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THE SIGNATURE OPERATOR ON MANIFOLDS 
WITH A CONICAL SINGULAR STRATUM 

by 

Jochen Brüning 

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday 

Abstract. — We consider a Riemannian manifold, Μ, which can be compactified by 
adjoining a smooth compact oriented Riemannian manifold such that a neighbour­
hood of the singular stratum B, of codimension at least two, is given by a family of 
metric cones. Under the assumption that the middle cohomology of the cross-section 
vanishes, we show that there is a natural self-adjoint extension for the Dirac operator 
on forms with discrete spectrum, and we determine the condition of essential self-
adjointness. We describe the boundary conditions analytically and construct a good 
parametrix which leads to the asymptotic expansion of a suitable resolvent trace as in 
our previous work. We also give a new proof of the local formula for the L2-signature. 

Résumé (Opérateur de signature sur les variétés avec une strate singulière conique) 
Nous considérons une variété riemannienne M, qui peut être compactifiée en lui 

adjoignant une variété riemannienne C°° compacte orientée, telle qu'un voisinage de 
la strate singulière B, de codimension au moins deux, est donné par une famille de 
cônes métriques. Sous une hypothèse d'annulation de la cohomologie de la section 
du cône en dimension moitié, nous montrons qu'il existe une extension auto-adjointe 
naturelle de l'opérateur de Dirac agissant sur les formes qui est de spectre discret, et 
nous déterminons la condition sous laquelle l'opérateur de Dirac est essentiellement 
auto-adjoint. Nous décrivons les conditions de bord, et nous construisons une para­
metrix qui donne le développement asymptotique de la trace de la résolvante, comme 
dans un travail antérieur. Nous donnons aussi une preuve nouvelle de la formule locale 
pour la signature L 2 . 

Introduction 

In this article, we analyze the signature operator on an oriented Riemannian mani­

fold ( M , g) of dimension m = 4fc, with one compact singular stratum Β of dimension 
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2 J. BRUNING 

h (the "horizontal dimension"), such that m — h>2. A neighbourhood of the singular 
set is given by 

(0.1) U := U£o := (0, ε0) x ΛΓ, ε0 G (0,1/2), 

with an oriented compact Riemannian manifold Ν of dimension 4k — 1 and metric 
gTN, and M decomposes as 

(0.2) M =:U£0UM£0 

into points of distance at most and at least εο of the singular set, respectively. For 
ε G (Ο,εο], we use analogous notation and write ί/ε,Με, with 

Μ = υευΜε. 

We assume that the orientation on M and Ν induce the boundary orientation on C7, 
such that {—^,ei, . . . ,em_i} is oriented on U if t G (Ο,εο) and {βχ, . . . , em_i} is 
oriented on N. We assume in addition that the singularity is of the following special 
type. There is a fibration of oriented compact Riemannian manifolds, 

(0.3) π : Υ Ν £, 

with fibers Y& = π-1 (6), 6 G 5, of dimension ν := 4k — 1 — h > 1 (the "vertical 
dimension"); in particular, Β carries a metric gTB such that π becomes a Riemannian 
submersion. Then the tangent bundle Τ Ν of Ν splits under g™ into the vertical 
and the horizontal tangent bundle, consisting of the tangent vectors to the fibers and 
their orthogonal complement, 

(0.4) TNP =: TH NP®TVNP, 

with induced metrics gTllN and gTyN \ the corresponding orthogonal projections in 
Τ Ν will be denoted by PH and Py, respectively. Next we assume that the metric 
gTU gTMp takeg the form 

(0.5) gTU :=dt2®gT»N®t2gTvN, 

which we will call a metric of conic type. Thus, MUB is a Riemannian pseudomanifold 
with one singular stratum of conic type. 

The boundary of U is the Riemannian manifold 

(0.6) Νεο := (Ν, g™ := gT«N θ ε2ο9τ-Ν). 

The splitting of TN induces a splitting of the cotangent bundle, 

T*N=:T^N®T^N, 

into cotangent vectors annihilating TyN and TJJN, respectively. This splitting in­
duces a bigrading of the exterior algebra AT* Ν which will be important for our 
analysis; we write 

AT* Ν = AT χ Ν 0 ATyN 
(0.7) = Θ,·=ρ+9Λ*Τ£ΛΓ Θ AqT£N =: ®p,qA™T*N. 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 3 

The smooth sections of AT*N and AT^/VN will be denoted X(N) and A#/y(iV), 
respectively, with degree or bidegree noted with superscripts. 

Our main object will be the canonical Dirac operator associated with ΛΤ*Μ, 

(0.8) DA:=Dh:=dM + JM, 

with d,M =' d the exterior derivative on M and its formal adjoint with respect to 
the metric g™. 

D defined on forms with compact support, denoted by AC(M), is symmetric in 
L2(M,AT*M) =: λ(2)(Μ) but may not be essentially self-adjoint; we refer to the 
closure of this operator as £>min =: Anin> and dminjd^^ are defined analogously. 

A specific self-adjoint extension of this operator can be defined via the Hubert 
complex given by the operator dmax which arises from d) as 

(0-9) rfmax := (4in)*> 
cf. [11, §3]; with a slight abuse of notation we denote this extension again by D = 
DA = D^f, with domain Φ = domD. In general, there will be many more self-adjoint 
extensions but D is of interest since its kernel gives the L2-cohomology of M. If D is 
a Predholm operator we have to break its symmetry to obtain a nontrivial index, e. 
g. by an anticommuting supersymmetry i. e. a self-adjoint involution of AT*M. We 
will use multiplication by the complex volume element, TM, which splits 

AT*Μ =: Λ+Τ*Μ Θ A~T*M 

into ±l-eigenbundles and analogously 

λ(Μ) =: λ+(Μ)Θλ"(Μ), 

with associated splitting σ = σ++σ~ on the level of forms. If TM maps 2) to itself than 
we can define the Signature Operator of M, with domain 2)slgn = ® + = | ( / + ΤΛ/)0, 
by 

(0.10) Ds^n := £>sign := Z>&|2>+ : 2>+ -> 2>". 

We say that the case of uniqueness or the L2-Stokes Theorem holds on M if 

(0.11) m̂ax = m̂in-

In this case we have τ(2)) C 2), and if D is also Predholm, then so is Dslgn and its 
index equals the L2-signature of M, 

(0.12) ind£>sign = sign(2)M. 

The above metric data define the crucial object in the analysis of the signature oper­
ator: the splitting of T*iV (induced by (0.4)) defines the "vertical de Rham operator" 
dy (see (2.5)) and the metric g^yN defines the adjoint dy, such that we can form the 
operator (see (2.31)) 

(0.13) Ay := (dy + d]v)a + v. 
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4 J. BRUNING 

Here a is another supersymmetry on AT* Ν and ν is an endomorphism (which are 
defined in (2.19) and (2.13)), and Ay is a first order symmetric differential operator 
on Cl(N,AT*N) which is fiberwise elliptic. Now M is called a Witt space if 

(0.14) HV/2(Y) = 0. 

We will see below (cf. Theorem 3.1) that (0.14) is essentially equivalent to the analytic 
condition 

(0.15) Ay is invertible, 

in the sense that the invertibility of Ay implies the Witt condition, whereas the Witt 
condition does not exclude the existence of zero eigenvalues but only of such which 
may be called inessential; indeed, they disappear under suitable rescalings of the fiber 
metric. We will assume that M is a Witt space. 

Our results can then be summarized in the following theorems. We describe the 
Signature Operator on M by explicitly constructing its Green kernel which relates it 
to the symmetric operator D defined as the restriction of Z}max to the domain 

(0.16) {σ e dom Anax : lk+IU(2)(ivt) = 0{t^2~£) for every ε > 0, 

\W'\\xW(NT) = 0(t"1/2+,?) for some η > 0,t - 0}; 

note that D anticommutes with τ M by construction. 

Theorem 0.1. — Let the Riemannian manifold (M,gTM), of dimension m — 4k, be 
the top stratum of a Riemannian pseudomanifold, X, which is a Witt space with only 
one singular stratum Β of conic type. 
1. The operator D defined by (0.16) is self-adjoint and discrete and anticommutes 
with τ Μ · 
2. Jf |Av| > | , then £^)Πΐίη is essentially self-adjoint. 
3. The case of uniqueness holds for M. 
4 £>sign = £>+ 

This theorem is well known in the case h = 0, cf. [15], [12], and part 2 and part 
3 could also be deduced from Cheeger's work [15]. 

It is clear from part 4 of Theorem 0.1 that under the above conditions 

(0.17) ind D+ = ind Z)sign = sign(2)M, 

so it is natural to ask for a local formula analogous to Hirzebruch's Signature Theorem 
in the smooth case. Bismut and Cheeger [6, Thm. 5.7] have indicated the adiabatic 
construction of the homology L-class on the compact singular space associated with 
M, together with the corresponding L2-index formula. A crucial role is played by 
the 77-invariant, η(Ν^ΤΝ), of the Riemannian manifold {N,gTN), as introduced by 
Atiyah, Patodi, and Singer in [1, Thm. (4.14)], and its adiabatic limit, 

ή(Ν,9ΤΝ) :=]imV(N,g™). 
€—•0 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 5 

The adiabatic limit was first introduced and computed by Witten [25], as a gravita­
tional anomaly, in case of a one-dimensional base. Witten's formula was proved rigor­
ously by Cheeger [16], and independently by Bismut and Freed [9], [10]. The compu­
tation of the adiabatic limit for arbitrary dimensions and invertible fiber operators was 
given by Bismut and Cheeger [6, 7], who introduced the form ή = ή(π,9™) G \{B) 
generalizing the //-invariant; the case of the signature operator was treated by Dai 
[18, Thm.0.3] who further introduced the r-invariant associated to the Leray spec­
tral sequence of the fibration (0.3). There has been done considerable work recently 
on the computation of L2-cohomology groups of spaces which can be compactified as 
pseudomanifolds of the type we consider here, cf. [19], [20], [21], and [17]. These cal­
culations lead to topological formulas for sign^M, see [17, Cor.1.2] for Witt spaces 
and its extension in [21]. Combining these topological formulas with Dai's result 
quoted above gives the following local signature formula which was stated for even 
dimensional base spaces in [8, Thm.5.7]; in its formulation, we denote by £)^®#(y) 
the Dirac operator Dg twisted by the bundle of fiber harmonic forms. 

Theorem 0.2. — We have 

indZ}sisn = lim / L{V™)- [ L(TB, VTB) Λ ή - \η{Ό^{Υ)). 
£-*°JM J Β 2 

We give here an analytic proof of [17, Cor.1.2] in the general case which should 
be applicable to more general situations; in combination with the results of Atiyah, 
Patodi, and Singer and Dai's computation, it yields the theorem. The parametrix 
construction which we give in this paper should, in principle, also lead directly to 
the local index formula but, so far, we have been unable to overcome the technical 
difficulties involved. 

We also have considered the resolvent trace expansion. We have a proof of the 
following result, but its presentation would lengthen the paper unduly; we hope to 
include it in a more general result at some future time. 

Theorem 0.3. — 1. For μ € R \ {0} and p> m, the resolvent 
(D — ιμ)~χ is in the Schatten-von Neumann class of order ρ in L2(M,hT*M). 
2. For ζ € R and I > m/2, we have the asymptotic expansion 

tv[D2 + z2]-1 - ^ ζ ^ Σ α μ Ί + £ ^ ' l o g * . 
j>0 3>2l-h 

The plan of the article is as follows. In Section 1, we deal with general Dirac 
operators and derive some decomposition theorems which are induced by a fibration 
of the form (0.3) and are needed later on. These results are known for spin Dirac 
operators, see [5, pp. 56, 59]. 

In Section 2, we represent the signature operator Dslgn on U in the form 

Dsing M = d 
dt 

+ AH(t) + t-1Av, 
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6 J. BRUNING 

acting on C\((0,e0),AT*N)) (see (2.38)). Here AH{t) and Ay are first order 
differential operators which can be written as a Dirac operator plus a potential and 
An(t) is linear in t, with derivative a bounded endomorphism, while Ay is given by 
(0.13). We also show (in Theorem 2.5) that the anticommutator AH Ay + Ay AH is 
a first order vertical differential operator, a crucial fact for our analysis. The guiding 
principles here are the structure of Dirac systems, as developped in [3], and the 
decomposition results from Sec. 1. 

In Section 3, we obtain explicitly the spectral decomposition of the operators 
Ay (b) := Ay \Yb (cf. Theorem 3.1). By ellipticity, the spectrum is discrete. It consists 
of the harmonic eigenvalues μ = j — v/2,0 < j <v, generated by the harmonic forms 
on Yt,, and two families μ*1 generated by the nonzero eigenvalues of the Laplacian on 
Yb, with μ + C (—|,oo) and μ~ C (—oo, ^ ) . When the metric on Y^ is scaled down, 
these eigenvalues tend respectively to +oo and — oo. 

Section 4 introduces appropriate boundary conditions for Dslgn, based on the spec­
tral analysis of Section 2. For the choice of boundary conditions and hence of a 
self-adjoint extension, only the small eigenvalues of Ay matter. We treat them by 
explicitly constructing the resolvent kernel by means of matrix Bessel functions, as 
introduced in [13], and then use this kernel in constructing a good pseudodifferen-
tial parametrix for Dslgn with operator valued symbol, again following the strategy 
developed in [13]. At the end of this section, we give the proof of Theorem 0.1. 

In Section 5 we prove Theorem 0.2 by reducing the problem to an APS-type prob­
lem on Μ ε , for sufficiently small ε > 0. We also prove various related results: a Kato 
type perturbation result for the APS projection (Theorem 5.9), a vanishing result 
which is crucial for our approach (Theorem 5.2), and a new identity involving Dai's 
r-invariant (Theorem 5.4). 

This paper started as a joint project with Bob Seeley to whom it owes a lot. 
The construction of the Signature Operator was essentially finished several years ago 
using a less explicit parametrix construction. The publication of the results has been 
delayed by an attempt to deduce the local signature formula directly from the resolvent 
expansion in Theorem 0.3. However, this goal has proved elusive so far; we hope that, 
nevertheless, the results presented here will be of independent value. 

We wish to thank Bob Seeley for many years of fruitful exchange and cooperation. 
We are indebted to Jean-Michel Bismut, Xiaonan Ma, and Henri Moscovici for useful 
discussions. We are grateful for the support of Deutsche Forschungsgemeinschaft 
under various grants, especially SFB 288 and SFB 647, and for the generous hospitality 
of the Ohio State University, the Mittag-Leffler Institute, the University of Bergen, 
Kyoto University, and MSRI Berkeley. Special thanks are due to an anonymous referee 
for very helpful remarks based on an unduly preliminary version of this article. 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 7 

1. Dirac operators on fibrations 

In this section, we consider a Riemannian manifold (M,gTM) which we assume to 
be oriented. For X, Y G Τ M we write 

g™(X,Y)=: (Χ,Υ)ΤΜ =: (Χ,Υ), 

if no confusion may arise, and we use similar notation for vector bundles. Moreover, we 
consider a second oriented Riemannian manifold (B, gTB) and a Riemannian fibration 

(1.1) π = π β : M -> Β 

with generic fiber F; we write 

(1.2) F b : = n - 1 (\b), beB. 

We denote the bundle of tangent vectors to the fibers by TyM. Then the fibration 
induces an orthogonal splitting 

TM =: ΤiiΜ Θ TyM, g := g™ =: gT»M Θ gTyM =: gH θ gv, 

with orthogonal projections PR/V : Τ M —> THjVM. Note that TV M and its annihi-
lator T^M are defined independent of the metric. 

The bundle (TM,g™) has a distinguished metric connection, the Levi-Civita 
connection V ™ ; all bundles associated to the principal bundle of orthonormal frames 
in Τ M inherit a metric and a metric connection from (TM, g™). This holds in 
particular for the exterior algebra of the cotangent bundle, ΛΤ*Μ, and for the bundle 
of Clifford algebras, Cl(TM), and its complexification, CZ(TM) = Cl(TM) (g>R C. 

We are interested in the class of Dirac bundles as defined in [23, p. 114], i.e. the 
smooth hermitian bundles (E, hE) over M equipped with hermitian connections 
such that the following conditions are satisfied: There is a smooth bundle map cl from 
the tangent bundle, TM, to the skew-hermitian endomorphisms, Endas E, of Ε such 
that 

(1.3) clpQ ο clpf) = -g(X, X)IE, X G TM, 

which implies that cl extends to an algebra homomorphism 

(1.4) cl:CZ(TM)-+End£, 

turning Ε into a left Clifford module. Moreover, is required to be compatible 
with the Levi-Civita connection in the sense that 

(1.5) V f cl(Y)a = c\(VT

x

MY)a + cl(y)Vf σ, 

for X, Y G ΤΜ,σ G Ολ(Μ,Ε). A prototypical Dirac bundle is, of course, CZ(TM) 
itself with the metric structure induced from g™. This bundle is canonically isomor­
phic to the exterior algebra bundle ΛΤ*Μ, with Clifford action 

cl(X)u> = w{Xb)u; - Ί{Χ)ω, X G TM, ω G ΛΓ*Μ, 
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8 J. BRUNING 

where "w" and "i" refer to wedge and interior multiplication, respectively, while b : 
Τ M —> Γ* M denotes the "musical" isomorphism induced by g™ with inverse #. Note 
that these definitions extend naturally to Hubert bundles over M. 

The notion of Dirac bundle was introduced to define the Dirac operator naturally 
associated with it, i.e. the operator 

m 
(1.6) £»:=£>&:= £ clC^V*, 

I=L 

which we will regard as an unbounded operator in L2(M, E) with domain C\ (M, E) 
if not stated otherwise. Then D is symmetric in L2(M, E) and essentially self-adjoint 
e.g. if M is complete. 

To obtain a nontrivial index, the symmetry of D must be broken. This is achieved 
by a supersymmetry or grading, a, on E, i.e. by a self-adjoint involution a € End Ε 
which is parallel with respect to and anticommutes with Clifford multiplication, 
and hence with D. Then the bundle Ε splits as 

Ε = Ε + Θ Γ , E± = ^(I±a)E. 

Cl(TM) has a natural grading obtained by lifting the map X »-» — X from Τ M to 
Q(TM), with the property that 

0(TM)±E+ C E±, CIÇTM^E- C ET, 
for any graded Dirac bundle E. 

We are now interested in splitting the Dirac operator D = Dfj along the fibration 
π : M —+ Β into a "horizontal" and a "vertical" part. The notion of horizontality we 
use will be introduced below, while we will call a differential operator Q on C\ (M, E) 
vertical if Q commutes with multiplication by functions pulled back from the base, i.e. 
if Q differentiates only in fiber directions; if Q is of first order this is also equivalent 
to saying that 

(1.7) Q(0 = 0, ξ 6 T*HM, 

with Q the principal symbol of Q. The desired splitting of D will reflect the geometry 
of the fibration π, through the second fundamental form, which is defined for X, Y € 
TVM and Ζ € THM by 

(1.8) (II(X,Y),Z) = (VZX - PV[Z,X},Y) 
= {VxZ,Y) 
= -(VxY,Z); 

and through the curvature of π, which is for Ζχ, Z2 G ΤΗ M defined as 

Rzuz2 :=-Pv[ZuZ2}. 
Before we state the results on the splitting of D we need to introduce some notation 
concerning local orthonormal frames. We will always denote by (βΐ)̂ =1 and (/j)^=1an 
oriented local orthonormal frame for T#M and TyM, respectively, where h = dim Β 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 9 

and ν := dim F denote the "horizontal" and "vertical" dimensions, with h + υ = m := 
dim M, and we assume that { e i , . . . , fv} is oriented in TM. More specifically, we may 
assume that (ei)f=1 consists of the horizontal lifts of an oriented local orthonormal 
frame ( e ^ ) ^ for TB; if this frame is denned in some open set U then (ei)f=1 is defined 
in ir~l(U). 

There are two operators generated by D which naturally belong to the horizontal 
and the vertical space, respectively, to wit 

h 
(1.9) D0Η:=Σ<Α(<α)νΖ, 

ί=1 

(1.10) Ô v : = è d t à ) V / i ' 

such that D = £>H + Dy. However, these operators are not easy to interpret and in 
spite of having a symmetric principal symbol, they are not symmetric in general. This 
defect is easily cured as follows. Since D is symmetric on C^(M, E), i. e. D = D+ 
its formal adjoint, we obtain 

D=±(DH + D*H) + ±(Dv + D*v) 

(1.11) =:DH + DV, 

with DH/V symmetric. But since Dy has symmetric principal symbol, we see that 

(1.12) Dy = Dv + 

with some endomorphism βχ G C°° (M, End Ε) such that 

(1.13) DH = DH-±fa,B1 

(1.14) DV = DV + 

note that β\ is necessarily skew-symmetric. 

Lemma 1.1. — 1. In (1.12), we have 

(1.15) /?i = -vcl(frF), 

where 

HF:=- 1 
υ 

ν 

7 = 1 

PH V TM fj 

is £/&e mean curvature vector field of the fibers of π. 
2. For any horizontal vector field Ζ on M we have 

(1.16) cl(Z)Dv + IV cl(Z) = 0. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



10 J. BRUNING 

Proof. — 1. We compute Dy by calculating for σ& G C* (M, E), k = 1,2, the expres­
sion 

(Ζν0"ι,σ2)ι,2(Μ,Ε) - {σι,ϋνσ2)ΐ;2(Μ,Ε) 

= Σ / ( W i ) V f i a 1 > a 2 > ^ - ( a 1 , d ( / i ) V f i a 2 ) ^ ) 

= Σ / ( " />ι><*(/>2>* + <*i,d(V?/V>2>is) 
j=i 7 μ 

(1-17) = Σ / ( " />ι><*(/>2>* + < * i , d ( V j M / > 2 > i s ) 
J=LJM 
- (σι,ν&(Ηρ)σ2)ν{Μ,Ε), 

where we have used the properties (1.3) through (1.5). Now we introduce a vertical 
vector field, X, by setting 

(X,Y)TVM := (σ1,ο\(Υ)σ2)Ει Y 6 C(M,TVM). 

Then it is easy to see that the integrand in (1.17) equals the divergence of X\Fb and 
hence vanishes upon integration over for any b G Β. It follows that 

Dl-Dv = -vcl(HF), 

as claimed. 
2. We compute, using again the basic relations (1.3) through (1.5), 

cl(X)Dv + Dv clpf) = c\(X)Dv + Dv cl(X) + v(X, HF)TM 

= Σ Η * ) <*(/,·) V£ + <*(/,) V£ cl(X)) + ^(X, Hp) τ M 
3 

= Σ cl(/j) c l (v£ M X) + «{Χ, / î F ) T M 

= ( J ] d ( / , ) cl(/*)(V™X, fi)TM + t;(X, F F ) T M ) 

^ ^ C K / ^ C K / O ^ V ^ / O T M 

= 0. • 

We will use below a stronger property of this decomposition, namely that (in the 
case of DA) 

(1.18) DHV := DHDV + DVDH 

is a first order vertical differential operator. Note that while DHV is always of first 
order, it need not be vertical in general. But this can be achieved if we further modify 
the decomposition (1.11) by bringing in the curvature of π. 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 11 

Theorem 1.2. — Define a symmetric endomorphism field of Ε by 

(1.19) β2 := \ j,i,k ^(VTM^ekJ^dif^clie^cKei). 

Then the operator 

(1.20) DHV := (DH + &)(£V - ft) + {Dy - β2)(0Η + A ) 
is first order vertical. 

Proof. — /?2 is clearly well defined. We compute 

(1.21) DHV = (DHDV + DyDH) - (DHh + β2ΌΗ) + {Όνβ2 + β2Όν) 
(1.22) = : / + / / + / / / . 

Since J/J is first order vertical, we compute the coefficient, 7 m , of Vf^ from / and II: 

7m = - | ( cl(tf F) cl(em) + cl(em) cl(HF )) + Ç cl(/,) c l (V£ M e m ) 

+ (/%cl(em) + cl(e m )A) 

= v(HF, em) + 5^ <*(/,-) c l ( / , ) ( V £ M e m , fk) 

+ J ] cl(/,) c l (e , ) (V^ M e m , e<> + (ft cl(em) + cl(em)ft) 

= Ç 0 1 ^ ) 0 1 ^ ) ^ ^ , ^ ) + (ft cl(em) + cl(em)ft) 
J;* 

= 0, 

if we plug in the definition of ft in the penultimate line. • 

Our next goal is to interpret the new operators DH and Dy as Dirac operators in 
a natural way. This is more obvious for Dy since the fibers i*j>>, b G Β, inherit a lot 
of structure from M and E. Indeed, denoting by jb · Fb —* M the inclusion map, we 
obtain a hermitian bundle with hermitian connection over Fb by defining 

Eb :=j*bE, hB" :=j*bhE, V £> := j*bVE. 

Clearly, the relations (1.3) and (1.4) remain valid, so what remains to be checked is 
the compatibility condition (1.5) which now needs to involve V T F b . To achieve this 
we are going to modify VEb as follows. For X, Y G TFb C TyM, Ζ G TFjf- C THM, 
we introduce the shape operator S = Sb of i*& by 

SZX := -PVWZ), 

such that 

(SzX, Y)rFb := ( V ^ M y , Z)TM 
= -(llFh{X,Y),Z). 
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12 J. BRUNING 

Then we define a new connection on Τ F by 

(1.23) V f 6 := V f * - i £ cl(5eiX) elfe), 
i 

which is clearly invariantly defined. 

Theorem 1.3. — The data (Eb, hEh,VE>b) define a Dirac bundle over Fb, for all be B, 
with Dirac operator 

(1.24) Dv(b) := Dy\Fb. 

Proof — We compute with the notation used above: 

v f * c i ( y ) - d ( y ) v £ 6 

= c l (V£MY) - 1 Ç (cl(5eiX) clfe) cl(y) - cl(Y) cl(5eiX) cl(ei)) 
i 

= c i (v™y) + 1 Ç (ci(5eix)ci(y) + ci(y)ci(seix)) d( ei) 

= c i (v™y) - ^(5eix,y)TM ci(ei) 

= c i (v™y) - Σ^ΨΥ^ΤΜ d(e<) 

= ci(v£F>y). 

Next we compute the Dirac operator, Dy, associated to (Eb, hEb, VE,b): 

Dv = 
3 

cl(/j)vf;6 

c l ( / ; )V£ - 1 
2 

[SetfiJkfrMdifAclifàcliei) 

j,i,k 3 

cKfj^i - 1 
2 3 

= 

= 

i,3,k 

( V ^ / f c . e ^ T M c K / ^ c K / ^ c K e i ) 

= 
j 

d ( / i ) V £ + 1 
2 j 

( V ^ ^ e , ) ™ ^ ) 

= 
j 

d( / i )Vf . 2 
cl(HF) 

= DV 
ν 
2 

cl(HF) 

= DV. 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 13 

To exhibit DH as a Dirac operator, too, we have to extend our setting to smooth 
Dirac-Hilbert bundles. This does not require new definitions but only natural exten­
sions, as indicated above. If we introduce the family of Hilbert spaces over B, 
(1.25) 6b :=L2(FblEb), 6 G £, 

and put 6 := (JbeB &b then the restriction map 

(1.26) R : Cl(M,E) -+ Γ(Β, &), Ra(b) := Rba := a\Fb, beB, 
is an isometry by the Fubini Theorem, 

(1.27) H|) L2 (M,E) / \\Ra(b)\\2

SbvolB(b). 
J Β 

We define a metric on S by setting 

(1.28) hs(b)(RauRa2) := / hE(b)(a1,σ2) vol F b, σό G Cc(M,E),j = 1,2, 

and the Clifford action by 

(1.29) clB(X)Ra := Λο1(Χ)σ, σ G CC{M,E), 
where X G Τ Β with horizontal lift X G ΤΗ M. The connection requires again some 
modification: we put 

(1.30) ν | Λ σ := JIVf σ - \ Ç i2cl(V^ M X) ο1(/,)σ, 
i 

where again X G with horizontal lift X G TM, and σ G C£(M, -Β). Then we have 
the following pleasant interpretation of DH> 
Theorem 1.4. — The data (6, h^, V^) define a (Hilbert-) Dirac bundle over Β such 
that its Dirac operator, D&, is given by 

DsRa := O%Ra := RDHa, 
for aeCl

c {M,E). 

2. Representation of the signature operator near the singularity 

We now restrict the general considerations of the previous section to a manageable 
and important special case, namely the Dirac operator on differential forms on a 
manifold with a conic singular stratum. Hence we will assume in the remainder of 
this work that we deal with the geometric situation explained in the Introduction. 
Thus, we consider a Riemannian manifold (M,g™), of dimension m = 4k, such that 
for ε G (0, εο] we have decompositions 

(2.1) M:=U£UM£, 

where (M e o , g™£o ) is a compact Riemannian manifold with boundary dMEo = Νεο. 
We further assume that the singular part, U£Q, is a bundle of metric cones over another 
compact Riemannian manifold, {B,gTB), as explained above. 
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14 J. BRUNING 

In order to construct a self-adjoint Predholm extension of the operator 

(2-2) ^M,min : = = Anin := (Β>Μ + <4f ) m i n , 

we need to construct a good representation of D on U£o. To obtain a nontrivial index, 
we use the supersymmetry leading to the signature operator which is defined, on any 
oriented Riemannian manifold (M,g™) and for any local orthonormal and oriented 
frame (e^)^ 1 of tangent vectors, by 

r—.-[(m+l)/2] _ . 
TM'-=TM,GTM := V - l cl(ei). . .cl(e m) 

(2.3) = ( - l ) f c c l ( ë i ) . . . c l ( ê m ) ; 

note that τ anticommutes with any Dirac operator on sections with compact support 
if m is even. If the signature operator can be defined then it is derived from the 
maximal de Rham complex. Thus, we state next the decomposition of under the 
Riemannian fibration (0.3), as described somewhat more generally in [4, Prop. 10.1]. 
For this, a few further preparations are needed. 

In the decomposition (0.7), 

AT* Ν = Θ Μ Λ Μ Τ £ , 

we count the degree of forms by operators hd and vd of horizontal and vertical degree, 
respectively, that is, 

Μ\Α™Τ*Ν = p, vd|AMr*JV = q. 

Furthermore, we note the natural isometry of hermitian bundles 

(2.4) φ : π* AT*Β <8> ATyM -+ AT^N 0 ATyN, 

such that the smooth sections of AT* Ν are generated over C°°(N) by sections of the 
form π*ωι (8)^2, with ω\ G \(B) and ω2 G \γ(Ν). Thus we can define the first order 
vertical operator dy figuring in (0.13) by 

(2.5) άγ(π*ωι (8) ω2) := π*ε#α;ι (g) dpu2, 

where 

(2.6) εΗ := ( - l ) h d . 

Finally, we note the following decomposition of the Levi-Civita connection on AT, 

V™ := (PHV™PH + PvVTNPv) + PHVTNPV + PVVTNPH 

(2.7) = :V™- 4 + V * v + V ™ , 

where VTN,S is a connection while the other two terms are endomorphisms; observe 
that all operators in (2.7) act as derivations on tensors. 

The decomposition of djy for fibrations π : Ν —» Β then reads as follows. 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 15 

Lemma 2.1. — In local oriented orthonormal frames (ei)^=1 and (/j)J=1 forTnN and 
TyN, respectively, we have 

(2.8) dN = (Çw(e$)V™'a - ^(Vffff,,ei)TNv{e>)®Yr(fti(fl)) 

(2-9) + \ Σ, <[e*, «], fj)TN w(ej) w(ebfe) ® ί'(/,) 

+ dy 

(2.10) = : 4 ' 0 ) + ^ - 1 ) + ^ ° ' 1 ) 
(2.11) =:dlH + d2H + dv. 

In (2.8) and (2.9), the indices i, k run from 1 to h and indices j , I from 1 to υ, while 
the upper indices in (2.10) indicate the change in bidegree effected by the respective 
operators; and dy = dy'1^ is defined in (2.5). 

Proof. — The proof follows straightforwardly from the well known representation 

<*M = Ew(e>)V™ + E w ( / } ) V ™ 
i 3 

and the decomposition (2.7). • 

We will use this result to determine the decomposition (1.11) for the fibration 
ΤΓ(Ο,οο) : UOO —• (Ο,ΟΟ), 

where we now allow ε to be any number with 0 < ε < oo, by an obvious extension. 
This gives the boundary representation needed in the approach of Atiyah, Patodi, and 
Singer (APS) which will be applied here to reduce the index problem to an APS-type 
problem, cf. [1]. The geometry is, however, not cylindrical near the boundary as 
assumed in loc. cit. which will cause additional difficulties later. 

We will base our analysis on the unitary transformation 

Φι : L2(R+, C2 Θ λ(Ν)) - λ ^ ^ ) , 
(2.12) Φι(σι,σ2)(ί) := π^^σι(ί) + dt Λ n*Ntua2(t), 

where π Ν denotes the canonical projection UOO —> Ν and 

(2.13) u:=vd-^. 

Φι generalizes the unitary transformation used in [12] for simple cones; note that 
it arises as the parallel transport along normal geodesies with respect to the metric 
connection defined by the fibration 7Γ(0ϊΟο) : U oo—> (0, oo) according to Theorem 1.4. 
Then a straightforward calculation gives 
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16 J. BRUNING 

Lemma 2.2. — We have 

Vï1dUooV1 = 
-is ,τ, d^ + td^ + t^dy 0 

Taking adjoints and adding we obtain the transformation of DaU00. 

Corollary 2.3. — With the notation 

(2.14) AH(t) := ( 4 + td2

H) + ( 4 + td2

H)\ 

(2.15) Aov :=dv + a%, 

(2.16) i o W - i t f W + ^ i o v , 

and 

(2.17) 7 := 

we have 

(2.18) Φ Γ 1 ί ? ΰ 0 0 Φ ι = : ^ 0 0 = 

0 -1 
1 0 

(D_ ( 0 -ÂH(t)\ _J ν -Aov 
vat I - i H ( t ) ο J I -AOV -» 

To transform the signature operator we need to incorporate the self-adjoint invo­
lution ΤΥη which defines it. Prom (2.3) it is easy to derive its transformation law: 

Lemma 2.4. — We have 

:= Φ^^ΜΦΙ = ^ ^ ~ X ^ ® EH TH (8) TV r y 

(2.19) =: ^ J J j β ( -α ) , 

where with oriented frames {ei,..., e^}, {/i,... , fv} forTnN and TyN, respectively, 
we have 

(2.20) τΗ := ^ Ï L { H + 1 ) / 2 ] c l ( e i ) . . . cl(e fc), 

(2.21) Ty^V^^^DIH)...^); 

note that ev

H and TH commute. 

The signature operator transforms to the positive part of Du^ with respect to f : 

(2-22) D^-.= \{I + T)DVJ-{I + T). 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 17 

To further transform Dy^i we ODServe that the orthogonal projection onto the 
-f 1-eigenspace of f, 

(2.23) P+ (R) : = I -a 
-a I 

is conjugate to the standard projection 

(2.24) P:= 
I 0 > 
0 0 

under the unitary transformation 

(2.25) 
U : = 1/V2 I a 

-a I 

i. e. 
(2.26) Ρ = U^P+ffîU, 

or equivalently, 

(2.27) U~lfU = 
I 0 

0 -I j 

Now we obtain the final representation of D sing Uoo by transforming all terms in (2.18) 
under £7, observing the commutation relations 

(2.28) va = -ctv, 

(2.29) Â(t)a = aA(t), 

and using the notation 

(2.30) AH{t) := iîjy(t)a, 4 v W := Λονα, 
(2.31) Ay := Aov + v, 
(2.32) 4(0)(f) := AH(t) + Γ ^ , ν , 
(2.33) Φ := Φιί/, 

where all operators are acting on λ (AT). We will call Ay the cone coefficient and 

(2.34) D cone * / \ 
β 1 
â7 + i_1 

J 0 
0 -I 

O Av), 

the cone operator. Then the final result reads as follows. 

Theorem 2.5. — 1. We have 

(2.35) Y-1 DAUoo Y = d/at + I 0 
0 -I 

O A (t), 
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18 J. BRUNING 

and 

(2.36) 

(2.37) 

such that 

(2.38) 

2. 

(2.39) AH(0)Av + AvAH(0) =: AHV 

is a first order vertical operator. 

3. If Ay is invertible then for t sufficiently small we have the estimate 

(2.40) A(tf > Ct~2A2

v 

with a positive constant C. 

Proof — 1. The transformation formulas are again verified by straightforward com­
putations. 

2. To prove (2.39) we use Theorem 1.2 which, after the appropriate transforma­
tions, shows that we can modify AH(t) and t~xAy by adding a bounded endomor-
phism multiplied by t to each term, such that their anticommutator becomes first 
order vertical. This, however, is an algebraic condition so that, after multiplication 
with t, all operator coefficients in the resulting polynomial have to be first order 
vertical, in particular the leading one which is AHV-

3. The estimate (2.40) is an easy consequence of (2.39). • 

3. Spectral decomposition of the cone coefficient 

We want to deal with the existence of self-adjoint extensions of the cone operator, 
DA

one(b), defined in (2.34). According to [12, Thm. 3.1], this operator is essentially 
self-adjoint in L2 (R+, C 2 <g> H°) with domain C\ ((0, oo), C 2 0 H1) if and only if 

(3.1) \Av(b)\ > \, 

where b € B. If the condition (3.1) is violated, then the self-adjoint extensions of 
Dcone a r e classified by the Lagrangian subspaces of 

(3.2) ν ~ Σ ker(A(t>) - λ ) θ ^ ker(;4(6) + λ) 
|λ|<| |λ |<| 

Y-1 TUoo Y = I 0 
0 - / 

^-1D^TTNT^ = 
A0(t) 0 

0 A0(t) 

Y-1 Dsing Uo Y = d 
" dt " + A(t). 
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SIGNATURE OPERATOR WITH CONICAL STRATUM 19 

with respect to the standard symplectic form 

XlV2 ~ X2V1-

It is therefore necessary to determine the small eigenvalues of Ay(b)\ in fact, we will 
describe the full spectral resolution in Theorem 3.1 below. 

For its proof we recall some well known material from Hodge theory. In what 
follows, we fix b € Β and write Y := Y&, with metric g := gTY = gTyN, the closed 
submanifold of Ν which is the fiber over b under the fibration π : Ν —> B\ we will 
also suppress the index "Y" if no confusion is to be expected. Thus we consider the 
Hodge Laplacian 

Δ := AY = άγ(άγγ + {dY)UY =: dd) + dU, 

which defines the harmonie forms, 

:= tfj(Y) = kerAj C Xj(Y) =: λ', 

and the Hodge decomposition 

(3.3) À^:=^®À>AJccI, 

(3-4) ^1/ccl := A|A'cl/ccl. 

Here the subscripts "cl" and "ecl" refer to closed and coclosed forms, respectively; the 
eigenspaces of A^ccl with eigenvalue Κ, > 0 will be denoted by E^CC1(K). 

We also recall the following definitions and relations, where * := *y denotes the 
Hodge star operator on Y and ν (2) the remainder of υ mod 2: 

(3.5) ev\Xj =: ε\\'= (-1Ϋ, 

(3.6) Oi\X> :=(-l)to'+<>/2], 
(3.7) α0αι = ε, 

(3.8) <ft = (-l)v+1*d*ev, 

(3.9) rv\Y =: r = ^l[{v+1)/2] * ( - 1 ) ^ ( 2 ) , 

(3.10) dr = (-l)v+1Tdl 

Then we have 

(3.11) Av(b) =: Av = - ε ^ ^ ί ί ® (dr + {-1)ν+1τά). 

wb 
x1 
x2 

yi 
2/2 
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2 0 J. BRUNING 

Next we introduce some spaces which are invariant under Ay (here and below, j G 
Ν Π [1, (υ + 1 ) / 2 ) if not stated otherwise) : 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

It is then convenient to put 

(3.18) 4 , 1 . ·=Αν\~Κ, 

4,c l " 
1 _ 
2 ' ~ 'M - M 

(3.19) J ο. 
-ευΗ τΗ ® άτ 

-ευΗ τΗ ® άτ 

-ευΗ τΗ ® άτ 

4cci+2:= -2)|ÀJCC, 

(3.20) J 2 

( - 1 ) " ε „ + 1 Τ Η <g> rd 

(-l)wê +1Tff®Td 
-(i-2^) 

Then the spectral resolution of Ay can be expressed as follows. 

Theorem 3.1. — 1. A3vh has the eigenspaces ${3 and${v~3 with eigenvalues ± ( j — | ) . 

2. For κ € spec \ { 0 } , Aycl — ^ ftas ίωο eigenspaces in F^(K), with eigenvalues 

A*ci.±(K) := ± « + u - ^ ) 2 , 

and multiplicities mJcl ± ( κ ) . 

3. For κ € s p e c A £ c l \ { 0 } , -<4yccl+| has two eigenspaces in F^C1 K), with eigenvalues 

/4i,±(«) := ± « + o - - ^ ) 2 , 

and multiplicities mJccl ± («). 

4. is odd, then, for κ > 0, there are two more eigenspaces of Ay (v+1)/22^ 

in Εςΐ+1^2(κ) Θ E^1^2(K) with eigenvalues + Vk. 
5. For κ > 0, the four eigenvalues of Ay in F^K) 0 F3C1(K) have the common 

multiplicity 2 dim EJC1(K) . 

F>D(K) :=Μ(κ)Θ^+1->(κ), 
\3 — \j as \v+l-j Acl ·- Acl ® Acl ' 

\3 — (f, \v-l-j Accl ·— Accl w Accl ' 
F>D(K) :=Μ(κ)Θ^+1->(κ), 

F>D(K) :=Μ(κ)Θ^+1->(κ), 
F>D(K) :=Μ(κ)Θ^+1->(κ), 

ASTÉRISQUE 328 

file:///v-l-j


SIGNATURE O P E R A T O R W I T H CONICAL S T R A T U M 21 

Proof. — The first statement is obvious from Poincaré duality. 
We compute next, using (3.18) 

(3.21) (4ci + ^)2 = (4ci + ^)2 = v+1)2 
ο 4ci + ^)2 = v+1)2 

0 

(3.22) (4ci + )̂2 = K« + u - Ψ)2 0 
+ U - H1)2 
ο 

It follows that F3{(K) 0 F£C1(K) is invariant under Ay, and that Ay has the indicated 
eigenvalues on F^(K) 0 F3C1(K). Moreover, we have unitary equivalences 

^cl — ^cl — ^ccl — ^ccl ' 

induced by the mappings dr, r , and rd, respectively. If we employ the bijective maps 

(3.23) 
0 

dr/rd 

—drl —rd 

0 : Kl/cc\ K\/ccV 

(3.24) 
0 (-l)vr ' 
τ 0 : ^cl *~* ^ccl' 

we see that the respective restrictions of Ay are unitarily equivalent under these maps 
up to the factor -1 , which easily implies that the four eigenvalues on F3Y(K) 0 F3C1(K) 
have the same multiplicities, and this must be 2dimE3cl(κ), as asserted. This proves 
the assertions 2) , 3) , and 4) , while 5) follows immediately from (3.18). • 

4. A self-adjoint extension 

With D := DM we associate the operators DM[N, i. e. the closure in λ (2 ) (Μ) of 
D\XC(M), and DMAK := D^IN. In this section, we construct a suitable self-adjoint 
extension of the operator DMM. For this, we introduce an operator family <7(μ, D) 
for sufficiently large real μ, with πτι(?(μ, D) contained in the maximal domain of D , 
and 

(4.1) (D - ίμ)σ(μ, D)r = r, r G L 2 ( M , 6). 

Moreover, all the operators (?(μ, D) map into a common domain on which D is 
symmetric. Hence this domain defines a self-adjoint extension of D, with resolvent 
β ( μ , D). By a certain abuse of notation, we will denote this extension also by D. 

We can naturally extend the conic fibers at hand to the infinite cones C(o,oo)^6> s o 
we may and will assume that we are dealing with a fibration of infinite cones over B. 
The results can then be applied to U£ by a standard cut-off procedure. 

We obtain 0 ( μ , D) as a pseudo-differential operator on Β with operator valued 
symbol. For given b0 G B, choose Wb0 : = Bs(b0), a Da^ 011 which the Hubert bun­
dle & is trivial. We identify forms r G Cc(Wb0> 6\Wb0) with their representation in 
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Cc(Bfh(0), 6b0), and define a local parametrix Οι(μ, D,b0) in the form 

(4.2) G^DM)r{b):= [ exp(i(b, β))σ(μ, ά,β)τ(β)άβ. 

Here (6, β) are coordinates for T*WbQ, and άβ := (2π)~*ιάβ. These local paramet-
rices are patched together in the usual way to make a global parametrix, (?ι(μ, D), 
such that (D — ίμ)Οι(μ, D) — I decays in norm like |μ|_1, so that Οι(μ, D) serves as 
the leading term in a Neumann series for the resolvent G^,D). 

We recall from Section 1 the decomposition D = DH + Dy and construct our 
operator 0(μ, β) with the property that imGfa, b, β) C 2V,MAX(&)> the domain of 
£V,MAX(&), and 

(4.3) (£V,MAX(&) + *cl(/?«) - %μ)σ(μ^β)τ = r, r G ΛΤ6*£ 0 λ(2)(η). 

Just as above, 0(μ, 6, /?) will define a self-adjoint extension of Dy (6), with domain 
Ç)y(b). Note that, in view of Lemma 1.1, part 2, we have for a(b) G 2)y(6) 

(4.4) iKiUvW + i c l ^ ^ - t M ) ^ ) ! ! 2 ^ ^ ) 

= ||βν(6)σ(6)|||ν(6) + (H2 + ml)\\a(b)\\lv(b), 

WHEREIN := g™ (6) 

With (2.34) we now write £V(&) m the form 

(4.5) ί ) ν ( 6 ) : = 7 ( | + ί - ^ ( 6 ) ) 

V 1 0 J \dt t \ 0 -{DYbaYb+u) ) ) 

The trivialization of & identifies the fibers &b,b G Wfc0, with 

L2 ((0, oo), ΛΓ6*οΒ 0 C2 0 λ(2)(η0)) =: £2((0, oo), iJ). 
We will need the following description of the singularities of elements in the maximal 
domain of 2V,MAX(&) (see [12, Lem.3.2]). 
Lemma 4.1. — 1. Any σ in 2V,MAX(fr) has a representation of the form 

(4.6) a(t) = ί_λ^λ(σ) + Οσ(ϊ'2\logt|), t -* 0, 
Aespec Α,|λ|<1/2 

with certain linear forms C\. 
2. Each closed extension of Dyfma>K(b) is determined by linear relations between the 

coefficients C\ for \\\ < \. 
3. σ G 2V,MIN if o,nd only if 

(4.7) \\a(t)\\H = Oa(t1/2\logt\), t ^ O . 

:= εΗ ® 1 
Ο -1 
1 ο 

d 1 
at t 

DYbaYb + ν 
Ο 

Ο 
-(DYhaYb+v) 
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Now, to construct G(/i, 6, β), we split the spectrum of the operator A(b) from (4.5), 
and treat separately the high and low eigenvalues. Arguing as in [12, Lemma 1.1] 
and making £/&0 smaller if necessary, we may then assume that, for some A > 1 with 
the property that Λ φ spec A(b) for all b G Wb0, the spectral projection 

(4.8) Q> := Q]xl>A(A(b)) 

does not depend on b G Wb0 (here and below we denote, for any Borel subset / c R , 
the corresponding spectral projection of a self-adjoint operator, A, by Qi(A)). 

In constructing G(/x, 6, /?), consider first the high eigenvalues of A(b). We reduce 
£V,min(fr) by the spectral projection Q>, which is independent of b G W&0, and denote 
the resulting objects by a subscript " >". Since |Â(6)>| > 1, Lemma 4.1 shows that 

£V(&)> := #V,min(&)> 

is essentially self-adjoint on compactly supported sections. Moreover, from [12, 
Lem.3.1], by a proof as in Lemma 2.2 there, for σ G 2)y(6)> we have 

(1/ί)4(6)>σ(ί) G L 2 ((0,oo),#) hence also σ' G L 2((0,oo),H). 
It follows from this and (4.4) that 

0(μ,&,/?)> := ( ΰ ν ^ + ί ο ΐ φ ^ - ί μ ) - 1 - 3 

satisfies the estimates 

while from Lemma 4.1 we see that 

(4.10) 0(μ^β)>σ{ί) = 0 ( ^ / 2 | logi|), t -> 0. 

As usual, the low eigenvalue case needs more care. We note first that the reduction 
with <3< := I — Q> leads to the matrix equation 

(4.11) ^ < ( 6 ) : = 7 ( ^ + r 1 i ( 6 ) < ) 

in £ 2((0, oo), ϋΓ<), = Q<(H). In view of Lemma 4.1 this operator is not essentially 
self-adjoint with domain C^((0, oo), if<) if there are "small" eigenvalues with modulus 
less than 1/2. Hence we will construct an operator function satisfying the conditions 

(4.12) (D V ) <(6) + icl( j9»)-i/i)G(M,6,/3)< = / ; 
(4.13) £V,<(&)max is symmetric on ίπι(7(μ,6,/?)<; 

( 4 · 1 4 ) 11 ν ^ ^ G ( M ' 6 , / 3 ) < l l w ) - σ , Λ λ | μ Γ · 

Prom (4.12) and (4.13), Dv<(b), on imG(/i,6,/?)<, is self-adjoint. 
The estimates (4.14), together with the Calderon- Vaillancourt Theorem (cf. [14]), 

will provide the necessary norm estimates on our pseudo-differential operator. 
In order to carry out this construction, we now consider the following model case 

to which we will reduce our situation. We are given a finite dimensional complex 

0(μ,&,/?)> := (ΰν^+ίοΐφ^-ίμ)-1 

du? dbK Θβχ 

du? dbK Θβχ (4.9) 
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Hubert space (H, (, ) ) and a Hermitian operator A G £{H). Moreover, there are two 
self-adjoint involutions 0:1,0:2 with the following properties: 

(4.15) OL\OL2 + OL2OL\ = 0, 
(4.16) αλΑ - Aai = 0, 
(4.17) a2A + Aa2 = 0. 

We want to solve the equation 

(4.18) L(A)a(t) : = ( ^ + ΓλA + μα2)σ(ί) = r ( t ) , t > 0, 

in L 2 ( R + , f i ) , for μ 6 R*. We transform Η by introducing the subspaces H*" := 
\(I ± ai)(H) and the isomorphism C 2 ® ϋ " + —> # which is induced by 

H+ Θ # + 3 X-) »-> £+ + o : 2 x_ G i i . 

Then our equation takes the form, with A+ := A\ H+ 

<-» (ΐ- '( ί-:0 +"(°o))(::)^(::) ( < ) -
If we multiply the operator occuring in (4.19) with its formal adjoint from the left, 
then we obtain the Bessel type operator 

<4·20) -d2/dt2 + t " { ο Α*-Α)+U2I· 
where we have now replaced A+ by A to ease the notation, which should not cause 
confusion. Now we introduce the modified matrix Bessel functions in H~*~ as solutions 
of the homogeneous equation associated with (4.20), following [12, Sec. 2]. Thus, 
if Ν is hermitian in £(H+) with eigenvalues v3- then we define the modified matrix 
Bessel function with respect to an orthonormal eigenbasis of Ν by 

lN(t)ij '= Si3IVj(t), 

and require that for any unitary operator U in H+ we have 

Γ % ( ί ) [ ί = : Ι ^ ( ί ) , ί > 0 . 

Likewise, we introduce 

- sm(nN)KN(t) := I-N(t) - IN(t). 
7Γ 

We can then prove the following result. 
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Theorem 4.2. — For μ > 0, the equation (4.18) admits the solution 

ΚΑ+1/2(μί)ΐ T+ 
T-

(«) = 

4+js 
} 

^4+l/2(*)c+ ΚΑ+1/2(μί)ΐΑ-1/2(μ>3) KA+1/2&t)IA+1/2^s) 
ΚΑ-ι/2{μϊ)ΐΑ-ι/2{μβ) ΚΑ_ι/2{μήΙΑ+1/2(μ3) 

ta 
T-

(s)ds 

-
•oo 

t 
M**)1 / 2 

ΐΑ+ι/2(ΐύ)ΚΑ-1/2(μ8) 
lA-l/2Wt)KA-l/2WS) 

ΐΑ+ι/2{μήΚΑ+ι/2(μ*) 
ΐΑ-ι/2{μήΚΑ+ι/2(μ8) 

T+ 
T-

(s)ds 

=:G0(M,i4)r(i) + C?Oo(^i4)r(*). 

T/ie operators β0/οο(μ, A) are bounded in L2(R+,i2") and smooth functions of the 
variables μ G [Ι,οο) and A G £S(H), the space of Hermitian matrices on H, such 
that for p, q G Z + 

(4.21) \\DP

A α μ 
ΚΑ+1/2(μί)ΐΑ-1/2(μ>3) KA+1/2&t)IA+1/2^s) 

Moreover, for σ G im (?(μ, 4̂) and i sufficiently small we have the estimates 
(4.22) \W+(t)\\H < CJW-'WTWU^H) for every ε > 0, 

(4.23) lk-(t)||if < CrL'2+5\\T\\L,(U+IH) for some δ > 0. 

I ̂ 41 > è> ̂ e n w e have the better estimate 

(4.24) \\a{t)\\„<Ct^\\r\\L^H). 

Proof. — We begin with verifying that G (μ, A)r{t) is indeed a solution of (4.19). The 
well known conic scaling 

σ(ί) =: ^2ρ(μί) 
transforms the homogeneous equation associated with (4.19) to 

(4-25) d 
dt 

+ Î - 1 
A+ 1/2 

0 
0 

—A + 1/2 
+ 

0 I 

I 0 
P+ 

P-
(t) = 0. 

The Bessel recursion relations (cf. [12, (2.5a,b)]), 

I'If(t)±t-1NIN(t) = IN:f:1(t), 

K'N(t) ± t^NKsit) = -KNTl{t), 

show at once that two solutions are given by 

Pc+(*) = 
^4+l/2(*)c+ 

^4+l/2(*)c+ 
^4+l/2(*)c+ ^A+1/2(*)C-

^-l /2 ( i )C-
, c± G £T. 

It remains to note that (cf. [24, p. 68]) 

INKN+1(t) + IN+1KN{t) = f-\ 
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from which we deduce that 

( IA+1/2W KA+1/2(t) \ ( KA_1/2(t) -KA+1/2(t) \ =t_Xj 
V -lA-i/2(t) KA_1/2(t) J \ IA.1/2(t) IA+1/2{t) ) H' 

Thus, G(/i, A)T is indeed a solution of (4.18). 
To deduce the estimate (4.21), we perform some reductions of the operator L(A). 

First, we select a number Λ < | such that |A| < Λ, and we choose a number Ai G 
[—1/2,0], Αχ φ spec A. Then we split, with obvious notation, 

A = A>AL 0 A<AL. 

This splits L(A) = L(A>A1) θ L(A<A1), and conjugating with a2 in the second 
summand allows us to assume that 

(4.26) A>-\ 

in what follows. By the same token, we can select numbers Aj,j = 1,... ,7V, such 
that 

(4.27) Aj φ spec A, AN > A; 
(4.28) Aj < Ai+i < Aj + 1. 

Splitting L(A) accordingly as a direct sum, we may further assume that for some 
A* G [—|,A) we have 

(4.29) A* < A < A* + 1. 

Under the assumption (4.29) we will next prove the estimates (4.21) using [12, Lemma 
2.3], which is perfectly adapted to the situation at hand, at least for the operator 
Goo (μ, A). However, it is easily seen that Go (μ, A) is essentially the adjoint operator 
to Gqo(μ,-A), up to permutations and sign changes of the matrix elements. Since 
we will base our estimate on estimates of the matrix elements, it is hence enough to 
deal with ΟΟΟ(μ,Α). These estimates for the modified matrix Bessel functions and 
their derivatives have been derived in [12, Lemmas 2.1, 2.2] and are combined in the 
statement that follows. We recall from loc. cit. that / denotes a positive function, 
defined for positive real numbers, which equals — logt for t < 1/2 and 1 for t > 1. 

Lemma 4.3. — The modified matrix Bessel functions IN(Î), KN{Î) are smooth in 
£S{H) x (0, oo), and if Ν Ε £S{H) satisfies the inequality 

—oo < a < Ν < b < oo, 

then the estimates 

(4.30) ηφ9ΐΝ(*)\\ < CA>B,P,QTa-i(L + ΊΓ-Α-Ι'2Ε* L(T)P, 

(4.31) \\DpN(^KN(t)\\ < ce,blMr»-«(i + t ^ ' - v v * l(tf, 

hold for p, q G Z + and t > 0. 
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Now we use Lemma 4.3 in [12, Lemma 2.3] to derive the norm estimate (4.21) for 
GOO (μ, A) where, by the above reduction, we may assume that 

(4.32) -\<a<A<b<a+l. 

The desired estimate follows from the following block matrix estimate for the kernel: 

(4.33) \\U*A{^ < Ορς(μί)α(μ3)-\ΐ + μί)"α(1 + μ5) V^.< Ορς(μί)α(μ3)-. 

< Ορς(μί)α(μ3)-\ΐ + μί)"α(1 + μ 5) V ^ . 

As mentioned above, the same estimate gives the result for Go (μ, A). 
For the statement on the domain, we use again the estimates (4.30), (4.31), this 

time with ρ = q = 0. Moreover, since the operators A ±1/2 can be simultaneously 
diagonalized, we may assume that A = vIH+ where ν > —1/2. We write for σ G 
ΎπιΟ(μ,Α) 

a{t) = ΰ(μ, A)r(t) = Ο0(μ,Α)τ(ί) + G^A)r(t) 
=: a0(t) + <7oo(i). 

Then we observe that for suppr C (1, oo) Lemma 4.3 implies immediately that, with 
u := inf spec A > —1/2, 

||σ +(*)||Η = Ο(^ + 1 ) = Ο(ί 1 / 2 ) ,ί-»0, 
||σ_(ί)||1ϊ = Ο ( ^ ) > ί - 0 , 

such that we may assume that suppr C (0,1]. Next we have the estimate 

\Wo(t)\\H < Ca [\s/t)mT(s)\\Hds 
Jo 

<CM + ^)-1/2t1/2\\r\\LHU+M), 

which proves (4.22) and (4.23) for σ 0 . 
For σοο(ί), we have again to distinguish the ±-components. Arguing as before, we 

arrive at the estimates 

WooAt)\\H+ < C ^ + 1 f s-z\\T(s)\\Hds 

< C„tl'\ 

koo,-(i)IU+ < C**- f s-^\\r{s)\\Hds 
it 

The proof is complete. • 
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Now we apply Theorem 4.2 to construct the desired operator symbol, G(//, 6, /?)<· 
Recall that we want 

(4.34) σ(μ,6,/3)< = ( 7 ( ^ + ^ Λ ( & ) < ) + i c l ( / ? 1 ) - ΐ μ ) _ 1 , 

(4.35) = (Dv(b)< + id(/9«) - χμ)) - 1 , 

for a suitable self-adjoint extension, Dy(b)<, of the conic operator. We will define 
this extension by solving the matrix equation on the right hand side of (4.34) us­
ing Theorem 4.2 appropriately. Let us recall from (4.5) that we now deal with the 
following data: 

(4.36) Η := ΑΤ;0Β ® C 2 ® Q<(À ( 2 ) (n o ) ) , 

(4-37) 7 = eH ® ( ° ) , 

(4.39) i 4 ( b ) < = Q < ( D n a n + i / ) , 
where Q< = J — Q> and Q> is given by (4.8). Now we put 

(4.40) 7 := ή , C = C(M^) ·= M7 ~ 7cl(/?*), 
and noting that for β G Τ*£, η and c l ^ ) anticommute while c\{0^) commutes with 
αϊ and A, one easily computes that 

(4.41) Cf = C, 
(4.42) ζ2 = (μ2 + \β\1)Ι=:μψ,β)2Ι, 

(4.43) CÂ(6)< + I(6) < C = 0 

This allows us to introduce two anticommuting self-adjoint involutions, 0:1,0:2, by 

(4.44) 0 * : = / ® I 0 _ ° 7 ^ , 

(4.45) μα 2 := C 
Then we can state 

Lemma 4.4. — With this notation we have in L2(R+,H) 

>± 
'dt 

(4.46) £V(6)< + icl(/3") -ίμ = + t~1A(b)< + μα2), 

and the following relations hold: 

(4.47) C*IQ!2 + Οί2θί\ = 0, 

(4.48) αιΑ(6)< - i(6)<<*i = 0, 

(4.49) a2Â(b) < + Â(b) < α 2 = 0. 

AibU Ο 
Ο -Α(Ρ)Κ 

Â(6)< = (4.38) 
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Thus we are in the position to prove Theorem 0.1. 

Proof of Theorem 0.1. — 1. We construct an operator D by the method of Theo­
rem 4.2. The proof of Theorem 4.2 has to be modified somewhat since we have to 
verify the conditions (4.12) through (4.14) for the operator symbol 

G(M,/3,6)< := (1( d /dt jt+t-1À(b)<+fia2))-\ 

where now μ and a2 depend on μ,/3, and b. First we use [12, Lemma 1.1] to the 
effect that the spectral projections Q(AjiAj+1)(^-(b)<) are locally independent of b. 
Observing next that μ as well as its 6- derivatives are homogeneous in (μ, β) of degree 
one and using Lemma 4.3, we reduce the estimates (4.14) to (4.33) where μ is replaced 
by μ. 

(4.12) holds by construction, while for (4.13) we use the boundary conditions (4.22), 
(4.23) to calculate with σ\,σ2 G ίπιΟ(μ,β,6)< 

(4.50) (£V,max(&)<tfi,a2) - (̂ l,jDy,max(̂ )<CR2) 
= Jim (<σΓ,σ+)(*) - <σ+,σ2")(ί)) = 0. 

That the operator D anticommutes with τ M is obviously built into our construction. 
Finally, the discreteness is equivalent to the compactness of (?(μ, D) which follows in 
turn from the compactness of the parametrix <?ι(μ, D), by the form of the Neumann 
series. Now we choose φ G CC(M) with φ = 1 on Me. Then φΟι(μ1Ό) is compact 
by interior regularity, while the estimate 

\\(1-φ)01(μ,Ό)\\<Οε2δ 

follows from (4.22) and (4.23) for the low eigenvalues; since the estimate (4.24) also 
holds for the large eigenvalues, by (4.10), £χι(μ, D) is a limit of compact operators 
and hence compact. 

Finally, since D is a symmetric extension of D the two operators coincide. 
2. If \Ay\ > | , then elements in the domain of satisfy the estimate (4.24). 

Now the assertion follows as in [12, Lemma 5.1]. 
3. The assertion holds if \Ay\ > \ since then Dm\n is essentially self-adjoint, by 

part 2, and the case of uniqueness holds by [11, Lemma 3.3]. 

In the general case, we construct a smooth family of metrics, g(a)™\ such that 

,TM := J*2 θ 9ThN Θ C A V V " ON [7εο/25 (4.51) g{aY 
™ on M, 

We denote by DA(a) = D(a) the corresponding self-adjoint operator defined by the 
maximal de Rham complex and choose ao > 0 such that D(cto) is essentially self-
adjoint. Since all metrics g (a)™ are mutually quasi-isometric, the case of uniqueness 
holds for all of them since it is a quasi-isometry invariant. 
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4. We use the notation of part 3 and note that Dslgn(a) is well defined for all α. 
To prove the asserted equality we show first that 

(4.52) ind £> s i g n(a) = indD(a)+. 

Since ind £> s i g n(a) is constant in [α 0,1], this identity will follow from [22, Thm.IV,5.17] 
if we prove an estimate of the form 

(4.53) S(Dsingsi^(a1),Dsi^(a2)) < <7β0|αχ - a2\, aua2 € [α 0 >1], 

where δ denotes the gap function defined in [22, p. 197]. One checks that for μ > 1 

δ(Dsing^α(αι),Ό^{α2)) < \\0(μ,Ό(α1))-0(μ,Ό(α2))\\Χ(2){Μ), 

such that (4.53) will follow if we show e. g. that the function 

[a 0 , l] 9 a - » 0(μ,Ό(α)) € £{\(2){M)) 

is continuously differentiable. We fix a large μ > 1 and write with our parametrix 
Gi(a) := Gi(μ, !>)(«) 

(13(a) - %μ)βι(α) =: I - Λ(α), 
where 

\\R(<*)\\ <C< 1, a G [a 0 , l] . 
Hence it is enough to prove the differentiability of Gi(a) and R(a). This is clear 
for the interior part, by interior regularity. For the boundary part involving high 
eigenvalues this is also clear from the Calderon-Vaillancourt Theorem since the image 
of Gi(a)> does not depend on a. For the low eigenvalue part, however, we have to 
go back to the proof of Theorem 4.2. 

Since A(b, a)< depends smoothly on a and G(a)< depends smoothly on A(b, a)<, 
we have to insure that the spectral splittings (Λ^) can be made locally independent 
of a. This can be done for the spectral projections in many ways but using the 
spectral analysis of Sec. 3 we can take into account the special role of the eigenvalues 
±1/2, as needed in the next step. The Hodge decomposition on Y}, can also be made 
locally independent of b and a, by conjugating the equation with a transformation 
function (cf. [22, II,§4.2]). Then the operator function splits into the harmonic, the 
closed, and the coclosed parts which have uniform spectral gaps around 0, 1/2, and 
-1/2, respectively, independent of the parameter values. Conjugating appropriately 
as before, we may reduce to the case A(b, a)< > —1/2 locally in b and a; since the 
corresponding solution operator is smooth in a, this completes the proof (4.52). • 

Next we want to show that D s l g n (a ) extends Z) +(a) which will give the assertion 
in view of (4.52). 

We choose σ = σ + G dom D+ and may assume that supp σ C U£o. We decompose 
σ into its harmonic, closed, and coclosed part which all satisfy the estimate (4.22). 
By part 3 of Lemma 4.1 we see that all components of σ are in the minimal domain of 
the corresponding conic operator. Moreover, by the spectral decomposition described 

ASTÉRISQUE 328 



SIGNATURE OPERATOR WITH CONICAL STRATUM 31 

in part 3 of this proof all cone coefficients will not have — \ in their spectrum such 
that we can apply Lemma 5.12 in Section 5; we find that 

σ' G L 2 ( (0 ,£ 0 ) ,#°) , t~la G L 2 ((0,ε 0 ),Η 1 ). 

The pseudodifferential construction of the parametrix shows next that 

άησ,ά^σ G λ ( 2 ) (Μ) , 

and Lemma 2.2 finally shows that 

άΜσ G λ ( 2)(Μ) 

and completes the proof. • 

5. The index calculation 

In this section, we want to compute the index of the signature operator, as con­
structed in Theorem 0.1. As noted there, the index is stable under scaling of the 
fiber metric; this rules out, according to Theorem 3.1, that small eigenvalues occur 
on the closed and coclosed subspaces, while we need an extra condition on the space 
&V/2(Y) known as the Witt condition: 

(5.1) MV/2(Y) = 0. 

Thus we may and will assume in what follows that 

(5-2) \AV\ > ±, 

which ensures, by Theorem 0.1 again, that we do not have to impose boundary condi­
tions near the singularity. However, the crucial vanishing results we need will require 
in addition that 

(5.3) ~ \ ^ s P e c ^,ci U spec Av,cc\-

In view of Theorem 3.1, this can also be achieved by scaling gTvN\ thus we will assume 
in what follows (5.1) and 

(5.4) spec \AVlc\\ U spec \Av,cc\\ C [1/2 + C, oo), 

for some positive constant C. 
We will reduce the index calculation to a problem of APS-Type, by splitting the 

operator as a sum at dU£, for a sufficiently small ε G (Ο,εο), using [3, Thm. Η]. At 
9Μ ε, we will introduce the boundary condition 

(5.5) <2>ο(Α(ε))σ(ε) = 0, 

where A is the operator family from (2.32) and Q>o denotes the spectral projec­
tion onto the positive eigenspaces. At dU£, we impose the complementary boundary 
condition (cf. [3, Thm. 4.17]), 

(5.6) Q<o(A(e))a(e) = 0; 
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note that these boundary conditions are invariant under TM- These boundary condi­
tions generate the operators Q<0(A(E)) anc* ^Με Q>0(A(e)) ^v imPosmg the bound­
ary conditions on the maximal domain of D^n and Ds^, respectively (note that no 
boundary condition is necessary at 0 in view of (5.2)). The boundary conditions are 
such that the following holds. 

Theorem 5.1. — ^υε Q<0{A{e)) and ^ΜΕ Q>0(A(S)) are Fredholm operators, and we 
have the index identity 

(5.7) i n d i ^ f = indD^Q<o{A{e)) + mdZ>J£^E(A(E)). 

Proof. — The proof of (5.7) follows immediately from [3, Thm.4.17] (cf. Remark 5.17) 
with the following data for 0 < u < ε < εο/2: 

(5.8) Dt:=I(^+A(E + u)), 

(5.9) Β+:=-Ί(0--Α(ε-α)), 

(5.10) Βι := Q<0(A(e))(dom \A(e)\^2), 

(5.11) B2:=Q>o(A(e))(dom\A(£)\1/2). • 

We show next that the index contribution from Ue vanishes. 

Theorem 5.2. — Assume that (5.3) holds. Then for ε G (Ο,εο] and sufficiently small 
we have 

(5·12) Ω < Λ < . ( Α « ) = ° · 
This theorem will be proved in Subsection 5.2. 
Thus it remains to compute the index of an APS-type problem on the smooth 

compact manifold with boundary, Me. However, to apply [1, Thm. 3.10] we need to 
modify the metric on U£Q, making it cylindrical near t = ε. To this end we choose 
a smooth positive function φ on (0, oo) such that φ(ί) = t if t G (0,1] U [4, oo) and 
φ(ΐ) = 1 if t G [2,3]. Then we put for ε < ε0/4 

(5.13) 9Τεϋεο := dt2 ΘgT«N Θε2φ^/ε)29τ^Ν, 

(5.14) 9ΪΜ\Μεο : = 9™\Μεο, 

(5.15) 9™\υεο:=9Γ°ο. 
Moreover, we are not yet dealing with the correct boundary condition in order to 
apply the APS-Theorem. In fact, we have from (2.32) 

(5.16) A(t) = AH(t) + t-^Aoy + y) 

(5.17) = A0 (t) + t-1v + 

and it follows from (2.37) and Theorem 2.5 that A0(t) ~ D^j^t is tne tangential 
operator corresponding to J9 ŝn, acting in H° with domain H1. The correct boundary 
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condition can be achieved by applying the Agranovich-Dynin Theorem respectively 
its equivariant version, as stated e. g. in [3, Thm. 4.14]. Noting that Α0(ε) = DN£TN£ 
has even dimensional kernel, we obtain 

Theorem 53. — The pair of sub spaces (Q<Q(A(e))(H°), Q>0(A0(e))(H0)) is a Fred-
holm pair in H°. If we denote its Kato index by i(e) then 

MDDSM*Q<0(A(e)){H°) = MDDSM^Q<Q(A0(e))(HO) + *(E) 

=: mdDg^M))Q<o(Ao(£))(ii0) + (τ(ε) + - dimker Α0(ε)). 

This result will be proved in Subsection 5.1. 
To obtain an explicit index formula, we need to identify the integer τ(ε). To do so, 

we use the generalized Thorn space associated with the fibration (0.3), as introduced 
by Cheeger and Dai in [17] which we denote by Τπ. Then we show using [17, Thm.1.1] 
(note our choice of orientation) 

Theorem 5.4. — For ε sufficiently small, we have 

τ(ε) = sign{2)Tn =: r, 

where τ denotes the invariant introduced in [18, Thm.0.3]. 

This theorem will be proved in Subsection 5.3. 
Now we obtain our final local index formula by combining Theorem 5.3 and The­

orem 5.4 with the APS-Theorem [1, Thm. 3.10] and the result of Dai [18, Thm. 0.3] 
which evaluates the adiabatic limit of the eta-invariant for the signature operator, to 
get 

(5.18) sign(2)M = lim / L(TM, g™) - [ L(TB, gTB) Λ ή - ^ ( Α 0 ^ ( 0 ) ) , 

where the operator A0^, the Dirac operator on AT* M twisted by the harmonic forms 
on the fibers, is defined in (5.53). 

Remark 5.5. — 1. Using arguments as in [7, Sec.VI], it follows that the transgression 
term of the L-class from gJM to g™ goes to zero with ε. 

2. It is desirable to give a direct proof of the equality τ (ε) — τ, without using [17, 
Thm.1.1]. 

5.1. Perturbations of regular projections. — We use the terminology intro­
duced in [3, Sec. 2.1]. Thus we consider a self-adjoint operator A with domain HA in 
the (complex) Hilbert space Η which we assume to be discrete i. e. to have a com­
pact resolvent. For a Borel subset J C R we denote by Qj := Qj(A) the associated 
spectral projection, and we write Q>o := Q(o,oo) ê c-

With A we associate its Sobolev chain (HS := Hs(A))se^ restricting attention to 
< 1}· Thus for s G [0,1], HS is the closure of HA under the norm 

(5.19) \\χ\\1:=\\(Ι + Αψ2χ\\1 
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and H~S is its strong dual space under the norm (5.19). 
An operator S G £(H) will be called 1/2-smooth if it restricts to if 1 / 2 , with re­

striction and extends to ϋ - 1 / 2 , with extension S. S will be called (l/2-)smoothing 
if im5 C if 1 / / 2 . With these preparations we can define regular and elliptic projec­
tions for A which are introduced to characterize elliptic boundary conditions for the 
evolution operator associated with A (cf. [3, Secns. 1.4, 2.3]). If A comes with an 
anticommuting skew-adjoint unitary operator 7 G £(H), 

(5.20) η A + Αη = 0, 

then we can also define the Dirac operator associated with A, cf. [3, Sec.2.1]. The 
following formulation derives from [3, Prop. 1.99]. 

Definition 5.6. — A 1/2-smooth orthogonal projection Ρ in Η is called regular (with 
respect to A) if and only if 

χ G # " 1 / 2 , Px = 0, Q<0x G H1/2  

=» x G H1'2. 

A regular projection Ρ is called elliptic (with respect to A) if (5.20) holds and 

(5.21) P 7 : = 7 * ( / - P ) 7 

is also regular. 

For example, the spectral projections Q>/I(A) are regular with respect to A for 
any Λ G M since A is discrete, and since (Q>A{A))1 = Q>A(A) they are also elliptic. 

Now we want to study perturbations of A in the sense of Kato, i. e. operators 
of the form A := A + Β where Β is a symmetric operator in Η defined on HA with 
estimate 

(5.22) \\Bx\\H < a\\x\\H + b\\Ax\\H, χ G HA 

for some constants a, 6 G R+ with b < 1. Then A is self-adjoint and discrete in H 
with domain HA, by the Kato-Rellich Theorem, and the projection Q>0(A) is elliptic 
with respect to A. We want to know under what conditions it is also elliptic with 
respect to A. To answer this question we need two preliminary results; the first one 
parallels [3, Prop.1.93]. 

Lemma 5.7. — Let Ρ be a 1/2-smooth orthogonal projection in Η such that 

(5.23) P = Q>o{A) + R1 + R2, 

where R\ is smoothing and 

(5.24) ιηβχ{ | |Λ 2 | | > | |Λ 2 | | }<1 . 

Then Ρ is elliptic with respect to A, and (im(J — P), imQ>o(^4)) is a Fredholm pair 
in H. 
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Proof. — Consider χ G i7_1/2 with Ρ χ = 0 and Q<o(A)x G H1/2. We write χ = 
Q>o(A)x + Q<o(A)x =: -I- x< and obtain from (5.23) 

(I + R*)x> -yeH1'2, 

hence from (5.24) 

x> = (I + R2)-1yeH1'2, 

such that Ρ is regular. It follows from (5.20) that 7 induces a unitary operator in 
each H8\ since Qo(A) is smoothing, we infer that the representation (5.22) also holds 
for ΡΊ such that Ρ is elliptic. 

We see next that 

Ρ : H> = imQ>0(A) -> H,x> (I + R2 + Ri)x>, 

is a left Predholm operator, by [3, Lemma A. 11] and the compactness of R\, hence, 
from [3, Lemma A.12], (im(J — P),i2>) is a left Predholm pair. By the same token, 
we see that (imP, H<) is a left Fredholm pair, too, which completes the proof of the 
lemma. • 

The second lemma addresses smoothing perturbations. 

Lemma 5.8. — Assume that A and A + Β are both invertible. If Β is smoothing then 
so is 

R:= Q>0(A + B)-Q>0(A). 

Proof. — For any invertible and discrete self-adjoint operator A in Η we have from 
[22, p.359] the strongly convergent integral representation 

(5.25) \(l-2Q>0(À)) = ±-. f (Â-zy'dz. 

This implies that 

(5.26) # = _ L / (A + B-z^BÇA-z^dz. 
2™ JRez=0 

By construction, R is 1/2-smooth; to show that R is smoothing, we need to show the 
boundedness in Η of the operator 

R:= (I + A2)V4R(I + Αψ* 

= ((I + Α2)^\Α + £?Γ1/2) (\Λ + B^R^1'2) ({Ar^il + A2)1'*) 

=: V(\A\l'2\A + £?Γ1/2)(\A + B^RIA^V 

=: VW^A + B^R^'^V. 

Re z=0 
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In view of (5.22), A and A + Β generate the same HUBERT spaces, with equivalent 
norms, in their respective Sobolev chains implying the boundedness in Η of the op­
erators V and W. Prom (5.26) we obtain for the remaining part the representation 

(5.27) \A+B\^2R\A\^2 

/ {A + Β - ζ)-λ\Α + Β\^2Β\Α\^2{Α - z)-xdz 

:^-f (A + B- ζ)-λΒ(Α - z)~xdz. 
2πϊ -/Re2=0 'Re z=0 

Now if Β is smoothing then Β = \A + B\1/2B\A\1/2 is bounded in H. Thus we may 
apply [2, Lemma A.l] to complete the proof. • 

Now we can deduce the desired perturbation result. 

Theorem 5.9. — Assume that A + Β is a Kato perturbation of A with 

(5.28) b < | . 

Then Q>o(A + B) is elliptic with respect to A and the subspaces Q<o(A)(H) and 
Q>o(A + B)(H) form a Fredholm pair. 

If Β is bounded and | A\ > μ where 

(5.29) μ>Λ/2||Β||Η, 
then 

(5.30) ind (Q<0(A)(H), Q>0(A + B)(H)) = 0. 

Proof. — We show first that we may assume that 

(5.31) |A| > Λ 

for any Λ > 0. Indeed, if we put 

ft if |i| > A, 
(5.32) &(*):= <Λ i f O < * < A , 

k-A i f - A < t < 0 , 

then for the operator 
AA := fA(A) 

the following properties are easily verified: 
(5.33) A\ is discrete and commutes with A, 
(5.34) A — AA is smoothing, 
(5.35) μΐ < μΛ|, 

(5.36) |̂ 4Λ| > Λ ̂  ΙΙ̂ χ1!! < Λ-1, 
(5.37) <3>ο(Λν) = Q>o(A). 
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We have 
A + Β = AA + (A - AA + B) =: Ax + BA, 

such that AA + BA is a Kato perturbation of AA with the same constant 6 in (5.21) as 
for A and B. Hence, by (5.36) it is enough to prove the theorem under the assumption 
(5.30). 

Next we note that (5.21) implies that 

(5.38) b' :=\\ΒΑ~ι\\ 

can be chosen arbitrarily close to b. Thus we may also assume that both A and A -f- Β 
are invertible. 

Now we want to show that for Λ sufficiently large and b satisfying the condition 
(5.28), the 1/2-smooth operator 

R2:=Q>o(A + B)-Q>0(A) 

satisfies the estimate (5.24). To do so, we proceed as in the proof of Lemma 5.8. We 
observe first that from the symmetry of R2 in Η and the obvious identity 

s = {T*y, 
where S' denotes the dual in i f - 1 / 2 and 5* the adjoint operator in if, for any 
1/2-smooth operator 5, it is enough to estimate II-R2II1/2 o r equivalently, the norm in 
H of the operator 

(5.39) (/ + A2f^R2{I + A 2 ) " 1 / 4 = VW\A + B\^2R2\A\-^2V-\ 

where V and W are the operators introduced in the proof of Lemma 5.8. 
Prom the Spectral Theorem we see that for any <5 > 0 we may choose Λ so large 

that 

(5.40) suv{\\V\\H,\\V-l\\H}<l + 8. 
Next we estimate the if-norm of W by the maximum principle applied to the holo-
morphic function 

ζ _> β-^-ζΗ\Α\ζ\Α + Β\-ζχ,ν)Η e C, x,y e HA, 

in the strip {ζ G C : 0 < Rez < 1} which reduces us to an estimate for Reζ = 1. 
Clearly, for b' < 1 we have 

HI4 μ + β ΐ Ι Ι ^ ί ΐ - ^ Γ 1 , 
hence also 

(5.41) \\W\\H <{l-b'Tl. 

It remains to estimate the norm of |̂ 4 + B| 1 / , 2U2 |^4| - 1^ 2 for which we invoke again [2, 
Lemma A.l]. There we choose Αχ := A + Β, A2 := Α, αχ := a2 := 1/2 and find with 
B(z) = \A + B\V2B\A\-V2 

(5.42) IWA + B^RZIAI-^WH < IwBlArWn < \b'. 
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Combining (5.40), (5.41), and (5.42) we arrive at 

(5.43) | | Λ 2 | | ί ί 1 / 2 < ^ ' ( 1 - 6 ' Γ 1 ( 1 + ί)· 

This can be made smaller than 1 if b < |. 
For the proof of (5.30) we observe that this will follow from the estimate 

(5.44) \\Q>0(A)-Q>0(A + B)\\H < 1, 

which again is an easy consequence of [2, Lemma A.l], this time applied with OL\ := 
a2 := §. • 

From the proof of the theorem we get 

Corollary 5.10. — Lemma 5.8 holds without the assumption that A and A + Β are 
invertible. 

Remark 5.11. — Theorem 5.9 is stronger than needed for our application but it is 
useful in other situations and does not seem to be known. 

Proof of Theorem 5:3. — From (2.31) we have 

A(e) = A0(e) + e-1iy, 

and since ν is bounded it follows from Lemma 5.7 and Theorem 5.9 that Q<o(A(e)) 
is elliptic with respect to Α0(ε) and that (Q<0(A(e)(H°), Q>0(A0(e))(H0)) is a Fred-
holm pair in H. 

The index formula follows from [3, Thm.4.14]. • 

5.2. A vanishing theorem. — The purpose of this subsection is the proof of 
Theorem 5.2. We abbreviate 

nsign nsign Ue, Q< o (A (E)) 

and note that, in view of (5.2) and Theorem 0.1, a core for Dfgn is given by 

®:ign := {a E C'melH1) : Q<0(A(e))a(e) = 0}. 

We prove the theorem first in a special case. 

Lemma 5.12. — Assume that A satisfies the further condition 

(5.45) 1/2 E spec s P e c ^ -

Then for sufficiently small ε and σ G 2)Jlgn we have the a priori estimate 

(5.46) \\Ό^σ\\Ηο > (2ε)- 1 | | (Α ν + ^)<τ||„ο. 
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Proof. — We write H := H°,AHV(t) := AH(t)Av + AvAH{t), and compute for 
σ E ®:IGN 

(5.47) \\D**a(t)\\H = \\At)\\2H + \\AHa(t)\\2

H + t-2\\Ava(t)\\2

H 

+ t-1(AHva(t),a(t))H + 2Re(a'(t),Aa(t)). 

Next we verify that 

(5.48) 2Re(a'(t),Aa(t)) = 

jt(a(t),Aa(t))H + t-2(a(t),Ava(t))H - (a(t),A'H(0)a(t))H. 

The assumption (5.45) implies that Ay + \ is invertible while (2.39) and (2.30) imply 
that Aynit) is a first order vertical operator on X(N). Hence there is a constant 
Ci > 0 such that 

(5.49) \\AHV(t)(Av + i ) - 1 !!* < Ci, t £ (Ο,ε]. 

Combining (5.47), (5.48), and (5.49) and abbreviating Β := AHv(t)(Av + we 
arrive at the inequality 

(5.50) \\D^a(t)\\% = {\W{t)\\\ - \t-2\\a(t)\\2H) + j^{t),Aa{t))H 

+ t-2\\{Av + \)a(t)\\2H 

+ t-1((Av + \)a{t),B*a{t))H - (a(t),A'H(0)a(t))H. 

Hardy's inequality and the boundary condition at ε imply that the first two terms are 
nonnegative after integration over (Ο,ε]. Thus for sufficiently small ε we obtain 

\\ν?*ησ\\1*«ο,ε],Η) > (4εΓ 2 | |(Λν + \)σ\\1^Η). Π 

Now we can give the 

Proof of Theorem 5.2. — The condition of Lemma 5.12 is satisfied, in view if of as­
sumption (5.4), either ν is even or 

^V~1)/2(Y) = 0, 

in which case we can actually assert that 

kerZ^ = 0. 

In the general case, we have to work differently since this assertion will no longer be 
true. If (5.12) does not hold then ν must be odd hence h must be even. In this case, 
Ay is invertible and we can deform the operator Dfgn to an operator with vanishing 
index as follows. 
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As in Section 1, we view the Hubert space H° = X^(Ni) as a Hubert bundle 
6 —> Β where 

6 = AT*B®\(2)(F), 
X(2)(F)b = \{2)(Yb). 

In λ(2)(Υί,), we define a smooth family of projections, P#(6), by 

(5.51) PM := / (Ab - z)~xdz, b G Β, 

which splits 
(5.52) A ( 2 ) ( F ) = : # V ® . # £ . 

Here J&V is the finite dimensional vector bundle over Ρ formed by the harmonic forms 
on the fibers. We note next that the projection / <g> P# commutes with Ay and with 
the principal symbol of AH (t). Hence the operator 

(5.53) A*(t) := J <g> P#A{t)I Θ Ρχ + / 0 (/ - P#)A(f)I ® (J - P#) 

(5.54) =:A#(t) + A#±(t) 

differs from A(t) by an operator of uniformly bounded norm, 

A*{t) =: i4(t) + C(t), \\C(t)\\H <C,t€ (Ο,ε]. 

It follows that A6(t) satisfies the estimate (2.40), possibly with a different constant; 
in particular, A5(t) is invertible and Q<o(Aô(t)) = Q<o(As(t)). We now deform the 
operator Dfgn to the operator D^f1 which is given on the core 

(5.55) 2>:j := {σ € ^((0,ε], Η1) : Q<0{A6\ε))σ{ε) = 0} 

by 

(5.56) Df^a(t) = (lt+A\t))a(t). 

Since Dfgn and D^f1 differ by a uniformly bounded operator we obtain from Theo­
rem 5.9 and [3, Thm.4.14] the identity 

ind£>^ n = indDjf + ind (Q<0(A(e))(H°),Q>0(As(e))(H0)) 

(5.57) = i n d i ? ^ + mdD3^± + ind (Q<0(A(e))(H°),Q>0(As(e))(H0)). 

Here the operators Ds

£

l&£ and D8*^± are formed as Dfgn above, by replacing Αδ in 
(5.55) and (5.56) by Αχ and A#±, respectively. 

Now Da^± satisfies the assumptions of Lemma 5.12 such that 

(5.58) mdDs^±=0. 
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Next we observe that A^(t) anticommutes with τ Β up to a uniformly bounded op­
erator since it has the same principal symbol as the canonical Dirac operator on Β 
with coefficients in $£F, that is 
(5.59) τΒΑχ{ί)τΒ =: -AM{t) + C(t), 

where ||(?(ί)||# <C,te (Ο,εο]. Thus we find that TBD^TB is given on the core 

(5.60) 0 ^ := {σ G ̂ ( (0 ,ε ] , Η1) : Q<0(TBA#(e)TB)a(e) = 0} 

by the operator 

(5.61) {-+TBAx{t)rB)a{t). 

We compare this with the adjoint operator which is given on its core 

(5.62) ( 2>gr = {σ € Ci((0,e],Hl) : Q>o{Ax{e))a(e) = 0} 

by 

(5-63) ( ^ ) V ( i ) = ( - | + ^ ( ί ) ) σ ( ί ) . 

Using (5.59) and the invertibility of A(t), and applying Theorem 5.9 once more, we 
see that 

(5.64) ind = ind rBDs^rB = md(D^)* = - ind D% = 0. 

A final application of (2.40) in Theorem 5.9 shows that 

ind ( g < 0 ( A ( £ ) ) ( i î 0 ) ) Q > o ( ^ ( e ) ) ( f f 0 ) ) = 0 

and completes the proof of Theorem 5.2. • 

5.3· Generalized Thorn spaces. — In this subsection we compute the L2-
signature of a generalized Thorn space, as introduced in [17], and identify it as 
a normalized spectral flow associated with the family A(t) introduced in (2.32). 
We describe the generalized Thorn space associated with the fibration (0.3) as the 
cylinder Τ := Τ π := (0,2) χ AT with its product orientation and equipped with a 
family of metrics depending on a parameter ε 6 (0,1/2) as follows. We write the 
metric on Τ π in the form 

(5.65) 9r*=dt2®glN(t), 

where gfN(t) is a smooth family of Riemannian metrics on Ν with the property 

T A T M _ [gTitN ®t2gTvN if 0 < t < 1/2, 
(5.66) ge { t ) : - ^ 2 _ t ) 2 ^ _ 2 g T H N @ a T v N ) i f 3 / 2 < i < 2 

Here gTN = gTflN Θ gTyN denotes again the metric introduced in (0.6) where we 
assume that gTyN is approriately scaled, as detailed below. Note that g^N{e) = 
g£

rN(2 — ε) = gTiiN Θ ε2gTvN; note also that we use the opposite orientation as in 
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[17]. Since any two metrics in the family (#JT7r)o<e<i/2 are quasi-isometric, they all 
compute the same L2-signature and we find 

(5.67) signer, = ind z Ç j ? T , . 

The computation of sign^ïV is now a special case of our general index computation 
with two singular strata of dimension h and 0, respectively. We split the computation 
at t = ε and t = 2 — ε and obtain three parts, the cone bundle U£ over B, the 
metric cone C£N := C(2,2-e)(N, e~2g^N(e)) over (TV, ε~ 2#™(ε)), and the cylinder 
Ζε := (ε, 2 — ε) χ Ν equipped with a nonsingular metric. We are ready for the 

Proof of Theorem 5.4- — Arguing as before we see that on C/eoUC(2,2-e0)(^' ε~29εΝ)ι 
£> s i g n is unitarily equivalent to §-t + Ae(t) acting in L2((0, ε 0) U (2 - ε 0 ,2), λ(2)(Νχ)), 
where 

OU.) Mt) = {«%_h 

t e (0,ε 0), 

^ ^ ( e j + e - ^ t d - f ) ) , i e ( 2 - e 0 , 2 ) . 

To formulate our boundary conditions conveniently we introduce the spaces 

(5.69) ff(o),/(e/2 - ε) := Q/(A ( 0 ) (e /2 - e))(H°). 

Next we want to apply Theorem 5.2 to the operator Ds^e which is defined by + 
Ae(t) on its core 

0 j f := {σ € ^((Ο ,εΐ ,/ί 1) : ̂ <0(Α(ε))σ(ε) = 0}, 

and 
2)^f := {σ 6 Ci([2 - ε, 2 ) , ^ ) : Q>0(A(2 - ε))σ(2 - ε) = 0}, 

respectively. Theorem 5.2 obviously applies to D^n if the condition (5.4) is satisfied. 
For D^f1, we note that the role of Ay is now taken by the operator Ary := ε(Αο(ε) + 
ε - 1 ^ — n/2)), such that the analogue of (5.4) can be verified by a straightforward 
estimate using (2.39), (2.19), (2.30), and (2.31), after the approriate scaling of gTvN. 

Consequently, we obtain 

(5.70) sign ( 2 )TT = £ > χ 

where D**z£ denotes the signature operator on the cylinder ( Ζ ε , ^ Τ π ) with core 

(5.71) {σ G Η\Ζε,ΑΤ*Ζε) : a\dU£ G Η<0(ε), σ\ΘΟεΝ G H>0(2 - ε)}. 

Clearly, if we replace the boundary conditions in (5.71) by IF0,<o(^) and Η0,>ο(ε), 
respectively, then the resulting operator on Ζε will have index 0. Thus we obtain from 
[3, Thm.4.14] again 

(5.72) sign ( 2 )Tw = ind (Η<0(ε),Η0,>0(ε)) 

- ind (FR0,<0(e), H0t>0(e)) + ind(#>0(2 - ε), H0t<0(e)). 
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Now we recall that 

(5.73) ind(fr>o(2-e),fr0,<o(e)) 

= ind (Q>Q{A0(S) + £ - \ t d + n/2))(H%Q<0(Ao(e))(H0)). 

We recall also that Α0(ε) is unitarily equivalent to D^r^ such that, by Theorem 3.1, 
the eigenspaces of Αο(ε) coincide with those of Α0(ε) + e _ 1 (td + n/2). Hence the 
explicit computations of loc.cit. give 

(5.74) ind(tf>0(2 - e),fT0,<o(e)) = ~\dimker Α0(ε). 

Finally, we use [3, Prop.A. 13] to see that 

ind (#< 0(ε),#ο,>ο(ε)) - ind (# 0,<ο(ε), #ο,>ο(ε)) = ind (Η<0(ε), # 0,>ο(ε)), 
which gives finally 

(5.75) sign^T^ = ind (#< 0 (ε), # 0,>ο(ε)) - ^ dimker Α0(ε) 

(5.76) =: τ(ε). 

This completes the proof of Theorem 5.4. • 
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