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HIDDEN STRUCTURES ON SEMISTABLE CURVES

by

Robert Coleman & Adrian Iovita

Abstract. — Let V be the ring of integers of a finite extension of Q, and let X be
a proper curve over V with semistable special fiber and smooth generic fiber. In
this article we explicitly describe the Frobenius and monodromy operators on the
log crystalline cohomology of X with values in a regular log F-isocrystal in terms of
p-adic integration. We have a version for open curves and as an application we prove
that two differently defined .#-invariants, attached to a split multiplicative at p new
elliptic eigenform, are equal.

Résumé (Structures cachées sur les courbes semi-stables). — Soit V' I’anneau des entiers
d’une extension finie de Qp et soit X une courbe propre sur V & fibre spéciale se-
mistable et a fibre générique lisse. Dans cet article nous décrivons explicitement les
opérateurs de Frobenius et de monodromie sur la cohomologie log cristalline de X a
valeurs dans un log F-isocristal régulier, en termes d’intégration p-adique. Nous pro-
posons une version pour les courbes ouvertes et en guise d’application nous prouvons

que deux .Z-invariants définis de fagon différente, attachés & une forme modulaire
nouvelle multiplicative en p, sont égaux.

1. Introduction

Let K be a finite extension of Q, and X an algebraic variety over K. As Illusie
remarked in Cohomologie de de Rham et cohomologie étale p-adique [I}, “le groupe
H},(X/K) se trouve muni d’une structure plus riche qu’il n’y parait de prime abord.”
This “hidden structure” has been discussed by many people including Berthelot and
Ogus [BO] when X is proper with good reduction and more generally by Hyodo and
Kato [HK]. In this paper, we expose it in the relative situation over a curve with semi-
stable reduction using residues and p-adic integration. More precisely we study de
Rham cohomology of a semi-stable curve with coefficients in the relative cohomology
of a smooth proper family over that curve. The information on crystalline and de
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180 R. COLEMAN & A. IOVITA

Rham cohomology of a curve with semi-stable reduction supplied by this article is
similar to that of the theory of vanishing cycles for ¢-adic cohomology.

Suppose K has residue field k and ring of integers V. Let W := W (k) denote the
ring of Witt-vectors with coefficients in k, K| its fraction field and we denote by o the
Frobenius automorphism of K. Let C'x be a smooth projective curve over K with a
semi-stable model C over V. By this we mean that locally C is smooth over Spec(V)
or étale over Spec (V[X,Y]/(XY — 7)), where 7 is a uniformizer of V. Denote by
Cc:=C X spec(v) Spec(k), its special fiber and by Sing, the singular sub-scheme of C.

Then the vector space Hjp(Ck) has enough hidden structure so that one can
recover the corresponding representation of G = Gal(K/K) on the étale cohomology
of C%, a la Fontaine. Le. besides the Hodge filtration it has a Ko-lattice (the log-
crystalline cohomology of C with Qp-coefficients) with linear monodromy and o-semi-
linear Frobenius operators. One can use this to describe the representation. This is
true much more generally (see for example [18] and [39].)

Let g: Z — C be a flat proper morphism. Suppose P is a sub-scheme of C, finite
and étale over V whose reduction is disjoint from Sing. Let C* be the log formal
scheme over V associated to the pair (C, P) (i.e. the formal completion of C along
its special fiber together with the log-structure associated to P). Denote g~—!(P) by
Dp and let Z* be the log formal scheme over V' associated to the pair (Z, Dp). We’'ll
abuse notation and also let g: Z* — C* denote the morphism of log formal schemes
induced by g. Then Dp is a divisor of Z and we will suppose from now on that DpUZ
is a reduced divisor with normal crossings. Here Z is the special fiber of Z. Suppose
that the restriction of g induces a smooth proper map (Z\Dp) — (C\P). Then,
under all of the assumptions above g: Z* — C* is log smooth.

For example, if C = X(N,p) := X1(N) x x(1) Xo(p) where (N,p) =1 and N > 4,
Z = E(N,p), the universal generalized elliptic curve over C' with level structure and
f : Z — C is the natural map, then if one takes P to be the divisor of cusps on C,
the quadruple (C, Z, f, P) satisfies the above conditions.

If h,i,j > 0, S"%9(Z/C, P) will denote the h-th hypercohomology group of the com-

plex of sheaves, Sym’ G*(Z/C, P) Sym'p Sym’G*(Z/C,P) ® Q};K/K(log(PK)), where
G'(Z/C,P) = K ®v R'g.Q%x ;cx = K ®v Hip(Z2*/C*)

and D is the Gauss-Manin connection.

The group S"%9(Z/C,P) naturally has a Hodge filtration which we call
Fhii®(Z/C,P). After choosing a branch of the p-adic logarithm on K, we
will use the rigid geometry of Z/C and p-adic integration to produce a Kj-lattice
StiI(Z/C,P) in ShI(Z/C, P), a linear operator Ni"* on this lattice and make a
o-semi-linear operator ®i** on S$"9(Z/C, P) such that N»*®irt = p@irt Nint,

A four-tuple (M, F, N, #*) where M is a finite dimensional vector space over Ko, F’
and N are o-semi-linear and respectively linear operators on M such that NF = pF'N
and #°* is a decreasing exhaustive filtration of Mg := M®g, K by K-vector subspaces
is called a filtered, Frobenius, monodromy (FFM) module over K (see [19]). The

ASTERISQUE 331



HIDDEN STRUCTURES ON SEMISTABLE CURVES 181

category of FFM-modules is an additive, tensor category with kernels, cokernels and

a notion of short exact sequences but it is not abelian. Its subcategory of weakly

admissible modules (which are now known to be admissible by [13]) is abelian, see

also [19]. To a Q,-representation of Gk, Fontaine associated an FFM-module and if

this representation “comes from geometry” one can recover it from the FFM-module.
In particular, if g: Z — C is as above then

M3 (2/C, P) == (Ski?(Z/C, P), &}, Nit, #h132(C, P))

int int

is an FFM-module over K.
We will prove,

Theorem 1.1. — The FFM-module M*'7(Z/C, P) is the one associated to

int
¥"1(Z/C, P) = H((C — P)g, Sym’ (B'g. 2 Q)
via Fontaine theory. In particular,

¥hii(Z/C, P) = (By® (M1 (2/C, P)))*= V=0

b NFil°(Bar ®x Mv7(Z/C, P)k).

We obtain our theorem from results of Faltings [17], which we now describe.

Let us denote by C - the scheme C with the inverse image log structure from C*.
Suppose & is a filtered logarithmic F-isocrystal on C”. Such an object associates
to the “enlargements” (thickenings) of c” (see [32] for the non-logarithmic case and
[16], [34],[35] in general) coherent sheaves in a compatible way. We will recall the
precise definitions in Sections 3.3 and 6. The notion of an F-isocrystal and it’s initial
development is due to Berthelot and Ogus [2], [32]. The notion of a filtered loga-
rithmic F-isocrystal was defined by Faltings in [16] and developed by Shiho in [34]
and [35]. In particular, one gets from & a coherent sheaf &gx on Ck with an inte-
grable connection D with logarithmic singularities at P. Therefore, if g, Z, C and P
are as above, there is a filtered log-F isocrystal é”%}c on C” which associates to the
enlargement C*, Sym’G*(Z/C, P).

In [17], Faltings associated étale local systems on C, L(&) to certain (very
special) filtered log-F isocrystals, &, and made families of FFM-modules,
(ngg(é"),@zeg,Nseg,ﬂh") (see Section 2.1 for more details). Let us very briefly

deg
: h
describe Hg,,

structure C X, with values in &. As C is a reduced divisor with normal crossings in
C, let C** be C with the log-structure induced by C U P. Let C™”™ be C with the
pull back log structure. Similarly, let Spec(V)* be Spec(V') with the log structure
given by the closed point, let Spec(k)* be Spec(k) with the pull-back log structure
and let Spec(W)* be Spec(W) with the Teichmiiller lift of the log structure on
Spec(k)*. Then & is a filtered log F-isocrystal on C™ over Spec(W)* and we set
Hc']‘eg(é”) = Hfﬁs(éxx/Spec(W)x,é”) for h > 0. It is proved in [17] that the étale
cohomology HJ((C — P)g,L(£)) and these FFM-modules are associated to each
(€)®k, K = S"i(Z/C, P),

(&). Tt is the log crystalline cohomology on C, with a certain log

other via Fontaine’s theory. In the case, & = é";fc, H geg
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182 R. COLEMAN & A. IOVITA

Fie is the Hodge filtration and HA((C — P)g,L(£)) = ¥"14(Z/C,P). In this

paper, we will extend the definitions in [C1] of FFM-modules H}

int

(&) to regular (see
Section 6) logarithmic F-isocrystals & on C™ over Spec(W) and prove

ngg ((go) = Hl’;lt (‘ga)

for all h > 0, when all the irreducible components of C are absolutely irreducible.

We have several applications of our theorem. We first point out that our descrip-
tions of the operators @i;{‘t, N, ,il“t are more explicit than those of the corresponding
operators defined by Hyodo-Kato in ([23]) and Faltings in ([17]). If C = X(N,p),
with (N,p) = 1 and N > 4 (see the notations above) and & = Sym? G!(E/C, P) then
we prove that the rank of N3° on HL, (C " /Spec(W),&)P~"e¥ is exactly half
the dimension over Ky of this vector space (see Corollary 7.4.) As a consequence we
derive that if f is a p-new cuspidal eigenform of weight k = j + 2 on X (NN, p) and V;
denotes the p-adic Gk-representation attached to f, then V; is semi-stable but not
crystalline (Corollary 7.5). This was proved in [33] in a very indirect way, using the
local Langlands correspondence and results of Carayol on the rank of the monodromy
operator on the ¢-adic (¢ # p) Weil-Deligne representation attached to f.

Our main result is also used in [24] in order to give an explicit description of the
image of the p-adic Abel-Jacobi map applied to Heegner cycles on certain Shimura
curves in terms of extension classes in the category of FFM-modules. In particular a
p-adic Gross-Zagier formula for higher weight modular forms is proved in that paper.

Finally, another application of our results is to get an explicit description of the
Mazur-Tate-Teitelbaum .Z-invariants which we now describe.

Suppose now that k£ > 0 is an integer and (M, F, N, #°) is a FFM-module over
K such that F'M is Mg for i < k and it is O for 4 > k + 2. Suppose S is a
commutative Z,-algebra free of finite rank which acts on M such that % k+1pf is a
rank 1 g, := J ® Q,-submodule,

Mg = F**" 1M @ (N @ 1) Mg

and N ® lg: F*¥'M — (N ® 1x)Mf is a non-zero HAQ,-isomorphism. Then, if
v € M is an eigenvector for F' such that (N ® 1x)Mg = g, - Nv, the Z-invariant
Z(M) of (M,F,N,%(D)®) is the unique element in J#g, such that

v— L (M)Nv € F*1M.

The general definition of an .#-invariant becomes arithmetically significant when
we attach it to a cuspidal newform on X (N, p) of weight k + 2 (as above), with £ > 0
even, which is split multiplicative at p. This means precisely that a, = pk/? (see
[29].) The quest for an .Z-invariant which is intimately connected to the relationship
between complex and p-adic L-functions was initiated by Mazur-Tate-Teitelbaum (86)
in [30]. There, a definition in the weight 2 case was offered. Its relationship with values
of L-functions was established by Greenberg and Stevens using Hida theory (91) in
[20]. Teitelbaum proposed the first definition in the higher weight case under some
restrictions on the level using the uniformization of Shimura curves by the p-adic
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HIDDEN STRUCTURES ON SEMISTABLE CURVES 183

upper half plane (90) in [38] (his definition does not involve a FFM-module but see
[24]), the first author of the present paper offered a definition using the FFM-module
Mg,ftj (E(N,p)/X(N,p), Cusps) and S is the Hecke-algebra acting on X (N, p), in [8].
Finally, Fontaine-Mazur defined an .#-invariant associated to a cusp form as above
using the FFM-module D4 (V'), where V is the local Galois representation attached to
the cusp form and Dy, is Fontaine’s functor (see [19]) in [29]. The algebra J# is again
the Hecke algebra acting on X (N, p). K. Kato, M. Kurihara and T. Tsuji established
the connection between the .Z-invariant of Fontaine and Mazur and special values of
the complex and p-adic L-functions while G. Stevens has established the connection
between the .Z-invariant defined in [8] and special values of the complex and p-adic
L-functions using p-adic families of modular forms, see [37]. The result of Kato,
Kurihara and Tsuji has not yet been published. The present paper together with
the results in [24] establishes the equality of all the Z-invariants (whenever they
are defined). Of course, the results of Kato-Kurihara-Tsuji and Stevens togeher also
imply (indirectly) the equality of the .Z-invariants defined in [8] and the corresponding
Fontaine-Mazur .#-invariants.

We mention that P. Colmez also proved (in [12]) a formula giving the #-invariant
of Fontaine-Mazur as derivative of a family of eigenvalues of Frobenius. Together with
the result of Stevens mentioned above involving the .#-invariant defined in [8], this
gives another local proof of the equality of the two Z-invariants we consider.

In [21] Grosse-Klonne extended the Hyodo-Kato theory and showed that there are
natural Frobenius and monodromy operators on the de Rham cohomology of a quite
general rigid space. He has been able to explicitly compute these when the space is a
quotient of a p-adic symmetric domain.

Writing this paper we had two options, namely to present the definitions, state-
ments and proofs in the most general case (the logarithmic case), which would have
made the notations very complicated and would have obscured the ideas of the
proofs or, to first present some of the definitions, statements and proofs in the non-
logarithmic case, then to give the definitions and make the precise statements in
general and leave it to the reader to check that the same proofs go through with the
obvious adjustments. We choose to do the latter.

Acknowledgements. — We would like to use this opportunity to thank the referee
of the first draft of this paper for the careful proofreading of the text and the lengthy
report which pointed out a few serious mistakes and many small ones. In some cases
solutions were offered to overcome the problems and many suggestions were made for
the improvement of the presentation. We re-wrote the paper largely following the
referee’s suggestions.

Thus, it should be understood that the paper owes much to this report and we are
very grateful to its author for his/her help.

Some of the re-writing of the paper was done while the second author was a visitor
of the Ecole polytechnique, Paris and of Université Paris 13, Paris. He is very grateful
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We thank Christophe Breuil and the editors of Astérisque for gracefully extending
submission deadlines.

2. Definitions of the operators

Let K,V,k,W, Ky,Cx,C, P,C, P be as in Section 1. Let us recall that we suppose
that the reduction of P, P does not meet the singular divisor of C. We endow the
formal completion of C along its special fiber with the natural log structure defined
by the divisor P and denote the resulting formal log scheme by C*. We let C” denote
the log scheme C with the inverse image log structure. We also denote by C** the
formal completion of C' along its special fiber with log structure given by the divisor
with normal crossings P U C. We denote C - the scheme C with the inverse image
log structure. Let & be a filtered log F-isocrystal on C”. We fix a uniformizer 7 of
K and fix the branch, log, of the p-adic logarithm in K* such that log(m) = 0. Then,
if & is regular (see below) there are two ways to attach a family of FFM-modules to
&, as we shall explain below.

2.1. The definition via degeneration. — We first briefly review the definition
given by G. Faltings in [17]. We give more details in later sections. By deformation
theory, the pair (C, P) can be regarded as the fiber at the point 7 of . := Spf(W{[t]])
over W, of a pair (X, &) consisting of a family of curves X defined over . and a
smooth divisor & of X over .%#. Let X* denote the log formal scheme X with the log
structure given by the divisor &2. Let f : X — ¥ denote the structure morphism.
Let % denote the fiber of this morphism at ¢ = 0. Then & and % are disjoint and
% is a divisor of X with normal crossings. We denote by X** the formal scheme X
with the log structure associated to the divisor Z U%. If we let X = X'e § = "¢
and "8 := Px denote the rigid analytic spaces over K associated to X, . and &
respectively and if f: X — S is the induced morphism then we have

i) X — Spec(Kp) is smooth

ii) Y := f71(0) = #"& is a semi-stable curve over Kj

iii) Py:= PxNY is disjoint from the singular divisor of Y’
iv) flx=: X*=(X-Y) — S*= (S —{0}) issmooth.

The evaluation of & on X* is a coherent &x-module &% x, with a relative, logarithmic,
integrable connection Dy /g. Let us denote by Ky /s the complex of sheaves on X

D
Exx =5 Exx ®oy U s(log(Y U Px)).
The relative connection Dx g is induced from the absolute connection:

D
Exx 55 Exx ®ox Uk, (10g(Px))
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HIDDEN STRUCTURES ON SEMISTABLE CURVES 185

by composing with the natural map: Q% , (log(Px)) — Q%/s(log(¥Y U Px)).

See Section 3.3 and Section 6. We denote by H' the i-th logarithmic relative de
Rham cohomology group of X/S with coefficients in &x, i.e. the sheaf Rf,(Ky /s)
for i = 0,1,2. For every i, H! is a free &s-module with an integrable, regular-singular
connection

Vi: B — H @04 2, (log 0).
Fix a parameter t on S, with ¢{(0) = 0. The Frobenius on & together with the
Frobenius ¢ on S which sends ¢ to t? and acts on the coefficients as the absolute
Frobenius on Ky, endow H! with a (-semi-linear, horizontal (with respect to V;)
Frobenius operator
®;: o*H' — H*.

If s is a point of S, let H! denote the fiber of H* at s. The i-th logarithmic de
Rham cohomology of Ck, with coefficients in éox, Hip(Ck,écx) is canonically
isomorphic to HY. (Recall, P is the fiber of Px at s = 7.) We denote these groups by
Hi(C,P,&). On the other hand, H} is canonically isomorphic to the logarithmic de
Rham cohomology of Y with coefficients in &, i.e. the i-th hypercohomology on Y
of the complex of sheaves

Dy w 1
Eyx — Egx oy Qg xx sprw)x>

where %'** is the formal scheme % with the inverse image log structure from X**.

We denote this group by H(Y, Py, &).

Now let Hj,,(&) denote the FFM-module (H'(Y, Py, &), {°¢, N{*%, Z3,.), where

the operators are defined as follows
the monodromy operator: N8 .= Reso(V;): H\(Y, Py, &) — H'(Y, Py, &),
and
the Frobenius operator: B := &;| yi(y.py.6): H(Y, Py, &) — H(Y, Py, &).

These operators satisfy N2 — pddes Ndeg,

We still have to define the filtration on (Hj,(€))x = H'(Y, P, 6) ®k, K. For
this let us recall from [4] (this was also proved in [17]) that the triple (H?, V;, ®;) is
determined by the triple (H!(Y; Py, &), N7, ®I°8). More precisely we have a natural,
horizontal, Frobenius-equivariant isomorphism of &s-modules

(Hia Vi’ q)z) = (Hl(Y» POa g) ®Ko 05’7 (Vi)/a (I);:leg ® <P)»
where the connection (V;)’ is defined by,

dt .
(VY (h®z) = Nideg(h) ® T + hdz, forall he H'(Y,Py, &),z section of 0.

Here a few comments are in order. For i = 0,2 the pair (H¢,V,) is very simple.
Namely, let i = 0. Then H® = (&%« (X))P*/s =: Ex/s and the connection V is the
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186 R. COLEMAN & A. IOVITA

composition

Dx/kq

EX/S — EX/S Res Q‘lg — EX/S 2 Q‘lg(log(O)),

where Dyx/k, is the absolute connection mentioned at the beginning of this sec-

tion. Therefore Ngeg = Resp(Vo) = 0 and so applying the above we get that
H° = HO(Y, Py, &) ®k, Os and (V) (therefore also V) is the trivial connection.
The same happens for i = 2 by Poincaré duality (see [17]).

V1 is not trivial in general so let us define ]I-]IllOg = H! ®p, Os[l(t)], where £(t) is
a variable. We endow Hj . with the connection V;(log) := V1 ® 1+ 1® d where
d: Os[t(t)] — Osle(t)] ®os Qg i, (1og(0)) is defined by d(£(t)) =1® gt—t-

For all h € H(Y, Py, &) the sections of H}

log
h®1— NIE(h) @ £(t)

are horizontal for V(log) hence the connection V;(log) is trivial.
Therefore, letting ]H[fOg = H* if i = 0,2 we have for i = 0,1,2 and every K-point
s # 0 of S natural identifications (by parallel transport, see [14])

(Héeg(g))}( = Hi(Yv POafg)) B K, K= (]HIz )s

log

where by (]I-]Ifog)S we denote the pull back of ]I-]Ifog by the map Os[(t)] — K send-
ing ¢ — s and £(t) — log(s), where let us recall that the branch of the logarithm
chosen at the beginning of this section is such that log(w) = 0. In particular, for
s = 7 we have (]Hlfog),r =H! = H)(Ck, cx (log(P)) and we define the filtration on
(H geg(éf’ )) 5 to be the inverse image under this isomorphism of the Hodge filtration

on Hip(Ck, cx (log(P)).

Remark 2.1. — Actually Faltings does not mention the basis of horizontal sections
defined above in [17] and it seems to us that he does not identify fibers of Hfog (see
also the remark before Lemma 2.1 in [17]).

2.2. The definition via p-adic integration. — We generalize the definition given
in [8] when & is regular. As pointed out above, the evaluation of & on C* is a co-
herent ¢, -module with a regular singular (at P) integrable connection D: px —
Eox ®oc, QICK / « (10g(P)). Recall that we have denoted by H*(C, P, &) the K-vector
spaces H'p(Ck, écx (log(P)), for i = 0,1,2.. The following lemma will be proved in
Section 3.3

Lemma 2.2. — The connection D has a basis of horizontal sections on every residue
class of Ck.

We’ll assume that the components of C' are smooth, absolutely irreducible and
there are at least two of them. Also suppose that the singular points of the reduction
are defined over k.
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HIDDEN STRUCTURES ON SEMISTABLE CURVES 187

For i = 0,2 we have the Ko-lattices in H(C, P, &), H.,(£) := H: . (C" ", &) with
the respective Frobenii and zero monodromies. The filtrations on H*(C, P, &) are the
respective Hodge filtrations.

For ¢ = 1 the situation is more complicated. For an admissible covering Z of a
rigid space let G := G(2) be the graph whose vertices v(G) are the elements of 2
and whose oriented edges €(G) correspond to ordered triples e := (U,V, W) where
U#V € 2 and A, := W is a connected component of U N V. Also, if e is such
an edge then its origin a(e) is U and its end b(e) is V. We set 7(e) = (V,U,W). If
v € v(G(2)) we will denote by U, the element of 2 corresponding to it. We choose
and fix a system of representatives e(G) of the quotient set €(G)/7.

Consider

% = {red™'Z: Z is a component of C},
where red: Cx = C"8 — C is the reduction map. Then ¥ is an admissible open
cover of Cx by wide opens (see [7]). Let G = G(¥), v(G) be the vertices of G and
€(G), the edges of G. If v € v(G), C, will denote the corresponding component of
C. We also set C) = Cy — [Jypy Cw- In this situation, for each e € e(G), A, is an
oriented wide open annulus. Given Lemma 2.2, there is a natural residue map

Rese: Hyp(Ae, box) 2 Hyp(Ae, Ecx) = (ox|a.)P.
We will sometimes abuse notation and allow Res, to denote the composition of Res,
with the natural map from H'(C, P, &) to H}z(Ac, Eox).
Elements of H(C, P, &) are represented by pairs of collections

({wv}va(G)» {fe}eee(G))
where w, € (6 ® Q; )(log P,))(U,) and f. € &(A.) are such that

Wae)lae — wa(eyla. = Dfe

for all e € e(G). We denote PN U, by P,. From the Mayer-Vietoris exact sequence
corresponding to the covering % we get a short exact sequence
(1)
0— (®e€e(G)H2R(Ae7 fgoC)< ))/(GBUGU(G)HL?R(UU’ ng (lOg(Pv)))) _L’ Hl (Cv P, ‘g,)
l’ Ker(@vev(G)Hc}R(va gCX (lOg(Pv))) - 63<»:€e(G)‘I'{éR(A<-27 éaC’< )) — 0.

First, let us observe that the left and right terms in the exact sequence (1) have
natural Ko-lattices, with Frobenii. To see this, note that HJy(A., &cx) contains a
natural Ko-lattice, namely HC. (z., &), where z. is the point of C corresponding to
the edge e, and it has a natural Frobenius. Therefore we get a natural Ky-lattice with
a Frobenius on the left module of the exact sequence (1) which will be denoted H%1(C)
and Fy s respectively. Moreover, for v € v(G), H)s(U,, &cx (log(P,))) contains a
natural Ky-lattice with a Frobenius, namely the first log crystalline cohomology with
coefficients in & of the component corresponding to the vertex v, C;** where the log

structure is the one induced by the log structure on C™”. See [16]. Therefore, the
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right module of the exact sequence (1) has a natural Ko-lattice, denoted H>°(C), with
a Frobenius denoted F} c;is. To define a Ko-lattice, Hi (&) of H'(C, P, &), together
with a Frobenius operator ®{** and a monodromy operator Ni®* we’ll first split the
exact sequence (1) by defining a section s of ¢. This can be done if the log F-isocrystal
& is regular.

Definition 2.3. — We say that the log F-isocrystal & on C” is regular if for every
v € v(G) and z closed point of C,, — P the characteristic polynomials of Frobenius on
H?. (z,&) and HL (CX*,&)) are relatively prime.

Remark 2.4. — It will be proved in Section 6 that the definition (2.3) is satisfied by all
log F-isocrystals on c” coming from a family of schemes Z — C' as in the Section 1.

For the rest of the section we’ll assume that & is regular. Let w € H*(C, P, &gx ) be
represented by the hypercocycle ({wy}v, {fe}e) as above. If v € v(G) one can define
a p-adic integral of w,, A, on U, — P,, which depends on our choice of the logarithm
and is well defined up to a rigid horizontal section of &cx |y, (see Section 5.2). Then
s(w) will be represented by the cocycle ({ge}e), where

ge = fe - (Aa(e)lAe - ’\b(e)‘Ae)-
Let u be the corresponding section of y. Then define HL (&) to be the FFM-mod-

1

ule, where the underlying Ky-vector space is t(H%!(C)) +u(H'°(C)) and the Frobe-
nius operator, ®"(w), is
(Fo,cris(8(w)) + u(F1,cris (7(w))-
Moreover, the monodromy operator, Nitt| is defined to be the composition
L 0 Deee(q)Rese.
The operators satisfy the relation,
Nint@int — ppint yint
Finally the filtration on (.(H%!(C))+u(H°(C)))®K, K = H'(C, P, &) is the Hodge

filtration.

Remark 2.5. — The same construction can be performed for every fiber X; where
s € §* =S —{0}, i.e., we have residue maps Res(®, monodromy operators N(’;“s) and
Frobenii <I>i(‘1.‘ts), fori=0,1,2.

The main result of this paper is

Theorem 2.6. — Suppose that & is a regular filtered log F-isocrystal on C”. Then the
isomorphism H'(Y, Py, &) ®k, K = (IHIng),r obtained by parallel transport yields an
isomorphism of FFM-modules H}, (&) = H{(&).

int

Remark 2.7. — Actually reqularity is only needed in order to compare the Ky-lattices
and the Frobenii. We shall prove the equality of the monodromy operators (tensored
with the identity of K ) without any restriction.
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Theorem 2.6 is an easy consequence of the definitions for i = 0,2. The next sections
of the paper will be devoted to the proof of this theorem for ¢ = 1. We'll first prove
the theorem (2.6) in the non-logarithmic case (i.e. P is the void set) and then we’ll
provide all the necessary definitions and results so that the reader should be able to
fill in the details of the proof in the logarithmic case.

3. F-Isocrystals

3.1. Formal schemes, rigid analytic spaces and weak completions. — In this
section we review some constructions and results on formal schemes, rigid analytic
spaces and weak completions which will be used later in the paper.

3.1.1. The functor rig. — We recall a standard construction in rigid analytic geome-
try, the functor “rig” (for more details see Section 02 of [1] or [25]). This is a functor
from the category of locally noetherian formal V-schemes (or formal W-schemes) to
the category of rigid analytic spaces over K (respectively Kj).

Let X be a locally noetherian formal scheme over Spf(V) (the case where V is
replaced by W is treated in the same way) having the property that the scheme
(X, 0%/ F )rea is locally of finite type, where .# is an ideal of definition of X. To the
formal scheme X we attach a rigid analytic space X := X™& over K as follows.

We first suppose that X is affine, X = Spf(A), let I = H°(X,.¥) and fix
f1, fe, ..., fr a set of generators of the ideal I. For every n > 1 define the V-algebra

Bn = A<T17T27"'aT’I'>/(f]TL ‘ﬂ-Tlvf; _WT2""’f7":l _WTT)7

where 7 is a uniformizer of V, and as usual, A(T},T3,...,T,) denotes the p-adic
(or m-adic) completion of the polynomial ring A[T},T,...,T,]. The conditions on X
imply that the k-algebra

Bn/ﬂ'BngA/(ﬂ':f{zvfzn’-~-af7?)[T17T27""T7‘]

is of finite type which implies that B,, itself is topologically of finite type. Therefore
B, ®y K is a Tate-algebra over K. For m > n > 1 we have canonical V-algebra
homomorphisms B,, — B, sending T; — f"""T; for all 1 < ¢ < r. The induced
morphism of affinoids Spm(B, ® K) — Spm(B,, ® K) identifies the source with
the affinoid sub-domain of the target given by |fi| < |7|*/™, 1 < i < r. We define
X := X" to be the inductive limit of Spm(B, ® K), where these affinoids form, by
definition, an admissible covering of X. In fact one can prove that X™€ is independent
of the ideal of definition .# and of the choice of generators fi, fs,..., fr and that it
is functorial in X.

If the ideal of definition of X is 7 0%, i.e. X is a p-adic formal V-scheme topologically
of finite type, then X" is the usual “generic fiber of ¥” & la Raynaud.

Let X, X™& be as above. Then one can define a reduction (or specialization) map
red : X" — X as follows. For m > n > 1 the natural V-algebra homomorphisms
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A — B,, — B,, induce the following commutative diagram:

red

Spm(B,, ® K) — Spf(Bn) — X%
! l I
Spm(B, ® K) =% Spf(B,) — X

Here the morphisms red : Spm(B,, ® K) — Spf(B,,) are the usual reduction maps
for p-adic formal schemes and their generic fibers, i.e. defined as follows. Let
z € Spm(B, ® K) be a point and let m, be the respective maximal ideal. Then
K(z) := (B, ® K)/m,; is a finite extension of K and we have V-algebra morphisms:
B, — B,® K — K(z). We define red(z) to be the point of Spf(B,,) corresponding
to the unique closed point of the finite, local V-algebra which is the image of B, in
K(z).

The morphism red: X" — X is obtained by gluing the morphisms
Spm(B, ® K) — X in the above diagram.

For a general X, we obtain X™& and the morphism red : ¥ — X by taking an
affine cover {%}; of X and gluing %% and red,, ris.

Under the notations and hypothesis at the béginning of the section, let Z be a
closed sub-scheme of (X, 0x/.#). We denote by X,z the formal completion of X
along Z. We have canonical morphisms X, — X and (X /Z)rig — X"&, The image
of the latter morphism is an admissible open subset of X™8 which may be canonically
identified with red™!(Z) :=]Z[x (see Proposition 0.2.7 of [1]).

3.1.2. Formal models. — Let X be a p-adic formal V-scheme (or W-scheme), sepa-
rated and topologically of finite type and let X := X2, Assume that X is reduced
and let U be an admissible affinoid open of X.

Lemma 3.1. — There is a canonical p-adic formal scheme 4 over V (respectively over
W), depending on X, with a morphism Y — X whose generic fiber is the inclusion
UcCX.

Proof. — Let, as usual X; denote the special fiber of X and consider an affine open
covering of X1, {V;};. Let U; := red"l(V,-) NU C U, the family {U;}; is an admissible
covering of U and let us denote by i; := Spf(A;) where A; is the sub-ring of functions
of Oy (U;) bounded by 1 (we say that ; is “the canonical formal model” of U;). Let
Vi; be the inverse image of V; NV} under the map of special fibers ({4;); — X1. Then
U;NU; =red; 1(Vij), where red; : U; — i; is the reduction map and the canonical
model of U; NUj is the formal open sub-scheme of 4{; whose support is V;; Therefore,
one can glue the formal schemes il; along the canonical formal models of U; NU; and
obtain the required formal model of U. This is independent of the covering {V;};, as
one may take the covering of X; consisting of all the affine open sub-schemes. O

These formal models of affinoid opens of X have the following functorial property.
Let X,X’ be p-adic formal schemes, separated, topologically of finite type over
V (or W) and let X = X8 X’ = X'™& and assume that X, X’ are reduced. Let
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U,U’ be admissible affinoid opens of X respectively X’ and assume that we are given
morphisms f : U/ — U and g : (X'); — (X)1 such that the following diagram
commutes.

Uoc X' 2 a),
fl gl
U c x = @),

Then there exists a canonical morphism h : ${' — il inducing f on generic fibers and
such that hy : (U'); — (U); is compatible with g.

3.1.2.1. Logarithmic structures. — In this section we’d like to recall some basic no-
tions in the theory of log schemes from [26], 23], Sections 2.8, 2.9 and [34].

Suppose A is a scheme (or a formal scheme or a rigid space). A morphism of
sheaves of monoids on the Zariski site of A, a: M — €4, will be called a pre log
structure on A. Call the pair (A, ) a pre log scheme (or formal pre log scheme) and
denote it A* and denote M, M x. A pre log scheme (A, ) is called a log scheme
if @ induces an isomorphism a~1(6%) = €%. The sheaf of log one forms wax on A
associated to « is the quasi-coherent sheaf Q4 & 04 Qg+ Myx subject to the relations
a(m) ® m = da(m), for m € Myx. One has a natural derivation on the exterior
algebra of wyx over €4 such that d(1 ® m) =0, for m € M4x.

If P is a divisor on A, Mp is the sheaf Mp(U) = O4(U) N O%(U — P) and
ap: Mp — 04 is the inclusion, then A5 =: (A,ap) is a log-scheme which is fine
(“coherent” and “integral”). If A is noetherian and reduced and if A is a variety w A%
is naturally isomorphic to QY (log P). If P = @, ap is called the a trivial log structure
on A.

G. Faltings defines and uses a more restricted notion of log-structures in [16] and
[17] (see the appendix of [26] for the precise relationship between the two notions.)

Henceforth, all log structures will be fine.

Let T* be a formal log scheme. Let us denote by Tj the reduced sub-scheme of
the closed sub-scheme of T' corresponding to the ideal sheaf p&r. We have a closed
immersion

v: Ty — T
and we’ll let Ty be the log scheme corresponding to the log structure on T
Y Mpx) — oY Or) — O,
We use, as in [26] the notation ¢! for the inverse image of a sheaf and .* for the
inverse image of a log structure.

Let now g: U* — T* be a morphism of formal log schemes, g = (f,h) :
(U,Myx) — (T, Myx) . Here f : U — T is a morphism of formal W-schemes and we
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have a commutative diagram

F M o My v Lo
! ! and also /1 Te
fltor — oy v % o1
Therefore, we have a commutative diagram
o M) = ()T M — ()T My~
l ! 1
foleter)y = ()UfTter —  ()7oy
! !
f5'(Or,) — Ou,
which defines a morphism go: Uy — Ty
Definition 3.2. — Let X*,Y* be schemes or formal schemes with fine log structures

and let M — Ox (respectively N — Oy ) denote the morphisms of monoids on X
(respectively on Y ) giving the log structures. Let f : X* — Y be a morphism.

i) We say that f is a closed immersion if the underlying morphism of schemes
X —'Y is a closed immersion and the map f*N — M is surjective.

it) We say that f is an ezact closed immersion if f is a closed immersion and the
map f*N — M is a bijection.

Definition 3.3. — Let as above X*,Y* be schemes or formal schemes with fine log
structures given by the sheaves of monoids M respectively N and let f : X* — Y™ be
a morphism. We say that f is smooth (respectively étale) if the underlying morphism
of schemes X — Y 1is locally of finite presentation and for any commutative diagram

T’x 3, X%
Le L f
T _t, yx

where ¢ is an ezact closed immersion such that the ideal of T' in T is milpotent,
there exists locally on T a morphism (respectively there exists a unique morphism)
g:T* — X* such that g = s and fg=t.

See [23] 2.9 for other equivalent formulations of Definition 3.3.
Moreover we have the following result from [26] 4.10:

Lemma3.4. — If f : X* — Y™ is a closed immersion, then there exists locally on
X a factorization of f as: X* —» T* 2, Y* where T* is a fine log scheme, ¢ is

an exact closed immersion and g is an étale morphism.
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3.1.3. Fibrations and rigid analytic Poincaré lemmas
3.1.3.1. — Let us first consider a smooth affine scheme Z of finite type over k£ and
let t: Z — Z and 1 : Z — J' be closed immersions of Z into smooth p-adic
formal affine schemes over W. Let us assume that we have a smooth morphism of
formal schemes u : 9’ —  such that uo = .. Let 9/’2, )z denote the formal
completions of 7’ respectively J along Z and let T' := (9/’2)lrig and T := (J)z)"&.
Then locally on T” we have integers d and natural isomorphisms 7" & T x g, 5S¢, where
let us recall that S is the open unit disk over Ky, such that the following diagram is
commutative

T — Tx Ko Sd

ul 1

T = T
In the above diagram the right vertical map is the natural projection. For a proof of
the result see [1] Theorem 1.3.2. An easy consequence of this result on “fibrations” is
the following

Lemma 3.5 (Smooth Poincaré lemma). — Let the notations be as at the beginning
of this section. Let & denote an isocrystal on Z/W (see Section 3.3) and let us
consider the de Rham complezes of sheaves on T’ and T denoted DR(T',&)* and
DR(T, &)* obtained by evaluating & at the enlargements 75 and J;z. The morphism
u: ' — 7 induces a morphism of complezes DR(T, &)* — u,DR(T’,&)® which
s a quasi-isomorphism.

We’d like to recall the similar result in the relative situation and with log structures
from [34],[35] and [36].

Let us now recall that we have denoted .¥ = Spf(W/{[t]]). Let us endow this formal
scheme with the fine log structure given by the divisor ¢t = 0 and denote this log formal
scheme by .#*. The closed immersion Spec(k) — & given by t — 0 endows Spec(k)
with the pull-back log structure. Let Z* be a fine, smooth, affine log scheme over
Spec(k)* and let ¢ : Z* — F* and ' : Z* — J'* denote exact closed immersions
over > into smooth, affine log formal schemes (we assume that 7, 7’ are endowed
with the (¢, p)-topology). Suppose that u : J'* — J* is a morphism of log formal
schemes over .#* such that v o = ¢. Let ‘7/12’ Tz denote the completions of .7 !
respectively 7 along Z and let |Z*[1:= (F),)"8,]Z* [7:= (J)2)"*® denote the tubes
of Z* relative to T'* and T respectively. We denote by w]IZX[T’ the sheaf on |Z* [
given by: Q% 710517 ®w Ko and similarly for wllzx (- Then we have the following

log Poincaré lemma.

Proposition 3.6 (Lemma 2.2.15, [34]). — Let & be an isocrystal (without log structures)
on Z. If u is a smooth morphism of log formal schemes then the natural morphism
of de Rham complezxes

DR(T,&)* = &g, ®0s, Wizx[p — Us (DR(T',&)* := €7, ®ﬁ9/,z ""].ZX[Tz)'
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s a quasi-isomorphism.

3.1.4. Weakly Complete Algebras

3.1.4.1. Weakly complete liftings. — In this and the next sections we prove an im-
portant generalization of the “weak lifting theorem” (theorem A.1 of [5]) and give a
geometric interpretation of it (in §3.1.5).

We start with some notations which will be used as such only in this section. Let
R be a complete local ring of characteristic (0,p) with maximal ideal p. If n is a
non-negative integer set R, := R(T1,Ts,...,T,). Fix now k a non-negative integer.
For an Rj-algebra A, the weak completion A" of A is the smallest sub-algebra of the
p-adic completion of A which is p-adically saturated and contains the elements

. . ll ... Z
E : Tit,ein @y ann’

(I1,...rin)ENR

for any a; € pA, 1 < j < mnandr; ; € Rr. (When R is discretely valued this
is equivalent to the notion of weak completion of A over (R,p) in [31], §1.) The
algebra A is weakly complete over Ry, if A = Af. Let A,, := A[z1,22,...,%m] and
Ri.n = (R)}. A quotient of Ry , for some n by a finitely generated ideal is a semi-
dagger algebra over Ry, [10]. Such algebras are weakly complete. Denote A := A/pA.
If f: A— B is a homomorphism of semi-dagger Ry-algebras, we say B is formally
smooth over A if B is smooth over A and

Annpg(p) = Anny(p)B,
for all p € R.

Theorem 3.7. — Suppose A, B,C and D are flat semi-dagger algebras over Ry and we
have a commutative diagram

A — C
i l
B — D

Suppose, in addition, C — D is surjective, B is formally smooth over A and there
exists an Ry -algebra homomorphism 5 : B — C which commutes with the reduction
of the above diagram. Then there exists an Ry-algebra homomorphism s : B — C
which lifts s and commutes with this diagram.

Sketch of proof. The proof of the less general result Theorem A.1 of [5] translates
easily. We first outline the proof.

There exists an integer n and Gi,...,G,, € Al so that we can take B =
Al /(Gy,...,Gp). Let g and V be the compositions A}, — B — D and 4, —
B — C respectively. Let I be the kernel of C — D. Let X := (x1,...,%,) € A"
and G = (Gy,...,Gp,). First one shows there exists an Ry-algebra homomorphism
Vo : Al — C over Ry, which lifts V such that V5 = g(modI). Now one shows there

ASTERISQUE 331



HIDDEN STRUCTURES ON SEMISTABLE CURVES 195

exists an n X m matrix N an m X m matrix  and an m-tuple of m x m matrices M
with coefficients in Af such that

G(X + GN) = GMG' + GQ

where G* is the transpose of G and the coordinates of Q are in pAf. Now for a
non-negative integer s set

Vo1 = Vs(X) + G(V(X))N (Vs(X)).
The V; converge to the required V as s goes to infinity. The proof of which we now

explain:

Lemma 3.8. — Suppose f : A — B is a surjective map of Ry-semi-dagger algebras.
The kernel of f is a finitely generated ideal.

Proof. — Without loss of generality may suppose that A = Ry, and B = Ry/J,
where J is a finitely generated ideal of Rkyp. Let us denote by g : Ry, — B the
natural map (in particular J is the kernel of g) and call the “weak” variables in Ry q
and Ryp by z1,...,%, and respectively yi,...,y5. Let h : Ryp — Rg, so that
f(h(z)) = g(), h(yi) € f~1(g(%:)),1 < i < b. Let 2'i € g~'(f(z:)). The kernel of f
is generated by h(J) and the finite set {z; — h(z})}i=1,a- : O

In the notations of Theorem 3.7, because B is formally smooth over A, we may
write B = Al /(G1,...,Gm). Let g and V be the compositions A}, — B — D and

A, — B — C respectively. Let I be the kernel of the homomorphism C — D
and let X = (z1,...,2,) € AL,

Lemma 3.9. — There exists Vy: Al — C over Ry which lifts V such that
Vo = g(modI).

Proof. — Let ¢’(X) be an element of C™ such that
9'(X) = g(X)modI

and define a homomorphism V'’ : Al — C in the natural way. Similarly there is a
homomorphism V' : Al — C which lifts V,

V' = g'mod(p, I)C".
We can write
VI(X)-g'(X)=a-b,
where a € pC™ and b € IC™. Let V; : Al — C such that V(X)) =V/(X) —a. O

Let G = (G4,...,Gy) and X = (x4, ...,2,). Formal smoothness implies

Lemma 3.10. — There exists a n X m matric N an m X m matriz Q and an m-tuple
of m x m-matrices M over Al such that

G(X + GN) = GMG' + GQ
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where G* is the transpose of G and the coordinates of Q are in pAl. Here we think of
each G as a row vector of functions of X and by the notation G(X + GN) we mean
the composition of functions .

For an integer s > 0 set
Ver1(X) := Vs(X) + G(V5(X))N (Vs(X).
Suppose @, Vo(G) = Omodg, for g € pR. Then for s > 1,
Var1(X) = Vo(X) = (GMG" + GQ)(Ve—1(X)))N (Vs(X)) = 0 mod ¢***.

This is enough to show that the sequence V; converges p-adically. We will now give
some idea about why it “weakly converges”.

If r € p9 r > 1, let Ry ,(r) denote the sub-ring of Ry, consisting of series which
converge on Bg[l] x By[r]. If f : Rg, — A is a surjection and r > 1, let A(f,r)
denote the subring f(Ry n(r)) and for F € A(f,r) set

1F[|5,r = max{||G||» | G € Rn(r), f(G) = F}.
Choose once and for all surjective homomorphisms
Rk,a — A, and Rk,b — C.

Let Rgq4n — AL be the induced surjection. If e : Ry, — E is one of these
homomorphisms, let

E(r) = E(e,r) and || ||, = | [le,r-
We can show there exist real numbers u > 1,d > 0, and L < 1 such that for1 <t <u
the entries of N and G lie in Af (u) and

(i) Vs(AL(t) c C(1),

(i) [|[Vs(X) = Vo(X)lle < 1,

(iii) [|G(Vs(X))le < Lo|G(Vo(X))]le,

(iv) L = [IN(Vs(X)IIe/IG(Vo(X))le,

(v) Vs = Vo(modlI).

Now, (iii) and (iv) imply the sequences V| Al (s converge to continuous homo-
morphisms V; : A}, (t?) — C(t), for 1 < t < u, compatible with decreasing ¢. Let
V : A}, — C be the direct limit of these V;. Condition (ii) implies that V lifts V,
(iii) implies G(V(X)) = 0, so V factors through a a morphism B — C which lifts
B — C and finally (v) implies this morphism commutes with the diagram.

Remark 3.11. — A statement needed to prove (iv) which is analogous to a result used

but not stated explicitly in [5] is, with notation as in the proof of lemma A-8 of [5],
R(F)lg,e < I1F]lg,ee-

Corollary 3.12. — Suppose R is discretely valued and B is a flat, formally smooth

semi-dagger algebra over Ry. Then B is very smooth over (Ry,pRy) in the sense of
[31], Definition 2.5.

ASTERISQUE 331



HIDDEN STRUCTURES ON SEMISTABLE CURVES 197

Corollary 3.13. — Suppose R is discretely valued and B and C are flat Ry semi-
dagger algebras, formally smooth over Ry and there exists an Ri-algebra isomorphism
5: B — C. Then there exists an Ry-algebra isomorphism s : B — C lifting 5.

Proof. — This follows from the previous corollary and the proof of Theorem 3.3 of
[31]. O

3.1.4.2. Weak completions. — Let the notations be as in §3.1.4.1. In this section,
given a finitely generated Rj-algebra A, we give a geometric interpretation of the ring
A' ® g K, which will be used later in the article.

Suppose R is discretely valued.

Proposition 3.14. — Let A be a finitely generated flat Ry-algebra. Set A = A/pA,
A=1lim A/p"A, U = Spec(A), U = Spf(A) and U = Spec(A). Let g: U — X be an

open immersion of U into a scheme X proper and flat over Ry. Let X be the formal
completion of X along its special fiber and Ux =]U[y. Then At Qr K = lin‘l/ A(V),

where V' ranges over all affinoid strict neighborhoods of Uk in Xk and A(V) denotes
the affinoid algebra of V.

Proof. — Let Z be the complement of U in X with the reduced closed sub-scheme
structure and let Z be its reduction modulo p. Let 7 be a uniformizer of R. Suppose
{W,}; is an affine cover of X and suppose that fii,..., fin, € 0% (]W;]) are such
that f;1,..., fin, generate the ideal in O, defining Z N W;. For A € p%, |A| > ||,
let V), be the union over all ¢ of

{z €]W;|| there exists j,1 < j < n; such that |f;(z)| > A}.

As in [1] §1.2, the V)’s are independent of the choices and form a co-final system of
strict neighborhoods of Uk in X3%. Then we see that V) is contained in U®(C X3%).
This implies that the inductive limit we consider does not depend on the choice of
the embedding U — X. Choose a presentation A = Ry[T1,...,T,]/I, which gives a
closed immersion U — A%, and let X be the closure of U in P%, . Then we see that
A(V,) is isomorphic to (Rg(T1,...,Ta)r/I) ®r K, where Ri(T1,...,T,) denotes the

ring of power series over Ry converging on the closed disk {(y,z‘) e K" | y| <
1,|z| < 1/A}. Hence its inductive limit coincides with (R[T1,...,Tn|t/I) ®r K &
At ®r K. O

Remark 3.15. — 1t is possible to improve this result. If Z C X are affinoids, set
lglz = sup{lg(z)| : =€ Z}and

Az(X)={f € AX) :|flz<1}.
Then we can show, in the above notation, A = hm AU (V'), where as before V

ranges over all strict affinoid neighborhoods of Uk in X Kk if A, A are normal, X is
reduced and U is irreducible.
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3.2. The geometry of the family. — Let us resume the notations of the intro-
duction. We’ll briefly recall from [17] how the family of curves X — S in Section 2
is constructed. In this section we assume that P is empty.

As C is regular, C is a reduced divisor with simple normal crossings and each
singular point is k-rational we may find a deformation of C, X — . := Spf(W/[[t]])
with the following properties

e X is defined over W

e the curve C is the base change of X by the map W{[t]] — V sending ¢ to =.

o Zariski locally X is smooth over W{[t]] or isomorphic to W{[t]{(z, 2)/(zz — t).

Let X := X" — § := "€ a5 defined in Section 3.1. In this particular case
the general construction gives the following. Let % := W/{[t]] and for each integer
n > 1let %, := W{[t]|(T)/(t™ — pT); it turns out that R, is the p-adic completion of
Wt,T)/(t"™ — pT) and that we have natural maps

® %, — V defined by t — 7, T — 7" /p for all n >[K : K|

and

® X1 — Xn over W[t]] defined by T — tT'. Denote by X,, Xo Xsprez, SPf %n.

Let, for n > 1, X,, and S,, denote the generic fibers of the p-adic formal schemes
X, and Spf(Z%,) and let

X :=1limX, and S :=lim S,
—,n —,n

The rest of this section will be devoted to understanding the rigid analytic structure
of the family X/S. As S, := Spm(%, ® Ky) is defined by [t| < |p|*/", it follows that
Sp is the affinoid disk centered at 0 of radius |p|'/" and therefore S is isomorphic to
the open disk of radius 1 centered at 0.

In [7] (see also [9]) a one-dimensional wide open was defined to be a rigid space
which is isomorphic to the complement in a proper curve of a “discoid subdomain.”
We now define a wide open, in general, to be the rigid space associated to a complete,
flat, topologically finitely generated, semi-local ring over W (or over V) (see §7 of
[25]). Residue classes of affinoids are wide opens. One can show ([11]) that such
spaces have a finite number of irreducible components. We suspect, when they are
smooth, that they have finite dimensional de Rham cohomology.

First, as X is a deformation of C, the ideal tOx + pOx of Ox is an ideal of defi-
nition for this formal scheme and the closed sub-scheme of X defined by this ideal is
isomorphic to C as schemes over k. Therefore, by Section 3.1 we have a reduction
map red: X — C, and we define the covering of X:

% := {red™'Z: Z is an irreducible component of C}.
This is an admissible open cover of X. If v is an irreducible component of C, we
denote by U, € ¥ the corresponding open and if e is a singular point of C' we let

A, =red~1(e). We'll see in Section 3.5 an interpretation of these notions in terms of
graphs.
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Moreover, if s € S*, then the restriction (i.e. base change) of ¥ to the fiber X,
is an admissible covering % of X described in Section 2.2 for s = 7. For every v
irreducible component of C let us denote by

Zy:=U, - |J U

wH#v
Then Z, is a rigid space over S such that all of its fibers are affinoids for all v. Let e
be a fixed singular point of C'. Then we have

Lemma 3.16. — There are functions Te and T,y on Ae = A;(c) such that Tez (o) =1,
|ze(w)| — 1 as u approaches Zg(y. Moreover, the map o — (zo(), T+ ()()) maps
A, isomorphically to the open unit ball in Af(o, i.e. the rigid subspace of Aﬁ{o defined
by

{(z,2): |z| <1 and |2| < 1}.

Proof. — This follows easily from the fact that the singularities of X/S are given by
local equations of the form zz = t. O

Let us recall that Y is the fiber of X/S above 0 € S. Let L be a finite, non-trivial,
totally ramified extension of Ky and 7, a uniformizer of L. Let also & := Spf(0 (y))
denote the formal scheme whose generic fiber is the closed disk centered at 0 of radius
|mp|. If n > [L: Ko] we have a natural morphism ¢ :  — Spf(%,) — . induced
by the morphisms %y — %, — Or(y) given by t — npy and T — (7}/p)y™,
whose generic fiber induces B := By, C S. We denote by Xg := X, Xgpi(#,) %,
which is independent of n > [L : Kp]. Let us remark that by [25] 7.2.4, we have
(X%)"® = X xg B which will be denoted Xp.

Lemma 3.17. — In the notations above there is a natural isomorphism
€ :C x AL, — (X4)1 as schemes over A}

where let us recall, k is the residue field of K and if Z is a formal scheme over O,
Zy denotes the closed formal sub-scheme of Z of ideal 7,0 7.

Proof. — The special fiber of the map ¢ defined above, ¢1: B = Ap — A =
Spf(k[[t]]) is the constant map, induced by the map sending ¢ to 0.

Then (X2)1 = (#)1 x AL = C x A}, where let us recall % is the fiber at 0 of
X — 4. a

Proposition 3.18. — Let L, 7y, B, B be as in Lemma 8.17. Then, for every vertex v
of G there is an admissible wide-open strict neighborhood W, of Z, p := Z, xg B in
Uy,B :=U, xg B, and for every s € B an isomorphism

Oy s i =0pys: Wys x BEW, over B,

lifting the isomorphism
—0
€L :Cy x Af =2 (Z,)
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given by Lemma 3.17. We have denoted by W, , the fiber of W, at s and by 6?, the
complement of singular points of C in the component C, corresponding to v.

Proof. — Let Zg, denote the formal model of Zp, in Xg, which is the formal
spectrum of the ring of integral valued rigid functions on Zp ,. As the special fiber of
Z,,B with respect to the ideal generated by (¢, 71 ) is the affine scheme 62 of finite type
over k, Z, p is an affinoid over B. By Lemma 3.17 we have (%% )1 = C’_?] X A,lc. We
also have an isomorphism 8, s : (2, s x %), = 6?) X A}c, where %, , is the fiber of 2,
at s € B. Now using Theorem 3.7 the isomorphism between (22 ,)1 and (2, s x )1
lifts to an isomorphism over B of .,@%,v and (2, x #). From Proposition 3.14 and
Theorem 3.3 of [31] we deduce S, s lifts to an isomorphism over B of strict affinoid
neighborhoods T of Zg,, in U, and Ty x B of Z,, ; X B in U, s x B, over B, where
Ts denotes as usual the fiber of T' at s. By Lemma 3.1, T has a canonical, p-adic
formal model 7, over O (F being the residue field of s) with a morphism J, — X,
which induces the inclusion T, C U, s C X;. This morphism induces a morphism
between the special fiber T of .7; and C. (In fact this morphism identifies T with a
certain blow-up of the component C,, of C corresponding to v.) Let T, denote the
component of T isomorphic to C,, under this morphism.

Now, let .F := F,x %, then I8 = T, x B = T. We define W, to be the inverse
image under the reduction T =% T of the component T, of T, i.e. W, =T, (7.

Similarly, let W, s be the inverse image under the reduction Ty d T of Ty, ie.
W, s :=|Ty[z,. Then both W,, and W, 5 x B are wide open spaces over B containing
Z,,p and contained in T' C U, g, respectively T, x B C U, ;s x B, which are isomorphic
under the restriction of the above isomorphism between T and T x B. O

We have the following very easy consequence of the proof of Proposition 3.18, which
we record for later use.

Lemma 3.19. — There are canonical, isomorphic formal models #,,, %, s x & of the
wide opens W, W, s x B in Proposition 3.18, which are wide open enlargements of
C, (and so of C). Moreover, there is a (non canonical) morphism of formal schemes
W, — Xz over B whose generic fiber is the inclusion W, C Xp and whose special
fiber is the morphism C, C C.

Proof. — Let us consider the formal scheme %, := ﬂ/i i.e. the formal completion
of the formal scheme Z defined in the proof of Proposition 3.18 along the closed
sub-scheme T,. Then %" = W, as rigid spaces over B. Let us remark that
W, = W,s x B, where #, ; = T, /T, is the formal completion of .7, along T,,.

The composition T, = C,, — C makes the formal schemes %, and %, s wide open
enlargements of C,, and of C such that %, = W,,s X B as formal schemes over . [
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Remark 3.20. — In the notations of Proposition 3.18 where now s = 0, the following
diagram commutes

mod =
W, — Xp ™5 CxAl

Bl 1
Woo — Y, ™5 T
Proof. — The commutativity of the diagram follows from the fact that if we denote

by 1o : Y — Xp the map induced by the the embedding of Y into X as its fiber
at 0, the following diagram commutes

XB — 6XAIIC
ol ! u

YL e C.

Remark 3.21. — Let B be as in Proposition 3.18. Then we have,

Hp & Hjp(Xp/B, (€xx|x5)(logY)).

3.3. Isocrystals. — Our main references for F-isocrystals are [32], [17], [16], [1]
and [34]. Let us briefly recall the definitions, in the cases in which we need them.
Suppose that Z is a scheme over k and fix L a finite, totally ramified (possibly trivial)
extension of Ky and let & denote its ring of integers. Let us recall that if L = K,
O =W andif L = K then 6, =V.

We begin by recalling the category of & -enlargements of Z, on which the F-iso-
crystals take their values. First if 7 is a p-adic formal scheme over & we denote by
o the reduced closed sub-scheme of the closed sub-scheme of 7 defined by the ideal
pO.

Definition 3.22. — A Op-enlargement of Z is a pair (7 ,z7) consisting of a flat
p-adic formal €1 -scheme  (i.e., each open affine is isomorphic to SpfR where R is
a quotient of Or(X1,...,X,) for some n) together with a &r-morphism zz: Jp —
Z. A morphism of Op-enlargements (7',22/) — (T ,zg) is an Or-morphism
g: I — T such that zg 0 g9 = zg:.

Let, more generally, 7 be a locally noethering formal scheme over &1,. We denote
by % the reduced sub-scheme of the closed sub-scheme defined by an ideal of definition
of . Let as above Z be a scheme over k.

Definition 3.23. — By a wide open & -enlargement of Z, we mean a pair (T ,27)
where  is a formal scheme such that the affine open sets are isomorphic to SpfR
where R is a quotient of Or(X1,...,Xm)[[V1,...,Va]] for some m and n and 2y :
Jo — Z is a morphism of € -schemes. The morphism of wide open enlargements
is defined as in Definition 3.22.
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As in Section 3.1 one can attach a rigid analytic space over L, J", to a formal
Or-scheme as in the Definition 3.23. It satisfies the following universal property: if
 is an affine formal scheme, say 7 = Spf R, there is a unique pair (1, 7*#) which
is the final element in the category of pairs (h, X) where X is rigid space over &
and h is a continuous &7 -homomorphism from R into H%(X,0x). A morphism in
this category (X,h) — (Y,g) is a morphism f: X — Y such that h = f*og. See
Proposition 0.2.3 of [1] for a discussion of this when n = 0. The tubes of Berthelot
(see ibid.) are examples of these spaces.

Ezamples i) Let X,.,X, be as in Section 3.2. Fix n > 1. As t generates the
nilradical of %, /p%y, we have that (X,)o is the closed sub-scheme of X,, defined by
the ideal generated by p and ¢. As a consequence we have a natural W-morphism
Zn: (X,)0 — C. Therefore the pairs (%, z,) are W-enlargements of C for all n > 1
and the morphisms X,; — X,, induce morphisms of W-enlargements of C.

ii) On the other hand (&, 25) is a wide open enlargement of Spec(k), where
2z : o = Spec(W([t]]/tW{[t]]) = Spec(k).

iii) As 7 generates the nilradical of V/pV, Cy is the closed sub-scheme of C' cor-
responding to the ideal 7&c. As a consequence we have a natural isomorphism
2o: Cp = C, which makes (C, z¢) into a W-enlargement of C.

iv) We can make the fibered product of two wide open enlargements (#,s) and
(Z,t) of Z, #*xT. It equals (U,u) where U is the completion of .# x 7 along
(s,t)*A(Z) and u is the composition

Up = (,8)*A(Z) = S x Tp = Sp — Z.

The existence of this fibered product is the main reason we consider wide open en-
largements.

Definition 3.24. — An isocrystal & on Z/0y, is the following set of data:

(i) For every O -enlargement (7 ,z5) of Z a coherent sheaf of L ® g, O -modules
8 7,25)- In general and if there is no ambiguity this module will be denoted by & .

(i) For every Or-morphism of enlargements of Z, g: (I',29/) — (T ,27) an
isomorphism of L @, Og-modules: 0,: g*85 — Eg:. The collection of isomor-
phisms {64} is required to satisfy the cocycle condition.

A morphism of isocrystals a: & — & is a collection of homomorphisms
ag: G — Eg compatible with the isomorphisms 8, for all g.

For example, there is a natural isocrystal on Z/W denoted €, whose value on
an enlargement (,27) is Oz ®w Kp. We call a direct sum of such isocrystals a
free isocrystal on Z/W. Because every enlargement of Spec k factors through SpfW,
every isocrystal on a point is free.

Because the rigid space attached to a wide open enlargement may be admissibly
covered by the rigid spaces attached to enlargements, the cocycle condition allows
us to evaluate an isocrystal on a wide open enlargements (7, z7) to get a coherent
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sheaf &7 .,y on T8, (See Remark 2.3.4 of [1] for a discussion of this in the case of
tubes.)
We’ll now define F-isocrystals.

Definition 3.25. — An F-isocrystal on Z/W is an isocrystal & on Z/W together with
an isomorphism of isocrystals F': Fé&— &

Let us recall what F means (see [32]). First we will recall a familiar notation, if
M — Spf(W) is a formal scheme and 7: W — W is an automorphism we define
a(t): M™ — M by the Cartesian diagram

a(r)
—

M7 M
! !
Spf(W) —I»  Spf(W).

where we also use 7 to denote the corresponding endomorphism of SpecW. If f :
M — M’ is a morphism of formal schemes over Spf(W') we also define f7 : M™ —
(M")™ by functoriality.

Let now o : W — W be the Frobenius automorphism and F : Z — Z% be
the absolute Frobenius. For every enlargement (,zg) of Z, (7,F o zz) is an
enlargement of Z? and (7 ot (Foz g)"_l) is again an enlargement of Z. Then
F(&) is the isocrystal on Z whose value on (7, z7) is a(a)*éa(grl,(ﬁozy),_l).

Remark 3.26. — (a) Clearly the map of sections, a®a — aa?, defines an F-isocrystal
structure on Oz, .

() If f: U — Z is a morphism of schemes over k and & is an F-isocrystal on
Z|W, there is a natural F-isocrystal on U/W, f*&, whose value on an enlargement
(9,29) 18 éa(ﬂ,foz,'g)v

(c) In [32] and [17] the object defined in Definition 5.4 is called “convergent isocrys-
tal” and the object defined in Definition 3.25 is called “convergent F-isocrystal”.

(d) In Section 2.1 we have used a filtered F-isocrystal & on Z. As we don’t need
to prove anything about the filtration in this paper we will not define this notion here.
For the appropriate definition see [17] or [24].

(e) Let & be an F-isocrystal on C/W. For each n > 0, &, can be seen as a
sheaf on the nilpotent site of Xy, or what is the same thing, as a Ko @w Ox, -module
with an integrable, convergent connection D,. The F-structure gives, for each open
affine formal sub-scheme Y of X, with a lift of Frobenius ¢y, a horizontal Frobe-
nius ®,(dy): ¢*D, — D, on U"8. Moreover the morphisms of W -enlargements
(Xn41,2n41) — (Xn, 2n) induce isomorphisms 6p,: (6%, .1 Dnt1) = (6n, Dy), there-
fore we obtain in the limit a coherent sheaf of Ox-modules &%, together with an
integrable connection Dx/i,: &x — &% @ Q& /Ko which is compatible with Frobenii
associated to local lifts of Frobenius. We will denote by the same symbol the composi-
tion

DX/KO: (D@X h— <5°'35 ® Q}(/KO I éax ®Q}(/K0(IOgY)
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We also get a relative connection by composing

Dx/s: &% P50 Ex ® Wy /g, (logY) — &x @ N /(logY).

If & = 0z/Kk,, we will denote Dx/k, and Dx,s by dx/k, and dx,s respectively.

(f) &c, by the same arguments as above can be thought of as a coherent sheaf
of Oc, -modules with a convergent, in the sense of [32], integrable connection D.
Moreover, the closed immersion g: C — X identifying C with the fiber at © of X and
which is a morphism of enlargements, induces an isomorphism 0,: g*&x = E¢. 2.2.)

Because every isocrystal on a point is free we have,

Proposition 3.27. — Let & be an isocrystal on C. Then (Ex,Dx /K,) has the property
that for every residue class M = red}l(w), with x € C, of X, the Op-module with
connection (x|m,Dx/k,) has a basis of horizontal sections.

Lemma 2.2 of Section 2.2 follows.

3.4. Cohomology of an F-isocrystal. — We will recall here some constructions
from [1] and [34],(35] and [36] which will be used later.

3.4.1. — Let Z be a smooth, proper scheme of finite type over k and & an isocrystal
on Z/W. We will recall the definition of H! . (Z/W, &), for i > 0.

We choose an affine open covering {U; }1<i<s of Z, and for each U; a closed immer-
sion into a smooth affine formal W-scheme T;. For each subset J of {1,2,...,s} we
denote by T’y the completion of the fiber product of the T}’s for j € J along N;e U;.
For each J consider the de Rham complex H° (T;’g, ér, ®QT,,,; /Ko ) and connect them

by the Cech differentials to make a double complex. We deﬁne H: . (Z/W,&) to
be the i-th cohomology group of this double complex. To show that this is inde-
pendent of the choices of a covering {U;}; and the formal schemes {T;};, we take
another pair of such {U} }1<k<: and closed immersions of the U}, into smooth, affine
formal W-schemes T]. To compare the constructions for the two choices consider
the third, {U; := U; xz Uz }ix and T} := T; x Ty. If, say J C {1,2,...,s} and
K c {1,2,...,t} we have smooth morphisms of formal W-schemes u : T7, ,, — Ty
and v : T%, x — Ty and by the Poincaré lemma recorded in Section 3.1, the pairs of
de Rham complexes of sheaves DR(T, &)® := ér, ®QT,,E/K , and uPS DR(T" Yk 6)°
and DR(T%,&)* = &p, ® Q(T, yrie /K, and Vs DR(TY, x,&)* are quasi-isomorphic
and so finally the cohomology of the double complexes constructed from them are all
quasi-isomorphic.

3.4.2. — We will now recall the definition of log crystalline cohomology over a (cer-
tain) base. Let #* denote the formal scheme Spf(W{[t]]) with the log structure given
by the smooth divisor ¢ = 0. Let Spec(k)* be the scheme Spec(k) with the inverse
image log structure under the map induced by the natural morphism W{[t]] — k
sending ¢ to 0. Let Z* be a fine, log smooth, log proper scheme over Spec(k)*, which
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we’ll regard as a log smooth scheme over .#*. Let & be an F-isocrystal on Z/W
(without log structure). We’ll recall the definition of H:  (Z* /5%, &). It is a sheaf
of Os-modules on S, where let us recall S = #"¢. In fact H!, (Z* /Spec(k)*, &) is
an F-isocrystal on Spec(k) and H! ., (Z* /5%, &) is its evaluation on the wide open
enlargement % of Spec(k).

Let now {U;}1<i<s be an affine covering of Z such that U is a log smooth, fine,
log affine scheme over Spec(k)*, where the log-structures are the induced ones. For
each 1 < i < s choose closed .%*-immersions U — T; into log smooth, fine,
log affine formal schemes over .#*. For each J C {1,2,...,s} let T; denote the log-
formal scheme which is the log-completion along U; := N;e ;U ]_x of the fibered product

over .#* of the T;"’s, j € J. For every admissible affinoid B C S, let DR(T}ig Xs

B, £)* denote the relative (to S*) log-de Rham complex of sheaves on T}ig X g B with
coefficients in &r,. We define the log rigid (or analytic) cohomology H:, (Z* />, &)
to be the sheaf on S associated to the pre-sheaf B — H((Uy)zar, red  DR(T3'® x g
B, &)*).

It is shown in [34] and [35] (using Proposition 3.6) that the definition is independent
of choices.

Let us now assume that Z* has a log smooth, exact global lifting X* over ¥~
and we write as usually X := X8 § := #Ti8,

Lemma 3.28. — We have a natural isomorphism of sheaves on S, H:, (Z* |.*, &) =
tr(X*/S*,&%). Here &% is the evaluation of & at the enlargement X of Z, seen
as a coherent sheaf on X := X"& with an integrable connection.

Proof. — Let {U;}1<i<s be an affine open covering of Z, let T; be the open log-formal
sub-schemes of X* whose underlying topological space is the same as U;. For each
J c {1,2,...,s} define U; and T; as above. We also define T’ to be the open log
formal sub-scheme of X* with underlying topological space U;. The diagonal induces
a log-smooth morphism Aj; : T} — T; compatible with the embeddings of U; and
for each admissible affinoid open B C S, we get quasi-isomorphisms for the relative,
log de Rham complexes of sheaves

red, DR(T}® x g B, &) — red,DR((T})"8 x5 B, &).

The Cech complex of the latter complex computes Hig(X*/)#*,6%)(B), as
H'r(X/S, &%) is a coherent sheaf and B is affinoid. Therefore the association

B — Hi((Uo)Zaryred*DR(T;ig xg B, &)

is already a coherent sheaf and we have an isomorphism Hip(X*/S*, &) =
Hi (2% 5%, 6). 0
3.4.3. — In the assumptions of Lemma 3.28 and for i = 1 let us give an explicit de-

scription of the inverse of the isomorphism a : H}; (2% /%, &) & HXg (X% /S*, &)
in that lemma in terms of hyper-cocycles. Let, as in the proof of Lemma 3.28,
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{U:}i<i<s be an affine cover of Z and let B C S be an admissible affinoid open. An el-
ement z of H}p (X* /S, &)(B) is then represented by a 1-hypercocycle (w;, f;;) where
wi € HO((T})"8 x5 B, &1; ® Qpsyeie gx) for 1 <i < s and fi; € HO((T};)"8 x5 B, 6x)
for 1 <14 < j < ssuch that V(w;) =0foralll <i<s, wil(T{j)ng —wj|(Ti/j)rsg = V(fi;)
and for all 1 <i < j <k < s we have fijI(Tiljk)'r‘ig + fjkl(Ti/jk)rig - fikl(Tink)rig =0.

Let as in the proof of Lemma 3.28, for every 1 < i < s, T; = T/ and
Tij := (T} X »x T})u,; i-e. Tij is the formal completion of T} x gx T} along Uj;.

We have a natural commutative diagram

. A .
(Ti)"e — T®

! il
(T))e = T

and a similar one replacing i by j. Here m; is induced by the natural projection
T} x #x T; — T; = T; which factors naturally through the formal completion of
T/ x sx T} along U;;.

Lemma 3.29. — In the notations above, for each 1 < i < j < s there is a unique
hi; € HO(CZ“;;g X g B, ér,,;) such that

a) A*(h”) =0

and

b) 7r;‘(w1|(T{]_)rag) - W;(WiI(Ti/j)rig) = Vi;(hi;). Here V; is the connection on &r,;.

Proof. — As A is log-smooth we may apply Proposition 3.6. Namely, let
n = ﬂ;‘(wi|(Ti/j)rig) — W;(UJil(Ti’j)rig). Then V,;;(n) = 0 and moreover the above
commutative diagram implies that A*(n) = 0. Therefore, locally on Tir;g, there exist
ai;’s sections of &r,; such that Vij(ai;) =n. As 0 = A*(Vyj(as;)) = V(A (as5)), asj
can be chosen such that A*(a;;) = 0. For example replace a;; by a;; — 77 (A*(as;)).
The conditions V;;(a;;) = n and A*(a;;) = 0 determine the a;;’s uniquely, so they
glue to give a section h;; of &1, over T{;g satisfying the right properties. O

Now back to our original problem: to explicitly describe the isomorphism
Hl (X*/S*, &%) — HL(Z%)S*,&). We have started with an element 2 of the
first group represented by the 1-hyper-cocycle (w;, fij)(i,i<j)- Foreach 1 <i<j<s
we determined the sections h;; as in Lemma 3.29. Let us remark that for each 7 < j

we have the following calculation:
w;‘(wi) - W;(w]') = ﬁ(wi) - W;(wz'l(Ti/j)rig) + W;(wz‘l(Tl{j)rig) - Fj(wj) = Vij(hi]‘) + W;(V(fz])

Moreover, for 1 < ¢ < j < k < s the section hj;x € Ho(ﬂr;f,cfnjk) defined by
hijk: = W;j(hij) -+ W;k(hjk) - W:k(hik) satisfies: A*(hi]‘k) = 0 and Vijk(hijk) = 0.
Therefore h;;, = 0 and so finally (w;, hij + 7;(fi;))@i,i<j) is @ 1-hyper-cocycle for the

complex DR(T,, &)® whose image in H.,[(Z*/%*,&) is o} (x).
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3.4.4. — In the notations and assumptions at §3.4.3 above let us assume that for
each 1 < i < s we have a lifting of Frobenius on U;, F; : T; — T; compatible with
the lifting of Frobenius F.& : . — .. F is defined as the arithmetic Frobenius o
on W and by F«(t) = tP. Since T; is affine and log smooth such liftings F; always
exist. Let us now assume that & is an F-isocrystal on Z/W. Then one defines a
natural homomorphism, Frobenius,

®: FyH.L (2% ",8) — HLy (2% 5%, 6),

which is independent of all the choices. Let i = 1 and assume that Z* has a log-
smooth global lifting X* /.#*. We’ll describe ® on Hjg (X */S*, &%) under the iden-
tification a : HL (2% /%, &) & HIg(X*/5*,6%). Let B C S be the affinoid
disk centered at 0 of radius r and let B’ = F»(B) C S be the affinoid of radius
rP. z € HIg(X*/S*,&%)(B'), then we'd like to express ®(z) := a(®(a~!(z))) €
H}lp(X*/S%,&%)(B). Suppose we fix an affine cover {U;}1<i<s of Z and use all the
notations at b) above. If z is represented by the hypercocycle (wi, fi;)(,i<j) cor-
responding to B’ let h;; be as in Lemma 3.29. Then ®(z) is represented by the

hypercocycle
(&)™ (wi), (F;8)* (fig) + A™(F8)" (hsj))
corresponding to B.

3.4.5. — Finally, let us recall the notations of Section 3.2. We have the morphism of
formal schemes f : X — . and we denote by # = X x » Spf(W), where the map
Spf(W) — .7 is induced by the W-algebra homomorphism W{[[t]] — W sending ¢
to 0. In other words &% is the fiber of f at the point “0” of .. Given the description of
f in Section 3.2, # is a divisor of X with normal crossings (the irreducible components
of & are smooth and the singular points defined over W). Let us fix on X the log
structure corresponding to the divisor % and denote this log formal W-scheme X*.
Let us endow % with the pull-back log structure and denote it #"*. Let us remark
that C is a divisor with normal crossings of C, endow C with the log structure defined
by this divisor and by C” the log scheme C with the inverse image log structure.
Then: f is a log smooth morphism X¥* — %>, which is a log smooth lifting of c”
over * as at 2) b) above. Finally #'* is a log smooth lifting of C™ over Spf(W)*
(this last log structure is given by the smooth divisor p = 0). Therefore, 1) and 2)
above imply that if & is an F-isocrystal on Z then we have natural isomorphisms

Hclris(Zx/Spec(k)x7g) = ngis(@/x/Spf(W)x’ éo) = HéR(YX/KO»éa@)

and
Hyy (27|, 8) = Hig(X*[S*, &%) = Hip(X/ S, Ex(log(Y)).

Moreover if we give ourselves local liftings of Frobenius as in 2) c) above all the
isomorphisms are compatible with the Frobenii.
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3.5. Hypercocycles and Mayer-Vietoris exact sequences. — In this section
we collect a number of technical results showing how to relate Mayer-Vietoris exact
sequences and representatives of de Rham cohomology classes for different admissible
coverings.

3.5.1. 8.5.1Coverings and Graphs. — Let T be a rigid analytic space over K and let
9 = {Uq}aer be an admissible covering of T. We will suppose that all our coverings
satisfy the assumption:

(*¥) UanNUgNU,isvoidforala#B#v#ael.

We attach to 2 a graph G = G(Z) whose vertices v(G) are the elements of 2
and whose oriented edges €(G) correspond to triples e = (U, V,W) where U #V € 2
and A, := W is a connected component of U N V. If v is a vertex of G we denote
U, the element of 2 corresponding to it and also if e = (U, V, W) is an edge then its
origin a(e) is U and its end b(e) is V. If U NV is connected we denote the edge e by
[a(e), b(e)]-

We denote 7 : ¢(G) — €(G) by t(e = (U,V,W)) = (V,U, W) and we choose once
for all a system of representatives e(G) of the quotient set ¢(G)/7.

Let G be a graph. A local system F' on G is the following collection of data:

a) for each vertex v € v(G), an abelian group F,

b) for each oriented edge e € e(G), an abelian group F,

c) if e € e(G), group homomorphisms @, (e : Fye) — Fe and py(e) @ Fye) — Fe.

To a local system F' on the graph G we associate the complex of abelian groups

C*(G,F): C°%G,F)=®yeo@)Fo —5 CHG, F) = Bece(c)Fe,

where (d(zv)vev(G))e = Pa(e) (Ta(e) — Po(e) (Toe)) for € € e(G). Let Hy (G, F) =
H*(C*(G, F)) for i > 0.

Let us now suppose that the graph G is the graph associated to an admissible cover
2 of the rigid space T and that (#,V) is a pair consisting of a coherent sheaf .# of
Or-modules with an integrable connection V, then we have a natural family of local
systems F; on G and Betti cohomology groups H*¥(2,(%#,V)), for i > 0,5 > 0, as
follows: '

a) for v € v(G) set Fj, := H)p(Uy, #|u,),

b) for e € e(G) set Fj . := H)p(Ae, F|a.),

c) for e € e(G) @a(e);Po(e) are pull-backs induced by the open immersions
A C Ua(e) and A, C Ub(e)~

Then HM(Q, (#,V)) = H]getti(G’ Fj)'

Remark 3.30. — We have the following variant of the definitions above. Suppose that
T* = (F,M) is a log formal scheme over Spf(V)* such that ™8 = T as rigid
spaces over K. Suppose that (4, Vieg) is a pair consisting of a coherent sheaf & of
O g-modules and a logarithmic integrable connection Viog on it. Then one denotes
F =98 V = (Viog)"® and one has, for each i > 0 the local systems F;og obtained
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by taking the logarithmic de Rham cohomology with coefficients in (¥,V) and the
Betti cohomology groups H (2, F) := Hy i (G, Fitog)-

Remark 3.31. — If the assumption (x) is not satisfied by the covering 2 but the cov-
ering is finite (i.e. the index set I is finite) one may attach to it a finite dimensional
simplex, local systems on the simplex and the corresponding Betti cohomology groups.

3.5.2. Hypercocycles and Mayer-Vietoris exact sequences attached to a covering. —
Let T be a rigid analytic space over K and 2 := {U,}scs an admissible covering
of it which satisfies the assumption (*) above. Let (&%#,V) be a pair consisting of a
coherent sheaf % of &7-modules which is locally free and an integrable connection V
on it.

Consider the diagram of rigid spaces and maps:

Tye) = Uyeway)Un L To(g) = Uege(c)Ae-
We have then an exact sequence of sheaves on T
0 — % — fuf'¥ — 99" F — 0.
If for v € v(G) and e € e(G) we denote by F¥ := F|y, respectively F¢ := F|a,

then the exact sequence above becomes
0—F — f, (@vev(c)g“v) — Gx (@eee(c)ﬂe) — 0.
This induces an exact sequence of de Rham complexes and therefore an exact sequence
of cohomology groups (the Mayer-Vietoris exact sequence):
0 — Hp(T, F) — ®uvevc)Hap(Uv, F) — ®Bece(c)Hip(Ae, F) —

- HéR(Tv F) — @vev(G)H;R(vay) - eaeEE(G)IJ&R(AE’‘g) -
Using the graph and Betti cohomology notations in §3.5.1 we can re-write the Mayer-
Vietoris exact sequence as the following short exact sequence

0 — H"(9,%) — HM(T,F) — H" (2,%) — 0.

Let us keep the notations T, 2, (%, V) as at the beginning of this section. In order
to explicitly calculate the cohomology groups H); (T, %) we use the following double
complex:

v v v
Gece(@)Fe — Bece(@)Fe @Y, — Bece(q)Fe @y, —

cor: 16 16 14
v
Gavev(G)yv — ea'uEv(G)cgv ® Q[IJU l’ eaveu(G)<g.v ® Q%/U l’

where 7., respectively #, denote H O(Ae, F) respectively HO(U,,, Z) for e € e(G)
and v € v(G). Moreover the Cech differentials § are defined by: §((zv)vew(c))e =
To(e)|a. — Th(e)| 4., for e € e(G). The single complex

K*(T,(#,V)): KO 2 g1 2y, g2 D,
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attached to the double complex C**® is defined by: K¢ := @vev(@)Fvs K L=

(Buev(@) Fo®@Q, ) B (Bece(c) Fe) and K2 := (®yev() Fo®0Y, ) ®(Dece(c) Fe Oy, )
etc. and

Do((#v)vev(c) = ((V(Z0))vev(@), (Tae) 4. — Toe)|A)ece(@))
D1 ((Wo)vew(@)s (fe)ece(@)) = (V(wo))vev(G) Waie)la. — woie)la. — V(fe))ece(a))
D2((77v)v€v(G)7 (we)eEe(G)) = ((V(nv))UEU(G), (na(e)IAe - nb(e)lAe - V(we))eEe(G))-

Then we have H) (T, .#) = Ker(D;)/Im(D;_1), for i > 0, where we set K~! = 0,
D_; = 0. In particular, cohomology classes in H} (T, %) are represented by 1-hyper-
cocycles, 1i.e. families of elements ((wv)v@(g), ( fe)e&((;)) where
wy € fu@ﬂbv, fv € F, for v € v(G), e € e(G), which satisfy V(w,) = 0 for all v and
wa(e)lAe - wb(e)lAe = V(fe) for all e.

Remark 3.32. — With the notations above, let us assume that the open sets U, and
A, are acyclic for coherent sheaf cohomology. Then the maps f : HY°(9, %) —
H}p(Z,%) and g: Hip(Z,F) — H®Y (2, F) defining the Mayer-Vietoris sequence
are given in terms of hypercocycles as follows.

a) If the cocycle (Te)ece(q) € @eee(g)HgR(Ae,f) represents the cohomology class
x € HY0(2, %), let us remark that by the assumptions above the T, € F, such that
V(ze) = 0. Therefore f(z) is the class of the 1-hypercocycle ((Ov)ve,,(g), (xe)e@(g)).

b) If ((wo)vew(G)s (fe)ece(c)) is a 1-hypercocycle representing the class y in
H}p(Z,F) then g(y) is the image of (wy)vew(G) in the group ®yeyc)yHig(Us, F),
which is actually in H>Y(9, F).

Remark 3.33. — We have variants of these constructions for the logarithmic situa-
tion described in Remark 3.30. We need only replace the sheaves and modules of
differentials Q¢ x que by the sheaves and modules of logarithmic differentials.

3.5.3. Ezamples of coverings in our setting

3.5.3.1. First example. — Let us now recall our geometric situation from §3.2. Let
red : X — C and for all s € § — {0}, reds: X, = X xgs — C denote the reduction
maps. Let € (and for every s € S — {0}, %) denote the admissible covering of X (re-
spectively of X,) defined by % := {red™*(Z) where Z is an irreducible component of C'}
(respectively €, := {red;'(Z) where Z is an irreducible component of C'}). Then we
have G := G(%¥) = G(%;) for all s € S — {0}. We fix once for all a choice of a
system of representatives e(G) of €(G)/T, see §3.5.1. Let us also remark that as C is
a semi-stable curve € and % satisfy the condition (*) of section §3.5.1. We use the
following notations: for all v € v(G) we denote by U, C X the corresponding open set
of € and for every s by Uy s = U, xgs = U, N X, C X, the respective open set of €.
Similarly, if e € €(G) we denote by Ae = Upy(e) NUy(ey and for every s € S — {0} we let
Aes = Ae X558 =AcNXs = Ug(e),s NUpe),s- We'd like to recall that these coverings
have already been defined in Section 3.2 and although the language of graphs was not
used there, the definitions are the same.
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3.5.3.2. Second example. — We keep the notations of section §3.5.3.1. For each
v € v(G) let as in section §3.2,

Z,:=U,— |J Uu.
w;)ﬁv

Now, for each v € v(G) consider a strict neighborhood T, of Z, in U,, which is
wide open and such that T, N Ty, = ¢ if v # w. Let us recall that T, is a “strict
neighborhood” of Z, in U, means that the pair {T,U, — Z,} is an admissible cover
of U,.

Such T’s exist and let €’ := {T},, Ac}»,e where v ranges over v(G) and e over e(G).
Then %’ is an admissible covering of X by wide open sets. This cover is a refinement
of ¥ and is appropriate for computing de Rham cohomology as the open sets are
acyclic for coherent sheaf cohomology. We denote G(¢’) by G’ and let us remark
that: v(G') = v(G) 1 e(G) and €(G’) = ¢(G) LI €(G). We choose e(G') = e(G) L e(G)
as follows. If e € e(G) then (a(e),e) and (e, b(e)) belong to e(G’).

Moreover, as in section §3.5.3.1 if s € S (here s may be 0) we denote by ¥, :=
{Ty,s, Ae,stv,e, where T, s := T, xg s = T, N X, for all v € v(G). Then ¥, is an
admissible covering of X; and G(%;) = G(¥) = G'.

3.5.3.3. Third example. — Let L be a totally ramified, non-trivial extension of K,
as in section §3.2 and let B = By, C S denote the affinoid disk of centre 0 and radius
|w| as in Lemma 3.17. By Proposition 3.18, for every v € v(G) there exists a wide
open neighborhood W, of Z, g := Z, xg B in U, g := U, Xxg B and for all s € S an
isomorphism over B:

Oy Wy 2 W, s X B.

Set €4 := {W,, A¢,B}v,e, Where v and e run over v(G) and e(G) respectively and
Aep := Ae Xg B. Then % is an admissible covering of Xp and if s € S, €. :=
{Wy,s, Ae s }v,e is an admissible covering of X,. Then G(%p) = G(%)) = G'.

3.5.4. Changing coverings. — Let us fix & a W-isocrystal on C. Let us also fix a
closed point s € S — {0} defined over the finite extension F' of Ky. Then one can see
s as a W-algebra homomorphism W{[t]] — &F. If we denote by X, := X Xg s and
by Xs := X Xgpe(w[s) $, then X is the generic fiber of X;. We denote by (&, D;) the
evaluation of & at the enlargement X, of C, seen as a coherent sheaf &, on X, with
an integrable connection D,. Fix the coverings % := {U, s}, as in section §3.5.3.1
and €. := {Ty,s, Ae,s}v,e s in section §3.5.3.2 of graphs G and G’ respectively. To
simplify, for the next lemma we omit s from the notation i.e. we will use U,, 4., T, to
denote Uy, s, Ae,s, Ty,s. For i > 0, let &;, &/ denote the local systems on G respectively
G’ associated as in section §3.5.1 to (&5, Ds). We define the maps of abelian groups

2 CYG, &) — CNGLE)

(2 (2

fi: CYG &) — CHG, &)
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Ta(e)| 4. + To(e) 4. YelTuyna. YelTyyna.
by £2(((@0)0) = (@0l )oy (L2 UDR), ) and f(ge)e) = (Fog e, D)
where everywhere v and e run over v(G) and respectively e(G).

Lemma 3.34. — a) f2,f! define morphisms of complezes f? : C°(G,&) —
(G, 8)).

b) For i = 0,1 f? induce isomorphisms HY°(¥,,&) = HY(%!,&,) and
HYY(%,,&,) = H>(¥!,&,) (the notations being as in section §3.5.1).

¢) If ((wo)v, (fe)e) is a 1-hypercocycle for the complez & ®o¢,, 0%, p corre-
Wa(e)lAe + Wh(e)la.

2 Je
(felT"(;)nAe , fE|T"(2e)Me ).) is a I-hypercocycle for the same complex associated to the
covering €., which represents the same cohomology class in Hip(Xs/F, &s).

d) The isomorphisms at b) make the following diagram of Mayer-Vietoris sequences
commute.

sponding to the covering €,, then the co-chain ((wylT,)w, (

0 — Hl’o(cgs,gs) - H;R(XS/F7gS) I HO,l(cgs’o@S) — 0

! I !
0 — HYW(6,8) — Hip(X/F&) — HONE,E) — 0

Proof. — We'll only sketch the prove of the fact that the morphism of complexes f;
induces an isomorphism f : H%1(%,, &) & H*!(%!, &,). The main observation is that
as U,,T,,A. are wide opens, they are acyclic for coherent sheaf cohomology and so
Hip Uy, &\u,), Hig (T, sl1,), Hip(Ae, &|a.) can be calculated as hypercohomol-
ogy of the de Rham complex relative to the admissible covering {U,} respectively
{T,}, respectively {A.}. Moreover the first groups could also be calculated relative
to the admissible covering {T,, U, — T, = Ucce(G),v=a(e),v=b(e)Ae} Of Uy.

Let us show the injectivity of f. Suppose that (z,), € C°(G, &) = &, Hiz(Uy, &slu,)
is such that

a’) d((wv)v) =0

and

b) f((xv)v =0in CO(G,’gll)

Let w, € H'(U,, &, ® va/p) be a representative of z, € Hip(Uy, &slu,). Con-
dition a) implies that for all e € e(G) there is a section ue € H®(Ae, &s|a,) such
that wy(e)la, — wa(e)la. = D(ue). From condition b) we deduce there exist sections
u, € H(T,,8,),we € H°(Ac, &) such that Dy(uy) = wylr,, Ds(we) = wWa(e)la. +
Wy(e)l 4., for all v € v(G), e € e(G). This implies that the hypercochain

(Ds(uv)a D, ((we + ue)/2), Ds((ue — we)/2), (ulecﬂTa(e) — ((we + ue)/2)|AenTa(e))7

(ue — we)/2)| 4T, — “v|Ae”Ta<e>)eee(G),e=a(e),e=b(e)

is a hypercocycle for the covering {7, HeGe(G’),v:a(e),v:b(e)Ae} of U, representing the
class z,. Therefore z,, = 0 for all v € v(G).
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For the surjectivity of f one makes similar calculations which we leave, together
with the rest of the proof, to the reader. O

Let us now fix L, B as in section §3.5.3.3. Let us also fix an isocrystal & on C and
denote &3 its evaluation on the enlargement X4 (for notations see the section §3.2).
Let us recall (see ibid.) that we have an absolute connection, Dp and a relative one
Dx, /g on &p. For i > 0 let us denote by E%, (respectively E7,) the local system
on G’ defined by:

a) if v € v(G) then E} ., := Hjp(Wy/L,Eplw,(log(Y NW,))) and if e € e(G)
then Ezi;bs;e = ;R(A&B/Lv éaBIAe,B (IOg(Y n Ae,B)))v

b) if e € e(G) then B}, () . = Hip(Wa(e) N Ae,5/L, Ep(log(Y N Wa(ey N Ae,5)))
and Eabs;e,b(e) = HQR(Wb(e) N Ae,B/L7 gB(IOg(Y n Wb(e) n Ae,B)))'

¢) the maps are induced by the obvious restrictions.

We have similar definitions, using relative de Rham cohomology over B, for the
local system E?.

We denote the the cohomology groups H¥(€j4,E.) = H}.(G',E}), for
* € {abs,rel} and remark that H"?(%p, Erel) are Op-modules.

Proposition 3.35. — a) H" (€}, Ere1) are free Op-modules of finite rank for all 0 <
i,7 <1, # j. Moreover if s € B then we have H" (€}, Erel) & H" (6!, &:) 1 Op
for i,j as above.

b) Let us denote by VI the natural connection over Ky of the modules
H% (€4, Evel) whose space of horizontal sections is HI (6}, &) for 0 < 4,5 < 1,
i # j. Then for every s € B — {0} we have parallel transport isomorphisms
HYI (65, &) = HY (), &) = HY (6, &) ®k, Fs, where Fy is the residue field of s
and i,j are as above.

¢) The natural morphisms in the “relative Mayer-Vietoris” exact sequence

0 — HYY(%}, Erel) — Hip(XB/B, &p(log(Y))) — HYO(€p, Erel) — 0

are horizontal. Here the connection Vg on the Hg = H}p(Xp/B, &(log(Y))) is the
Gauss-Manin connection.

Proof. — a) Fix s € B. Let us recall from Lemma 3.19 that the rigid spaces W,,, W, s
have canonical formal models %#,,#, s with an isomorphism %, = #, , x % and
natural morphisms

av — ¥, — XpB

I u U

6v — %,s — X,
The first vertical maps are closed immersions and the last two vertical maps are
the natural inclusions into %, and Xg of their fibers at s. Thus #, and %, s are
wide open enlargements of C. As & is a W-isocrystal on C, we may evaluate it at
¥, and #, s to obtain pairs (&,,D,) and (&, D;) consisting of coherent sheaves of
Ow,-modules, respectively Oy, ,-modules, with convergent integrable connections.
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From the diagram above and its image under the functor “rig” we obtain: (&,, D,) =
(¢B, Dp)lw, and (&, Ds) = (6%,, Dz.)lw,.-

Moreover, if we denote by 3 : #,, — #,, s the natural projection, the commutative
diagram in Remark 3.20 implies that 8*(&s, Ds) & (&,, D,). Thus for all connected
affinoid B’ C B we have Hip(W,/B,&,)(B') & Hip(Wy,s, &) ®L Op: for i = 0,1.
Since for all e € e(G) A.,p is contained in a residue class, & := &Bla, , has a
basis of horizontal sections for the absolute connection Dg. Hence similarly, for all
connected affinoid B’ C B we have HéR(Ae,B/B,é”e)(B’) o~ H;R(Ae,s,é‘;) ® Op:, for
i = 0,1. Finally as Ae g N Wy(y and A, p N Wy() are contained in A, p the same
result holds for the cohomology of these spaces with values in &,. We deduce that
HI (€Y, Ere)) = HY (6!, 6,) ® Op for 0< 4,5 < 1,6 # j.

b) is now clear and in order to prove c) let us first recall the definition of the
Gauss-Manin connection in our setting.

We have a natural exact sequence of de Rham complexes of sheaves on Xpg

0 — f*(Qp,1(log0) ® Qx,/p(logY)* ™' ® &5 —
Q%5/k,(108Y) ® 6p — Q% /p(logY) @& — 0

where we have denoted f : Xp — B the structure morphism. Then the Gauss-Manin
connection

Vs : Hip(Xg/B,&p(log(Y))) — Hir(Xp/B, E(log(Y))) ® U1, (log 0)

is the connecting homomorphism in the long exact sequence for hypercohomology.

Let us calculate the connection explicitly in terms of hypercocycles. For this
let t denote a parameter of B at 0 and let z € H'(dR)(Xp/B,&s(log(Y)))(B).
Let us suppose that = is represented by the following hypercocycle for the cover-
ing €p: ((Wo)vs (We)e, (fes fe)e), where v runs over v(G) and e over e(G). Here
Wy € HO(WU,QWv/B(IOgW%()) ® éaB), We € HO(Ae,ByﬂAe,B/B(IOgAe,O) ® gB),
fe€ H(A. g N Wa(e), 6B) and fo € HO(A.pN Wi(e), €B) satisfying the relations:

a) Dx,/B(wy) = Dxp/p(we) = 0 for all v, e.

b) wa(e)|Wa(e)ﬂAe,B - welwa(e)mAeAB = DXB/B(fe) and
welwb(e)nAe,B - wb(e)|Wb(e)ﬂAe.B = DXB/B(fe) for all e.

Now we choose lifts of w, and w, to absolute forms, i.e. we choose
Oy € HO(W,,,Q%,VU/KO (log W, 0) ® 6B) and respectively @& € HO(Ae,B, Qhe/Ko(log(Ae,g) ® éB)
which project to w, and respectively w. and define the sections
Ny € HO(WU,Q%,‘,v/B(IOg vao) ® (g’B)a"?e € HO(Ae,B»QLe’B/B(IOgAe,O) ® gB),
ge € HO(Wa(e) N Ae,B,6B),0. € HO(Wb(e) N A, B, &) by the relations.

i) D(@y) = My Ady/y, Dp(@e) = ne A dy/y for all v,e. Here y is a parameter at
0 on B.

i) @a(e)|Waqynae,p — WelW,(ynae,s — D(fe) = gedy/y for all e.

iii) @e|Wyeynae,s — Do(e)[Woeynae,z — DB(fe) = Gedy/y for all e.

Then the hyper-cochain ((7y)v, (7e)e, (e, ge)e) is a hypercocycle and its cohomol-
ogy class ®dy/y represents V().
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Using this the proof of ¢) is a simple calculation which we leave to the reader. O
We have the following easy consequence of Proposition 3.35.

Lemma 3.36. — Suppose we have two choices {Wy}yevq) and {W,}ieu) as in
Proposition 3.18. Let € := {W,,Ac B}ve and €' := {W,, Ae,B}v,e, where v,e Tun
over v(G) and respectively e(G), be the corresponding admissible covers of Xp. Then
we have natural isomorphisms of Og-modules:

H" (€, Ere1) 2 HY (%", Erel) for 0<4,j < 1,0 # j.
Proof. — Let 0 # s € B. Then we have natural isomorphisms of &/g-modules.
H"(€,Ew) 2 H"(%,,8,) ® Op and H" (¢, Ere1) = H" (€, 6,) ® O,

for 0<4,j<1,i%#37.

Therefore it is enough to compare the groups H%/(%;, &,) and H*I (%!, &) and we
may suppose that W, . C W, s for all v (if not take the intersections).

For the rest of the proof, in order to ease the notations we’ll drop s from the
notations everywhere, i.e. rename & = &, W, = W, , W, = Wlﬁ’s,Ae = A,

€ = €, ¢' =€¢.,D = D; etc. The natural inclusions W, C W, induce by pull-back
maps H%I(%,&) — H"I (¥, &) which make the following diagram commutative.

0 — HY(%,6&) — Hiz(Xs,&) — HYY¥,6) — 0

al I Ly
0 — HI’O(%',éa) —t HéR(XS,éa) — HO’I(%"(?) — 0

So it is enough to prove that « is an isomorphism. Let us remark that as W is a strict
neighborhood of Z, in U, (recall that we suppressed “s” from the notation), the set
{Wy, Oy=a(e),v=b(e)Ae} is an admissible covering of U,. As W, is an admissible open
of Uy, the set {W, Il,—q(e),u=b(e)Ae N Wy} is an admissible covering of W,. But &
has a basis of horizontal sections on A, N W, for all e € e(G), therefore the restriction
HO(W,,&)P — H°(W],&)P is an isomorphism for all v € v(G). It follows that o
is an isomorphism. O

Let us fix a collection {W,},cy(c) as in Proposition 3.18 and let s € B (s may be
0). We consider again the admissible coverings €5 of Xp and %,’ and the respective
Mayer-Vietoris exact sequences. Pull back by the closed immersion X, — Xp
provide vertical maps in the following diagram:

0 — HY(%3/B,&) — Hip(Xp/B,6p(log(Y))) — H(¢3/B,6) — 0

l l l
0 — HYE\&) — Hpp(Xs,&(lg(YNX,) —  HYNEE) — 0

If s # 0 the log structure on Xj is trivial.

Lemma 3.37. — The above diagram of Mayer-Vietoris exact sequences is commauta-
tive.
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Proof. — The proof follows immediately from the definitions and we leave it to the
reader. O

4. The Monodromy Operators

4.1. The global residue. — Let us fix the covering ¢’ = {T,,, Ac}veu(G(X)),cce(G(X))
as in section §3.5.3.2, G’ denote the graph of this cover and assume that & is an
isocrystal on C i.e we assume that P and hence the log structure induced by it is trivial
in this chapter (notations as in section §1.) We denote (&%, Dx/k,) its evaluation on
the wide open enlargement X and by Dx/s the associated relative connection. Let
us also recall that we defined on X the log structure given by the normal crossing
divisor % := Xy, on ¥ itself the inverse image log structure defined by the closed
immersion % = ¥, — X, and on . the log structure given by the divisor ¢ = 0.
The log schemes thus defined are denoted X**,#**,.#*. We denote Q% /5%
(QZxXX/yx )E = QtX/S(IOg( )) and QYXX/KO (Q@XX/WX e = Q@XX/WX Qw Ko,
for i > 0.

Let us first fix e € e(G) and recall that the sheaf &%|4, has a basis of horizontal
sections for Dy,g. We denote such a basis by {€1,...,€4}. Then using Lemma 3.16
every element w € HO(A, & ® Q4 x,s(log(Y))) can be written

W= Z 6 ® Z P xr(e)) dX/Sl'e

n,m>0

where a; n,m € Ko are such that the power series converge on A.. We recall that the
variables x¢, Z,(c), defined in Lemma 3.16 satisfy .z () = t. Thus we define

Rese(we) = (;(Z €z|Ta(2)ﬁA Z Qi n ntn) (Z 61|Tb(e)ﬂA Z Qi n, nt

=1 n>0 n>0
€ Ht(i)R((Ta(e) n Ae)/Sv gx) @ HgR((Tb(e) N Ae)/Sv gx)
Therefore, for every e € ¢(G), Res, can be seen as an Og-linear homomorphism
Hjp(Ac/S, 6x(log(Y))) — Hip((Ae NTa(e))/S, 6x) ® Hap(Ae N Th(e)/S, 6x).-

Similarly, let 6§ = {T,0, Ae,0} be the intersection of the covering ¢’ with Y. It is
an admissible cover of Y by acyclic wide opens. Let us fix e € e(G) and z,y be the
restrictions of z. and z,(.) to A, respectively. Denote by & the evaluation of & at
% and let w € H%(Ae 0,6 ® Q%,XX/KO). Then

w—Ze ® (O aanz™) -——+ O Banv™ _y

n>0 n>0
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where {€}1<q<s is a basis of horizontal sections of &|a,,. As zy = 0 on Ay,
dz/x = —dy/y and we define

1$ 1<
Rese(w) = (5 D €a(@a,0 = Ba0)l4conTu 00 5 D €a(@a0 = Fa0)l4conTico o)
a=1 a=1

€ HOr(Ae0 N Tu(e),0/ Ko, 60) ® Hip(Aeo N To(e),0/ Ko, &o)-
Thus we defined a Ky-linear homomorphism
Res. : Hyp(AXS /Ko, &) — Hyp(Aeo N Tuge)/Ko, 60) ® Hip(Ae0 N Tyey,0/ Ko, €0)
for every e € e(Q).
Now we define residue maps Res and respectively Res® by the compositions:
H = Hg(X/S, £x(10g(Y)) — Bece(c) (Hir(Ae/S, Ex(l0g(Y N A.))) ®=5° HY(€', Bra),
and
HY(Y,8) = Hig(Y** [ Ko, 60) — ece(c)Hip( ALY [ Ko, &) OS5 HY(4, &),
In the above sequences, the first arrows are restrictions.

Remark 4.1. — Let L,B be as in section §3.2. Then we immediately obtain an
Og-linear residue map Resp := Res @y Op : Hp — HVO(EY, Eral).

Remark 4.2. — Let

(2) ((wv)va(we)ey(fey?e)e)

be a hypercocycle for the complex of sheaves &x ® Q% /S(log(Y)) with respect to the
covering €', representing a cohomology class x € H. Here w, € &x(T,) ® Q}v /87
we € Ex(Ae) ® Q}“G/S(log Y), fo € Ex(Taey N Ae) and f. € Ex(Tye) N Ae) and they
satisfy the cocycle conditions.

We may express Res defined above explicitly in terms of cocycles as follows: Res(x)
is the image in HY0(%", Eye1) of the cocycle (Rese(we))eee(c)-

Next we would like to describe the fibers of Res. Let s € S — {0} and %, the
covering of the fiber X, obtained by intersecting the open sets of ¥’ with X,. Let
also &, be the intersection of the covering ¥ (defined in Section 3.5.3.1) with Xj.
Both %7, %, are admissible covers of X, by acyclic wide open subsets and %, is a
refinement of ¥s. Let us consider the graphs associated to these covers, i.e., G’ and
G respectively. We have (see Remark 2.5)

Lemma 4.3. — Let s € S — {0}. Then under the identification between H»°(%;, &)
and HYO(%!,&,) in Lemma 3.34 (Res)s = Res(®), where (Res), is the fiber of Res at
s and for the notation Res'®) see Remark 2.5.

Proof. — This follows from the definitions and the explicit description of the isomor-
phism in Lemma 3.34 and we leave the details to the reader. O
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Now let us concentrate on describing the fiber (Res)y of Res at s = 0. Let us
first remark that from the definition of an isocrystal and the definitions of the log
structures on X, % ,.% we have natural isomorphisms

(gx ®ox Qg(xx/sx) Box Oy = éz)0 Reoy ngxx/KO,
for i > 0. Let j: Y C X be the natural inclusion.

Lemma 4.4. — (Res)o(x) = Res®(j*x) for all © section of H.

Proof. — The inclusion j induces an isomorphism H/tH zﬁ' H(Y, &) therefore it
is enough to prove: if z € H then we have j*(Res(z)) = Res¥(j*z). Let z be
represented by a hypercocycle as in formula (2) above. Then for each e € e(G) we

have N
dx/s(ze)
we:zez(’e) § : aznm g :'n(e)) - ’

T
n,m>0 €

where {e( )} is a basis of horizontal sections of &%|a, for all e and az nm € Ko are
such that the power series converge on A.. Wlth these notations we have Rese(w.) =
( Zz 1 6 |Ta(e)ﬁA En>0 Qi,n, nt" ) Zz—l € |Tb(e)ﬂA Zn>0 Qi,n, nt" ) Now

(Res(w)) = Ima‘ge(Rese(we))eGe(G(X))(mOd tHl’O(%lv rel))

( )
Z] )la. ,0NTae),0%, O 01 o ZJ |Ae ,0NT(e),0 %, 0 O)e

On the other hand, j*(z) is represented by the hypercocycle
{(7*(Wo))w, (F*(we))es (j*(fe),j*(?e)e}. In particular, for every e € e(G) let us
denote by ye, Yr(e) the images j*(ze) and respectively j*(z,(.)). With these notations
YeYr(e) = 0 and we have

. = . d(y
§"we) = 25 (6) @ (alf o+ D al ol + D o mrie)
i=1 n>1 m>1
SO
1< 1o (
Rest”) (5*(2)) = (500 5767 aconco 08800 5 (33" (67 4o 08100) = 57 (Rese(we).

i=1 i=1

O
Let us define by No: Hl(Y &) — HY(Y, &) the composition (Res)q o Lo where
o: HYO(%5, &) — H'(Y, &)

is the map induced from the Mayer-Vietoris exact sequence for Y and the covering
65
We have the following

Proposition 4.5. — The Os-linear map Res is horizontal with respect to the connec-
tions, i.e. Res: (H,V) — (HY%(%", Era1)), V1'?) satisfies Res o V10 = V o Res.
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Proof. — Let x € H be represented by a hypercocycle as in formula (2). We have

V(z) = y ® dlog(t), where y is represented by a hypercocycle ((1v)v, (Te)e; (ges Te)e)
as in the proof of Proposition 3.35. To calculate Res(y) we only need to look at the
ne’s. To start with, we may write

=ie, ® ry(t) =L X/S( ze) + Dx/s(Ge),

where {€;}i=1,q is as before a basis of horizontal sections of &% over A, r(t) € O5(S)
and G, € &x(Ae). Then, let us denote by

Te
z € ® it X/Ko( ) + Dx /o (Ge)-

e

It is a lift of w, to “absolute differentials”, i.e., to &x(Ae) ® Qhe /i, (logY). Then n.
may be chosen such that

T
ne A dlog(t) = Dx k., (@e) Z € Q tr; X/KO( e) A dlog(t),
therefore
1< 1
Rese(ne) = (5 Z eiIAeﬂTa(e)tré(tL 9 Z 6i|AeﬁTb(e)tr;(t))'
i=1 i=1

On the other hand

a o

V(coRes(w)) = V[((04), (Oc)e, (-;— > eilacnt,, ®Tilt), % > eilainty., ®7i())e)]
i=1 =1

1 o o 1 ,
= 1((00)0; (0c)es (5 D €ilaunt, ., @ tri(t), 3 D €ilacngy., ® tri(t))e)] ® dlog(t).
1

=1

This proves the proposition. O

Proposition 4.6. — Under the parallel transport isomorphism of Theorem 2.6, No ®
idg s identified with Niy.

Proof. — Let N : H — H be the composition H R H 19(%’, Ere1) — H where

the second morphism is the one coming from the Mayer-Vietoris sequence (see section
§3.5.2). Then by Proposition 4.5 N is horizontal and hence it induces a homomor-
phism N : (Hiog)V — (Hiog)V. By Lemma 4.3 and Lemma 4.4 the following diagram
is commutative
HI(Y7 éa) = (]HIlog)V - HI(CKvgfr)
No | N | Nint | u
H\(Y,6) = (Hiog)¥ — H'(Ck,&).
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4.2. The proof of the equality of the monodromy operators. — The main
result of this section is

Theorem 4.7. — Under the notations of section §4.1 we have Ny = Nyeg.

Proof. — We will extend scalars to a finite, non-trivial, totally ramified extension L of
Ky and let B = By, C S be the affinoid disk as in Lemma 3.17. Recall Proposition 3.18
i.e., for all v € v(G) there is a wide open neighborhood W, of Z, g in U, g and an
isomorphism over B

Qy = 0y - Wv & B x vao,

where W, o =W, NY. Let pr;, i = 1,2 be the i-th projection composed with a,, i.e.,
pry: Wy, — B, pry: W, — W, 0. As a, is an isomorphism over B, pr; is the structure
morphism of W, over B.

Let us now fix v and let U = a;}(Uy x B) where Uy C W, NY is any admissible
open subset. We have

Lemma 4.8. — a) The canonical isomorphism
Q,lj*/L = pr}‘Q}B*/L @ prgﬂbo/L,
where U* = U — Uy and B* = B — 0, induces an isomorphism of sheaves on U:
Oy, 1, (logY) 2 priQy,; (log 0) ® pryQy, /.-
b) The isomorphism at a) induces an isomorphism of sheaves:
Q%J/B(l()g Y) = pr;Q%JO/La
and an isomorphism of €g(B)-modules
Qy/p(logY)(U) = 05(B)&Ry, (Vo)
where ® denotes completed tensor product.

Proof. — For a) it is enough to see that we have an isomorphism of “pairs”
(U’ UO) = (B’ {0}) X (U07 ¢)7

where ¢ is the void set, i.e., that U & B x Uy and under the above isomorphism
Up = ({0} x Ug) U (B x ¢).

For b) let us notice that we have an isomorphism of sheaves on U:

Op/p(logY) = Q1 (log Y) /pr; Qp (log 0) & pr;Quy, /1 (log Y).

Now the lemma follows easily. |

Let us recall from section §3.5.3.3 that the set €5 := {Wy, Ae,B}vev(@),cce(c) is an

admissible cover of Xp := X xg B. From Lemma 4.8 it follows that for all v € v(G)
and U C W, as above, the canonical projection:

Qy, /1 (log Y)(U) — Qyy, /5 (log Y)(U)
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has a natural section, call it s, with the property that its image is a submodule of
Q. . (U). Therefore for every section w of Q%,Vv ,p(logY’) we have a lift of it s,(w)
to absolute 1-forms, which is a regular absolute one-form by the remark above.

Moreover, if say e € e(G) then we also have a natural choice of a lift to absolute
forms as follows. Let us recall that we have €g(B) = L(y) with the restriction
Os(S) — Og(B) given by: t — wpy. Let ¢:=|mr| < 1.

d T,
x/s( )+

Lemma4.9. — Letw € 9}43 58108 Y)(Ae,B), then we can write w = r(y) .

dx s(ue) where r(y) is a global section of Op and u. € Ox,(Ae,B)-

Proof. — For this proof let us denote U := A, g and A(U) := Ox,(U), ¢ = z, and
z = Z,(¢). By Lemma 3.16, the natural functions z, 2 € A(U) satisfy zz = mpy and if
f € A(U) then f may be written

o0 o0
f= Z anz” + Z bmz™,
n=0 m=1

with a,,b,, € €p(B) and such that, for every r such that ¢ < r < 1 the sequences
|an|Br™ — 0 and |b,|g(c/r)™ — 0 as n —> oo.
Therefore w = fdy,s(z)/z = dy/B(9) + aody/s()/x, where

=Y ey %’”zm € AD).
m=1

n=1

This proves the lemma. O

A lift to absolute 1-forms of w as in Lemma 4.9 is then defined by:
d
e = r(y) XL (ze)

@et + dx /Ko (Ue)-

Proof of Theol"em 4.7 Let x € Hp be represented by the hypercocycle
((Wo)ws (We)e, (fes f)e) with respect to %7 (as in in Formula 3.3.2). Let us re-
call that v runs over v(G) and e over e(G). Then w, can be written as

= dx s(@e) ( (e
Z (rei( /x + Dx/s(E. Z € ® (7e,i(y)) X/S S + Dx/s(Es)),

e

where {€;}1<i<q is a horizontal basis of £B|4, 5, E; € ch(Ae,B) for all ¢ and 7. ;(y)
are global sections of &5. The variables z. and z. () have been defined in Lemma 3.16
and their restrictions to A p satisfy z.z,) = 7Ly.

We want to calculate V(z) and its residue. V(z) is represented by the hypercocycle
((10)v> (Me)es (9e» Te)e), where

Dx ko (8v(w)v) = my Adlog(y) and Dx/s(@e) = ne A dlog(y),
for v € v(G) and e € e(G). Also ‘

Sa(e)(wa(e))lAe,BﬁWa(e) - ‘Z)elAe,Br‘lWa(E) - DX/S(fe) = gedIOg(y),
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and
‘:’elAe,BﬂWb(e) - Sb(e) (wb(e))IAe,BnWb(e) - DX/S(?Q) = yedlog(y)
Let us recall that s,(w,) is always a regular 1-form. Also,

+ dX/Ko(ue)

- dx /K, (Te)
GelAe nWa(e) = T(y)/—xoi‘

e
is also regular as z. is invertible on A, g N Wy(c). On the other hand we have

- d Te d d Tre
Gl powngy = () ZETD) g twe) = r() T8 _ iy Bt )

d
Te y Tr(e) ¥ i te),

and the form —r(y)dx#i’fi:’ﬂ + dx /K, (ue) is regular on Wy() N Ae, B because the
function z, () is invertible on this open set.

Therefore we have: Resy—o(7,) = Resy=o(n.) = 0 for all v € v(G),e € e(G),
Resy—0(ge) = 0 and Resy=o(g.) = Y ic17e,i(0)€ila, srw,., for e € e(G). Thus, we
have that Res,—o(V(z)) is represented by the hypercocycle

((O’U)v7 (Oe)e; (0e7 Z Te,i(o)filAe,BﬂWb(e) )6)

i=1

whose cohomology class in H(Y, &) ®k, L is the same as the class of

1< 1<
((00)w, (0c)e, (5 Z Te,i(0)€il A, 5nW, ey 3 Z Te,i(O)GilAe,BnW,,(e))e)
i=1 i=1

which is

Res(z) (mod yHpg).
This proves that Ngeg®k,idr, = No®k,idr. As Nge and Ny are both endomorphisms
over K of the finite dimensional Ky vector space H!(Y, &), and as they become equal

after base change to the extension L of Ky, they are equal. This ends the proof of
Theorem 4.7. U

5. Frobenii

5.1. Frobenius and Kj-structures on H"7(%;,&;). — In this section we supply
a number of details needed in section §2.2. Namely let us resume the notations
of section §3.2. Let X — S be our family of curves, ¥ = {U,},cu() be the
admissible covering of X defined there. Fix s € S a point such that s # 0 and for
an object M over S M, will be the fiber of M over s. Let € := {Uy,s}veu(c) and
if e = [u,v] € e(G) then Aes = Ac Xxgs = Uy s NU,;s. Let us also denote by 5 the
image under red : S — ¥ = Spf(W/{[t]]) of the point s € S and by X, := X ®« S.
In particular if s = w, then X; = Cx and X; = C in section §2.2. Let & denote an
F-isocrystal on C and let &, denote the evaluation of & on the enlargement X,.

We will define the canonical Kj-structures and Frobenii on H°(%},&;) and
HY0(%,, &,) needed in section §2.2.
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For the rest of this section we fix s and denote U, s, A, s simply by U, A..

Lemma 5.1. — Suppose that the residue field of s is L. For every e € e¢(G) we have a
canonical isomorphism of L-vector spaces

cns(e/W g) ® Ko L= HdR( e éasIAe),

where above e denotes the singular point of C corresponding to the edge e.

Proof. — As mentioned before, A, is a wide open enlargement of e € C, i.e. let us
consider the formal completion of X, along e, (X;)/e. It is a formal scheme such that
(%5 )”g & A,. Therefore &|a, = &x,),, and HYi(e/W, &) ®k, L = Hp(Ac, Esla,)-

0O

Let us remark that the isomorphism of lemma 5.1 endows H{p(A., &5|a,) with a
canonical Ko-structure and a Frobenius, namely Crls(e /W, &) with its Frobenius, ¢2.

Let us fix v € v(G) and C,, the component of C corresponding to v. Let is denote
by C.* the log scheme C, with log structure given by the smooth divisor of the
singular points in C belonging to C,.

Lemma 5.2. — In this lemma s may be 0. Fori = 0,1 we have natural isomorphisms
of L-vector spaces

CrlS(C /W éa) ® K, L= HdR(U’UaéD ’Uv)

Proof. — Let red : Xy — C denote the reduction map and let Z, = red_l(ag),
where Ug is the complement in C, of the singular points in C. Then Z, is an
underlying affinoid of U, with good reduction (its reduction is 62). Let us denote
by Sing, := C, — US. As C, is a smooth proper curve over k, there exists a pair
(C’, Q) consisting of a smooth proper curve C’ over &}, and an étale divisor Q on C’

such the special fiber of (C’, Q) is (Cy, Sing,). Let us denote C = C;—C— the formal

completion of C’ along its special fiber, let C}, := (6’ )" and red : C; — C, be
the reduction map. If we denote Z, := red‘l(ég) then Z, = Z] and we’ll identify
the two. We claim that we may choose the pair (C’, Q) such that the isomorphism
Z, = Z, extends to an open immersion U, — C7. This can be seen as follows: let
us “add the affinoid disks to U, to close the holes”. We obtain a smooth proper rigid
curve with a smooth proper formal model whose special fiber is C,. This formal
model is algebrizable, i.e. it is the formal completion along reduction of a smooth
proper curve over &, which may be taken to be C’. In any case, the open immersion
U, — C7, has the property that its complement is a disjoint union of affinoid disks,
containing @) and each contained in the residue class of the points e € Sing,,.
We have the natural morphisms of formal schemes over &;:

C—0C,—C,
which make C" an enlargement of C. Let us denote by & the evaluation of & on
this enlargement. It is a coherent sheaf with connection on C7.
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Claim 1. — &¢-|y, is isomorphic to &y, as coherent sheaves with connections.

To see this let us first recall that we have open immersions U, — X, and U, — C7,
and X, C7, have formal models X,, c respectively. Moreover, by the description of
the embedding U, — C7, given above the following diagram commutes

U, - X, = ©
U

I
UvHC}Jﬂa,

Let now V C U, be an admissible open. By applying lemma 3.1 we obtain canonical
formal models ¥’ — C’ and ¥ — X5 and by the diagram above and section 3.1.2
we obtain a natural morphism ¥’ — ¥ inducing the identity on generic fibers and
such that the following diagram of special fibers commutes

~

—_—

| — N
Ql « N

Cc, <
Thus we obtain a diagram of enlargements
T =) — FTo)
L !
(Cy = () (C = X,)

which shows that & and &, coincide on V. This proves the claim.

Let 6: * and C"** denote the scheme C,, respectively formal scheme C" with log
structures given by the divisor Sing,, respectively by the divisor (). Now let us see
that we have natural morphisms

Hi((C) /W, 8) @Ky L2 Hiy (T |61, 8) = Hip(Cl, 60/ (10g(Q)) — Har(Us, &),

the first two being naturally isomorphisms.

In order to prove the lemma let us remark that we have natural isomorphisms of
L-vector spaces Hin(Cp — Q,8c'lc,-q) = H!p(CL, &c(log(Q))) for i = 0,1. We
will prove

12

Claim 2. — Restrictions induce isomorphisms between H’p(C} — Q. éc'lcy-q)
Hp(Uy, &ly,) for all i > 0.

For i = 0 the statement of the claim is clear. The proof of the claim for ¢ = 1 is
by an excision argument presented in theorem 4.2 of [7] for the case of trivial &. The
main idea is for a rigid analytic space M to find good definitions of “closed subsets”
and their “admissible open neighbourhoods” and to use the Gysin long exact sequence
as in [22].

We say that a subset Z of M is closed if it is the complement in M of an admissible
open subset. Given such a Z, we say that U is an admissible neighbourhood of Z if
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U is a strict neighbourhood of Z in M. Let us recall that this means Z C U, U is an
admissible open of M and the family {U, M — Z} is an admissible covering of M.

Now if Z is a sheaf of abelian groups on M we define I'z(M, %) to be the sections
s € Z(U) supported in Z for any strict neighbourhood U of Z. The functor & —
T'z(M, %) is left exact and therefore if #* is a complex of sheaves on M we define
the hypercohomology groups with supports, Ht, (M, .#*) to be the hyper-right derived
functors of I'z(M, —). By corollary 1.9 of [22] if #* is a complex of sheaves on M
we have a long exact sequence (the Gysin sequence):

0 — HY(M,#°*) — H' (M, £#°*) — H' (X — Z,F°) — Hy(M, F°*) — ---

Moreover, if U is a strict neighbourhood of Z in M we have excision, i.e. canonical
isomorphisms

HY (M, F*) = Hy, (U, F°) for all i > 0.

Let us now apply this theory to: M = C, —Q, Z = (C, —U,) — Q. Let us remark
that Cp, — U, is a disjoint union of closed disks contained each in the residue class of
one point of Sing, and containing exactly one point of . So in fact Z = M - U,
is closed in M. Let us denote by (E, D) = (éc'|m, D|m) the restriction to M of the
coherent sheaf with connection (6¢7, D) and let #° := E®g,, Q). The interesting
part of the Gysin sequence reads:

HIZ(M7R®0M QR/I/L) - H(}R(CZ -Q, E) - H;R(UIHE,U«;) - H2Z(M’E®5M Q;VI/L)'

Let us now explicitly calculate H (M, E ®4,, O3, / ). Let U’ denote a disjoint union
of wide open disks in C, containing C'; — U, and contained in the union of the residue
disks of the points of Sing,. Then U’ — Q is a strict neighbourhood of Z in M and
excision implies

HY (M, E ®6, /1) =HZ(U' = Q,Elu—q ®6,,_o Qui—gy,1) for all i > 0.

The Gysin sequence for the pair (U’ — @, Z) and the restriction of F to U’ — Q which
we denote by E’ gives

0 — HY(U' - Q,E' @y _qy/1) — Hgr(U' - Q,E') — Hap(U' - Z,E') —

— Hz(U' - Q,E' ® Qy_gy1) — Hig(U' — Q,E') — Hip(U' - Z,E')...

First let us remark that as U’ is contained in a union of residue classes, (E|y, D|y)
has a basis of horizontal sections. Let us denote by EP := H3,(U’, Ey). Second let
is remark that U’ — @ is a disjoint union of punctured disks containing the disjoint
union of wide open annuli U’ — Z. Therefore we have the following commutative
diagram where the horizontal arrows are induced by restrictions and the last vertical
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ones are residue maps.

Hi,(U -Q,FE) — H,(U - Z,E)
1= 1=
Hi(U -Q)®L EP — Hp(U' - Z)®L EP
! l
HY- (U - Q,E" =EP = HO, (U - Z,FE)

As the residue maps for punctured disks and annuli are isomorphisms the first hori-
zontal arrow is an isomorphism and the Gysin sequence for (U’ — Q, Z) above implies
that H (M, E ®g,, Q},/,) = 0 for all i > 0. This proves the claim.

Claim 3. — We claim that for ¢ = 0,1 the composed isomorphism
H.o(C,”/61,6) = Hip(Us, &ilu,)

is independent of the choice of C’ and the choice of embedding U, — C7.

The proof of this claim is standard: suppose (C”, Q") is another such pair defined
over O, with an embedding U, — C7. We let 61 to be the formal completion along
C, of the fiber product C’ x C”. By the Poincaré lemma we have isomorphisms

Hjp(CL, 6cr10g(Q)) — Hap((C1)"™, 8¢, (10g(Q U Q")) «— Hap(CL, S (log(Q")),

compatible with the homomorphisms from H}(U,, &|v, ) induced by the immersions
U, — C, U, — C{ and the diagonal immersion U, — (C;)"&. |

As before the isomorphisms in lemma 5.2 endow the L-vector spaces H: (U, &s|u,)
with natural Ky-structures with Frobenii, namely H, ériS(U: *,&) for i = 0,1 with their
Frobenii.

For e € e(G) let us denote by & := &;|a, and let us now concentrate on the
L-vector space H ; r(Ae, &). These spaces do not have an interpretation as crystalline
cohomology groups, nevertheless we have residue isomorphisms

Res. : Hjp(Ae, &) = HY(A,, &),

and may define the Ky-structure of the domain to be the inverse image of the Ky-struc-
ture of the target, i.e. to be Res™ (H?, (e/W,&)). Moreover let us endow this

Ko-structure with a Frobenius ¢! defined by ¢. = pRes_ ' o ¢? o Res.. We have

Lemma 5.3. — Let e € e(G) and suppose the vertez v € v(G) is the origin or the end
of e. Then, fori = 0,1 the natural restriction maps: Hig(Uy, &slu,) — Hig(Ae, &)
respect the Ky-structures and the Frobenii.

Proof. — For ¢ = 0 this follows from the commutativity of the diagram
Hip(Us, &lu.) —  Hp(4.,6)
I |

ngis(_é:x/wvg) ®K0L — H)

cris

(e/W,&) ®k, L
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where the lower horizontal map is the restriction HO, (C, ™ /W, &) — HO, (e/W, &)
tensored with L over Kj.

For i = 1 we’ll use residues. First we have a natural residue map Res which makes
the following sequence exact:

0 — HL(Co/W, ) — HL(C) ™ W, &) 2% @ecsing, Hoi(e/W, €)(1).

T

Here the twist by 1 refers to a twist as filtered, Frobenius modules. Moreover, the
following diagram of L-vector spaces with exact rows is commutative

0 — HL(Co/O1,6) —  HL(C[01,6) 5 Gecsing, Hyle/O1,6)
1= = =
0 —  H(Cl,éc) — Hip(Ch 0(lg(Q) ~= ®peq(bcr)p
lg l% lg
Res

0 — Ht}R(év/ﬁL’gC’) - H;R(vagSIUv) I GaeESingngR(AeaéaslAe)

where:

e The map Res : Hip(Uy, &|u,) — ®eesing, Hig(Ae, &) in that diagram is the
composition of the restriction H}g(Uy, &s|u,) — Decsing, Hyr(Ae, &) and the direct
sum of the residue maps Res, : Hip(Ae, &) — HOg(Ae, &).

and

o If we denote by ¢°, ¢! the natural Frobenii on HZ. (e/W, &) and H:, (C, ~ /W, &)
respectively and by Res, : HL, (C. /W,&) — H2 (e/W,&) then we have:
Res.¢! = p¢°Res..

These facts prove the lemma for ¢ = 1. O

5.2. F-isocrystals. — Let us go back to our notations of section 5.1: X — S is
our family of curves over the wide open unit disk, s € S — {0} is a point defined over
L, X, the fiber of X over s, X, the canonical formal model of X over & (defined in
section 5.1) and C' the special fiber of X;. For v € v(G) let C,, denote the component
of C corresponding to v and 62 the complement in C, of the singular points of C.

Then the composition C, — C < ¥, is a closed immersion of formal schemes
over 01, and US — C, is an affine open, therefore we denote U = U, = red_l(év) =
(%5) /6U)r'g and Z = Z, = red—l(ag). Then U is a one-dimensional wide open of X,
and Z C U is a an underlying affinoid with good reduction.

Let U — U Xspm(1) U be the diagonal embedding. It is locally a closed immersion
so let us denote by Ay the formal neighbourhood of the diagonal i.e. the completion
of U Xgpm() U along the diagonal morphism. Let 71,72 : U Xgpm(1) U — U denote
the two projections.

If M is a locally free, coherent sheaf of &y-modules on U with an integrable
connection D there is a unique horizontal isomorphism

h: FIMlAU — W;MAU
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which restricts to the identity on U. Locally on U we may assume that Q}] /L is a
free Oy-module generated by dt, let 0 denote the derivation dual to dt and also by
0 = Dp : M — M the induced morphism. Let us denote by u = 7(t) — 75 (¢) seen
as a rigid function on Ay. With these notations, h is given (locally) by formulae

* — un * n
hrim) = Y- B (07m),
n=0

for m (local) section of M.
Now let us look at the sequence of morphisms:

— A — —
Cy, —C, X Spec(k) Cy— xi =X X Spf(OL) Xs.

The composition is a closed immersion so let us define
Ay :=]Cyx2= ((%2),5,)""

Let us remark that ZU is a tubular neighbourhood of the image under diagonal of U
in X, X Spm(L) X;.

Definition 5.4. — We say the pair (M, D) is a convergent isocrystal on (U, Z) if
h extends to Ay (the extension is unique if it exists).

Here are a few easy but very useful consequences of the definition. Suppose that
(M, D) is a convergent isocrystal on (U, Z). If f,g: T — U are two morphisms from a
rigid space T into U such that (f,g)(T xT) C Ay, let x5 4 = (f,9)*h: f*M — g*M.

As h is an isomorphism X 4 is an isomorphism of sheaves.
Lemma 5.5. — The restriction of (M, D) to any residue class of (W, X) is trivial.

Proof. — Let U be a residue class of (W, X). If there exists a point P € U(K),
let f,g: U — W be the morphisms, the identity and z — P, respectively. Then
f*M = M|y, g*M is trivial and xy, is an isomorphism.

In general, base change to a Galois extension L of K such that U(L) # &, proceed
as above for each irreducible component of Uy, and then take invariants. O

Let us recall that _C—?, is a smooth affine curve over k contained in the smooth
projective curve C,; therefore there is a smooth affine scheme of finite type over 07y,
Spec(A) lifting 62 The mp-adic completion of A is isomorphic (non-canonically) to
the ring of rigid functions on Z bounded by 1. Fix such an isomorphism and identify
the two. Via this identification, proposition 3.14 (where Ry is been replaced by &)
gives

Spm(AT ®e, L) = EII% HO(T7 ﬁU)

where T ranges over all strict affinoid neighbourhoods of Z in U. We have natural
restriction maps Oy (U) — HO(T, 6y) which induce an &-algebra homomorphism
Oy(U) — Al ®4, L.
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Therefore if (M, D) is a locally free coherent sheaf of &y-modules on U with an
integrable connection we denote

Mt = HY U, M) ®4, (AT ® L).
It is a projective AT ® L-module with an integrable connection
D': M' — M ® 4191 QU ateryLs
induced by D. We have a description of Q% AteL)/L 8 lirrilﬂ HO(T, Q; / 1), where T runs

over the strict affinoid neighbourhoods of Z in U (see [1], section §2.5.)

Let ug : 62 — 62 be a morphism of schemes over k, let A, A’ be smooth &-al-
gebras of finite type such that Spec(A4) and Spec(A’) lift 52 and let u: AT — A'f
be a O-algebra homomorphism lifting the k-algebra homomorphism corresponding
to ug (see for example theorem 3.7.)

Define the category Mic 4+g 1, to be the category of finitely generated projective At®
L-modules with integrable convergent connections. Then the &' -algebra morphism u
defines a functor which preserves convergence u* : Mic 4/1g; — Micstgy and which
is an equivalence of categories if ug is a isomorphism.

In particular for ug = idzo, we see that (M t,D1) is independent of the choice of
the lifting A. ‘

Also, let us first fix o : 6, — 61 an automorphism which lifts Frobenius of k.
Let f := [k : F,] and denote by F = Frob’ : C,, — C,. Then F(C)) c T, and let
¢ : At — At be a lift of F over o.

Definition 5.6. — A convergent F-isocrystal on (U, Z) is the following family of data
e A convergent isocrystal (M, D) on (U, Z)
and
e a horizontal isomorphism Fy : ¢*(Mt, DY) — (M',D') for every morphism
¢ : At — AY which is a lifting of F.

Let us remark that if ¢1, ¢, are two liftings as in definition 5.6 we have Fy, =
Fy, 0 X1 62 _

Let now & be an F-isocrystal on C. Let us recall that the formal completion of
X, along the closed sub-scheme C,, ik, := (X,) /G, is a smooth formal scheme over
01, such that U8 = U, = U. Let us denote by (&,, D,) the evaluation of & on i,,
which is a wide open enlargement of C. Here (&,, D,) is a pair consisting of a locally
free, coherent &yy-module with integral convergent connection D,, (convergence follows
from [1] 2.2.2 and 2.3.4.) Moreover by definition 3.4 it follows that if ¢, : &, — I,
is a lifting of F then we have an isomorphism Fy, : ¢%(&,, Dy) — (&, D).

We therefore clearly have

Lemma 5.7. — The pair (&,,D,) is a convergent F-isocrystal on (U, Z).

In fact by [1] corollary 2.5.8 the data of the F-isocrystal (&,,D,) is equivalent
to the data: (M, D) where M is a finitely generated projective A" ® L-module, D :
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M — M QaigL Q% Ater)/r 18 an integrable connection such that if ¢ : Al — Al s

a lifting of F', there is a horizontal isomorphism ® : ¢* M — M. The convergence of
the connection is a consequence of the existence of .

We need to consider one example of a relative convergent isocrystal. Let as above Z
be our affinoid over L and f € 6z(Z)*, |f| < 1. Let An be the rigid analytic space
over L in Z x B} whose C,-points are {(z,b): |f(2)| < |b] < 1}. This is a family of
annuli over Z. Let T be the rigid function on An defined by T'(z,b) = band A 4, /z be
the neighbourhood of the relative diagonal A 4,7 in An xz An over Z whose points
are
T(x)
T(y)
The diagonal morphism An — An Xz An is a closed immersion. We denote
by A An/z the formal completion of An xz An along its image. Let m, 72 denote
the natural projection from An Xz An to An. Suppose M is a coherent sheaf of
Oan-modules, D : M — M ®¢,,, Q}qn )z @ (relative) integrable connection over Z

{(z,y) € An xz An : | -1 <1}

and such that the formal horizontal isomorphism h: 7] M|% P mo M 'KA p which
An n

is the identity when restricted to A 4.,/ extends to Aan /z (i.e. (M, D) is a convergent
isocrystal.)
Then we have

Lemma 5.8. — Suppose that (M, D) is a locally free sheaf of € an-modules on An with
a relative, integrable convergent connection D as above. We use h to identify mi M
and w3 M on AAn/Z. Let w be a section of M ®¢,, Q}‘m/z. Then there is a unique

section € of mf (M) on AAn/Z such that
miD(e) =1 W)la,, , ~ @4, ,
and such that €|a,,,, = 0.
Proof. — For simplicity let us denote for this proof U := A, /z- We claim that
we have a natural isomorphism ¢ : U = An Xg,1) Si as rigid spaces over Z, where

let us recall Sy, is the wide open unit disk over L. The isomorphism and its inverse
Y An Xgp) S — U are defined as follows

$((2,8), (2,8)) := ((2,6),5") and 9((2,b),0) = (2,b), (=, (1 + a)b).
This implies (see lemma 3.5 in section §3.1.3) that for any admissible affinoid open V
of An the morphism of complexes

(M ®Q%,/2)(V) — (11 (M) ® Qy,5) (7 (V)N D)
is a quasi isomorphism and hence pull-back by the diagonal immersion
A" (m (M) ® Q7)1 (V) NU) — (M @ g y2)(V)

is a quasi-isomorphism. In degree 0,1 this implies that for any section n € (7] (M) ®
Q}J/Z)(ﬂ'l_l(V) N U) such that D(n) = 0 and A*(n) = 0, there exists a unique section
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€ € mF(M)(n7*(V) N U) such that D(e) = n and A*(¢) = 0. Now we apply this
to the case 77 (V) NU = n; (V) NU and n = mf(w) — 73 (w) for a section w €

Remark 5.9. — In the notations of lemma 5.8 M has a basis of horizontal sections
on An.

Proof. — Let L' be a finite Galois extension of L such there exists a section s :
Z1+ — Anyp of the structure morphism g : Anpr — Zp/ (the subscript L’ denotes
extension of scalars to L'). For example, suppose there is a by € B} (L’) such that
|f] < Jbo| < 1. We may define s by s(z) = (2,bp) and thus we have a morphism
u =: (idan,8) : An = An xz Z — U. Then u*h gives a horizontal isomorphism of
M, to the module with trivial relative connection g*s* My, defined over L’. Now
take Gal(L’/L) invariants to get a basis of horizontal sections of M. O

Let us also notice that remark 5.9 implies that in lemma 5.8 one could reduced to
the case where (M, D) is trivial and then prove the lemma by elementary calculations.

5.3. Lifts of Frobenius. — Recall X — § is a family of curves over the wide
open unit disk and & is an F-isocrystal on C. We have defined a Frobenius ¢ : § — S
over the absolute Frobenius o on Spec(Kj) in section 2.1 and & comes equipped with
an isomorphism of isocrystals on C

F:F (&) — &

where F is the Frobenius on C over the absolute Frobenius ¢ on Spf(W).

Using F we have defined a Frobenius operator ®;: ¢*H! — H! in section 2.1.
Let f := [k : F,]. We will give an explicit description of the “linearized Frobenius”,
@/ using “local lifts of Frobenius” to X.

Recall, from section 3.2, the admissible cover of X, €’ = {T,, Ac}vev(@),ece(c)- We
intend to construct local lifts of F', so we will need to refine this cover in two ways.
First let L be a finite, non-trivial, totally ramified extension of Ky and B! = By, the
affinoid disk around 0 of radius |7, |, where 77, is some uniformizer of L. Let B? be the
affinoid disk around 0 of radius |7r’j;f |, where f = [k : F]. Then ¢ = ¢ ®k,id;, maps
B! to B?. Similarly, let F (&) denote the isocrystal on C defined by: F(&)(r,.p) =
&1, Fyrozr) Where let us recall that Fp = F’ is the Frobenius endomorphism over k
of C, and by Fy : (Fi)*(&) — & the f-iterate of F.

For the rest of this chapter we use the following notations: for every v € v(G),i =
1,2 let Z:, =2y Xg Bi, UB«',,U =U, Xg Bi, Aé = A, Xg B

We have

Proposition 5.10. — a) For every v € v(G) there exist wide open strict neighbourhoods
Ui C Ugi,, of Z over B* and a rigid morphism ¢, : Ul — U2 over 9, i.e. such
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that the following diagram commutes

Ul KN U2
! !
B! L B2

b) The morphism ¢, at a) is a lift of Frobenius i.e. the following diagram commutes
Ul - X Ted,

6o | F
Uz - X =4

Ql « A

Proof. — For i = 1,2 let W denote wide open strict neighbourhoods of Z? in Ug: ,,
such that there exist isomorphisms of rigid spaces over B (see proposition 3.18)

oy : W, =W, x BY,

where W, is the fiber at s = 0 € B* of Wi. Then W;, is a wide open strict
neighbourhood of Z, ¢ in Uy . As Z, ¢ =]62[350, as in the discussion after the proof
of lemma 5.5 let A be a smooth & -algebra of finite type such that Spec(A) is a
lifting of C’—S. We identify A! with a sub & -algebra of the ring of rigid functions on
Zy o and let @, : AT — AT be a lifting of . C, — C,. We may choose strict
affinoid neighbourhoods T* of Z, ¢ in W ; such that ®,(T") C T2. As in the proof of
proposition 3.18 define wide open neighbourhoods U , of Z} ; in W ; over B* such
that @,(U, o) C UZ,. For later use let us remark that we may choose U7 ; such that
U2y — Zy, is a disjoint union of wide open annuli. Let now U} := (o) ™' (U} o x B?)
and ¢, : Ul — U2 the morphism ¢, = a2 o (®,,9) o (al)~!. By definition we have
the commutative diagram

Ul P, U2
o | ye%)
Ul,x Bt ¥ 2 p?

compatible with the projections to B! respectively B?. The conclusion follows. [J

We now give a general definition of a “lifting of Frobenius” and some of its proper-
ties.

(1) For two admissible opens U* C Xpi, i = 1,2, we say that an L-morphism
¢ : U' — U? is a lifting of Frobenius over 9 : B! — B? if the following two natural
diagrams commute

Ut i) U2
! )
Bt % B
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and

Ul o Xm =5 (Xm)h = CxAl

¢l Fi|

U? - Xpe -re—d> (xdagz)l = Cx A,{:
Let us recall that in the second diagram Z* denote the natural formal models of B®
defined in section 3.2 and (X4:); the closed sub-schemes of _3_€ & defined by the ideals
T ﬁx@“ for i = 1,2. F denotes the absolute Frobenius of C X A}C.

The commutativity of the above two diagrams is equivalent to the commutativity

of the diagram:

vl - ox =T
é1 |
Uz < X red 6

(2) For any lifting of Frobenius ¢ : U! — U?, we have a canonical horizontal iso-
morphism Fy, : ¢*(6x|y1) = &x|y2. Here & denotes the evaluation of the F-isocrystal
& on the (wide open) enlargement X of C.

Proof. — First let us assume that U, U? are affinoids. Let %!,%? be the canonical
formal models of of U, U? constructed as in lemma 3.1 using the p-adic formal models
X1, Xz over 0. Moreover the commutative diagram in (1) above and the remarks
after the proof of lemma 3.1 provide a morphism ¢ : ! — %? whose generic fiber
is ¢ and which induces F in the special fiber. Now &%|y1,¢*(Ex|y2) are in fact
isomorphic to the evaluations of &, respectively of (Ff)*(é” ) on the enlargement %/1.
Now the definition of the F-isocrystal & provides the Fj.

In general, choose an admissible affinoid covering of U? and an admissible affinoid
covering of Ul which refines the inverse image under ¢ of the covering of U2. The
functorially of the construction in lemma 3.1 imply that the local Fj’s glue. O

(3) If ¢, ¢’ : Ut — U? are two liftings of Frobenius there is a canonical horizontal
isomorphism x4 4 : ¢*(&x|yz) — ¢ *(&x|yz) compatible with Fy, Fy. For three
liftings, they satisfy the cocycle condition.

Proof. — This follows from the fact that ¢*(&%|y2) is canonically isomorphic to the

evaluation of (Ff)*(é” ) on the enlargement %! defined in the proof of (2) above and
again from the properties of F-isocrystals. O

Let Ui, i = 1,2, v € v(G) denote admissible open subsets of Xp: over B® whose
properties were proved in proposition 5.10. In fact we will choose the Ui’s as in
the proof of proposition 5.10 i.e. such that for every v € v(G), i = 1,2 there are
isomorphisms of rigid spaces over B': o, : U} & U} ; x B* where U} , are the fibers of
U! at s = 0 and they are wide open strict neighbourhoods of Z, o in W,fyo. Moreover,

Uf‘o — Zy,0 is a disjoint union of wide open annuli.
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Let us note that € = {U}, AL}yev(G),ece(c) Where i = 1,2 are admissible covers
of Xp: by acyclic, admissible open subsets. For every e € e(G) we have morphisms
¢e : AL — A2, over ¢ : B! —> B2 defined by ¢.(z.) = 22’ and Pe(Tr(e)) = xfie).

Let F,, Fe denote the Frobenii provided by (2) above.

Fy: ¢y5(éx|vz) — Exlyr forallv

and respectively
Fe:¢:(6x|az) — &Ex|ar foralle.

The description of the Frobenius <I>{c : p*Hpgz — Hpgi. — We can now give
the description of the Frobenius operator. Let € = {U}, AL}ycv(q),cce(c) be the
respective open covers of Xpi.

Recall, & is an F-isocrystal on C and let F,, F, be as above. Let w € Hp. =
H}p(Xp2/B?, &x(log(Y))) be represented by the hypercocycle with respect to 62

((Wv)'uev(G)a (we)eEe(G)7 (fe)eee(G)’ (7e)e€e(G))-
Now we define a hypercocycle of the relative de Rham complex of & with respect to
%1 whose cohomology class in Hpg: represents <I>{ (Y*w).
Let us remark that for e € e(G) we have (see the proof of proposition 5.10)

Uzey N A2 = (U N AZ ) x B® = {la| < |ze,0] <1} x B?,

where z. ¢ is the restriction of z. to A and a € L is such that |7r’L’f| < |a| < 1. Thus
the rigid space An := Uf(e) N A2 is a family of annuli over the affinoid Z = B? and
we may apply lemma 5.8 to the sheaf with relative connection (&%|an, Dx., /B2). We
let A(Uf<e)” A2),/p2 denote the neighbourhood of the relative diagonal in An X g2 An

defined in that lemma. There exists a unique section e, € g’x(A(Uz( |nA2)/ B2) such
that

T Dx s /B2 (€c) = 71 (Wae) A,

* -~
a(oz)hAZ/B2 ) 3 (wa(e) IAUf )’

(e)r\Ag /B2
and whose restriction to the diagonal vanishes.
Let us define

vy = Fy($5(wo))s Ve = Fu($we))  he = A (Fage) 0 $3e), Fe 0 92)(e0) + Fe(92(£2)),
he = A* (Fyey 0 ¢Ee), F.o¢7)(ee) + Fe(e (Fe))-

Then the collection ((Vv)'ve'u(G),(Ve)eee(G),(he)eEe(G)v(Ee)eEe(G)) is a hypercocycle
for the relative logarithmic de Rham complex of & on Xp:1/B?! with respect to the

covering €. Its cohomology class depends only on w and is equal to tI>{ (w).

To see this let us recall the notations and results of section 3.4.3. Namely let us
recall that we denoted X** the formal scheme X with log structures on %, let .#*
denote the formal scheme . = Spf(W/[[t]]) with log structures at t = 0 and let C *
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denote the scheme C with inverse image log structure from X**. If for e € e(G)
we denote also by e the singular point of C corresponding to the edge e we have

((f’”‘)/e)rig = A, and
(B xgrx 2%)6)™ x5 B = A2z e
Clearly, under the identification of
H;R(X/S) éax(log(Y)) = I:[(}lris(—(:;xx/S)< ) éa),

in section 3.4.3, after restricting to B!, B? respectively, the image of the linearized
crystalline Frobenius ®/ is exactly the one defined above in terms of hypercocycles.

Remark 5.11. — Let us recall from section 2.1 that ® induces ®4eq on HY(Y,&) and
that it is horizontal with respect to the connection, i.e. we have

(Pop*)oV=Vod.

Here we have dropped the indez (respectively upper index) 1 from the notation. There-
fore we also have
(®F0¢*)oV=Vod/

5.4. Integration. — The theory of p-adic integration of convergent F-isocrystals
on curves is the generalization of that developed by the first author in [8] (see also
[6].) For the convenience of the reader we will briefly review the theory in what follows
and prove the necessary generalizations.

Let us go back to the notations of section §5.2, i.e. let s € S, X is the fiber of X
over s defined over L and let us fix v € v(G). Let us consider the pair (U, Z), where
U=Uys,Z =2,5 Let us recall that Z is an affinoid over L with good reduction
and U is a wide open neighbourhood of Z in X, such that U — Z is a disjoint union
of wide open annuli.

Let (M, D) be a convergent F-isocrystal on (U, Z). An admissible open subset T'
of U will be called a residue class of (U, Z) if T is a residue class of Z or a connected
component of U — Z. Lemma 5.5 implies that the restriction of (M, D) to every
residue class of (U, Z) is trivial. We now define the sheaf M°¢ with connection Dfog
on U, as follows: we choose a branch log of the p-adic logarithm on L* and define for
an admissible open V of U

ME(V) =[] M(Vr) ®ey, Ou(Vr)log(£)]eoy vrx
T

where T runs over the residue classes of (U,Z) and Vr = V NT. Here, for every V
and T as above Oy (Vr)[log(f)]fe ey (vr)x is the sub-ring of the ring of locally analytic
functions on V generated by &y (Vr) and the functions log(f) for f € 6y (V)*. The
connection extends naturally to this sheaf. Let Qf;(M°) be the naturally induced de
Rham complex of sheaves on U, where o = nothing or flog. Here we have denoted
by Qi (M°) := O, ®g, M° for i = 0,1. Let (M°)! denote the pullback of M° to
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Z' and let H{(M°, D) := H{(Qy((M°)1)). Suppose ¢ is a lifting of Frobenius to Z*
as in section 5.2. Then as explained in [C1, §7] ¢ induces endomorphisms (¢¢)° of
Hi(M°, D) (morally, (¢')° = F, 0 ¢*).

Note that H!(Mf°g, D%€) = 0. We have

Theorem 5.12. — Let w € Q(M)(U). We denote by [w] its image in H'(M, D).
Suppose that there is a polynomial G(t) with coefficients in L such that

(a) G(¢*)([w]) = 0 and (b) G((¢°)8°8) is an isomorphism.

Then there exists a section u of M ﬂ°g(U ), unique up to a horizontal section of M on
U such that

i) D(u) = w

ii) G(Fp o ¢*)(u|xt) is overconvergent on X.

Moreover, u does not depend on the choice of ¢ or G(t).

The existence and uniqueness is, up to notation, Theorem 7.4 of [C1] (the notion of
regular singular annuli is subsumed by Lemma 5.1). The independence follows from
the fact that the map (¢*)° does not depend on the choice of ¢ and we may choose
for G(t) the minimal polynomial of ¢! acting on the finite dimensional space spanned
by the classes of the images of w, Fy o ¢*w, (F 0 ¢*)%w,... in H (M, D).

5.5. The Frobenius Operators

Definition 5.13. — We say that the F-isocrystal & on C is regular if for every vertex
v € v(G) the characteristic polynomials of Frobenius on H, (z,&) and HX;q (6: &)
are relatively prime for all closed points i, : £ — C,,. We have denoted, as in section
§5.1 by C, the irreducible component of C corresponding to v and by 5:  the log

scheme C, with log structures given by the divisor Sing,
We have

Lemma 5.14. — Let C be the curve over V with semi-stable reduction introduced in
the introduction, let g :  — C be a smooth proper morphism and let us consider the
F-isocrystal on C, 7" := R'g, cris(O7). Then Sym’ (H#") is a regular F-isocrystal
fori, 3 > 0.

Proof. — Let  denote the special fiber of 7, Z, the pull back of 7 — C by
Cc,cC

The Leray spectral sequence for log crystalline cohomology in the relative situation
gv : 9, — C, for log structures on C, given by Sing, and on J, given by the fiber
above Sing, , reads

By = H(C™", Rlguiss(02,)) => HI(F)", Qp)-
Let us first remark that J£7 = Rg, cis «(€ ) is the pull back of /#7 by the inclusion
C, —C. N
As C, is a smooth proper curve over k let us also remark that E;’ = 0 unless
0 < i < 2. This implies that the differential dy : E;Y — E3” " vanishes as well as

ASTERISQUE 331



HIDDEN STRUCTURES ON SEMISTABLE CURVES 237

the differential dy whose target is E3* for all j > 0. Therefore E3” = E}7 for all
j > 0 and the spectral sequence collap_ses at E3. Therefore, for n > 0 the Kj-vector
space with Frobenius H"+! = H"1(Z**,Q,) has a filtration 0 ¢ F* Cc F2 ¢ H™*!

where Fy, F2 have the property that F2/F! & E;™. By the comment above it follows

that HL; (6: X , ™) is a quotient, as Ky-vector space with Frobenius, of a subspace,
Fp of H™*1,

By the main result of [28] H™i! (7: X,Qp) = Hg;’ Y(Z, — Sing,,Q,) and by [3]
the weights of Frobenius on the last Ky-vector space are larger or equal to (n +

1)/2. It follows that the weights of Frobenius on Iicl,is(—C—;< *, ™)) are also larger
or equal to (n+1)/2. On the other hand, since Z, is smooth and HO(H#) =
K ® H! ,(Z,) for any point = of C,, using the Riemann hypothesis, the weights of

C

Frobenius on HO(J#") = H?. (z,i%5#™) are all equal to n/2. Thus the characteristic
polynomials of Frobenius on HL, (C. *,#™)) and HO(x, #™) are relatively prime
for all closed points z of C. The statement for Sym’(#*) follows by the same type
of arguments. O

For the rest of this chapter we assume & is regular. Let us now, as in the previous
section, extend scalars to a finite, non-trivial, totally ramified extension L of K and
let B = By, C S be the affinoid disk of lemma 3.17. Let us recall proposition 3.18
which asserts that for all v € v(G) there is a wide open neighbourhood W, of Z, g in
U,,B over B and an isomorphism over B

oy Wy, — B x W,,,

where W, ¢ is the fiber of W, at 0 € B. Let us denote by fp : Xp — B the restriction
of our family of curves to B. Let us now fix v and denote a := ay,0, Wy := W, o. Let
B: W, — Wy be moa and j : Wy — W, be defined by j(w) = a~!(0,w). Let
&% and &y ,denote the evaluations of & on X and &, where let us recall that ¥ :=
X x » Spf(W) where the morphism Spf(W) — ¥ is given by t — 0. &% and &y are
coherent sheaves with connections on X = X8 and respectively Y = %78, Denote
also by (&, D), (&, Do) the restrictions of the sheaves with connections (&%, Dx/s)
and (é#,Dy) to W, and respectively Wy. The isomorphism a induces the vertical
isomorphisms in the following commutative diagram

D,
&y — & Qow, Q%/V,,/B

| 1=

Do®id
&oLbs "R & ® 6w, Q%/VO/L

This implies

Lemma 5.15. — a) The L-vector space Hy(Wo/L, &) is finitely generated.
b) We have a natural isomorphism of sheaves on B induced by a: H}p(W,/B, &,) &
Hir(Wo/L, &) ®L Os.
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Proof. — a) is a consequence of lemma 5.2 and b) follows from the above commutative
diagram. O

Let us fix wy,ws, ... ,w, global sections of & ® 6w, Q%,VO /L whose cohomology classes
[w1], ..., wn] form an L-basis of H}z(Wo/L,&). Let now w be a global section of
Ev Q o, Q%/V,, ,p @nd denote by [w] € H, 1r(Wy/B, &,)(B) its cohomology class. Then
W] =371 a;[w;] for a; € Op(B), i = 1,n and therefore we have

n
w = Zaiwi + Dy (f) for some f € &,(W,).
i=1
Let us fix A1, Ag,..., An € £§°g(Wo) p-adic integrals of wy,...,w, (see section 5.4.)
We denote by A, := > a;\i+f € (cg’oﬂog ®r 0p)(W,) and call it a p-adic integral
of w. It is well defined up to an element of &,(W,)P>.
We have the following,

Lemma 5.16. — a) With the notations above, A, is a family of p-adic integrals of w,
i.e.

i) Dy(Ay) =w

and

ii) for every s € B, A, |w,,, is a p-adic integral of w|w, ,.
b) If @ is the natural lift of w to & gy, Q‘I,Vv/L(log(Wo)) defined in section 4.2, and
n is defined by the equality Dw, /(W) = n A dy, then
@ — Dy, ;1 (W) = Aydy.

Proof. — a) is clear and for b) let us write

w = Zai(y)wi + Dv(f)v

1=1
where a;(y) € O5(B), f € &,(W,) and the w;’s have been defined above. Then we
have

=) ai(ywi + Dw, /L(f)
=1

and therefore n = — Y i, a’(y)w; and
n

@ — Dw,/L(M) = —(O_ ai(y)\i)dy = Aydy. 0

i=1

Let us choose now for the rest of this section the branch of the logarithm on CJ
such that log(w) = 0.

We will give a general definition: let Z be a rigid space over L andlet o : M — Oz
be an integral log structure, where M is a sheaf of monoids.

Then if W C Z is a admissible open subspace which is Stein we define 0z(W)og to
be the polynomial ring &z (W)[£(m)]mem(w), Where £(m) are independent variables,
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divided by the relations: £(mimg) = £(m1) + £(m2) and £(m) = log(a(m)) if a(m) €
Oz (W)X,

The natural derivation d : Oz(W) — Q}, /1, €xtends canonically to a derivation d :
Oz(W)iog — Q%V/L(log(M)) by defining d(¢(m)) = d(a(m))/a(m) for m € M(W).

In particular, let us consider the log structure on B given by the divisor 0 € B
and choose a parameter y € Op(B) at 0. Then it is easy to see that O5(B)iog =
Op(B)[£(y)] and we have d(¢(y)) = dy/y.

Let e € (@) and we denote in this section by A, := A. g and by A := A the
fiber of A. at 0 € B. If we consider on A, the log structure given by the divisor over
B with normal crossings Ag, we see that €4, (Ae)iog = Oa, (Ac)[l(xe), £(z1(e))] With
unique relation £(z.) + £(z()) = £(y). We have dy,,p({(z.)) = d4,/B(Tc)/Te and
da,/B(l(Tr(e))) = da,/B(Tr(e))/Tr(e)-

We also denote by (&, D,) the restriction of the sheaf with connection (&%, Dx/s)
to A.. Let w be a global section of the sheaf & ®¢,, 9}46 /(108 Ag)) and denote by
€1,.-.,€4 a basis of horizontal sections of (&, D.). Then using lemma 4.8 we can
write

dA da,/B(Te)
w—Ze,®r, 2 + De(ue),
where 7;(y) € Op(B) and u, € &.(A.).

We set

Ap = Z €Q Tz xe +u. € & Jog = =& (Ae) ®0A5(Ae) ﬁAe (Ae)log-

Lemma 5.17. — We have,
a) With the notations above A\, is a family of p-adic integrals of w in the sense that
i) De(Ay) = w
and
ii) A, is an element of &, 105 well defined up to an element of of &, (A)Pe[E(y)] :=
&(Ae)P* ®6p(m) OB (B)[U(y)]-
b) Let @ denote the lift of w to absolute one-forms as in section 4.2 and let 1 be defined
by the equality Da_/1,(©) =n Ady. Then @ — Dp_/1.(A) = Apdy.

Proof. — Part i) of a) is clear and for part ii) let us remark that (& og)P =
&(Ae)Pe[£(y)]. For b) let us notice that

DA/L Ze,@r A/L( )/\dy,

and clearly

@ — Da, /(A Ze,@r (v)€(ze))dy = \ydy. 0
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Now we will use the p-adic integration discussed above in order to describe the
Frobenius operator on Hp. Let us remark that the collection €5 = {Wy, Ae}vew(G),cce()
is an admissible cover of Xpg by admissible, acyclic, wide open subsets over B. We
will define an &g-linear map,

sg:Hg — HI’O(%g,co@)log = Hl’o(%g,éa) ®e5(B) ﬁB(B)[e(y)]
as follows: let w € Hp be represented by the hypercocycle with respect to the covering
4
((wv)va(G)a (we)eEe(G’)a (fe)eee(G)’ (fe)eee(G))-
where let us recall: w, € (&, ®oy, Q%,VU/B)(WU), We € (& ®o,4, Q}L‘e/B(log(Ao))(Ae),

fe € Ee(Wy(e) N Ac) and f. € Ee(Wh(ey N Ae) satisfying the usual cocycle conditions.
For every e € e(G), let sp(w). be the section:

fe - (Awa(e) |Wa(e)ﬁAe - Awe IWa(e)ﬂAe)y

and similarly let (Sp(w))e be the section
73 - ()\wb(e) IWb(e)nAe - )‘welwb(e)nAe)'

Lemma 5.18. — For every e € e(G) and w € Hp, (s5(w)e, 5(w))e) € EP*(Wy(ey N
A)E(y)] ® 62 (Wie) N Ae)[E(y)]-

Proof. — We will only prove that sp(w) € &P¢(Wy() N Ac)[l(y)], and leave the
remaining similar argument to the reader. The isomorphism ag(c),0 induces an iso-
morphism
a:Wa(e)ﬂAe & B x Uy,

where Uy is the annulus W (e) 0N Ae0- Let m; for 2 = 1,2 be the projections of B x U
composed with o and denote by z¢ := 73 (melWa(em 4.)- Then zy is a parameter of
Us (see the beginning of section 4.) If we write w, as in formula (*) before lemma
(5.17) and use the isomorphism a above, we may integrate weIWa(e)n A, by the recipe
outlined in lemma 5.16. Let us denote this integral by A\. We have

SB(LU)e = fe - (Awa(e) |Wa(e)nAe - A + A - )\we‘wa(e)nAe)'
First let us first remark that zo € Oy, (Up)* therefore £(zo) = log(zo) and that
Oy, [log(f)] e ox = Ou, [log(zo)]. Indeed every element f € Oy, (Up)* can be written
1]

= azlg, with a € L*, n € Z and g € Oy,(Up) is such that |g — 1| < 1. Therefore
09 o

log(f) = log(a) + nlog(zo) + log(g), where log(g) € Oy, (Vo).
As W) N Ae is contained in the residue class A, of Xp, (&, D) has a basis of
horizontal sections on Wy N A, and so we have

(E(Wagey N A))[log(20)]) ™ = Eo((Wagey N 4e))Pe.

This implies that fo — Ao, ., [W,yna. + A € Ea, (Wae) N Ae)[E(y)).

Let us remark that o = uz., where u € 04, (Wy(e) N Ae)* such that log(u) is an
analytic function on W, () N A,. Therefore lemma 5.17 shows that A — A, |Wa<e>ﬂ A, €
Ee(Wa(e) N Ac)[£(y)]. Now the fact that De(sp(w)e) = 0 implies the lemma. i
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For every w € Hp denote by sp(w) the class of the cocycle (sp(w)e, 5B(W)e)ece(q)
in HYO(€F,&)10g and by s : Hp —> HYO(€f, &)1og the respective &p-linear ho-
momorphism. Composing sp with the inclusion H»*(€g, &)iog — Hp,10g obtained
from (2), we may think of sp as an &p-linear map from Hp to Hg 1,,. We have,

Theorem 5.19. — a) sp : Hp — HYO( By & )log 15 a section of the inclusion.

b) For every u € B* = B — {0}, the fiber sp . of sp at u coincides with the map s,
defined in section 2.2.

c) We have (s ®1)oV =V ospg.

d) Let B' and B? as in section 5.3. We have ®f o0 sg1 = sg2 0 &,

Proof. — a) Let z € H'°(%}4,&) be represented by the cocycle ((fe), (f.))
Then the image of z in Hp is the class of the hypercocycle:

((00)vev(G)s (0c)ece() (fe)ece() (fe)ece(c)) and clearly the image of this class under
spis .

For b) if u € B* we denote %,) = {Wy,u, Ae,w} the intersection of the cover €p
with the fiber X,,. Let €, = {Uv,u}vev(G) denote the wide open cover of X, described
in section 2.2. We denote by &, the restriction of &% to the fiber X,,. We have the
following diagram

ece(G)’

Hip(Xu, &) 23 HYW(E! &)
I 1=
Hip(Xu, 6u) —* HY(%,,8.)
where the right vertical isomorphism is the one defined in section §3.5.4. Lemma 3.34
implies that the diagram is commutative and this proves b).

Let us now prove c). Let w € Hp and let

((wv)va(G)v (we)eEe(G)v (fe)eEe(G)v (7e)eee(G))

be a hypercocycle with respect to the covering ¥ representing the class w. Let @,
and @, be the lifts of w, and w, respectively to absolute one-forms defined in section
§4.2. Let Dxg /LWy = My A dy, Dxy/L@e = Ne A AY, Wa(e)|lW,oynae — Welw,yna, —
DXB/L(fe) = gedy and wb(e)IWb(e)f‘lA.3 - Gele(e)—Ae) - DXB/L(fe) = g.dy for 1y, 7e,
ge and g, global sections of &, ® Q%,VU/B(log Wo), & ® Qhe/B(log Ayp), éaa(e)lWa(e)ﬂAe
E(e)|Wy(eyna, Tespectively. Then (sp ® 1)(Vw), as an element of Hp i,y ® dy, is
represented by the hypercocycle

((Ov)vev(G)a (Oe)eee(G)» (9e — (’\na(e)IWa(e)nAe - ’\ﬂelWa(e)nAe))eee(G)’

(ge - ()‘nue) |Wb(e)nAe - )‘ﬂe |Wb(e)ﬂAe))e€e(G)) ® dy.
On the other hand V(sp(w)) is represented by the hypercocycle

((00)vew(@)s (Oc)ece(@)s (—Dxp/L(fe) + Dxp/LAwao Waynde = Dxn/LAwe Waona.)ece(@);
(_DXB/L(TG) + DXB/L’\wb(e) |Wb(e)nAe - DXB/L)‘we |Wb(e)nAe)e€€(G)) ® dy.
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A calculation using the lemmas 5.16 and 5.17 shows that the two hypercocycles are
cohomologous.

Now we prove d). For this let us recall the notations B!, B? and the expression of
®/ at the end of section 5.3. Let U, i = 1,2 and v € v(G) denote admissible wide
open subsets of Xpg: satisfying the properties of proposition 5.10 and the additional
property that there are isomorphisms a,, ; : Uf & Uf;,o x B'. As in section §5.3 we
consider the admissible covers €% = {U:, AL} of Xp:. Let the class w € Hp: be
represented by the hypercocycle for the covering €2

((wv)va(G)’ (We)eee(G)v (fe)eee(G)a (fe)eee(G))-
Then sp2(w) is represented by the hypercocycle

((00)vew(@)s (Oc)ece(G)s (ge)ece(G)s (Te)ece(d))

where g. = fe — ()‘wa(e)IUz(e)ﬁAg - )‘welUg(e)ﬂAg) and g, = ?e - (Awb(e)|Ub2(e)ﬂAg -
)\WelUf(e)nAg)‘
Then ®f(sp2(w)) is represented by

((Ov)va(G)a (Oe)eee(G)v (Fe(¢: (ge)))eee(G)a (Fe((ﬁ; (ge)))eEe(G))'

Let us recall from the end of the section §5.3 that ®f(w) is represented by the hyper-
cocycle

((Vv)UEv(G)a (Ve)eee(G)» (he)eEe(G)a (Ee)eee(G))

where vy, Ve, he, he are defined there.
Therefore, sg1 (®f(w)) is represented by

((O’U)’UE’U(G)7 (Oe)eEe(G)a (we)eee(G)a (—fe)eee(G))
with (see the end of section §5.3)

Te = he = My luz  nar = Aeelvy nar) =

= A% (Fye) 0 ¢;(e)v Feo ¢e)(ee) + Fe(e(fe)) — (Fa(e)(¢;(e)()‘wa(e)))'U‘:(e)nAg - Fe(¢:(/\we))|U;(e)nAg)'

Now we use the fact that €. = 7] (Au,,., |U3<e)”A3) - ﬂ;(,\wewg(e)me) and obtain

Te = Fe(¢e(fe — )‘wa(e) |U:(e)ﬂAg + AwelUZ(e)ﬂAg))'

Similarly
Te = Fe — Mo lug nar = Melup nay) =
= Fe(¢:(?e - )‘wb(e) |Uf(e)ﬁA§ + )‘we|U3(e)r‘1A§))-
This ends the proof of Theorem 5.19. O

Now we can finish the proof of Theorem 2.6. To prove that ®4c; and @,y get
identified by parallel transport. We have exact sequences

0 — HY*(C) ®k, L — H'(C,&) ®x L — H*}(C) ®k, L — 0
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and
0 — HY(%Y, &) — HY(Y, &) — HON %y, &) — 0.

Proposition 3.35 implies that under the parallel transport isomorphism H!(Y, &) ®k,
L = HY(C,&) ®k L, HY(C) gets identified with HV(%},&) and H®'(C) gets
identified with H®'(%y,&). Moreover these last two isomorphisms commute with
the respective Frobenii. We'll first show that <I>f;e corresponds to <I>mt Let us parallel
transport '~‘II°£eg to H(C,&) ®k, L and let us denote by ® deg this endomorphism, i.e.,
if w € (Hyog)V, we have seen that (®f(w))o = deg(wo) and as ®(w) € (Hiog)Y we set

deg(w,,) = (®f(w))r. We have to show that Pl =
&/ and @] s coincide both on the image of H*(C) and on the quotient H%!(C)

and s; o <I>i =F/

0,cris

= <IJ o and so far we know that

o s;. Using Theorem 5.19 we have

cns Srx-

Sp 0 ®F sg20®) = (& osp1)n —F
deg =

This proves that ®F., = ®/ .. Moreover, since & is regular it follows that the char-
acteristic polynomials of Fp cris on H%!(C) and of F} cris on HV0(C) are relatively
prime. Thus both exact sequences above have natural Frobenii equivariant splittings

and as 93, = &/ | the splittings coincide under parallel transport. But the split-

ting produced by <I>int is sy, therefore we immediately deduce that H!(C, &)in and
HY(Y, &) become identified by parallel transport and the same is true for ®;,; and
®gez. This completes the proof of Theorem 2.6.

int?

6. Logarithmic F-isocrystals

We start by defining the main objects of this section, the log F-isocrystals.

Let C be our semi-stable curve over V, let P be a finite set of smooth sections
of C and C* the corresponding log scheme. Let P be the special fiber of P. Then
P is a smooth divisor of C and we denote, to the end of this section, by C™ the
corresponding log scheme.

Definition 6.1. — A logarithmic enlargement of C isa pair (T, zr) consisting of a
formal log scheme T* and a morphism of log schemes zr : Ty — c”. If (U*,zy)
and (T*, zr) are two log enlargements of C” then a morphism of log enlargements
g9: (U, 2y) = (T*, zr) is a morphism of formal log schemes g : U* — T such that
2T © go = 2U-

Definition 6.2. — A log isocrystal & on C”™ is the following set of data

i) for every log enlargement (T, zr) of C”™ a coherent Ko ®w O7-module & x ;)
(sometimes in what follows we will use the shorthand notation &rx.)

ii) for every morphism of enlargements g = (f,h) : (U*,zy) — (T*,27) an
isomorphism of Ko®u Ow -modules 8, : f~ & — &y. The collection {8} is required
to satisfy the cocycle condition.
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Remark 6.3. — If & is a log isocrystal on C™ and (T*, zr) is a log enlargement of ol
such that the formal scheme T is locally Noetherian then one may interpret &rx as a
coherent sheaf on T™€, the rigid analytic space associated to T. Moreover, applying
the results in §6 of [26] one sees that &1 is endowed with an integrable connection

DT . ng — éaxT ®6’T wa/Wxa

where T* = (T,Mrx) and W* is the formal scheme Spf(W) with the trivial log
structure.

Let now k* denote the scheme Spec(k) with trivial log-structure and let W* be
the formal log scheme Spf(W) with trivial log structure. We denote by o be the
absolute Frobenius on k* and on W, respectively. Let us recall that o is the ab-
solute Frobenius on the respective schemes and multiplication by p on the respective
monoids. Let now f : A — B* be a morphism of fine log schemes (or fine formal
log schemes), where B* is either k* or W*. We’ll denote by (A*)? the fiber product
in the category of log schemes of the diagram

A)(
!
B*x %, BX*,

Let now B* be k*, then we denote by F = Fiax gxy: AX — (A*)? the morphism
induced by the pair of maps: f: A* — k* and the map form A* to itself which is
the identity on the underlying topological space, is s — sP on 64 and is multiplication
by p on M4. If now, (T*, 27) is a log enlargement of C™ then (T*,Foz7) is a log
enlargement of (C)? and ((T*)°
If £ is a log isocrystal on C” then we will denote by F*& the log isocrystal on Cc”
such that

,(Fo2r)° ") is again a log enlargement of C .

F éa(Tx,zT) = éa((TX)a_l,(?ozT)"_l)’

Definition 6.4. — A log F-isocrystal on C*isa log isocrystal on o , &, together with
an isomorphism of log isocrystals

F:F&— &

Let C be a curve over V as in Section 2.1 and let P denote a finite collection of
smooth sections of C' over V, such that their image in C is the collection P. By
deformation theory the pair (C, P) may be regarded as the fiber at the point 7 of the
formal model of the open unit disk . over W, of a pair (X, &) consisting of a family
of curves X — . as in Section 2.1 and a smooth divisor & of X. We have a natural
morphism of log schemes zx : (.’f})o — (Cp)o = C” so may regard (X*,2%) (and
any of its fibers above points of %) as a log enlargement of C”. Let now & be a log
F-isocrystal on C”. Denote by X = X8 the rigid analytic space attached to X and
by Px the intersection of the divisor & with X. Let us denote by &%« the evaluation
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of the log F-isocrystal & on (}I;,X ,2%). It is a coherent sheaf of &'x-modules with an
integrable connection

Dx/k, : 6xx — Exx ®ox Qﬁ(/xo (log Px).
Composing D x, g, with the natural projections
Exx Box Wy, (108 Px) — Exx ®px W/, (log(Px UY)) — Exx ®ox Nys(log(Px UY))
we get a relative integrable connection over S

Dx/s 1 E8xx — Exx Qpy Q}X/S(log(PX U Y))

Remark 6.5. — Px UY is a divisor of X with normal crossings and Px NY is a finite
set of smooth points of Y.

Let us consider now, as in Section 2.1, H = Hiz(X/S, &xx (log(Px UY))), for
1 =0, 1,2 with its logarithmic connection

V': Hp — Hp ®0, Q5(log0),

and its Frobenius ®;: ¢*H% — H%. For every point s € S let us denote by P, the
fiber of Px above s and by &5 = &%x|x,. Then we have

a) if s € S — {0} then H*(C;, P,, &) := Hp , = H}p(X,, 65 (log(Ps)))

b) if s = 0 then H'(Y, Py, &) := Hp, = Hyp(Y** /Ko, &), where let us recall
Y ** is the log rigid space Y with inverse image log structure from the one on X
induced by the divisor Px UY.

Lemma 6.6. — Let & be a log isocrystal on C”. Then (6xx,Dx/k,) has the property
that for every residue class M = red~'(z), with x € C — P, of X, the Opr-module
with connection (&xx|nm,Dx/k,) has a basis of horizontal sections.

Definition 6.7. — Let & be a log F-isocrystal on C -, and P a smooth divisor on C.

We say & is regular outside of P if for every vertez v € v(G) and for every closed point
z € C,—P the characteristic polynomials of Frobenii on H, (z,&) and HL, (C. *, &)
are relatively prime. Here C, is the irreducible component of C corresponding to v

and the log structure on —C—: * is the one induced by the divisor (P N C,) USing,.
We have, similarly to Lemma 5.14,

Lemma 6.8. — Let g: Z* — C* be a log smooth, flat and proper morphism, where

the log structure on Z* is given by the fibers of g at the points in P. If H =

R'gu1og—cris(Ozx ), the log F-isocrystal Sym? (#*) is reqular outside of P, fori,j > 0.

Proof. — The proof is very similar to the proof of Lemma 5.14. O
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6.1. Convergent log F-isocrystals. — Fix a smooth divisor P of C. Suppose
from now on that the log F-isocrystal & on C” is regular outside of P. We define
FFM-modules H},, (&) via degeneration, as in Section 2.1 and H}, (&) via integration
as in Section 2.2, for ¢ = 0, 1,2. We only need to explain how the “integration splitting”
s: HY(C,P,&) — HY(C,P,&) is defined. Recall that this splitting is defined in
Section 2.2 in the case P is the void set.

We first need the notion of a convergent log F-isocrystal on a pair (U, Z) consisting
of a one dimensional wide open rigid space and an underlying affinoid with good
reduction. We fix s € S — {0} with residue field L as in section §5.1 and 5.2, and let
U=Uys,Z = Zy, be the admissible open subsets of X, defined in those sections for
some v € v(G). Let U*,Z* denote the log rigid spaces with log structures induced
by &s NU and respectively &; N Z. Let us denote by Ayx = U™ Xgpmr) U the
product in the category of log spaces and let m; : Ayx — U™, i = 1,2 be the natural
projections. Let (M, D) be a pair consisting of a coherent sheaf of &y-modules M
and an integrable connection D : M — M Q¢, Q};« L

We say that (M, D) is a convergent log isocrystal on U™ if the natural isomorphism
w1 (M) = 75 (M) over the diagonal of U* extends to an isomorphism over a tube of
the diagonal of the reduction of U* in Ayx (see Definition 5.4 for the case when &
is void.)

A convergent log F isocrystal on (U*,Z*) is a convergent log isocrystal (M, D)
on U* with the assignment of a horizontal isomorphism Fy : ¢*(M|zt) — M|zt for
every morphism of log spaces ¢ : Z*t — X! which is a lift of Frobenius over k
(see also Definition 5.6 for the case when & is void.) For two such lifts the respective
isomorphisms should satisfy the cocycle relation.

Lemma 6.9. — Let v be a vertex of G and (U*,Z*) be the pair fized above. Then
&slu is a convergent log F-isocrystal on (U*,Z*).

Proof. — The proof is similar to the proof of Lemma 5.7. O

Let us denote by R = red,"'(P) N U.

Lemma 6.10. — Let the notations be as in Lemma 6.9 and denote by (E, D) the con-
vergent log F-isocrystal on (U*,Z*) defined there. Then the restriction of (E, D) to
(U — R,Z — R) is a convergent F-isocrystal in the usual sense.

Proof. — Let us first notice that U — R and Z — R are admissible open subsets of U
and Z respectively. Z — R is actually an affinoid. We may endow both Z — R and
U — R with the induced log structures from U* and denote by (Z — R)*, (U — R)*
the respective log spaces. Then we have

1) The restriction of (E, D) to (U —R)*,(Z — R)*) is a convergent log F-isocrystal
Let us remark that U — R is not a wide-open subset of X, but the pair (U — R, Z — R)
functions as a wide open and an underlying affinoid, i.e. (U —R)—(Z — R) is a disjoint
union of annuli, each contained in a residue class of X. Therefore the definition of a
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convergent log F-isocrystal given above can be extended to the notion of a convergent
log F-isocrystal on ((U — R)*,(Z — R)*™).

2) The log structures on U — R and Z — R induced by U* are trivial.

3) A convergent log F-isocrystal on a pair (U*,Z*), where the log structures on
U* and Z* are trivial is a (usual) convergent F-isocrystal on (U, Z).

The combination of 1), 2) and 3) above proves the lemma. |

Let (E,D) be the convergent log F-isocrystal on the pair (U*,Z*) as in the
Lemma 6.10, then the Theorem 5.12 of Section 5.4 applies to the convergent F-
isocrystal (E,D) on (U — R,Z — R) (here, as we have mentioned above, U — R
is not a wide-open anymore but the theorem works the same way.) More precisely,
let w € Q. ,(E)(U) and denote by [w] its image in H Y(E, D). Using the notations
of Theorem 5.12 we have:

There exists a section o of Ef°(U — R), unique up to a global section of (E|y_r)?,
such that

i) D(a)=w

ii) G(p)(a) € E(U — R).

Having said this let us go back to the splitting s : H(C, P,&) — H!(C,P,&)
and let us recall how it is defined: we take a cohomology class in H'(C, P, &) and
a hypercocycle representing it ((wy)y, (fe)e) as in Section 2.2. Then the image of
this class under s is obtained by integrating the differential forms w, on U, — R,,
for every v € v(@G), and taking differences on their restrictions to A.’s for e € e(G).
Such integrals by the above are defined a priori up to horizontal sections of &, on
U, — R, (recall that C is the fiber of the family X — % at the point s = 7 and
ér = 6ox = Exx|cy-) According to the definition in Section 2.2 we need to show
that such a section extends to a horizontal section of &; on U,. In other words, we
need

Proposition 6.11. — Let & be a log F-isocrystal on C " and fiz a vertez v € v(G).
Then the natural map (restriction) HS. (C,,&) — HO, (C, — P, &) is surjective.
Proof. — Now let again for this proof denote U = U,, and Z = Z, and let (E', D) be
the overconvergent F-isocrystal on U — R defined by &;|y. Let (E, D) be the under-
lying convergent F-isocrystal. It follows that EP is finite dimensional and preserved
by Fy for any lifting ¢ of Frobenius. Let

M= (EP®; Oy_r,1®d) and M' = (EP @, 6], _4,1®d).

Then M has a natural structure of an overconvergent F-isocrystal on U — R and M is
its associated convergent F-isocrystal. It follows from the main theorem of [27] that
the natural map Homp_jso(MT, EY) — Homp_is(M, E) is a bijection. Therefore
the natural inclusion M — E extends uniquely to a morphism Mt — E*, i.e. every
section of EP is overconvergent.
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Suppose Q is an absolutely irreducible point of P. Let T be the corresponding
residue disk and @ = T'N P. Then @ is a regular singular point for the connection D
and is the unique singular point for D in T. In fact, the log-monodromy matrix for
(E|r, D) at Q is nilpotent. Moreover (E|r, D) has a Frobenius structure. Let ¢ be
a parameter on T which vanishes at Q. The main result of [4] implies that (E|r, D)
has a basis By of horizontal sections over Oy (T)iog = Oy (T)[£(t)] (for the notations
see section §5.5, the discussion after the proof of Lemma 5.16.)

Lemma 6.12. — Let W be any annulus in T centered at Q. As the restriction of t
to W is a unit of Oy(W), the restriction of £(t) to W is log(t|w). Then log(t|lw) is
transcendental over Oy(W).

Proof. — Let u = tlw. Suppose F(X) = Y I a;(u)X"® is a polynomial of min-
imal degree over 6y(W) so that F(log(u)) = 0. We may suppose n > 0 and
(ag,ai,...,an) =1. We use the equation F(log(u)) = 0 and

n

Z u) log(u)® + Z ia;(u) log(u) " /u=0

i=1 1=1"

and cancel the terms containing log(u)™. We must have
a;a, — (i + 1)a;y1a,/u — ajan, = 0.

It follows that a,, is a unit which may be supposed to be 1. Thus a!,_; = —n/u which
is impossible. O

Lemma 6.13. — Let W be any annulus in T' centered at Q. Then if f(X) € Ou(W)[X],
f(log(tlw)) does not vanish on any non-empty open set of W unless f = 0.

Corollary 6.14. — With notations as above (Br)|w is a basis for the horizontal sec-
tions of (E|lw, D) over Oy (W )iog.

We can now finish the proof of Proposition 6.11. Suppose g is a horizontal section
of (E,D) over U — R. We know that g is overconvergent i.e. it extends into U by
the above. Thus it restricts to a horizontal section of D on W for an annulus W in
T close to the boundary. By the above corollary it must be a linear combination of
Br|w. Since it is analytic on W the above lemma implies it extends to a horizontal
section across T. We can base extend and assume that P is a union of such points
and see that g extends across U. ]

i.(&) fori =0,1,2.
Let us remark that the same arguments as in Section 2.1 show that V? is the trivial
connection on H, for i = 0,2. For i = 1, as H} is a locally free coherent sheaf of
Os-modules (see [16]), with a connection, whose only singularity (at 0) is regular,
and a Frobenius endomorphism @‘lieg, the main result of [4] referred to above applies.
This, combined with arguments similar to those used in Section 2.1, implies that the
connection V! extended to (H})iog is trivial.

Now we need to compare the FFM-modules Héeg(é’ ) and H}
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Theorem 6.15. — Suppose the filtered, log F-isocrystal & on T s reqular then the
parallel transport isomorphism between (Hp)o ®k, K and (Hp)r yields an isomor-
phism of FFM-modules

HY(8)deg & H (&)int for i =0,1,2.

The proof follows using arguments similar to those in the proof of Theorem 2.6.

7. Applications

7.1. The proof of Theorem 1.1. — We will apply the results of the previous
sections to the following situation: Let K, V,k, 7, Ko, W be as in Section 1. Let C be
a proper curve over V with smooth generic fiber Cx and semi-stable special fiber C
over k. Let g : Z — C be a flat proper morphism and P a reduced flat sub-scheme
of C of dimension 0 over V such that PNSing = @. Let C* be the log formal scheme
over V associated to the pair (C, P) (i.e., the formal completion of C along the special
fiber together with the log structure associated to P as in Section 6.) Let C” be the
log scheme over k which is the special fiber of C* and denote by Dp := g~ (P). Then
Dp is a divisor of Z and we will suppose from now on that it is a reduced divisor with
simple normal crossings and that the restriction of g induces a smooth proper map
(Z—-Dp) — (C—P). Let Z* denote the log formal scheme over V" associated to the
pair (Z, Dp) and we’ll denote by g : Z* — C* the morphism of log formal schemes
induced by g and alsoby g: Z~ — C - its special fiber. From the assumptions made
it follows that g and g are log smooth maps of fine formal log schemes over V (with
trivial log structure.)

Some important examples to keep in mind are:

0) Z = C, g the identity and P = @.

1) C is the complete modular curve classifying semi-stable elliptic curves with
suitable level structure as in Section 1, P is the set of cusps, Z is the generalized
universal elliptic curve.

2) C is the Shimura curve classifying abelian surfaces with quaternionic multipli-
cation and full level structure, P is any finite set of sections which reduce to distinct,
smooth points of C (P may be void), and Z is the universal abelian scheme.

We have the following,

Theorem 7.1. — Fori > 0 there exists a log F-isocrystal & := K0®WRigcris7*ﬁEX/6x
on C" whose evaluation on (C*, zcan), é"éx, is

K Qv Rig*ﬂ.zx/cx = H(;R(ZK/CK’ .ZK/CK(lOgDP))’

and the connection is the Gauss-Manin connection. Here z.qn is the canonical mor-
. % —=X
phism (C*)g — C".

In case (0) above, 69« = O¢.
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Proof. — The log crystalline site on —C—X, log crystals and the higher direct images
of geris are defined in [26], Section 6. These objects satisfy enough of the formal
properties of the corresponding classical objects (i.e., without log structures) so that
the proof follows the proof in [32], Section 3, formally. We will content ourselves to
point out the main steps. In order to simplify the notations for the rest of this proof
we’ll drop the x from the symbols denoting log schemes.

1) If T is a log formal scheme over Spf(W) and let us denote by T3 the closed log
sub-schemes of T of ideal pOr. Let 2. : Ty — C be a morphism of log schemes then
we have the following Cartesian diagram

ZT1 — 7
gr l gl
n = C

As T, and C are log schemes in characteristic p and the ideal p&r has natural divided
powers, we define

&1 = Ko Qw ngT,cris,* ﬁle /Ty
2) Now we’ll define Frobenius. Let F denote the absolute Frobenius of the log-

scheme C over the absolute Frobenius o of k, as in Section 6. Consider the Cartesian
diagram

Z — 7
gl gl
c f T

and one can see that the evaluation of the pullback by Frobenius F~ & on (T, zp) is
given by

(F &) (1.2, = ET.Foozt) = Ko ® ?’T,cris,*ﬁz'n /Ty
The relative Frobenius F /Ty Z — 7 induces an isomorphism
FE/Tl : (F g)(T,za-) = Ko ®w }%ig’ll",cris,*6%;,1 /Ty = Ko Qw RigT,cris,* ﬁ_Z—Tl = g(T,z’T)~

3) Now we will use 1) and 2) above to define the evaluation of & on log enlargements.
Let (T, zr) be a log enlargement of C,i.e., T is a log formal scheme and 27 : Ty — C,
where T} is the closed reduced sub-scheme of T;. Let ¢t : To — T3 be the canonical
morphism. For n >> 0 we have a natural morphism p™ : Ty — Ty such that
vrop™ = Ff and ™o = F7 . Then we define

(go(T»zT) = (g)(T,zTop("))-:
where the right-hand side was defined at 1). If n’ > n, say n’ = n + d we have
et ooy = (B )" OV cropony = 6t srepion,

so the definition is independent of n.
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4) Now, if we consider (C, z¢qn) as a log enlargement of C as g : Z — C is a lift of
g : Z — C, the evaluation of & on it is the relative de Rham cohomology of Z /Ck,
with its Gauss-Manin connection.

We will leave it to the reader to check the various compatibilities required in the
definition of a log F-isocrystal. O

Now, let j > 0 be an integer and let &; :=Sym’&, where & is the log-F-isocrystal
defined in the above mentioned theorem. Let L; := Sym?(Rig.Q,)(j + 1) be the
p-adic étale local system on C' — P associated by the theory in [16] to &;.

Then Theorem 3.2 of [17] and Theorem 6.15 of the present article imply:

Theorem 7.2. — Let C, &; be as at the beginning of the section. Then we have that
the FFM-modules Dy (HZ%((C — P),L;)) and H, (C, &) are naturally isomorphic.

int

Applying this to example (0) above gives a new proof of the main result in [CI]
and applying it to the example in the introduction (i.e. C = X (N, p) etc.) we get,

Corollary 7.3. — If f is a weight j + 2, where j > 0 is an even integer, cuspidal
eigenform for X (N,p) with (N,p) =1 (see Section 1) which is split multiplicative at
p then all the £ -invariants attached to f are equal whenever they are defined. (See
Section 1 for a brief discussion of these £ -invariants.)

Corollary 7.4. — Let C = X(N,p), with (N,p) = 1 and for every j > 0 let & be
the log F-isocrystal on C as in the introduction. The the rank of NI°® acting on

— 1 _
H(}Tis(cx ’ éoj)p—new equals EdimKo H(}ris(cx ) é?.)l’—new'

Proof. — It is enough to calculate the rank over K of Ni®®1x on HL, (C™, & )P~ new
and this follows from the study of the residue map on H},(Ck, &;)P~"* in [C1]. O

As H;n (C, &;) has an explicit description, Theorem 7.2 gives an explicit description
of HL((C — P)%,L;) as a Galois representation. In particular if C is a modular
curve or Shimura curve, we get explicit descriptions of the restriction of the Galois
representation attached to a weight j + 2 eigenforms F' to a decomposition group at
p. Corollary 7.4 implies

Corollary 7.5. — If f is a cuspidal eigenform of weight j+2 > 2 on X (N, p) which is
p-new, the p-adic local Galois representation V; attached to it is semi-stable but not
crystalline.

7.2. Gysin sequences. — Finally, we have another application to our theory,
namely the compatibility of the comparison maps with respect to the p-adic étale,
respectively crystalline Gysin sequences. More precisely, let the notations be as at
the beginning of this section with the difference that K = Kj is unramified over Q,.
Moreover let L be an étale local system and & a regular filtered, F-isocrystal on C,
which are associated as in [16]. Then we have
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Proposition 7.6. — The comparison isomorphisms determine a commutative diagram
of FFM-modules with Gk -action

0 — HL(CrL)®By — HL(C-P)gL)®Bsx — @zeplz(—1)®q, Bs:

| ! !
0 — Hilnt(éa) ® Bst - Hilnt(P’ &) ® By - eazeréaC,z[l] ®k Bt

Proof. — Let us first notice that we have an exact sequence of FFM-modules
0 — Hypy(&8) — Hipy(P,6) ™= @uep be,alll,

where Resp is the residue map with respect to the points in Pk (let us recall from
the Section 2.2 that H} (P,&) = H}z(Ck,6c(log(Pk)) as K-vector spaces.) This
follows from the fact that the following diagram commutes
HY (G, &) = HY (G, &)
u T vl
0 — Hig(Ck,6c) — Hip(Cx,Ec(10g(Pk)) "5 @ucpboqll]

where u,v are either the residues with respect to the family of annuli {A¢}cce(q) or
the integration splittings.

The proposition will follow from the following two facts:

a) We have a commutative diagram of FFM-modules with exact rows (notations
as in Section 2)

0 — Hj(€) — Hyp(PE) — &yepbyyll]
! ! l
0o — Hllnt(éa) I Hilt(Pv éa) — ®zeP5’C,z[1]

n

and
b) We have a commutative diagram of FFM-modules with G k-action

O sl Hgt(C?, ]L) ® Bst — H;t((c - P)?, L) ® Bsc — @IGP]LE(_l) ®Qp Bst

l l l
0 — Hc}eg(é?) ® Bst - Héeg(P» (9@) ® Bst I (ByEPo@@Y,y[l] Rk Bst

To prove a) above let us recall the notations of Section 2, i.e. let X be our family
of curves over S, Px the divisor corresponding to P and ]HII,]HI}, the respective
cohomology sheaves. Then we have a horizontal exact sequence of &s-modules which
is Frobenius equivariant:

Res
(1) 0— ]HII — ]H[}:' lx Cg)(-@XJcan)[l]’

where let us recall zeq, is the map identifying the reduction of Px with P. As
(Px, 2can) is a log-enlargement of P, the crystal E(Px ,zean) 18 trivial. Therefore after
adjoining £(t), we get parallel isomorphisms between the fibers at 0 and 7 of the exact
sequence (1) (let’s recall that H! is free over &) i.e. we get a).
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For b) let us first notice that the left square is commutative as it arises from the
embedding U := C — P C C. Let us prove that the right square is commutative (this
is more or less explicitly contained in Faltings’ papers [17], [16], [15]). U =C — P is
an affine curve over V. Let us fix a geometric generic point 7j of C' and let & denote
the quotient of the Galois group of the maximal cover of C étale over Uk, for which
the inertia at the points in P is p-adic. Let A C ¢ denote the geometric Galois group.
Then H} (Uz, L) & H'(A,Lz) and the Gysin map H} (Ug,L) — @®zeplz(-1) is
the specialization map:

HY(A,Ly) — ©sepH' (I, Lz) = @zepla(-1),

where I; = Z,(1) is the inertia at . Now under the comparison map relating the étale
cohomology of Uz with values in L to the de Rham cohomology of Uk with values
in &, the specialization to inertia at the points in P corresponds to the residue of the
logarithmic differentials at the points with the same reduction in Py (see [15]). O
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