CV^C. 
As Cv is a smooth proper curve over k let us also remark that E? = О unless 

0 < i < 2. This implies that the differential d2 : E1,j -----> E3,j vanishes as well as 
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the differential d<i whose target is E1,j 
2 

for all j > 0. Therefore E1,j = E1,j for all 
j > 0 and the spectral sequence collapses at E%. Therefore, for n > 0 the ifo-vector 
space with Probenius Hn+1 = rjn+1 

cris (Fxx,Qp) has a filtration 0 C F1 C F2 C Hn+l 
where F\,F2 have the property that F2/F1 = Es'n. By the comment above it follows 

that TTl 
cris 

Cxx, Hn is a quotient, as ifo-vector space with Probenius, of a subspace, 
F2 of #n+1. 

By the main result of [28] rrn+1 
cris (Zxx,Qp) ^rig \ZV -Singv,Qp and by [3] 

the weights of Probenius on the last Ao-vector space are larger or equal to (n + 
l ) /2 . It follows that the weights of Frobenius on ĉris1 (cr^,Hn)) are also larger 
or equal to (n + l ) /2 . On the other hand, since Zx is smooth and H"(Jf?Jl) = 
K (g> Hlris(Zx) for any point x of Cv, using the Riemann hypothesis, the weights of 

Frobenius on Hü Hnx Hcris (x,i*xHn) are all equal ton/2. Thus the characteristic 

polynomials of Frobenius on Hi,ls{c:\^)) and H0(x,Jfn} are relatively prime 
for all closed points x of C. The statement for Sym3(Ji?1) follows by the same type 

of arguments. 

For the rest of this chapter we assume £ is regular. Let us now, as in the previous 
section, extend scalars to a finite, non-trivial, totally ramified extension L of K and 
let B = BL C S be the affinoid disk of lemma 3.17. Let us recall proposition 3.18 
which asserts that for all v G v(G) there is a wide open neighbourhood Wv of ZViB in 
UV,B over B and an isomorphism over B 

av,o :WV —• B x WVi0[ 

where WVto is the fiber of Wv at 0 G B. Let us denote by fB : XB —• B the restriction 
of our family of curves to B. Let us now fix v and denote a := av$, Wo := Wv$. Let 
/3 : Wv —• Wo be 7r2 o a and j : Wo —• Wv be defined by j(w) = a-1(0,w). Let 
£x and <%r,denote the evaluations of £ on X and where let us recall that & := 
X Xy Spf (W) where the morphism Spf (W) —• 5? is given by t —• 0. £x and £& are 
coherent sheaves with connections on X = XTlg and respectively Y = ^ n g . Denote 
also by (£V,DV),(£Q,DO) the restrictions of the sheaves with connections (£x, Dx/s) 
and ( ^ , - D y ) to Wv and respectively Wo- The isomorphism a induces the vertical 
isomorphisms in the following commutative diagram 

£v > ¿0 ®ÛW0 ^Wo/L 

So ®L @B 
£>o®idB 

¿0®ÛW0 ^Wo/L 

This implies 

Lemma 5.15. — a) The L-vector space H\R(Wo/L,£o) is finitely generated. 
b) We have a natural isomorphism of sheaves on B induced by a: H^R(WV/B, £v) = 

H\R(WolL,£o) ®L0B. 
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Proof. — a) is a consequence of lemma 5.2 and b) follows from the above commutative 
diagram. 

Let us fix u\, u)2 » • • •> wn global sections of Eo QqwoA1wo/L whose cohomology classes 
[ui],..., [u)n\ form an L-basis of HdR(W0/L,£0) Let now w be a global section of 
&v ®ÛWv ^Wv/B and denote by [UJ] G H^R(WV/B,^V)(B] its cohomology class. Then 

M = £ i = i * i k ] for a* G ÛB(B), i = 1 , n and therefore we have 

UJ = 
n 

i=l 
audi + Dv(f) for some / G SV{WV). 

Let us fix Ài, A2, . . . ,Àn G /sflog JWo) p-adic integrals of cji, . . . ,cjn (see section 5.4.) 
We denote by A^ En 

¿=1 Q<iK + f G EoflogQ LQB)(Wv) and call it a p-adic integral 
of UJ. It is well defined up to an element of £v(wv)D-

We have the following, 

Lemma 5.16. — a) With the notations above, Xu is a family of p-adic integrals ofuj, 
i.e. 

i) DV(XU) = UJ 
and 
ii) for every s G B, X^lwv s is a p-adic integral of UJ\WV S-

b) If UJ is the natural lift of UJ to £v®eWvWw,L{\og{W0)) defined in section 4-2, and 

rj is defined by the equality Z}Wv/L(a;) = rj A dy, then 

UJ - £>WV/L(*U;) = \dV-

Proof. — a) is clear and for b) let us write 

UJ = 
n 

i=l 
ai(y)uji + Dv(f), 

where ai(y) G &B(B), f G <ov(Wv) and the UJ^S have been defined above. Then we 
have 

UJ = 

n 

i=l 
di(y)uJi + £>WV/L(/) 

and therefore ri = - En a>i(y)vi and 

^ - ^ W V / L ( A U ; ) = 

n 

i=1 

a'ifäXijdy = Xvdy. 

Let us choose now for the rest of this section the branch of the logarithm on C* 
such that log (717,) = 0. 

We will give a general definition: let Z be a rigid space over L and let a : M —> & z 
be an integral log structure, where M is a sheaf of monoids. 

Then if W C Z is a admissible open subspace which is Stein we define &z{W)\og to 
be the polynomial ring &z(W)[£(m)]meM(w)i where £(m) are independent variables, 
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divided by the relations: £(m\m2) — £{m\) + £(1112) and £(m) = log(a(ra)) if a(m) G 
QZ(W)x 

The natural derivation d : ûz(W) — &W/L extends canonically to a derivation d : 

^z(W)iog—^n^/L(log(M)) by defining d(£(m)) = d(a(m))/a(m) for m G M(W). 
In particular, let us consider the log structure on B given by the divisor 0 G B 

and choose a parameter y G &B{B) at 0. Then it is easy to see that &B(B)\OZ = 

0B(B)[e(y)] and we have d{£{y)) = dy/y. 
Let e G e(G) and we dénote in this section by Ae := Ae?B and by Ao := Ae?o the 

fiber of Ae at 0 G -B. If we consider on Ae the log structure given by the divisor over 
B with normal crossings AQ, we see that 0AMe)\og = 0AMeMXe),t(xT(e))] with 
unique relation e(xe) + £(xT(e)) = l(y) We have dAe/B(t(Xe)) = dAe/B(xe)/xe and 
dAe/B\£\Xr{e))) = dAe/B{XT(e))/XT(e) 

We also denote by (&eì De) the restriction of the sheaf with connection (£%, -Dx/s) 
to Ae. Let w be a global section of the sheaf Se ®eAe ^AC/B0-°8 ^°)) an(* °̂ eno^e Dv 
€1 , . . . ,ea a basis of horizontal sections of (é?e,De). Then using lemma 4.8 we can 
write 

(*) UJ = 
a. 

i=1 
ti®ri(y) 

dAJB(Xe) 

xe 
+ £>e(l¿e), 

where n(y) G ÛB(B) and ue G Se{Ae). 
We set 

Aw:= 
a 

i=1 
e* (8) ri(y)£(xe) + uee ê,iog := öe(Ae) 0^AE(AE) vAe(Ae)iog. 

Lemma 5.17. — We have, 
a) With the notations above X^ is a family of p-adic integrals of UJ in the sense that 

i) DJXu) = UJ 
and 
ii) XUJ is an element o/<fe,iog well defined up to an element of of S>e(Ae)De[£(y)] := 

g(Ae)D° ®ÛR(B) ав(В)Шу)\. 
b) Le£ UJ denote the lift of UJ to absolute one-forms as in section 4-2 and let rj be defined 
by the equality /L(&) = n Ady. Then UJ — /L(^UJ) = X^dy 

Proof. — Part i) of a) is clear and for part ii) let us remark that (4,.og)D- = 
S{Ae)^[t{y)\. For b) let us notice that 

£ > A . / L M = 

a 

i=l 

Ci O r'i(y) 
dAe/h(xe) 

xe 
\dy, 

and clearly 

V - ^AE/L(Aa;) = 
a 

i=l 

€i 0 r\y)£{xe))dy = Xrjdy. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2010 



240 R. COLEMAN & A. IOVITA 

Now we will use the p-adic integration discussed above in order to describe the 
Frobenius operator on M.B. Let us remark that the collection ^ = {Wv, Ae}vev(G),eee(G) 
is an admissible cover of XB by admissible, acyclic, wide open subsets over B. We 
will define an ^-linear map, 

SB : HIß — > Ä '1'0(^,^,)iog : H^\^S)®UBÌB)eB(B)Wy)) 

as follows: let UJ G MB be represented by the hypercocycle with respect to the covering 

®B 

{(Uy)vev(G), (̂ e)e€e(G)> (fe)eee(G), (/e)e€e(G)) 
where let us recall: u>v € (Sv ®eWv nwv/B)(Wv)> "e e (Se ®&Ae ü\e/B(ìog(A0))(Ae), 

fee£e(Wa{e)nAe) and fee<?e(Wb{e)nAe) satisfying the usual cocycle conditions. 
For every e G e(G), let ss(w)e be the sectioi 

fe - (^u>a{e)\wa(e)DAe - ^ue\wa{e)nAe)', 

and similarly let (s£(cj))e be the section 

fe ~ (^ub(e)\wHe)nAe — ^u)e\wHe)f\Ae)-

Lemma 5.18. - For every e G e(G) and UJ G MB, (sB(uj)e,(sB(uj))e) e <?eB*(Wa{e)r 
*e)[e(y)}®^(Wb(e)nAe)[£(y)]. 

Proof — We will only prove that se M e £D°(Wa(e) nAe)[e(y)], and leave the 

remaining similar argument to the reader. The isomorphism aa(e)j0 induces an iso­
morphism 

a : Wa(e) (1 Ae = B x U0, 

where Un is the annulus WaiehoC)Aeio Let ni for i = 1,2 be the projections of B x Uq 

composed with a and denote by xq ^2(xe\wa^e)nAe) Then xq is a parameter of 
Uo (see the beginning of section 4.) If we write u>e as in formula (*) before lemma 
(5.17) and use the isomorphism a above, we may integrate uje\wa{e)r\Ae by the recipe 
outlined in lemma 5.16. Let us denote this integral by A. We have 

SB M e = fe - (^a(e) \Wa(e)HAe - A + A - Aujw nAe). 

First let us first remark that xo e &un(UoV therefore £(x0) = log(ar0) and that 

^ o [ M / ) ] / 6 * s GUo[\og{x0)] Indeed every element feûuJUoV can be written 

f = axnog with a G Lx, n eZ and g G ûUO(Uq) is such that \g - 1| < 1. Therefore 
log(/) = log(a) + nlog(xo) + log(o) where log(g) G 0Uq(UO). 

As Wa(e) fl Ae is contained in the residue class Ae of XBi (&e,De) has a basis of 
horizontal sections on Wn(^\ fl AP and so we have 

(^((Wa(e)n^e))[log(xo)])De 4(№(e)nie))De. 

This implies that fe - Aca(e)ka(e)nAe + A G SAe(Wa{e) H Ae)[£(y)]. 
Let us remark that Xo = uxe, where u G &Ae\Wa{e) H Ae)* such that \og(u) is an 

analytic function on Wafe\ PI Ae. Therefore lemma 5.17 shows that A — A ê |wa(e)nAe £ 
é?e(wa(e)nAe)[e(y)}, Now the fact that De(sB(uj)e) = 0 implies the lemma. 
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For every UJ G MB denote by SB(V) the class of the cocycle (sj3(u;)e, SB(w)e)eee(G) 

in H ' C^ß,<§Jlog and by SB HB ---> H ' C^ß,<§Jlog the respective ^ - l i n e a r ho 
momorphism. Composing sB with the inclusion H ' C^ß,<§Jlog • HlB,log obtained 
from (2), we may think of SB as an ^ - l i nea r map from MB to Hß.iog- We have, 

Theorem 5.19. a) sB/ HB --->H ' C^ß,<§Jlog ¿5 a section of the inclusion. 

b) For every u G J5* = B — {0}, £/ie /J&er SB,U of SB dt U coincides with the map su 
defined in section 2.2. 
c) We have (SB <8> 1) ° V = V o sB. 
d) Let B1 and B2 as in section 5.3. We have & o sB^ = sB* ° & • 

Proof. — a) Let x G fZ"1,0(^,<?) be represented by the cocycle ((/e), (fe))eee(Gy 
Then the image of x in MB is the class of the hypercocycle: 

((Qv)vev(G), (0e)e€e(G)> (/e)e€e(G)» (/Jeee(G)) and clearly the image of this class under 

Sß IS X. 
For b) if u G B* we denote K = {WVtU,Ae,u} the intersection of the cover ®B 

with the fiber Xu. Let c€u — {Uv u}v€v(G) denote the wide open cover of XU described 
in section 2.2. We denote by Su the restriction of Sx to the fiber XU. We have the 
following diagram 

HÌR(XU, SU) 
SB,U 

H^{^,SU) 

HÌR(XU,SU) 
Su • fi"1,0 (^j, Su) 

where the right vertical isomorphism is the one defined in section §3.5.4. Lemma 3.34 
implies that the diagram is commutative and this proves b). 

Let us now prove c). Let UJ G MB and let 

((Vv)vev(G)i (<*>e)e€e(G)> (/c)c6e(G)> (/e)eGe(G)) 

be a hypercocycle with respect to the covering ^B representing the class UJ. Let UJV 
and uje be the hfts of UJV and uje respectively to absolute one-forms defined in section 
§4.2. Let £>XB/I>^ = Vv A dy, Dxß/L^e = Ve A dy, Ua(e)\wa(e)nAe ~ ^e\wa(e)nAe 

DxB/h(fe) = 9edy and ^(e)l^b(e)nAe - UJe\wb(e)-Ae) DxB/h(fe) = 9edV for Vv, Ve, 
ge and ge global sections of Ev QA1wv/B(logWo), Se ® QA /ß(log Ao), Sa{e)\w nA 

^b(e)\Wb(e)nAe respectively. Then (sB ® l)(Va;). as an element of MB,log ® dy, is 
represented by the hypercocycle 

((Qv)vev(G), (0e)eGe(G)> (de ~ (\o(e) |wa(e)n.Ae ~ Ane l̂ a(e)nAe ))e€e(G) ? 

(#e - (\b(e)lHAb(e)nAe - ^|wb(e)nAe))eee(G)) 0 dì/. 

On the other hand V(SB(W)) is represented by the hypercocycle 

{(Qv)vev{G), (0c)cGe(G)» ("^XB/L(/e) + £>XB/LAu,a(e) |wo(e)nAe ~ ^ X B / L ^ |Wa(e)nAe)e€e(G), 

( - •DXB/L( /C ) + X̂B/LAa;b(e)|wb(e)nAe ~ A C E / L ^ |lV6(e)nAe)e€e(G)) ® 2̂/-
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A calculation using the lemmas 5.16 and 5.17 shows that the two hypercocycles are 
cohomologous. 

Now we prove d). For this let us recall the notations BX,B2 and the expression of 
at the end of section 5.3. Let Ui,v, i = 1,2 and v G v(G) denote admissible wide 

open subsets of I B i satisfying the properties of proposition 5.10 and the additional 
Qf 

property that there are isomorphisms av,i Tji ~ Tji Uv — Uv,0 x B\ As in section §5.3 we 
consider the admissible covers & = {Ut,Al} Of Xgi Let the class w G I52 be 
represented by the hypercocycle for the covering ^2 

((Wv)vev(G), {We)eee(G), (/e)e€e(G)> (/e)e€e(G))-
Then 5̂ 2(0;) is represented by the hypercocycle 

((Qv)vev(G), (0e)eee(G)> (#e)eGe(G)> (#e)e€e(G)) 

where 9e - fe~ (AWa(e)|t/2 (lA2 Áoje\u2( .ПА2) 
a(e) e 

and 9e = fe' (X<^He)\u2(e)nA2 -
X"e\u2 .HA2)-b(e) e 

Then 3V(552(0;)) is represented by 

({Ov)vev(G), (0e)c€c(G)> (^e(0e (#e)))eGe(G) > (^e(0e (#e)))eEe(G)) • 

Let us recall from the end of the section §5.3 that $f(uj) is represented by the hyper-
cocvcle 

((Vv)vev(G), (̂ e)eEe(G)> C*e)e€e(G)> C*e)e€e(G)) 
where i/v, ve, he, he are defined there. 

Therefore, sBi($f (UJ)) is represented by 

{(Qv)vev(G), (0e)eGe(G)5 (^e)e6e(G)) (xe)eee(G)) 
with (see the end of section §5.3) 

xe — he (Л,М«>к(е>ПЛе - ^ . I t / l n A l ) -

= A*(Fo(e) o fa{e),Fe o ^e)(ee) + FM(fe)) (Fo(e)(0a(e)(^o(e)))|yi nAJ ' f«(«(^.))lt;i .fUj)-
a(e) e Now we use the fact that ee = 7r*(AWa(J^2(E)NA2E) ^2(^elt/2(e)nAe) and obtain 

Xe = Fe(ct>t(fe ' A^(e)k2(e)n^ ^2(^elt/2(e)nAe) 

Similarly 
Xe = 9e - (X»He)\ul HAl - XVe\ut(e)nAl 

=Fe(<t>l(fe ' X»He)\u*nA2e +Awe|,nA2e)) 
Me) e This ends the proof of Theorem 5.19. 

Now we can finish the proof of Theorem 2.6. To prove that $deg and $int get 
identified by parallel transport. We have exact sequences 

0 H^°(C) 0KO L —• H\C, £)®KL- H^\C) ®KoL—*0 
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and 
0 _ > H^0(^\£0) — H\Y,£ç>) — H°^(%F,£0) — 0. 

Proposition 3.35 implies that under the parallel transport isomorphism //^(Y, £Q)®K0 

L 9* H\C,g) ®K L, H^°(C) gets identified with tf1'0^", <?0) and H°^(C) gets 

identified with H0I1(^Q, £Q). Moreover these last two isomorphisms commute with 

the respective Probenii. We'll first show that $^eg corresponds to ${nt. Let us parallel 

transport $^eg to i?1(C, S) (S>K0 L and let us denote by $Jeg this endomorphism, i.e., 

if UJ e (Hiog)v, we have seen that ($f(v))o = ^degO^o) and as G (Hiog)v we set 

^degC^) = i00))*- We have to show that 3>Jeg = ${nt and so far we know that 

${nt and 3>Jeg coincide both on the image of H1,0(C) and on the quotient H0il(C) 

and sn o $fnt = FQCT-1S O sn. Using Theorem 5.19 we have 

STT ° $2eg = (*B* ° ^^)TT = (*' O SBi)n = FlCTis O Sn. 

This proves that $Jeg = ${nt. Moreover, since £ is regular it follows that the char­
acteristic polynomials of FojCris on H0,1(C) and of jPijCris on H1,0(C) are relatively 
prime. Thus both exact sequences above have natural Frobenii equivariant splittings 
and as $Jeg = $fnt, the splittings coincide under parallel transport. But the split­
ting produced by ${nt is sn, therefore we immediately deduce that Hl(C, £)\nt and 
HX(Y, <§Q) become identified by parallel transport and the same is true for <£int and 
$deg- This completes the proof of Theorem 2.6. 

6. Logarithmic F-isocrystals 

We start by defining the main objects of this section, the log F-isocrystals. 
Let C be our semi-stable curve over V, let P be a finite set of smooth sections 

of C and Cx the corresponding log scheme. Let P be the special fiber of P. Then 
P is a smooth divisor of C and we denote, to the end of this section, by C* the 
corresponding log scheme. 

Definition 6.1. — A logarithmic enlargement of C* is a pair (TX ,ZT) consisting of a 

formal log scheme TX and a morphism of log schemes ZT : TQ —• C*. If (UX,ZJJ) 
and (TX,ZT) are two log enlargements of C* then a morphism of log enlargements 

g : (UX ,ZJJ) —> (TX ,ZT) is a morphism of formal log schemes g :UX —> TX such that 

zTog0 = ZJJ . 

Definition 6.2. — A log isocrystal £ on C* is the following set of data 

i) for every log enlargement (Tx, ZT) of C a coherent K0 <8>w &T-module £(Tx )j8T) 
(sometimes in what follows we will use the shorthand notation £Tx .) 

ii) for every morphism of enlargements g = (/,h) : (Ux,zu) —• (TX,ZT) an 
isomorphism of Ko<g>u &w-modules 6G : f~l£r —• £u- The collection {6G} is required 
to satisfy the cocycle condition. 
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Remark 6.3. — If £ is a log isocrystal on C and (Tx, ZT) is a log enlargement ofC 
such that the formal scheme T is locally Noetherian then one may interpret £Tx as a 
coherent sheaf on Trig, the rigid analytic space associated to T. Moreover, applying 
the results in §6 of [26] one sees that £T is endowed with an integrable connection 

Dj1 ' £px —> £xTOQt ujfx jy/x, 

where Tx = (T,MTx) and Wx is the formal scheme Spf(l^) with the trivial log 
structure. 

Let now kx denote the scheme Spec(fc) with trivial log-structure and let Wx be 
the formal log scheme Spf(W) with trivial log structure. We denote by a be the 
absolute Frobenius on kx and onWx, respectively. Let us recall that a is the ab­
solute Frobenius on the respective schemes and multiplication by p on the respective 
monoids. Let now f : Ax — > BX be a morphism of fine log schemes (or fine formal 
log schemes), where BX is either kx or Wx. We'll denote by (AX)<T the fiber product 
in the category of log schemes of the diagram 

Ax 

I 
Bx _^ Bx 

Let now BX be kx, then we denote by F = F^x^x^: Ax —• (Ax)<7 the morphism 
induced by the pair of maps: f : Ax —• kx and the map form Ax to itself which is 
the identity on the underlying topological space, is s —• sp on 6A and is multiplication 
by p on MA- If now, (Tx,ZT) is a log enlargement of C then ( T x , F O Z T ) is a log 
enlargement of (C ) " and ((Tx)a~ ,{F o zT)a~ ) is again a log enlargement of C . 
If £ is a log isocrystal on C* then we will denote by F*£ the log isocrystal on C* 
such that 

F* E(Tx,zT) = E((Tx)o-1, (FozT)o-1). 

Definition 6.4. — A log F-isocrystal onC* is a log isocrystal onC*, £, together with 
an isomorphism of log isocrystals 

F : F*£ —> £. 

Let C be a curve over V as in Section 2.1 and let P denote a finite collection of 
smooth sections of C over V, such that their image in C is the collection P. By 
deformation theory the pair (C, P) may be regarded as the fiber at the point n of the 
formal model of the open unit disk 5? over W, of a pair (X,P) consisting of a family 
of curves X —» y as in Section 2.1 and a smooth divisor & of X. We have a natural 
morphism of log schemes z% : (X^o (Cp)o — C so may regard (Xx ,zx) (and 

any of its fibers above points of <¥*) as a log enlargement of Cx . Let now ^bea log 

F-isocrystal on Cx . Denote by X = Xng the rigid analytic space attached to X and 
by Px the intersection of the divisor P with X. Let us denote by £%x the evaluation 
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of the log F-isocrystal § on (Xx?>x, z%). It is a coherent sheaf of ^ -modu le s with an 
integrable connection 

®х/к0 : <^x —> £x* ®ûx tìx/Ko(logPx). 

Composing Dx/Xo w^n tne natural projections 

¿kx ®<?xtlx/Ko(logPx) <&* ®exn1x/Ko(log(PxUY)) Sx, ®exQ1x/s(\og(PxUY)) 

we get a relative integrable connection over S 

Dx/S : Exx ----->Ex ̂ x 0 ^ f^/5(log(Px U Y)). 

Remark 6.5. — Px UY is a divisor of X with normal crossings and Px flY is a finite 
set of smooth points of Y. 

Let us consider now, as in Section 2.1 WP = HiR(X/S,<?Xx(\og(PxUY))), for 
i = 0,1, 2 with its logarithmic connection 

V* : Hp —• EPP Oqs fi^(logO), 

and its Frobenius <£*̂ p ~~> ^p- For every point s G S let us denote by Ps the 
fiber of Px above 5 and by <§s = |xc- Then we have 

a) if s G S - {0} then iP(Cs,Ps,<?) := WRs * WdR(XSi<?s(\og(Ps))) 
b) if s = 0 then H'(Y,P0,<?) := Щ,0 Si HdR(Yxx/Ko,Eo), where let us recall 

Yxx is the log rigid space Y with inverse image log structure from the one on X 
induced by the divisor Px U Y. 

Lemma 6.6. — Let £ be a log isocrystal on C*. Then ( 4 x , D j / ^ J has the property 
that for every residue class M = red~1(x), with x G C — P, of X, the ^M-module 
with connection (£xx \M^X/K0) has a basis of horizontal sections. 

Definition 6.7. — Let S be a log F-isocrystal on C*, and P a smooth divisor on C. 
We say S is regular outside of P if for every vertex v G v(G) and for every closed point 
x G Cv—P the characteristic polynomials of Frobenii on H®ris(x, S) and H^Tis(C^ *, S) 
are relatively prime. Here Cv is the irreducible component of C corresponding to v 
and the log structure on Cv is the one induced by the divisor (P fl Cv) U Singv. 

We have, similarly to Lemma 5.14, 

Lemma 6.8. — Let g : Zx —• Cx be a log smooth, flat and proper morphism, where 
the log structure on Zx is given by the fibers of g at the points in P . / / Jt?1 := 
Rl0*,iOg-cris(^zx) j the log F-isocrystal Symj(Jtf?1) is regular outside of P, fori,j > 0. 

Proof. — The proof is very similar to the proof of Lemma 5.14. 
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6.1. Convergent log F-isocrystals. — Fix a smooth divisor P of C. Suppose 
from now on that the log F-isocrystal $ on C is regular outside of P. We define 
FFM-modules Hldeg(£) via degeneration, as in Section 2.1 and H¡nt((o) via integration 
as in Section 2.2, for i = 0,1,2. We only need to explain how the "integration splitting" 
s : i f 1 ^ , ? / ) —> H\C,P,g) is defined. Recall that this splitting is defined in 
Section 2.2 in the case P is the void set. 

We first need the notion of a convergent log F-isocrystal on a pair ([/, Z) consisting 
of a one dimensional wide open rigid space and an underlying affinoid with good 
reduction. We fix s G S - {0} with residue field L as in section §5.1 and 5.2, and let 
U = UVjS, Z = Zv^s be the admissible open subsets of Xs defined in those sections for 
some v G v(G). Let UX,ZX denote the log rigid spaces with log structures induced 
by 2?s fl U and respectively 2?s fl Z. Let us denote by AJJX = Ux xSpm(L) Ux the 
product in the category of log spaces and let 7r¿ : AJJX —> Ux, i = 1, 2 be the natural 
projections. Let (M, D) be a pair consisting of a coherent sheaf of ¿%-modules M 
and an integrable connection D : M —• MOqu A i ^ x / L . 

We say that (M, D) is a convergent log isocrystal onUx if the natural isomorphism 
7Ti(M) = 7i"2 (M) over the diagonal of Ux extends to an isomorphism over a tube of 
the diagonal of the reduction of Ux in A¡jx (see Definition 5.4 for the case when & 
is void.) 

A convergent log F isocrystal on (UX,ZX) is a convergent log isocrystal (M,D) 
onUx with the assignment of a horizontal isomorphism F^ : </>*{M\zi) —• M\z\ for 
every morphism of log spaces (j) : Zx^ —> Xx^ which is a lift of Frobenius over k 
(see also Definition 5.6 for the case when & is void.) For two such lifts the respective 
isomorphisms should satisfy the cocycle relation. 

Lemma 6.9. — Let v be a vertex of G and (UX,ZX) be the pair fixed above. Then 
<os\u is a convergent log F-isocrystal on (UX,ZX). 

Proof. — The proof is similar to the proof of Lemma 5.7. 

Let us denote by R = reds 1(P) Pi U. 

Lemma 6.10. — Let the notations be as in Lemma 6.9 and denote by (E,D) the con­
vergent log F-isocrystal on (UX,ZX) defined there. Then the restriction of (E,D) to 
(U — R, Z — R) is a convergent F-isocrystal in the usual sense. 

Proof. — Let us first notice that U — R and Z — R are admissible open subsets of U 
and Z respectively. Z — R is actually an affinoid. We may endow both Z — R and 
U — R with the induced log structures from Ux and denote by (Z — R)x, (U — R)x 
the respective log spaces. Then we have 

1) The restriction of (E, D) to ((U — R)x, (Z — R)x) is a convergent log F-isocrystal 
Let us remark that U — Ris not a wide-open subset of Xs, but the pair (U — R, Z — R) 
functions as a wide open and an underlying affinoid, i.e. (U — R) — (Z — R) is a disjoint 
union of annuii, each contained in a residue class of Xs. Therefore the definition of a 

ASTÉRISQUE 331 



HIDDEN STRUCTURES ON SEMISTABLE CURVES 247 

convergent log F-isocrystal given above can be extended to the notion of a convergent 

log F-isocrystal on ((U-Rr,(Z-R)x] 
2) The log structures on U — R and Z — R induced by Ux are trivial. 
3) A convergent log F-isocrystal on a pair (£/x,Zx), where the log structures on 

Ux and Zx are trivial is a (usual) convergent F-isocrystal on (U,Z). 
The combination of 1), 2) and 3) above proves the lemma. 

Let (E,D) be the convergent log F-isocrystal on the pair (UX,ZX) as in the 
Lemma 6.10, then the Theorem 5.12 of Section 5.4 applies to the convergent F-
isocrystal (E, D) on (U — R , Z — R ) (here, as we have mentioned above, U — R 
is not a wide-open anymore but the theorem works the same way.) More precisely, 
let UJ G Vt\jX jL(E)(U) and denote by [a;] its image in H1^, D). Using the notations 
of Theorem 5.12 we have: 

There exists a section a of En°g(U — R), unique up to a global section of (E\U-R)D^ 

such that 

i) D(a) = UJ 

ii) G((p)(a) e E(U - R). 

Having said this let us go back to the splitting s Hl(C,P,ë) —+ Hl(C,P,£) 
and let us recall how it is defined: we take a cohomology class in if (C, P, S) and 
a hypercocycle representing it ((UJv)v, (fe)e) as in Section 2.2. Then the image of 
this class under s is obtained by integrating the differential forms UJV on Uv — Rv, 
for every v G v(G), and taking differences on their restrictions to Ae's for e G e(G). 
Such integrals by the above are defined a priori up to horizontal sections of on 
Uv — Rv (recall that C is the fiber of the family X —> 5? at the point s — 7r and 

$tk — <£cx — &x*\cK') According to the definition in Section 2.2 we need to show 
that such a section extends to a horizontal section of on Uv. In other words, we 
need 

Proposition 6.11. — Let S be a log F-isocrystal on C* and fix a vertex v G v(G) 
Then the natural map (restriction) Hlis{Cv,g)^H°lis{Cv-P,£) is surjective. 

Proof. — Now let again for this proof denote U = Uv and Z = Zv and let (E\D^) be 
the overconvergent F-isocrystal on U — R defined by Let (E, D) be the under­
lying convergent F-isocrystal. It follows that ED is finite dimensional and preserved 
by F<f> for any lifting (j) of Frobenius. Let 

M = (ED ®L &U—R, 1 (& d) and Aft = (ED ® L - R , 1 ® d). 

Then M+has a natural structure of an overconvergent F-isocrystal onU — R and M is 
its associated convergent F-isocrystal. It follows from the main theorem of [27] that 
the natural map HomF-iso(^,E^) —• HomF-iSO(M,E) is a bijection. Therefore 
the natural inclusion M <—> E extends uniquely to a morphism M+—• E\ i.e. every 
section of ED is overconvergent. 
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Suppose Q is an absolutely irreducible point of P . Let T be the corresponding 
residue disk and Q — T fl P. Then Q is a regular singular point for the connection D 
and is the unique singular point for D in T. In fact, the log-monodromy matrix for 
(E\T,D) at Q is nilpotent. Moreover (E\T,D) has a Frobenius structure. Let t be 
a parameter on T which vanishes at Q. The main result of [4] implies that (E\T,D) 

has a basis BT of horizontal sections over âu{T)\og = ûu(T)[£(t)] (for the notations 
see section §5.5, the discussion after the proof of Lemma 5.16.) 

Lemma 6.12. — Let W be any annulus in T centered at Q. As the restriction oft 
to W is a unit of ûu(W), the restriction of £(t) to W is log(£|w). Then \og(t\w) is 
transcendental over ÛTJ(W). 

Proof. — Let u = t\w Suppose F( X) = Eni=1 ai(u)Xi is a polynomial of min­
imal degree over 6\j{W) so that F(log(u)) = 0. We may suppose n > 0 and 
(ao, ai,..., an) = 1. We use the equation F(log(u)) = 0 and 

n 

1=1 

afa) \og(uy 

i=ln 

iai(u)log(uy 1 lu = 0 

and cancel the terms containing log(^)n. We must have 

aio!n — (i + l)di+ian/u — a'fln = 0. 

It follows that an is a unit which may be supposed to be 1. Thus afn_1 = — n/u which 
is impossible. 

Lemma 6.13. — Let W be any annulus in T centered at Q. Then if f(X) € &u{W)[X], 
f(\og(t\w)) does not vanish on any non-empty open set ofW unless f = 0. 

Corollary 6.14. — With notations as above (BT)\W i>s & basis for the horizontal sec­
tions of (E\w,D) over &u{W)\og. 

We can now finish the proof of Proposition 6.11. Suppose g is a horizontal section 
of (E,D) over U — R. We know that g is overconvergent i.e. it extends into U by 
the above. Thus it restricts to a horizontal section of D on W for an annulus W in 
T close to the boundary. By the above corollary it must be a linear combination of 
BT\W- Since it is analytic on W the above lemma implies it extends to a horizontal 
section across T. We can base extend and assume that P is a union of such points 
and see that g extends across U. 

Now we need to compare the FFM-modules HldGg(£) and Hint(&) for i = 0,1,2. 
Let us remark that the same arguments as in Section 2.1 show that V* is the trivial 
connection on Hp, for i = 0,2. For i = 1, as Hp is a locally free coherent sheaf of 
^5-modules (see [16]), with a connection, whose only singularity (at 0) is regular, 
and a Frobenius endomorphism $ieg, the main result of [4] referred to above applies. 
This, combined with arguments similar to those used in Section 2.1, implies that the 
connection V1 extended to (Hp)iog is trivial. 
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Theorem 6.15. — Suppose the filtered, log F-isocrystal S on C* is regular then the 
parallel transport isomorphism between (ffP)o ®K0 K and O^p)*- yields an isomor­
phism of FFM-modules 

^Wdeg ^ ^Wint fori = 0,1,2. 
The proof follows using arguments similar to those in the proof of Theorem 2.6. 

7. Applications 

7.1. The proof of Theorem 1.1. — We will apply the results of the previous 
sections to the following situation: Let K, V, k, 7r, KQ, W be as in Section 1. Let C be 
a proper curve over V with smooth generic fiber CK and semi-stable special fiber C 
over k. Let g : Z —• C be a flat proper morphism and P a reduced flat sub-scheme 
of C of dimension 0 over V such that PflSing = 0 . Let Cx be the log formal scheme 
over V associated to the pair (C, P) (i.e., the formal completion of C along the special 
fiber together with the log structure associated to P as in Section 6.) Let C* be the 
log scheme over k which is the special fiber of Cx and denote by Dp := g~1(P). Then 
Dp is a divisor of Z and we will suppose from now on that it is a reduced divisor with 
simple normal crossings and that the restriction of g induces a smooth proper map 
(Z — Dp) —> (C — P). Let Zx denote the log formal scheme over V associated to the 
pair (Z,Dp) and we'll denote by g : Zx —• Cx the morphism of log formal schemes 
induced by g and also byg:Zx —•x C its special fiber. Prom the assumptions made 
it follows that g and g are log smooth maps of fine formal log schemes over V (with 
trivial log structure.) 

Some important examples to keep in mind are: 
0) Z = C, g the identity and P = 0 . 
1) C is the complete modular curve classifying semi-stable elliptic curves with 

suitable level structure as in Section 1, P is the set of cusps, Z is the generalized 
universal elliptic curve. 

2) C is the Shimura curve classifying abelian surfaces with quaternionic multipli­
cation and full level structure, P is any finite set of sections which reduce to distinct, 
smooth points of C (P may be void), and Z is the universal abelian scheme. 

We have the following, 

Theorem 7.1. — Fori > 0 there exists a log F-isocrystal Si := К0®ууЯ{9ст1з^^х/Сх 

on CX whose evaluation on (Cx,zcan), S>^x, is 

K®vWg*SrZx/c*HidR(ZK/CK,œZK/CK(\ogDP)), 

and the connection is the Gauss-Manin connection. Here zcan is the canonical mor­

phism (Cx)o —• C . 

In case (0) above, <ggx ^ ÛC-
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Proof. — The log crystalline site on CX, log crystals and the higher direct images 
of <7cris are defined in [26], Section 6. These objects satisfy enough of the formal 
properties of the corresponding classical objects (i.e., without log structures) so that 
the proof follows the proof in [32], Section 3, formally. We will content ourselves to 
point out the main steps. In order to simplify the notations for the rest of this proof 
we'll drop the x from the symbols denoting log schemes. 

1) If T is a log formal scheme over Spf(W) and let us denote by T\ the closed log 
sub-schemes of T of ideal p&T- Let z'T : Xi —• C be a morphism of log schemes then 
we have the following Cartesian diagram 

ZTl —• Z 
9T l g i 

Ti 
Z'T) с 

As Xi and C are log schemes in characteristic p and the ideal p€?T has natural divided 
powers, we define 

ST '= Ko ®W R1'0T,cris,*^Ti/Tl-

2) Now we'll define Frobenius. Let F denote the absolute Frobenius of the log-
scheme C over the absolute Frobenius a of fc, as in Section 6. Consider the Cartesian 
diagram 

Z' — Z 

g' I g I 
C ^ c 

and one can see that the evaluation of the pullback by Frobenius F £ on (X, z'T) is 
given by 

(F £)(T,z'T) := &(T,Fcoz'T) - KO®9T,CT\a,*0z'T /TV 

The relative Frobenius F^,T : Z —• Z induces an isomorphism 

Гг/Тг : (F*^)(T,4) = KQ ®w Rlg'T,cTiB,*0z'T /ТГ = KQ <S>W R*gT,cris,* QZT1= ^{T,Z'T)-

3) Now we will use 1) and 2) above to define the evaluation of § on log enlargements. 
Let (X, ZT) be a log enlargement of C, i.e., X is a log formal scheme and ZT : X0 —> C, 
where To is the closed reduced sub-scheme of T\. Let LT : Xq —> T\ be the canonical 
morphism. For n » 0 we have a natural morphism p(n) : Xi —> Xq such that 

vT o p(n) = FnTi, and C(n) olT = FnT0, Then we define 

&(T,zT) :~ (̂T,2Top(«))) 
where the right-hand side was defined at 1). If n' > n, say n' = n + d we have 

£(T,zTop^')) ^FZIT^ £){T,zTop^)) — £{T,zTop^)i 

so the definition is independent of n. 
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4) Now, if we consider (C, zcan) as a log enlargement of C as g : Z —• C is a lift of 
g : Z —• C, the evaluation of £ on it is the relative de Rham cohomology of ZK/CK, 

with its Gauss-Manin connection. 
We will leave it to the reader to check the various compatibilities required in the 

definition of a log F-isocrystal. 

Now, let j > 0 be an integer and let £j :=$ym.i£, where £ is the log-F-isocrystal 
defined in the above mentioned theorem. Let hj := Sym7(Rlg*Qp)(j + 1) be the 
p-adic etale local system on C — P associated by the theory in [16] to £j. 

Then Theorem 3.2 of [17] and Theorem 6.15 of the present article imply: 

Theorem 7.2. — Let C, £j be as at the beginning of the section. Then we have that 
the FFM-modules D8t(HL((C — P)-^, L7)) and H^AC^Sj) are naturally isomorphic. 

Applying this to example (0) above gives a new proof of the main result in [CI] 
and applying it to the example in the introduction (i.e. C = X(N,p) etc.) we get, 

Corollary 7.3. — If f is a weight j + 2, where j > 0 is an even integer, cuspidal 
eigenform for X(N,p) with (N,p) = 1 (see Section 1) which is split multiplicative at 
p then all the J£-invariants attached to f are equal whenever they are defined. (See 
Section 1 for a brief discussion of these J£-invariants.) 

Corollary 7.4. — Let C = X(N,p), with (N,p) = 1 and for every j > 0 let Sj be 

the log F-isocrystal on CX as in the introduction. The the rank of N±eg acting on 

HIcRIS(CK, Sj)p~new equals 1 
2 

dim^^Hs^",^)^—. 

Proof. — It is enough to calculate the rank over K of 7V{nt(g)lK on ^c1ris(CX, gtf>-™™ 
and this follows from the study of the residue map on HIR(CK, Sj)p~new in [Cl]. • 

As H-mt(C, ^j) has an explicit description, Theorem 7.2 gives an explicit description 
of Hlt{(C — P)j^,hj) as a Galois representation. In particular if C is a modular 
curve or Shimura curve, we get explicit descriptions of the restriction of the Galois 
representation attached to a weight j + 2 eigenforms F to a decomposition group at 
p. Corollary 7.4 implies 

Corollary 7.5. — If f is a cuspidal eigenform of weight j + 2 > 2 on X(N,p) which is 
p-new, the p-adic local Galois representation Vf attached to it is semi-stable but not 
crystalline. 

7.2. Gysin sequences. — Finally, we have another application to our theory, 
namely the compatibility of the comparison maps with respect to the p-adic etale, 
respectively crystalline Gysin sequences. More precisely, let the notations be as at 
the beginning of this section with the difference that K = KQ is unramified over Qp. 
Moreover let L be an etale local system and £ a regular filtered, F-isocrystal on C, 
which are associated as in [16]. Then we have 
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Proposition 7.6. — The comparison isomorphisms determine a commutative diagram 
of FFM-modules with GK-action 

0 —> ff^C^L)®Bst H¡t((C-P)ñ,L)®Bst exGPL^(-i) ®Qp pst 

о — ни*)®в Bst Hlnt(P,£)®Bst 8 X € P K ^ [ 1 ] ®K^st 

Proof — Let us first notice that we have an exact sequence of FFM-modules 

о —> ни*) —» HUP,£) ^ ®x6PK¿b,x[i], 

where Resp is the residue map with respect to the points in PK (let us recall from 
the Section 2.2 that JJ>nt(P,<?) = H\R(CK, ScQog(PK)) as K-vector spaces.) This 
follows from the fact that the following diagram commutes 

H^°(G^) = H^(G,S) 

w Î u t 

o — H\R(CK,gc) HlR{CK,êc{\og{PK)) ^ Фх€Рк<?С,х[1] 

where u,v are either the residues with respect to the family of annuii {Ae}eee(G) or 
the integration splittings. 

The proposition will follow from the following two facts: 
a) We have a commutative diagram of FFM-modules with exact rows (notations 

as in Section 2) 

о — HL.{£) — Hl(p,S) — eyep0^[i] 

0 — Hlt{£) —> Hlt{P,£) — ©xeP^o,x[l] 

and 
b) We have a commutative diagram of FFM-modules with G^-action 

О —> He\(CF,L)®ßst — ffi((C-P)F,L)0Brt exGPL^(-i) ®Qp Bst 

0 — #*(<?) ®£st m (P,*)®B« exGPL^(-i) ®Qp Bst 

To prove a) above let us recall the notations of Section 2, i.e. let X be our family 
of curves over 5, 2?x the divisor corresponding to P and M1, the respective 
cohomology sheaves. Then we have a horizontal exact sequence of ^-modules which 
is Frobenius equivariant: 

a ) o _> e1 — hp R^x ^,«caB)[i], 
where let us recall zcan is the map identifying the reduction of S?x with P . As 
(£?x,zCan) is a log-enlargement of P , the crystal £(&>x,Zcari) is trivial. Therefore after 
adjoining £(t), we get parallel isomorphisms between the fibers at 0 and 7r of the exact 
sequence (1) (let's recall that M1 is free over &s) i-e. we get a). 
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For b) let us first notice that the left square is commutative as it arises from the 
embedding U := C — P C C. Let us prove that the right square is commutative (this 
is more or less explicitly contained in Faltings' papers [17], [16], [15]). U = C — P is 
an affine curve over V. Let us fix a geometric generic point rj of C and let £f denote 
the quotient of the Galois group of the maximal cover of C etale over UK, for which 
the inertia at the points in P is p-adic. Let A c ^ ? denote the geometric Galois group. 
Then Het(UK,L) = H1(A,Ln) and the Gysin map H1et(UK,L) --> QxepLx(-1) is 
the specialization map: 

H-(A,Ln) ---> QxepH1(Ix,Lx) = QxepLx(-1) 

where Ix = Z p ( l ) is the inertia at x. Now under the comparison map relating the étale 
cohomology of U-g with values in L to the de Rham cohomology of UK with values 
in $ , the specialization to inertia at the points in P corresponds to the residue of the 
logarithmic differentials at the points with the same reduction in P 0 (see [15]). 
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