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TWO-PARAMETER STOCHASTIC CALCULUS 
AND MALLIAVIN'S INTEGRATION-BY-PARTS 

FORMULA ON WIENER SPACE 

by 

James R. Norris 

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday 

Abstract. — The integration-by-parts formula discovered by Malliavin for the Itô 
map on Wiener space is proved using the two-parameter stochastic calculus. It is also 
shown that the solution of a one-parameter stochastic differential equation driven by 
a two-parameter semimartingale is itself a two-parameter semimartingale. 

Résumé (Calcul stochastique à deux paramètres et formule d'intégration par parties de Malliavin 
sur l'espace de Wiener) 

La formule d'intégration par parties, qui a été établie par Malliavin pour l'appli­
cation d'Ito sur l'espace de Wiener, est démontrée en utilisant le calcul stochastique 
à deux paramètres. On montre aussi que la solution d'une équation différentielle sto­
chastique à un paramètre, guidée par une semimartingale à deux paramètres, est 
elle-même une semimartingale à deux paramètres. 

1. Introduction 

The stochastic calculus of variations was conceived by Malliavin [6, 7, 8] as follows. 
Let (zt)t^o denote the Ornstein-Uhlenbeck process on Wiener space (W, V , / / ) and 
let <£ : W —• Rd denote the (almost-everywhere unique) ltd map obtained by solving 
a stochastic differential equation in Rd up to time 1. Then (zt)t^o is stationary and 
reversible, so, for functions / , g on E d , setting F = f o $,G = g o 

(i) E[{F(zt)-F(z0)}{G(zt)-G(z0)}} = -2E[F(z0){G(zt)-G(z0)}}. 

Once certain terms of mean zero are subtracted, a differentiation of this identity with 
respect to t inside the expectation is possible, and leads to the integration-by-parts 
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94 J. R. NORRIS 

formula on Wiener space 

(2) 
Jw 

V¿/(*)r^" V^(*)d/i = 
Jw 

f(9)LGdn, 

where LG and the covariance matrix T will be defined below. As is now well known, 
this formula and its generalizations hold the key to many deep results of stochastic 
analysis. 

Malliavin's proof of the integration-by-parts formula was based on a transfer princi­
ple, allowing some calculations for two-parameter random processes to be made using 
classical differential calculus. Stroock [11, 12, 13] and Shigekawa [10] gave alterna­
tive derivations having a a more functional-analytic flavour. Bismut [1] gave another 
derivation based on the Cameron-Martin-Girsanov formula. Elliott and Kohlmann 
[3] and Elworthy and Li [4] found further elementary approaches to the formula. 
The alternative proofs are relatively straightforward. Nevertheless, we have found it 
interesting to go back to Malliavin's original approach in [8] and to review the calcu­
lations needed, especially since this can be done now in a more explicit way using the 
two-parameter stochastic calculus, as formulated in [9]. 

In Section 2 we review in greater detail the various mathematical objects men­
tioned above. Then, in Section 3, we review some points of two-parameter stochastic 
calculus from [9]. Section 4 contains the main technical result of the paper, which 
is a regularity property for two-parameter stochastic differential equations. We con­
sider equations in which some components are given by two-parameter integrals and 
others by one-parameter integrals. It is shown, under suitable hypotheses, that the 
components which are presented as one-parameter integrals are in fact two-parameter 
semimartingales. This is useful because one can then compute martingale proper­
ties for both parameters by stochastic calculus. The sorts of differential equation to 
which this theory applies are just one way to realise continuous random processes 
indexed by the plane. See the survey [5] by Leandre for a wider discussion. But this 
regularity property makes our processes more tractable to analyse than some others. 
This is illustrated in Section 5, where we do the calculations needed to obtain the 
integration-by-parts formula. 

2. Integration-by-parts formula 

The Wiener space (W, ¡i) over R m is a probability space with underlying 
set W = C([0,oo),Rm), the set of continuous paths in R m . Let V° denote the 
a-algebra on W generated by the family of coordinate functions w »-> ws : W —» R m , 
s ^ 0, and let fi° be Wiener measure on (W°, that is to say, the law of a Brownian 
motion in R m starting from 0. Then (W, ¡i) is the completion of the probability 
space (W, Write V s for the /x-completion of a(w f-> wr : r < s). Let 
Xo,Xi,... ,Xm be vector fields on R d , with bounded derivatives of all orders. Fix 
XQ G R d and consider the stochastic differential equation 

dxs = Xi(xs)dwl

s + XQ(xs)ds. 
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TWO-PARAMETER STOCHASTIC CALCULUS 95 

Here and below, the index i is summed from 1 to m, and d denotes the Stratonovich 
differential. There exists a map x : [0, oo) x W —» Rd with the following properties: 

— x is a continuous semimartingale on (W, V , (V s) s^o?AA) 5 

- for /x-almost all w £ W, for all s ^ 0 we have 

xs(w) = x0 + 
F 
Jo 

Xi(z r (w))d< + 
s 
0 X*o(xr(i(;))dr. 

The first integral in this equation is the Stratonovich stochastic integral. Moreover, 
for any other such map xf, we have xs(w) = x's(w) for all s ^ 0, for //-almost all w. 
We have chosen here a Stratonovich rather than an ltd formulation to be consistent 
with later sections, where we have made this choice in order to take advantage of the 
simpler calculations which the Stratonovich calculus allows. The It6 map referred to 
above is the map $(w) = x\{w). 

We can define on some complete probability space, (£2, £7", P) say, a two-parameter, 
continuous, zero-mean Gaussian field (zst : s,t ^ 0) with values in Mm , and with 
covariances given by 

E(^4t') = ̂ ' (5A S ' ) e - | t - t ' l / 2 . 
Such a field is called an Ornstein-Uhlenbeck sheet. Set zt = (zst : s ^ 0). Then, 
for t > 0, both zo and zt are Brownian motions in R m and (zo,zt) and (zt,zo) have 
the same distribution. We have now defined all the terms in, and have justified, the 
identity (1). 

Consider the following stochastic differential equation for an unknown process (Us : 
s ^ 0) in the space of d x d matrices 

dUs = X?Xi(xa)Uadwi + VX0(xs)Usds, U0 = I. 

This equation may be solved, jointly with the equation for x, in exactly the same sense 
as the equation for x alone. Thus we obtain a map U : [0, oo) x W Rd<8> (R d)*, with 
properties analogous to those of x. Moreover, by solving an equation for the inverse, 
we can see that Us(w) remains invertible for all s ^ 0, for almost all w. Write U* for 
the transpose matrix and set Fs = USCSU*, where 

Cs = 
F 
Jo 

V^Xiixr) ® U-xXi(xr)dr 

Set also 

Ls = -Us 

f 
Jo 

U^Xiix^dwl + Us 

F 
>0 

U-^XiMdwì + V2Xo(xr)dr}rr, 

+ u3 F 
U^VXiix^Xiix^dr 

and define for G = g o $ 

LG = L\ Vtf (an) + T\jViVjg(x1). 

We have now defined all the terms appearing in the integration-by-parts formula (2). 
We will give a proof in Section 5. 
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96 J. R. NORRIS 

3. Review of two-parameter stochastic calculus 

In [9], building on the fundamental works of Cairoli and Walsh [2] and Wong and 
Zakai [14, 15], we gave an account of two-parameter stochastic calculus, suitable for 
the development of a general theory of two-parameter hyperbolic stochastic differential 
equations. We recall here, for the reader's convenience, the main features of this 
account. 

We take as our probability space (ft, £7", P) the canonical complete probability space 
of an m-dimensional Brownian sheet (wst : s, t ^ 0), extended to a process (wst : s,t G 
R) by independent copies in the other three quadrants. Thus wst = (wlt,... ,w7^) is 
a continuous, zero-mean Gaussian process, with covariances given by 

E(witwi,t,) = Sii(sAs')(tAt') i,j = l , . . . ,m, M 5* O, s ' , t '^0. 

It will be convenient to define also w% = st for all s, t G R. For s, t ^ 0, write f7at for 
the completion with respect to P of the a-algebra generated by wru for r G (—oo, s] 
and u G (-co, t]. We say that a two-parameter process (xst : s, t ^ 0) is adapted if xst 

is S^-measurable for all s,t > 0, and is continuous if (s,t) i—• xst(uj) is continuous on 
( R + ) 2 for all lj eft. The previsible a- algebra on ft x (R+) 2 is that generated by sets 
of the form A x (5,5'] x (t,t'] with A G SF3t- If we allow A G S^oo in this definition, 
we get the s-previsible <7-algebra. 

The classical approach to defining stochastic integrals, by means of an isometry of 
Hilbert spaces, adapts in a straightforward way from one-dimensional times to two, 
allowing the construction of stochastic integrals with respect to certain two-parameter 
processes, in particular with respect to the Brownian sheet. Given an s-previsible 
process(a s (t) : s,t^ 0), such that 

E 
F 
Jo 

F 
Jo 

ar(u)2drdu < 00 

for all s,t ^ 0, we can define, for i = l , . . . ,m and all ¿1,^2 ^ 0 with t\ < ¿2, 
one-parameter processes M and A by 

(3) Ms = f 
«/0 

rt2 

t1 ar(t)drdtWrt, As = 
f 

pt2 

t1 ar(t)
2drdt 

Then M is a continuous (S r

500)s^o-mQ' rtingale, with quadratic variation process [M] = 
A. A localization argument by adapted initial open sets (see below) allows an exten­
sion of the integral under weaker integrability conditions. By the Burkholder-Davis-
Gundy inequalities, for all a G [2,00), there is a constant C(a) < 00 such that 

(4) E 
l>s2 

J Si 

pt2 

t1 as(t)dsdtw
l

st 

a 
< C(o)E 

j*s2 

si 

nt2 

t1 as(t)
2dsdt 

|«/2N 

We write any time parameter with respect to which a process is previsible, here s, as a subscript. 
Where previsibility is not assumed, here in t, we write the parameter in parentheses. 
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By an (s, t)-semimartingale, s-semimartingale, t-semimartingale, we mean, respec­
tively, previsible processes (xst : s,t > 0), (pst : s,£ ^ 0), (g s t • s,t ^ 0) for which we 
may write 

Xst - XsO — XQt + #00 

= 
m 

i=0 
f 

Jo 

f 

/0 

{x"u)idrduw
l

ru + 
m 

i,j=0 
f 

F 
Jo 

F 
Jo 

f 

to 

{x'^ir^u'^ijdr'duw^ drduiw
%

ru, 

and 

Pst-Pot = 

m 

i=0 

F 
Jo 

I I 
{p'rt{u,))idrdu'Ku^ Qst — QsO = 

m 

i=0 
i: f 

'0 

{Qsu(r'))idr'duK'w 

Here, (x"t : s,t ^ 0) is a previsible process, having components (xs't)i, subject to 
certain local integrability conditions, which are implied, in particular, by almost sure 
local boundedness. The process (x"t(r,u) : s,t ) 0,r,u G 1 ) is required to be 
previsible in (u,s,i) and (Borel) measurable in (r, u), with x"t(r,u) = 0 for r > s or 
u > t, and is subject to similar local integrability conditions. The inner and outer 
parts of the second integral are both cases of the stochastic integral at (3), or its 
^-analogue, or of the usual Lebesgue integral, and the value of the iterated integral 
is unchanged if we reverse the order in which the integrals are taken. The integrals 
appearing in the expression for xst are called stochastic integrals of the first and second 
kind. The processes (p'st(u) : s , t ^ 0 , w G R ) and (q'st(r) : s,t ^ 0,r G R) are required 
to be previsible in (u;,s,£) and measurable in u and r, respectively, with p'st(u) = 0 
for u > t and q'st{r) = 0 for r > s, and are subject to similar local integrability 
conditions. For fixed t ^ 0, if (xs0 : s ^ 0) is a continuous (Sr

s0)s>o-semimartingale, 
then (xst : s ^ 0) is a continuous (£7 s t) s^0-semimartingale, in the usual one-parameter 
sense. Also (pst : s > 0) is a continuous (S^^s^o-semimartingale, for all t > 0. 

The heuristic formulae 

dsdtxst = 
m 

i=0 

{x^t)idsdtwst + 
m 

i,j=0 
i: 

F 
Jo {x'stir, u^ijdsduiv^drdtw3^ 

dsPst = 
m 

i=0 

f 

- 1 

{Pst(u))idsd 

dtqst = 
m 

i=0 

F 
Jo Wst{r))idrdtwl

rt 

provide a good intuition in representing the two-parameter increment 

dsdtXst — Xs+ds,t+dt — xs,t+dt — %s+ds,t + %st 

and the one-parameter increments dspst = ps+ds,t - Pst and dtqst = qs,t+dt - q8t in 
terms of a linear combinations of increments, and of products of increments of the 
Brownian sheet. 
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98 J. R. NORMS 

By a (two-parameter) semimartingale, we mean a process which is at the same 
time an (s, £)-semimartingale, an s-semimartingale and a t-semimartingale. Such 
processes are necessarily continuous. An (s, £)-semimartingale which is constant on 
the s-axis and t-axis is a semimartingale. By an obvious choice of integrands, the 
process (wst : s,t > 0) is itself a semimartingale. The choice of lower limit — 1 is 
useful to us in allowing as semimartingales a pair of independent Rm-valued Brownian 
motions (zso • s ̂  0) and (bot • t > 0), given by 

zso = 
f 

Jo 

F 
Jo drduwru, bot = 

1 : 

F 
Jo dj- dii tu ru ? 

which are moreover independent of (wst : s,t ^ 0). Here and below, we bring one-
parameter processes defined on the s or t axes into the class of two-parameter processes 
by extending them as constant in the second parameter. 

We say that a subset 2) C (R+) 2 is an initial open set if it is non-empty and is 
a union of rectangles of the form [0,5) x [0, t), where s,t ^ 0. A random subset 
2 ) C ( ] x ( R + ) 2 is adapted if the event {(s , t) G 2)} is ^-measurable for all s, t ^ 0. 
For an adapted initial open set 2), a process (xst : (s, t) G 0) is a semimartingale in 
2) if there exists a sequence of adapted initial open sets 2) n t ®5 almost surely, and 
a sequence of semimartingales (x™t : s,t ^ 0), such that x st = x™t for all (s,£) G 2) n 

for all n. The notion of an s-semimartingale in 2) is defined analogously. We write 
C(2)) for the boundary of 2) as a subset of (R+) 2 . In particular, if 2) = (R+) 2 , then 
C(2)) = 0 . 

The theory which we now describe is symmetrical in s and t. Where a statement is 
made for s, there is also a corresponding statement for t, which we shall often omit. 
Let (xst : s, t ^ 0) and (x'st : s, t ^ 0) be s-semimartingales and let (ast : s, t ^ 0) be a 
locally bounded previsible process, for example, a continuous adapted process. There 
exist s-semimartingales which, for each t ^ 0, provide versions of the one-parameter 
stochastic integral and the one-parameter covariation process 

Sat = 
f 

Jo 

affd-pXipf, C2 -
F 
Jo df Xf£ df x y,.£. 

From now on, when we write these integrals, we assume that such a version has 
been chosen. We define also four types of two-parameter integral, each of which is a 
(two-parameter) semimartingale. These are written 

^ 3 - / * 

Jo 
f 

Jo 

a<pu dr du xru, C
4 -

F 
Jo 

f 

Jo 

dr xru du yru ? 

Cb -
/ * 

JO 

/ ' 

0̂ 

dr Xfii dr du y fix, C6 -
f 

Jo 

f 

Jo 

df du Xfii df du t/fu • 

In the first and last integral, we require x to be an (s, £)-semimartingale, whereas, 
in the second and third, x should be an s-semimartingale. We require that y be a 
t-semimartingale in the second integral and an (s, £)-semimartingale in the third and 
fourth. All these integrals are defined as sums of certain integrals of the first and 
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second kind with respect to the Brownian sheet. We refer to [9] for the details. We 
use the following differential notations: 

dszst — astdsxst 

dszst — dsxstdsx s1. 

dsdtzst = astdsdtxst 

dsdtzst = dsxstdtyst 

dsdtzst = dsxstdsdtyst 

dsdtzst = dsdtxstdsdtyst 

means 

means 

means 

means 

means 

means 

Zst - ZOt = Cst' 

Zst — Zot = Cst' 

Zst — ZsO — Zot + Zoo = Csti 

Zst — Zso — Zot + Zoo = Cst> 

Zst - Zso - Zot + Zoo = Cst5 

Zst — ZsO — Zot + Zoo = CsV 

The integrals £ 2

t, £ft and (% all vanish if dsxst = astds. It is shown in [9] that a series 
of identities hold among the various types of integral, which can be expressed conve­
niently in terms of this differential notation. Some identities assert the associativity 
of products involving a combination of three differentials or processes, the others are 
written as the following three rules 

ds(f(xst)) = f'{xst)dsxst + \ f"{xst)dsxstd8xst, 

ds(astdtxst) = dsastdtxst + astdsdtxst + dsastdsdtxst: 

ds(dtxstdtyst) — dsdtxstdtyst + dtxstd8dtyst + dsdtxstdsdtyst 

These rules combine the usual calculus of partial differentials with Ito calculus in an 
obvious way. As a consequence, we can obtain a geometrically simpler Stratonovich-
type calculus by defining, for processes (xst : s, t ^ 0) and (yst : 5, t ^ 0), some further 
integrals, corresponding to the following differential rules 

XstdsXst — XstdYst + ^dsXstdsYst, dsXstdsY8t — dsXstdsYst — dsXstdsYsty 

where Xst may stand for any one of xst, dtxst,dtxst and Yst may stand for any one of 
yst,dtyst,dtyst- Then we have 

ds(f(xst)) = f'{xst)dsxst, 

ds(a>stdtxst) = dsastdtxst + astdsdtxst, 

ds(dtxstdtyst) = dsdtxstdtyst + dtxstdsdtyst' 

The Brownian sheet (wst : s, t ^ 0) and the boundary Brownian motions (z8o : s > 0) 
and (bot '• t ^ 0) have some special properties, which are reflected in the following 
differential formulae, for 1 ^ i,j < m, 

dsdtwltdsdtw
J

st = ô^dsdt, dsz
l

s0dsz
J

s0 = 8%3ds, dtbitdtbit = Sijdt, 

and, for any semimartingale (xst : s,t ^ 0), 

dsxstdsdtwlt =d tx std sd tw\ t = 0. 
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100 J. R. NORRIS 

4. A regularity result for two-parameter stochastic differential equations 

We discussed in [9] a class of two-parameter hyperbolic stochastic differential equa­
tions, in which there is given, for a system of processes (xst,pst,Qst ' s,t ^ 0), one 
equation for the mixed second-order differential dsdtxst, together with two further 
equations for the one-parameter differentials dspst and dtqst- We review briefly the 
details below, and then give a new regularity result, which we need for our application 
to Malliavin's integration-by-parts formula, but which may be of independent interest. 
This result concerns the process (pst : s,t ^ 0) (and analogously also (qst : s,t ^ 0)), 
which, since integrated in s, has naturally the regularity of an s-semimartingale. The 
point at issue is whether (pst : s, t ^ 0) is a full (two-parameter) semimartingale. A 
method to establish this is stated in [9, pp. 299, 315-316], but the argument given is 
incomplete. A full proof is given below in Theorem 4.2. As an illustrative example, 
we note that, if (wst : s,t ^ 0) is a Brownian sheet with values in R m , then the result 
will show that there is a two-parameter semimartingale (xst : s,t ^ 0) such that, for 
alH ^ 0, the process (xst : s ^ 0) satisfies the one-parameter stochastic differential 
equation 

dsxst = Xi(x8t)d8wat + X0(xst)ds, 

with given initial values xot = xo, say. This is useful because, now, despite the 
irregular dependence of the Brownian sheet on t, we can use a differential calculus in 
t as well as in s. 

Consider the class of hyperbolic stochastic differential equations in ( R + ) 2 of the 
form 

(5) 

(6) 

(7) 

dsdtxst = a(dsdtwst) + b(dsxst,dtxst), 

dsPst = c(d8xat), 

dtqst = e(dtxst). 

Here wst = (wlti • - • 5 w£?)>wrkh (wl

st : s,t ^ 0), i = l , . . . ,m, independent Brown­
ian sheets, as above. The unknown processes (xst : s,t > 0), (pst : s,t ^ 0) and 
(qst : 5,t ^ 0) take values in R d , R n and R n , respectively, and are subject to given 
boundary values (xs0 : 5 > 0), (xot ' t > 0), both assumed to be semimartingales, and 
(pot • t ^ 0), (qso : s ^ 0), both assumed continuous and adapted. The coefficients 
a, 6, c, e are allowed to have a locally Lipschitz dependence on the unknown processes, 
with the restriction that b depends only on x. Thus, for example, we would write 
a(xst,pst,qst,dsdtwst) and b(xst,dsxst,dtxst), but have not done so in order to keep 
the notation compact. Moreover, we allow a dependence on the differentials which is 
a sum of linear and quadratic terms. Thus, in an expanded notation, we would write 

dsdtxst = ai(dsdtwst) + a2(dsdtwst,dsdtwst) 

+ bii(dsxstldtxst) + bi2(dsxst, dtxst, dtxst), 

+ 621 (da Xst 5 dsxst,dtXst) + b22(dsxst, dsxst, dtxst, dtxst). 
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TWO-PARAMETER STOCHASTIC CALCULUS 101 

dsPst = ci(dsxst) + c2{dsxst,dsxst), 

dtqst = ei(dtxst) + e2{dtXst,dtxst), 

where, for k = 1,2, 

a ^ r x r x r ^ r ® ((Rm)*)®*, 

bjk : R d —• R d ® ((R d )*) ( g > J + f c , 

c7- : R d x R n x R n -+ Rn ® ((R d)*)^', 

efe : R d x R n x R n -+ R n ® ((Rd)*)®fc. 

We may and do assume with loss that a 2, 612,621, 622,£2, e 2 are symmetric in any pair 
of repeated differential arguments. 

By a local solution of (5-7) with domain 2) we mean an adapted initial open set 2), 
together with a semimartingale (xst (s,t) G 2)), an s-semimartingale (ps* : (s,£) G 
2)), and a ^-semimartingale (qst : (s,£) G 2)), all continuous on 2), such that, for all 
( M ) é 2 > , 

= #s0 + #0t — #00 + / * 
Jo 

F 
Jo 

i(drduwru) + 
F 
Jo 

F 
Jo 

b{drxru, duxru) 

Pst = POt + 
Jo 

c(drxrt), 

qst = qso + 
F 

Jo 

e (duXsu). 

Given such a solution, for each t > 0, we can define processes (i/^ : (s,t) G 2)) and 
« t : (s,t) € 2)), taking values in Rd x (R d)* and Rd x (R d)* x (R d)* respectively, by 
solving the linear one-parameter stochastic differential equations 

(8) dsust = bu(dsxsU -)ust + b12(dsxst, dsxsU -)ust, 

dsu*st = ust{b12(dsxst,ust',ust') 

(9) + b22(dssti dgXst, V>st'i Ustb1i(dsxst,b12(dsxst,ust',ust'))}. 

Here i ^ 1 denotes the inverse of the linear map ust. For fixed t ^ 0, almost surely, 
ust remains in the set of invertible maps while (5, i) G 2). To see this, one can obtain 
formally a linear equation for the process {u~^ : (s,t) G 2)), and then check that 
its solution is indeed an inverse for ust- Similarly, for each s ^ 0, we can define 
processes (vst : (s,t) G 2)) and (v*t : (s,t) G 2)), taking values in Rd x (R d)* and 
Rd x (Rd)* x (R d)*, by solving the analogous equations 

(10) dtvst = bii(-,dtxst)vst + b21(',dtxst,dtxst)vst. 

dtv*st = vs}{b21(vsV,vsV,dtxst) 

(H) + b22(vsf, Vsf, dtxstl dtXst) - 611(621 (v8r, v8r, dtxst), dtxst)}. 

We specify initial conditions woo = 0̂0 = ^, so determining completely (UQs : s ^ 0) 
and (vot : t ^ 0). Then we complete the determination of the above processes by 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



102 J. R. NORRIS 

specifying that uot = v0t, ^ot = 0, vs0 = г¿so, and v*Q = 0 for all s,t ^ 0. Let us say 
that (xst,Pst,qst • (s>t) G 2)) is a regular local solution (2) if there exist continuous 
s-semimartingales (ust : (5, £) G 0) and (u*t : (5, £) G 2)) satisfying, for each t ^ 0, the 
equations (8-9), and if there exist also continuous t-semimartingales (vst : (s,t) G 2)) 
and (v*t : (s,£) G 2)) satisfying, for each s ^ 0, the equations (10-11). A local 
solution is maximal if it is not the restriction of any local solution with larger domain. 
The notion of a maximal regular local solution is defined analogously. We assume 
that the boundary semimartingales (xso : s ^ 0), (xot : t ^ 0), (pot ' t ^ 0) and 
(tfso : s ^ 0) are regular^. By this we mean that the Lebesgue-Stieltjes measures 
defined by their quadratic variation processes and by the total variation processes of 
their finite variation parts are all dominated by Kds, or Kdt as appropriate, for some 
constant K < 00. We give a result first for the case where 6 = 0. 

Lemma 4.1. — Assume that 6 = 0. Let U be an open subset ofRd x R n x R n and 
let m :U —> [0, 00) be a continuous function with m(x,p,q) —• 00 as (x,p,q) —• dU. 
Assume that, for all M ^ 1, the coefficients a,c,e are bounded and Lipschitz on the 
set UM = {(x,p,q) € U • ™>(x,P,q) < M}. Then, for any set of regular boundary 
semimartingales (XSQ : s ^ 0), (#ot : t ^ 0), (pot ' t > 0) and (gso : s ^ 0), 
with (̂ oojPoo, #00) £ ^ equations (5-7) Ziave a unique maximal local solution 
(xst,Pst,qst • (s>£) € 2)) values in U. Moreover, we have, almost surely^ 

sup 
x<s,u<t 

ffl(xrU) Prui qru) * as ( M ) K ( 2 » . 

Proo/. — In the case where m is bounded (so UM = U = Rd x R n x R n for large M ) , 
the existence of a (global) solution is proved in [9, Theorem 3.2.2]. The proof is of a 
standard type, using Picard iteration, Gronwall's lemma and Kolmogorov's continuity 
criterion, and gives also the uniqueness of local solutions on the intersections of their 
domains. When m is unbounded, we can find, for each M ^ 1, bounded Lipschitz 
coefficients aM,CM,&M on Rd x R n x R n , which agree with a,c, e on UM- For each 
Mo ^ 1, the corresponding global solutions (#£f, p££, <?̂ f • s,t ^ 0) agree, for all 
integers M ^ Mo, almost surely, on 2)M0> where 

2>M = Us,t) 6 (M+)2 sup 
x<s,u<t 

m ( ^ , î C < ^ ) < M } . 

Hence, we obtain a local solution with all the claimed properties by setting 2) = 
U M 2 ) M and by setting, for all M ^ 1, (xsUpsUqst) = (x^.P^^qM) f ° r all (s,t) G 
® M \ 2 ) M - I - • 

Our main result deals with the case when 6 is non-zero. 

(2) It is not hard to see that, for any local solution, the processes just defined have previsible versions, 
which are then s-semimartingales or -̂semimartingales, depending on the variable of integration. 
However, we have not determined whether they have a continuous version in general. 
(3) No connection with the notion of regular local solution is intended. 
(4) To clarify, we mean that, for all (s*,t*) G C(0)> the given limit holds whenever | (s*,£*). 
In particular, in the case where 0 = (M+)2, there are no such points (s*,£*) and nothing is claimed. 
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Theorem 4.2. — Assume that the coefficients a, 6, c, e are uniformly bounded and Lip-
schitz. Then, for each set of regular semimartingale boundary values (xso : s ^ 0), 
(xot • t ^ 0), (pot : t ^ 0), (qso : s ^ 0), £/&e system of equations (5-7) ftas a unique 
maximal regular solution, with domain 0 say. As (s,t) | C(®)> we ̂ a v e 

(12) mst = sup 
x<s,u<t 

(ua>t>,U8,],,Va>t',Va,l,)\ —> oo. 

Moreover, if c has Lipschitz first and second derivatives and has no dependence on q, 
then (pst : s,t G 2)) is a semimartingale in 0. 

Proof — We consider first the question of existence. We follow, to begin, the strategy-
used in the proof of [9, Theorem 3.2.3]. Consider the following system of differential 
equations, for unknown processes yst,zst, xst,ust,u*st,pst, x"t, vst, v*t, qst, taking val­
ues in R d ,R d , Rd,Rd <g> (Rd)*,Rd <g> (Rd)* 0 (R d )*,R n ,R d ,R d 0 (R d)*,R d 0 (R d)* 0 
(R d)*,R n respectively: 

(13) 

(14) 

(15) 

(16) 

dsdtyst = us^a(dsdtwst) - u*st(uja(dsdtwst) 0 us^a(dsdtwst)), 

dsdtzst = vs^a(dsdtwst) - vlt(vst

1a(dsdtwst) 0 vst

1a(dsdtwst))1 

dsxst = vst(dszst + v*stdszst 0 dszst), 

dsust = bn(vst(dszst + v*stdszst 0 dszst), -)ust + b21(vstdszst,vstdszst, -)ust, 

dsu*st = ust{bi2(yst(dszst + v*stdszst 0 dszst),uSf,usV) 

(17) 

(18) 

(19) 

(20) 

(21) 

+ b22{vstdsZsU VstdsZst, UsV, UsV) 

- bn(vstdszst, b12(vstdszst,ust',ust-))}, 

dsPst = c(vst(dszst + v*tdszst 0 dszst)), 

dtx"st = ust(dtyst + u*stdtyst 0 dtyst), 

dtvst = bii(-,ust(dtyst + u*stdtyst 0 dtyst))vst + b12(',ustdtyst,ustdtyst)vst, 
dtv*st = ̂ st1{b2i(yst',Vst',ust(dtyst + u*stdtyst 0 dty8t)) 

(22) 

(23) 

(24) 

+ b22{vsV, vsV, ustdtyst, ustdtyst) 

- hi(b21(vSf, vsr, ustdtyst), ustdtyst)}, 

dtqst = e(ust(dtyst + u*stdtyst 0 dtyst))-

We evaluate the coefficients a, 6, c and e here at (xst,Pst,(lst) (rather than at xs't). 
Note that this system has the same form as the system (5-7) with 6 = 0. We use the 
boundary conditions given above for ust,Pst,vst,qst> Define boundary values for yst 

and zat by 

(25) dsyso = dszs0 = vSQdsxs0, dtyot = dtzot = u^diXot, yoo = ZQO = 0. 

Set UQt = v*0 = 0 and use the given boundary values (xot - t ^ 0) for x'st and 
(xso : s ^ 0) for x"t. Define, on the set U where u and v are invertible, 

m{y,z,x',u,u*,p,x",v,v*,q) = \(u,u x,v,v l)\ + \(u*,v*)\. 
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Then the preceding lemma applies, to show that (13-24) has a unique maximal local 
solution with the given boundary values, with domain 2) say, such that ust and vst 

are invertible for all (s,t) G 2), and such that, almost surely, as 11 C(®)> either 

(26) m s t = sup 
x<s,u<t 

(íVt',tV¿,,ve/t/,ve,J,)| î 0 0 > 

or 

(27) nst = sup 
s'^.s,t'^t 

№'t'X't')\ Î °°-

Now vst and v*t are continuous t-semimartingales (in 2)) and zst is a semimartin­
gale. Moreover dtastdsdtzst = 0 for any -̂semimartingale ast. Hence, by [9, Theorem 
2.3.1], xf

st is a semimartingale and we may take the -̂differential in (15) to obtain 

dsdtx't = dtvst(dszst + v*stdszst 0 dszst) 

+ vst(dsdtzst + dtv*tdszst 0 dszst + v*tdsdtzst 0 dsdtzst) 

+ dtvst(dtv*tdszst 0 d s z s t ) 

= a(dsdtwst) + b(dsxst,dtxs't). 

Similarly, by taking the s-differential in (20), we obtain 

dsdtxs

f

t = a(dsdtwst) + b(dsxst,dtxs't). 

We also have Xnn = x™ and 

ŝ̂ sO — vsodsZsQ — dsxso. dtx'ot = uotdtyot = dtXQt, 

so xf

st — x"st for all (s,t) G 2), almost surely. Denote the common value of these 
processes by xst. Then (xst : (s,£) G 2)) satisfies (5). On using (15) and (20) to 
substitute (5) for dszst and dtyst in (16, 19, 21, 24), we see also that pst, qst, ust, u*t, 
vst, v*t satisfy (6-11) respectively. Hence (xst,pstiQst • (s,t) G 2)) is a regular local 
solution to (5-7), which is moreover maximal by virtue of (26-27). 

We turn to the question of uniqueness. Suppose that (xst,pst,Qst : (s,t) G 2)) 
is any regular local solution to (5-7). Write {ust,u*t,v3t,v*t : (s,t) G 2)) for the 
associated processes, satisfying (8-11). Define semimartingales (yst : (s,i) G 2)) and 
(zst : (s,t) e ®) by 

(28) dsdtVst = ust
a{dsdtWst) - ûlt(ûsta(dsdtwst) 0 ûsta(dsdtwst)) 

(29) cWt̂ st = vs^a(dsdtwst) - v*at(v8ta(dadtwat) 0 vs^a(dsdtwst)), 

with boundary values (25). The following equations may be verified by checking that 
the initial values and differentials of left and right hand sides agree 

(30) dsxst = Vst(dszst + VstdsZst 0 d8Zst), dtxst = ûst{dtyst + KtdtVst 0 dty8t). 

(5) Such substitutions result in differential formulae corresponding to valid identities between pro­
cesses. This is because the two-parameter stochastic differential calculus is associative, as mentioned 
above, and as discussed in [9, pp. 290-291]. 
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Then, using these equations to substitute for dsxst and dtxst in (6-11), we see that 
(^t,^t,^t,^st,^t5Pst^st,^t,^t^st : (M) € 2>) is a local solution to (13-24). 
By local uniqueness for this system, 2) C 2) and (xst,Pst,qst) = fast,Pst, qst) for all 
(s,£) G 2), almost surely. Thus (xst,Pst,qst : (s,£) G 2)) is the unique maximal regular 
local solution to (5-7). 

Our next goal is to obtain ath-moment and La-Holder estimates on the process 
(%st,Pst, qst, ^st, uttiVst, v*t : (s, t) G 2)), for a G [2,00). Write K for a uniform bound 
on a, 6, c, e which is also a Lipschitz constant for b. Fix M, A/", T > 1 and set 

®M = {(s, t) G 2) : s, t ^ T and mst ^ M} , 

2)M,;v = {(M) e 2) 5, t ^ T, m s t ^ M and n s t < N}. 

Fix a and define 

g(s,t) = sup 
s'^s,t'^t 

E(\(u*s,t„v;,t,)\
ai{(s,^)eg)MtN}). 

Let (as : s ^ 0) be a locally bounded, (57"soo)s^o-Previsible process. The following 
identities follow from equations (29) and (30): for (s,£) G 2), respectively in Rd and 
R d(g)R d, 
(31) 

/ 
^0 

dydipXft — 
F 
Jo 

cbj>dj>XyQ I 
F 
Jo 

F 
Jo 

arVrt {vrJa(drduwru) + (v*t - vlu){vr^a{drduwru))
m} 

and 

(32) 
F 
Jo GiydfXnct dj>xft — 

F 
Jo 

ardrxro <S> drxrQ + 
f F 

Jo 

ar (vrtvru a(drduwru))®
2. 

Hence, using the estimate (4), we obtain a constant C = C(a, K, M,T) < 00 such 
that, for all s. t ^ 0. 

E| 
F 
Jo 

QjipdipXft 
a. 

1{(s,t)G2)M,iv} 

(33) ^CE 
r 
'0 

ardr 
1/2 

F 
Jo 

F 
Jo 

krKKtl + \v*u\)drdu 
a 

1{(s,£)G2)M,iv} 

and 

(34) E 
F 
Jo 

dfdfXft dfXft 
a 

l{(a,*)€2)Af,jv} ^CE 
F 
'0 

\ar\dr 
a 

1{(s,t)e®M,N} 

Here and below, we suppress any dependence of constants on the dimensions d, n, m. 
If we allow C to depend also on iV, then (33) may be simplified to 

(35) E j 
F 
Jo ex drXrt 

a 
1{(s,*)G2)M,iv} < CE 

F 
Jo 

ardr 
|«/2 

l{(s,t)e2)M)iv} 
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We use these estimates, along with analogous estimates for integrals dtxst, in the 
equations (9) and (11), to arrive at the inequality 

g(s,t)^C 1 + 
F 
Jo g(s',t)ds' + f g(s,t')dt' 

for a constant C = C(a,K,M,T) < oo. Since N < oo, we know that g(s,i) < oo 
for all s, t, so this inequality implies that g(s, t) < C for another constant C < oo of 
the same dependence. Similar arguments yield a further constant C < oo of the same 
dependence such that, for all s, s' ^ 0 and all t, t' ^ 0, 

(36) E(\(xsUusUu*st,pst) - (x^t^s^t^^^ps^t)^!^^^^^ n } ) ^ C\s-s'\a/2 

and 

(37) E(\(xst,vstìv*st1qst) - (xst^vst^v*stfìqsr)\al{{Sìt)ì{Sìtf)eq)M n } ) ^ C^-t'^12. 

Here, we have used Cauchy-Schwarz to obtain in an intermediate step 

J s f 
\v*ru\drdu < |s - s ' | 1 / 2 

J S f 
Jo 

|v*u| drdu 

1/2 

On going back to (31) and (32) with these Holder estimates, we obtain, using (4) 
again, a constant C < oo of the same dependence such that 

(38) 

E 
F 
Jo 

Xft drxrt'j 
a 

1{(*,t),(*.*')e®M,jv} ^ C\t - t'\a'2 E 
F 
Jo a2ds 

a 1/2 

and 

E 
F 
Jo 

Q/fd'pXff (dfXff dfXf-^'j 
,a 

l{(s,t),(s,t')e®M,N} 

(39) 

< c i t - t ' r / 2 E 
r 

a2ds 
a 1/2 

Now 

ds(ustUst>) = ust{b(xst',dsxst', •) - b(xstìdsxstì -)}ust' 

- ustbii(xst,dsxst, '){bii(xst',dsxst>, •) - bii(xstldsxsti ')}ust'-

We have made explicit the dependence of b and &n on xst or xst'. We use the estimates 
(33), (34), (37-39) to find a constant C = C(a,K,M,T) < oo such that 

(40) H\ust - ^ | a l{ ( a f t) f ( , l tO€^, J V }) < C\t - t'^2. 

Moreover, the same estimates, applied to the difference of (9) at t and at show 
that C may be chosen such that 

(41) E(|«;t - !{(*,.),(*,*'№,»}) < c\t - t'\a/2. 

ASTÉRISQUE 327 



TWO-PARAMETER STOCHASTIC CALCULUS 107 

Since C does not depend on AT, by monotone convergence, we can replace ®M,iv by 
®M in these estimates By symmetry, there are analogous estimates for vst and v*t. 
Hence, using [9, Theorem 3.2.1], almost surely, for all M > 1, nst remains bounded 
on 0 M • Thus (27) implies (26) so, in any case, (12) holds. 

It remains to consider the case where c has Lipschitz first and second derivatives and 
has no dependence on q, and to show then that (pst : (s, i) G 2)) is a semimartingale. 
For ease of writing, we shall assume that c has no dependence on x either. This is 
done without loss of generality, by the device of adding to our system the equation 
dsxst = dsxst, thus making xst a component of pst. 

We seek to find a solution in a smaller class of processes, in which pst is a semi­
martingale. Recall that 

(42) dsPst = c(dsxst) = ci(pst)(dsxst) + C2(pst)(dsxst,dsxst). 

By Itô's formula, if pst is a semimartingale, then 

dsdtPst = c'{dtpst,dsxst) + \c" (dtpst,dtPst,dsxst) + c{dsdtxst) + c'\dtPst,dsdtxst) 

+ 2c2(dsxst, dsdtxst) + 2c2(dtPst, dsxst, dsdtxst) 

= c'(dtpst, dsxst) + \c"{dtPst, dtPst, dsxst) + c(a(dsdtwst)) + c(b(dsxst, dtxst)) 

+ c'{dtpst, b(dsxst, dtxst)) + 2c2(dsxst, b(dsxst, dtxst)) 

+ 2c2(dtpst,dsxst, b(dsxst, dtxst)). 

Here we are writing c', c" for the derivatives with respect to p. We set d = d + n and 
combine this equation with the equation (5) to obtain a two-parameter equation for 
the Revalued process xst = (ps

sl), which we can write in the form 

(43) dsdtxst = â(dsdtwst) + b(dsxsUdtxst). 

(The ~ notation in this paragraph has nothing to do with that used in the paragraph 
on uniqueness above.) We impose regular semimartingale initial values XSQ = (p^) 
and xot = (pot), where (pSQ : s ^ 0) is obtained by solving the one-parameter equa­
tion (42) along xso. Introduce the two companion equations for d x d matrix-valued 
processes ust and vst 

(44) dsûst = bn(dsxstl -)ust + &i2(ds Xst 5 dgXgt , 

(45) dtvst = hi(',dtxst)vst + b2i(',dtxst,dtxst)vst. 

Impose boundary conditions for ust and v8t analogous to those for ust and vst. Write 
(7) in the form 

(46) dtqst = ë(dtxst). 

By assumption, there exists a K' < oo which is both a uniform bound for a, 6, c, e and 
is also a Lipschitz constant for 6, c, c', c". We can then find a uniform bound K < oo 
on a, 6, e, which is also a Lipschitz constant for 6, and which depends only on K'. The 
above argument shows that the system of equations (43-46) has a unique maximal 
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regular solution (x8t,q8t,v>8t,v8t - (s,t) G 2)), with the property that, as | C(®)> 
almost surely, 

mst := sup 
r<s,u<t 

(ûru,ûr^,vru,vr^)\ î OO. 

Write 

Xst = 
Xlt 
r2 

,xst 

Ust = 
uft 

ast 
7.22 
U8tj 

Vst = 

ast 
7.22 
U8tj 

v?t 

v?t 
and use analogous block notation for the tensors u*t and v*t. Note that 

b(dsxst, •) = 
b(d8xltr) 

f(dsxlt) 

0 

c;(-, d8x^t) 
b(-,dtxst) = 

fK;dtxlt) 

g(dtxst) 

o 

0 

where 

f(dsxlt) = c(b(dsx\t, •)) + 2c2(dsxlt1 b(dsxlt, •)) 

g(dtxst) = c'(dtx
2

st, •) + \c"(dtx
2

st, dtx
2

st, •) + c(6(-, dtxjt)) + c'(rfta&, &(•, d txj t)). 

Here, we have written b(dsxst, •) as a short form of bn(dsxst, •) + bi2(dsxst,dsxst, •)> 

and analogously for b(',dtxst) and &((is:rst, •). O*1 multiplying out in blocks, we see 
that the process (x]t, x2

st, qst, u\], (u*t)
in, v\l, (v*t)

lu : (s,t) € 2)) satisfies equations 
(5-11). Hence, we must have 2) C 2) and ( x j t , a & , w J J , v^1) = (xst,pst,qst,usUvst) 

for all (s,£) G 2). In particular, : (s,t) G 2)) is a semimartingale. 

It remains to show that 2) = 2), which we can do by showing that, almost surely, 
rhst remains bounded on 2)m,a/ = 2) D 2)m,at5 for all M,iV > 1. We first obtain a 
Holder estimate in t for pst. We have 

ds(Pst - Pat') = c(Pst,dsxst) - c(p8t',d8x8t'), 

where we have now made the dependence of c on p explicit. Set 

/ 0 0 = E (\pst - Pst>\al{is,t)^t,)e$M„}) • 

We use the estimates (34) and (35) to obtain a constant C = C(a, K', M, N, T) < oo 
such that 

/ ( « ) < C [\t-t'\a'2 + 
f 
Jo 

f(r)dr 

This implies that f(s) ^ C\t - t'\a^2 for all 5 ^ 0 for a constant C < oo of the same 
dependence. We now know that, for such a constant C < oo, we have 

(47) E (\Ps't> ~ Ps^ 1{(s,t),(S',t')e^)M,N} ̂ c ( | s - s T / 2 + l * - * T / 2 ) -

We turn to ûet and vst. The following equations hold 

dsv}s

2 = b(dsxstr)u
12, dtv]2 = b(-,dtxst)vl2, dtv2st = 9(dtxst)vl2. 

By uniqueness of solutions, we obtain u]2 = ustu^u^ so, in particular, uH = 0. 
Similarly, v\2 = vstv~QvlQ, so v^2 = 0. Since uot = vot and us0 = vso, we deduce that 
ult — vlt = 0- Then dtv

22 = 0, so v22 — v2% = U2

SQ. We also have the equations 

dsu
2

s\ = f(dsxst)ust + c'(.,dsxst)u
2

s], dsu
22 = cf(.,dsxst)u

22, dtv2,] = g(dtxst)vst 
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and we note that 

u-1 = 
st 

^t1 

(û«t,ûat

1)iuft)-1 

0 

iuft)-1 
vit1 = 

vit1 

(û«t,ûat

1)iuft)-1 

0 
(v1) -1 
st 

and 
dsiu™)-1 = -(ti2?)-V(.,d aa? a t) + {uf^c'^dsXsty^dsXst). 

We use the inequalities (34), (35) and (47), and an easy variation of the argument 
leading to (36) and (40) to obtain a constant C = C(a, K1, M, N,T) < oo such that 

(48) E ( I ( f id iv i / ) - ( û « t , û a t

1 ) | a l { ( a ï t ) i ( s / | t , ) € g M i J v } ) ^ C ( | s - s ' | a / 2 + | í - í ' r / 2 ) 

Then, using [9, Theorem 3.2.1] as above, we can conclude that, almost surely, 
(ustlus~t

1) remains bounded on 2)M,JV- It remains to show that the same is true for 
(vst,Vs~t~) a n d ' g i y e n the relations already noted, it will suffice to show this for v*}. 
We have 

dsu*st = ûst{bi2{dsxst,ûst',ûst>) 

+ 022(dsxst, dsxst,ûst', uSf) - bn(dsxst, bi2(dsxst, û8t;uat'))} 

= h(xst,pst,ûst,ûj ,dsxst), 

where h is defined by the final equality and where we have used (6) to write dsxst in 
terms of dsxst. A variation of the argument used for ust shows that, almost surely, 
ult remains bounded on 2)M,N- Then, we can use the ~ and -̂analogue of equations 
(31) and (32) to express v^l as a sum of integrals with respect to (#ot>Pot : t ^ 0) 
and (wst : s,t ^ 0). This leads, as above, to L^-Holder estimates which allow us to 
conclude that, almost surely, v^} remains bounded on 2)M,JV> as required. • 

5. Derivation of the formula 

Let (wst : s,t ^ 0) be an Mm-valued Brownian sheet and let (zso : s ^ 0) be 
an independent Rm-valued Brownian motion. Thus wst = (u^ t , . . . ,w££) and zs0 = 
(ZIQ, . . . , z7^), and each component process is an independent scalar Brownian sheet, or 
Brownian motion, respectively. The two-parameter hyperbolic stochastic differential 
equation 

(49) dsdtzst = dsdtwst - \dszstdt, s,t > 0 

with given boundary values (zso : s ^ 0) and zot = 0, for t ^ 0, has a unique 
solution (zst : s,t ^ 0). Set zt = (zst : s ^ 0), then (zt)t^o is a realization of the 
Ornstein-Uhlenbeck process on the m-dimensional Wiener space. See [8] or [9]. The 
Stratonovich form of (49) is given by 

dsdtzst = dsdtwst - \dszstdt, s,t > 0 

Fix x G l d and consider for each t ^ 0 the Stratonovich stochastic differential equation 

dsxst = Xi(xst)dsz
l

st + X0(xst)ds, 0 0, 
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with initial value xot = x. This can be written in Ito form as 

(50) dsxst = Xi(xst)dsz
%

st + X0(xst)ds, O O , 

where X0 = X0 + \ YA=I V-XiJQ. Consider also, for each t > 0, the stochastic 
differential equation 

daUst = VXiixsJUstdszU + VX0(xst)Ustds, O 0, 

with initial value Uot = I, and its Ito form 

(51) dsUst = VXi(xst)Ustdsz
l

st + VX0(xst)Ustds, O 0. 

Proposition 5.1. — There exist (two-parameter) semimartingales (zst : s,t ^ 0), (xst : 
s,t ^ 0) and (C/St • s,t > 0) snc/i £/ia£ (^st : s,£ ^ 0) satisfies (49) and, for all t ^ 0, 
(xst : 5 ^ 0) and (Ust : s > 0) satisfy (50) and (51), with the boundary conditions 
given above. Moreover, almost surely, U8t is invertible for all s,t ^ 0. 

Proof — We seek to apply Theorem 4.2. There are three minor obstacles: firstly to 
deal with the ds and dt differentials appearing in the equations, secondly, to show 
that the domain of the solutions is the whole of ( R + ) 2 and, thirdly, to deal with the 
fact that the coefficients in (51) do not have the required boundedness of derivatives. 

Let us introduce a further equation 

dsdtz% = 0, 

with boundary conditions z^0 = s and ZQt = t for all s, t > 0. We then replace dt and 
ds in (49) and (50), respectively, by dtz®t and dsz°st. When we obtain a solution, it 
will follow that z^ = s + s o dtZgt = dt and dsz% = ds, as required. 

In order to show that 2) = ( R + ) 2 , it will suffice to show that the companion 
processes ust and vst associated with the equations 

dsdtz% = 0, dsdtzst = dsdtwst -
1 

2 
dszstdtzst, 

according to equations (8) and (10), along with their inverses, remain bounded on 
compacts in s and t. We leave this to the reader. 

Finally, choose for each M G N a smooth and compactly supported function 
on Rd ® (R d )* , such that il>M(U) = U whenever \U\ ^ M. We can apply Theorem 4.2 
to the system (49), (50), together with the modified equation 

daU% = VXi(xst)2l;M(U^)dsz
i

st + VX0(xst)^M(U^)ds. 

Define 

2 ) M = { ( s , t ) : \U^\ ^ M for all s' < s,t' ^ t}. 

By local uniqueness, we can define consistently U on 2) = U M ® M by Ust = for 
(s,£) G 2)M- By some straightforward estimation using the one-parameter equations 
(51), we obtain, for all T < oo and all p G [1, oo), a constant C < oo such that 

sup 
r<s,u<t 

E(\Ust - U s , v \ n { ( S t t U s , t , ) e 0 } ) < C(\s - S'\P/2 + \t- tr'2). 
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Then, by [9, Theorem 3.2.1], almost surely, U is bounded uniformly on 0 fl [0 ,T] 2 . 
Hence 0 = ( M + ) 2 , and we have obtained the desired semimartingale U. The invert-
ibility of U can be proved by applying the same argument to the usual equation for 
the inverse. • 

By the Stratonovich chain rule, 

dsdtxst = VXi(xst)dszl

stdtxst + VXQ(xst)dsdtxst + Xi(xst)dsdtzl

st. 

Now 

dsdtUst = VXiixsJd.zltdtUst + VX0(xst)dsdtUst 

H^XMdtXs^UstdszU + (W2X0{xst)dtxst)Ustds + VXiixsJUstdsdtzU, 

so 
dtUstdsdtzit = \dsdtUstdsdtwit = \VXi{xat)Uatd8dt 

and 

dsiu^dtUst) = u:t

l {^Xiixs^dszlSxst + w2x0(xst)dsdtxst + v x ^ ^ d ^ } uat. 

Define also a two-parameter, Revalued, semimartingale (yst : s, t > 0) by 

dtVst = U^diXsu Vso = 0. 

Then 
dsdtVst = Ust

lXi(xst)dsdtzl

st. 
Note that 

dtVstdsdtzlt = dtVstdsdtwlt = \dsdtystdsdtwl

st = ^U^X^Xa^dsdi. 

So 

ds(dtyst <8> dtVat) = Osdtyst <g> + dtyst <g> d sd t2/ s t = L ^ 1 ^ ^ ) <g> U^1 Xi(xst)dsdt. 

Note also that 

dtVstdsdtzlt = dtVstdsdtwlt = \dsdtystdsdtwl

st = ^U^X^Xa^dsdidszitdt). 

So 

d.(urt

1xi(xst))da9tzit = uä\xiixj\{x«)dazit{da&tW

i

st - \dszitdt) = o. 

Moreover 
dtiU^XiixstMsdtzU = dtiU^XiixstMsdtwU = 0. 

Hence, we have 

dadtVat = Ust Xi(xst)dsdtz\t = Ust Xi(xst)(dsdtwlt - \dszl

stdt). 

We compute 

daiU^dtUatdtVat) 

= U^1 {^Xiixsjdszlt + V2X0(xst)ds} dix* 0 dtxst + U^VXiixsJXiixsJdsdt. 
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Define 

Rst — — 

f 
Jo U^Xiixr^drZ2rt. Cst — 

f 
Jo 

U^X^Xrt) <g> U^Xiixr^dr. 

Our calculations show that the (£7st
 : t ^ 0)-semimartingale (yst : t > 0) has finite-

variation part (yst : t ^ 0) and quadratic variation given by 

dtVat = \Rstdt, dtVat ® ôt2/flt = C s tcft. 

Moreover 

d t x a t = Ustdtyst + \dtUatdtyau 

so (a;at
 : ^ ̂  0) n a s finite-variation part (a:st : t ^ 0) and quadratic variation given by 

dtXst = \Lstdt, dtXat ® dtXat = Fatdt, 

where 

Lst — UstRst + U3t 
f 

u^i^x^drzU + v2x0(xrt)dr}Trt 

-us1 

f 
JO 

U^VXiixrJXiixrJdr 

and where Tst = UstCstU*t. 
Note that both (Tst : t ^ 0) and (Lst : t ^ 0) are stationary processes and that, by 

standard one-parameter estimates, TsQ and Lso have finite moments of all orders. By 
Ito's formula, for any C2 function / , setting fst — f(xst), the process (fst : t ^ 0) is 
an (!7st t ^ 0)-semimartingale with finite-variation part (fst : t ^ 0) and quadratic 
variation given by 

dtfst = I (LitV./(s, t ) + r J i V i V , - / ^ ) ) dtfstdtfst = VifixsMVjfMdt. 

In particular, if mS£ = / s * — / s o
 — fst, then (m st : t ^ 0) is a (true) martingale. Hence, 

for / , g G C 2 ( M d ) , we obtain the integration-by-parts formula 

E[Vi/(x f lo)ri JoV^(a; ao)] = lim 
t|0 

1 
t •E [{f(xat) ~ f(Xso)}{g(Xst) ~ g(Xso)}} 

= - 2 lim 
tio 

1 
t nf(xso){g(xst) - gixso)}} = - E [ / ( x a 0 ) { L i o V ^ ( x a 0 ) + r i J

0 V i V ^ ( x a o ) } ] . 

An obvious limit argument allows us to deduce the following simple formula, corre­
sponding to the case g(x) = xK For all / G C?(Rd) and for j = 1,..., d, we have 

E l V i / O r * ) ! ^ ] = - E [ / ( x s 0 ) ^ 0 ] . 

The general formula can then be recovered by replacing / by fVjg and summing 
over j . 

The basic observation underlying this formula is that the distributions of (zo,zt) 
and (zt,zo) are identical, and hence that the same is true for (xso,xst) and (xstlxso), 
when (x8t : s > 0) is obtained by solving a stochastic differential equation driven by 
(zst : s ^ 0), with initial condition independent of t. In fact a stronger notion of 
reversibility is true. The distributions of (zsu : s ^ 0, u G [0,t]) and (zsj-u '• s > 
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0,u € [0,t]) are identical, and hence the same is true for (xsu : s > 0, u G [0, t}) and 
(xsj-u : s ^ 0,u e [0,t]). This may be combined with the fact that the Stratonovich 
integral is invariant under time-reversal to see that 

E {f{xst) ~ f{xso)} f 
Jo 

^su ^u^su = -2E f(Xso) 
f 
Jo 

USu &uxsu 

Prom this identity, by a similar argument, we obtain the following alternative 
integration-by-parts formula. For all / G C2(Rd), we have 

nVf(xso)Us0Cs0} = -E[f(xs0)Rso}-
This formula is the variant discovered by Bismut, which is closely related to the 
Clark-Haussmann formula. 
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