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A N E W T E C H N I Q U E F O R P R O V I N G 

U N I Q U E N E S S F O R M A R T I N G A L E P R O B L E M S 

by 

Richard F. Bass & Edwin Perkins 

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday 

Abstract. — A new technique for proving uniqueness of martingale problems is intro­
duced. The method is illustrated in the context of elliptic diffusions in R d . 

Résumé (Une nouvelle technique pour démontrer l'unicité de la solution de problèmes de martin­
gales) 

Une nouvelle technique est introduite pour démontrer l'unicité de la solution de 
problèmes de martingales. On applique les résultats aux diffusions elliptiques dans R d . 

1. Introduction 

When trying to prove uniqueness of a stochastic process corresponding to an op­
erator, one of the most useful approaches is to consider the associated martingale 
problem. If £ is an operator and it; is a point in the state space <̂f, a probability P on 
the set of paths t —> Xt taking values in <̂  is a solution of the martingale problem for 
£ started at w if P ( X 0 = w) = 1 and f(Xt) - f(X0) - /Q* £f(Xs) ds is a martingale 
with respect to P for every / in an appropriate class J? of functions. 

The archetypical example is to let 

( L i ) Lf(x) = 
d 

i,j=1 

aij(x)Dijf(x). 

Here, and for the rest of this paper, the state space is M d, the probability measure is 
on the set of functions that are continuous maps from [0, oo) into Rd with the cr-field 
generated by the cylindrical sets, Dijf = d2f/dxidxj, and the class of functions 
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is the collection C$ of C2 functions which are bounded and whose first and second 
partial derivatives are bounded. 

Stroock and Varadhan introduced the notion of martingale problem and proved 
in the case above that there was existence and uniqueness of the solution to the 
martingale problem provided the were bounded and continuous in x and the 
matrix a(x) was strictly positive definite for each x. See [2] or [4] for an account of 
this result. 

In this paper we present a new method of proving uniqueness for martingale prob­
lems. We illustrate it for the operator £ given in (1.1) under the assumption that 
the dij are Holder continuous in x. Our proof does not give as strong a result as that 
of Stroock and Varadhan in that we require Holder continuity. (Actually, we only 
require a Dini-like condition, but this is still more than just requiring continuity.) In 
fact, when the CL<ij are Holder continuous, an older method using Schauder estimates 
can be applied. 

Nevertheless our technique is applicable to situations for which no other known 
method seems to work. A precursor of our method, much disguised, was used in [1] 
to prove uniqueness for pure jump processes which were of variable order, i.e., the 
operator can not be viewed as a perturbation of a symmetric stable process of any 
fixed order. The result of [1] was improved in [5] to allow more general jump processes. 
Moreover our technique is useful in problems arising from certain infinite dimensional 
situations in the theory of stochastic partial differential equations and the theory of 
superprocesses; see [3]. Finally, even in the elliptic diffusion case considered here, the 
proof is elementary and short. 

Stroock and Varadhan's method was essentially to view £ given in (1.1) as a 
perturbation of the Laplacian with respect to the space Lp for appropriate p. The 
method using Schauder estimates views £ as a perturbation of the Laplacian with 
respect to the Holder space Ca for appropriate a. We use a quite different approach. 
We view £ as a mixture of constant coefficient operators and use a mixture of the 
corresponding semigroups as an approximation of the semigroup for £ . 

We use our method to prove the following theorem. 

Theorem 1.1. — Suppose £ is given by (1.1), the matrices a(x) are bounded and uni­
formly positive definite, and there exist c\ and a such that 

(1.2) \aij(x) - CLij(y)\ < c i ( l A \x - y\a) 

for all i,j = 1,... ,d and all x,y G M d . Then for each w G M.d the solution to the 
martingale problem for £ started at w is unique. 

We do not consider existence, since that is much easier, and we have nothing to 
add to the existing proofs. The same comment applies to the inclusion of drift terms. 
In Section 2 we give some easy estimates and in Section 3 we prove Theorem 1.1. The 
letter c denotes constants whose exact value is unimportant and may change from 
occurrence to occurrence. 
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2. Some estimates 

All the matrices we consider will be d by d, bounded, symmetric, and uniformly 
elliptic, that is, there exist constants A m and AM such that 

(2.1) Am 
d 

E 
г=1 

z2 
1 

d 

j=1 
dijZiZj < AM 

d 

E 
i=l 

z2 (zu...,zd) €Rd. 

Given any such matrix a, we use A for a It follows easily that 

(2.2) s u p(è4) 1 

i ¿=1 

<AM 
1 ll 

SUP(E4) <A-1 
M 

Define 

(2.3) pa(t,x,y) = ( 2 7 r t ) - d / 2 ( d e t a ) - 1 / 2 e - ^ - x ) T ^ - x > / ( 2 t ) , 

and let 

(2.4) Pt

af(x)= f pa(t,x,y)f(y)dy 

be the corresponding transition operator. We assume throughout that the matrix 
valued function a(y) satisfies the hypotheses of Theorem 1.1 and (2.1). Note that for 
a fixed, pa(t,x,y) dy is a Gaussian distribution for each but that pa(y\t,x,y) dy 
need not be a probability measure. All numbered constants will depend only A m , A M 
and d. 

We have the following. 

Proposition 2.1. — There exist c\, C 2 and a function cs(p),p > 0, depending only on 
AM and A m , such that for all t,N,p > 0 and x £ Rd, 

(a) Jp<v\t,x,y) dy<Cl. 
(b) 

J\y-x\>N/\/t 
paM(tix,y)dy<c1e-c*N\ 

(c) For each i < d, 

f\xi-yi\2 

t 
\Vpa(y\t,x,y) dy<c3(p). 

Proof — For (a), after a change of variables z = (y — x)/y/t, we need to bound 

( (27r)- d/ 2(det a(x + z y / i ) ) - ^ e ' z T A ^ x + z ^ 2 dz 

(AM 

Am 

d/2 
( 2 7 r A M ) - d / 2 e - z T z / 2 A M dz < 

<AM^ 

Am 

d/2 

(b) and (c) are similar. 

Let 11/11 be the Co norm of / . 
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Proposition 2.2. — Let g G C2 with compact support and let 

F£(x) = J g{y)pa{y\e\x,y)dy. 

Then F£(x) converges to g(x) boundedly and pointwise as e —> 0. 

Proof. — Because g is bounded, using Proposition 2.1(a) we see that the quantity 
sup e > 0 | | F e | | is finite. We next consider pointwise convergence. After a change of 
variables, we have 

F£(x) = g(x + ^)(27r)" d / 2 (det a(x + £Z))-^e-^
TM^ez)z/2 d z 

Since \g(x + ez) - g{x)\ < e\z\ | |Vd| , F£ differs from 

g(x) f(27r)-d/2(det(a(x + £ z ) ) - 1 / 2 e - ^ A ^ + £ ^ / 2 ^ 

by at most 

||Vy|| j (27r)- d/ 2(det(a(x + ^ ) ) ) - 1 / 2 s | z | e - ^ ^ x + " ^ / 2 ^ , 

and this goes to 0 as e —• 0 by a change of variables and Proposition 2.1(c) with 
p = 1/2. Let 

V{e,x,z) = (27r)- d/ 2(det(a(x + e*)))-V2 E-* TA(*+«0*/2 # 

It therefore suffices to show 

V(eix,z)dz —• / V(Q,x,z)dzi 

where we note this right-hand side is 1. Using Proposition 2.1(b) and the same change 
of variables, it suffices to show 

J\z\<N 
V(e,x, z) dz —> 

'\z\<N 
V(0,x,z) dz. 

But this last follows by dominated convergence. 

Proposition 2.3. — There exists a constant c± such that 

\a,ij(y) - o,ij(x)\ | A j P a ( w ) ( * , a ; , 2 / ) | dy < 
C A Í * " 1 , 

c±t \ 

t < 1, 

t> 1. 

Proof. — A computation shows that 

(2.5) DijP

a^(t,x,y) 

= t - y * ( v ) (t, x, y) E E 
k I 

(Vk - xk)Aki(y)Aij(y)(yi - xi) 

t 
Aij(y) . 

ASTÉRISQUE 327 



UNIQUENESS FOR MARTINGALE PROBLEMS 51 

By (2.2) and Cauchy-Schwarz we have 

(2.6) 

I \aij(y) - aij(x)\ \DijP

a^(t,x,y)\dy 

\aij(y) - o « C r ) | i - y * < * > ( t , - j / | 2 * _ 1 A~ 2 + A" 1] dy. 

Suppose first that t < 1. By the Holder condition on a the above is at most 

c / - ^ [ — r - + 1 J p<y\t,x,y)dytal2-1 

<cta/2-1 

where we have used Proposition 2.1(c) in the last inequality. 
For the case t > 1 simply use the boundedness of a in (2.6) and Proposition 2.1 

again to bound it by ct~x. • 

3. Proof of Theorem 1.1 

For /GC6

2
 and a a matrix with constant coefficients define 

Maf{x) = 
d 

j=1 
aijDijf(x). 

Define the corresponding semigroup bv (2.4), and let 

Raxf = 
Jo 

e~XtPt

afdt. 

For / G C 6

2 we have 

£f(x)=JU?<x)f(x). 

Note that 

(3.1) (A - Ma(y))Ra

x

iy)P?(y)f(x) = P^y)f{x). 

One way to verify that the superscript a(y) does not cause any difficulty here is to 
check that 

d 

i,j=1 
a>ij(y) 

d2 

dxidxj 
Pa{y)(s,x,y) £-sP

aM(s,x,y), 

and then in the definition of R^y^ use integration by parts in the time variable. By 
replacing e with e/2, setting f(z) = pa(y\e/2yz,y) and using Chapman-Kolmogorov, 
we see that (3.1) implies 

(3.2) (A - Ma{y)){Ra

x

{y)pa^{e, - ,»))(*) = pa{y\e,x,y). 

We are now ready to prove Theorem 1.1. 
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Proof. — Suppose Pi, P2 are two solutions to the martingale problem for £ started 
at a point w. Define 

StA = Ei 
/»OO 

'0 
e-xtf(Xt)dt, ¿ = 1,2, 

and 

s£f = s\f-sl 

We make two observations. First, because need not come from a Markov process, 
S\f is not a function, and so S£ is a linear functional. Second, if 

E = sup \s?f\, 
II/II<I 

then O < 0 0 . 
If / £ C\, then by the definition of the martingale problem 

Eif(Xt)-f(w) = Ei f £f(Xs)ds, i = 1,2. 

Multiply both sides by Xe A t , integrate over t from 0 to 0 0 , and use Fubini to obtain 

f(w) = S\(Xf - £f), » = 1,2, 

or 

(3.3) S\(^f - £f) = 0. 

Let g G C 2 with compact support and set 

fe(x) = RaM(p°M(e,;y))(x)g(y)dy. 

Since this is the same as 

e-AE 
oo 
E e-xtpa(y)(tìxìy)dtg(y)dyì 

we see that f€ is in C2 in x by dominated convergence. 
To calculate (A — £)f£ it is easy to differentiate under the dy integral and so we 

may write 

{X-£)fs(x) = (X-Ma{x))fe(x) 

I (A - ^)flfV(a)(e, ;y))(x)g(y) dy 

+ ({M<y) -Ma(x))RÎ(y)(paiv)(e,;y))(x)g(y)dy 

:= I£(x) + J£(x). 

ASTÉRISQUE 327 
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By Proposition 2.3, 

\Je(x)\ < 

d 

i,j=1 

/*oo 

/0 
e~xt \dij(y) - aij(x)\ 

x | ^ p a ^ ( e + t ,x ,y ) | | ^ (y ) |dyA 

<d2\\9\\ r 
'0 

e-XtCit-l(ta'2 M)dt 

< h\9i 
for A > A 0 ( a , d , c 4 ) . By (3.2), I£(x) = Jpa("y\e,x,y)g(y) dy, and so by Proposition 

2.2, I£(x) converges to g boundedly and pointwise. Since SX(X — £)fe = 0 by (3.3), 

we have \S£le\ = | S f J e|. Letting e 0, 

| S f o | = linii\S£le\ = lim | 5 f J e | < eiimsup| |J e | | < |e||^||. 
£—•0 e—•O £_».0 

Using a monotone class argument, the above inequality holds for all bounded p, and 
then taking the supremum over g such that \\g\\ < 1, we have © < | 0 . Since © < oo, 
this implies that 0 = 0. 

Prom this point on, we use standard arguments. By the uniqueness of the Laplace 
transform together with continuity in £, Eif(Xt) = E2f{Xt) for all t if / is contin­
uous and bounded. Using regular conditional probabilities, one shows as usual that 
the finite dimensional distributions under Pi and P2 agree. This suffices to prove 
uniqueness; see [2] or [4] for details. • 

Note that no localization argument is needed in the above proof. 
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