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TWO-PARAMETER STOCHASTIC CALCULUS
AND MALLIAVIN’S INTEGRATION-BY-PARTS
FORMULA ON WIENER SPACE

by

James R. Norris

Dedicated to Jean-Michel Bismut on the occasion of his 60" birthday

Abstract. — The integration-by-parts formula discovered by Malliavin for the It6
map on Wiener space is proved using the two-parameter stochastic calculus. It is also
shown that the solution of a one-parameter stochastic differential equation driven by
a two-parameter semimartingale is itself a two-parameter semimartingale.

Résumé (Calcul stochastique a deux paramétres et formule d’intégration par parties de Malliavin
sur ’espace de Wiener)

La formule d’intégration par parties, qui a été établie par Malliavin pour ’appli-
cation d’It6 sur I’espace de Wiener, est démontrée en utilisant le calcul stochastique
a deux paramétres. On montre aussi que la solution d’une équation différentielle sto-
chastique & un parameétre, guidée par une semimartingale & deux paramétres, est
elle-méme une semimartingale & deux parametres.

1. Introduction

The stochastic calculus of variations was conceived by Malliavin [6, 7, 8] as follows.
Let (2¢):>0 denote the Ornstein—Uhlenbeck process on Wiener space (W, W, i) and
let ® : W — R? denote the (almost-everywhere unique) It6 map obtained by solving
a stochastic differential equation in R% up to time 1. Then (2¢):>0 is stationary and
reversible, so, for functions f,g on R¢, setting F = fo ®, G =go ®,

1) E[{F(z) - F(20)HG(2) — G(20)}] = —2E[F(20){G(2:) — G(20)}] -

Once certain terms of mean zero are subtracted, a differentiation of this identity with
respect to t inside the expectation is possible, and leads to the integration-by-parts
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94 J. R. NORRIS

formula on Wiener space

@) | vis@rvig@)dn = - | s@rcan

where LG and the covariance matriz I’ will be defined below. As is now well known,
this formula and its generalizations hold the key to many deep results of stochastic
analysis.

Malliavin’s proof of the integration-by-parts formula was based on a transfer princi-
ple, allowing some calculations for two-parameter random processes to be made using
classical differential calculus. Stroock [11, 12, 13] and Shigekawa [10] gave alterna-
tive derivations having a a more functional-analytic flavour. Bismut [1] gave another
derivation based on the Cameron—Martin—Girsanov formula. Elliott and Kohlmann
(3] and Elworthy and Li [4] found further elementary approaches to the formula.
The alternative proofs are relatively straightforward. Nevertheless, we have found it
interesting to go back to Malliavin’s original approach in [8] and to review the calcu-
lations needed, especially since this can be done now in a more explicit way using the
two-parameter stochastic calculus, as formulated in [9].

In Section 2 we review in greater detail the various mathematical objects men-
tioned above. Then, in Section 3, we review some points of two-parameter stochastic
calculus from [9]. Section 4 contains the main technical result of the paper, which
is a regularity property for two-parameter stochastic differential equations. We con-
sider equations in which some components are given by two-parameter integrals and
others by one-parameter integrals. It is shown, under suitable hypotheses, that the
components which are presented as one-parameter integrals are in fact two-parameter
semimartingales. This is useful because one can then compute martingale proper-
ties for both parameters by stochastic calculus. The sorts of differential equation to
which this theory applies are just one way to realise continuous random processes
indexed by the plane. See the survey [5] by Léandre for a wider discussion. But this
regularity property makes our processes more tractable to analyse than some others.
This is illustrated in Section 5, where we do the calculations needed to obtain the
integration-by-parts formula.

2. Integration-by-parts formula

The Wiener space (W, W,u) over R™ is a probability space with underlying
set W = C(]0,00),R™), the set of continuous paths in R™. Let W’ denote the
o-algebra on W generated by the family of coordinate functions w — ws : W — R™,
s > 0, and let u° be Wiener measure on W°, that is to say, the law of a Brownian
motion in R™ starting from 0. Then (W, W, u) is the completion of the probability
space (W, W°, u°). Write W, for the u-completion of o(w — w, : r < s). Let
Xo,X1,...,Xm be vector fields on R, with bounded derivatives of all orders. Fix
zo € R? and consider the stochastic differential equation

Oz, = Xi(x5)0w! + Xo(z,)0s.
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TWO-PARAMETER STOCHASTIC CALCULUS 95

Here and below, the index i is summed from 1 to m, and 8 denotes the Stratonovich
differential. There exists a map « : [0,00) x W — R? with the following properties:
— z is a continuous semimartingale on (W, W, (Ws)s>0, 1),
— for p-almost all w € W, for all s > 0 we have

zs(w) = zo + /08 Xi(z,(w))ow?. + /03 Xo(z,(w))dr.

The first integral in this equation is the Stratonovich stochastic integral. Moreover,
for any other such map z’, we have z,(w) = z/,(w) for all s > 0, for y-almost all w.
We have chosen here a Stratonovich rather than an It6 formulation to be consistent
with later sections, where we have made this choice in order to take advantage of the
simpler calculations which the Stratonovich calculus allows. The Itd6 map referred to
above is the map ®(w) = z1(w).

We can define on some complete probability space, (2, #,P) say, a two-parameter,
continuous, zero-mean Gaussian field (zs¢ : s,t > 0) with values in R™, and with
covariances given by

E(z},20,,) = 69 (s A s)e 1t=t'1/2,
Such a field is called an Ornstein—Uhlenbeck sheet. Set z; = (25t : 8 2 0). Then,
for t > 0, both 29 and z; are Brownian motions in R™ and (z, 2¢) and (2, 29) have
the same distribution. We have now defined all the terms in, and have justified, the
identity (1).

Consider the following stochastic differential equation for an unknown process (Us :
s > 0) in the space of d x d matrices

U, = VX;(x)Us;0w’ + VXo(25)Us0s, Up=1I.

This equation may be solved, jointly with the equation for z, in exactly the same sense
as the equation for z alone. Thus we obtain a map U : [0,00) x W — R4 ® (R%)*, with
properties analogous to those of z. Moreover, by solving an equation for the inverse,
we can see that U,(w) remains invertible for all s > 0, for almost all w. Write U} for
the transpose matrix and set I'y = U,C,U;, where

s
C, = / U, Xi(zr) © U X(20)dr
0
Set also

Ly =-U, / U Xi(z,)0w'. + U, / U HV2X(x,) 0wt + V2 Xo(x,)dr}T,,
0 0

+ Us/ UV X (z.) Xi(z,)dr
0

and define for G =go ®
LG = LiVg(z1) + TV V.V, g(x1).

We have now defined all the terms appearing in the integration-by-parts formula (2).
We will give a proof in Section 5.
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96 J. R. NORRIS

3. Review of two-parameter stochastic calculus

In (9], building on the fundamental works of Cairoli and Walsh [2] and Wong and
Zakai [14, 15|, we gave an account of two-parameter stochastic calculus, suitable for
the development of a general theory of two-parameter hyperbolic stochastic differential
equations. We recall here, for the reader’s convenience, the main features of this
account.

We take as our probability space (Q2, &, P) the canonical complete probability space
of an m-dimensional Brownian sheet (wst : s,t > 0), extended to a process (ws; : s,t €
R) by independent copies in the other three quadrants. Thus wg = (wl,,...,wT) is

a continuous, zero-mean Gaussian process, with covariances given by
E(wiw’,) =69(s A"\t AL), i,5=1,...,m, st>0, st >0.

It will be convenient to define also w?, = st for all s, € R. For s,t > 0, write &, for
the completion with respect to P of the o-algebra generated by w;,, for r € (—o0, 5]
and u € (—o0,t]. We say that a two-parameter process (s : s,t > 0) is adapted if T4
is ¥ s¢-measurable for all s,t > 0, and is continuous if (s,t) — zs(w) is continuous on
(R*)2 for all w € Q. The previsible o-algebra on Q x (R*)? is that generated by sets
of the form A x (s, s'] x (t,t'] with A € F 5. If we allow A € F 4500 in this definition,
we get the s-previsible o-algebra.

The classical approach to defining stochastic integrals, by means of an isometry of
Hilbert spaces, adapts in a straightforward way from one-dimensional times to two,
allowing the construction of stochastic integrals with respect to certain two-parameter
processes, in particular with respect to the Brownian sheet. Given an s-previsible
process (1) (a4(t) : s,t > 0), such that

s t
]E/ / ar(u)?drdu < co
o Jo

for all s,t > 0, we can define, for ¢ = 1,...,m and all ¢1,t; > 0 with ¢; < ta,
one-parameter processes M and A by

s ta 8 t2
(3) M, = / / ar(t)drdiwt,, A= / / ar(t)%drdt.
0 tl 0 tl

Then M is a continuous (¥ 50 )s>0-martingale, with quadratic variation process [M] =
A. A localization argument by adapted initial open sets (see below) allows an exten-
sion of the integral under weaker integrability conditions. By the Burkholder-Davis—
Gundy inequalities, for all a € [2, 00), there is a constant C(a) < oo such that

s2  pta ) s2  pl2
(4 E / / a,(t)d dywt, / / a,(t)%dsdt
s1 t1 81 t1

(1) We write any time parameter with respect to which a process is previsible, here s, as a subscript.
Where previsibility is not assumed, here in ¢, we write the parameter in parentheses.

a/2

) < C(a)E

ASTERISQUE 327



TWO-PARAMETER STOCHASTIC CALCULUS 97

By an (s, t)-semimartingale, s-semimartingale, t-semimartingale, we mean, respec-
tively, previsible processes (zst : s,t = 0), (pst : 8,¢ > 0), (gst : s,t > 0) for which we
may write

Tst — Tso — Tot + oo

—Z / / sty + 3 ] / ( / / )i, )drdu:w:lu/

,7=0

and

m s t m s t
Pat—Pot = Y / / (P (W))idrdur iy, Got—ga0 = Y / / (€5 (7))idr Ay
i—0 Y0 J-1 i=0 Y —170

Here, (2!, : s,t > 0) is a previsible process, having components (z’,);, subject to
certain local integrability conditions, which are implied, in particular, by almost sure
local boundedness. The process (zl,(r,u) : s,t > 0,r,u € R) is required to be
previsible in (w, s,t) and (Borel) measurable in (r,u), with z7,(r,u) = 0 for r > s or
u > t, and is subject to similar local integrability conditions. The inner and outer
parts of the second integral are both cases of the stochastic integral at (3), or its
t-analogue, or of the usual Lebesgue integral, and the value of the iterated integral
is unchanged if we reverse the order in which the integrals are taken. The integrals
appearing in the expression for x,; are called stochastic integrals of the first and second
kind. The processes (p}:(u) : s,t > 0,u € R) and (g,,(r) : s,t > 0,7 € R) are required
to be previsible in (w, s,t) and measurable in u and r, respectively, with pl,(u) = 0
for u > ¢ and ¢l,(r) = 0 for » > s, and are subject to similar local integrability
conditions. For fixed t > 0, if (z50 : s > 0) is a continuous (¥ 40)s>0-semimartingale,
then (zs; : s > 0)isa contlnuous (F st)s>0-semimartingale, in the usual one-parameter
sense. Also (ps: : s > 0) is a continuous (¥ st)s>o0-semimartingale, for all ¢t > 0.
The heuristic formulae

dodsTer = Z( z!)sdodywl, + Z / / (7 u))ijdedywi, drdyw?,,

1,7=0

dspst = Z/ (p{st(u))idsduwiu?
i=0 Y1

digst = Z/ (se(r))idrdywy,
i=0 Y1

provide a good intuition in representing the two-parameter increment

dsdsTst = Toyds,t+dt — Ts,t+dt — Tstds,t + Tst

and the one-parameter increments dsps; = Pstds,t — Pst and dieGst = s t+dt — gst ID
terms of a linear combinations of increments, and of products of increments of the
Brownian sheet.
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98 J. R. NORRIS

By a (two-parameter) semimartingale, we mean a process which is at the same
time an (s,t)-semimartingale, an s-semimartingale and a t-semimartingale. Such
processes are necessarily continuous. An (s,t)-semimartingale which is constant on
the s-axis and t-axis is a semimartingale. By an obvious choice of integrands, the
process (wg: : s,t > 0) is itself a semimartingale. The choice of lower limit —1 is
useful to us in allowing as semimartingales a pair of independent R™-valued Brownian
motions (zso : s = 0) and (bt : t = 0), given by

s 0 0 t
Zs0 =/ / drduwm, bOt :/ / drduwru,
0 J-1 -1J0

which are moreover independent of (ws: : s,t > 0). Here and below, we bring one-
parameter processes defined on the s or ¢ axes into the class of two-parameter processes
by extending them as constant in the second parameter.

We say that a subset 9 C (R*)? is an initial open set if it is non-empty and is
a union of rectangles of the form [0,s) x [0,t), where s,t > 0. A random subset
D C Q x (RY)? is adapted if the event {(s,t) € D} is F;-measurable for all s, > 0.
For an adapted initial open set 9D, a process (z,; : (s,t) € D) is a semimartingale in
9 if there exists a sequence of adapted initial open sets 9, T 9, almost surely, and
a sequence of semimartingales (z7, : s,t > 0), such that z,; = z?, for all (s,t) € D,
for all n. The notion of an s-semimartingale in P is defined analogously. We write
¢(9) for the boundary of 9 as a subset of (R*)2. In particular, if 9 = (R*)?2, then
(D) =2.

The theory which we now describe is symmetrical in s and ¢t. Where a statement is
made for s, there is also a corresponding statement for ¢, which we shall often omit.
Let (25 : s,t > 0) and (2%, : s,t > 0) be s-semimartingales and let (as; : s,t > 0) be a
locally bounded previsible process, for example, a continuous adapted process. There
exist s-semimartingales which, for each ¢ > 0, provide versions of the one-parameter
stochastic integral and the one-parameter covariation process

s s
1 2 /
Cst = / OrtdrTrt, Cst = / d'rw'rtdrxrt-

0 0

From now on, when we write these integrals, we assume that such a version has
been chosen. We define also four types of two-parameter integral, each of which is a
(two-parameter) semimartingale. These are written

K} t s t
Cgt = / / a’rudrduxrua C;lt = / / drwruduyruy
0 0 0 0

s i s t
C?t = / / drx'rudrduyrua Cgt = / / drduxrudrduy'ru-
0 JoO 0 JO

In the first and last integral, we require z to be an (s,t)-semimartingale, whereas,
in the second and third, x should be an s-semimartingale. We require that y be a
t-semimartingale in the second integral and an (s, t)-semimartingale in the third and
fourth. All these integrals are defined as sums of certain integrals of the first and
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TWO-PARAMETER STOCHASTIC CALCULUS 99

second kind with respect to the Brownian sheet. We refer to [9] for the details. We
use the following differential notations:

dszst = aseds Tt means Zot — 20t = Cly,
ds2zst = dsTs1dsTly means 2t — 20t = €2,
dsdizst = astdsdiTst means Zst — 250 — 20t + 200 = 3,
dsdizer = dsTstdeYst means Zst — 250 — 20t + 200 = Cap
dsdtzst = dsxstdsdtyst means Zst — Zs0 — 20t + 200 = C?ta
dsdizg = dsdtxstdsdtyst means Zst — Zs0 — Zot + 200 = CsGt'

The integrals (2, ¢5, and (5, all vanish if dszs; = asids. It is shown in [9] that a series
of identities hold among the various types of integral, which can be expressed conve-
niently in terms of this differential notation. Some identities assert the associativity
of products involving a combination of three differentials or processes, the others are
written as the following three rules

ds(f(mst)) = fl(xst)dsxst + %f”(xst)dsxstdsmstv
ds(astdtxst) = ds05¢d1 st + 5tdsdiTor + dsO5dsdiTsy,
ds(diTstdiyst) = dsdsTsidiyst + diTstdsdiYst + dsdiTsedsdiyse-

These rules combine the usual calculus of partial differentials with It calculus in an
obvious way. As a consequence, we can obtain a geometrically simpler Stratonovich-
type calculus by defining, for processes (zs: : s,t > 0) and (ys¢ : s,t > 0), some further
integrals, corresponding to the following differential rules

XstasXst = XstdYst + %dsXstdsYtstv asXstasY;t = asXstdsY;t = dsXstdsYsta

where X,; may stand for any one of T, dixs:,0:xs; and Yy may stand for any one of
Yst, dtyst,atyst- Then we have

as(f(wst)) = f,(wst)asxst,
05(ast0:Tst) = 0505:0: %5t + 50050, T 1,
04(0:2510sYst) = 0504 5101Yst + 04540504 Yst.

The Brownian sheet (ws; : s,t > 0) and the boundary Brownian motions (zs : s > 0)
and (bg; : t > 0) have some special properties, which are reflected in the following
differential formulae, for 1 < 4,5 < m,

dsdywt dsdw?, = 69dsdt, de2igdszly = 6Yds, dibi,dibd, = 67 dt,
and, for any semimartingale (zg; : s,t > 0),

dsxstdsdtwit = dtxstdsdtwit =0.
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100 J. R. NORRIS

4. A regularity result for two-parameter stochastic differential equations

We discussed in [9] a class of two-parameter hyperbolic stochastic differential equa-
tions, in which there is given, for a system of processes (zs¢,Pst,gst : S,t = 0), one
equation for the mixed second-order differential dsd;x.;, together with two further
equations for the one-parameter differentials dsps; and diqs;. We review briefly the
details below, and then give a new regularity result, which we need for our application
to Malliavin’s integration-by-parts formula, but which may be of independent interest.
This result concerns the process (ps: : s,t > 0) (and analogously also (g : s,t > 0)),
which, since integrated in s, has naturally the regularity of an s-semimartingale. The
point at issue is whether (ps; : s,t > 0) is a full (two-parameter) semimartingale. A
method to establish this is stated in [9, pp. 299, 315-316], but the argument given is
incomplete. A full proof is given below in Theorem 4.2. As an illustrative example,
we note that, if (wg : s,t > 0) is a Brownian sheet with values in R™, then the result
will show that there is a two-parameter semimartingale (x4 : s,¢ > 0) such that, for
all ¢ > 0, the process (x5t : s > 0) satisfies the one-parameter stochastic differential
equation

OsTgr = Xi(:cst)aswit + Xo(zst)0s,

with given initial values xzo; = z¢, say. This is useful because, now, despite the
irregular dependence of the Brownian sheet on ¢, we can use a differential calculus in
t as well as in s.

Consider the class of hyperbolic stochastic differential equations in (R*)? of the
form

(5) dsdiTst = a(dsdiwst) + b(dsTst, diTst),

(6) dspst = c(dsxst)a

(7) digst = e(diTst)-

Here wg; = (wl,,...,w?),with (wi, : s, > 0), i« = 1,...,m, independent Brown-

ian sheets, as above. The unknown processes (zs; : s,t > 0), (pst : s,t > 0) and
(gst : s,t > 0) take values in R?, R™ and R", respectively, and are subject to given
boundary values (x50 : s > 0), (ot : t > 0), both assumed to be semimartingales, and
(pot : t = 0), (gso : s = 0), both assumed continuous and adapted. The coefficients
a, b, c, e are allowed to have a locally Lipschitz dependence on the unknown processes,
with the restriction that b depends only on x. Thus, for example, we would write
a(Zst, Psty Gst, dsdiwst) and b(zst, dszse, dist), but have not done so in order to keep
the notation compact. Moreover, we allow a dependence on the differentials which is
a sum of linear and quadratic terms. Thus, in an expanded notation, we would write

dsdizst = a1(dsdiwst) + az(dsdiwsy, dsdiwst)
+ b11(dstst, diTst) + bi2(dsst, deZst, dist),
+ bo1 (dsmst, dsTst, dtxst) + b22(dswsta dsTot, dist, dtxst),
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TWO-PARAMETER STOCHASTIC CALCULUS 101

dspst = 1 (dsxst) + C2(ds$sta dsxst)a
digst = e1(diTst) + e2(diTst, diTst),
where, for 4,5,k = 1,2,
ai : R? x R™ x R™ = R¢ @ ((R™)*)®",
bjk - RY — Rd ® ((Rd)*)®j+k’
¢j : R x R" x R® — R™ ® ((R%)*)®/,
ex : RY x R™ x R® = R™ ® ((R%)*)®*.
We may and do assume with loss that ag, bi2,b21, b22,c2, €2 are symmetric in any pair
of repeated differential arguments.
By a local solution of (5-7) with domain 9 we mean an adapted initial open set D,
together with a semimartingale (z4; : (s,t) € 9), an s-semimartingale (ps : (s,t) €

9), and a t-semimartingale (gs; : (s,t) € 9), all continuous on 9, such that, for all

(s,t) € D,
s t s t
Tst = Tso + Tot — Too + / / a'(drduwru) + / / b(drl'ruy duwru)a
(V1] (V]
s
Pst = Pot +/ c(drxrt),
0

t
dst = 4s0 +/ e(duxsu)~
0

Given such a solution, for each ¢ > 0, we can define processes (us : (s,t) € 9) and
(uZ, : (s,t) € D), taking values in R? x (R%)* and R?¢ x (R?)* x (R?)* respectively, by
solving the linear one-parameter stochastic differential equations
(8)  dsust = b11(dsxst, Just + br2(ds®se, dsTst, ) Ust,

dsu:t = us_tl {b12(ds$st7 Ust*, ust')
9) + ba2(dsTst, dsTst, Ust®s Ust) — b11(dsTst, b12(dsTst, Ust', Ust')) }-
Here us_tl denotes the inverse of the linear map ug;. For fixed ¢t > 0, almost surely,
ug¢ Temains in the set of invertible maps while (s,t) € 9. To see this, one can obtain
formally a linear equation for the process (uy;' : (s,t) € 9), and then check that
its solution is indeed an inverse for ug. Similarly, for each s > 0, we can define
processes (vs; : (s,t) € D) and (v, : (s,t) € D), taking values in R? x (R%)* and
R? x (R%)* x (R?%)*, by solving the analogous equations
(10) divsy = b11 (-, deTst) Vst + b1 (v, At st, deT st ) Vst

divg, = U.;‘,l{bZI(Ust’a Vst®, dtTst)

(11) + baz (Vst®, Vst diTse, dsTst) — br1(ba1 (Vst:, ser, dise), diTst) )
We specify initial conditions ugy = vgo = I, so determining completely (ugs : s > 0)
and (vo: : t > 0). Then we complete the determination of the above processes by
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102 J. R. NORRIS

specifying that ug; = vot, ug, = 0, vs0 = us0, and vi; = 0 for all s,¢ > 0. Let us say
that (Zs¢, Pst, gt : (5,t) € D) is a regular local solution (@) if there exist continuous
s-semimartingales (ug; : (s,t) € D) and (ul, : (s,t) € D) satisfying, for each t > 0, the
equations (8-9), and if there exist also continuous t-semimartingales (vs; : (s,t) € D)
and (v}, : (s,t) € D) satisfying, for each s > 0, the equations (10-11). A local
solution is mazimal if it is not the restriction of any local solution with larger domain.
The notion of a maximal regular local solution is defined analogously. We assume
that the boundary semimartingales (z50 : s > 0), (zo: : t > 0), (pot : t > 0) and
(gs0 : s > 0) are regular®. By this we mean that the Lebesgue-Stieltjes measures
defined by their quadratic variation processes and by the total variation processes of
their finite variation parts are all dominated by Kds, or Kdt as appropriate, for some
constant K < oo. We give a result first for the case where b = 0.

Lemma 4.1. — Assume that b = 0. Let U be an open subset of R x R™® x R and
letm : U — [0,00) be a continuous function with m(z,p,q) — oo as (z,p,q) — OU.
Assume that, for all M > 1, the coefficients a,c, e are bounded and Lipschitz on the
set Uy = {(z,p,q) € U : m(z,p,q) < M}. Then, for any set of regular boundary
semimartingales (g0 : s > 0), (ot : t 2> 0), (por : t > 0) and (gs0 : s = 0),
with (oo, Poo,q00) € U, the equations (5-7) have a unique mazimal local solution
(Tsty Psty st © (8,t) € D) with values in U. Moreover, we have, almost surely
sup m(zru,pruv qru) — 00 as (37 t) T C(@)
r<s,ust
Proof. — In the case where m is bounded (so Ups = U = R% x R™ x R™ for large M),
the existence of a (global) solution is proved in [9, Theorem 3.2.2]. The proof is of a
standard type, using Picard iteration, Gronwall’s lemma and Kolmogorov’s continuity
criterion, and gives also the uniqueness of local solutions on the intersections of their
domains. When m is unbounded, we can find, for each M > 1, bounded Lipschitz
coefficients apz, car,enr on RY x R™ x R™, which agree with a,c,e on Uys. For each
My > 1, the corresponding global solutions (z, pﬁ‘f ,qff 1 s,t = 0) agree, for all
integers M > My, almost surely, on Dyy,, where
Dy ={(s,t) € RT)*: sup m(zyy,pps, ) < M}
r<s,ust

Hence, we obtain a local solution with all the claimed properties by setting 9 =
Unm Dy and by setting, for all M > 1, (Tst, pst, @st) = (X, pM,qM) for all (s,t) €
Dy \ Darg—1. O

Our main result deals with the case when b is non-zero.

(2) 1t is not hard to see that, for any local solution, the processes just defined have previsible versions,
which are then s-semimartingales or t-semimartingales, depending on the variable of integration.
However, we have not determined whether they have a continuous version in general.

() No connection with the notion of regular local solution is intended.

() To clarify, we mean that, for all (s*,t*) € ¢(9), the given limit holds whenever (s,t) T (s*,t*).
In particular, in the case where 9 = (R1)2, there are no such points (s*,t*) and nothing is claimed.
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Theorem 4.2. — Assume that the coefficients a, b, c, e are uniformly bounded and Lip-
schitz. Then, for each set of reqular semimartingale boundary values (x50 : s > 0),
(zot :t = 0), (pot : t = 0), (gs0 : s = 0), the system of equations (5-7) has a unique
mazimal regular solution, with domain D say. As (s,t) 1 {(D), we have

(12) Mg = /<su8<t |(usrery uppsy Vrtr, V)| — 00.
s'<s,t'<

Moreover, if ¢ has Lipschitz first and second derivatives and has no dependence on q,
then (pst : s,t € D) is a semimartingale in D.

Proof. — We consider first the question of existence. We follow, to begin, the strategy
used in the proof of [9, Theorem 3.2.3]. Consider the following system of differential
equations, for unknown processes Yst, Zst, L, Ust, Ung, Psty Laps Usts Vag, dst, taking val-

ues in R?, R¢, RY, R @ (RY)*, R? ® (RY)* ® (RY)*,R™R%, R* ® (RY)*,R¢ ® (RY)* ®

(R?)*,R™ respectively:

(13)  dsdsysr = uz a(dsdiwss) — uly(usy' a(dsdiwse) ® uy,' a(dsdiwst)),

(14)  dodizer = v a(dsdswst) — v (v  a(dsdiwer) ® v a(dsdiws:)),

(15)  dsyy = vst(ds2st + vy dszst ® dszst),

(16)  dsust = b11(Vst(dszst + V5pdszst ® dszst), ) ust + b21(Vstdszst, VstdsZst, - Ust,
dsut, = ug' {b12(vee (dszst + Viydazat ® dsZst), Ust:, Ust)

(7) + bao (VstdsZst, Vst s Zst, Ust, Ust")

(18) — b11(Vstds2st, b12(Vstds Zst, Ust s Ust®)) }

(19) dspst = c(Vst(ds2st + V5pdszst ® ds2at)),

(20)  dizy; = ugt(deysr + ugpdeyst ® deyst),

(21) divst = b11 (", Ust (deYst + UgydiYst ® diYst))Vst + b12(, UstdtYst, UstdiYst)Vst,
devly = v {b21 (Vst, Vat, Ust (Aeyst + Ul Yot ® diyst))

(22) + b22(Vst*, Vst*, UstdtYst, UstdtYst)

(23) — b11(b21 (vst', Vst', UstdtYst), UstdtYst) }

(24) diqst = e(ust(deyst + ugidiyst ® diyst))-

We evaluate the coefficients a, b, ¢ and e here at (z);, pst,gs:) (rather than at z7,).

Note that this system has the same form as the system (5-7) with b = 0. We use the

boundary conditions given above for us:, pst, vst, gst- Define boundary values for yg;
and zg by

(25) dsyso = ds2zs0 = V3o dsTs0,  deyor = di2os = ug; deot, Yoo = 200 = 0.
Set uo = vk 0 and use the given boundary values (zo; : ¢ > 0) for z/, and
(zs0 : s 2 0) for z),. Define, on the set U where u and v are invertible,

m(y? Z’w ?u’u*7p7 x”?v?v*?q) = I(u7 u_liv’ /U_l)' + l(u*7v*)|'
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Then the preceding lemma applies, to show that (13-24) has a unique maximal local
solution with the given boundary values, with domain 9 say, such that u, and v,
are invertible for all (s,t) € 9, and such that, almost surely, as t T {(D), either

(26) Mo = sup |(usre,Uyy,vere,vpp)| T 00,
S'<s, b/t
or
(27) Nst = sup |(uyy,vye)| T oo
s/, t'<Kt

Now vg and v}, are continuous t-semimartingales (in 9) and z,: is a semimartin-
gale. Moreover d;as:dsdizs; = 0 for any t-semimartingale as;. Hence, by [9, Theorem
2.3.1), z}, is a semimartingale and we may take the t-differential in (15) to obtain

dsdixyy = divsi(dszst + V5 dszst ® dszst)
+ Vst (dsdizst + divgydszst ® dszst + V5ydsdizst ® dsdizst)
+ divgt(divgidszst ® dszst)
= a(dsdiwst) + b(dszly, dizlhy).
Similarly, by taking the s-differential in (20), we obtain
dsdix’), = a(dsdiwst) + b(dsxly, dizly).
We also have zp, = z(, and
dszhy = vsodszso = dsThy, drT(y = uordiYor = deT(y,

so zt, = z¥, for all (s,t) € D, almost surely. Denote the common value of these
processes by zs;. Then (zg : (s,t) € D) satisfies (5). On using (15) and (20) to
substitute (®) for dszs; and dyys: in (16, 19, 21, 24), we see also that pst, gst, Ust, Uk,
vst, vY, satisfy (6-11) respectively. Hence (Zs¢,Pst, st : (5,t) € D) is a regular local
solution to (5-7), which is moreover maximal by virtue of (26-27).

We turn to the question of uniqueness. Suppose that (Zst,Pst, st : (S,t) € @)
is any regular local solution to (5-7). Write (@, Uk, Ust, Uy : (5,1) € D) for the
associated processes, satisfying (8-11). Define semimartingales (§s: : (s,t) € @) and
(Zst (s,t) € @) by

(28) dsdtgst = ﬂs_tla(dsdt'wst) - ﬁ:t(ﬁs_tla(dsdtwst) ® ﬁs_tla(dsdtwst)),
(29) dodiZer = U5 a(dediwss) — T2 (05," a(dsdiwst) ® U5 a(dsdiwse)),

with boundary values (25). The following equations may be verified by checking that
the initial values and differentials of left and right hand sides agree

(30) ds«'i'st = i)st(dsgst + {);tdszst ® dszst)a dti:st = ast (dtgst + ﬂ:tdt?jst ® dtgst)-

(5) Such substitutions result in differential formulae corresponding to valid identities between pro-
cesses. This is because the two-parameter stochastic differential calculus is associative, as mentioned
above, and as discussed in [9, pp. 290-291).
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Then, using these equations to substitute for ds;Zs¢ and d;Zs in (6-11), we see that
(sts Zsty Tty Usty Usy, Psts Tsty Vst Ugys Gst (s,t) € D) is a local solution to (13-24).
By local uniqueness for this system, 9 C 9 and (Zst, Pst, Gst) = (Zst, Pst, gst) for all
(s,t) € P, almost surely. Thus (Zst, Pst, st : (5,t) € D) is the unique maximal regular
local solution to (5-7).

Our next goal is to obtain ath-moment and L*-Holder estimates on the process
(T sty Dsty Gsts Ust, Uky, Vst, Vit (8,8) € D), for a € [2,00). Write K for a uniform bound
on a, b, c,e which is also a Lipschitz constant for b. Fix M, N,T > 1 and set

D ={(s,t) € D:s,t <T and my < M},
DN ={(s,t) € D:5,t <T,mg < M and ngy < N}
Fix a and define

9(37 t) = sup ]E(l(u.:’t”v:’t’)la1{(3’,t’)€@M,N})'
s/ <8t/ <Kt

Let (as : s > 0) be a locally bounded, (¥ s00)s>0-previsible process. The following
identities follow from equations (29) and (30): for (s,t) € 9, respectively in R% and
R?¢ @ RY,

(31)

s 8 8 t
/ Uy Ty = / 0, dr X + / / rVrt {vr_ula(drduwm) + (v — v:u)(vr'ula(drduwm))m}
0 0 0 Jo
and
s s S t
(32) / ardrTrt @ dpZTps = / ardrZro @ drro + / / ar (Vrev  a(drdywry ) ®2.
0 0 o Jo

Hence, using the estimate (4), we obtain a constant C = C(a, K, M,T) < oo such
that, for all s,¢ > 0,

s (e
E(,/O 0rd, Ty 1{(s,t)e@M,N})
s 1/2 s rt :
and
8 @ ° *
(34) E(/O ardyZrs ® dpTrs 1{(s,t)€@M,N}><CE(A |la,|dr 1{(8,t)€9M,N}).

Here and below, we suppress any dependence of constants on the dimensions d, n,m.
If we allow C to depend also on N, then (33) may be simplified to

@) E(|[ adan [ atar
0 0
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We use these estimates, along with analogous estimates for integrals d;z,:, in the
equations (9) and (11), to arrive at the inequality

s t
a(s,t) <C(1+ / g(s',t)ds’ + / g(s,t')dt'),
0 0

for a constant C = C(a, K,M,T) < oo. Since N < oo, we know that g(s,t) < oo
for all s,t, so this inequality implies that g(s,t) < C for another constant C < oo of
the same dependence. Similar arguments yield a further constant C' < oo of the same
dependence such that, for all s,s’ > 0 and all ¢, > 0,

(36) E(l(xstaustau;hpst) - (xs’ta Us't, u;'typs't)|a1{(s,t),(s’,t)€@M,N}) < C|5 - slla/2
and
(37) E(I(xsta Ust, v:ta q.qt) - (xst’a Ust/ v;t'a qst’)Ial{(s,t),(s,t’)EQM,N}) < Clt - tlla/2-

Here, we have used Cauchy—Schwarz to obtain in an intermediate step

o ot - 1/2
/ / [vf, |drdu < |s — s'|1/? (/ / |v:u|2drdu) .
s 0 s 0

On going back to (31) and (32) with these Hoélder estimates, we obtain, using (4)
again, a constant C' < oo of the same dependence such that

(38)
s a 8 ay 1/2
IE( / ar(drzrt — dr:crt:) 1{(s,t),(s,t’)E@M,N}) < Clt - t’la/2 (]E / afds )
(o] 0
and
s a
E ( / ardrTrs ® (drmrt - drxrt') 1{(3,t),(s,t’)€@m,n})
0
(39)
8 @ 1/2
<Ot —t/|*/? (]E / aZds ) .
0
Now

ds (u;tlust’) = u;el {b(xst’a dsxst’a ) - b(xsty dsxsta ')}ust’
- u;ﬁlbll(xsta dswst» '){bll(xst’, dszst’a ) - bll(zst, dsxst, ')}ust’ .

We have made explicit the dependence of b and by; on x4 or 5. We use the estimates
(33), (34), (37-39) to find a constant C = C (e, K, M,T) < oo such that

(40) ]E(|ust - Ust’|al{(s,t),(s,t')e@M_N}) < C|t - t’la/z.

Moreover, the same estimates, applied to the difference of (9) at ¢t and at ¢/, show
that C may be chosen such that

(41) E(lug; — wse |*1{(s,8),(s,t")eDarn}) < Clt = t'o/2.
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Since C does not depend on N, by monotone convergence, we can replace Dpr,n by
Dy in these estimates By symmetry, there are analogous estimates for v, and v},.
Hence, using [9, Theorem 3.2.1], almost surely, for all M > 1, n, remains bounded
on Dpr. Thus (27) implies (26) so, in any case, (12) holds.

It remains to consider the case where ¢ has Lipschitz first and second derivatives and
has no dependence on ¢, and to show then that (ps; : (s,t) € D) is a semimartingale.
For ease of writing, we shall assume that ¢ has no dependence on x either. This is
done without loss of generality, by the device of adding to our system the equation
dsxg = dgx g, thus making z,; a component of ps;.

We seek to find a solution in a smaller class of processes, in which p,; is a semi-
martingale. Recall that

(42) dspst = c(dsst) = c1(pst)(dsTst) + Ca(Pst) (dsTst, dsTst)-

By It6’s formula, if ps; is a semimartingale, then

dsdipst = € (diDst, dsTst) + 3¢ (deDst, dipst, dost) + c(ddesr) + ¢ (dipst, dsdsT o)
+ 2¢o(dsTst, dsdist) + 2¢h(dipst, dsst, dsdiTst)

= ¢/ (depst, dsTst) + 5" (deDst, diDoty dsst) + c(a(dsdiwsr)) + c(b(dsTst, dist))

+ ¢/ (dipst, b(dsTst, dixst)) + 2ca(dsst, b(dsZst, diZst))
+ 2¢5(depst, dsTst, b(dsTst, deTst))-

Here we are writing ¢/, ¢” for the derivatives with respect to p. We set d=d+n and

combine this equation with the equation (5) to obtain a two-parameter equation for
the R%-valued process Z5; = (p:! ), which we can write in the form

(43) dsdtfi'st = &(dsdtwst) + I;(dsi'st, dtjfst)-

(The ~ notation in this paragraph has nothing to do with that used in the paragraph
on uniqueness above.) We impose regular semimartingale initial values Z50 = (523)
and Zot = (o), where (pso : s > 0) is obtained by solving the one-parameter equa-
tion (42) along zs. Introduce the two companion equations for d x d matrix-valued
processes g and Ugg

(44) dsiise = b11(dsFst, )iist + bi2(dsot, dsot, -)ilst,

(45) diTst = b11 (-, deFot) Vst + b1 (-, diFot, i ot ) s

Impose boundary conditions for i and 9s; analogous to those for us; and vg:. Write
(7) in the form

(46) didst = &(dsTst)-

By assumption, there exists a K’ < oo which is both a uniform bound for a, b, ¢, e and
is also a Lipschitz constant for b, ¢c,c’,c”. We can then find a uniform bound K < oo
on @, b, & which is also a Lipschitz constant for 5, and which depends only on K’. The
above argument shows that the system of equations (43-46) has a unique maximal
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regular solution (Zs¢, §st, Ust, Vst : (S,t) € @), with the property that, as (s,t) T ¢ (Q)),
almost surely,

Mst 1= Sup |(aruaﬂ;ul’ﬁru,5r_ul)| T oo.
r<s,u<t

_ .'131 _ ull u12 _ ,011 1)12
— st — st st _ st st

Tst = 2 ) Ust = 21 22 | Vst = 21 22 |
Tt Ust Ust Vst Vst

and use analogous block notation for the tensors 4}, and ¥},. Note that

o (bdah, ) 0 2o (b(diy) O
b(dsx“’)_( f(dszl,) c'(.,dsxgt)>’ b(’dtm“)_(g(dta}st) 0/’

Write

where
f(dsm:t) = c(b(dsxit, D))+ 202(ds$;t’ b(dswit» 9)s
9(diZst) = c'(dtht, )+ %C//(dtxgta dtzgta *) + ¢(b(:, dtfc.«lst)) + cl(dtxit, b('»dtw;t))-

Here, we have written b(dsxs¢, ) as a short form of by (dszst, ) + bi2(dsTst, dsxst, -),

and analogously for b(:,d;zs:) and I;(dsa“:st, -). On multiplying out in blocks, we see

that the process (z.,,z2,, §st, ull, (u;t)lu,vi}, ('u;‘t)111 (s,t) € D) satisfies equations

(5-11). Hence, we must have DC D and (zl,, 22, Gst, ull, vi}) = (@st, Psts sty Ust, Vst)
for all (s,t) € P. In particular, (pst : (s,t) € @) is a semimartingale.

It remains to show that 9 = 9, which we can do by showing that, almost surely,
st remains bounded on @M,N =PnN DN, for all M, N > 1. We first obtain a
Holder estimate in ¢ for ps;. We have

d, (pst - pst’) = C(Pst, dszst) - C(pst’a dsxst’)y

where we have now made the dependence of ¢ on p explicit. Set

f(S) =E (lpst - pst’|a1{(3’t)’(s’t/)€®M’N}) .
We use the estimates (34) and (35) to obtain a constant C = C(a, K, M, N,T) < 00

such that s
s <c(e-ert+ [ o)

This implies that f(s) < C|t — t/|*/2 for all s > 0 for a constant C < oo of the same
dependence. We now know that, for such a constant C' < oo, we have

(47) E (|ps/t/ —pst|* 1 (D)5 #)E Do, N}) C(ls — |2 + |t — t/|*/?).

We turn to i and ¥s;. The following equations hold

12 NT
doul} = b(dsar, July, v} = b, dizer)vss, devl; = g(dest)vs;

By umqueness of solutions, we obtain ul? = ugug, ud? so, in particular, ul2 = 0.

Slmllarly, vi2 = vst'vsolv;g, so v§? = 0 Since s = Ug¢ and g9 = U9, we deduce that

12 _ - — 022 —
ul? = 912 = 0. Then dyv?2 = 0, so v22 = v22 = u22. We also have the equations

dou?} = f(dstor)tse + € (- dssr)ult, dsu?? = (., dszor)us, dw? = g(diZst)vet
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and we note that

—1 -1
al = Ugt 0 -1 = Ust 0
st T 22\—-1,,21,,—1 22\-1 | st T 22\—-1,,21,,—1 22\—1 |’
- (ust Ui Ugy (ust - (vst Ust Vst (vst

and

ds(u?2)™1 = —(u22) 71 (, dszse) + (w2) 71 (L, dost)C (-, dsst)-
We use the inequalities (34), (35) and (47), and an easy variation of the argument
leading to (36) and (40) to obtain a constant C' = C(a, K/, M, N,T) < oo such that

(48) E (|(iarer, igy) — (o, i) | 1{(s,t),(s,,t,,€@M‘N}) < CO(ls =822 4|t —t'|*/2).

Then, using [9, Theorem 3.2.1] as above, we can conclude that, almost surely,
(Tst, ﬁs—tl) remains bounded on D n. It remains to show that the same is true for
(g1, 75;") and, given the relations already noted, it will suffice to show this for v}

We have
dsﬁ:t = ,&;1 {512(ds-'i'sta Ugt*, ﬁst')
+ 522(ds:ista ds:i'st, ﬁst'a ﬁst') - Bll(dsjsty 512(‘is~'z'.sta ﬁst'; ﬂst'))}
= h(xst)pstv ﬂ'stv a;‘,lv dsxst)a
where h is defined by the final equality and where we have used (6) to write dsZs; in
terms of d;xs. A variation of the argument used for u,: shows that, almost surely,
Uy, remains bounded on Dy, n. Then, we can use the ~ and t-analogue of equations
(31) and (32) to express v} as a sum of integrals with respect to (zos,pot : t = 0)

and (wst : s,t > 0). This leads, as above, to L®-Holder estimates which allow us to
conclude that, almost surely, v2] remains bounded on 9Dy v, as required. O

5. Derivation of the formula

Let (wst : s,t > 0) be an R™-valued Brownian sheet and let (250 : s > 0) be
an independent R™-valued Brownian motion. Thus wg = (wl,,...,wT) and 2, =
(2Loy---,2T), and each component process is an independent scalar Brownian sheet, or
Brownian motion, respectively. The two-parameter hyperbolic stochastic differential
equation

(49) dsdtzst = dsdtwst - %dszstdta S,t > 07

with given boundary values (250 : s > 0) and 2o = 0, for ¢ > 0, has a unique
solution (2 : s,t > 0). Set 2z, = (25 : s > 0), then (2;)¢>0 is a realization of the
Ornstein-Uhlenbeck process on the m-dimensional Wiener space. See [8] or [9]. The
Stratonovich form of (49) is given by

Bsatzst = Bsatwst — %Bszstat, S,t 2 0.
Fix z € R? and consider for each ¢t > 0 the Stratonovich stochastic differential equation

OsTsr = Xi(xst)aszf,t + Xo(zst)0s, s >0,
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with initial value xg; = z. This can be written in It6 form as
(50) door = Xi(Tsr)ds2t, + Xo(se)ds, s>0,

where Xo = Xo + %ZLI VX;.X;. Consider also, for each t > 0, the stochastic
differential equation

63U3t = VXi(l'st)UstasZit + VXO(iEst)Ustas, S 2 O,
with initial value Up; = I, and its It6 form

(51) dsUst = VXi(ilfst)Ustd_gZit + VXQ(SL‘St)UstdS, S > 0.

Proposition 5.1. — There exist (two-parameter) semimartingales (zs; : 8,t 2 0), (st :
s,t 2 0) and (Us : s,t > 0) such that (zs : s,t > 0) satisfies (49) and, for allt > 0,
(zst : s 2 0) and (Ust = s 2 0) satisfy (50) and (51), with the boundary conditions
given above. Moreover, almost surely, Uy is invertible for all s,t > 0.

Proof. — We seek to apply Theorem 4.2. There are three minor obstacles: firstly to

deal with the ds and dt differentials appearing in the equations, secondly, to show

that the domain of the solutions is the whole of (R*)? and, thirdly, to deal with the

fact that the coefficients in (51) do not have the required boundedness of derivatives.
Let us introduce a further equation

ded;2, = 0,

with boundary conditions 2%, = s and zo; = ¢ for all s, > 0. We then replace dt and
ds in (49) and (50), respectively, by d;2% and d,z%,. When we obtain a solution, it
will follow that 20, = s + ¢, so d:2%, = dt and d,22, = ds, as required.

In order to show that 9 = (R*)?2, it will suffice to show that the companion
processes ug; and vg; associated with the equations

1
dsdiz), = 0, dsdizsy = dsdywer — ﬁdszstdtzgt,

according to equations (8) and (10), along with their inverses, remain bounded on
compacts in s and t. We leave this to the reader.

Finally, choose for each M € N a smooth and compactly supported function s
on R¢® (R%)*, such that ¢p;(U) = U whenever |U| < M. We can apply Theorem 4.2
to the system (49), (50), together with the modified equation

dUN = VXi(za) (UM )ds 2ty + VXo(zst)thar (U )ds.

Define

Dy = {(s,t) : [UM,| < M for all s’ < 5,t' <t}
By local uniqueness, we can define consistently U on 9 = Up Dpr by Us = UM for
(s,t) € Dps. By some straightforward estimation using the one-parameter equations
(51), we obtain, for all T' < oo and all p € [1,00), a constant C' < oo such that

sup E(|Us — Us't'|p1{(s,t),(srt/)€g)}) <C(s— S’lp/2 +|t— tl|p/2).

8,8’ ,t,t'<T
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Then, by [9, Theorem 3.2.1], almost surely, U is bounded uniformly on 9 N [0, T]?.
Hence 9 = (R*)?2, and we have obtained the desired semimartingale U. The invert-
ibility of U can be proved by applying the same argument to the usual equation for
the inverse. O

By the Stratonovich chain rule,
050:xst = VXi(Tot) 024,045t + VX0 (1) 050, ot + Xi(Tot)0s0y 2%
Now
050Ut = VX;(25:)0525,0,Uss + V Xo(25t)050:Ust
+(V2X; (2 5) 055t ) Ut 05 2%y + (VX0 (252)0e5) Ust 05 + VXi(%5t)Ust 05042,

SO
BtUstasatzit = %asatUstasatw2t = %VXi(wst)Ustasat

and
(93(U3—tlatUst) = Us—;l {Vin(wst)Bszitatwst + Vng(xst)Bsatzst + VXi(mst)Bs(?tzf,t} Ust-
Define also a two-parameter, R%-valued, semimartingale (ys; : s,t > 0) by

OtYst = U,;latxst) Ys0 = 0.

Then
050:yst = UQIXi(xst)asatzzr
Note that
atystasatzit = atystasatwit = %asatystasatwit = %UQIXi(wst)asat-
So

05 (0¢yst ® O1Yst) = 0501y st ® Ogyst + OrYst ® Ds04yst = Uy  Xi(Tot) ® Uy Xi(25¢) 00,
Note also that

05Ut Xi(@st)) = Uyt [Xs, X5)(2t)0s 20y + Uyt [ X, Xo) (1) 5.
So

Os(Ust* Xi(@st)) 0502y = Ut [Xi, Xj)(wst) 0523, (BsOpwl, — 18,2%,0¢) = 0.
Moreover
at(Us;lXi(xst))dsatzit = at(Us_thi(xst))dsatwf;t = 0.

Hence, we have

dsdeyst = Uy  Xi(mse)dodezty, = Uy  Xi(zst) (050pwi, — 30,2%,01).
We compute

Os(UglatUstatyst)
= Uy {V2Xi(251) 02y + V2 X0 (25t)05} 0475t ® Opst + Uy V Xi(251) Xi (251) D50t
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Define
Ry = — / U Xi(xr)dr2t,, Cot = / U Xi(2re) @ U Xi(@pe)dr.
0

Our calculations show that the (¥ : ¢ > 0)-semimartingale (ys; : t > 0) has finite-
variation part (s : t > 0) and quadratic variation given by
difist = $Rsedt,  Byyst ® Oysr = Cordt.
Moreover
desr = Usedryst + 30,Ust0syst,
80 (zs¢ : t > 0) has finite-variation part (Zs : ¢ > 0) and quadratic variation given by
dtist = %Lstdta 6151"st ® 6txst = 1—‘stdta

where

Ly = Ug Rt + Ug / U H{V2Xi(2,4)0r 2%, + V2 Xo(204)0r}T e

+Ust/ U VX (zrt) Xi(zrt)Or

and where I'y; = Uy Cs: U,

Note that both (I's; : t > 0) and (Ls : t > 0) are stationary processes and that, by
standard one-parameter estimates, I'sg and L4 have finite moments of all orders. By
It&’s formula, for any C? function f, setting fo; = f(xs:), the process (fs; : t > 0) is
an (Z 4 : t > 0)-semimartingale with finite-variation part (fs; : ¢t > 0) and quadratic
variation given by

difer = 3 (L Vif (w) + TEVV; f (war)) dt,  Oefurrfar = Vif (s)TEV, f (war)dt.

In particular, if ms; = fst — fso — fst, then (mg; : t > 0) is a (true) martingale. Hence,
for f,g € CZ(R?), we obtain the integration-by-parts formula

E[V:f(zs0)T5V;g(zs0)] = 131%1 %]E {f(zst) = f(zs0) Ho(zst) — 9(zs0)}]

= 2lim JEf ) {9(z0) — 9z} = ~Elf @al{LioVig(aio) + THV: V9@

An obvious limit argument allows us to deduce the following simple formula, corre-
sponding to the case g(z) = z7. For all f € CZ(R%) and for j = 1,...,d, we have

E[Vif(zs0)T50] = —E[f(2s0) Lo)-
The general formula can then be recovered by replacing f by fV,g and summing
over j.

The basic observation underlying this formula is that the distributions of (zo, 2¢)
and (2, z0) are identical, and hence that the same is true for (zs0, zs¢) and (2s¢, Zs0),
when (zg : s > 0) is obtained by solving a stochastic differential equation driven by
(zs¢t : s > 0), with initial condition independent of t. In fact a stronger notion of
reversibility is true. The distributions of (zs, : s = 0,u € [0,¢]) and (25 4—y : 8 =
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0,u € [0,t]) are identical, and hence the same is true for (zs, : s > 0,u € [0,]) and
(%s,t—u : 8 = 0,u € [0,¢]). This may be combined with the fact that the Stratonovich
integral is invariant under time-reversal to see that

t ¢
E [{f(xst) — f(mso)}/o U;llauwsu] = —2E [f(:cso)/o Us_ulaua:qu .

From this identity, by a similar argument, we obtain the following alternative
integration-by-parts formula. For all f € CZ(R?), we have

E[V f(z50)UsoCs0] = ~E[f (z50) Rso].

This formula is the variant discovered by Bismut, which is closely related to the
Clark-Haussmann formula.
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