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S M O O T H K -THEORY 

by 

Ulrich Bunke & Thomas Schick 

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday 

Abstract. — In this paper we consider smooth extensions of cohomology theories. 
In particular we construct an analytic multiplicative model of smooth if-theory. 
We further introduce the notion of a smooth X-orientation of a proper submersion 
p: W —• B and define the associated push-forward p\ : K(W) —• K(B). We show 
that the push-forward has the expected properties as functoriality, compatibility with 
pull-back diagrams, projection formula and a bordism formula. 

We construct a multiplicative lift of the Chern character ch : K(B) —» H(B,Q), 
where H(B, Q) denotes the smooth extension of rational cohomology, and we show 
that ch induces a rational isomorphism. 

If p: W —• B is a proper submersion with a smooth K-orientation, then we define 
a class A(p) G Hev(W,Q) (see Lemma 6.17) and the modified push-forward pf := 
p\{A{p) U . . . ) : H(W, Q) —• H(B, Q). One of our main results lifts the cohomological 
version of the Atiyah-Singer index theorem to smooth cohomology. It states that 
pf- o ch = ch o p\. 

Résumé (K-théorie différentiable). — Dans cet article, nous considérons des extensions 
différentielles des théories cohomologiques. En particulier, nous construisons un mo­
dèle analytique multiplicatif de la K-théorie différentielle. Nous introduisons les K-
orientations différentielles d'une submersion propre p: W —• B. Nous contruisons 
une application d'intégration associée: p\: K(W) —+ K{B)\ et nous démontrons les 
propriétés attendues, telles que la fonctorialité, la compatibilité aux pull-backs, des 
formules de projection et de bordisme. 

Nous construisons un relèvement multiplicatif du caractère de Chern ch : K(B) —> 
H(B,Q), où ^(B,Q).est une extension différentielle de la cohomologie rationnelle, 
et nous démontrons que ch induit un isomorphisme rationnel. 

Si p: W —• B est une submersion propre munie d'une if-orientation différentielle, 
nous définissons une classe A(p) G Hev(W,Q) (compare Lemma 6.17) et une appli­
cation d'intégration modifiée pf := p\(A(p) U . . . ) : H(W,Q) —• H(B,Q). L'un de 
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46 U. BUNKE & T. SCHICK 

nos résultats principaux est une version en cohomologie différentielle du théorème 
d'indice d'Atiyah-Singer, pour laquelle pf o ch = ch op,. 

1. Introduction 

1.1. The main results 

1.1.1. — In this paper we construct a model of a smooth extension of the general­
ized cohomology theory K, complex if-theory. Historically, the concept of smooth 
extensions of a cohomology theory started with smooth integral cohomology [24], also 
called real Deligne cohomology, see [16]. A second, geometric model of smooth inte­
gral cohomology is given in [24], where the smooth integral cohomology classes were 
called differential characters. One important motivation of its definition was that one 
can associate natural differential characters to hermitean vector bundles with con­
nection which refine the Chern classes. The differential character in degree two even 
classifies hermitean line bundles with connection up to isomorphism. The multiplica­
tive structure of smooth integral cohomology also encodes cohomology operations, see 
[29]. 

The holomorphic counterpart of the theory became an important ingredient of 
arithmetic geometry. 

1.1.2. — Motivated by the problem of setting up lagrangians for quantum field theo­
ries with differential form field strength it was argued in [27], [26] that one may need 
smooth extensions of other generalized cohomology theories. The choice of the gener­
alized cohomology theory is here dictated by a charge quantization condition, which 
mathematically is reflected by a lattice in real cohomology. Let N be a graded real 
vector space such that the field strength lives in Qd=o(B)<S>N, the closed forms on the 
manifold B with coefficients in N. Let L(B) C H(B,N) be the lattice given by the 
charge quantization condition on B. Then one looks for a generalized cohomology the­
ory ft and a natural transformation c : h(B) —> H(B,N) such that c(h(B)) = L(B). 
It was argued in [27], [26] that the fields of the theory should be considered as cycles 
for a smooth extension ft of the pair (ft, c). For example, if N = R and the charge 
quantization leads to L(B) = im(H(B,Z) —• H(B,R)), then the relevant smooth 
extension could be the smooth integral cohomology theory of [24]. 

In Subsection 1.2 we will introduce the notion of a smooth extension in an axiomatic 
way. 

1.1.3. — [26] proposes in particular to consider smooth extensions of complex and 
real versions of If-theory. In that paper it was furthermore indicated how cycle models 
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of such smooth extensions could look like. The goal of the present paper is to carry 
through this program in the case of complex if-theory. 

1.1.4. — In the remainder of the present subsection we describe, expanding the 
abstract, our main results. The main ingredient is a construction of an analytic 
model of smooth if-theory, also called differentiable if-theory by some authors, using 
cycles and relations. 

1.1.5. — Our philosophy for the construction of smooth if-theory is that a vector 
bundle with connection or a family of Dirac operators with some additional geometry 
should represent a smooth if-theory class tautologically. In this way we follow the 
outline in [26]. Our class of cycles is quite big. This makes the construction of smooth 
if-theory classes or transformations to smooth if-theory easy, but it complicates the 
verification that certain cycle level constructions out of smooth if-theory are well-
defined. The great advantage of our choice is that the constructions of the product 
and the push-forward on the level of cycles are of differential geometric nature. 

More precisely we use the notion of a geometric family which was introduced in [19] 
in order to subsume all geometric data needed to define a Bismut super-connection 
in one notion. A cycle of the smooth if-theory K (B) of a compact manifold B is 
a pair (5, p) of a geometric family S and an element p G Ct(B)/±m(d), see Section 
2. Therefore, cycles are differential geometric objects. Secondary spectral invariants 
from local index theory, namely 77-forms, enter the definition of the relations (see 
Definition 2.10). The first main result is that our construction really yields a smooth 
extension in the sense of Definition 1.1. 

1.1.6. — Our smooth if-theory K(B) is a contravariant functor on the category of 
compact smooth manifolds (possibly with boundary) with values in the category of 
Z/2Z-graded rings. This multiplicative structure is expected since if-theory is a mul­
tiplicative generalized cohomology theory, and the Chern character is multiplicative, 
too. As said above, the construction of the product on the level of cycles (Defini­
tion 4.1) is of differential-geometric nature. Analysis enters the verification of well-
definedness. The main result is here that our construction produces a multiplicative 
smooth extension in the sense of Definition 1.2. 

1.1.7. — Let us consider a proper submersion p: W —> B with closed fibres which 
has a topological if-orientation. Then we have a push-forward p\: K(W) —> if (#), 
and it is an important part of the theory to extend this push-forward to the smooth 
extension. 

For this purpose one needs a smooth refinement of the notion of a if-orientation 
which we introduce in 3.5. We then define the associated push-forward p\: K{W) —• 
if (£), again by a differential-geometric construction on the level of cycles (17). We 
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48 U. BUNKE & T. SCHICK 

show that the push-forward has the expected properties: functoriality, compatibility 
with pull-back diagrams, projection formula, bordism formula. 

1.1.8. — Let V = (V, hv,Vv) be a hermitean vector bundle with connection. In 
[24] a smooth refinement ch(V) € H(B, Q) of the Chern character was constructed. 
In the present paper we construct a lift of the Chern character ch: K(B) —> H(B, Q) 
to a multiplicative natural transformation of smooth cohomology theories (see (30)) 

ch: i f ( £ ) - + # ( £ , Q ) 

such that ch(V) = ch([V, 0]), where V is the geometric family determined by V. We 
prove in Proposition 6.12 that the Chern character induces a natural isomorphism of 
Z/2Z-graded rings K(B) ® Q ̂  H(B,Q). 

1.1.9. — If p: W —> B is a proper submersion with a smooth if-orientation, then we 
define a class (see Lemma 6.17) Alp) G Hev(W,Q) and the modified push-forward 

pf :=pl(A(p)U'"): ff(W,Q)-ff(B,Q). 

Our index theorem 6.19 lifts the characteristic class version of the Atiyah-Singer index 
theorem to smooth cohomology. It states that the following diagram commutes: 

K(W)-^H(W,Q) 

v ~ y 
K(B)—^H(B,Q). 

1.1.10. — In Subsection 1.2 we present a short introduction to the theory of smooth 
extensions of generalized cohomology theories. In Subsection 1.3 we review in some 
detail the literature about variants of smooth if-theory and associated index theorems. 
In Section 2 we present the cycle model of smooth if-theory. The main result is 
the verification that our construction satisfies the axioms given below. Section 3 is 
devoted to the push-forward. We introduce the notion of a smooth If-orientation, and 
we construct the push-forward on the cycle level. The main results are that the push-
forward descends to smooth if-theory, and the verification of its functorial properties. 
In Section 4 we discuss the ring structure in smooth if-theory and its compatibility 
with the push-forward. Section 5 presents a collection of natural constructions of 
smooth if-theory classes. In Section 6 we construct the Chern character and prove 
the smooth index theorem. 

1.2. A short introduction to smooth cohomology theories 

1.2.1. — The first example of a smooth cohomology theory appeared under the name 
Cheeger-Simons differential characters in [24]. Given a discrete subring R C l w e have 
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a functor B i~> H(B,R) from smooth manifolds to Z-graded rings. It comes with 
natural transformations 

1. R: H(B,R) -> nd=0(B) (curvature) 
2. I: H(B,R) -> H(B,R) (forget smooth data) 
3. a: fi(J5)/im(d) -+ H(B,R) (action of forms). 

Here fi(B) and ild=o{B) denote the space of smooth real differential forms and its 
subspace of closed forms. The map a is of degree 1. Furthermore, one has the following 
properties, all shown in [24]. 

1. The following diagram commutes 

H(B,R)—^Я(Я.Н) 

Я R->K 

П « ( В ) - ^ Я ( В , 1 ) , H(B,R) 

where dR is the de Rham homomorphism. 
2. R and / are ring homomorphisms. 
3. R o a = d, 
4. a(u) Ux = a(u;A R(x)), Vz G H(B,R), Vu; G fi(B)/im(d), 
5. The following sequence is exact: 

(1) H(B,R) -> îl(B)/im(d) A H(B,R) H(B,R) 0. 

1.2.2. — Cheeger-Simons differential characters are the first example of a more gen­
eral structure which is described for instance in the first section of [26]. In view of 
our constructions of examples for this structure in the case of bordism theories and 
if-theory, and the presence of completely different pictures like [31] we think that an 
axiomatic description of smooth cohomology theories is useful. 

Let TV be a Z-graded vector space over R. We consider a generalized cohomology 
theory h with a natural transformation of cohomology theories c: h(B) —> H(B,N). 
The natural universal example is given by N := h* 0 R, where c is the canonical 
transformation. Let f2(JB, N) :— Q(B)®RN. TO a pair (h, c) we associate the notion of 
a smooth extension h. Note that manifolds in the present paper may have boundaries. 

Definition 1.1. — A smooth extension of the pair (h, c) is a functor B —• h(B) from 
the category of compact smooth manifolds to Z-graded groups together with natural 
transformations 

1. R: h(B) -> QD=0(B,N) (curvature) 
2. I : h(B) —> h(B) (forget smooth data) 

(x) In the literature, this group is sometimes denoted by H(B,R/K), possibly with a degree-shift by 
one. 
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50 U. BUNKE & T. SCHICK 

3. a: fi(S,JV)/im(d) -> h(B) (action of forms). 

These transformations are required to satisfy the following axioms: 

1. The following diagram commutes 

h(B) ^ h(B) 

R c 

Sld=0(B,N)^^H(B,N). 

2. We have 

(2) R o a = d. 

3. a is of degree 1. 
4. TTie following sequence is exact: 

(3) h(B) A Çi(B,N)/im(d) Д h(B) A h(B) -> 0. 

The Cheeger-Simons smooth cohomology B i-> H(B,R) considered in 1.2.1 is the 
smooth extension of the pair (H(... , R),i), where i: H(B,R) —> //"(B,R) is induced 
by the inclusion R —• R. The main object of the present paper, smooth if-theory, 
is a smooth extension of the pair (if, ch^), and we actually work with the obvious 
Z/2Z-graded version of these axioms. 

1.2.3. — If h is a multiplicative cohomology theory, then one can consider a Z-graded 
ring N over R and a multiplicative transformation c: h(B) —» H(B,N). In this case 
is makes sense to talk about a multiplicative smooth extension h of (h,c). 

Definition 1.2. — A smooth extension h of (h, c) is called multiplicative, if h together 
with the transformations R,I,a is a smooth extension of(h,c), and in addition 

1. h is a functor to Z-graded rings, 
2. R and I are multiplicative, 
3. a(w) Ux = a(uj A R(x)) for x € h(B) and u e Q,(B, N)/±m(d). 

The smooth extension H(..., R) of ordinary cohomology H(..., R) with coefficients 
in a subring R C R considered in 1.2.1 is multiplicative. The smooth extension if of 
if-theory which we construct in the present paper is multiplicative, too. 

1.2.4. — Consider two pairs (hi,Ci), i = 0,1 as in 1.2.2 and a transformation of 
generalized cohomology theories u: ho —• hi such that c\ oh = Co- Then we define the 
notion of a natural transformation of smooth cohomology theories which refines u. 
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Definition 1.3. — A natural transformation of smooth extensions u: ho hi which 
refines u is a natural transformation u: ho(B) —• h\(B) such that the following dia­
gram commutes: 

Sl(B,N)/iM(d)- ^ho(B) 

û 
y 

(ì(B,N)/im(d)- ^h^B) 

R 

h0(B) 

U 

- ^ f t i ( B ) 

R 

Sl(B,N)/iM(d)-
Sl(B,N)/iM(d)-

Our main example is the Chern character ch: K(B) —» H(B,Q) which refines the 
ordinary Chern character ch: K(B) —• H(B, Q). The Chern character and its smooth 
refinements are actually multiplicative. 

1.2.5. — One can show that two smooth extensions of (H(... ,R),i) are canonically 
isomorphic (see [44] and [22, Section 4]). There is no uniqueness result for arbitrary 
pairs (/i, c). Appropriate examples in the case of K-theory are presented in [22, 
Section 6]. In order to fix the uniqueness problem one has to require more conditions, 
which are all quite natural. 

The projection pr2 : 5
1 x B —> B has a canonical smooth K-orientation (see 4.3.2 

for details). Hence we have a push-forward (pr2)i : K(SX x 5 ) -> K(B) (see Definition 
3.18). This map plays the role of the suspension for the smooth extension. It is natural 
in B. and the following diagram commutes (see Proposition 3.19) 

(4) x B)/im(d) — 

«/s1 XB/B 

Q(B)/±m(d) — 

• KiS1 x B) K(B) 

(Pr2)! (Pr

2! 
V V 

— K{B)—K{B) 

R 

R 

tliS1 x B) 

f 
J S1xB/B 
V 

Furthermore, it satisfies (see 4.6) 

(5) (Pr2)l °P r2 = 0-

We have the following theorem, also discovered by Wiethaup. 

Theorem 1.4 ([22, Section 3, Section 4]). — There is a unique (up to isomorphism) 
smooth extension of the pair (K, ch )̂ for which in addition the push-forward along 
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pr2: S1 x B ^ B is defined, is natural in B, satisfies (5), and is such that (4) 
commutes. If we require the isomorphism to preserve (pr2)!, then it is also unique. 

1.2.6. — The theory of [31] gives the following general existence result. 

Theorem 1.5 ([31]). — For every pair (ft, c) of a generalized cohomology theory and a 
natural transformation ft —» HN there exists a smooth extension ft in the sense of 
Definition 1.1. 

A similar general result about multiplicative extensions is not known. Besides 
smooth extensions of ordinary cohomology and if-theory we have a collection of 
multiplicative extensions of bordism theories, again by an an explicit construction in 
a cycle model. The details can be found in [23]. 

1.2.7. — Let us now assume that (ft, c) is multiplicative, and that ft is a multiplicative 
smooth extension of the pair (ft, c). Let p: W —> B be a proper submersion with closed 
fibres. An ft-orientation of p is given by a collection of compatible choices of ft-Thom 
classes on representatives of the stable normal bundle of p. Equivalently, we can fix 
a Thorn class on the vertical tangent bundle, and we will adopt this point of view in 
the present paper. If p is ft-oriented, then we have a push-forward p\: h(W) —> h(B). 
It is an inportant question for applications and calculations how one can lift the 
push-forward to the smooth extensions. 

In the case of smooth ordinary cohomology with coefficients in R it turns out that 
an ordinary orientation of p suffices in order to define p\: H(W, R) —> H(B, R). This 
push-forward has been considered e.g. in [16], [25], [35]. We refer to 6.1.1 for more 
details. 

A push-forward for more general pairs (ft, c) has been considered in [31] without a 
discussion of functorial properties. 

1.2.8. — The philosophy in the present paper is that the push-forward in if-theory 
is realized analytically using families of fibre-wise Dirac operators. Therefore, in the 
present paper a smooth if-orientation is given by a collection of geometric data which 
allows to define the push-forward on the level of cycles, which are given by families of 
Dirac type operators. We add a differential form to the data in order to capture the 
behaviour under deformations. 

1.2.9. — We have cycle models of multiplicative smooth extensions of bordism the­
ories Q G , where G in particular can be SO, Spin, U, Spin0, see [23]. In these ex­
amples the natural transformation c is the genus associated to a formal power series 
cf>(x) = 1 + a\x + . . . with coefficients in some graded ring. These bordism theories 
admit a theory of orientations and push-forward which is very similar to the case of 
if-theory. Concerning the product and the integration bordism theories turn out to 
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be much simpler than ordinary cohomology. Motivated by this fact, in a joint project 
with M. Kreck we develop a bordism like version of the smooth extension of integral 
cohomology based on the notion of orientifolds. 

We also have an equivariant version of the theory of the present paper for finite 
groups which will be presented in a future publication. 

1.3. Related constructions 

1.3.1. — Recall that [31] provides a topological construction of smooth if-theory. In 
this subsection we review the literature about analytic variants of smooth if-theory 
and related index theorems. Note that we will completely ignore the development of 
holomorphic variants which are more related to arithmetic questions than to topology. 
This subsection will use the language which is set up later in the paper. It should be 
read in detail only after obtaining some familiarity with the main definitions (though 
we tried to give sufficiently many forward references). 

1.3.2. — Let p: W —• B be a proper submersion with closed fibres. To give a if-
orientation of p is equivalent to give a Spmc-structure on its vertical bundle Tvp. 
The if-orientation of p yields, by a stable homotopy construction, a push-forward 
p\: K(W) —• K{B). Let A(Tvp) denote the A-class of the vertical bundle, and let 
ci(L 2) e H2(W,Z) be the cohomology class determined by the 5pmc-structure (see 
3.1.6). The "index theorem for families" in the characteristic class version states that 

ch(p\(x)) = 
'W/B 

Â ( T » U e ^ C l ( L 2 ) U c h ( a ; ) , Vx € K(W). 

If one realizes the push-forward in an analytic model, then this statement is indeed 
an index theorem for families of Dirac operators. 

1.3.3. — The cofibre of the map of spectra if —> iJR induced by the Chern character 
represents a generalized cohomology theory ifR/Z, called R/Z-if-theory. It is a 
module theory over if-theory and therefore also admits a push-forward for if-oriented 
proper submersions. This push-forward is again defined by constructions in stable 
homotopy theory. An analytic/geometric model of R/Z-if-theory was proposed in 
[32], [33]. This led to the natural question whether there is an analytic description 
of the push-forward in R/Z-if-theory. This question was solved in [37]. The solution 
gives a topological interpretation of p-invariants. 

Furthermore, in [37] a Chern character from R/Z-if-theory to cohomology with 
R/Q-coefficients has been constructed, and an index theorem has been proved. 

Let us now explain the relation of these constructions and results with the present 
paper. In the present paper we define the flat theory K^t{B) as the kernel of the 
curvature R: K(B) —> f&d=0(i?). It turns out that iffla t(i?) is isomorphic to KR/Z(B) 
up to a degree-shift by one (Proposition 2.25). One can actually represent all classes 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



54 U. BUNKE & T. SCHICK 

of K^&t(B) by pairs (5, p), where 8 is a geometric family with zero-dimensional fibre 
(see 2.1.4). If one restricts to these special cycles, then our model of K^at(B) and the 
model of i f R / Z " 1 ^ ) of [37] coincide. 

By an inspection of the constructions one can further check that the restriction of 
our cycle level push-forward (17) to these particular flat cycles is the same as the one 
in [37]. At a first glance our push-forward of flat classes seems to depend on a smooth 
refinement of the topological if-orientation of the map p, but it is in fact independent 
of these geometric choices as can be seen using the homotopy invariance of the flat 
theory. The comparison with [37] shows that the restriction of our push-forward to 
flat classes coincides with the homotopy theorists' one. 

The restriction of our smooth lift of the Chern character ch: K(B) —> H(B,Q) 
(see Theorem 6.2) to the flat theories exactly gives the Chern character of [37] 

c h : i W £ ) ^ # f l a t ( # , Q ) 

(using our notation and the isomorphism of H^t(B) = H* 1(B, R/Q)). If we restrict 
our index theorem 6.19 to flat classes, then it specializes to 

ch(p\(x)) -
Jw/B 

Â ( T » U e ^ C l ( L 2 ) U c h ( x ) , Vx G K(W) 

and this is exactly the index theorem of [37]. 
In this sense the present paper is a direct generalization of [37] from the flat to the 

general case. 

1.3.4. — The analytic model of R/Z-if-theory and the analytic construction of the 
push-forward in [37] fits into a series of constructions of homotopy invariant functors 
with a push-forward which encodes secondary spectral invariants. Let us mention the 
two examples in [38] which are based on flat bundles or flat bundles with duality, 
respectively. The spectral geometric invariants in these examples are the analytic 
torsion forms of [15] and the 77-forms introduced e.g. in [12]. The functoriality of the 
push-fowards under compositions is discussed in [18] and [21]. But these construction 
do not fit (at least at the moment) into the world of smooth cohomology theory, and 
it is still an open problem to interpret the push-forward in topological terms. 

Let us also mention the paper [43] devoted to smooth lifts of Chern classes. 

1.3.5. — In [9], [8] several variants of functors derived from if-theory are considered. 
In the following we recall the names of these groups used in that reference and explain, 
if possible, their relation with the present paper. 

1. relative if-theory if r ei: the cycles are triples (V, V v , / ) of Z/2Z-graded flat 
vector bundles and an odd selfadjoint bundle automorphism / (which need not 
be parallel). 
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2. free multiplicative if-theory Kch (also called transgressive in [8]): it is essen­
tially (2) a model of if 0 based on cycles of the form (5, p), where & is a geometric 
family with zero-dimensional fibre coming from a geometric vector bundle (see 
2.1.4). 

3. multiplicative if-theory Mif: it is the same model of iffla t as in [37], see 1.3.3. 
4. flat if-theory ifflat- it is the Grothendieck group of flat vector bundles. 

Besides the definition of these groups and the investigation of their interrelation the 
main topic of [9], [8] is the construction of push-forward operations. In the following 
we will only discuss multiplicative and transgressive if-theory since they are related 
to the present paper. The difference to the constructions of [37] and the present paper 
is that Berthomiau's analytic push-forward (which we denote here by pf) does not 
use the £pmc-Dirac operator but the fibre-wise de Rham complex. Prom the point 
of view of analysis the difference is essentially that the class A(Tvp) Ue^Cl^L ) or the 
corresponding differential form has to be replaced by the Euler class E(Tvp) or the 
Euler form of the vertical bundle. 

The advantage of working with the de Rham complex is that in order to define the 
push-forward pf one does not need a .Spinc-structure. If there is one, then one can 
actually express pf in terms of p\ as 

pf{x) = p\(xUs*), 

where s* € K(W) is the class of the dual of the spinor bundle Sc(Tvp), or the K(W)-
class represented by the geometric version of this bundle in the case of transgressive 
if-theory, respectively. The point here is that the Dirac operator induced by the de 
Rham complex is the 5pmc-Dirac operator twisted by Sc(Tvp)*. 

As said above, the homotopy theorists' p\ is the push-forward associated to a if-
orientation of p. In contrast, the homotopy theorists' version of pf is the Gottlieb-
Becker transfer. 

The motivation of [9] , [8] to define the push-forward with the de Rham complex 
is that it is compatible with the push-forward for flat if-theory. The push-forward of 
a flat vector bundle is expressed in terms of fibre-wise cohomology which forms again 
a flat vector bundle on the base. This additional structure also plays a crucial role in 
[38], [15], [18], and [21]. If one interprets the push-forward using the 5pmc-calculus, 
then the flat connection is lost. Let us mention that the first circulated version of the 
present paper predates the papers [9] , [8] which actually adapt some of our ideas. 

1.3.6. — The topics of [11] are two index theorems involving H(B, Q)-valued char­
acteristic classes. Here we only review the first one, since the second is related to flat 

(2) The connections are not assumed to be hermitean and the corresponding differential forms have 
complex coefficients. 
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vector bundles. (Compare also [39] for a "flat version"). Let us formulate the result 
of [11] in the language of the present paper. 

Let p: W —> B be a proper submersion with closed fibres with a fibre-wise spin-
structure over a compact base B. The spin structure induces a .Spmc-structure, 
and we choose a representative of a smooth if-orientation o := (gTVp, Thp, V, 0), 
where V is indeed from the Levi-Civita connection on Tvp (see 3.1.9 for details). Let 
V = (V,hv, V y ) be a geometric vector bundle over W with associated geometric 
family V (compare 2.1.4). Then we can form the geometric family S := p\V (see 3.7) 
over B. 

The family of Dirac operators D(£) acts on sections of a bundle of Hilbert spaces 
H(&) —+ B. The geometric structures of the if-orientation o and V induce a connec­
tion V H ' ^ (it is the connection part of the Bismut superconnection [7, Prop. 10.15] 
associated to this situation). We assume that the family of Dirac operators of D(&) 
has a kernel bundle if := ker(£>(<§)). This bundle has an induced metric hK. The 
projection of V f f ^ ' to if gives a hermitean connection VK. We thus get a geometric 
bundle K := (if, hK,VK), and an associated geometric family dC (see 5.3.1). The 
index theorem in [11] calculates the smooth Chern character ch(K) £ H(B,Q) of 
[24] and states: 

ch(K) = p,(Â(Tvp) U ch(V)) + a(V

BC(S)), 

where we refer to (33) and 5.3.3 for notation. 
Note that this theorem could also be derived from our index Theorem 6.19. By 

Corollary 5.5, (17) , our special choice of o, and Theorem 6.19 (the marked step) we 
have 

ch(K) - a(riBC(S)) = ch[^,7?BC(<S)] = ch[5,0] = chflpi V,0]) = ch(p!([y,0])) 

A P^(ch(V)) = P!(i(T vp) U ch(V)). 

Acknowledgement. — We thank Moritz Wiethaup for explaining to us his insights 
and result. We further thank Mike Hopkins and Dan Freed for their interest in this 
work and many helpful remarks. We thank the referee for many helpful comments 
which lead to considerable improvements of the exposition. 

2. Definition of smooth if-theory via cycles and relations 

2.1. Cycles 

2.1.1. — One goal of the present paper is to construct a multiplicative smooth ex­
tension of the pair (if, ch )̂ of the multiplicative generalized cohomology theory if, 

ch 
complex if-theory, and the composition ch^ : if —> HQ —• HR of the Chern charac­
ter with the natural map from ordinary cohomology with rational to real coefficients 
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induced by the inclusion Q —• R. In this section we define the smooth if-theory 
group K(B) of a smooth compact manifold, possibly with boundary, and construct 
the natural transformations R, I, a. The main result of the present section is that 
our construction really yields a smooth extension in the sense of Definition 1.1. Wi 
discuss the multiplicative structure in Section 4. 

Our restriction to compact manifolds with boundary is due to the fact that we 
work with absolute if-groups. One could in fact modify the constructions in order 
to produce compactly supported smooth if-theory or relative smooth if-theory. But 
in the present paper, for simplicity, we will not discuss relative smooth cohomology 
theories. 

2.1.2. — We define the smooth if-theory K(B) as the group completion of a quotient 
of a semigroup of isomorphism classes of cycles by an equivalence relation. We start 
with the description of the cycles. 

Definition 2.1. — Let B be a compact manifold, possibly with boundary. A cycle for 
a smooth K-theory class over B is a pair (<§, p), where S is a geometric family, and 
p G Q,(B)/±m(d) is a class of differential forms. 

2.1.3. — The notion of a geometric family has been introduced in [19] in order to 
have a short name for the data needed to define a Bismut super-connection [7, Prop. 
10.15]. For the convenience of the reader we are going to explain this notion in some 
detail. 

Definition 2.2. — A geometric family over B consists of the following data: 

1. a proper submersion with closed fibres n: E —•> B, 
2. a vertical Riemannian metric gTVn, i.e. a metric on the vertical bundle TV/K C 

TE, defined as Tvir := ker(d7r: TE -> ir*TB). 
3. a horizontal distribution Th7r, i.e. a bundle Th7r C TE such that Th7T 0 Tv7r = 

TE. 
4. a family of Dirac bundles V —> E, 
5. an orientation ofTvir. 

Here, a family of Dirac bundles consists of 

1. a hermitean vector bundle with connection (V, Vv, hv) on E, 
2. a Clifford multiplication c: TVTT <g> V -» V, 
3. on the components where dim(Tv7r) has even dimension a Z/2Z-grading z. 

We require that the restrictions of the family Dirac bundles to the fibres Eb := 7r-1(&), 
b G B, give Dirac bundles in the usual sense (see [19, Def. 3.1]): 

1. The vertical metric induces the Riemannian structure on Eb, 
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2. The Clifford multiplication turns V\EH into a Clifford module (see [7, Def.3.32]) 
which is graded if dim(£"&) is even. 

3. The restriction of the connection Vv to is a Clifford connection (see [7, 
Def.3.39]). 

A geometric family is called even or odd, if dim(Tv7r) is even-dimensional or odd-
dimensional, respectively. 

2.1.4. — Here is a simple example of a geometric family with zero-dimensional fibres. 
Let V —> B be a complex Z/2Z-graded vector bundle. Assume that V comes with a 
hermitean metric hv and a hermitean connection Vv which are compatible with the 
Z/2Z-grading. The geometric bundle (V, hv, V y ) will usually be denoted by V. 

We consider the submersion n := id#: B —> B. In this case the vertical bundle 
is the zero-dimensional bundle which has a canonical vertical Riemannian metric 
gTV7r := 0, and for the horizontal bundle we must take Thir := TB. Furthermore, there 
is a canonical orientation of p. The geometric bundle V can naturally be interpreted 
as a family of Dirac bundles on B —• B. In this way V gives rise to a geometric family 
over B which we will usually denote by c ] / . 

2.1.5. — In order to define a representative of the negative of the smooth if-theory 
class represented by a cycle (S,p) we introduce the notion of the opposite geometric 
family. 

Definition 2.3. — The opposite £op of a geometric family £ is obtained by reversing the 
signs of the Clifford multiplication and the grading (in the even case) of the underlying 
family of Clifford bundles, and of the orientation of the vertical bundle. 

2.1.6. — Our smooth if-theory groups will be Z/2Z-graded. On the level of cycles 
the grading is reflected by the notions of even and odd cycles. 

Definition 2.4. — A cycle (<§, p) is called even (or odd, resp.), if £ is even (or odd, 

resp.) and p e ftodd(B)/im(d) ( or p G Oev'(B)/'im(d), resp.). 

2.1.7. — Let £ and £' be two geometric families over B. An isomorphism £ £' 

consists of the following data: 

V *V 

f 1 
E 

B 

where 
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1. / is a diffeomorphism over B, 
2. F is a bundle isomorphism over / , 
3. / preserves the horizontal distribution, the vertical metric and the orientation. 
4. F preserves the connection, Clifford multiplication and the grading. 

Definition 2.5. — Two cycles (<§, p) and {&' ,p') are called isomorphic if 6 and &' are 
isomorphic and p = p'. We let G*(B) denote the set of isomorphism classes of cycles 
over B of parity * G {ev,odd}. 

2.1.8. — Given two geometric families & and &' we can form their sum &UB &' over B. 
The underlying proper submersion with closed fibres of the sum is nUn' : EUE' —» JB. 
The remaining structures of S Us £' are induced in the obvious way. 

Definition 2.6. — The sum of two cycles (6,p) and (6*,p') is defined by 

(S,p) + (6',p') := (6uB6',p + p'). 

The sum of cycles induces on G* (B) the structure of a graded abelian semigroup. 
The identity element of G*(B) is the cycle 0 := (0,0), where 0 is the empty geometric 
family. 

2.2. Relations 

2.2.1. — In this subsection we introduce an equivalence relation ~ on G*(B). We 
show that it is compatible with the semigroup structure so that we get a semigroup 
G*(B)/ rsjm We then define the smooth if-theory K*(B) as the group completion of 
this quotient. 

In order to define ~ we first introduce a simpler relation "paired" which has a 
nice local index-theoretic meaning. The relation ~ will be the equivalence relation 
generated by "paired". 

2.2.2. — The main ingredients of our definition of "paired" are the notions of a taming 
of a geometric family S introduced in [19, Def. 4.4], and the 77-form of a tamed family 
[19, Def. 4.16]. 

In this paragraph we shortly review the notion of a taming. For the definition of 
eta-forms we refer to [19, Sec. 4.4]. In the present paper we will use 77-forms as a 
black box with a few important properties which we explicitly state at the appropriate 
places below. 

If & is a geometric family over B, then we can form a family of Hilbert spaces 
(Hb)beB, where Hb := L2(Eb, V\Eb). If S is even, then this family is in addition Z/2Z-
graded. The geometric family S gives rise to a family of Dirac operators (D(&B))BEB, 
where D(6b) is an unbounded selfadjoint operator on Hb, which is odd in the even 
case. 
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A pre-taming of S is a family (Qb)beB of selfadjoint operators Qb G B(Hb) given 
by a smooth fibrewise integral kernel Q G C°°(E x# E, V ^ V*). In the even case we 
assume in addition that Qb is odd, i.e. that it anticommutes with the grading z. The 
pre-taming is called a taming if D(Sb) + Qb is invertible for all b G B. 

The family of Dirac operators (D(Sb))beB has a if-theoretic index which we denote 
by index(£) G K(B). If the geometric family S admits a taming, then the associated 
family of Dirac operators operators admits an invertible compact perturbation, and 
hence index(<§) = 0. Vice versa, if INDEX(S) = 0 and the even part is empty or has 
a component with dim(Tv7r) > 0, then by [19, Lemma. 4.6] the geometric family 
admits a taming. 

If the even part of S has zero-dimensional fibres, then the existence of a taming 
may require some stabilization. This means that we must add a geometric family 
V U B ^ (see 2.1.4 and Definition 2.3), where V is the bundle B x C n -> B for 
sufficiently large n. 

2.2.3. 

Definition 2.7. — A geometric family 6 together with a taming will be denoted by St 

and called a tamed geometric family. 

Let St be a taming of the geometric family S by the family (Qb)beB-

Definition 2.8. — The opposite tamed family S°p is given by the taming (—Qb)beB of 

<Sop. 

2.2.4. — The local index form £1(6) G £l(B) is a differential form canonically as­
sociated to a geometric family. For a detailed definition we refer to [19, Def..4.8], 
but we can briefly formulate its construction as follows. The vertical metric Tv7r and 
the horizontal distribution Thir together induce a connection VTVN on Tvn (see 3.1.3 
for more details). Locally on E we can assume that Tvn has a spin structure. We 
let S(TVTT) be the associated spinor bundle. Then we can write the family of Dirac 
bundles V as V = S 0 W for a twisting bundle (W, hw, V w , zw) with metric, metric 
connection, and Z/2Z-grading which is determined uniquely up to isomorphism. The 
form A(VTVN) A ch(V^) G £l(E) is globally defined, and we get the local index form 
by applying the integration over the fibre LEjB: £l(E) —> Q(B): 

n(S) := 
JE/B 

i (V T V 7 r )Ach (V^) . 

The local index form is closed and represents a cohomology class [fi(<S)] G HdR(B). 

We let chdR: KlB) —> HdR(B) be the composition 

chdR: K(B) 5 H(B;Q) °^ HdR{B). 

The characteristic class version of the index theorem for families is 
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Theorem 2.9 ([3]). — c h ^ ( index (<S)) = [0(5)]. 

A proof using methods of local index theory has been given by [10]. For a presen­
tation of the proof we refer to [7]. An alternative proof can be obtained from [19, 
Thm.4.18] by specializing to the case of a family of closed manifolds. 

2.2.5. — If a geometric family & admits a taming St (see Definition 2.7), then we 
have index((§) = 0. In particular, the local index form 0(6) is exact. The important 
feature of local index theory in this case is that it provides an explicit form whose 
boundary is 0,(6) (see equation (6) below). 

Let £t be a tamed geometric family over B. In [19, Def. 4.16] we have defined the 
77-form rj(6t) G 0(B). By [19, Theorem 4.13]) it satisfies 

(6) drj(6t) = 0(6). 

The first construction of 77-forms has been given in [12], [13], [14] under the assump­
tion that ker(D(6b)) vanishes or has constant dimension. The variant which we use 
here has also been considered in [37], [41], [40]. 

Since the analytic details of the definition of the 77-form rj(6t) are quite complicated 
we will not repeat them here but refer to [19, Def. 4.16]. For most of the present 
paper we can use the construction of the 77-form as a black box refering to [19] for 
details of the construction and the proofs of properties. Exceptions are arguments 
involving adiabatic limits for which we use [21] as the reference. 

2.2.6. — Now we can introduce the relations "paired" and ~. 

Definition 2.10. — We call two cycles ((§, p) and (<?', p') paired if there exists a taming 
(6UB £/op)t such that 

p-p' = V«ëuBê'op)t). 

We let ~ denote the equivalence relation generated by the relation "paired". 

Lemma 2.11. — The relation "paired" is symmetric and reflexive. 

Proof. — In order to show that "paired" is reflexive and symmetric we are going to 
employ the relation [19, Lemma 4.12] 

(7) n{^) = -»?(&). 

Let 6 be a geometric family over B1 and let denote the Hilbert space of sections 
of the Dirac bundle along the fibre over b G B. The family 6UB 6°p has an involution 
r which flips the components, the signs of the Clifford multiplications, the grading 
and the orientations. We use the same symbol r in order to denote the action of r 
on the Hilbert space of sections of the Dirac bundle of 6b Us <?&P- The latter can be 
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identified with Hb 0 il£ p , and in this picture r = (? J)- Note that r anticommutes 
with 

Db := D(Sb UB O = 
' D(Sb) 

0 

0 

' D(Sb) 

We choose an even, compactly supported smooth function \ : K —• [0, oo) such that 
x(0) = 1 and form Qb := r\(Db). This operator also anticommutes with Db, and 
(Db + Q b )

2 = Z}2, + x2(A>) is positive and therefore invertible for all b € B. The 
family (Qb)beB thus defines a taming ((SUB (Sop)*. 

The involution cr := {-io) o n the Hilbert space Hb 0 # £ p is induced by an iso­
morphism 

(<S uB Sop)t = (SuBS
op)°t

p. 

Because of the relation (7) we have rj ((SuB S°p)t) = 0- It follows that (S, p) is paired 
with (<§, p). 

Assume now that (&, p) is paired with (S',pf) via the taming (S \JB (S'op)t so 
that p- p' = rj((S UB &'OP)T). Then (<S UB 6'°p)°t

p is a taming of &' UB S°p such 
that p' — p = 7] ((S\JB (S'°p)°p), again by (7). It follows that (&' ,p') is paired with 

(S,P). • 

Lemma 2.12. — The relations "paired" and ~ are compatible with the semigroup struc­
ture on G*(B). 

Proof. — In fact, if (Si, pi) are paired with (S[, p^) via tamings (Si UB S'°p)t for 

i = 0,1, then ((§o,Po) + (<§u,Po) *S Pa*re(* w * t n (^i>Pi) + (^l'Pi) y i a the taming 

(<S0 U B (SI U B (<S0 UB S[)op)t := ((So UB C ) t UB ((SI U B C ) t . 

In this calculation we use the additivity of the rj-form [19, Lemma 4.12] 

T?((St UB &t)=r)(St) + rj(&t)-

The compatibilty of ~ with the sum follows from the compatibility of "paired". 

We get an induced semigroup structure on G*(B)/ ~. 

Lemma 2.13. — If ((So,Po) ~ (&2,P2), then there exists a cycle (S\pf) such that 

((So, A)) + (<S',p') is Paired with (&2,P2) + (<S',p')-

Proof. — Let ((So,Po) be paired with ((Si,pi) via a taming (So\JB &°p)t, and (<§i,pi) 
be paired with (62^2) via (Si UB S%p)t. Then ((So, A)) + (<Si,pi) is paired with 
((S2JP2) + ((Si,pi) via the taming 

((So UB (SI) UB (S2 UB (Si)op)t := ((So U ß 6?)t UB ((SI U B S°2

p)t . 

If ((So,Po) ~ (^2,P2), then there is a chain ((Si,a, Pi,«), a = 1,... ,r with ((Si,i,pi,i) = 
(<So,Po), ((Si,r,Pi,r) = (&,P2), such that ((Si,<*, Pi,<*) is paired with ((Si?c*+i, Pi,«+i). 
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The assertion of the lemma follows from an (r — l)-fold application of the argument 
above. • 

2.3. Smooth if-theory 

2.3.1. — In this subsection we define the contravariant functor B —> K(B) from 
compact smooth manifolds to Z/2Z-graded abelian groups. Recall the definition 2.6 
of the semigroup of isomorphism classes of cycles. By Lemma 2.12 we can form the 
semigroup G*(B)/ ~. 

Definition 2.14. — We define the smooth K-theory K*(B) of B to be the group com­
pletion of the abelian semigroup G*(B)/ ~. 

If (6, p) is a cycle, then let [S, p] G K*(B) denote the corresponding class in smooth 
if-theory. 

We now collect some simple facts which are helpful for computations in K(B) on 
the level of cycles. 

Lemma 2.15. — We have [&, p] + [<§op, — p] = 0. 

Proof. — We show that (£, p) + (5° p , -p) = (6UB S°p, 0) is paired with 0 = (0,0). In 
fact, this relation is given by the taming ((&UB <S°p) U# 0op)t = (<§U 6°p)t introduced 
in the proof of Lemma 2.11 with rj((6 \JB <§°P)t) = 0. • 

Lemma 2.16. — Every element ofK*(B) can be represented in the form [<§, p]. 

Proof. — An element of K*(B) can be represented by a difference [(Sô Po] — [<5i>Pi]-
Using Lemma 2.15 we get [(So, Po] ~ [SuPi] = [So, Po] + [5iP, -pi] = [So UB c?iP, po -
Pi]. • 

Lemma 2.17. — / / [<5o5Po] — [<5i>Pi]> then there exists a cycle (S\ p') such that 
(5o,Po) + (S''',p') is paired with (Si,pi) + (&',p'). 

Proof. — The relation [So,Po] = [<§i,pi] implies that there exists a cycle (6,p) such 
that ((So,Po) + p) ~ (Si,pi) + (S,p). The assertion now follows from Lemma 
2.13. • 

2.3.2. — In this paragraph we extend B i—> K*(B) to a contravariant functor from 
smooth manifolds to Z/2Z-graded groups. Let / : Bi —> B 2 be a smooth map. Then 
we have to define a map /* : if *(#2) —• K(Bi). We will first define a map of abelian 
semigroups /* : G*(i?2) —> G*(Bi), and then we show that it passes to if. 

If S is a geometric family over B2, then we can define an induced geometric family 
/* 6 over Bi. The underlying submersion and vector bundle of /* 6 are given by the 
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Cartesian diagram 
f*V >• V 

f*E-^E 

f*7T 7T 

B1—^B2. 
The metric gTVf*n and the orientation of Tvf*7r are defined such that dF: Tvf*n —> 
F*Tv7r is an isometry and orientation preserving. The horizontal distribution Thf*7r 
is given by the condition that dF(Thf*7r) C F*Th7r. Finally, the Dirac bundle struc­
ture of f*V is induced from the Dirac bundle structure on V in the usual way. For 
b2 G B2 let Hb2 be the Hilbert space of sections of V along the fibre Eb2. If 61 G B\ 
satisfies f(bi) = b2, then we can identify the Hilbert space of sections of f*V along 
the fibre f*Ebl canonically with Hh2. If (Qb2)b2eB2 defines a taming St of S, then 
the family (Q/(61))6iGS 1S a taming of /*<§. We have the following relation of 
77-forms: 

8 v(f*St) = rv(St). 

In order to see this note the following facts. The geometric family & gives rise to 
a bundle of Hilbert spaces H(S) —• B2 with fibres H(S)b2 = > using the nota­
tion introduced above. We have a natural isomorphism H(f*S) = f*H(S). The 
geometry of S together with the taming induces a family of super-connections As(St) 
on H parametrized by s G (0,00) (see [19, 4.4.4] for explicit formulas). By con­
struction we have f*As(St) = As(f*St)- The 77-form n(St) is defined as an integral 
of the trace of a family of operators on H(S) (with differential form coefficients) 
built from dsA8(St) and AS(S)2 [19, Definition 4.16]. Equation (8) now follows from 
f*dsAs(St) = dsAs(f*St) and /*AS(S)2 = As(f*St)2. 

If (<g,p) G G(B2) then we define /*(<S,p) := (/*<5,/*p) G G(B 2). The pull-back 
preserves the disjoint union and opposites of geometric families. In particular, /* is 
a semigroup homomorphism. Assume now that (S, p) is paired with (S',p') via the 
taming (S UB2 S'°p)t' Then we can pull back the taming as well and get a taming 
f*{SUB2 S'op)t of f*&UBL f*S'op. Equation (8) now implies that /*(<S,p) is paired 
with /*((S',p') via the taming /* (5u B 2 <S/op)t. 

Hence, the pull-back /* passes to G*(B)/ ~, and being a semigroup homomor­
phism, it induces a map of group completions 

f*:K*(B 2 )->K*(B 2 ) 

Evidently, (id#)* = id^* ( B ) . Let f':B0^ Bi be another smooth map. If & is a 
geometric family over B2, then (/ o f')*6 is isomorphic to / '*/*(?. This observation 
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implies that 

r r = {fofy: K*(B2)-+K(B0). 

This finishes the construction of the contravariant functor if* on the level of mor-
phisms. 

2.4. Natural transformations and exact sequences 

2.4.1. — In this subsection we introduce the transformations i?, J, a, and we show 
that they turn the functor if into a smooth extension of (if, ch )̂ in the sense of 
Definition 1.1. 

2.4.2. — We first define the natural transformation 

I:K(B)^K(Byi [<§,p] index(5). 

We must show that / is well-defined. Consider / : G(B) —• if(B) defined by I(S, p) := 
index((§). If (5, p) is paired with (&',p'), then the existence of a taming (&UB S'op)t 
implies that index((S) = index(£'). The relation 

(9) index((5Uß &') = index(6) + index(6') 

together with Lemma 2.13 now implies that I descends to G(B)/ ~. The additivity 
(9) and the definition of K(B) as the group completion of G(B)/ ~ implies that / 
further descends to the homomorphism J: K(B) —* K(B). 

The relation index(/*<S) = /*index((?) shows that / is a natural transformation 
of functors from smooth manifolds to Z/2Z-graded abelian groups. 

2.4.3. 

Lemma 2.18. — For every compact manifold B, the transformation I: K(B) —• K(B) 
is surjective. 

Proof. — We discuss even and odd degrees seperately. In the even case, a if-theory 
class £ G if (B) is represented by a Z/2Z-graded vector bundle V on B. Simply choose 
a hermitean metric and a connection on V. We obtain a resulting geometric family V 
on jB, with underlying submersion id: B —> B (i.e. O-dimensional fibres) as in 2.1.4, 
and clearly /(V) = index(V) = [V] = £ G K°(B). 

For odd degrees, the statement is proved in [19, 3.1.6.7]. • 

2.4.4. — We consider the functor B i-> ft*(B)/im(d), * G {ev, odd} as a functor from 
manifolds to Z/2Z-graded abelian groups. We construct a parity-reversing natural 
transformation 

a: îï*(B)/im(d) K*(B); [0 , -p] . 
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2.4.5. — Let Q*i=0(B) be the group of closed forms of parity * on B. Again we 
consider B i—• £L*i=0(B) as a functor from smooth manifolds to Z/2Z-graded abelian 
groups. We define a natural transformation 

R:K(B)-^Qd=0(B)'i [6,p}^ £1(6)-dp. 

Again we must show that R is well-defined. We will use the relation (6) of the ry-form 
and the local index form, and the obvious properties of local index forms 

£1(6 uB 6') = £i(6) + £l(6'), £}(6op) = -£l(&). 

We start with 

R: G(B) —> £l(B)\ (6,p)^ £1(6)-dp. 

Since £1(6) is closed, R(6,p) is closed. If (6, p) is paired with (6\pf) via the taming 
(6 UB 6'°p)t, then p-p' = rj((6uB (5 ,op)t). It follows 

R(G, p) = £1(6) -dp = £1(6) - dp' - dr)((6 UB 6,op)t) 

= £1(6) - dp' - £1(6) - £l(6'op) = £1(6') - dp' = R(6\p'). 

Since R is additive it descends to G(B)/ ~ and finally to the map R: K(B) —* 
£ld=o(B). It follows from £l(f*6) = f*Q(6) that R is a natural transformation. 

2.4.6. — The natural transformations satisfy the following relations: 

Lemma 2.19. — R o a = d, chdR o I = [.. .]o R. 

Proof. — The first relation is an immediate consequence of the definition of R and 
a. The second relation is the local index theorem 2.9. • 

2.4.7. — Via the embedding HdR(B) Ç £i(B)/±m(d), the Chern character 
chdR: K(B) —» HdR(B) can be considered as a natural transformation 

chdR: K(B)^£i(B)/±m(d). 

Proposition 2.20. — The following sequence is exact: 

K(B) ci^R £i(B)/±m(d) A K(B) i K(B) 0. 

We give the proof in the following couple of subsection. 

2.4.8. — We start with the surjectivity of / : K(B) —> K(B). The main point is 
the fact that every element x G K(B) can be realized as the index of a family of 
Dirac operators by Lemma 2.18. So let x G K(B) and 6 be a geometric family with 
index(5) = x. Then we have /([5,0]) = x. 
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2.4.9. — Next we show exactness at K(B). For p G Q(B)/±m(d) we have I o a(p) = 
J([0, — p]) = index(0) = 0, hence I o a = 0. Consider a class [6,p] G if (#) which 
satisfies /([(§, p]) = 0. We can assume that the fibres of the underlying submersion 

~ ~ op 
are not zero-dimensional. Indeed, if necessary, we can replace S by SUB (SUB S ) 
for some even family with nonzero-dimensional fibres without changing the smooth 
If-theory class by Lemma 2.15. Since ±ndex(S) = 0 this family admits a taming 
St (2.2.2). Therefore, (S,p) is paired with (0 , p - rj(St))- It follows that [<S,p] = 
a(r](St) - p). 
2.4.10. — In order to prepare the proof of exactness at Q(B)/±m(d) in 2.4.11 we need 
some facts about the classification of tamings of a geometric family S. The main idea 
is to measure the difference between tamings of S using a local index theorem for 
S x [0,1] (compare [19, Cor. 2.2.19]). Let us assume that the underlying submersion 
7r: E —> B decomposes as E = Eev UB Eodd such that the restriction of n to the even 
and odd parts is surjective with nonzero- and even-dimensional and odd-dimensional 
fibres, and which is such that the Clifford bundle is nowhere zero-dimensional. If 
index((§) = 0, then there exists a taming St (see 2.2.2). Assume that St' is a second 
taming. Both tamings together induce a boundary taming of the family with boundary 
(S x [0, l])bt- I11 [19] we have discussed in detail geometric families with boundaries 
and the operation of taking a boundary of a geometric family with boundary. In the 
present case & x [0,1] has two boundary faces labeled by the endpoints {0,1} of the 
interval. We have d0(S x [0,1]) ^ & and dx(S x [0,1]) ^ S°p. A boundary taming 
(S x [0, l ] ) w is given by tamings of d{(& x [0,1]) for i = 0,1 (see [19, Def. 2.1.48]). 
We use St at & x {0} and S°tF at & x {1}. 

The boundary tamed family has an index index(((5 x [0, l])bt) € which is 
the obstruction against extending the boundary taming to a taming [19, Lemma 
2.2.6]. The construction of the local index form extends to geometric families with 
boundaries. Because of the geometric product structure of 6 x [0,1] we have x 
[0,1]) = 0. The index theorem for boundary tamed families [19, Theorem 2.2.18] 
gives 

ch.dR o index((5 x [0, l ]) 6 t ) = [r)(St) - r){St>)]. 

On the other hand, given x G K(B) and St, since we have chosen our family S 
sufficiently big, there exists a taming &t> such that ±ndex((S x [0, l])bt) = 

To prove this, we argue as follows. Given tamings St and Sf we obtain a family 
D(St, Stf) of perturbed Dirac operators over B x R which restricts to D(St) on Bx {/3} 
for /3 < 0, and to D(St') for ¡3 > 1, and which interpolates these families for ¡3 G [0,1]. 
Since the restriction of D(St, Sf) is invertible outside of a compact subset of B x R 
(note that B is compact) it gives rise to a class [St, Sf] € KK(C, C(B)®Cb(R)). The 
Dirac operator on R provides a class [d] G KK(CQ(R), C), and one checks —using the 
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method of connections as in [17, proof of Proposition 2.11] or directly working with 
the unbounded picture [4]— that D(S x [0, !])&* represents the Kasparov product 

[<St,<St']®c0(R) [d}£KK(C,C{B)). 

The map 

KC(B x R) ̂  KK(C, C(B) <g> Co(R)) •®C0(R) [#] 
M ( c , c ( 5 ) ) ^ Ì Ì : ( J 5 ) 

is by [34, Paragraph 5, Theorem 7] the inverse of the suspension isomorphism, so in 
particular surjective. It remains to see that one can exhaust KK(C,C(B) (8) Cb(R)) 
with classes of the form [St, St'] by varying the taming St'. 

We sketch an argument in the even-dimensional case. The odd-dimensional case is 
similar. For a separable infinite-dimensional Hilbert space H let GL\(H) C GL(H) 
be the group of invertible operators of the form 1 + K with K G K(H) compact. 
The space GLi(H) has the homotopy type of the classifying space for K1. The 
bundle of Hilbert spaces H(S)+ —> B gives rise to a (canonically trivial, up to ho­
motopy) bundle of groups GL\(H(S)+) —• B by taking GL\(...) fibrewise (it is here 
where we use that the family is sufficiently big so that H(<S)+ is infinite-dimensional). 
Let T(GLi(H(6)~*~)) be the topological group of sections. Then we have an isomor­
phism 7r0r(GLi(jff((5)+)) ^ KX(B). Let x G KX(B) be represented by a section 
s G r(GLi(H((5)+)). We can approximate s — 1 by a smooth family of smoothing 
operators. Therefore we can assume that s — 1 is given by a smooth fibrewise integral 
kernel (a pretaming in the language of [19]) ^3 .̂ 

There is a bijection between tamings Sf and sections s G T(GLi(H(S)+)) of this 
type which maps Sf to s := D+(St)~1D+(6t')- The map which associates the KK-
class [St, Stf) to the section s is just one realization of the suspension isomorphism 
KX(B) —• (B x R) (using the Kasparov picture of the latter group). In particular 
we see that all classes in K®(B x R) arise as [St,Stf] for various tamings St1-

2.4.11. — We now show exactness at fi(B)/im(d). Let x G K(B). Then we have 
a o c\\dR(x) = [0, —chdR(x)]. We choose a geometric family S as in 2.4.10 and set 
& := S \JB <SO FIn the proof of Lemma 2.11 we have constructed a taming St such 
that rj(St) = 0. Using the discussion 2.4.10 we choose a second taming Sf such that 
index(((5 x [0, l])ta) = —x, hence rj(Sr) = c h ^ x ) . By the taming St' we see that 
the cycle ( ¿ , 0 ) pairs with (0, — chdR{x)). On the other hand, via St the cycle ((5,0) 
pairs with 0. It follows that (0, — chdR(x)) ~ 0 and hence a o ch^ = 0. 

Let now p G Q(B)/±m(d) be such that a(p) = [0, —p] = 0. Then by Lemma 2.17 
there exists a cycle (<§, p) such that (S,p — p) pairs with (<§, p). Therefore there exists 

^ ~ op 
a taming (5f of (5 := (5 Us S such that rj(St') = —p. 

(3) Alternatively one can directly produce such a section using the setup described in [42]. 
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Let 6t be the taming with vanishing 77-form constructed in the proof of 
Lemma 2.11. The two tamings induce a boundary taming (8 x [0, l])bt such 
that chdR o index((<§ x [0, l])bt) = —w(St') = P- This shows that p is in the image of 
chdR. • 

2A.12. — We now improve Lemma 2.13. This result will be very helpful in verifying 
well-definedness of maps out of smooth if-theory, e.g. the smooth Chern character. 

Lemma 2.21. — / / [5o>Po] = [81, pi] and at least one of these families has a higher-
dimensional component, then (80, Po) is paired with (81,pi). 

Proof. — By Lemma 2.13 there exists [<S',p'] such that (80, po) + (8', p') is paired 
with (<Si,pi) + {8',p') by a taming (80 UB 8' UB (81 UB £ ' ) ° p ) r We have 

Pi - Po = V ((So UB 8' UB (81 UB 6')op)t). 

Since index((So) = index((§i) there exists a taming (8qUb 8iP)t- Furthermore, there 
exists a taming (8'Ub 6'op)t with vanishing 77-invariant (see the proof of Lemma 2.11). 
These two tamings combine to a taming (80 Ub 8' Ub {81 Ub S')op)t,. There exists 
£ G KIB) such that 

chdR(0 = V ((80 UB 8' UB (81 UB 8')op)t) - v {(So Ub &' UB (61 UB &')op)t>) 

77 ((80 UB 8' UB (81 UB S')op)t) - V ((So UB 8°iP)t). 

We can now adjust (using 2.4.10) the taming (80 Ub 8^p)t such that we can choose 
£ = 0. It follows that pi — po = 77 ((80 Ub 8iP)t)- • 

2.5. Comparison with the Hopkins-Singer theory and the flat theory 

2.5.1. — An important consequence of the axioms 1.1 for a smooth generalized co­
homology theory is the homotopy formula. Let h be a smooth extension of a pair 
(ft,c). Let x £ ft([0,1] x B), and let ik: B -> {k} x B C [0,1] x B, k = 0,1, be the 
inclusions. 

Lemma 2.22. — We have 

ii(x) ~~ *o(a0 = a 

J[0,l)xB/B 
R(x) 

Proof. — Let p: [0,1] x B —> B denote the projection. If x = p*y, then on the one 
hand the left-hand side of the equation is zero. On the other hand, R(x) = p*R(y) so 
that J [ 0 t l ] x B / B R(x) = 0, too. 

Since p is a homotopy equivalence there exists y £ h(B) such that I(x) = p*(y). 
Because of the surjectivity of / we can choose y G h(B) such that I(y) = y. It follows 
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that I(x — p*y) = 0. By the exactness of (3) there exists a form u G Q(I x B)/±m(d) 
such that x — p*y = a(u). By Stokes' theorem we have the equality i\u — IqUJ = 
i jo i]xB/b m £i(B)/±m(d). By (2) we have duj = R(a(u)). It follows that 

J[0,l]xB/B 
duo = 

'[0,l]xB/B 
R(a(u)) = 

'[0,1]XB/B 
R(x-p*y) = 

'[0,l]xB/B 
R(x). 

This implies 

i\x — IqX = i\a(uj) — iQa(uj) = a qX = i\a(uj)=0 
[0,l]xB/B 

R(x) 

2.5.2. — Let ft be a smooth extension of a pair (ft, c). We use the notation introduced 
in 1.2.2. 

Definition 2.23. — The associated flat functor is defined by 

B h-> ftflat(B) := kei{R: h(B) - Sld=0(B,N)}. 

Recall that a functor F from smooth manifolds is homotopy invariant, if for the 
two embeddings ik: B -> {k} x B —• [0,1] x B, k = 0,1, we have F(i0) = F(ii). As 
a consequence of the homotopy formula Lemma 2.22 the functor ftflat is homotopy 
invariant. 

In interesting cases it is part of a generalized cohomology theory. The map c: ft —> 
HN gives rise to a cofibre sequence in the stable homotopy category ft A ffiV —> 
^jv,r/z which defines a spectrum ftjv5R/z-

Proposition 2.24. — If h is the Hopkins-Singer extension of (ft, c), £ften we ftave a 
natural isomorphism 

fcflat(B) = ^,R /z(B)[-l] . 

In the special case that iV = ft* <g)Z R this is [31, (4.57)]. 

2.5.3. — In the case of If-theory and the Chern character ch^: K —> H(K* ®z R) 
one usually writes KR/Z := ftK*0zR,R/z- The functor B h-> KR/Z(B) is called R/Z-
K-theory. Since R/Z is an injective abelian group we have a universal coefficient 
formula 

(10) KR/Z*(B) ^ Hom(#;(£),R/Z), 

where K*(B) denotes the if-homology of B. A geometric interpretation of R/Z-K-
theory was first proposed in [32], [33]. In these references it was called multiplicative 
K-theory. The analytic construction of the push-forward has been given in [37]. 
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2.5.4. 

Proposition 2.25. — There is a natural isomorphism of functors 

Ktot(B)*KR/Z(B)[-l]. 

Proof. — In the following (the paragraphs 2.5.5, 2.5.6) we sketch two conceptually 
very different arguments. For details we refer to [22, Section 5, Section 7]. 

2.5.5. — In the first step one extends ifflat to a reduced cohomology theory on 
smooth manifolds. The reduced group of a pointed manifold is defined as the kernel 
of the restriction to the point. The missing structure is a suspension isomorphism. 
It is induced by the map K(B) —• if (5 1 x B) given by x h> pr^x^i U pr^x, where 
X51 G i f 1 ^ 1 ) is defined in Definition 5.6, and the U-product is defined below in 
4.1. The inverse is induced by the push-forward (pr2)!: K(SX x B) —> K(B) along 
pr2: S1 x B —> B introduced below in 3.18. Finally one verifies the exactness of 
mapping cone sequences. 

In order to identify the resulting reduced cohomology theory with R/Z-if-theory 
one constructs a pairing between ifflat and if-homology, using an analytic model 
as in [37]. This pairing, in view of the universal coefficient formula (10) gives a 
map of cohomology theories Kftat(B) —• ifR/Z(J3)[—1] which is an isomorphism by 
comparison of coefficients. 

2.5.6. — The second argument is based on the comparison with the Hopkins-Singer 
theory. We let B \-> KHS(B) denote the version of the smooth if-theory functor 
defined by Hopkins-Singer [31]. In [22, Section 5] we show that there is a unique 
natural isomorphism KEV KHS- ^N y i e w of 2.24 we get the isomorphism 

kz¿B) Д xir Ä f l a t (B) - i m / z e 4 - i ] ( ß ) . 

In [22] we furthermore show that using the integration for K and the suspension 
isomorphism for ifR/Z this isomorphism extends to the odd parts. • 

2.5.7. — Many of the interesting examples given in Section 5 can be understood (at 
least to a large extend) already at this stage. We recommend to look them up now, 
if one is less interested in structural questions. This should also serve as a motivation 
for the constructions in Sections 3 and 4. 
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3. Push-forward 

3.1. if-orientation 

3.1.1. — The groups Spin(n) and Spinc(n) fit into exact sequences 

1 > Z/2Z > Spin(n) > SO(n) > 1 

\, \, \, 
1 • 17(1) — • Spinc(n) —^—> SO(n) • 1 

1 -> Z/2Z - Spmc(n) 17(1) x 50(n) -> 1 

such that Acu: 17(1) 17(1) is a double covering. Let P —> 5 be an SO(n)-principal 
bundle. We let Spinc(n) act on P via the projection n. 

Definition 3.1. — A Spin0-reduction of P is a diagram 

Q - P , 

B 

where Q —> B is a Spinc(n)-principal bundle and f is Spinc(n)-equivariant. 

3.1.2. — Let p: W B be a proper submersion with vertical bundle Tvp. We 
assume that Tvp is oriented. A choice of a vertical metric gTVp gives an SO-reduction 
SO(Tvp) of the frame bundle Fr(Tvp), the bundle of oriented orthonormal frames. 

Usually one calls a map between manifolds if-oriented if its stable normal bundle is 
equipped with a if-theory Thorn class. It is a well-known fact [1] that this is equivalent 
to the choice of a 5pmc-structure on the stable normal bundle. Finally, isomorphism 
classes of choices of 5pinc-structures on Tvp and the stable normal bundle of p are 
in bijective correspondence. So for the purpose of the present paper we adopt the 
following definition. 

Definition 3.2. — A topological K-orientation of p is a Spinc-reduction of SO(Tvp). 

In the present paper we prefer to work with 5pmc-structures on the vertical bundle 
since it directly gives rise to a family of Dirac operators along the fibres. The goal of 
this section is to introduce the notion of smooth if-orientation which refines a given 
topological if-orientation. 
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3.1.3. — In order to define such a family of Dirac operators we must choose additional 
geometric data. If we choose a horizontal distribution Thp, then we get a connection 
V T " P which restricts to the Levi-Civita connection along the fibres. Its construction 
goes as follows. First one chooses a metric gTB on B. It induces a horizontal metric 
gT p via the isomorphism dp\Thp: Thp p*TB. We get a metric gTVp 0 gT p on 
TW = Tvp 0 Thp which gives rise to a Levi-Civita connection. Its projection to Tvp 
is VTVp. Finally one checks that this connection is independent of the choice of gTB. 

3.1.4. — The connection VT%>P can be considered as an SO (n)-principal bundle con­
nection on the frame bundle SO(Tvp). In order to define a family of Dirac operators, 
or better, the Bismut super-connection we must choose a Spmc-reduction V of V T " P , 
i.e. a connection on the Spmc-principal bundle Q which reduces to VTVp. If we think 
of the connections V T " P and V in terms of horizontal distributions ThSO(Tvp) and 
ThQ, then we say that V reduces to V T " P if dir(ThQ) = >K*(ThSO{Tvp)). 

3.1.5. — The Spmc-reduction of Fr(Tvp) determines a spinor bundle S c(T vp), and 
the choice of V turns Sc(Tvp) into a family of Dirac bundles. 

In this way the choices of the Spmc-structure and (gTVp,Thp, V) turn p: W —> B 
into a geometric family CW. 

3.1.6. — Locally on W we can choose a Spin-structure on Tvp with associated spinor 
bundle S(Tvp). Then we can write Sc(Tvp) = S(Tvp)®L for a hermitean line bundle 
L with connection. The spin structure is given by a Spin-reduction q: R —» SO(Tvp) 
(similar to 3.1) which can actually be considered as a subbundle of Q. Since q is 
a double covering and thus has discrete fibres, the connection V T " P (in contrast to 
the Spinc-case) has a unique lift to a Spm(n)-connection on R. The spinor bundle 
S(Tvp) is associated to R and has an induced connection. In view of the relations 
of the groups 3.1.1 the square of the locally defined line bundle L is the globally 
defined bundle L2 —> W associated to the Spinc-bundle Q via the representation 
A: Spinc(ri) —> U(l). The connection V thus induces a connection on V L , and 
hence a connection on the locally defined square root L. Note that vice versa, V L 

and VTVp determine V uniquely. 

3.1.7. — We introduce the form 

(ii) Ci(V) := 
1 

4ni 

RL2 

which would be the Chern form of the bundle L in case of a global Spin-structure. 
Let RvT"P e £l2(W,End(Tvp)) denote the curvature of V T " P . The closed form 

Â ( V T > ) := det 1/ 2 

RVTcp 

4-7T 
^ sinh 

4tt 
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represents the Â-class of Tvp. 

Definition 3.3. — The relevant differential form for local index theory in the Spinc-
case is 

Â C (V) :=A(VTVp) A e C 1 ^ . 

If we consider p: W —• B with the geometry (gTVp,Thp,V) and the Dirac bundle 
Sc(Tvp) as a geometric family V over £?, then by comparison with the description 
2.2.4 of the local index form fi( V) we see that 

'W/B 
Â C (V) = îî( V). 

3.1.8. — The dependence of the form A C (V) on the data is described in terms of the 
transgression form. Let (gi , Tfp, V^), ¿ = 0,1, be two choices of geometric data. 
Then we can choose geometric data (gTVp,Thp,V) onp= id[0,i] x p : [0,1] x W —> 
[0,1] x B (with the induced Spm^structure on Tvp) which restricts to (gj p, Tfp, V*) 
on {i} x B. The class 

A c(Vi,Vo) := 
'[0,l]xW/W 

Â C (V) G îl(Wr)/im(d) 

is independent of the extension and satisfies 

(12) dÂc(Vi, V 0 ) = ÂC(V!) - Â C(V 0). 

Definition 3.4. — The form Ä c ( V i , V q ) is called the transgression form. 

Note that we have the identity 

(13) Ä C(V 2 , Vi) + Â c(Vi, V 0) = Â C(V 2 , Vo). 

As a consequence we get the identities 

(14) Â C (V,V) = 0, Â c(Vi,Vo) = -Â c(Vn,Vi). 

3.1.9. — We can now introduce the notion of a smooth if-orientation of a proper 
submersion p: W —> B. We fix an underlying topological if-orientation of p (see 
Definition 3.2) which is given by a 5pmc-reduction of SO(Tvp). In order to make 
this precise we must choose an orientation and a metric on Tvp. 

We consider the set 6 of tuples (gTVp, Thp, V, a) where the first three entries have 
the same meaning as above (see 3.1.3), and a G Qodd (W)/±m(d). We introduce a 
relation oo ~ o\ on 9: Two tuples (gf p, T^p, V*, cr̂ ), i = 0,1 are related if and only 
if <7i — cro = A(Vi, Vo). We claim that ~ is an equivalence relation. In fact, symmetry 
and reflexivity follow from (14), while transitivity is a consequence of (13). 
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definition 3.5. — The set of smooth K-orientations which refine a fixed underlying 
opological K-orientation of p: W —» B is the set of equivalence classes 0/ ~. 

3.1.10. — Note that ftodd(W)/im(d) acts on the set of smooth if-orientations. If 
a e Qodd(W)/±m(d) and (gTVp,Thp,V,a) represents a smooth if-orientation, then 
the translate of this orientation by a is represented by {gTVp,Thp,S7 ,o~ + a). As a 
consequence of (13) we get: 

Corollary 3.6. — The set of smooth K-orientations refining a fixed underlying topo­
logical K-orientation is a torsor over Qodd (W)/±m(d). 

3.1.11. — If o = (gTVp,Thp,V,a) G 9 represents a smooth if-orientation, then we 
will write 

Â c(o) := Â C (V), a(o) := a. 

3.2. Définition of the Push-forward 

3.2.1. — We consider a proper submersion p: W —• B with a choice of a topological 
if-orientation. Assume that p has closed fibres. Let o = (<7T"P, T^p, V, <r) represent 
a smooth if-orientation which refines the given topological one. To every geometric 
family S over W we want to associate a geometric family p\ & over B. 

Let 7r: E —» W denote the underlying proper submersion with closed fibres of & 
which comes with the geometric data gTVir, TH-K and the family of Dirac bundles 
(V,hv,Vv). 

The underlying proper submersion with closed fibres of p\ S is 

q := p o 7r: E —• B. 

The horizontal bundle of n admits a decomposition Th/ir = 7r*Tvp® t t T ^ where the 
isomorphism is induced by d-ir. We define Thq C Th7r such that dir: Thq = 7r*Thp. 
Furthermore we have an identification Tvq = Tv7r®7r*Tvp. Using this decomposition 
we define the vertical metric gTVq := gTVn ® n*gTVp. The orientations of Tv7r and Tvp 
induce an orientation of Tvq. Finally we must construct the Dirac bundle piV —• E. 
Locally on W we choose a 5pm-structure on Tvp and let S(Tvp) be the spinor bundle. 
Then we can write SC(Tvp) = S(Tvp)®L for a hermitean line bundle with connection. 
Locally on E we can choose a .Spin-structure on TVTT with spinor bundle S(TVTT). Then 
we can write V = S(Tv7r)®Z, where Z is the twisting bundle of V, a hermitean vector 
bundle with connection (Z/2Z-graded in the even case). The local spin structures on 
Tvn and 7r*Tvp induce a local Spin-structure on Tvq = Tvir 0 n*Tvp. Therefore 
locally we can define the family of Dirac bundles p\V := S(Tvq) (8) 7r*L (8) Z. It is 
easy to see that this bundle is well-defined independent of the choices of local .Spin-
structures and therefore is a globally defined family of Dirac bundles. 
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Definition 3.7. — Let p\& denote the geometric family given by q: E —> B and p\V —> 

E with the geometric structures defined above. 

It immediately follows from the definitions, that p\(S°p) = (p\6)op. 

3.2.2. — Let p: W —> B be a proper submersion with a smooth If-orientation rep­
resented by o. In 3.2.1 we have constructed for each geometric family & over W a 
push-forward p\&. Now we introduce a parameter A G (0, oo) into this construction. 

Definition 3.8. — For A G (0, oo) we define the geometric family pf 6 as in 3.2.1 with 
the only difference that the metric on Tvq = Tv7r^7r*Tvv is qiven by QT Q = A 2 o T V 7 r 0 

A2oTV7 

More specifically, we use scaling invariance of the spinor bundle to canonically 
identify the Dirac bundle for the metric g\ locally with p\V := S(Tvq) (g> n*L ® Z 
(for #i). This uses the description of S(Tvp) in terms of tensor products of S(Tvir) 
and 7r*S(Tvp) (compare [19, Section 2.1.2]) and the scaling invariance of S(Tvn). 
However, with this identification the Clifford multiplication by vectors in Tvq = 
TV/ir 0 ir*Tvp is rescaled on the summand TV/K by A. The connection is slightly 
more complicated, but converges for A —• 0 to some kind of sum connection. 

The family of geometric families p\& is called the adiabatic deformation of p\&. 
There is a natural way to define a geometric family on (0, oo) x B such that its 
restriction to {A} x B is p\&. In fact, we define ¿7 := (id(0,oo) x P)\((QJ°°) x 6) 
with the exception that we take the appropriate vertical metric. Note again that the 
underlying bundle can be canonically identified with (0, oo) x p\V. In the following, 
we work with this identifications throughout. 

Although the vertical metrics of ¿7 and p* S collapse as A —» 0 the induced connec­
tions and the curvature tensors on the vertical bundle Tvq converge and simplify in 
this limit. This fact is heavily used in local index theory, and we refer to [7, Sec 10.2] 
for details. In particular, the integral 

(15) fi(A, S) := 
(0,A)xB/B 

Q(F) 

converges, and we have 

(16) 

lim A_0îî(p*<5) = 
JW/B 

Âc(o)Afi((S), 
Afi((S) 

JW/B 
Ac(o) A 0,(6) = dÙ(\, &). 

3.2.3. — Let p: W —> B be a proper submersion with closed fibres with a smooth if-

orientation represented by o. We now start with the construction of the push-forward 

p\: K(W) —> K(B). For A G (0, oo) and a cycle ((5,p) we define 

(17) o)AR([6,p])] 
'W/B 

Â c(o) A p + n(A, 6) + 
JW/B 

*(o)AR([6,p])]eK(B). 
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Since A c (o) and p]) are closed, the maps 

Q(W)/±m(d) 5 p n 
J\V/B 

Â c(o) Ap£ £l(B)/±m(d), 

n(W)/±m(d) 3 a{o) I—• 
J\V/B 

(r(o)AÄ([<S,p])€ß(B)/im(d) 

are well-defined. It immediately follows from the definition that p* : G(W) —• if 
is a homomorphism of semigroups. 

3.2.4. — The homomorphism p* : G(W) —> if (£) commutes with pull-back. More 
precisely, let / : B' —• B be a smooth map. Then we define the submersion p' : W7 —> 
B' by the Cartesian diagram 

w ' - ^ w 

p' p 
{ f \ 

The differential dF: TW -> F*TW induces an isomorphism dF: TVW ^ F*TVW. 
Therefore the metric, the orientation, and the Spmc-structure of Tvp induce by pull-
back corresponding structures on Tvp'. We define the horizontal distribution Thp' 
such that dF{Thp') Ç F*Thp. Finally we set a' := F*a. The representative of a 
smooth if-orientation given by these structures will be denoted by d :— f*o. An 
inspection of the definitions shows: 

Lemma 3.9. — The pull-back of representatives of smooth K-orientations preserves 
equivalence and hence induces a pull-back of smooth if-orientations. 

Recall from 3.1.5 that the representatives o and o' of the smooth if-orientations 
enhance p and p' to geometric families V and W'. We have /* *W = V ' . 

Note that we have F*A c(o) = A c (o ') . If 6 is a geometric family over W, then 
an inspection of the definitions shows that f*p\(S) = p\(F*6). The following lemma 
now follows immediately from the definitions 

Lemma 3.10. — We have f o ^ = p'* o F* : G(W) — K(B'). 

3.2.5. 

Lemma 3.11. — The class p*(6,p) does not depend on A G (0, oo). 

Proof. — Consider Àq < Ai. Note that 

PÎK&P) -$°{&,P) = fp,Al<5,n(Ai,<S)] - [pf0<S,fi(A0)(S)]. 
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Consider the inclusion i\: B —• {À} x B C [Ao, Ai] x B and let ¿7 be the family over 
[Ao, Ai] x B as in 3.2.2 such that p\& = i\&- We apply the homotopy formula Lemma 
2.22 t o z = [<7,0]: 

fi(Ai,<S)-n(A0,(=0 
y[A0,Ai]xB/B 

i?(z) = a 
'[A0,Ai]xB/B 

fi(£T) 

= a(fi(Ai,<S)-n(A0,(S)), 

where the last equality follows directly from the definition of Q,. This equality is 
equivalent to 

\pî16,Ù(\1,S)} = \pî06,Û(*o,6)}. 

In view of this Lemma we can omit the superscript A and write p\(&, p) for p*(6, p). 

3.2.6. — Let 6 be a geometric family over W which admits a taming St- Recall that 
the taming is given by a family of smoothing operators (Qw)wsW' 

We have identified the Dirac bundle of p\& with the Dirac bundle of p}S in a 
natural way in 3.2.2. The A-dependence of the Dirac operator takes the form 

£>(p*<5) = X^Diô) + (DH + fl(A)), 

where DH is the horizontal Dirac operator, and R(X) is of zero order and remains 
bounded as A —> 0. We now replace D(&) by the invertible operator D(6) + Q. Then 
for small A > 0 the operator 

X-1(D(S) + Q) + {DH + 11(A)) 

is invertible. To see this, we consider its square which has the structure 

X-\D(Ô) + Qf + A" 1{^(5) + Q, (£>H + 11(A))} + (DH + #(A)) 2 . 

The anticommutator {£>((?), -D jFf+i?(A)} is a first-order vertical operator which is thus 
dominated by a multiple of the positive second order (D(&) + Q) 2 . The remaining 
parts of the anticommutator are zero-order and therefore also dominated by multiples 
of (D(S) + Q) 2 . The last summand is a square of a selfadjoint operator and hence 
non-negative. 

The family of operators along the fibres of p\ & induced by Q is not a taming since 
it is not given by a family of integral operators along the fibres of p\E —> B. In 
order to understand its structure note the following. For b G B the fibre of (p\S)b 
is the total space of the bundle E\Wh —> The integral kernel Q induces a family 
of smoothing operators on the bundle of Hilbert spaces H(6\wb) ~^ Using the 
natural identification 

H(p,6)b a L2(W, S(Tvp) ® (<VJ) 
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we get the induced operator on H(p\6)b- We will call a family of operators with this 
structure a generalized taming. 

Now recall that the 77-form r){!Jt) of a tamed or generalized tamed family &t is 
built from a family of superconnections As(£7t) parametrized by s G (0,00) (see 
[19, 2.2.4.3]). For 0 < s < 1 the family coincides with the usual rescaled Bismut 
superconnection and is independent of the taming. Therefore the taming does not 
affect the analysis of d8A3(SFt)e~Aa^^ for 5 —> 0. In the interval s G [1,2] the family 
As(&t) smoothly connects with the family of superconnections given by 

As(ff't) = sD{9't) + terms with higher form degree 

for 5 > 2. In order to define the 77-form rj(£7t) the main points are: 

1. For small s the family A3(&t) behaves like the Bismut superconnection. The 
formula (6) drj(^t) = fi(57") only depends on the behavior of As({7t) for small 
s. Therefore this formula continues to hold for generalized tamings. 

2. dsAs{&t)Q~As^t^ is given by a family of integral operators with smooth in­
tegral kernel. This holds true for tamed families as well as for familes which 
are tamed in the generalized sense explained above. A proof can be based on 
Duhamel's principle. 

3. The integral kernel of dsAs(ff't)e~As^t^ together with all derivatives vanishes 
exponentially as s —» 0 0 . This follows by spectral estimates from the invertibility 
and selfadjointness of D(f7t)- Now the invertibility of D(!7t) is exactly the 
desired effect of a taming or generalized taming. 

Coming back to our iterated fibre bundle we see that we can use the generalized 
taming for sufficiently small A > 0 like a taming in order to define an 77-form which 
we will denote by r)(p*&t). To be precise, this eta form is associated to the family of 
operators 

As(p?6) + x(s\-1)s\-1Q, s G (0,oo), 

where \ vanishes near zero and is equal to 1 on [l,oo). This means that we switch 
on the taming at time s ~ A, and we rescale it in the same way as the vertical part 
of the Dirac operator. 

We can control the behaviour of r](p^St) in the adiabatic limit A —> 0. 

Theorem 3.12. — We have 

lim \-+0ri(pîSt) = 
'W/B 

Ac(o)A77((St). 

Proof. — To write out a formal proof of this theorem seems too long for the present 
paper, without giving fundamental new insights. Instead we point out the following 
references. Adiabatic limits of 77-forms of twisted signature operators were studied in 
[21, Section 5]. The same methods apply in the present case. The L-form in [21, 
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Section 5] is the local index form of the signature operator. In the present case it must 
be replaced by the form A c (o), the local index form of the .Spmc-Dirac operator. The 
absence of small eigenvalues simplifies matters considerably. • 

Since the geometric family p\£ admits a generalized taming it follows that 
index^^S) = 0. Hence we can also choose a taming (p*£)t. The latter choice 
together with the generalized taming induce a generalized boundary taming of the 
family pf £ x [0,1] over B. The index theorem [19, Theorem 2.2.18] can be extended 
to generalized boundary tamed families (by copying the proof) and gives: 

Lemma 3.13. — The difference ofrj-forms rj((p^£)t) — tj(P^£t) ^s closed. Its de Rhan 
cohomology class satisfies 

[pi^O] - \pf£A = a (n (pî(6uw £°P) 

3.2.7. — We now show that p\: G(W) —> K(B) passes through the equivalence 
relation ~. Since p\ is additive it suffices by Lemma 2.13 to show the following 
assertion. 

Lemma 3.14. — / / (5, p) is paired with (£, p), then pi(<S, p) = Pi(<§, p). 

~ op 
Proof. — Let (SUw £ )t be the taming which induces the relation between the two 
cycles, i.e. p — p = rj ((£ \Jw £ P)t)- In view of the discussion in 3.2.6 we can choose 

\ ~ op 
a taming p, (<5 U (5 )t-

\pîë,0] - tâê,0] = \rt(Suw <S°P),0] = a(V(p?(6uw~6OP)t)). 

By Proposition 2.20 and Lemma 3.13 we can replace the taming by the generalized 
taming and still get 

[pi^O] - \pf£A = a (n (pî(6uw £°P)t)) . 

For sufficiently small À > 0 we thus get 

P\(£,p) - P\(S,p) = a(n(pî{£nw £°P)t))-
JW/B 

Ac(o)A(p-p) 

+ÎÎ(À, £)-SL{\~£)). 

We now go to the limit A —• 0 and use Theorem 3.12 in order to get 

Pi(£,P) ~P\(£,P) = A 

Iw/B 
Ac(o)ATf((£uw.£°P)t) 

JW/B 
Ac(o) A (p - p) = 0. • 
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We let p\: K(W) —• K(B) denote the map induced by the construction (17). 
Though not indicated in the notation until now this map may depend on the choice 
of the representative of the smooth if-orientation o (later in Lemma 3.17 we will see 
that it only depends on the smooth if-orientation). 

3.2.8. — Let p: W —> B be a proper submersion with closed fibres with a smooth 
if-orientation represented by o. We now have constructed a homomorphism 

PW K(W)^K(B). 

In the present paragraph we study the compatibilty of this construction with the 
curvature map R: if —• f^=o-

Definition 3.15. — We define the integration of forms pf: Q(W) —> Q(B) by 

P!(w) = 0 
'W/B 

(kc(o)-da(o))Au. 

Since A c(o) — da(o) is closed we also have a factorization 

pf: n(W)/±m(d) -> n(B)/±m(d). 

Lemma 3.16. — For x e K(W) we have R(p\(x)) = p?(R(x)). 

Proof. — Let x = (<5, p). We insert the definitions, R(x) = Q(6) — dp, and (16) in 
the marked step. 

R{pl{x)) = tl(pH)-d{ 
J\V/B 

kc(o)Ap + Q(X, (S) + 
'W/B 

a(o) Л R(x)) 

= £l{pU)-
JW/B 

kc(o)Adp + 
IW/B 

Âc(o)Aiï(6)-n(pÎ6)-
'W/B 

da(o) A R{x) 

Iw/b 
(Â c(o) - da(o)) A R(x) = pf(R(x)). 

3.2.9. — Our constructions of the homomorphisms 

p\: K(W)-> K(B), pf : tl(W) il(B) 

involve an explicit choice of a representative о = (gTVp,Thp,V,o~) of the smooth 
if-orientation lifting the given topological if-orientation of p. In this paragraph we 
show: 

Lemma3.17. — The homomorphisms p\: K(W) -> K(B) and pf: Sl(W) -> fi(JB) 
only depend on the smooth К-orientation represented by o. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



82 U. BUNKE & T. SCHICK 

Proof. — Let Ok := (gk , X^p, Vfc, cr^), A: = 0,1 be two representatives of a smooth 
if-orientation. Then we have <7i — <r0 = A c (Vi , Vo). For the moment we indicate 
by a superscript pf which representative of the smooth if-orientation is used in the 
definition. Let u G Q(W). Then using (12) we get 

d(a± - a0)) A u>=0 
JW/B 

(Ac(0l) - A c (o 0 ) - d(a± - a 0)) A u> 

'w/b 
(Â c(Vi) - Â C (V 0 ) - dÂ c(Vi, Vo)) A u) = 0. 

We now consider the projection p: [0,1] x W —> [0,1] x B with the induced topological 
if-orientation. It can be refined to a smooth if-orientation o which restricts to ok at 
{k} x B. Let q: [0,1] x W —> W be the projection and x G if (VF). Furthermore let 
i f c : j B - ^ { / c } x J 5 ^ [0,1] x B be the embeddings. The following chain of equalities 
follows from the homotopy formula Lemma 2.22, the curvature formula Lemma 3.16, 
Stokes' theorem and the definition of A c (Vi ,Vo), and finally from the fact that 
Oq ~ 0\. 

p\{x) - $(x) = i\pxq*{x) - tiptfix) = ( 
J[0,l]xB/B 

R(p{q*x] 

= a 
J[0,l]xB/B 

p?R(q*(x)) = a 
J[0,l]xB/B 

p?q*(R(x)) 

= a 
[0,l]x5/B «/[0,l]xW/[0,l]xfi 

(Âc(ô)-da(ô)) Aq*R(x) 

= a 
Jw/B J[0,l]xW/W 

(Âc(ô) - da(o))] A R(x) 

= a 
JW/B 

[A c(Vi, Vo) - (a(oi) - a(o0))} A R(x) = 0. 

3.2.10. — Let p : W —»> B be a proper submersion with closed fibres with a topological 
if-orientation. We choose a smooth if-orientation which refines the topological if-
orientation. In this case we say that p is smoothly if-oriented. 

Definition 3.18. — We define the push-forward p\ : K(W) —> K(B) to be the map 
induced by (17) for some choice of a representative of the smooth if -orientation 

We also have well-defined maps 

p?:il(W)-+tl(B). pf : n(W)/±m(d) ft(fl)/im(d) 

given by integration of forms along the fibres. Let us state the result about the 
compatibility of p\ with the structure maps of smooth if-theory as follows. 
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Proposition 3.19. — The following diagrams commute: 

(18) 

K(W) - ^ - f n(W)/im(d) -^-^ K(W) K(W) 

1 P ! l p ° l p l 1 P ! 

K(B) n(B)/im(d) -^-^ K(B) —!—• 

(19) 

k{w) — 5 - » fid=o(w) 

1 * [ p ° 

k{B) — 5 — i î d = 0 ( s ) . 

Proo/. — The maps between the topological If-groups are the usual push-forward 
maps defined by the if-orientation of p. The other two are defined above. The square 
(19) commutes by Lemma 3.16. The right square of (18) commutes because we have 
the well-known fact from index theory 

index(pi(<5)) = pi(index((5)) 

Let u) e fì(W)/im(d). Then we have 

Pi («(<")) = [0, 
'W/B 

a{6) A duj -
Jw/B 

Â c(o)Au] 

= [ 0 , -
JW/B 

(Â c(o) - da{p)) A u] = a (p\(u)). 

This shows that the middle square in (18) commutes. Finally, the commutativity of 
the left square in (18) is a consequence of the Chern character version of the family 
index theorem 

chdR(p\(x)] 
Iw/L 

A c ( T > ) A c h ^ ( x ) , x e K(W). 

If / : B' —> B is a smooth map then we consider the Cartesian diagram 

W F ) W 

W —L_> n 

We equip pi with the induced smooth if-orientation (see 3.2.4). 

Lemma 3.20. — The following diagram commutes: 

k{w) — k ( W ) 

k(B) k{B'). 
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Proof. — This follows from Lemma 3.10. • 

3.3. Functoriality 

3.3.1. — We now discuss the functoriality of the push-forward with respect to iter­
ated fibre bundles. Let p: W —» B be as before together with a representative of a 
smooth if-orientation op = (gTVp,Thpy V p , cr(op)). Let r: B —• A be another proper 
submersion with closed fibres with a topological if-orientation which is refined by a 
smooth if-orientation represented by or := (gTVr,Thr, V r , a(or)). 

We can consider the geometric family V := (W -+ B, gTVp,Thp, Sc(Tvp)) and 
apply the construction 3.2.2 in order to define the geometric family r,A(V) over A. 
The underlying submersion of the family is q := rop: W —> A. Its vertical bundle has 
a metric q and a horizontal distribution Thq. The topological 5pmc-structures oi 
Tvp and T v r induce a topological Spmc-structure on Tvq = Tvp®p*Tvr. The family 
of Clifford bundles of p\ *W is the spinor bundle associated to this 5pmc-structure. 

In order to understand how the connection V* behaves as A —• 0 we choose local 
spin structures on Tvp and Tvr. Then we write Sc(Tvp) ^ S(Tvp)®Lp and Sc(Tvr) 9* 
S(Tvr) ® Lr for one-dimensional twisting bundles with connection Lp,Lr. The two 
local spin structures induce a local spin structure on Tvq = Tvp 0 p*TV. We get 
Sc(Tvq) ^ S(Tvq) <g> L q with L q := Lp ®p*L r . The connection V*' 7"* converges 
as A —• 0. Moreover, the twisting connection on Lq does not depend on A at all. 
Since Vq,TVq and determine V A (see 3.1.5) we conclude that the connection V* 
converges as A —• 0. We introduce the following notation for this adiabatic limit: 

yadia . = l i n A ^ 0 v £ . 

3.3.2. — We keep the situation described in 3.3.1. 

Definition 3.21. — We define the composite o* := or ox op of the representatives of 
smooth if -orientations of p and r by 

<¿ :=(9Ì *,ThqM,*(ox

q)), 

where 

<j{ox

q) := a(op) Ap*Ac(or) + Ac(op) Ap*a(or) - A c ( V a d i a , V^) - da(op) Ap*a(or), 

Lemma 3.22. — This composition of representatives of smooth if -orientations pre­
serves equivalence and induces a well-defined composition of smooth if -orientations 
which is independent of X. 

Proof. — We first show that is independent of A. In view of 3.1.9 for A0 < Ai we 

must show that a(o A l ) - cr(Oq°) = Â c ( V A l , V*°). In fact, inserting the definitions 
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and using (13) and (14) we have 

CT(O^) -CT(O*°) = - Â c ( V a d i a , V ^ ) + Â c ( V a d i a , V * ° ) = Â C (V^ , V*>). 

Let us now take another representative o'p. The following equalities hold in the 
limit A -» 0. 

a(oq) - a(o') = (<r(op) - a{o')) Ap*Ac(or) 

+ (Â c (o p ) - Âc(o'p))Ap*a(or) - d(a(op) - a(o'p)) Ap*a(or) 

= Â c ( V p , V p ) A p * Â c ( o r ) 

+ (Â C (V P ) - Â c ( V p - dÂ c(V p , V p ) ) ApV(o r ) 

= Â c ( V a d i a , V ' a d i a ) . 

The last equality uses (12) and that in the adiabatic limit 

(20) Â c ( V a d i a ) = Â c (V p )Ap*Â c (V r . ) , 

which implies a corresponding formula for the adiabatic limit of transgressions, 

Â c ( v a d i a , v ; a d i a ) = â c ( v p , v ; ) A P * Â c ( v r ) . 

Next we consider the effect of changing the representative or to the equivalent one 
o'r. We compute in the adiabatic limit 

a(oq) - a(o'a) 

= v(oP) A (p*Â c(o r) - p*kc{o'r)) + (Â c (o p ) - da{op)) Ap*(a(or) - <r(o'r)) 

= a{op) A dp*Âc(Vr, V;) + (Â c (o p ) - da(op)) Ap*Â c(V r , V^) 

= kc{0p) AP*kc(vr,v'r) = Â c ( v a d i a , v ; a d i a ) . 

In the last equality we have used again (20) and the corresponding equality 

Â c ( V a d i V ^ 1

 = Â } A . £ C ( V P , VI) . 

3.3.3. — We consider the composition of proper if-oriented submersions 

P R 
W ^—*• B—^A 

Q 

with representatives of smooth if-orientations ov of p and or of r. We let oq := or oop 

be the composition. These choices define push-forwards p\, f\ and q\ in smooth if-
theory. 

Theorem 3.23. — We have the equality of homomorphisms K(W) —• K(A) 

q\ = f i o p\. 
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Proof. — We calculate the push-forwards and the composition of the if-orientations 
using the parameter À = 1 (though we do not indicate this in the notation). We take 
a class [6,p] G K(W). The following equality holds since A = 1: 

Q\& = r\(p\S). 

So we must show that 

(21) 
W/A 

Ac(oq) Ap + fifa, 1,(5)4 
Jw/A 

a(oq)AR([6,p}) 

JB/A 
Ac(or) A 

JW/B 
Ac(op)Ap + Û(p,l,ë) 

JW/B 
a(op)AR([6,p\) 

+f2(r,l,p!<S)+ / <r(or)AR(p\[6,p]), 
JB/A 

where = means equality modulo im(d) + chdii(K(A)). The form 12 (g, 1, S) is given by 
(15). Since in the present paragraph we consider these transgression forms for various 
bundles we have included the projection q as an argument. 

By Proposition 3.19 we have 

R(pi[S,p]) = 
JW/B 

(Âc(op)-d<r(op))AR([6,p}). 

Next we observe that 

(22) n( g,l,(5) = n(r,l,p!<S) + 
fW/A 

Â c (V a d i a ,V Q )Aft(f i )4 
'B/A 

Ac(or)AÛ(p,l,6), 

(where = means equality up to im(d)). To see this we consider the two-parameter 
family rA opf ((§), A,/x > 0, of geometric families. There is a natural geometric fam­
ily 57" over (0, l ] 2 x A which restricts to r,A opf(&) on {(A,/i)} x A (see 3.2.2 for 
the one-parameter case). Note that the local index form 17(57") extends by continu­
ity to [0, l ] 2 x A. If P: [0,1] [0, l ] 2 is a path, then one can form the integral 
fpxA/A ^(^|PXA)> the transgression of the local index form of r,A op?(&) along the 
path P. The following square indicates four paths in the (A,/i)-plane. The arrows 
are labeled by the evaluations of 12(57") (which follow from the adiabatic limit formula 
16), and their integrals, the corresponding transgression forms: 

JB/AA
c(or)AQ(p^ô) 

(0, i Q(r!y0p!(£)^ » (1, i) 
Q(r!y0p!(£) 

fB/AÂ
c(or)AÛ(p,l,6) fi(r,opf(<S)) Û(q,l,S) 

(0,0)-
Jw/AA'(oroxop)AQ(S) 
Jw/AA'(oroxop)AQ(S) •(1,0). 
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Note the equality n op^(S) = ctf(6) which is relevant for the right vertical path. Also 
note that for the lower horizontal path that , as ¡1 —> 0, the fibres of 6 are scaled to 
zero, whereas the fibres of p are scaled by A. The latter is exactly the effect of the 
scaled composition or oA op of orientations defined in 3.3.1, explaining its appearence 
in the above formula. The equation (22) follows since the transgression is additive 
under composition of paths, and since the transgression along a closed contractible 
path gives an exact form. 

We now insert Definition 3.21 of o~(oq) in order to get 

/ a(oq)AR([S,p\) 
Jw/A 

= / \a(op) Ap*Ac(or) + Ac(op) ApV(o r ) 
Jw/A 

-da(op) A pV(o r ) - Â c ( V a d i a , Vq)] A R([6, p]) 

= / \a(op) A p*Ac(or) + Ac(op) A pV(o r ) - da(or) A pV(o r )l A R([6, p]) 
Jw/A 

Jw/A 
A c (V a d i a ,V g )AO((S)4 

Jw/A 
Â c ( V a d i a , V g ) A dp 

Jw/A 
[<j(op) A p*Ac(or) + Ac(op) A pV(o r ) - da(op) A pV(o r ) ] A R([6, p]) 

(23) 
Jw/A 

Â c (V a d i a ,V,)Afi((S)H 
Jw/A 

(Kc(op) Ap*Â c(o r) - Â c (o q ) ) A p. 

We insert (23) and (22) into the left-hand side of (21). 

Jw/A 
Â c (o,) A p +0(4 ,1 ,5 ) -

Jw/A 
a(oq)AR([Ô,p}) 

= / Âc(oq)Ap 
JW/A 

+ fi(r,l,P!(S) + 
W/A 

Â c (V a d i a ,V,)AO ( (S) 
J B/A 

Ac(or) An(p,l,<S) 

W/A 
(7(op) Ap*Â c(o r) + Â c (o p ) ApV(o r ) - d(7(op) ApV(o r ) ] A #([£,/>]) 

Jw/A 
Â c (V a d u ,V g )AÎÏ((S)4 

W/A 
( Â c ( o p ) A p * Â c ( 0 r ) - Â c ( o , ) ) Ap 

= fi(r,l,p!(S) + 
BIA 

Â c(o r)AO(p,l,(S) 

W/A [<T(Op) A p*Â c (o r ) + Â c ( o p ) A pV(o r ) - cfcr(op) A pV(o r ) ] A R([6, p)) 
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+ / Ac(op) Ap*Ac(or) A p. 
Jw/A 

An inspection shows that this is exactly the right-hand side of (21) 

4. The cup product 

4.1. Definition of the product 

4.1.1. — In this section we define and study the cup product 

U: K{B)®K(B) ->K(B). 

It turns smooth if-theory into a functor on manifolds with values in Z/2Z-graded rings 
and into a multiplicative extension of the pair (K, ch )̂ in the sense of Definition 1.2. 

4.1.2. — Let 6 and £7 be geometric families over B. The formula for the product 
involves the product S x B £7 of geometric families over B. The detailed description 
of the product is easy to guess, but let us employ the following trick in order to give 
an alternative definition. 

Let p: F —> B be the proper submersion with closed fibres underlying £7. Let 
us for the moment assume that the vertical metric, the horizontal distribution, and 
the orientation of p are complemented by a topological 5pmc-structure together with 
a .S'pmc-connection V as in 3.2.1. The Dirac bundle V of £7 has the form V = 
W®Sc(Tvp) for a twisting bundle W with a hermitean metric and unitary connection 
(and Z/2Z-grading in the even case), which is uniquely determined up to isomorphism. 
Let p* £ <g> W denote the geometric family which is obtained from p* 6 by twisting 
its Dirac bundle with S*W, where 5: E Xg F —• F denotes the underlying proper 
submersion with closed fibres of p* &. Then we have 

U: K{B)®K(B) ->K(B). 

This description may help to understand the meaning of the adiabatic deformation 
which blows up £7, which in this notation is given by p*(p*(S ® W). 

In the description of the product of geometric families we could interchange the 
roles of S and £7. 

If the vertical bundle of 6 does not have a global Spmc-structure, then it has at 
least a local one. In this case the description above again gives a complete description 
of the local geometry of 6 x B ¿7-

4.1.3. — We now proceed to the definition of the product in terms of cycles. In 
order to write down the formula we assume that the cycles ((S, p) and (£7,0) are 
homogeneous of degree e and / , respectively. 
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Definition 4.1. — We define 

(5, p) U (67,0) := [£ x B 57, {-l)eSl(6) A0 + p A il(ST) - (~l)edp A 0]. 

Proposition 4.2. — The product is well-defined. It turns B i -» K(B) into a functor 

from smooth manifolds to unital graded-commutative rings. 

Proof. — We first show that this product is bilinear and compatible with the equiva­

lence relation rsj (2.10). The product is obviously biadditive and natural with respect 

to pull-backs along maps B' —> B. We now show that the product preserves the 

equivalence relation in the first argument. Assume that S admits a taming & t. Then 

we have ((§, p) ~ (0 , p — r)(&t)). Using the latter representative we get 

( 0 , p - r,(6t)) U (£7, 9) = [0, (p - tìiSt)) A Çl{&) - (-l)edp A 9 + (-ìydrjiSt) A 9] 

= [0,pA O ( ^ ) + (-l)en(ô) A 9 - (~l)edp A 6 - n(St) A 

On the other hand, similar to in 3.2.6, the taming St induces a generalized taming 

(6 Xg &)t- Using Lemma 3.13 and argueing as in the proof of Lemma 3.14 we get 

[6 x B £7-, (-l) en((S) A 9 + p A - (-l)edp A a] 

= [0, (-l)efi(<S) A 9 + p A fl(£7) - (-l) ed/9 A a - r){{ô x B £?)*)]• 

It suffices to show that 

(24) i?(<St) A O(^) - V((S xB ST)t) e im(chd f i). 

We will actually show that this difference is exact. 

We first consider the adiabatic limit in which we blow up the metric of £7". We get 

from Theorem 3.12 

(25) l i * ADIAMO XB &)t) = Tl(St)ASl(Sr). 

In order to see this we use that 6 x B 57 = p\ (p* 6 ® W) (see 4.1.2), where p: F —> B 

and W —• F is the twisting bundle of this family. The taming St induces a taming 

p*<§£, and hence a taming (p*<§® W)t. It follows from standard properties of the 

induced superconnection on a tensor product bundle (alternatively one can use the 

special case of Theorem 3.12 where the second fibration has zero-dimensional fibres) 

that rj(p*6 (8) W)t = p*ri(6t) A c h ( V ^ ) . Prom Theorem 3.12 we get (V is associated 

to p) 

limadiar?(((S XB &)t) = limA_, 0iKrf(p*<S® W)t) 

= V(ôt) A 
JF/B 

A C ( V ) A c h ( V ^ ) = r¡(6t) Л П(£7). 

As in 3.2.2 we now let <§t be the tamed family over (0, oo) x B with underlying 

projection r : ( 0 , o o ) x E x B F - > (0, oo) x B which restricts to p\(jp*& <8> W)t on 
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{A} x B. Then we have drj($t) = O(^). Using the formulas for VTVr given in [7, 
Prop. 10.2] we observe that idHRvT =0 , where is a horizontal lift of d\. This 

implies that idxdrj(^t) — idxQ,($) = 0. We get 

V(pHp*6®W)t) - r]{pl(p*6® W)t) = d 
*[\,l]xB/B 

vif)-

The exactness of the difference (24) now follows by taking the limit A —• 0 and the 
fact that the range of d is closed since lim \-^or](p^(p* 6 (S) W)t) = fl(6t) A 0(67") by 
(25) and rj(p}(p*8<S> W)t) = rj((S x B 67)t) by construction. 

In order to avoid repeating this argument for the second argument we show that 
the product is graded commutative. Note that & XB 67 = 67 x # <§ except if both 
families are odd, in which case 6 x# 67' = (67x # 6)op 

[S, p] U [57,0] = [6 xB 57, (-l)eO(<S) A 0 + p A 0(57) - (-l)edp A 6} 

= [(-l) e / 57 xB <S, {-l)e+<f-Ve A 0(<S) + ( - l ) / ( e - 1 } 0 (57) A p - p A dO] 

= [(-l) e / 57 xB <S, ( - l ) e / 0 A 0(5) + ( - l ) e / ( - l ) / 0 (57 ) A p - (-l)ef (-l)f d0 A p] 

= (-l)e'[67,0]U[<S,p]. 

4.1.4. — We now have a well-defined Z/2Z-graded commutative product 

U: K(B) <g> K(B) -> K(B). 

We show next that it is associative. First of all observe that the fibre product of 
geometric families is associative. Let e, / , g be the parities of the homogeneous classes 
[6,p], [£7,0], and [£7,0] 

{[S,p)U[&,0])UW,k] 

= [ÔXBP, (-l)ef2(5) A 9 + p A Q(£7) - {-l)edp A 9] U k] 

= [(5 x B 57 x B ((-l.)efl(<S) A9 + p A fi(£7) - (-l)edp AO) A 

+( - l ) e + / f i ( (5x B ^)AK 

-(-l) e + / d((-l) e n((S) A6 + p A - {-l)edp A 9) A k] 

= [<S x B £7 x B (-l)efi((S) A ^ A fi(#) + p A A n(^) 

-(-l) e dp A 6> A + (-l)e+ /fi(<S) A fi(£7) A K — (-l)e+fn(S) A dO A k 

-(-l)e+fdp A Çl{9) A K + (-l)e+fdp Ad9 A K] 
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On the other hand 

[&p]x ([£7,0] x [#,*]) 

= [<S, p] x [9 xB (-iyo,{&) A K + 6 A iî(#) - (-1)'dfl A «] 

= [5 x f î A£7 X j B ( - l ) e i î (5) A ((- l)^iî(£^ A K + 0 A íí(#) - ( -1 )^0 A «) 

+p A xB <§) - (-l)edp A ((-l/iîiST") A K + 0 A íí(#) - ( - l /df l A «)] 

= [5 x f î £F x f î (-l) e + / fî((S) A íl(ST) A K + (-l)en(6) A0A íí(#) 

-(-l) e + / ft(<5) A d0 A K + p A fi(£7) A fi(^) - ( - l ) e + / d p A íl(&) A K 

-{-Ifdp A0A + (-l)e+fdp Ad0 A K] 

By an inspection we see that the two right-hand sides agree. 

4.1.5. — Let us observe that the unit 1 € K{B) is simply given by (B x C, 0), i.e. the 
trivial 0-dimensional family with fibre the graded vector space C concentrated in even 
degree, and with curvature form 1. The definition shows that this is actually a unit 
on the level of cycles. This finishes the proof of Proposition 4.2. • 

4.1.6. — In this paragraph we study the compatibility of the cup product in smooth 
if-theory with the cup product in topological üf-theory and the wedge product of 
differential forms. 

Lemma 4.3. — For x, y G K(B) we have 

R(xUy) = R(x) A R(y), I(xUy) = I(x)Ul(y). 

Furthermore, for a G ft(B)/±m(d) we have 

a(a) U x = a(a A R(x)). 

Proof — Straightforward calculation using the definitions. • 

Corollary 4.4. — With the U-product smooth K-theory K is a multiplicative extension 
of the pair (if, CIIR). 

4.2. Projection formula 

4.2.1. — Let p: W —> B be a proper submersion with closed fibres with a smooth 
if-orientation represented by o. In this case we have a well-defined push-forward 
p\: K(W) —• K(B). The explicit formula in terms of cycles is (17). The projection 
formula states the compatibility of the push-forward with the U-product. 

Proposition 4.5. — Letxe K(W) and y G K(B). Then 

P\{p*y Ux) = yUp\(x). 
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Proof. — Let x = [57, <r] and y = [(?, p]. By an inspection of the constructions we 
observe that the projection formula holds true on the level of geometric families 

P\(p*6xw&) = GxBp\9'. 

This implies 

n(pî(p*S xw 57)) = 0(£) A 0(^(57)). 

Consequently we have 0(A,p*<§ xw 57) = (-l)eO(<S) A 0(A, 67"). Inserting the defini­
tions of the product and the push-forward we get up to exact forms 

p\(p*yUx) 

= P\(\p*S xw 57,(-l)VO((S) A<r + p*pAO(57) - (-l)ep*dpAa]) 

= \p\(p*Sxw&): 

JW/B 
Ac(o) A [(-1) Vn(<S) A <r + p*p A 0(57) - ( - l ) V dp A a] 

+ / a(o)AR(p*yUx) + Û(l,p*6xwS?)] 
JW/B 

= \p\(p*Sxw&): 

'W/B 
Ac(o) A 0(57) + (—l)e0((S) A 

•/W/B 
Â c(o) A (7 

+(-l) eO((§)AÔ(l,57) 

(26) -pA 
JW/B 

Ac(o) Ada + (-l)eR(y) A 
'W/B 

a(o)AR(x)}. 

Up to exact forms we have 

pA 
W/B 

Âc(o) A 0(57) + (-l)e0(<S) A 
>W/B 

Ac{o)Aa 

+ ( - l ) e 0 ( £ ) A 0(1,57) 

-p/v 
'W/B 

Â c(o) A dcr + (-l)eR(y) A 
'W/B 

a{o) A R(x) 

= (-l) e0((S)/ 
«/W/B 

Âc(o) A<j + 0(1,57)-
JW/B 

a(o) A R(x) 

+pA 
I W/B 

Ac(o) A (0(57) - da)) - (~l)edp A 
'W/B 

a(o) A R(x) 

= ( - l ) e 0 (5 )A 
J W/B 

Ac(o) A a + 0(1,57)-
/W/B 

a(o) A R(x 

-hp A 
*W/£ 

(Ac(o)-da(o))AR{x) 

= ( - l ) e 0 ( £ ) A 
^W/B 

Â c(o) A a + 0(1,57) 4 
J W/B 

a(o) A R(x) 

-hp A R(p\x). 
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Thus the form component of (26) is exactly the one needed for the product y U 
P\(x). • 

4.3. Suspension 

4.3.1. — We consider the projection pr 2: S1 x B -* B. The goal of this subsection 
is to verify the relation 

(pr2). o p r ; = 0 

which is an important ingredient in the uniqueness result Theorem 1.4. 

4.3.2. — The projection pr 2 fits into the Cartesian diagram 

Pri 
S1 x B ^ S1 

pr2 p 
w v T B ^ *. 

We choose the metric gTSl of unit volume and the bounding spin structure on TS1. 
This spin structure induces a Spinc structure on TS1 together with the connection 
V. In this way we get a representative o of a smooth if-orientation of p. By pull-back 
we get the representative r*o of a smooth if-orientation of pr 2 which is used to define 
(pr2)!-
4.3.3. — Using the projection formula Proposition 4.5 we get for x G K(B) 

(praMP^O*)) = (P*2)!(Pr20*0 U 1) = a; U (pr 2)|l. 

Using the compatibility of the push-forward with Cartesian diagrams Lemma 3.20 we 
get 

(pr2),l = dar2)i(pr;(l)) = r*p,(l). 

We let (fl1 denote the geometric family over * given by p: S1 —> * with the geometry 
described above. Since 5 1 has the bounding Spin-structure the Dirac operator is 
invertible and has a symmetric spectrum. The family f̂1 therefore has a canonical 
taming by the zero smoothing operator, and we have r)(<fl\) = 0. This implies 

p !(l) = [/ ,O] = [0,7 ?(^ 1)] = [0,O] = O. 

Corollary 4.6. — We have (jrr2)\ o pr 2 = 0. 
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5. Constructions of natural smooth if-theory classes 

5.1. Calculations 

5.1.1. 

Lemma 5.1. — We have 

if*(*) ^ 
Z 

R/Z 

* = 0 

* = 1. 

Proof. — We use the exact sequence given by Proposition 2.20. The assertion follows 
from the obvious identities 

if°(*) * if°(*) * Z, if *(*) ^ fiev(*)/chdi?(if°(*)) ^ R/Z. 

5.1.2. 

Lemma 5.2. — There are exact sequences 

0->R/Z^ if0^1) -+Z^0 
(*) ^ fiev(*)/chdi?(if°(*)) ^ R/Z. 

Proof. — These assertions again follow from Proposition 2.20 and the identifications 

K^S1) ^ Z, if ^ S 1 ) ^ Z, ^ ( S ^ / c h ^ ^ 0 ^ 1 ) ) ^ C^iS^/Z. • 

5.1.3. — Let V := (V,hv, V y , z ) be a geometric Z/2Z-graded bundle over S 1 such 
that dim(V+) = dim(V~). Let V denote the corresponding geometric family. By 
Lemma 5.2 the class [V, 0] G i f 0 ^ 1 ) satisfies /([V, 0]) = 0 and hence corresponds 
to an element of R/Z. This element is calculated in the following lemma. Let ^ G 
U(n)/conj denote the holonomies of V± (well denned modulo conjugation in the 
group U(n)). 

Lemma 5.5. — We have 

[V,0) = a 
1 

2ni 
det(4>+)\ 
det(4>+)\ 

Proof. — We consider the map q: S1 —• * with the canonical if-orientation 4.3.2. By 
Proposition 3.19 we have a commutative diagram 

R/Z — ^ fì1(51)/(im(d) + im(ch^)) K^S1) 

\, >1 >1 

R/Z — ^ fì°(*)/im(ch^) — • if°(*). 

In order to determine [V, 0] it therefore suffices to calculate <?i([V, 0]). Now observe 
that q: S1 —» * is the boundary of p: D2 —> *. Since the underlying topological 
if-orientation of q is given by the bounding Spin-structure we can choose a smooth 
if-orientation of p with product structure which restricts to the smooth if-orientation 
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of q. The bundle V is topologically trivial. Therefore we can find a geometric bundle 
W = (Wy h

w, Vw,z), again with product structure, on D2 which restricts to V on 
the boundary. Let V denote the corresponding geometric family over D2. Later we 
prove the bordism formula Proposition 5.18. It gives 

ä([V,O]) = [0,p,Ä([V,O])] = -a 
Jd2/* 

0 2 (V) 

Note that 

0 2 (V) = ch2(V^) = ch 2 (V d e t ^ + ) ) -ch 2 (V d e t ^")) -1 

2m 
RV*<tW+ _ RáetVw~ 

The holonomy det(0 ±) G U(l) of det(V ± ) is equal to the integral of the curvature 
of detW*: 

logdet(0±) = 
Jd2 

v̂det(W±) 

It follows that 

W , 0 ] ) = a 
1 
2TTi l0g5e^)J 

5.2. The smooth if-theory class of a mapping torus 

5.2.1. — Let & be a geometric family over a point and consider an automorphism 0 
of &. Then we can form the mapping torus T(6,<j>) := (R x <§)/Z, where n G Z acts 
on R by x i—» x + n, and by 0 n on 5. The product R x & is a Z-equivariant geometric 
family over R (the pull-back of S by the projection R —• *). The geometric structures 
descend to the quotient and turn the mapping torus T(6,</>) into a geometric family 
over S1 = R/Z. In the present subsection we study the class 

[V,O]) = [0,p,Ä(] 

In the following we will assume that the parity of 6 is even, and that index(<S) = 0. 

5.2.2. — Let dim: i f ^ S 1 ) —> Z be the dimension homomorphism, which in this 
case is an isomorphism. Since dim I([T(S, 0), 0]) = dim (index (<§)) = 0 we have in 
fact [T(<S,<£),0] G R/Z C ^ ° ( 5 1 ) , where we consider R/Z as a subgroup of K°(5 1 ) 
according to Lemma 5.2. 

Let V := ker(£>(<§)). This graded vector space is preserved by the action of 0. We 
use the same symbol in order to denote the induced action on V. 

We form the zero-dimensional family V := (R x V)/Z over S 1 . This bundle is 
isomorphic to the kernel bundle of T(6,(f>). The bundle of Hilbert spaces of the 
family T( <§,</>) U51 V° p has a canonical subbundle of the form V© V0 1 5. We choose 
the taming (T(S,<t>) U51 V°p)t which is induced by the isomorphism 

0 1 

1 0 
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on this subbundle. Note that [T(6, <j>), 0] = [V, rj({T(S, </>) U 5 i V°p)t)]. Since the pull-
back of (T((S, 4>) U51 V°P)t under R —• R/Z is isomorphic to a tamed family pulled 
back under R —> * we see that the one-form rj((T(S, </>) U51 (V°P)t) = 0. 

5.2.3. — Thus it remains to evaluate [T((S,0),O] = [V,0] G R/Z. By Lemma 5.3 
this number can be expressed in terms of the holonomy of the determinant bundle 
det(V). Let 0 ± G Aut(F ±) be the induced transformations. 

Proposition 5.4. — We have [T((S,0),O] = [5^ l o g ( i ^ ) ] R / z . In particular, if D(6) 
is invertible, then [T(S, </>),0] = 0. 

5.3. The smooth if-theory class of a geometric family with kernel bundle 

5.3.1. — Let 6 be an even-dimensional geometric family over the base B . By (D^^B 
we denote the associated family of Dirac operators on the family of Hilbert spaces 
(H^bzB- The geometry of 6 induces a connection on this family (the connection 
part of the Bismut superconnection [7, Prop. 10.15]). We assume that dim(ker(JDft)) 
is constant. In this case we can form a vector bundle if := ker(D). The projection of 

to if gives a connection VK. Hence we get a geometric bundle K := (if, hK, WK) 
and an associated geometric family dC (see 2.1.4). 

5.3.2. — The sum 6 Us CKop has a natural taming (8 UB $Cop)t which is given by 

0 u 
u* 0 

GEnd(tf 60if 6

o p), 

where u: Kb —> Hb is the embedding. We thus have the following equality in K(B): 

[<S,0] = [#,i 7((<Su B# o p) t)]. 

5.3.3. — Under the standing assumption that dim(ker(Db)) is constant we also have 
the 77-form of Bismut-Cheeger rjBC(6) € ft(B) (see [14], [13], [12]). Since other 
authors use rjBC(6), in the following two paragraphs we shall analyse the relation 
between this and T)((8UB t%°p)t)> 

We form the geometric family [0,1] x (6uBJCop) over B. The taming (<SUB tK°p)t 

induces a boundary taming at {0} x (SUB^°P)- In index theory the boundary taming 
is used to construct a perturbation of the Dirac operator which is invertible at —00 
of ( - 0 0 , 1 ] x (SUB ttop) (see [19] for details). On the other side {1} x (6uB %°p) we 
consider APS-boundary conditions. We thus get a family of perturbed Dirac operators 
on ( - 0 0 , 1 ] x (<SUB 3iop). The L2-boundary condition at { - 0 0 } x (SUB^C°P) and the 
APS-boundary condition at {1} x (SL\B $COP) together imply the Predholm property 
(which can be checked locally for the various boundary components or ends). In this 
way the family of Dirac operators on [0,1] x (&UB tK°p) gives rise to a family of 
Predholm operators. We will denote this structure by ([0,1] x (($•# ^°P))bt,APS-
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The Chern character of its index index(([0,1] x (S UB ^°P))bt,APs) £ K{B) can 
be calculated using the methods of local index theory. 

5.3.4. — Using 2.4.10 we can choose a possibly different taming (SUB ̂ K°p)t> such 
that the corresponding index index(([0,1] x (ÔL\B ^°P))bt',APs) € K{B) vanishes. 
In this case we can extend the boundary taming to a taming index(([0,1] x (£ UB 

X°P))t>,APS). 
We set up the method of local index theory as usual by forming the family of 

rescaled Bismut superconnections As := A5(([0,1] x (<S UB ^°P))t',APs) which take 
the tamings and boundary tamings into account as explained in [19, 2.2.4.3], see also 
3.2.6. Invertibility of D(([0,1] x (SUB &°P))t\APs) ensures exponential vanishing of 
the integral kernel of e~A* for s —» oo. The usual transgression integral expresses the 
local index form O([0,1] x (& UB $C°P)) as a sum of contributions of the boundary 
components or ends (see [19, proof of Lemma 2.2.15 ]). These contributions can be 
calculated separately for each part. 

Because of the product structure we have fi([0,1] x (SUB CKOP)) = 0. The con­
tribution of the boundary {1} x (6UB $COP) is given by the proof of the APS-index 
theorem of [14], [13], [12], and it is equal to rjBC(ôUB &°p) = r)BC{6). The second 
equality holds true, since the Dirac operator for $C°P is trivial. The contribution of 
the boundary {0} x (SUB $COP) is calculated in the proof of [19, Lemma 2.2.15] and 
equal to -rj{(ôUB <#°P)t')- Therefore we have f]BC(6) = ri{{6uB %°v)t,) (note that 
we calculate modulo exact forms). We now use 2.4.10 and a relative index theorem 
(compare (28)) in order to see that 

*?((<§ U B #°p)t<) - ti((6 U B X°p)t) = chdJ?(index(([0,1] x (5 U B X°p))u,aps)) G chdR(K(B)). 

Using Proposition 2.20 we get: 

Corollary 5.5. We have [¿,0] = [X,nBC{Ô)}. 

5.3.5. — Let p: W —> B be a proper submersion with closed fibres with a smooth 
if-orientation represented by o. Let V be a geometric vector bundle over W, and let 
V denote the associated geometric family. Then we can form the geometric family 
6 := pi V (see Definition 3.7). Assume that the kernel of the family of Dirac operators 
(D(6b))beB has constant dimension, forming thus the kernel bundle CK. Since V has 
zero-dimensional fibres we have 0(1, V) = 0. From (17) we get 

[¿,0] = [X,nB] 

fW/B 
Ac(o) A p + 

'W/B 
a(o) A (îï( V) - dp)] 

= \6, 
I W/B 

Ac(o) A p + 
'W/B 

a(o) A(îî(V)-dp)] 
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= [#,»7BC(<S) + 
Iw/B 

Ac(o) Ap + 
'W/B 

(7(0)A(îî(V)-dp)]. 

5.4. A canonical i f ^class on S 1 

5.4.1. — We construct in a natural way an element a:$i G K1(S1) coming from the 

Poincaré bundle over S1 x S 1 . Let us identify S1 = R / Z . We consider the complex 

line bundle L := (R x R / Z x C ) / Z over R / Z x R /Z , where the Z-action is given 

by n(s,t,z) = (s + n,t,exp(-27rmt)s). On R x R / Z x C —» R x R / Z we have the 

Z-equivariant connection V := d + 2nisdt with curvature i ? v = 27rids A This 

connection descends to a connection V L on L. The unitary line bundle with con­

nection L := (L, hL, V L ) gives a geometric family £ over R / Z x R / Z . It represents 

v : = [ £ , 0 ] G i f°(R/Z x R / Z ) . Note that R(v) = 1 + A dt. We now consider 

the projection p: R / Z x R / Z —• R / Z on the second factor. This fibre bundle has a 

natural smooth if-orientation (gTVp, Thp, V, 0 ) . The vertical metric and the horizon­

tal distribution come from the metric of S 1 and the product structure. Moreover, 

Tvp is trivialized by the 51-action. Hence it has a preferred orientation. We take 

the bounding Spin-structure on the fibres which induces the Spinc-structure and the 

connection V. 

Definition 5.6. — We define ar̂ i := p\v G K1(S1). 

5.4.2. — We have R(XSI) = dt. Let t e S 1 . Then we compute t*XSI G Kx(*) ^ R / Z 

(identification again as in Lemma 5.2). Note that 0*^51 is represented by the trivial 

line bundle over S 1 . Since we choose the bounding spin structure, the corresponding 

Dirac operator is invertible. Its spectrum is symmetric and its RJ-invariant vanishes 

(compare 4.3.3). Therefore we have 0*2:51 = 0. It now follows by the homotopy 

formula (or by an explicit computation of n-invariants), that 

(27) t*x$I = —t. 

5.4.3. — Let f:B—>S1be given. Then we define 

Definition 5.7. — <f> := f*XSI G K1{B). 

Assume now that we have two such maps f,g: B —> S1. As an interesting illustra­

tion we characterize 

< / > U <g> G K°(B). 

It suffices to consider the universal example B = T 2 = S1 x S1. We consider the 

projections pri: S1 x S1 —* S1, z = 1 ,2. Let x := p r ^ s i and y := pr^x^i. Then we 

must compute x U y G K°(T2). We identify T 2 = R / Z x R / Z with coordinates s,t. 
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First note that R(x U y) = R(x) U R(y) = ds A dt. Thus the class xUy-v + lis flat, 
i.e. 

xuy-v + ieK°at(T
2). 

In fact, since K°(T2) is torsion-free, we have 

K°at(T
2) * tf°dd(T2)/im(chdR) = R 2 / Z 2 . 

In order to determine this element we must compute its holonomies along the circles 
S1 x 0 and 0 x S1. The holonomy of v along these circles is trivial. Since 0*x = 0 and 
0*1/ = 0 we see that x x y also has trivial holonomies along these circles. Therefore 
we conclude 

Proposition 5.8. — We have x U y = v — 1. 

Now we solve our original problem. The two maps / , g induce a map fxg:B-+T2. 

Corollary 5.9. — We have < / > U <g> = (/ x g)*v - 1. 

5.5. The product of S1 -valued maps and line-bundles 

5.5.1. — Let / : B —> S1 be a smooth map and L := (L ,V L , / i L ) be a hermitean 
line bundle with connection over B. It gives rise to a geometric family £ (see 2.1.4). 
We consider the smooth if-theory classes < / > and <L> := [^,0] — 1. It is again 
interesting to determine the class 

< / > U <L> G K1(B). 

An explicit answer is only known in special cases. 
First we compute the curvature: 

B(< /> U <L>) = B(</>) A i?(<L>) = df A {ec^vL) - 1), 

where df := f*dt and c x ( V L ) := - ^ i ^ . 

5.5.2. — Note that the degree-one component of the odd form R(<f> U <L>) van­
ishes. Let now q: E —• B be a smooth map from an oriented closed surface. Then 
R(q*(<f> U <L>)) = q*R((<f> U <L>)) = 0. Therefore 

?*(</> U <L>) G ^ a t ( E ) ^ ü e v(E,R)/im(ch) ^ R/Z 0 R/Z, 

where the first component corresponds to iJ°(£,R) and the second to ii" 2(£,R). In 
order to evaluate the first component we restrict to a point. Since the restriction of 
<L> to a point vanishes, the first component of q*(<f> U <L>) vanishes. Therefore 
it remains to determine the second component. 
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5.5.3. — Let us assume that q*L is trivial. We choose a trivialization. Then 
we can define the transgression Chern form ci(V 9 * L , V t r i v ) G fi1(E) such that 
dci(V 9* L, V t r i v ) = q*cx(V

L). By the homotopy formula we have 

q*<L> = [ 0 , - c i ( V 9 * L , V t r i v ) ] . 

In this special case we can compute 

a*(</>U<L>) = o*</>U a*<L> 

= <4*/>U g*<L> = [0,q*df Aci(V«* L ,V t r i v )]. 

We see that the second component is 

/ <r*#Aci(V**L,V t r i v) 
R/Z 

We do not know a good answer in the general case where q*L is non-trivial. 

5.6. A bi-invariant K1- class on SU{2) 

5.6.1. — Let G be a group acting on the manifold M. 

Definition 5.10. — A class x G K(M) is called invariant, if g*x = x for all x G G. 

5.6.2. — For example, the class #51 G K1^1) defined in 5.6 is not invariant under 
the action L t , t G S 1, of S1 on itself. Note that R(xs^) = dt is invariant. Therefore 
L^xSi - xSi G R/Z. In fact by (27) we have 

L*#5i — xg\ = —t. 

Since eft is the only invariant form with integral one we see that the only way to 
produce an invariant smooth refinement of the generator of H1 (S1, Z) = Z would be 
to perturb X51 by a class b G if°(5 1 ,R/Z). But 6 is of course homotopy invariant, 
hence L\b = b. We conclude that the generator of i f 1 (S 1 ,Z) (and also every non-
trivial multiple) does not admit any invariant lift. 

5.6.3. — The situation is different for simply-connected groups. Let us consider the 
following example. The group G := 517(2) x SU(2) acts on SU{2) by (gi,g2)h := 
gihg^1. Let volsu(2) € Q3(SU(2)) denote the normalized volume form. Furthermore 
we let i: * —» SU(2) denote the embedding of the identity. 

Proposition5.11. — For k G Z there exists a unique class xSu(2)(h) € if 1 (£[/(2)) 
s^c/i that R(xsu(2)) — kvolsu(2) and i*x — 0- This element is SU(2) x SU(2)-
invariant 

Proof — Assume, that x,y G K1(SU(2)) satisfy R(x) = R(y). Then we have x — y G 
#£ a t(Stf(2)) ^ î flatlS3) = R/Z. Since 2*x = 2*2/ = 0 we have in fact that x = y. 
Therefore, if the class xsu(2)(k) exists, then it is unique. 
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We show the existence of an invariant class in an abstract manner. Note that 
kvolSu(2) represents a class ch(F) for some Y G if 1(S' 3). In terms of classifying 
maps, Y for k = 1 is given by the embedding 517(2) -» 17(2) *7(oo) ^ if 1. We 
have the exact sequence 

0 -+ fiev(SU'(2))/±m(chdR) A K1(SU(2)) -4 if ^SC/^)) -+ 0. 

Therefore we can choose any class y G X1(5Z7(2)) such that I(y) = Y. Then the 
continuous group cocycle G 3 t —> c(£) = t*y — y G Oev(5C/(2))/im(chdJR) represents 
an element [c] G ff^G, O e v(5f7(2))/im(ch d i ?)). 

We claim that this cohomology group is trivial. Note that Oev(5C/(2))/im(chdij) = 
0°(S'C/(2))/Z©fi2(5C/(2))/im(d). Since ft2(SC/(2))/im(d) is a real topological vector 
space with a continuous action of the compact group G we immediately conclude 
that Hc(G,Q,2(SU(2))/±m(d)) = 0 by the usual averaging argument. We consider the 
exact sequence of G-spaces 

0 -» Z n°(SU(2)) -+ «°(S17(2))/Z 0. 

Since G is simply-connected we see that taking continuous functions from G x • • • x G 
with values in these spaces, we obtain again exact sequences of Z-modules. It follows 
that we have a long exact sequence in continuous cohomology. The relevant part reads 

Hl(G,Z) - Jffc

1(G,n°(5C/(2))) - Hl{G,n\SU{2))/1) - H2

C(G,Z). 

Since Z is discrete and G is connected we see that Hl

c(G, Z) = 0 for i > 1. Therefore, 

^(G.fi^Stf^))) ^ Hl

c(G,Sf(SU{2))/Z). 

But 0°(SC/(2)) is again a continuous representation of G on a real vector space so 
that Hi(G,Q°(SU(2))) = 0. The claim follows. 

We now can choose w G fiev(5C/(2))/im(ch^) such that t*w — w = t*y — y for all 
t G G. We can further assume that i*w = i*y by adding a constant. Then we set 
xsu(2)(k) = y — w G K1(SU(2)). This element has the required properties. • 

It is an interesting problem to write down an invariant cycle which represents the 

class xSu{2)-

5.6.4. — Note that xsu(2)(k) = kxsu{2)(l)- Let E C SU(2) be an embedded oriented 
hypersurface. Then R(xSu(2)(l))\v = 0 so that (xSu(2))\v € f̂lat(̂ )- Since xsu(2)(l) 
evaluates trivially on points we have in fact 

(*W(2)(1))|E 6 ker ( ^ ( E ) - j&tto) = R/Z. 
This number can be determined by integration over E. Formally, let p: E —• {*} 

be the projection. If we choose some smooth if-orientation, then we can ask for 

P.'(̂ 5C/(2)(l))|s € f̂lat(*) — K/Z. The hypersurface E decomposes SU(2) in two 

parts 5C/(2)^. Let 5i7(2)J be the part such that dSU(2)^ has the orientation given 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



102 U. BUNKE & T. SCHICK 

by E. We choose a if-orientation o of the projection q: SU(2)^ —• * which has a 
product structure such that a(o) = 0 and A c(o) = 1. In order to get the latter 
equality we choose a 5pmc-structure coming from a spin structure. The smooth if-
orientation of q induces a smooth if-orientation of p. Then q: SU(2)^ —• * provides 
a zero-bordism of E, and of (#st/(2)(l))|£- Therefore, we have by Proposition 5.18 

P!(sstf(2)(l))|E = 0, / R(xSU(2)(l)) 
JSU(2) + 

= -[vol(5tf(2)+)]R / z, 

where [A]R/z denotes the class of A £ R. Note that the identification K^&t(*) = R/Z 
is induced by a: R = ftodd(*)/im(d) iffla t(*) given by A ̂  [0, - A]. This explains 
the minus sign in the second equality above. 

5.7. Invariant classes on homogeneous spaces 

5.7.1. — Some of the arguments from the SU(2)-case generalize. Let G be a compact 
connected and simply-connected Lie group and G/H be a homogenous space. 

Given Y £ K(G/H) we can find a lift y £ K(G/H). We form the cocycle G 3 
9 ^ c(d) : = 9*y — y £ ft>(G/H)/im(chdR). Since Q(G/H)/±m(chdR) is the quotient of 
a vector space by a lattice and G is connected and simply-connected we can use the 
arguments as in the SU(2)-case in order to conclude that HI (G, Q(G/H)/±m(chdR)) = 
0. Therefore we can choose the lift y such that g*y — y for all g £ G. In particular, 
R(y) £ Q(G/H) is now an invariant form representing ch(Y). Note that an invariant 
form is in general not determined by this condition. 

5.7.2. — If we specialize to the case that G/H is symmetric, then invariant forms 
exactly represent the cohomology. In this case we see that two choices of invariant 
lifts 2/0? V\ of Y have the same curvature so that y\ — yo £ ifflat (G/H). Since the yi 
also have the same index, we indeed have y\ — yo £ H(G/H, R)/im(ch^). We have 
thus shown the following lemma. 

Lemma 5.12. — Assume that G/H is a symmetric space with G connected and simply 
connected. Then every Y £ K(G/H) has an invariant lift y £ K(G/H) which is 
uniquely determined up to H(G/H,R)/im(chdR). 

5.7.3. — We can apply this in certain cases. First we write £ 2 n + 1 ^ Spin(2n + 
2)/Spm(2n + l) , n > 1. Note that i f ! ( 5 2 n + 1 ) ^ Z. Since if e v (5 2 n + 1 ,R)/ im(ch d j R ) = 
R/Z is concentrated in degree zero we have the following result. 

Corollary5.13. — Let n > 1. For each k £ Z there is a unique xS2n+i(k) £ 
K 1 ( 5 2 n + 1 ) which is invariant, has index k £ Z = i f 1 ( 5 2 n + 1 ) , and evaluates trivially 
on points. 
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5.7.4. — In the even-dimensional case we write S2n = Spin(2n +1)/Spin(2n), n > 1. 
Note that K°(S2n) ^ Z 0 Z and Hodd(S2n, R)/im(ch d H) = 0. 

Corollary 5.14. — For each k £ Z there is a unique xs^{k) £ K°(S2n) which is 
invariant and has index k G Z = K°(S2n), and evaluates trivially on points 

5.7.5. — We write CP n := SU(n + 1)/S(U(1) x U(n)). Then 
iJ o d d (CP n ,R)/im(ch^) = 0. Therefore we conclude: 

Lemma 5.15. — For each Y G K°(CFn) there is a unique SU(n + l)-invariant class 
ycFn(Y) G K°(CFn) such that I(ycp»(Y)) = Y. 

5.7.6. — Let G be a connected and simply-connected Lie group. Let T C G be a 
maximal torus. Then we have a G-map P: G/T x T -> G, P(\g],t) := ^ty"1, where 
G acts on the left-hand side by g([h],t) := (\gh],i), and by conjugation on the right-
hand side. Let x G K*(G) be an invariant element. It is an interesting question how 
P*x looks like. 

Let us consider the special case G = SU(2) and xsu(2) — xsu(2)(l) € K1{SU{2)). 
In this case we have T = S1 and G/T = CP1. First we compute the curvature of 
P*Xsu(2)- For this we must compute P*volsf/(2) which is given by Weyl's integration 
formula. We have 

P*volsu(2) — volcpi A Asm2(27rt)dt. 

There is a unique class z G i f 1 ^ 1 ) with curvature 4sm2(27rt)dt such that 0*2 = 0. 
Furthermore, there is a unique class <L> G If 0(CP 1) with curvature volcpi which 
is in fact the class <L> considered in 5.5.1 associated to the canonical line bundle L 
on CP1. 

The product <L> U z has now the same curvature as P*xsu(2)- We conclude that 

P*xsu(2) ~ <L> U z G iT^CP 1 x S\R)/±m(chdR). 

Now note that 

tf^CP1 xS\R)/±m(chdR) 

^ ( ^ ( C P S R ) <g> H°(S\R) 0 if 2(CP 1 ,R) ® i i^O^R)) /im(ch d i î) 

^ R/Z 0 R/Z. 

The first component can be determined by evaluating the difference P*xsu(2) ~ <L>U 
z at a point. Since xsu(2) is trivial on points, this first component vanishes. The 
second component can be determined by evaluating P*xsu{2) ~ <L>Uz at CP1 x {0}. 
Note that P<CPI*{ti}xsu{2) — 0> since P|cp1x{o} is constant. Furthermore, 0*z = 0 
implies that <L> U £|cpix{o} — 0- Thus we have shown (using S2 = CP1): 

Lemma 5.16. — We have P*xsu(2) — #s 2 (l) U z. 
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5.8. Bordism 

5.8.1. — A zero bordism of a geometric family & over B is a geometric family V 
over B with boundary such that S = dW. The notion of a geometric family with 
boundary is explained in [19]. It is important to note that in our set-up a geometric 
family with boundary always has a product structure. 

Proposition 5.17. — If 6 admits a zero bordism *W, then in K*(B) we have the identity 

[<S,O] = [0,fi(W)]. 

Proof. — Since & admits a zero bordism we have index(S) = 0 so that S admits a 
taming St- This taming induces a boundary taming Vbt- The obstruction against 
extending the boundary taming to a taming of °W is index( Vtt) G K(B) [19, Lemma 
2.2.6]. 

Let us assume for simplicity that S is not zero-dimensional. Otherwise we may 
have to stabilize in the following assertion. Using 2.4.10 we can adjust the taming St 
such that index(Vfct) = 0. At this point we employ a version of the relative index 
theorem [17] 

(28) indexât') = index( Vbt) + index((5 x [0, l])w), 

where St and Sf define the boundary taming (S x [0, l])bt-
If index( Vbt) = 0, then we can extend the boundary taming V&t to a taming Wt-

We now apply the identity [19, Thm. 2.2.13]: fi( V ) = dn^t) ~ v(Gt)> Note that 
this equality is more precise than needed since it holds on the level of forms without 
factoring by ±m(d). We see that ((5,0) is paired with (0,f ì (V)) . This implies the 
assertion. • 

5.8.2. — Let p: W —> B be a proper submersion from a manifold with boundary W 
which restricts to a submersion q := p\ow : V := dW —> B. We assume that p has a 
topological if-orientation and a smooth if-orientation represented by op which refines 
the topological if-orientation. We assume that the geometric data of op has a product 
structure near V (see [19, Section 2.1] for a detailed discussion of such product struc­
tures). Recall op = (gTVp,Thp,VPiap). By the assumption of a product structure 
we have a quadruple (gTVq

ìT
hqìVqìaq) and an isomorphism of a neighbourhood of 

P\dw '• dW —• B with the bundle S x [0,1) S B such that the geometric data 
are related as follows. 

1. 7>|£x[o,i) = pr*T^©pr* 1 }T[0,1) and g^[0 1 } = pr*<T* +pr* x)dr\ where 

r G 10,1) is the coordinate. 
2. Thp\£xl0tl)=px*6T

hq. 

3- (<7p)|<Sx[0,l) = VT*G<7q-
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4. The Spmc-structure on Tvq and the canonical Spmc-structure on T[0,1) induce 
a Spmc-structure on the vertical bundle Tv *é pr^T^^epr^ 1 }T[0,1) of [0,1) 
in a canonical way so that the associated spinor bundle is S(TV) = pr*gSc(Tvq) 
or pr*^Sc(Tvq) 0 C 2 depending on the dimension of Tvq. In particular, the 
connection V g gives rise to a connection V p r o d • The product structure identifies 
the restricted 5pmc-structure of Tvp\gx^^ with this product Sfpmc-structure 
such that V|£X[o,i) becomes V p r o d-

From this description we deduce that 

A c(V)|£ x [ 0,i) = p4Â c (V,) , Àc(op)|£x[o,i) = P 4 A C K ) . 

It is now easy to see that the restriction of representatives (with product structure) 
preserves equivalence and gives a well-defined restriction of smooth if-orient at ions. 
We have the following version of bordism invariance of the push-forward in smooth 
if-theory. 

Proposition 5.18. — For y G K(W) we set x := y\V e K(V). Then we have 

q\(x) = [0,p?R(y)]. 

Proof. — Let y = [S,p\. We compute using (17), Proposition 5.17, Stokes' theorem, 
Definition 3.15, and the adiabatic limit A —> 0 at the marked equality 

qi{x) = [qÎ6\v 
JV/B 

kc(oq)Ap + Ù(\,ê\v)-
W/B 

a(oq) A R(x)] 

= [0,ft(p*<5) + 
JV/B 

Ac(oq)Ap + Ù(\, <S,V) + 
ty/B 

a(oq) A R(x)] 

±[*,[ 
JW/E 

(Â c(op) A n((S) - Âc(op) A dp- da(op) A R(y))] 

= [ 0 , / 
J W/B 

(Âc(op) - da(op)) A R(y)} = [0,pfR(y)}. 

5.9. Z/fcZ-invariants 

5.9.1. — Here we associate to a family of Z/fcZ-manifolds over B a class in iffl a t(i?). 

Definition 5.19. — A geometric family of Z / kZ-manifolds is a triple (V , (5,0), where 
V is a geometric family with boundary, S is a geometric family without boundary, 
and (/>: dW kS is an isomorphism of the boundary of °W with k copies of &. 

We define u(V, (5,0) := [(5, da(op)) A R(y)}e 

Lemma 5.20. — We have tt(V, (5, (/>) £ ifflat(i?). This class is a k-torsion class. It 
only depends on the underlying differential-topological data. 
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Proof. — We first compute by 5.17 

ku(W, 6 A) = k[6, - r f i ( V ) ] = [*<?, -ft(W)] = [0,0] = 0. 

This implies that i?(w(V, <§,</>)) = 0 so that ^ ( V , 5,0) G ifflat(P)- Independence of 
the geometric data is now shown by a homotopy argument. • 

5.9.2. — We now explain the relation of this construction to the Z/fcZ-index of 
Preed-Melrose [28]. 

Lemma 5.21. — Let B = * and dim( V ) be even. Then u(W, 6, </>) G iffla t(*) = K/Z. 
Let %k: Z/A:Z —* R/Z £fte embedding which sends 1 + kZ to Then 

ik(±ndexa(W)) = u(cW, 5,0), 

where Zfc(indexa(J^)) g Z/fcZ is the index of the Z/kZ-manifold W (the notation of 
[28];. 

Proof. — We recall the definition of indexa(T^). In our language is can be stated as 
follows. Since index(fi) = 0 we can choose a taming &t. We let k copies of St induce 
the boundary taming Wbt- We have 

index a(W) = index( V 6 t ) + kZ. 

In fact it is easy to see that a change of the taming St leads to change of the index 
±ndex(cWbt) by a multiple of k. We can now prove the Lemma using [19, Thm. 
2.2.18]. 

&,<T>) = [ 5 , - ^ ( V ) ] = [ 0 , -n(St) - ^ÎÏ(V)] 

= [0 , - i index(V b t ) ] = a ^index(Vw)) = ik{±ndexa{W)) G R/Z. • 

5.10. 5pmc-bordism invariants 

5.10.1. — Let 7r be a finite group. We construct a transformation 

0: QSpinC{BU{n) x Bn) -> if f l a t (*)-

Let / : M -> BU(n) x £tt represent [MJ] G fi5pinC(BC/(n) x BIT). This map deter­
mines a covering p: M —> M and an n-dimensional complex vector bundle V —> M. 
We choose a Riemannian metric #™ and a Spmc-extension V of the Levi-Civita 
connection V ™ . These structures determine a smooth If-orientation of t: M —> *. 
We further fix a metric / i v and a connection Vv in order to define a geometric bundle 
V := (V,hv,Vv) and the associated geometric family V (see 2.1.4). The pull-back 
of g™ and V via M —• M fixes a smooth if-orientation of i: M —• *. 
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We define the geometric families M := and M := i\(p*V) over *. Then we set 

0([M,/]) := [ J*U. |tt|^O P,0] 6 £ F L A T (* ) . 

By a homotopy argument we see that this class is independent of the choice of geom­
etry. We now argue that it only depends on the bordism class of [M, / ] . 

The construction is additive. Let now [M, / ] be zero-bordant by [W, F]. Then we 
have a zero bordism W of M over W. Note that the bundles also extend over the 
bordism. The local index form of *W UB |7t|V vanishes. We conclude by 5.17, that 
[MUB |tt| - ^ O P , 0 ] = 0. 

In this construction we can replace En —• B-K by any finite covering. 

5.10.2. — This construction allows the following modification. Let p G Rep(7r)o be a 
virtual zero-dimensional representation of 7r. It defines a flat vector bundle Fp —> BIT. 
To [M, / ] we associate the geometric family Mp := t1(C) where £ is the geometric 
family associated to the geometric bundle V 0 (pr2 o f)*Fp. We define 

(t>p: nfPIN\BU(n) x BTT) - i f f l a t (*) 

such that </>p[M, / ] := [Mpi0]. Here we need not to assume that 7r is finite. This is 
the construction of p- invariants in the smooth if-theory picture. 

The first construction is a special case of the second with the representation p = 
C(7r)E(CI7 RI)O P. 

5.10.3. — We now discuss a parametrized version. Let B be some compact manifold 
and X be some topological space. Then we can define the parametrized bordism group 
nfPINC{X/B). Its cycles are pairs (p: W —> B , f: W —• X) of a proper topologically 
if-oriented submersion p and a continuous map / . The bordism relation is defined 
cor resp ondingly. 

There is a natural transformation 

0: Qf^C((BU(n) x BTT)/B) - K^t(B). 

It associates to x = (p: W -> B , f : W -> Sl7(n) x .Btt) the class [ V u B |tt| • V ° P , 0 ] . 
In this formula p: W —> W is again the 7r-covering classified by pr 2 o / . We define the 
geometric family °W using some choice of geometric structures and the twisting bundle 
V, where V is classified by the first component of / . The family °W is obtained from 
W and p*V using the lifted geometric structures. Again, the class cj>(x) is flat and 
independent of the choices of geometry. Using 5.17 one checks that </> passes through 
the bordism relation. 

Again there is the following modification. For p G Rep(7r)o we can define 

<PP: aS/IN\(BU(n) x B*)/B) - K*ÛAT(B). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



108 U. BUNKE & T. SCHICK 

It associates to x = (p: W —> B,f\ W —• BU(n) x BIT) the class [Wp] of the geomet­
ric manifold V with twisting bundle V <S> (pr 2 of)*Fp These classes are if-theoretic 
higher /^-invariants. It seems promising to use this picture to draw geometric conse­
quences using these invariants. 

5.11. The e-invariant 

5.11.1. — A framed n-manifold M is a manifold with a trivialization TM = M xRn. 
More general, a bundle of framed n-manifolds over B is a fibre bundle n: E -+ B with 
a trivialization Tvn = E x Rn. 

Proposition 5.22. — A bundle of framed n-manifolds n: E —• B has a canonical 
smooth if-orientation which only depends on the homotopy class of the framing. 

Proof. — The framing Tvn = E x Rn induces a vertical Riemannian metric gTV7r 

and an isomorphism SO(TV-K) = E X SO(n). Hence we get an induced vertical 
orientation and a 5pm-structure which determines a 5pmc-structure, and thus a 
if-orientation of TT. We choose a horizontal distribution Thic which gives rise to 
a connection V T V ? r . Since our S'pmc-structure comes from a 5pm-structure, this 
connection extends naturally to a 5pm c-connection V of trivial central curvature. 

The trivial connection V t r i v on TVTT induced by the framing also lifts naturally to 
the trivial Spmc-connection V t r i v . The quadruple 

o:= ( 5

T V , r V V , Â c ( V , V t r i v ) ) 

defines a smooth if-orientation of 7r which refines the given underlying topological 
if-orientation. 

We claim that this orientation is independent of the choice of the vertical dis­
tribution Th7r. Indeed, if Th7r is a second horizontal distribution with associated 
S'mnc-connection V ; , then we set 

o' := ( / v , r V , V ' , Â C ( V ' , V t r i v ) ) . 

Since 
Â C (V ' , V t r i v ) - Â C (V , V t r i v ) = Â C (V ' , V) 

we have o ~ o' in view of the Definition 3.1.9. 
Let us now consider a second framing of TVTT which is homotopic to the first. 

In induces a second trivial connection V / t r ™ and a metric g'TVn. We therefore 
get a connection V ' and and a second representative of a smooth if-orientation 
o' := (g,TV7R

1Th7r, V' , A C ( V ' , V" r ™)) . In fact, the homotopy between the framings 
provides a connection V / l ' t r 2 V on I x E. Since this connection is flat we see that 
A c ( V / t r i v , V t r i v ) = 0. From 

Â C ( V ; , V,TRIV) = Â C (V ' , V) + Â C (V , V t r i v ) + Â c ( V t r i v , V'TRIV) 
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we get 

ÂC(V', V'triv) - ÂC(V, Vtriv) = ÂC(V', V) 

and thus o ~ d. 

Since V t r i v is flat we have 

Â c(o) - da(o) = Â(V) - dÂ(V, V t r i v ) = 1. 

Assume that the fibre dimension n satisfies n > 1. According to Lemma 3.16 the 
curvature of 7ri(l) is given by 

R(TT!(1)) = 
JE/B 

(Ac{o) - da(o)) A 1 = 
JE/B 

1 Al = 0 

Definition 5.23. — If 7r: E —• B is a bundle of framed manifolds of fibre dimension 
n > 1, then we define a differential topological invariant 

e(E^B) := -*,(1) 6 K^JB). 

In the following we will explain in some detail that this is a higher generalization 
of the Adams e-invariant. The stable homotopy groups of the sphere 7rn := 7r£(S°) 
have a decreasing filtration 

e(E^B) := -*,(1) 6 K^JB). 

related to the MSpin-based Adams-Novikov spectral sequence. The e-invariant is a 
homomorphism 

e : 4 , _ 1 / * 4 n - i - R / Z . 

A closed framed An — 1-dimensional manifold M represents a class [M] 6 7T4n_i under 
the Pontrjagin-Thom identification of framed bordism with stable homotopy. In the 
indicated dimension 7T4n_i = 7rln_1 so that [M] is actually a boundary of a compact 
4n-dimensional 5pm-manifold N. As explained in [2] (see also [36]) the e-invariant 
e[M] can be calculated as follows. One chooses a connection VTN on TN which 
restricts to the trivial connection V t r i v on TM given by the framing. Then 

e([M]) = / Â(V) 
R/Z 

We now consider q: M —• * as a bundle of framed manifolds over the point and 
identify R/Z ̂  i^"a

4

t

n+1(*) by [u] h-> a(u) = [0, —u], u G R. 

Lemma 5.24. — Under these identifications we have e(M —> *) = e([M]). 

Proof. — We choose a metric g™ on M which induces the representative 

o:= ( / M , 0 , V , A c ( V , V t r i v ) ) 
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of the smooth if-orientation on q. The Spin-structure of N induces a Spin°-
structure. We choose a Riemannian metric g™ on N with a product struc­
ture near the boundary which extends g™ and induces the Spin- and Spinc-
connections and VN. Note that A C (V* VTN) extends A C (V, V t r i v ) . Therefore 
oN := (# T i V ,0 , VN, A C ( V N , VTN)) represents a smooth if-orientation of p: N -> * 
which extends the orientation o of q: M —> *. We can now apply the bordism formula 
Proposition 5.18 in the marked step and get 

e(M->.) = -g l(l) = a(p,(JÎ(l))) = 
Jn/* 

(Ac(oN) - da(oN)) A 1 
R/Z 

y AT/* 
Â c ( v N ) - d Â ( v ^ v T i V ] 

J R/Z y AT/* 
Â c ( V T i V ) 

J R/Z 

y AT/* 
A ( V T i V ) 

I R/Z 
= e([M]). 

Using the method of Subsection 5.3 or the APS index theorem it is now easy to 
reproduce the result of [21 

e([M])= V°(M)-
J M 

Â ( V , V t r i v ) 
R/Z 

6. The Chern character and a smooth 
Grothendieck-Riemann-Roch theorem 

6.1. Smooth rational cohomology 

6.1.1. — Let Zk-i(B) be the group of smooth singular cycles on B. The picture of 
H(B,Q) as Cheeger-Simons differential characters 

Hh(B,Q) C Hom(Zfc_i(B),R/Q) 

is most appropriate to define the integration map. By definition (see [24]) a homo­
morphism (j) G Hom(Zfc_i(Z?), R/Q) is a differential character if and only if there exists 
a form R(</>) G fìj=0(B) such that 

(29) We) = 
-J c R/Q 

for all smooth /c-chains c G Ck(B). It is shown in [24] that R{<j>) is uniquely determined 
by (j). In fact, the map R: Hk(B,Q) fl^=Q(B) is the curvature transformation in 
the sense of Definition 1.1. 

Assume that T is a closed oriented manifold of dimension n with a triangulation. 
Then we have a map r: Zk~\B) Zk~1+n(T x B). If a: A*" 1 -> B is a smooth 
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singular simplex, then the triangulation of T x Ak 1 gives rise to a k — 1 + n chain 
r(a) : = i d x a : T x A — > T x £ . The integration 

(pr 2 ) , : f f (TxB,Q)^ f f (B ,Q) 

is now induced by r* : Hom(Z f e- 1 + n(T x B), R/Q) Hom(Z fc_1(i?), R/Q). Alternative 
definitions of the integration (for proper oriented submersions) are given in [31], [30]. 
Another construction of the integration has been given in [25], where also a projection 
formula (the analog of 4.5 for smooth cohomology) is proved. This picture is used in 
[35] in particular to establish functoriality. 

We will also need the following bordism formula which we prove using yet an­
other characterization of the push-forward. We consider a proper oriented submersion 
q: W B such that dim(Tvq) = n. Let x G Hr(W,Q) and / : E -> B be a smooth 
map from a closed oriented manifold of dimension r — n — 1. We get a pull-back 
diagram 

U —^—> W 

E —^—• B 
The orientations of E and Tvq induce an orientation of U. Note that f*q\(x) and 
F*x are flat classes for dimension reasons. Therefore F*x G Hr~1(U, R/Q) and 
f*q\(x) G ^r r " n - 1 (E,R/Q). The compatibility of the push-forward with Cartesian 
diagrams implies the following relation in R/Q: 

<f*q,(x),[E]> = <F*x, [U)>. 

If we let / : E —• B vary, then these numbers completely characterize the push-forward 
P\(x) G Hr~n(B,Q). We will use this fact in the argument below. 

6.1.2. — Let now p: V —• B be a proper oriented submersion from a manifold with 
boundary such that dV = W and p\W = q. Assume that x G H(V, Q). 

Lemma 6.1. — In H(B, Q) we have the equality 

q!(x/w) = -a 
JV/B 

R(x) 

Proof. — Assume that x € Hr(V, Q). Let / : S —» B be as above and form the 
Cartesian diagram 

Z —2—f V 

I 1 -
E —^—» B. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



112 U. BUNKE & T. SCHICK 

The oriented manifold Z has the boundary dZ = U. Using (29) at the marked 
equality we calculate 

<f*q\{*\w), P]> = <F*xw, [U}> = <{z*x)m, [U]> = j R(z*x] 
R/Q 

/ s Jz/t, 
R(z*x) 

JR/Q 
/ / ' 
IT. V/B 

R(X) 

R/Q 
: -<f*a F R(X) 

JV/B 
,P]> 

This implies the assertion. 

6.2. Construction of the Chern character 

6.2.1. — We start by recalling the classical smooth characteristic classes of Cheeger-
Simons. A complex vector bundle V —> B has Chern classes £ H2l(B,Z), i > 1. 
If we add the geometric data of a hermitean metric and a metric connection, then 
we get the geometric bundle V = (V,hv, Vv). In [24] the Chern classes have been 
refined to smooth integral cohomology-valued Chern classes 

c^(V ) e i J 2 i (£ ,Z) 

(see 1.2.1 for an introduction to smooth ordinary cohomology). In particular, the 
class ci(V) € H2(B,Z) classifies isomorphism classes of hermitean line bundles with 
connection. 

The embedding Z «-> Q induces a natural map H(B,Z) —• H(B,Q), and we let 
cq(V) e H2(B,Q) denote the image of Ci(V) € H2(B,Z) under this map. 

6.2.2. — The smooth Chern character ch which we will construct is a natural trans­
formation 

ch:K{B)-*H(B,Q) 

of smooth cohomology theories. In particular, this means that the following diagrams 
commute (compare Definition 1.3) 

[30) fi(B)/im(d)— >K(B) '—^KiB) , 

ch ch 

Q(B)/±m(d) H(B, Q) — ^ H(B, Q) 

K(B) ^nd=0(B) . 

ch 

H(B,Q)—^nd=0(B) 

In addition we require that the even and odd Chern characters are related by 
suspension, which in the smooth case amounts to the commutativity of the following 
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diagram 

(31) K°(S1 x B) — ^ Hev(Sl x B,Q) • 

(Pr2)l (Pr2)! 

i f 1 ^ ) # o d d ( B , Q ) 

The smooth if-orientation of pr2 : S1 x i? —* B is as in 4.3.2. 

Theorem6.2. — T/iere exists a unique natural transformation ch: K(B) —> H(B,Q) 
such that (30) and (31) commute. 

Note that naturality means that cho/* = /* och for every smooth map f:B'->B. 
The proof of this theorem occupies the remainder of the present subsection. 

6.2.3. 
Proposition 6.3. — / / the smooth Chern character ch exists, then it is unique. 

Proof. — Assume that ch and ch are two smooth Chern characters. Consider the 
difference A := ch — ch . It follows from the diagrams above that A factors through 
an odd natural transformation 

A: K(B) -> H(B,R/Q). 

Indeed, the left diagram of (30) gives a factorization 

K(B) -> (im: fi(B)/im(d) ff(B,Q)), 

and the right square in (30) refines it to A. 

6.2.4. — We now use the following topological fact. Let P be a space of the homotopy 
type of a countable CW-complex. It represents a contravariant set-valued functor 
W >—• P(W) := [W, P] on the category of compact manifolds. We further consider 
some abelian group V. 

Lemma 6.4. — A natural transformation of functors N: P(B) —> Hi(B,V) on the 
category of compact manifolds is necessarily induced by a class N G iiP (P, V ) . 

Proof. — There exists a countable directed diagram M of compact manifolds such 
that hocolim M = P in the homotopy category. Hence we have a short exact sequence 

0 lim XH{M, V) -> H(P, V) lim H(M, V) -+ 0. 

If x G P(P) is the tautological class, then the pull-back of N(x) to the system 
M gives an element in limH(M,V). A preimage in H(P,V) induces the natural 
transformation. • 
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In our application, P = Z x BU, and the relevant cohomology Hodd(Z x BU,R/Q) 
is trivial. Therefore A: K°(B) -> Hodd(B,R/Q) vanishes 

6.2.5. — Next we observe that (pr2)i: K(S1 x 5 ) - > K(B) is surjective. In fact, we 
have 

(32) (pr2)!(prîx5i Upr*(a;)) = x 

by the projection formula 4.5 and p\(xs^) = 1 for p: S1 —» *, where G if (S 1) was 
defined in 5.6. Hence (31) implies that A: KX{B) -> Hev(B,R/Q) vanishes, too. • 

6.2.6. — In view of Proposition 6.3 it remains to show the existence of the smooth 
Chern character. We first construct the even part 

ch:K°(B)-+Hev(B,Q) 

using the splitting principle. We will define ch as a natural transformation of functors 
such that the following conditions hold. 

1. ch[£,0] = e^(L> € Hev(B,Q), where £ is the geometric family given by a 
hermitean line bundle with connection L, and cq(L) G H2(B,Q) is derived 
from the Cheeger-Simons Chern class which classifies the isomorphism class of 
L (6.2.1). 

2. Roch = R 
3. ch o a = a 

Once this is done, the resulting ch automatically satisfies (30). For this it suffices 
to show that ch o I = I o ch. We consider the following diagram 

K(B) H(B, Q) — ^ nd=o(B) 

i i 
U V V 

K(B) —^ H(B, Q) H(B, R) 
The outer square and the right square commute. It follows from 2. that the upper 
triange commutes. Since i is injective we conclude that the left square commutes, 
too. 

6.2.7. — In the construction of the Chern character ch we will use the splitting 
principle. If x G K°(B), then there exists a Z/2Z-graded hermitean vector bundle 
with connection V = (V,hv,Vv) such that x = [V,p] for some p G fiodd(B)/'im(d), 
where V is the zero-dimensional geometric family with underlying Dirac bundle V. 
We will call V the splitting bundle for x. Let F ( F ± ) -> B be the bundle of full 
flags on V± and p: F(V) := F(V+) x B F(V~) —» B. Then we have a decomposition 

p*y± ^ e L G / ± L for some ordered finite sets 1^ of line bundles over F(V). For 
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L G ̂  let L denote the bundle with the induced metric and connection, and let 
£ be the corresponding zero-dimensional geometric family. Then we have p*x = 
£l€/+[£>°] ~ El€/-[^°1 + a(a) for some a e ttodd{F(V))/im(d). The properties 
above thus uniquely determine p*ch(x). 

Lemma 6.5. — The following pull-back operations are injective: 

1. p*: # * ( £ , Q ) ^ t f * ( F ( n Q ) , 
2. p*: H*{B,R) -+H*(F(V),R) 
3. p*: ff*(B,R/Q) -> #*(F(F),R/Q) 
4. p * : ^ * ( 5 , Q ) ^ ^ * ( F ( F ) , Q ) 
5. p*:Çl(B)-+Çl(F(V)). 

Proof. — The assertion is a classical consequence of the Leray-Hirsch theorem in 
the cases 1., 2., and 3. In case 5., it follows from the fact that p is surjective and 
a submersion. It remains to discuss the case 4. Let x G H*(B,Q). Assume that 
p*x = 0. Then in particular p*R(x) = R(p*x) = 0 so that from 5. also R(x) = 0. 
Thus x G H(B,R/Q). We now apply 3. and see that p*x = 0 implies x = 0. • 

In view of Proposition 6.3 we see that a natural transformation ch: K°(B) —» 
Hev(B, Q) is uniquely determined by the conditions 1., 2., and 3. formulated in 6.2.6. 

6.2.8. 

Proposition6.6. — There exists a natural transformation ch: K°(B) —> Hev(B,Q) 
which satisfies the conditions 1. to 3. formulated in 6.2.6. 

We give the proof of this Proposition in the next couple of subsections. Let x := 
[&, p] G K°(B), and V —• B be a splitting bundle for x with bundle of flags p: F(V) —> 
5. We choose a geometry V := (V, ft^, V v ) and let V denote the associated geometric 
family ( 4). In order to avoid stabilizations we can and will always assume that S has 
a non-zero dimensional component. Then we have 

p*I(x) = 

el([£,0}). 

el([£,0}). 

№ It was suggested by the referee that one should use the Chern character ch(V) G Hev(B,Q) 
constructed in [24]. The Ansatz would be 

ch(x) := ch(V) + V((S UB V°p) t). 
In order to show that this is independent of the choice of V one would need to show an equation like 

ch(V) - ch(V') = a(?7((Vop U Y)t)). 
Since after all we know that the Chern character exists this equation is true, but we do not know a 
simple direct proof. Therefore we opted for the variant to give a complete and independent proof. 
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We define ¿7 := |_|£,e€{±i},Le/c ^- Then we can find a taming (p*6uF(V) £7°p)t, and 

* 
p x = e€{±l},L<E/€ 

e([£,0]) - a(p*p - V((P*S UF{V) £Tp) t)). 

We now set 

p*ch(x) = ch(p*a;) := 
e€{±l},L€/e 

6exp(cQ(L)) + a(r7((p*(§UF(v,) 5TP)*)) - a(p>). 

This construction a priori depends on the choices of the representative of the 
splitting bundle V —> B, and the taming (<§UF(V) &°P)t-

6.2.9. — In this paragraph we show that this construction is independent of the 
choices. 

Proposition 6.7. — Assume that there exists a class z G Hev(B,Q) such that 

p*z = 
e€{±l},Z,e/e 

6exp(cQ(L)) + a(ri((p*êUF(V) &°P)t)) - a(p*p) 

/ o r o n e s e t o / choices. Then z is determined by x G Ko(B) 

Proof. — If (<S',p') is another representative of x, then we have index((5) = 
index(&'). Therefore we can take the same splitting bundle for (§'. The following 
Lemma (together with Lemma 6.5) shows that z does not depend on the choice of 
the representative of x. 

Lemma 6.8. — We have 

a(V{(p*ÔUF{v) £Tp)t)-p*p) = a(rj({p*ô' UF{V) ïT>)t)-p*ft) 

Proof. — In fact, by Lemma 2.21 there is a taming ((§' U <§op)t such that pf — p = 
rj ((<?' U (5op)t). Therefore the assertion is equivalent to 

a [r, ((P*6UF(V) 9^%) - r, ((p*6' UF(V) tr»)t) + p*r1 ((£' U F ( V ) <S°P)t)] = 0. 

But this is true since this sum of //-forms represents a rational cohomology class of 
the form ch^^)- This follows from 2.4.10 and the fact 

P*(S u F ( v ) &op u F ( v ) p*6'op u F ( v ) V u F ( y ) p*6' u F ( v ) p*6op 

admits another taming with vanishing rj-form (as in the proof of Lemma 2.11). 
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6.2.10. — Next we discuss what happens if we vary the splitting bundle. Thus let 

V —• B be another Z/2Z-graded bundle which represents index((§). Let P': F(V) —• 

B be the associated splitting bundle. 

Lemma 6.9. — Assume that we have classes c, cf £ H(B, Q) such that 

p*c = 

eG{±l},LG/€ 

eexp(cQ(L)) + a (r/ ((p*6uF{v) £7° p ) t ) - p*p) 

and 

p c = 

€€{±l},LG/ ,e 

£exp(cQ(L')) + a (R, ((p'*6 U F ( V 0 ^ , o p ) t ) - p ' » 

T/ien we have c = c'. 

Proof. — Note that the right-hand sides depend on the geometric bundles V , V 

since they depend on the induced connections on the line bundle summands. We first 

discuss a special case, namely that V is obtained from V by stabilization, i.e. V = 

V 0 B x ( C m © ( C m ) o p ) . In this case there is a natural embedding i: F ( V ) <-> F ( V ' ) 

which is induced by extension of the flags in V by the standard flag in C m . We can 

factor p = p' o i. Furthermore, there exists subsets Se C I'€ of line bundles (the last 

m line bundles in the natural order) and a natural bijection I,e = P U Se. If L e S € , 

then i*L is trivial with the trivial connection. We thus have 

p V -c) = a [i*r, ((p'*6U V'op)t) - R,((p*SU STp)t)] 

It is again easy to see that this difference of //-forms represents a rational cohomology 

class in the image of chdR. Therefore, p*(c' — c) = 0 and hence c = c' by Lemma 6.5. 

Since the bundle V represents the index of 6, two choices are always stably isomor­

phic as hermitean bundles. Using the special case above we can reduce to the case 

where V and V only differ by the connection. 

We argue as follows. We have p*R{c' — c) — R(p*(cf — c)) = 0 by an explicit 

computation. Therefore cf — c € Hodd(B, M/Q). Since any two connections on V can 

be connected by a family we conclude that p*(c' — c) = 0 by a homotopy argument. 

The assertion now follows. • 

This finishes the proof of Proposition 6.7. • 

6.2.11. — In order to finish the construction of the Chern character in the even case 

it remains to verify the existence clause in Proposition 6.7. Let x := [<S, p] G K(B) be 

such that & has a non-zero dimensional component. Let V —» B be a splitting bundle 

and p: F(V) —• B be as above. 
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Lemma 6.10. — We have 

z := 

e€{±l},L<S/€ 

€exp(cQ(L)) + a [rj ((p*ô U <7 o p ) t ) - p*p] G im(p*). 

Proof. — We use a Mayer-Vietoris sequence argument. Let us first recall the Mayer-

Vietoris sequence for smooth rational cohomology. Let B = UUV be an open covering 

of B. Then we have the exact sequence 

•^H(Un V, R/Q) - H(B, Q) - (tf, Q) 0 ff(V, Q) -+ i7(t/ n V, Q) # ( £ , Q) - • • 

which continues to the left and right by the Mayer-Vietoris sequences of H(... ,R /Q) 

and # ( . . . , Q). 

We choose a finite covering of B by contractible subsets. Let U be one of these. 

Note that ±ndex(8)\u G Z. Thus arĵ  = [t/ x W,0] for some form 6 and Z/2Z-graded 

vector space W. Then we have by 1. and 3. that c\j\ = ch(x\u) = dim(VF) — a{6). 

This can be seen using the splitting bundle F(BxCn). Moreover, p*cjj = p* [dim(W) — 

a(6)] = z\v-\\j by Proposition 6.7. 

Assume now that we have already constructed cy G H(V,Q) such that p*cy = 

z\p-iy, where V is a union V of these subsets. Let U be the next one in the list. 

We show that we can extend cy to cy^u. We have (cu)\unv = (cv)\unv by the 

injectivity of the pull-back p*: H(U fl V, Q) -> H(p~l(U n V), Q), Lemma 6.5. The 

Mayer-Viet oris sequence implies that we can extend cy by cjj to U U V. • 

6.2.12. — We now construct the odd part of the Chern character. In fact, by (31) 

and (32) we are forced to define 

ch:K1(B)^Hodd(B,Q) 

by 
ch(x) := (pr2)!(ch(x5i Ux)). 

Lemma 6.11. — The diagrams (30) and (31) commute. 

Proof. — The even case of (30) has been checked already. The diagram (31) com­

mutes by construction. The odd case of (30) follows from the Projection formula 4.5 

and the even case. • 

This finishes the proof of Theorem 6.2 

6.3. The Chern character is a rational isomorphism and multiplicative 

6.3.1. — Note that H(B,Q) is a Q-vector space, and that the sequence (1) is an 

exact sequence of Q-vector spaces. The Chern character extends to a rational version 

<*iq:KQ(B)-+H{B,Q), 

where KQ(B) := K(B) ®z Q. 
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Proposition 6.12. — chQi Kq{B) —> H(B,Q) is an isomorphism. 

Proof. — By (30) we have the commutative diagram 

KQ(B) — ^ 2 fi(B)/im(d) KQ(B) KQ{B) ^ 0 , 

chQ cliQ chQ 
v y V 

H(B, Q) >- fi(S)/im(d) ^ H(B, Q) — ^ ff(B, Q) 0 

whose horizontal sequences are exact. Since c1iq: Kq(B) —» H(B,Q) is an isomor­

phism we conclude that chQ is an isomorphism by the Five Lemma. • 

6.3.2. — We can extend KQ to a smooth cohomology theory if we define the structure 

maps as follows: 

1. R : KQ(B) —> n^ = o(B) is the rational extension of R : K(B) —> 0^=0(-£?)• 

2. I: KQ(B) ^ K(B)Q ^ H(B9Q)9 

3. a: fi(B)/im(d) A K(B) " 4 1 Kq(B). 

The commutative diagrams (30) now imply: 

Corollary 6.13. — The rational Chern character induces an isomorphism of smooth 

cohomology theories refining the isomorphism chq: Kq —• HQ (in the sense of Defi­

nition 1.3). 

6.3.3. 

Proposition 6.14. — The smooth Chern character 

ch: K(B) -> H(B,Q) 

is a ring homomorphism. 

Proof. — Since the target of ch is a Q-vector space it suffices to show that 

chQ: KQ(B) —> H(B, Q) is a ring homomorphism. Using that chQ is an isomorphism 

of smooth extensions of rational cohomology we can use the rational Chern character 

in order to transport the product on Kq(B) to a second product Uk on H(B,Q). It 

remains to show that U and Uk coincide. Hence the following Lemma finishes the 

proof of Proposition 6.14. 

6.3.4. 

Lemma 6.15. — There is a unique product on smooth rational cohomology. 

Proof. — Assume that we have two products Ufc, k = 0,1. We consider the bilinear 

transformation B : H(B,Q) x H(B,Q) H(B,Q) given by 

(x, y) i-> B(s , y) := x Ui y - x U 0 y. 
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We first consider the curvature. Since a product is compatible with the curvature 

(1.2, 2.) we get 

R(B(x, y)) = R(x Ui y) - R(x U 0 y) = R(x) A R(y) - R(x) A R(y) = 0. 

Therefore, by (1) the bilinear form factors over an odd transformation 

B : H(B,Q) x H(B,Q) -> # ( B , R / Q ) . 

Furthermore, for UJ G fi,(B)/im(d) we have by 1.2, 2. 

B(a(cj), y) = a(u;) Uiy — CL(LJ) Un y = a (a; A — a (a; A P(?y)) = 0. 

Similarly, B(x,a(u;)) = 0. Again by (1) B has a factorization over a natural bilinear 

transformation 

B : H(B,Q) x H(B,Q) -> H(B,R/Q). 

We consider the restriction B P ' 9 of B to HP(B,Q) x i f 9 ( B , Q ) . 

The functor from finite CW-complexes to sets 

W^Hp(W,Q) xHq(W,Q) 

is represented by a product of Eilenberg MacLane spaces 

Pp>q := ffQP x HQq. 

The spaces HQP, and hence P has the homotopy type of countable CW-complexes. 

Therefore we can apply Lemma 6.4 and conclude that B P ' 9 is induced by a cohomology 

class b G H(Pp>q, R/Q). We finish the proof of Lemma 6.15 by showing that b = 0. To 

this end we analyse the candidates for b and show that they vanish either for degree 

reasons, or using the fact that B P ' 9 is bilinear. 

Consider a homomorphism of Q-vector spaces w: R/Q —> Q. It induces a transfor­

mation w* : JÏ(B,R/Q) H(B,Q). In particular we can consider w*b G H(Pp>q,Q). 

1. First of all if p,q are both even, then w*b G £ r o d d ( P ^ , Q ) vanishes since Pp>q 

does not have odd-degree rational cohomology at all. 

2. Assume now that p, q are both odd. The odd rational cohomology of Pp,q is 

additively generated by the classes 1 x xq and xp x 1, where xp G HP(HQP,Q) 

and xq G # * ( i I Q 9 , Q ) . It follows that 

w*b = c • x p x 1 + d • 1 x x 9 

for some rational constants c, d. Consider odd classes up G HP(B,Q) and v g G 

Hq(B,Q). The form of 6 implies that 

O BP,q(up, Vq) = C • Up X 1 + d • 1 X Vq. 

This can only be bilinear if all c and d vanish. Hence 6 = 0. 
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3. Finally we consider the case that p is even and q is odd (or vice versa, q is even 

and p is odd). In this case b is an even class. The even cohomology of Pp>q is 

additively generated by the classes x™ x 1, n > 0. Therefore w*b = Xm>o °nxp x 1 

for some rational constants c n , n > 0. Let u p G i I p ( i ? ,Q) and v g G Hq(B,Q). 

Then we have 

« ) . o B M ( M p , t ; ? ) = 
n>0 

Cn tip. 

This is only bilinear if cn = 0 for all n > 0, hence w*b = 0. 

Since we can choose : R /Q —• Q arbitrary we conclude that 6 = 0. 

This also finishes the proof of the Proposition 6.14. 

6.4. Riemann Roch theorem 

6.4.1. — Let p: W —> B be a proper submersion with a smooth if-orientation o. 

The Riemann Roch theorem asserts the commutativity of a diagram 

K(W) H{W,Q) 

i f (m H ( B , Q ) . 

Here pi4 is the composition of the cup product with a smooth rational cohomology 

class A c ( o ) and the push-forward in smooth rational cohomology. The Riemann 

Roch theorem refines the characteristic class version of the ordinary index theorem 

for families. 

We will first give the details of the definition of the push-forward pf. In order to 

show the Riemann Roch theorem we then show that the difference 

A := ch o pi — pf o ch 

vanishes. 

This is proved in several steps. First we use the compatibilités of the push-forward 

with the transformations a, / , R in order to show that A factors over a map 

À: if ( W ) - • # ( £ , R/Q) . 

In the next step we show that A is natural with respect to the pull-back of fibre 

bundles, and that it does neither depend on the smooth nor on the topological if-

orientations of p. 

We then show that A vanishes in the special case that B — *. The argument is 

based on the bordism invariance Proposition 5.18 and some calculation of rational 

5pm c-bordism groups. 
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Finally we use the functoriality of the push-forward Proposition 3.23 in order to 
reduce the case of a general B to the special case of a point. 

6.4.2. — We consider a proper submersion p: W —> B with closed fibres with a 
smooth if-orientation represented by o = (gTVp, Thp, V, a). In the following we define 
a refinement Â(o) G Hev(W,Q) of the form Â c ( o ) G nev(W). The geometric data 
of o determines a connection V T " P (see 2.2.4, 3.1.3) and hence a geometric bundle 
T v p := (Tvp, gTVp, VTVp). According to [24] we can define Pontrjagin classes 

& ( T v p ) G i 7 4 i ( W , Z ) , i > 1. 

The 5pmc-structure gives rise to a hermitean line bundle L2 —> W with connection 
V L (see 3.1.6). A choice of a local spin structure amounts to a choice of a local 
square root L of L2 (this bundle was considered already in 3.1.3) such that Sc(Tvp) = 
S(Tvp) ® L as hermitean bundles with connections. We set L 2 := (L 2 , hL , V L ) . In 
particular, we have 

1 
2tt7 

R*L2 = 2 c i ( V ) . 

Again using [24] we get a class 

Ci(L2) eH2(W,Z) 

with curvature R(di(L2)) — 2ci(V). 

6.4.3. — Inserting the classes p*(T v p) into that A-series A(pi,p27 • • •) G Q[[pi,P2> • • • ]] 
we can define 

(33) A ( T v p ) := A ( p 1 ( T w p ) > f c ( T v p ) , . . . ) e Hev(W,Q). 

Let cq(L2) G H2(W, Q) denote the image of ci(L 2 ) under the natural map 
H2(W,Z)-+H2(W,Q). 

Definition 6.16. — We define 

kc(o) := Â(T v p) A e ^ h 2 ) G i J e v (W ,Q) . 

Note that i î (Â c (o)) = Â c ( o ) . 

Lemma 6.17. — T/ie class ^ 

Â c ( o ) - a ( c r ( o ) ) G ^ e v ( W , Q ) 

?niy depends on the smooth K-orientation represented by o. 

5) This class is denoted by A(p) in the abstract and in 1.1.9. 
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Proof. — This is a consequence of the homotopy formula Lemma 2.22. Given two 
representatives on, o\ of a smooth if-orientation we can choose a representative b of a 
smooth If-orientation on i<% x p: 1 x ^ - ^ 1 x 5 which restricts to Ok on {k} x B, 
k = 0,1. The construction of the class A c (o) is compatible with pull-back. Therefore 
by the definition of the transgression form 3.4 we have 

kc(0l) - ic(o0) = i\kc(o) - i*ic(o) = c 
'[0,l]xW/W 

R(AC(Ô)) = a [Â c (V 1 ,V 0 ) " 

By the definition of equivalence of representatives of smooth if-orientations we have 

a(0l) - a(o0) = A c ( V i , V 0 ) . 

Therefore 
Â c(oi) - a(o-(oi)) = Â c (o 0 ) - a(a(o0)). 

6.4.4. — We use the class Â c(o) € Hev(W, Q) in order to define the push-forward 

(34) pf:=p,([Âc(o)-a(a(o))]U...): ff(W,Q)-£(B,Q), 

where p\: H{W,Q) —> H(B,Q) is the push-forward in smooth rational cohomology 
(see 6.1.1) fixed by the underlying ordinary orientation of p. By Lemma 6.17 also 
pf only depends to the smooth if-orientation of p and not on the choice of the 
representative. 

If / : B' —> B is a smooth map then we consider the pull-back diagram 

W— W 

v' P 

B'—t+B. 

The smooth if-orientation o of p induces (see 3.2.4) a smooth if-orientation d of p'. 

We have Â(o') = F*Â(o) and p\A o f = / * o pf. 

6.4.5. — As in 3.3.3 we consider the composition of proper smoothly if-oriented 
submersions 

P г 
W >• В ^ A . 

я 
The composition q := r o p has an induced smooth if-orientation (Definition 3.21 
and Lemma 3.22). In this situation we have push-forwards pf, rf and qf in smooth 
rational cohomology given by (34). 

Lemma 6.18. — We have the equality 

ffopf = qf 

of maps H(W,Q) H(B9Q). 
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Proof. — We choose representatives of smooth if-orientations op of p and or of r, 
and we let oq := op ox or be the composition. We consider the class (see Definition 
3.21) 

Kc(ox

q)-a(a(ox

q)) = Ic(ox

q) 

- a (a(op) A p*Â c(o r) + Â c (o p ) A pV(o r ) - Â c ( V a d i a , V - d<r(op) A p V ( o r ) ) . 

By Lemma 6.17 and Lemma 3.22 this class is independent of A. If we let A —> 0, then 

the connection V T * 9 tends to the direct sum connection V T * p 0p* V T V r . Furthermore, 

the transgression A c ( V a d l a , Vq) tends to zero. Therefore 

l im A ^o[Â c ( 0 g

A ) -a(^) ) ] 

= Â c (o p ) U p*Âc(or) - a (a(op) A p*Â c(o r) + Â c (o p ) A pV(o r ) - do-(op) A pV(o r )) 

(Â C(0 p) - <Z(<T(0P))) Up*(Â C ( 0 R ) - O((7(0r))). 

For x € Q) we get, using the projection formula and the functorialty q< = f\ opt, 
for the push-forward in smooth rational cohomology 

ff1 opf(x) = f, ( [ Â c ( o r ) - a(a(or))] Up, ( [Â c (o p ) - a(cr( 0 p))| U x ) ) 

q, (p* [ i c ( o r ) - a(a(o r))] U [Â c (o p ) - a(<r(op))] U x) 

= $ ((Â c (o°) - a(<x(o°))) U x) = 

6.4.6. — Recall Definition 3.18 that the smooth jK"-orientation determines a push­
down 

p,: K(W) -* K(B). 

We can now formulate the index theorem. 

Theorem 6.19. — The following square commutes 

K(W) — H ( W , Q ) 

I* k 

£ ( B ) - ^ U H(B,Q). 

Proof. — We consider the difference 

A := ch o p\ — pf o ch. 

It suffices to show that A = 0. 
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6.4.7. — Let x € K(W). 

Lemma 6.20. — We have R(A(x)) = 0. 

Proof. — This Lemma is essentially equivalent to the local index theorem. We have 
by Definition 3.15 and Lemma 3.16 

Ä(chop,(x)) = R(p\(x)) =p\(R(x)) = 
'W/B 

[kc(o)-da(o)) AR(x). 

On the other hand, since R (Ac(o) - a(a(o))) = A c (o) - da(o) we get 

JR (pf o ch(x)) = 
J W/B 

(kc(o) - da(o))AR(<Xi(x)) = 
fW/B 

(Ac{o)-da(o))AR(x). 

Therefore R(A(x)) = 0. 

6.4.8. 
Lemma 6.21. — We have I(A(x)) = 0 

Proof. — This is the usual index theorem. Indeed, 

/(chopi(x)) = cho/(p,(x)) 
J W/B 

Â c ( T » U c h ( / ( x ) ) 

and 

/ ( p f o c h ( i ) ) = 
'W/B 

Ac(Tvp) U /(ch(x)) = 
J W/B 

Â c (T»Uch( / (a ; ) ) 

The equality of the right-hand sides proves the Lemma. Alternatively one could 
observe that the Lemma is a consequence of Lemma 6.20. • 

6.4.9. — Let u e n{W)/±m(d). 

Lemma 6.22. — We have A(a(u)) = 0. 

Proof. — We have by Proposition 3.19 

ch o p\(a(uj)) = ch o a{p\ (a;)) = a 
J W/B 

(kc(o) - da(o)) Au 

On the other hand, by (30) and 

Â c(o) - a(<r(o))] Ua(w) = a (i? (Â(o) - a(<r(o))) A a ; ) = o ((Â c (o) - da{o)) Au) , 

we have pf o ch(a(o;)) = pf{a{u)) = t 
J W/B 

(kc(o)-da(o)) Au> 
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6.4.10. — Let on,oi represents two smooth refinements of the same topological if-
orientation of p. Assume that A^ is defined with the choice Ofc, k = 0,1. 

Lemma 6.23. — We have A 0 = Ai. 

Proof. — We can assume that ok = (gTVp,Thp,V,ak) for ak € ftodd(W)/'im(d). 
Then we have for x G K(W) 

A i ( x ) - A 0 ( x ) = -a 
JW/B 

(cri - a0) A R(x) / a(ai — a0) U ch(x) 
JW/B 

= —a / fa - a0) A P(o: 
JW/B 

- a\ (cri — o"o) A iï o ch(x) 

= 0 

since R o ch(x) = R(x) and a o JWjB = Jw/B • 

6.4.11. — It follows from Lemma 6.20 and (1) that A factorizes through a transfor­
mation 

A: K{W)-+H(B,R/Q). 

By Lemma 6.22 and 2.20 the map A factors over a map 

A: K(W) -> H(B,R/Q). 

This map only depends on the topological if-orientation of p. It is our goal to show 
that A = 0. 

6.4.12. — Next we want to show that the transformation A is natural. For the 
moment we write A p := A. Let / : B' —> B be a smooth map and form the Cartesian 
diagram 

W—^ W 

P p 

B'—^B. 

The map p' is a proper submersion with closed fibres which has an induced topological 
if-orientation. 

Lemma 6.24. — We have the equality of maps K(W) —» H{B', R/Q) 

Ap>oF* = /* o A p . 

Proof — This follows from the naturality of ch, p\, and pf with respect to the 
base B. • 
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6.4.13. 

Lemma 6.25. — If pr2: S
1 x B —> B is the trivial bundle with the topological 

K-orientation given by the bounding spin structure, then ApT2: if°(5 1 x B) —» 

Hodd{B,R/Q) vanishes. 

Proof. — The odd Chern character is defined such that for x G if°(.S'1 x B) we have 

chi((pr2)!x) = (pr2)!cho(#) (see (31)). With the choice of the smooth if-orientation 

of pr2 given in 4.3.2 we have A(o) — a(a(o)) — 1 so that pf = p\. This implies the 

lemma. • 

6.4.14. — The group H2(W, Z) acts simply transitive on the set of .Spm^structures of 
Tvp. Let Q -> W be a unitary line bundle classified by ci(Q) G H2(W, Z). We choose 
a hermitean connection and form the geometric line bundle Q := (Q, hP, V^) . 
Let o := (Tvpy Thp, V, p) represent a smooth if-orientation refining the given topo­
logical if-orientation of p. Note that V is completely determined by the Clifford 
connection on the Spinor bundle Sc(Tvp). The spinor bundle of the shift of the topo­
logical if-orientation by ci(Q) is given by Sc(Tvp)' = Sc(Tvp) <g> Q. We construct 
a corresponding smooth if-orientation d = (Tvp,Thp,V <S> V^,p). We let p\ and p\ 
denote the corresponding push-forwards in smooth if-theory. Let Q be the geometric 
family over W with zero-dimensional fibre given by the bundle Q (see 2.1.4). The 
push-forwards p\ and p\ are now related as follows: 

Lemma 6.26. — We have 

p\(x)=p]([Q,0}Ux), Vz G K{W). 

Proof. — Let x = [&, p]. By an inspection of the constructions leading to Definition 
3.7 we see that 

rixS = vï(0 <S). 

Furthermore we have ci(V (8) VQ) = ci(V) + ci(V^) so that 

Ac(o') = A c(o) A e C l ( v Q ) . 

On the other hand, since Q(Q) = e C l ^ v Q ) we have 

[Q,0]U[ë,p] = lQxw ê,ec^Q) Ap] 

Using the explicit formula (17) we get 

P[({S, p]) - MIQ, 0] U [Ô, p)) = [0, fi'(A, S) - ft(A, (5)] 

for all small A > 0. Since both transgression forms vanish in the limit A = 0 we get 
the desired result. • 
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In the notation of 6.4.2 we have 1/ = L <g> Q. Therefore 

CQ(L'2) = CQ(L2) + 2CQ(Q) 

and hence we can express p['A according to (34) as 

p\A(x)=pi Ac(o) U e êQ ( Q ) - a(*(o)j) U x 

6.4.15. — As before, let p: W —> B be a proper oriented submersion which admits 
topological if-orientations. 

Lemma 6.27. — / / A p = 0 for some topological K-orientation of p, then it vanishes 
for every topological K-orientation of p. 

Proof. — We fix the if-orientation of p such that A p = 0 and let p' denote the same 
map with the topological if-orientation shifted by c\(Q) G H2(W, Z). We continue to 
use the notation of 6.4.14. We choose a representative o of a smooth if-orientation of p 
refining the topological if-orientation. For simplicity we take a(o) = 0. Furthermore, 
we take o! as above. Using ch([g, 0]) = e C Q ^ and the multiplicativity of the Chern 
character we get 

p\A o ch(x) — ch o p\(x) = p\ Â c(o) U e êQ ( Q ) U ch(x)l - ch o p, ([g, 0] U x) 

= ft Â c(o) U ch([£, 0]) U ch(x) I -pfo ch ([0,0] U x) 

= pfo ch([S, 0]Ux)-pfo ch([S, 0] U x) = 0. 

6.4.16. — We now consider the special case that B = * and W is an odd-dimensional 
5pmc-manifold. Since ii"(*,R/Q) = R/Q we get a homomorphism 

Ap: K(W)^ R/Q. 

Proposition 6.28. — If B = *, then Ap = 0. 

Proof. — First note that A p is trivial on if x (W) for degree reasons. It therefore 
suffices to study A p : K°(W) -+ R/Q. Let x G K°(W) be classified by £: W -> 
Z x BU. It gives rise to an element [£] G ^ d ^ y ) ^ x °f the S'pmc-bordism 
group of Z x 

Lemma 6.29. — If [£] = 0, then A p = 0. 

Proof. — Assume that [£] =0 . In this case there exists a compact 5pmc-manifold V 

with boundary dV = W (as <Spmc-manifolds), and a map v. V —• Z x BC7 such that 

"\dv = f • 
We can choose a Z/2Z-graded vector bundle E —• V which represents the class 

of i/ in if°(F). We refine E to a geometric bundle E := (E,hE,VE) and form the 
associated geometric family & with zero-dimensional fibre. 
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We choose a representative o of a smooth if-orientation of the map q: V —> * 
which refines the topological if-orientation given by the £pmc-strueture and which 
has a product structure near the boundary. For simplicity we assume that <r{o) = 0. 
The restriction of o to the boundary dV defines a smooth if-orientation of p. 

We let y := [5,0] G K(V), and we define x := y^v such that I(x) = x. By 
Proposition 5.18 we have 

chop,(x) = â&op\(y\W) = ch([0, q\{R(y))]) = -a / Ac(ô)AR(y) 
Jv 

On the other hand, the bordism formula for the push-forward in smooth rational 
cohomology, Lemma 6.1, gives 

p^och(x) = p\ (Âc(o) U ch(x)) = p\ ( Â c ( ô ) | ^ U ch(y)|^) = -c (^Ac(o)AR(y)) 

These two formulas imply that Ap = 0. • 

6.4.17. — We now finish the proof of Proposition 6.28. We claim that there exists 
C £ N such that c[£] = 0. In view of Lemma 6.29 we then have 

0 = Acp = cA p , 

and this implies the Proposition since the target R/Q of A p is a Q-vector space. 
Note that the graded ring fif^71 0 Q is concentrated in even degrees. Using 

that ® Q is concentrated in even degrees, one can see this as follows. In [45, 
p. 352] it is shown that the homomorphism Spiff —• U(l) x SO induces an injection 
OfP i n C n?°(BU(l)). Since H*(BU(1),Z) ^ Z[z] with deg(^) = 2 lives in even 
degrees, we see using the Atiyah-Hirzebruch spectral sequence that Qso(BU(l)) (8) Q 
lives in even degrees, too. This implies that fifpm <g>Q is concentrated in even degrees. 

Since iJ*(Z x BU, Z) is also concentrated in even degrees it follows again from the 
Atiyah-Hirzebruch spectral sequence that Q,fpin (Z x BU) ® Q is concentrated in even 
degrees. 

Since [£] is of odd degree we conclude the claim that c[£] = 0 for an appropriate 
CE N. • 

This finishes the proof of Proposition 6.28. • 

6.4.18. — We now consider the general case. Let p: W —• B be a proper submersion 
with closed fibres with a topological if-orientation. 

Proposition 6.30. — We have Ap = 0. 

We give the proof in the next couple of subsections. 
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6.4.19. — For a closed oriented manifold Z let PD: H*(Z,Q) #*(Z,Q) denote the 
Poincaré duality isomorphism. 

Lemma 6.31. — The group ii*(jB,Q) is generated by classes of the form 
/* (PD(AC(TZ))), where Z is a closed Spinc-manifold and f.Z^B. 

Proof — We consider the sequence of transformations of homology theories 

n?*»c(J3) A K*(B) A JT.(B,Q). 

The transformation a is the if-orientation of the S'pmc-cobordism theory, and ¡3 
is the homological Chern character. We consider all groups as Z/2Z-graded. The 
homological Chern character is a rational isomorphism. Furthermore one knows by 
[5], [6] that îîfp*n (B) A K*(B) is surjective. It follows that the composition 

(3 o a : nSpin° (B) <g> Q -> H* (B, Q) 

is surjective. An explicit description of (3 o a is given as follows. Let x e nSpinC(B) 
be represented by a map f:Z—>B from a closed 5pmc-manifold Z to B. Let 
PD: H*(Z,Q) ^> jff*(Z,Q) denote the Poincaré duality isomorphism. Then we have 

(3oa(x) = fJ?D(Ac(TZ))). 

6.4.20. — For the proof of Proposition 6.30 we first consider the case that p has 
even-dimensional fibres, and that x G K°(W). By Lemma 6.31, in order to show that 
Ap(x) = 0, it suffices to show that all evaluations Ap(x) (/*(PD(AC(TZ)))) vanish. 
In the following, if x denotes a if-theory class, then x denotes a smooth if-theory 
class such that I(x) = x. 

We choose a representative oq of a smooth if-orientation which refines the topo­
logical if-orientation of the map q: Z —• * induced by the 5pmc-structure on TZ. 
Furthermore, we consider the diagram with a Cartesian square 

V —^ W 

( r p 

{ f { 
z >• B. 
* 
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In the present case Ap(x) G Hodd(B,R/Q), and we can assume that Z is odd-
dimensional. We calculate 

A p (x) (/.(PD(ÂC(TZ)))) f*AJx) (PV(ÂC(TZ))) 

Lemma 6.24 AJF*x) (PD(ÂC(TZ))) 

Proposition 6.28 

(Ac(VTZ)UAr(F*x))[Z] 

f Ac(o) A Ar(F*x) 
Jz 

qi ( i c ( o g ) U A r ( F * x ) ) 

qf(Ar(F*x)) 

qf [ch o -ffo di(F*xj\ 

qf o ch o r{(F*x) -sfo ch(F*x) 

chogjo f\(F*x) — sf o ch(F*x) 

ch o 8\(F*x) -sfo ¿11^* x) 

A T in* \ Proposition 6.28 

We thus have shown that 

0 = Ap: K°(W) -+ Hodd(B,R/Q) 

if p has even-dimensional fibres. 

6.4.21. — If p has odd-dimensional fibres and x G Kl(W), then we can choose 
y G K°(Sl x VT) such that (pr2)i(2/) = a:. Since p o pr 2 has even-dimensional fibres 
we get using the Lemmas 6.18 and 3.23 

Ap(x) = chop, o (pr2)f(ô) - pj4 o ch o (pr2).(y) 

Lemma 6.25 ch o (pSpr2)\(y) - pf o (pr2)f o ch(y) 

ch o(po pr2)»(^) - (po pr 2)^ o ch(y) = A p o p r 2 (y) = 0 

Therefore, if v has odd-dimensional fibres, 

0 = Ap: Kl{W) Hodd(B,R/Q). 

6.4.22. — Let us now consider the case that p has even-dimensional fibres, and that 
x G KX(W). In this case we consider the diagram 

51 x W w 

|t:=idsi Xp |p 

S ' x B — B . 
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We choose a class y G K°(SX x W) such that (Pr2)\(y) = x. We further choose a 
smooth refinement y G i f ^ S 1 x W) of y and set x := (Pr2)i(2/). Then we calculate 
using the Lemmas 6.18 and 3.23 

A p (x) 

Lemma 6.25 

Lemma 6.25 

ch o p\(x) —pfo ch(x) 

ch opf o (Px2)\(y) - pj4 o ch o (Pr2)}(y) 

ch o p, o (Pr2)i(y) - pf o (Pr2)f o ch o (y) 

ch o (foPT2)\(y) ~ (po^) ! 4 o ch(y) 

ch o (pr̂ T>)\(y) ~ (P*7°~Oi4 ° 

ch o pr2! o t\(y) - pr^ otf o ch(y) 

(pr2)f [choti^-tfoch^)] 

(pr2)|4oA t(y) = 0. 

Therefore, if p has even-dimensional fibres, 

0 = Ap: KX(W) # e v ( £ , R / Q ) . 

6.4.23. — In the final case p has odd-dimensional fibres and x € K°(W). In this 
case we consider the sequence of projections 

S1 x S 1 x W P^3 S1 x W P-^2 W. 

We choose a class y G if°(5 1 x S1 x VF) such that (pr2 o pr 33)1(2/) = x. We further 
choose a smooth refinement y G K0^1 x S1 x W) of 2/ and set x := (pr2 o pr23)!(y). 
Then we calculate using the already known cases and the Lemmas 6.18 and 3.23, 

Ap(x) = ch o pj (X) — pf o ch(x) 

-- chopio (pr2), o (pr23)1(3/) - pf o ch o (pr2). o (pr23)i(y) 

-- ch o (pïp?2), o (pr23)1(2/) - pf4 o ch o (fr^pr^)\(y) 

= (pS^); 4 o ch o (pr 23)1(2/) - pj4 o (piTôpî^)}4 o ch(£) 

= ( № 2 ) f o A p r 2 3 ( y ) L e m m = a 6 - 2 5 0. 

This finishes the proof of Theorem 6.19. 

7. Conclusion 

We have now constructed a geometric model for smooth if-theory, built out of 
geometric families of Dirac-type operators. We equipped it with a compatible multi­
plicative structure, and we have given an explicit construction of a push-down map for 
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fibre bundles with all the expected properties. For the verification of these properties 
we heavily used local index theory. 

We presented a collection of natural examples of smooth if-theory classes and 
showed in particular that several known secondary analytic-geometric invariants can 
be understood in this framework very naturally. This involved also the consideration 
of bordisms in this framework. 

Finally, we constructed a smooth lift of the Chern character and proved a smooth 
version of the Grothendieck-Riemann-Roch theorem. This also involved certain con­
siderations from homotopy theory which are special to if-theory. 

Important open questions concern the construction of equivariant versions of this 
theory, or even better versions which work for orbifolds or similar singular spaces. 

In a different direction, we have addressed the construction of geometric models of 
smooth bordism theories along similar lines in [23]; using singular bordism this has 
also been achieved for smooth ordinary cohomology in [20]. 
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