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DIRECT IMAGE FOR SOME SECONDARY K-THEORIES 

by 

Alain Berthomieu 

This article is dedicated to J.-M. Bismut, for his sixtieth birthday 

Abstract. — The real counterpart of relative if-theory (considered in the complex 
setting in [4]) is considered here, some direct image under proper submersion is 
constructed, and a Grothendieck-Riemann-Roch theorem for Johnson-Nadel-Chern-
Simons classes is proved. Metric properties are also studied. 

This needs to revisit the construction of 77-forms in the case where the direct 
image is provided by the vertical Euler (de Rham) operator. A direct image under 
proper submersions of some "non hermitian smooth" or "free multiplicative" X-theory 
is deduced (in the same context). 

Double submersions are also studied to establish some functoriality properties of 
these direct images. 

Résumé (Image directe pour certaines if-théories secondaires). — On construit un mor-
phisme d'image directe par submersion propre pour la version réelle de la if-théorie 
relative (considérée dans [4] dans un contexte holomorphe), et un théorème de type 
Grothendieck-Riemann-Roch est établi pour les classes de Johnson-Nadel-Chern-
Simons. On étudie aussi des propriétés métriques. 

Ceci nécessite de construire des formes 77 (de transgression du théorème d'indice 
des familles) dans le cas où l'image directe est définie par l'operateur d'Euler (de 
Rham) des fibres. On en déduit également un morphisme d'image directe pour une 
If-théorie « lisse non hermitienne » ou « multiplicative libre ». 

La question de la fonctorialité de ces images directes pour des doubles submersions 
est également abordée. 

1. Introduction 

In [35], Nadel proposed characteristic classes (also considered by Johnson [23], 

see infra) for triples (E,F,f) where E and F are holomorphic vector bundles on 
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290 A. BERTHOMIEU 

some Kahler manifold X , and / : E F is a C°° vector bundle isomorphism. He 
conjectured that if X is projective, his classes, which take their values in H^odd\X), 
were projections of the image by the Abel-Jacobi map of the difference of the Chow 
group valued Chern classes of E and F. Inspired by [26] §6, I developped in [4] 
a notion of relative if-theory which appeared as suitably adapted to describe such 
triples considered by Nadel. This theory measures the kernel of the forgetful map 
from the i f °-theory of holomorphic vector bundles on X to the usual topological i f °-
theory. As such, if X is projective, any pointed fine moduli space of vector bundles 
on X naturally maps to this relative If-theory. Moreover, it is rationally isomorphic 
to the Chow subgroup of homologically trivial cycles. 

In [4], Johnson-Nadel classes were extended by considering a suitable projection of 
the Chern-Simons transgression form associated to compatible connections on E and 
F. The obtained characteristic class was proved to solve a generalised form of Nadel's 
conjecture. 

I realised very recently that D. Johnson already obtained partial results in this 
direction: in [24] it seems that the same classes as considered by Nadel were denned, 
and in [23] some weaker version (than in [4]) of the classes were constructed and a 
weaker version of the "generalized Nadel conjecture" was proved. 

[4] also contains direct images and Grothendieck-Riemann-Roch type results for rel­
ative if-theory and its characteristic class, for submersions and immersions of smooth 
projective varieties. 

One of the goals of this article is to study the counterpart of this theory in the 
context of complex flat vector bundles over some real smooth manifold M. The cor­
responding relative if-theory was defined by Karoubi [26] §6 and studied by Karoubi 
and Dupont [17]. It is here described from objects of the form (E, Vp, F, Vp, / ) where 
/ is a smooth vector bundle isomorphism between complex vector bundles E and F 
endowed with flat connections V# and Vp (see Definition 4). If M is compact, the 
pointed algebraic variety V p of flat vector bundle structures on some fixed topological 
vector bundle on M naturally maps to this relative if-theory. 

If 7r: M —> B is a proper submersion, I construct here (see Definition 26 and 
Theorem 27) a direct image morphism 7r*: i f ^ e l ( M ) —• K^EL(B). The main technical 
problem consists in finding a vector bundle isomorphism (or something equivalent) 
between representatives of TT\E and TT\F as virtual flat vector bundles on B in such a 
way that the direct image becomes natural and functorial. 

The counterpart here of Johnson-Nadel classes is simply given by Chern-Simons 
transgression forms in odd degree de Rham cohomology: 

( i ) ^ c h ( E , V E , F , V F , / ) = [ch(V E,rV F)] e HfR

d(X). 
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DIRECT IMAGE FOR SOME SECONDARY K-THEORIES 291 

Because of its rigidity properties, this Chern-Simons class may essentially detect dif­
ferent connected components of the above algebraic variety Vi?, and the class of the 
determinant line bundle (see §2.3). 

A Grothendieck-Riemann-Roch type theorem for Jf^ (Theorem 29) is obtained as 
a by-product of the constructions performed in pursuing the second goal of the article, 
namely the study of "free multiplicative" or "non hermitian smooth" if-theory. This 
if-theory, denoted by ifch is generated by triples of the form (E, V, a) where V is a 
connection on the complex vector bundle E over M and a is an odd degree differential 
form defined modulo exact forms. Relations are direct sum and if / : E —• F is any 
smooth vector bundle isomorphism: 

(2) (E, V B , o) = (F, V F , a + ch(VE, / ' V F ) ) 

(Here ch is again a Chern-Simons transgression form). K° e l and are related by a 
commutative diagram whose lines are exact sequences (see Proposition 10): 

(3) 

K l v { M ) • K r° e l(M) • tf°at(M) > K l v { M ) 

V 1 * * 1 I 1 1 

K l p ( M ) fiodd(M)/df2even(M) > £ c h ( M ) > K ° o p ( M ) 

In this diagram, fi*(M) denotes differential forms, i f t o p denotes ordinary if-theory, 
and iffl a t denotes the if 0 theory of the category of flat bundles modulo exact se­
quences. For any vector bundle E on M endowed with a flat connection V#, the 
image in K c h ( M ) of ( E , V E ) € K% a t(M) is the triple (E, V^,0). 

On one hand, Karoubi's multiplicative if-theory [26] [27] [28] consists of quo­
tients (the form a being defined modulo greater subgroups than only exact forms) of 
subgroups (defined by restrictions on the Chern-Weil character form ch(V)) of this 
theory. These subgroups and constraints stemm from natural nitrations of the de 
Rham complex of M suitably adapted to the geometry studied. In [28], Karoubi 
studies foliations for which he constructs generalisations of the Godbillon-Vey invari­
ant, and holomorphic and algebraic varieties for which known characteristic classes 
for holomorphic or algebraic vector bundles are shown to factor through the suitable 
multiplicative if-theory. Poutriquet [36] studies the context of conical singularities. 
The corresponding multiplicative if-theory he constructs shows interesting similarities 
with intersection cohomology. Felisatti and Neumann [18] generalise the concept of 
multiplicative if-theory to simplicial manifolds with applications to classifying spaces 
of Lie groups and Lie groupoids. 

As an example, the multiplicative if-theory adapted to the study of flat bundles 
is the subgroup of ifch generated by triples (E, V, a) such that 

(4) c h ( V ) - d a € Z c f t e v e n ( M ) 
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292 A. BERTHOMIEU 

Removing this constraint would justify the name "free multiplicative" if-theory. Di­

rect image results for ifch should have corollaries for "nonfree" multiplicative if-

theories under mild compatibility conditions on the filtrations of the de Rham complex 

used to define them. 

On the other hand, Bunke and Schick [14] defined a smooth (hermitian) if-theory, 

which coincides with the subgroup of ifch generated by triples (E, V , a ) where a 

is a real form and V respects some hermitian metric on E. Bunke and Schick's 

smooth if-theory is motivated by quantum field theory considerations [19] and it fits 

in the general framework of smooth extensions of generalized cohomology theories 

[20] [21]. Among other examples, Bunke and Schick construct interesting smooth if-

theory canonical classes on homogeneous spaces and generalisations of parametrized 

p-invariants [14] §5. 

Allowing nonunitary connections (and nonreal forms) would justify the name "non 

hermitian smooth if-theory". Anyway, the hermitian restriction would prevent from 

obtaining a natural morphism i f § a t ( M ) — • i f c h(M) because of the existence of 

nonunitary flat vector bundles. 

The obstruction for a flat bundle (E,VE) to be unitary can be detected by char­

acteristic classes similar to Jf^E, V#, E, V|i, Id#) where Vj£ is the adjoint connec­

tion of VE with respect to any hermitian metric on E (22). Such classes were first 

considered by Kamber and Tondeur [25], they correspond to the imaginary part of 

Chern-Cheeger-Simons classes [15], (see [11] Proposition 1.14). Karoubi proved in 

[26] §6.31 that they could detect some Borel generators of algebraic if-theory of in­

teger rings in number fields [12]. See also [11] §I(g) for an interpretation as stable 

characteristic classes arising from stable continuous cohomology of GL(C). 

Here this Borel-Kamber-Tondeur class is extended to ifch- It is not always a 

cohomology class, but rather a purely imaginary differential form defined modulo 

exact forms (see Definition 16). 

Moreover, a direct image morphism for ifch under proper submersions is con­

structed (Theorem 31), which is compatible with the usual (sheaf theoretic) direct 

image of flat vector bundles (using fiberwise twisted de Rham cohomology, see Defi­

nition 22). This is performed from the families analytic index of the fiberwise twisted 

Euler operator together with a suitable 77-form which is a non hermitian generalisa­

tion of that of Bunke [13] (Theorem 28). Functoriality is established only for the 

"nonfree" multiplicative subgroup of if ch subject to the constraint (4), using some 

universal characterisation of the 77-form. 

Finally the symmetries induced by the fiberwise Hodge star operator are studied. 

Reality (resp. vanishing) properties of the pushforwards are established in the even 

(resp. odd) dimensional fibre case (Theorems 32 and 33). 

ASTÉRISQUE 327 



DIRECT IMAGE FOR SOME SECONDARY K-THEORIES 293 

The paper is organized as follows: the definitions of if-theories and characteristic 
classes, and their mutual relations are given in §2, the pushforward morphisms are 
defined and all the theorems are stated in §3, the construction of the direct image 
for relative if-theory is performed in §4, the construction of the 77-form and all its 
consequences are detailed in §5, and §6 is devoted to results about symmetries induced 
by the fiberwise Hodge star operator. Finally, double fibrations are studied in §7. This 
paper is a reformulation of previously diffused preprints. I apologize for some changes 
of title, names and notations between earlier versions and this one. 

I am very grateful to Thomas Schick, Sebastian Goette, Kiyoshi Igusa, Xiaonan 
Ma, Weiping Zhang and Xianzhe Dai for their kind invitations to Oberwolfach and 
Tianjin conferences and to Ulrich Bunke for giving me the idea to free multiplicative 
if-theory of the constraint (4). 

2. Various if-theories 

After recalling some facts about Chern-Simons transgression in §2.1, the definitions 
of all the if-theory groups considered here are given in §2.2. §2.3 is devoted to the 
counterpart of Johnson-Nadel's classes defined in [4], §2.4 to the diagrams and exact 
sequences in which these if-groups enter, §2.5 and §2.6 to hermitian metrics and the 
extended Borel-Kamber-Tondeur class on ifch-

2.1. Preliminaries 

2.1.1. Connections and vector bundle morphisms. — Let M be a smooth manifold. 
Let E and F be two vector bundles on M. Two vector bundles isomorphisms / and 
g: E F are called isotopic if there exists a smooth family {ft)te[o,i] of isomor­
phisms ft: E F such that fo = f and / 1 = g. Suppose that E and F are endowed 
with connections V # and V F respectively (which need not be flat). A vector bundle 
morphism (which does not need to be an isomorphism) / : E —• F is parallel if 
V F O / = / o V E . For three vector bundles E and E" endowed with connections 
VE/, VE and V E " , the short exact sequence 

(5) 0 —> E' - U E E" —+ 0 

is parallel if the morphisms i and p are parallel with respect to V#/, V# and V#". 
Parallel longer exact sequences or complexes of vector bundles are defined in a similar 
obvious way. In such parallel long exact sequences (or complexes), the kernel or image 
subbundles are respected by the connections of their ambient bundles (which are not 
supposed to be flat), so that cokernel or coimage bundles inherit natural connections 
(which need not be flat). Thus, longer parallel exact sequences (or complexes) can be 
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decomposed, in the classical way, in several short exact sequences (see (56) and (57)) 

which turn out to be themselve parallel. 

2.1.2. Chern-Simons transgression forms. — For any vector bundle G on M the 

vector space of smooth differential forms on M with values in G will be denoted by 

fi*(M, G). A connection VE on the smooth vector bundle E on M gives rise to an 

exterior differential operator d7E on fi*(M, E). Its square is the exterior product with 

an element of f£ 2(M, EndE) (in particular, it does not differentiate). This element of 

Q 2 ( M , End-E) is the curvature of VE and will be denoted by V | . Chern-Weil theory 

associates to E and VE the following complex differential form on M 

(6) ch(V^) = TV exp 
1 

2m 
V 2 = 0 T r e x p ( - V | ) 

where (j) is the operator on even degree differential forms which divides 2/c-degree 

forms by {2/Ki)k. This form is closed, its de Rham cohomology class is independent 

of V F and equals the image of the Chern character of E in Heven(M, C) . 

Consider pi: M x [0,1] —• M (the projection on the first factor) and the bundle 

E — p\E on M x [0,1], choose any connection VE on E, denote for all t G [0,1] by 

VEJ the restriction V F | M X { * } - Extend <f> to odd forms by deciding that 0 divides 

(2k — l)-degree forms by (2ni)k, and define 

(7) 

ch(V£;,o, VE,i) = 
J[o,i] 

c h ( V £ ) = -
^0 

0Tr 
VE 

dt 
exp - v i , ) dt 

1 

2ni f 
/o 

T r 
VE 

dt 
exp 

1 

2ni 
v F , t dt. 

Modifying VE (without changing VF,O nor V # ? i ) changes C1I(VF,O? V F , I ) by addition 
of an exact form. This form is a "transgression" form in the sense that: 

(8) dch(V£,o, V^.i) = ch(VE,i) - ch(V£, 0) 

Its class in ftodd(M,C)/dfteven(M,C) is functorial by pull-backs, and locally gauge 

invariant, which means that ch(V,#*V) is an exact form if g is a global smooth 

automorphism of E isotopic to the identity. 

If VF,2 is a third connection on E, Chern-Simons forms verify the following cocycle 

equality (modulo exact forms): 

(9) C1I(VF,O, V F , 2 ) = ch(V£?,0, V B , I ) + ch(V B ,i , V F , 2 ) . 

In particular C1I(VF,O, V F , I ) = - C ! I ( V F , I , VF,O)-

Let VF,* 0 VF,I D e the canonical direct sum connections o n E © F associated to 

V#,i and Vp,*, the additivity of the Chern character form (6) for such direct sum 

connections yields the following equality (modulo exact forms): 

(10) C!I(VF,O 0 VF,O, VF , I 0 V F , I ) = C1I(VF,O, V F , I ) + C1I(VF,O, V F , i ) . 
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Consider a short exact sequence as in (5), and a bundle morphism s: E —» E' such 

that s o i is the identity of E'. Then s 0 p : E E' 0 E" is an isomorphism. 

Lemma 1. — ch(Vp, (s 0p)*(Vp> 0 Vp") ) vanishes if the exact sequence is parallel 

with respect to Vp/ , Vp and Vp" • 

Proof. — The fact that i and p are parallel means that with respect to the decom­

position E = E' 0 E" (provided by the isomorphism s 0 p), the connections Vp and 

(s 0p)*(Vp/ 0 Vp>/) differ from a one-form w with values in Hom(£ , / / ,£"). 

Consider the path of connections V* = Vp — tcu. Then, u is upper triangular with 

respect to the decomposition E = E' 0 and thus V t

2 too. But a; has vanishing 

diagonal terms. Consequently, the trace vanishes in the Formula (7) applied to this 

situation, and this proves the lemma. • 

2.2. Definitions of the considered if-groups 

2.2.1. Topological K-theory 

Definition 2. — The topological K°-group K®op(M) is the free abelian group generated 

by isomorphism classes of smooth complex vector bundles on M modulo direct sum. 

Let p\ \ M x S1 —• M be the projection on the first factor, the topological K1 -group 

Ktop(M) is the quotient group i f t ° o p ( M x S1) / p\Klp{M). 

Klop{M) is isomorphic to the kernel of the restriction map L* : K®op(M x S 1 ) 

K®op(M x {pt}) where pt is some point in S1 and L: pt —> S1 the inclusion map. 

One can also describe K}op(M) as generated by global smooth automorphisms QE 

of any vector bundle E on M ; the corresponding element of K®OP(M x S1) is the 

formal difference of the vector bundle obtained by gluing using g& the restrictions to 

M x { 1 } and M x { 0 } of the pull-back of E on M x [0,1], minus the pull-back of E 

o n M x S 1 . Any element of i f t

1

o p ( M ) can be represented in this way with some trivial 

vector bundle as E. 

2.2.2. K°-theory of the category of flat bundles. — The connection V# on the vector 

bundle E on M is said to be flat if its curvature V f G H 2 ( M , Endi?) vanishes. The 

couple (E, VE) is then called a flat vector bundle. Two flat vector bundles (E, V#) and 

(F, Vp) are isomorphic if there exists some vector bundle isomorphism / : E F 

which is parallel with respect to V# and Vp. 

Definition 3. — The group i f ^ a t ( M ) is the quotient of the free abelian group generated 

by isomorphism classes of flat vector bundles, by the following relation: 

( h ) (E,VE) = (E',VE,) + (E",VEI,) if 0 - » E' -U E -?-> E" -> 0 

is a parallel exact sequence. 
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If a flat vector bundle (F, V E ) admits some subbundle which is respected by V E , 

then the subbundle and the quotient bundle inherit connections, which are both flat 

(a similar result is proved in [11] Proposition 2.5). Following the comment of the end 

of §2.1.1, longer parallel exact sequences (or complexes) of flat vector bundles can 

be decomposed in short parallel exact sequences of flat vector bundles (see (56) and 

(57)). 

2.2.3. Relative K-theory. — Consider now on M quintuples (E, V E , F, Vp, / ) where 

(F, V E ) and (F, Vp) are flat vector bundles on M , and / : E —> F is a smooth 

isomorphism. Two objects (E, Vp, F, Vp, / ) and ( G , VG, H, V# , h) are isomorphic if 

there are parallel isomorphisms cpE' E -^-» G and (pp: F H which verify that 

h = ipF o f op"1. 

Definition 4. — K®el(M) is the quotient of the free abelian group generated by such 

isomorphism classes of quintuples modulo the following relations: 

(i) (E, Vp, F, Vp, f) = 0iffis isotopie to some parallel isomorphism 
E, V E , F, V P , / ) + ( G , V G , H, V * , h) = 

(ii) 
= (E 0 G , VE 0 V G , F 0 H, Vp 0 V#, / 0 h) 

(iii) (E, V E , E ' 0 V E ' 0 V E - , s 0 p ) vanishes in K^eì(M) if there is a short exact 

sequence of flat bundles as in (11) above and if s: E —> E' is a smooth bundle 

map such that s oi is the identity of E'. 

Remark 5. — Note that (E, Vp, F, Vp, / ) = (E, Vp, F, Vp, g) if / and g are iso­

topie, that ( F , V p , F , V p , / ) + ( F , V F , G , V G , # ) = ( £ , V E , G , V G , £ O / ) , and that 

( £ , V E , F , V p , / ) = ( £ ' , V p / , F ' , V F , , / ' ) + ( £ " , V p " , F " , V F " , / " ) if 

(12) 

0 > F ' > F > E" > 0 

4 [f I'" 
0 > F' > F > F" > 0 

is a commutative diagram whose lines are short exact sequences in the category of 

flat vector bundles (on M ) . 

In fact the first one and the third one of these three relations are together equivalent 

to ( i) , (ii) and (iii) so that they can be used to provide an alternative definition of 

K r ° e l ( M ) (see [4] §2.1 for details). 

Independently, relation (iii) above is equivalent to the following 

(iii)' (E' 0 E", Vp/ 0 V E " , E, V E , i + j) vanishes in K^el(M) if there is a short exact 

sequence of flat bundles as in (11) above and if j : E" —» E is a smooth bundle 

map such that p o j is the identity of E". 

In fact, i + j is isotopic to (s 0 p ) _ 1 . 
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2.2.4. "Free multiplicative" or "non hermitian smooth" K-theory. — Consider some 

triple (£", Vp, a) where E is a smooth complex vector bundle on M , Vp a connection 

on E and a an odd degree differential form defined modulo exact forms. Two such 

objects (Ei, V p 1 } a i ) and (E2, Vp 2 , a2) will be equivalent if there is some smooth 

vector bundle isomorphism / : E\ —• E2 such that 

(13) a2 = ai + c h ( V p 1 5 / * V p 2 ) 

This is compatible with iterated changes of connections (see (9)). 

Definition 6. — The group i f c h(M) is the quotient of the free abelian group generated 

by such equivalence classes of triples modulo direct sum (of the vector bundles, with 

direct sum connection and sum of the differential forms). 

The Chern character on i f c h(M) is the map 

(14) di: (E,VE,a) G Kch(M) .—• ch(Vp) - da G fteven(M,C). 

Equations (8) and (10) ensure that ch is well defined. 

The kernel of ch will be denoted K^JZ(M) following [30] Definition 3. The preimage 

MK°(M) of Z by ch was considered by Karoubi in [26] §7.5 and [28] EXEMPLE 3. 

Of course, MK°(M) = Z 0 K~^Z(M) is the subgroup of Kch(M) generated by the 

triples (E, Vp ,a ) as above, but subjected to the extra condition: 

(15) da = ch(Vp) - rkE. 

This is why Kch is considered as "unrestricted" with respect to MK°(M), and called 

"free" multiplicative if-theory. The relation with the smooth if-theory considered by 

Bunke and Schick in [14] will be explained in §2.6. 

2.3. Chern-Simons class on relative if-theory 

Definition 7. — The Chern-Simons class on K®el(M) is defined as 

(16) ^ c h ( £ , V p , F , V p , / ) = [ch(Vp,/*Vp)] G F o d d ( M , C ) 

(of course ch(Vp,/*Vp) is closed since ch(Vp) and ch(/*Vp) both equal rkE). 

Arguments as in [4] Theorem 3.5 and its corollary allow to prove the 

Proposition8. — J ĉh induces a group morphism from KQG1(M) to i f o d d ( M , C) . 

Arguments as in [4] §5.1 and 5.2 or [35] allow to prove the following facts: 

— Let $ multiply 2k and (2k — l)-degree forms by then $ch is the Chern 

character without denominators. The nonintegrality of $9fch(E, Vp, F, Vp, / ) 

detects the fact that (E, VE) ^ (F, Vp) G i f ^ a t ( M ) . 
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— The nonintegrality of the degree> 3 components of QN^E, Vp, F, Vp, / ) de­

tects the fact that (F, Vp) cannot be obtained from (E, Vp) through a deforma­

tion of flat bundles, where a deformation of flat bundles on M is a smooth vector 

bundle E on M x [0,1] with a connection V whose restriction to Et = E\Mx{ty 

is flat for any point t G [0,1] and such that (#o> V | m x { o } ) — C ^ > V e ) and 

(EUV\MX{I}) = (F,VF) 

— The nonnullity of the degree> 3 components of ^ c h ( F , Vp, F, Vp, / ) detects 

the fact that (F, Vp) cannot be obtained from (E, Vp) through a deformation 

of flat bundles, for which the parallel transport along [0,1] would be isotopic to 

/ • 

— If (F, Vp) can be obtained from (E, Vp) by deformation of flat bundles, then the 

degree 1 component of 9f modulo integral cohomology detects the variation 

of the determinant line. 

The third statement is known as the rigidity of higher classes of flat bundles. 

Remark 9. — Let (E, Vp, F, Vp, / ) G K?el(M). Define u) = /*Vp - Vp (then of 

course UJ G r^ x (M, EndF)). It can be proved as in [4] Lemma 4.3 that in fact 

(17) c h ( V £ ) . f V F ) = -

[ d i m M j 

r = ] 

1 
2TTi 

r ( r - 1 ) ! 
(2r - 1) 

T R ^ 2 7 " " 1 ) . 

(This is of course a particular property of flat connections and cannot be generalised 
to any connections). Thus ^ c h ( F , Vp, F, Vp, / ) can be computed in the same way 
as the classes studied in [35] and [11]. 

2.4. Relations between the preceding K-groups. — The Chern character 

ch: K®op(M) —> i J e v e n ( M , C ) is obtained by considering the de Rham cohomology 

class of the form of (6). 
Consider some element (3 of K% (M). Represent it by some vector bundle over 

M x S1. Integrate along 5 1 the Chern character of this bundle, the obtained class 

in Hodd(M, C) is the Chern character of (3. If /3 is represented by some global auto­

morphism QE of some vector bundle E on M as in the construction after Definition 2, 

then it follows from (7) that for any connection V on E 

(18) ch(/3) = c h ( V , o W ) . 

If E = CN is trivial (then denote QE by gc"), let dCN be its canonical trivial flat 

connection, the formula 

(19) /3 G KlJM) (CN,dCNX
N,dCN,gCN) 

defines a group morphism (p (see [4] Proposition 2.2 for a proof). 
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K^!el(M), Kfl&t(M) and i^ c h(M) are related by the following morphisms: 

( 2 0 ) 

K°at(M)-^>Koch(M) 

(E, VE,F, VF, /) (F, V F ) - (E, VE) 
and 

K°at(M)-^>Kch(M) 

( £ , V F ) ^ ( £ , V F , 0 

K is well defined thanks to Lemma 1, and takes its values in MK°(M). 

Let 7 G ^ o d d ( M , C ) / d ^ e v e n ( M , C ) . It is easily checked that the following ele­

ment 0(7) = (E, V F , OL + 7) — (E, V F , ®) of i f c h(M) is independent on the choice of 

(£", V F , a) of Kch(M) used to compute it. 0(7) G M i f ° ( M ) if and only if 7 is closed. 

Consider the obvious forgetful maps from K2 t or ifch to if£>D: 

Proposition 10. — This diagram commutes. Its lines are exact sequences: 

( 2 1 ) 

Klv{M) - Ï L - > X r 0 e l (M) — * T f l ° a t ( M ) • < p ( M ) 

4 P ( M ) — i J o d d ( M , C ) — M X ° ( M ) • ÜT t° o p(M). 

in tfiw diagram, the part "Hodd(M, C) M i f ° ( M ) " can 6e replaced by 

^ o d d ( M , C ) / ^ e v e n ( M , C ) K c h ( M ) " nwttoti* /osmp the commutativity nor 

the exactness of the second line. 

Proof. — A proof of the exactness of the first line can be found (in the holomorphic 

setting) in [4]. A proof of the exactness of the second line can be found in [27] 
Theoreme 5.3. This proof generalises easily to the proposed modified second line. 

The commutativity of the right square is tautological. The commutativity of the left 

square follows from ( 1 6 ) , ( 18 ) and ( 1 9 ) . The commutativity of the central square is 

a consequence of the compatibility of (20 ) and ( 1 3 ) with the definitions of a and of 

Nch- The proposed replacement in the middle of the second line has no influence on 

the commutativity of the squares. • 

2.5. Symmetries associated to hermitian metrics. — For any complex vector 

bundle E on M endowed with a hermitian metric hE and a connection V F , the adjoint 

connection V £ of V F is defined as follows: 

( 2 2 ) hE{V*Eva,6) = v.hE(v,0) - hE(a,VEv0) 

where a and 6 are local sections of v is a tangent vector, v . / is the derivative of the 

function / along v, Vj£v0- is the derivative of a along v with respect to the connection 

and accordingly for VEv0. Of course (V£)* = V F , (and V F = V£ if and only if 

V F respects the hermitian metric hE). 

Adjoint connections allow to define conjugation involutions on the above considered 

if-groups (on the model of complex conjugation): 
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Definition 11. — The conjugate elements of (E, Ve) € K^at(M), or 

(E,VE,F,VF,f) e K°eì(M), or (E, VE,a) <E Kch(M) are defined by: 

(23) 

(E,VE)
c = (E,VB)eK^t(M) 

(E, VE, F, VF, f)c = (E, V*E, F, V*F, / ) e K^{M) 

(E,VE,a)c = (E,VE,â) e Kch(M). 

Lemma 12. — The above formulae define involutive group automorphisms. Moreover 

(24) 
9fch{E, V*E, F, V*F,f) = JlTch(E, VE, F, VF, f) 

ch(E, VE,a) = ch(E, VE,a). 

Proof. — The curvatures VE and VE

2 are mutually skew adjoint, so that VE is flat if 

and only if VB is. Thus (E, VE) and (E, VE, F, VF, / ) really define classes in K%at(M) 

and K®el(M) respectively. 

If hf and hE are two different hermitian metrics on E, define the global auto­

morphism gE of E by the following formula, valid for any local sections a and 6 of 

E: 

(25) hE(a,e) = hf(gE(o-),e) 

Call Vj£ x and Vj£ 2 the adjoint of Vp relatively to hf and hf respectively, then V ^ x 

and Vj£ 2

 = 9E1J^E I9E are gauge equivalent. This proves that in the first and third 

cases, the if-theory classes of the proposed elements are independent of the hermitian 

metrics used to define them. 

Note that gE is isotopic to the identity of E. If one chooses two hermitian metrics 

on F and compute in the same way the corresponding automorphism gp, then / and 

gF o / o g^1 are isotopic. This proves the independence on the hermitian metrics on 

E and on F of the class of (E, V£, F, V£, / ) in K r ° e l ( M ) . 

Consider a parallel exact sequence of the form (11) where E*E and E" are endowed 

with hermitian metrics. Its transpose 

(26) 0 -* E" E E' - > 0 

turns out to be a parallel exact sequence with respect to the adjoint connections on 

E", E' and E. This proves the first statement (on K^at) of the lemma. The second 

formula of the lemma associates to any quintuple of the same form as in relation (in) 

in Definition 4 a quintuple of the form appearing in relation (in)1 in Remark 5. This 

proves the second statement (on K®el) of the lemma. 

The fact that the curvatures of Vp and Vj£ are mutually skew adjoint has the 

following consequence (which proves the last statement (on ch) of the lemma): 

(27) ch(Vl) = ch (V E ) . 
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Finally, considering the adjoint connection of Vp in Formula (7) yields (using (27)) 

the following relation modulo exact forms: 

(28) ch(V£ ) 0, V | F L ) = ch(Vp, 0, Vp,i) 

where V£ 0 and 1 are adjoint of Vp5o and Vp,i with respect to possibly different 

hermitian metrics on E. The compatibility of the third line of (23) with relation (13) 

follows. This proves the third statement (on KCH) of the lemma. The statement on 

5^ch is a direct consequence of (28). • 

(27) and (28) imply that ch(Vp,o) and ch(Vp ? u, Vp,i) are real forms if Vp,o and 

VE,I respect (possibly different) hermitian metrics on E. 

Elements of K^EL(M) of the form (E, Vp, E, Vj£, Idp) are purely imaginary with 

respect to this conjugation; conversely, the subgroup of K®EL(M) generated by such 

elements is equal to, or of index 2 in, the purely imaginary part of K®EL(M). This is 

because (see the beginning of Remark 5) 

(29) 
(E, VE, F, VF, f)-(E, V*E, F, V*F, f) = 

= (F, V F , F, V*f, Up) - (E, V E , E, V E , ldE). 

2.6. Borel-Kamber-Tondeur class on K^. — In the notation of (25), the fact 

that gE is isotopic to the identity proves that and V ^ 1 are locally gauge invariant. 

Thus 

Lemma 13. — Let E be a vector bundle with connection Vp. Let VE be the ad­
joint of VE with respect to any hermitian metric on E. The class o/ch(V|; ,Vp) in 
ftodd(M,C)/dfteven(M,C) i s independent of the metric hE. 

Moreover, it is a purely imaginary form, since: 

(30) ch(VE, VE) = -ch(VE,VE) = -ch(V*E,VE). 

Consider the connection VE = \(yE + VE); it respects hE, and 

(31) c h ( V | , VE) = ch(V| , V£) + c h ( V | , VE) = 20m(ch(V£, VE)). 

Finally, if Vp5o and Vp,i are connections on E, then the cocycle condition (9) produces 

the following relation modulo exact forms 

(32) 
c h ( V ^ 1 ; V B , I ) - ch(V*Efi, V B , 0 ) = ch(V £ , 0 ) VE,i) - c h ( V | I 0 , VEA) 

= 2iJmch(V B ,o ,V E , i ) . 
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Remark 14. — It is proved in [11], proof of Proposition 1.14, that ch(Vp,V^) is 

purely imaginary if Vp is flat. In this case, (31) holds without i 3m. Moreover 

(33) ch(V£,Vp) = 
1 

7T 

oo 

3=0 

E2jj! 

(2j + 1) 
c2j+1(E 

is the degree decomposition of ch(V|;, Vp) , where the Ck(E) are the classes considered 

by Bismut and Lott (see [11] formulae (0.2) and (1.34)). These are exactly the 

imaginary part of the Chern-Cheeger-Simons classes of flat complex vector bundles 

([15] and [11] Proposition 1.14). 

Lemma 15. — If ER, is a real vector bundle on M with connections VpR )o and Vp R ) i , 

and if E is its complexification with associated connections Vo and V i , then, up to 

exact forms, ch(Vo, V i ) is real in degrees 4k + 3 and purely imaginary in degrees 

4k + 1. In particular, ch(Vg, Vo) vanishes in degrees 4k + 3. 

Proof. — Suppose that E is endowed with a hermitian form which is the complexifica­

tion of a real scalar product on ER, and use the path of connections V* = (1—i) V*-KV, 

then the lemma follows from formulae (7) and (30) by counting the i, and from 

Lemma 13. • 

Definition 16. — For any (E, Vp ,a ) G K^M), its Borel-Kamber-Tondeur class 

33(£7, Vp ,a ) is the class in ftodd(M, C)/d£2 e v e n (M, C) of the differential form: 

(34) *8(E9 Vp, a) = ch(V£, Vp) - a + â 

where is the adjoint of Vp for any hermitian metric on E. 

Relations (28) and (13) imply that *B is a morphism from K^M) to the subgroup 

of purely imaginary forms in Qodd (M) / dQeven (M). Moreover, from (32): 

<№(E, Vp, a) = 2i 3m(ch(£, Vp, a)). 

It follows from Lemma 15 that if E is the complexification of a real bundle E& on 

M with connection Vp coming from a connection on E^, then %$(E, V, 0) vanishes in 

degrees 4k + 3 for any integer k. 

Any vector bundle admits some hermitian metric and some connection which re­

spects it, so that using relation (13), one checks that © is twice the operation of 

taking the imaginary part with respect to the conjugation defined in Lemma 12, i.e. 

twice the projection on the second factor of 

(35) Kch(M) = KerQS 0 z f i o d d ( M , R ) / d ^ e v e n ( M , I R ) . 

KerQS coincides with the smooth if-theory K°(M) considered by Bunke and Schick 

in [14]. In fact any vector bundle V on M endowed with some hermitian metric hv 

and unitary connection Vy defines some geometric family with zero-dimensional fibre 

ASTÉRISQUE 327 



DIRECT IMAGE FOR SOME SECONDARY K-THEORIES 303 

V = ( V , A V , V V ) (see [14] §2.1.4), then ( V , V y , a ) i — > ( V , a ) defines a map from 

Ker<B to if(B) which can be proved to be an isomorphism by the five lemma. 

93 sends MK°(M) into iHodd(M, R). Prom Remark 14, one sees that the imaginary 

part of Cheeger-Chern-Simons classes [15] studied by Bismut and Lott in [11] factor 

through *B and the second morphism defined in (20). This justifies the interest of 

adding the part iflodd(M, R) /dQ e v e n (M, R) to Bunke and Schick's smooth if°-theory, 

in order to take into account all flat connections. 

Finally, the if-theory with coefficients in R/Z considered by Lott in [30] Definition 

7 is K~jz{M) = Ker<B H K~JZ{M) = Ker<B n Kerch. 

3. Direct images for if-groups 

Let M and B be smooth real manifolds possibly with boundary and TT: M —> B a 

smooth proper submersion. The goal of this part is to define direct images morphisms 

from if-theories on M to if-theories on B in each case precedingly reviewed, and to 

state all the theorems proved in this paper. 

The direct image it\ for iffl a t is constructed from fiberwise twisted de Rham coho-

mology (see Definition 22). This is compatible with the forgetful map iffj a t —• i f t ° o p 

and the pushforward 7rfu on i f ° o p associated to the fiberwise twisted Euler operator 

(Definitions 17 and 20 and Lemma 23). The notion of "link", which is a generalisation 

of the concept of vector bundle isomorphism (see Definition 24) is used to solve the 

problem of defining a pushforward 7r* : i f ° e l ( M ) —• i f ° e l ( # ) . (As stated in the intro­

duction, it consists for any (E, Vp , F, Vp, / ) G i f ^ e l ( M ) in finding some link naturally 

associated to / between 7T\(E, Vp) and 7r»(F, Vp) on B). Finally for i f c h , the ingredi­

ent is the Chern-Simons analog for transgressing the families index theorem, known 

as 77-form (see Theorem 28). As in the case of topological if-theory, the pushforward 

7 r , E u is here associated to the fiberwise Euler operator. 

In some cases, some more preliminary is needed to be able to state the entire 

definitions. The proofs are delayed to the subsequent sections. 

The fibres of n are supposed to be compact without boundary, orientable, and 

modelled on the closed manifold Z. For y G B, /ir~1(y) will be denoted Zy. 

3.1. The case of topological if-theory 

3.1.1. Preliminary: construction of family index bundles. — Let £ be a smooth com­

plex vector bundle on M. Let TZ* be the dual of TZ. For any y G B, the infinite 

dimensional spaces 

(36) <S± = if* Zy e v e n 
l\ o d d T ZO£ e v e n 

= Çt o d d (Zy,£) 
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are fibres over y of infinite rank vector bundles <§+ and 6 on B such that 

(37) <S± = if* = Coo / e v e n ^ \ 

( M , A ° d d T * Z ® £ 
(see [11] (3.1) to (3.6)). Choose some connection on £, the vertical exterior dif­
ferential operator dvz: Qm(Zy,£) —• Q,m+1(Zy,£) will be considered as an odd endo-
morphism of the Z2-graded vector bundle & = 0 &~ (d v* depends only on the 
restriction of to the fibres of 7r ) . Choose some smooth hermitian metric on £ 
and euclidean metric gz on TZ, from which a volume form dVolz along the fibres of 
7r, and an inner product ( | )z on A * T * Z (g) £ are deduced. One obtains on 6 the L2 

scalar product (where a and /3 G Sy 0 &~): 

(38) <a,B>L2 
Zv 

(a\/3)zdVolz. 

Let ( d v « ) * be the formal adjoint of dV( for this metric. 
Let fj,+ and /x~ be complex vector bundles on B with hermitian metrics h+ and 

h~. For any bundle map ip: (S+ © /u +) —> (<S~ © M~) °f everywhere finite rank, call 
ip* the adjoint of ip with respect to h ± and ( , )x,2, and set 

(39) 
DV£ 

W= (dV« + (dV«r) +ф* : 6~ ® —» ô+ Ф ß+ DV£ 
W = (d V « + (dV«r) +ф* : 6~ ® ß~~ — » ô+ Ф ß+ 

These are elliptic operators on Zy so that their kernels are finite dimensional. 

Definition 17. — A triple ( / i - 1 - , ^ - , ^ ) as above such that dimKer®^ 1 1 1 are constant 

(independent of y G B) will be called "suitable" in the sequel. 

In that case, the kernels of 2 ) ^ c ± are vector bundles ${± on B, they will be called 

kernel bundles. The couple (<# + 0 / i - , ^ - is called a couple of family index 

bundles for £. 

If C is another vector bundle on M with hermitian metric and connection V ^ , and 

if (i / + , (p) is a suitable triple for call $C± the kernel bundles Ker2 )^ c ± then the 

couple ($C+ 0 \i~ 0 3C~ 0 v+ ,${~ 0 0 ^ + 0 v~) will be called a couple of family 

index bundles for £ — C-

3.1.2. Definition of the direct image morphism for K^op and K^op 

Proposition 18. — If B is compact, then for any £ on M endowed with any connection 

and any hermitean metric h^, there exists suitable data (/x + , ip). 

This is proved in [2] Proposition (2.2) (see also [3] Lemma 9.30). The following 

classical result will be precised in Theorem 25 below. 

Lemma 19. — If , (§1 ) and ? *§2 ) a r e C0UV^es °f family index bundles for the 

same vector bundle £ on M (for different metrics or connections or suitable data), 
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then 

(40) 
fo] - [Ci] = [6] - [&] € üTt°op(M). 

The same holds if {^X^x ) and ($2>$2 )
 a r e C0UP^es of family index bundles for the 

couples of vector bundle £1 — Ci and £2 — C2 such that 

(41) fo] - [Ci] = [6] - [&] € üT t° o p(M). 

Definition 20. — If B is compact, then for any vector bundle £ on M, take any couple 

&~) of family index bundles for £ and put 

(42) fo] - [Ci] = [6] - [&] € üTt°op(B). 

IfBis not compact, 7 r f u ( [ £ ] ) is defined in the same way on compact subsets ofB and by 

inductive limit (or using the stability properties of vector bundles [22] §# Theorems 1.2 

and 1.5) on the whole B. 

The above lemma proves that 7rfu is a morphism from KQ°P(M) to KQ°P(B). It is 

the one associated to the fiberwise Euler operator (see [2] Definition 2.3: if dz is the 

as above constructed d^ in the case where £ is the trivial rank one complex vector 

bundle with canonical connection and metric, then the fiberwise Euler operator is 

dz + dz* acting on vertical differential forms Z2-graded by the parity of their degree). 

This is in contrast with the case of [8], [14], [30] and [7] §1, where the direct image is 

associated to the fiberwise Spin or Spin0 Dirac operator, but compatible with [11], 
[31], [32] and [7] §§2 and 3. 

Fiberwise twisted Euler operators of the form 2) v* can be pulled back on fibered 

products (here B —• B is any differentiable map): 

(43) 

B xBM » M 

I I 
B • B 

(the model of the fibre may not change). The additional data ( / i + , if)) used to 

construct the direct image can also be pulled back in such situations, and this makes 

the construction of families index bundles functorial. Thus 7 r f u is also functorial by 

pullbacks on fibered products. This justifies the following 

Definition 21. — The direct image morphism irfu: Klov(M) —• K^op(B) is the mor­

phism induced (on quotients) by nfu: K^op(M x S1) —• Jf t°o p(i? x S1). 
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3.2. The case of the if°-theory of flat bundles. — Consider some flat vector 

bundle (E, VE) on M. The de Rham cohomology HM(Z,E) of the fibres of IT with 

coefficients in E provides (Z-graded) vector bundles on B, which are endowed with 

flat connections in a canonical way, see [11] §111 ( f ) . Put n^E = HEVEN(Z,E) and 

TT^E = HODD(ZYE) (they are smooth vector bundles on B, whose definition depends 

on VE)- and call VN+E and VN-E their canonical flat connections. 

Definition 22. — (nfE, VN+E) and (^\~ E,VN- E) will be called the sheaf theoretic di­

rect images of (E, VE)- The direct image morphism TT\ : K^AT(M) —> K^AT(B) is given 

by: 

(E,VE) —> ( T T + E , V V N + E ) ~ (7rj-£,V 

The definition of n\ is justified by the following fact: for a parallel short exact 

sequence of flat bundles as in (11) 

(44) 0 — (E', V&) -U (E, VE) (E", VE») — 0 

the long exact sequence in cohomology reads 

(45) 

W + E > _ l ! U n+E - J * U Tc+E" 

7T, E < 7T, E < 7T, E 

and all the morphisms in (45) are parallel. This diagram decomposes in several short 

parallel exact sequences of flat vector bundles as was remarked at the ends of §2.1.1 

and §2.2.2. Thus 7 r . ( £ , VE) = TT\(E', VE>) + -K\(E", VE") G K%AT(B). This proves that 

the above definition of 7n fits with relation (11). 

The following result is needed to define the direct image for K®EL: 

Lemma 23. — The following diagram commutes: 

(46) 

K°AT(M) • < p ( M ) 

KLt(B) • kIp{b). 

Proof. — Let (E, VE) be any flat vector bundle over M. By the Hodge theory of 

the fibres of 7r, the ^(Zy.E) are isomorphic to Ker(d v * + ( d ^ ) * ) * on Zy. (They 

are of constant dimension, whatever the riemannian metric on M and the hermitian 

metric on E may be). Thus ( { 0 } , { 0 } , 0 ) is a suitable triple in this situation. The 

couple ( 7 r !

+ £ ' , 7 r ! "" E) is thus isomorphic to a couple of family index bundles for E, so 

that [n+E] - [ 7 r , - £ ] = e Klp{B). • 
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3.3. The case of relative if-theory 

3.3.1. The notion of "link". — For four smooth vector bundles E, F, G, and H on 

M such that 

[E] - [F] = [G] - [H] e KlJM) 

there exists some vector bundle i f on M and some g*00 isomorphism 

(47) £:E®H®K-^>F®G®K. 

Definition 24. — These (if,£) will be called a "link between E — F and G — H". 

Two such links (Ki,£i) and (K2,£2) are equivalent if there exists some vector 

bundle L on M such that the two following isomorphisms are isotopic 

(48) E@H®K1®K2eL 
*ieid*r20ldi, 

^eid^eidi, 
• F e g e k 1 e k2 e l . 

The equivalence class of a link (if, £) will be denoted by [£]. The set of equivalence 

classes of links between E — F and G — H will be denoted by £E-F • 

Of course a link between E — F and G — H is also a link between E — G and F — H 

or H — G and F — E or H — F and G — E. Any link is equivalent to some other one 

with a trivial vector bundle as if. Moreover, if (if, £) is a link between E — F and 

G-H, then (if, f-1) will be a link between G - H and E - F (or F - H and E - G 

and so on). Its equivalence class will be denoted either by [£~x] or 

The identity of i f 0 i f is isotopic to the switch of the two copies of if, thus (if, £) 

as in (47) is equivalent to itself. It is also obviously equivalent to ( i f 0 L,£ 0 Idx,) 

(for any vector bundle L). It follows that any link is equivalent to a link of the form 

(47) where i f is a trivial vector bundle. 

Links can be pulled back, and added (for direct sum of data). Moreover, two links 

(L, £) between E — F and G — if, and (M, £') between G — H and J — i f can be 

composed as (L 0 M 0 G 0 if, £ 0 £') between E — F and J — if; this composition is 

easily checked to be associative. The equivalence class of the composed link will be 

denoted by [£' o £) or [£'] o [ £ ] . 

i f t

1

o p ( M ) acts freely transitively on £%ZIp. The element /3 of i f t

1

o p ( M ) represented 

by the global smooth automorphism gjsf of the vector bundle N maps the equivalence 

class a of (if, £) to the equivalence class (3a of ( i f 0 N, £ 0 #JV)-

3.3.2. Definition of the direct image for if^e l 

Theorem 25. — Let £ be any vector bundle on M, let ((7+, £7*") and ($*,$~) be two 

couples of family index bundles for (the same) then there exists a canonical element 

[£p] € £g.+ _cj-- H is canonical in the sense of the following global compatibility 

property: if' ($C*\$(~) is another couple of family index bundles for f, then one has 

[e*] = [e«]o[4]. 
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This extends trivially to couples of family index bundles for £ — C (for any vector 

bundles £ and £ on M). 

Moreover, if [ft] - [Ci] = [ f t ] - [ f t ] € tft°oP(
M) < ™ f if (57+, £7") and (£7+ £7") are 

couples of family index bundles for ft — ft and ft — C2 respectively, then there exists a 

canonical map TT£: - £ ^ _ < ^ — • £^\_^2-- It is canonical in the sense of the following 

global compatibility property: if [ft] — [ft] = [ft] — [ft] G K®op(M) and if (¿7 ,̂ 9"^) is 

a couple of family index bundles for ft — ft, then for any a G -£^1^ and ft G - ^ - C ^ 

one /ms 7r*(/? o a) = 7r*(/3) o 7T^(a) G . 

# £ 1 = 6 ^ d ft = ft, then [t^\ = 7 r ^ ( I d ^ e c ) . 

7r^ ¿5 compatible with the actions by K^op in the following sense: if a G - ^ I ^ and 

(3 G tfip, */>en Tre(pa) = ^(0)irt(a). 

If ( - B , V E ) , ( F , V F ) , ( G , V G ) and {H,VH) are flat vector bundles on M , and if 

^: £ 0 H 0 X F 0 G 0 i f is a link between E-F and G-H, it is possible to find 

a link f : £ 0 # 0 C n ^ F 0 G 0 C n equivalent to I (by adding I d V : K' ^ Kf 

for some if ' such that K 0 if ' ^ C n ) . The obtained element 

0 i f 0 C n , VE 0 V H 0 d C n, F 0 G 0 C n , V F 0 V G 0 d C n, ^) G i f r ° e l ( M ) 

does not depend on the choice of V and depends on £ only through its equivalence 

class (this can be checked using (48) with L replaced in the same way by some trivial 

bundle). 

For some element (E, VE, F, V F , / ) of KQG1(M), Consider the sheaf theoretic direct 

images (ir+E, VN+E) and (TT^E, VN-E) of (E, V F ) , and (TT.+F, V w + f ) and (TifF, VN-F) 

of (F, V F ) . Following the proof of Lemma 23, (nf E, 7r^~ E) and (7r, + F, 7r,~F) are cou­

ples of family index bundles for E and F respectively. Using the above Theorem 25 

(especially 7 1 ^ ) , one obtains an equivalence class of links between 7r , + F — n^E and 

7r , + F — TT^F as image by n£ of the equivalence class of / : E —> F (which is a link 

between £7 - { 0 } and F - { 0 } ) . 

Definition 26. — We define 

TT*(F, V F , F , V F , / ) = « E e T r j - F , V ^ e V ^ T r f E e T r f F , V ^ - ^ e V ^ , ^ ( [ / ] ) ) . 

Theorem 27. — 77MS defines a morphism KQG1(M) KQG1(B) which enters in the 

following commutative diagram (with lines modeled on the first line of {21)): 

( 4 9 ) 

Klop{M) —*TR°EL(M) - 2 - K F L ° A T ( M ) » K T ° O P ( M ) 

tf^(B) - 2 - , *Tr°ei(S) K ° a t ( B ) > *T° o p (B). 
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3.4. The case of multiplicative, or smooth, K°-theory 

3.4.1. Transgression of the family index theorem. — Let F r be a real vector bundle 

over M endowed with a euclidean metric and a unitary connection V F r • The curvature 

V F r is a two-form with values in antisymmetric endomorphisms of FR. Define e ( V F R ) 

to be zero if F r is of odd rank (as real vector bundle) and to be the Pfaffian of ^ V | . R 

if F r is of even rank. One obtains a closed real differential form whose degree equals 

the rank of FR, whose de Rham cohomology class e ( F ^ ) is independent on V F r (and 

on the euclidean metric on F r ) and coincides with the image of the Euler class of F r 
in Hm(M, C) . (This is the Chern-Weil version of the Euler class). 

The vertical tangent bundle TZ of the submersion 7r, which is the subbundle of 

TM consisting of vectors tangent to the fibres of 7r, will be supposed to be globally 

orientable along M. If £ is a vector bundle on M and F + and F~ are vector bundles 

on B such that [ F + ] — [F~] = 7rfu[£] G K®OP(B), the cohomological counterpart of 

the families index theorem asserts that 

(50) c h ( F + ) - c h ( F - ) = 
Jz 

e(TZ)ch(0 G i J e v e n ( £ , C ) 

where JZ stands for integration along the fibres of it. 

Choose any smooth complementary subbundle THM of TZ in TM. Of course 

THM =i 7r*TB. Let P T Z be the projection of TM onto TZ with kernel THM. 

Endow TZ with some riemannian metric gz. All riemannian metrics on M which 

coincide with gz on TZ and make TZ and THM orthogonal give rise to Levi-Civita 

connections VLC on TM which all project to the same connection VTZ = PTZ^LC 

on TZ. 

Let Vf, V F + and V F - be connections on £, F + and F~ respectively. It follows from 

(50) that ch(V F +) — c h ( V F - ) and JZ e (Vrz) A ch(Vf) are cohomologous differential 

forms on B. The following theorem is a non hermitian analogue of results of Bunke 

[13]: 

Theorem 28. — Let [£] = ([£k])k compact cb be any collection of mutually compatible 

equivalence classes of links between restrictions o /F + —F~ and couples of family index 

bundles for £ on compact subsets of B. There exists a way to associate to such data 

(Z, g z , THM, F + , V F + , F', V F - and [£]) an element r / (V 6 V T z , V F + , V F - , [£]) 

o / O o d d ( M , C ) / d f i e v e n ( M , C ) with properties 

(a) d i K V f , V T Z , V F + , V F - , [£}) = fz e(V T z)ch(Vf) - c h ( V F + ) + c h ( V F - ) 

(b) rj is natural by pullbacks on fibered products as in (43). 

(c) rj is additive for direct sums of vector bundles £ and F*1 with direct sum con­

nections (and direct sum of links). 
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(d) TJÇVE, "VTZ, V ^ + ^ j V [Id]) = 0 if (E,VE) is a flat bundle on M with sheaf 

theoretic direct images (n\~E,Vn+E) and (n^E,V^-E). 

Moreover rj with these properties is unique for vector bundles £ with vanishing rational 

Chern classes on M. 

In statement (d), [Id] stands for the trivial link between TT^E — n^E and itself, 

when using (TT^E, n^E) as couple of family index bundles for E (see the proof of 

Lemma 23). In statement (b), the vertical tangent bundle TZ of B x B M is naturally 

isomorphic to the pullback of the vertical tangent bundle TZ of M , the connection 

on TZ is supposed to be the pullback connection of VTZ- The statement (a) is seen 

as a Chern-Simons like transgression of the family index Theorem (50). As a first 

consequence of this: 

Theorem 29. — For any (E, V F , F, V F , / ) G K°el(M), one has 

tfàh(ir*(E,X?E,F,VF,f)) = 
}z 

e ( T Z ) ^ c h ( £ , V F , F , V F , / ) . 

This "Riemann-Roch-Grothendieck" theorem for K^el is a cohomological formula, 

it does not need the Chern-Weil version of the Euler class in its expression. 

3.4.2. Direct image for multiplicative/smooth K°-theory 

Definition 30. — Let (£, Vf, a ) G Jf ch(M), take any vector bundles F + and F~ such 

that [F+] — [F~] = 7 r f u [ £ ] G K®op(B), choose any connections V F + on F+ and V F -

on F~, take any collection of equivalence classes of links [£] between F + — F~ and 

any families index bundles for £ on compact subsets of B, and define the direct image 

o / (£ ,Vf , a ) by 

(51) 

7 r p u ( £ , V f , a ) = F + , V F + , 
Jz 

e(VTz)ct - ( F " , V F - , r / (Vf , V T Z , V f + , V F - , [£])). 

This definition is intended to obtain the following property: 

(52) ch(7r!(£,Vf,a)) = 
Jz e(VTz) Ach(e,Vf,a) 

which implies that 7 r , E u sends MK0(M) to MK0(B), and K~jz(M) to KCJZ(B). 

Theorem 31. — 7rp u (£> V f , a ) as defined above does not depend on the choices of F+, 

F~, V F + , V F - nor [£}. 

ASTÉRISQUE 327 



DIRECT IMAGE FOR SOME SECONDARY KT-THEORIES 311 

(51) defines a morphism 7rpu: Kch(M) —• Kch(B). The following diagrams com­
mute (the lines of (54) are modeled on the modified second line of (21),): 

(53) 

K ° a t ( M ) • Kch(M) 

K°(B) • Kch(B), 

(54) 
Klp(M) №dd(M,C)/dn°™(M,C) — K c h ( M ) • Klp{M) 

* ? U i J > ( V T Z ) A . j J*?" j x f 

^ o p ( ß ) CP"{B,C)/d£F™(BtC) — K c h ( ß ) » ^ t ° o p ( S ) -

Moreover B f a f o V € , o ) ) = Jz e(VTz) A <B(f, V c ,a) € ftodd(£)/<ft2even(B). 

Here the morphism denoted by JZ e (Vrz ) A • is integration along the fibre after 

product with e (Vrz) (i-e. « h J e (Vrz ) A a ) . It vanishes if dimZ is odd. 

The relation concerning 55 implies that 7r,Eu sends K°(M) to K°(B) (Bunke and 

Schick's .ST-theory, see the end of §2.6 after (35)) and K^JZ(M) to K^Z(B). 

3.5. Hermitian symmetry and functoriality results 

3.5.1. Direct images and symmetries. — The conjugations on K^at, K®el and Kch 

were defined in Definition 11. 

Theorem 32. — 7/dimZ is even, then m on K^, 7r, on i f ° e l and 7r,Eu on are all 

real in the sense that: 

*,((E,VE)
C) = (n,(E,VE))

c 6 Kl&t{B), 

Tr*((E,VE,F,VF,f)
c) = (7r,(E,VE,F,VF,f))

c e 

7rp u((C ,V € ,a) c) = ( 7 r , E u ( e , V « , a ) ) c e Kch(B). 

In fact the last statement of this theorem is a consequence of the last statement 

(about 2$) of the preceding one, and of the facts stated just before (35). 

Theorem 33. — If dimZ is odd, then 7rfu on Ktop and 7T|Eu on both vanish. 

If dimZ is odd, then there exists a map 7r<_ : K^at(M) —• K^el(B) such that 

TT\ = do7r<_ (on Kfl&t) and 7r* = 7r<_ od (on K®ei). 

7r<_ is purely imaginary in the sense that if (E, VE) € K^t: 

n^((E,VE)
c) = -(^(E,VE))

c € K^{B). 

Moreover, Tf^ o 7r«_ vanishes. 
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3.5.2. Double fibrations. — Consider two submersions 7ri : M —• B and 7T2 : B —• S 

and the composed submersion 7T2 O m : M —• S. The following classical results 

(55) 
(7r 2 o t t O ? u = T r f ; o T r f » : i f t ' o p ( M ) —> K^(S) 

( 7 T 2 O T T j ) , = 7 T 2 ! O TTi, : ^ S a T ( M ) — K°Ratt(S) 

will be reproved or explained during the proof of the following 

Theorem 34. — (TT2 O 7 T I ) * = 7T2* O 7TI* : (M) — K°Ratt(S) 

Only a partial result is obtained for multiplicative if-theory: 

Theorem 35. — The restriction to MK°(M) of nfi1 0 7 r v u anà ( ^ 2 °^i)fu coincide. 

4. Proof of Theorems 25 and 27 

4.1. Proof of Theorem 25. — The link between any two couples of family index 

bundles for the same vector bundle £ is obtained by an intermediary link with some 

special couple of ("positive kernel") family index bundles (see Definition 37 in §4.1.2). 

It is proved in §4.1.2 that any couple can be linked with some special one, and that 

all these links are mutually compatible, the general link is then obtained in two steps 

by a homotopy technique in §4.1.3 and §4.1.4. B is supposed to be compact in §4.1.2 

and §4.1.3. 

4.1.1. Links and exact sequences of vector bundles. — Consider a short exact se­
quence of complex vector bundles on M: 

0 —• Ef —^ E E" —> 0. 

Take any morphisms s: E —> E' and j : E" —> E such that s o i = Id^y and 

p o j = Id#", then, as was remarked just after Remark 5, i + j and ( s 0 p ) - 1 are 

isotopic isomorphisms from E' 0 E" to E. They thus provide the same equivalence 

class of link between (Ef 0 E") — { 0 } and E - { 0 } , or any equivalent combination. 

Take any hermitian metrics on E and E", and consider the adjoints i* and p* 

with respect to these metrics. Then s 0 p and i* 0 p are isotopic, and so are i + j and 

i + p*. This is because autoadjoint automorphisms (here i* oi and pop*) are always 

isotopic to the identity. 

Consider now a longer complex of vector bundles on M: 

(56) 0 —• E° E1 • • • Ek —• 0. 

It may not be an exact sequence, but the VI are supposed to be of everywhere con­

stant rank. Call Hk the cohomology of this complex in degree k. The Hk are vector 

bundles on M. Choose some hermitian metrics h% on the 25*, and consider the asso­

ciated adjoints V* of the V{. By finite dimensional Hodge theory one has canonical 
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isomorphisms Hx = Ker(vi + Let ¿¿1 Hl E% be induced by the inclusion 

of Ker(vi + v*) and Pi\ E% —> Hl by the orthogonal projection on Ker(vi + 

Denote by E+ and E~ the direct sums Dieven E% and (bioddE1 respectively, and 

accordingly for H~, v+, v_, , t + , ¿ - 5 p+ and p_. The isomorphism 

v+ + ü* + p+ + ¿_ : £ + 0 i f " F~ 0 is isotopic to (v_ + v+ + p_ + 

This is because p± and t ± are mutually adjoint. 

Definition 36. — The equivalence class of links between E+—E~ and H+—H~ (or any 

equivalent combinations) associated to the complex (56) is the common class defined 

by anyone of these two isomorphisms. 

This definition is justified by the independence on the hermitian metrics. This 

class of link is not modified by isotopy of the complex, i.e. smooth homotopy of the 

morphisms such that any of them stays of same constant rank. This class of links can 

be described in the same terms from the following exact sequence 

0 —• Hrn —• E% —^ IEvi —>H-—> 0, 

It is left as an exercise to check that it is the same class as the one obtained from the 

composition of links associated to the following short exact sequences 

(57) 

0 —• Kern —• E% —^ Imvi —> 0, 0 —• Imvi_i —• Kem —> H* —• 0 

which enter in the canonical decomposition of (56) in short exact sequences. 

4.1.2. Link with "positive kernel" family index bundles. — Consider as in §3.1.1 some 

vector bundle £ on M with hermitian metric and connection . Take some vertical 

riemannian metric gz on TZ and consider some triple (//+, /z~, z/>) as in §3.1.1, with 

which a vertical modified de Rham operator 2)J € ± is computed. The triple (/ i + , tfi) 

may be not suitable. 

If B is compact, there exists some vector bundle A on B and some bundle morphism 

(f: A —> S~ 0 fi~ such that 2)J+~̂  is surjective, as can be proved in exactly the same 

way as in [2] Proposition 2.2, or [3] Lemma 9.30 or [29] Lemma 8.4 of chapter III. 

This proves the existence of suitable triples in general. 

Definition 37. — A (suitable) triple which has the same surjectivity property as ( /x + 0 

A j / x - , ^ + (p) will hereafter be called a "positive kernel" triple; the obtained couple of 

family index bundles ((Kei0^~ 0 0 A) in the above example) will be called 

"couple of positive kernel family index bundles". 

Suppose now that (//+, \i~, ip) were suitable and gave rise to kernel bundles $C±. 

Choose A and if as above. Let PM be the projector from S~ 0 onto ${~ with 
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kernel Im2)J* + . The following sequence of vector bundles on B is exact: 

(58) 0 — _ > K e r 2 ) J ^ — > A - — — > 0 

(o,v,w) —> w 

(Ker2)^_~^ is a subbundle of <5+ 0 0 A on which its elements are decomposed). 

This provides an equivalence class of links between tK^ — ${~ and Ker0^_* — A as 

in Definition 36. An equivalence class of links between ( j # + 0 — (jH~ 0 / i + ) and 

(Ker2)YvL 0 - (A 0 / /+) is trivially deduced. 

Lemma 38. — Classes of links obtained in this way are mutually compatible. 

Proof. — Suppose that A' and tp' satisfy the same surjectivity hypothesis as A and <p 

with respect to /x± and ip. Then A 0 A' and <p 0 ipf also do. On the other hand, the 

same construction can be performed starting from the triple (/x+ 0 A, /x~, ̂  + ip) and 

using A' and <p', or starting from the triple (//+ 0 A ' , ^ - , ^ + <p') and using A and ip. 

One obtains in each case some equivalence class of links between two of the couples 

( K e r 2 > S _ + e / 0 - ( A © / x + ) , ( K e r 2 > J V t ' © / 0 - ( A ' © M + ) 

or ( K e r 2 $ . + + v , © / i " ) - (A © V © 

These links are all compatible (in the sense of composition of links) as can be 

checked by considering the exact sequence (58) associated either to A 0 A' and ip + t(p' 

with t varying along [0,1] or to A 0 A' and sip + <p' with s € [0,1]. • 

4.1.3. Deformation of tp, h^ and Vf. — Consider two triples ( / / + , t p 0 ) and 

(/x +, ipi) with same / i + and fi~. Take the product with the interval [0,1] and 

consider some everywhere finite rank ip: &+ 0 //+ —• &~ 0 fi~ over B x [0,1] with 

restrictions V>|BX{O} = V>o and ^\BX{I} = The pullback of £ on 5 x [0,1] is 

endowed with any (not necessarily pullback) hermitian metric and connection. 

If B is compact, one can perform the above construction over B x [0,1], finding 

some positive kernel triple © A , / i " , ^ + ^ ) over B x [0,1]. An isotopy class 

of bundle isomorphism Ker2) V * + ~ = Ker2) V * + ~ is obtained by parallel 
V'o+VIbx{o} ^l+^lsx-fi} 

transport along [0,1]. This produces an equivalence class of links between the couples 

( K e r 0 V * + ~ 0 /A-) - fr* 0 A) and ( K e r 0 V * + ~ 0 / / " ) - (/x+ 0 A). 
v V>o+<P|bx{o} V>i+< Îbx{i} 

Suppose (/x+,/x~,ipo) and ( / x + , / i ~ , ^ i ) are both suitable triples with associated 

kernel bundles and &f (and with respect to not necessarily same metric and 

connection on £). On B x { 0 } , the construction of the preceding paragraph produces 

an equivalence class of links between (tttt 0 ) — (¿#¿7 0 / i + ) and Ker 2)V* + ~ — A, 
t/>o+¥>|bx{o} 

and similarly on B x { 1 } . This three links compose to produce an equivalence class 

of links between 0 /x~) - (&q 0 and (M± 0 /x~) - (.#7 0 / i + ) . 
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Lemma 39. — This equivalence class of links does not depend on A, (p and ifj. 

Proof — The independence on A and <p follows from Lemma 38 (and the fonctori-

ality of links by pullbacks). The independence on the choice of i/> can be proved by 

deforming it to any other choice (with fixed boundary values), and make the above 

construction o n 5 x [0,1] x [0,1]. • 

4.1.4. General construction (and proof of Theorem 25). — If two suitable triples 

(/io",/i^",^o) and (fii , Hi , ^ i ) give rise to couples of family index bundles (S r + ,£7 ' - ) 

and (J^+,J^~), one performs the preceding construction starting from the bundles 

HQ 0 / i f and /¿0 0 ¡1^ and the two morphisms fa extended by 0 on / if and fa 

extended by 0 on / i^ . One obtains an equivalence class of links between the couples 

(57+ 0 / i f © Mi~) - © Mr © Mi") and ( $ + © Mo" © Mo ) - W © Mo" © Mo")- 0 n 

compact subsets of one defines [£g] as the composition of this class of link with the 

trivial links between 57+ — £7~ and (£7"+ 0 / i f 0 /i^~) — (£7™ 0 /i^ 0 / i f ) and between 

( ^ + © / i j © /i^") — ( ^ ~ © Mo © Mo") and ^ + — One obtains a projective family 

of equivalence classes of links on compact subsets of B. Stability properties of vector 

bundles [22] §8 Proposition 1.4 can be used to prove that these links can be described 

with isomorphisms of the form ST1" 0 @~ 0 £7~ 0 ^ + 0 C N with some fixed 

N, and such that two such isomorphisms are always isotopic. It is then possible to 

obtain a global link by inductive limit on an exhaustion by compact subsets with an 

iterative deformation procedure to fix the isomorphism at finite distance. 

03 , I 

Definition 40. — [ig] is the equivalence class of links between 57 — £7 and *§ 

obtained in this way. 
The independence on the various choices follows from Lemma 39. 

For three suitable triples, the construction (for compact B) can be adapted so that 

the restriction to B x { \ } corresponds to the third data, this proves the compatibility 

of these links with respect to mutual composition. Now the equivalence of links on 

compacts propagates in the inductive limit along an exhaustion by compact subsets. 

If £i> Ci> £2 and £2 are vector bundles on M such that [£1] — [£1] = [£2] — [C2] hi 

K®op(M), consider some vector bundle isomorphism £: £ + 0 £~ 0 L —> £~ 0 £ + 0 L 

as in (47). Let (£7+, £77), ( ^ f , ^ ~ ) and %~) be couples of family index bundles 

for Ci and L respectively for i = 1 and 2. (It is always possible to choose L 

such that it admits family index bundles on the whole B: it suffices to take L trivial 

with canonical metric and connection). Thus (£7f 0 0 ^? +, 57̂ " 0 *§~ 0 £~) and 

(&t © *§\ © &2 © W\ © £~) are couples of family index bundles for the same 

vector bundle modulo the isomorphism £. 
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Definition 41. — TT^([^]) is the equivalence class of links obtained between these couples 
using Definition 40, and interpreted as an equivalence class of links between (£7^ 0 
Ю - ( 2 7 Ф Ю and ißt e » - ) - (STT e #9

+), 

The fact that [£^] = 7r*([Id]) is tautological. 

But if one takes a different link from the identity, and the same couples of family 

index bundles at both boundaries, one obtains a realisation of the direct image nfu on 

i f top by gluing the ends and applying Definition 21. The last statement of the theorem 

is a consequence of this fact and the obvious compatibility of the whole construction 

with direct sums. 

The independence of 7 r ^ ( [ ^ ] ) on the choice of L and £ (in some same equivalence 

class of links see (48)) is due to the above facts and to the invariance of TT^([^]) under 

isotopy of £. The canonicity of 7r̂  ([•£]) is a direct consequence of the corresponding 

property of £%•. 

4.2. Proof of Theorem 27. — This result is a consequence of a compatibility 

result (Proposition 43) of some canonical link obtained from Theorem 25 and another 

one obtained from Definition 36 applied to some long exact sequence in cohomology. 

This second link is computed in §4.2.2 as a composition of two pieces. The compati­

bility proof then uses a geometric deformation, in which the canonical link is proved 

to decompose in two pieces too. The fit of each piece of one link with its counterpart 

in the other one is proved in §4.2.3 and §4.2.4. 

As remarked just before Definition 40, an equivalence of links on compact subsets 

propagates in the inductive limit along an exhaustion by compacts. So, in this whole 

section, B can be supposed to be compact without restriction. 

4.2.1. Reduction of the problem 

Lemma 42. — Suppose that (ii?,V#z) are fiat vector bundles on M entering in the 

following parallel complex: 

(59) 0 —> E° —> E1 —• • Ek —> 0. 

Take the same notations E+, E , H+ and H as in Definition 36 and define the 

connections VE+ = © V#* and WE- = © VE* and accordingly for V#+ andWjj-. 
i even i odd 

Let [£] be the equivalence class of links between E^ — E~ and H+ — H~ associated to 

(59) from Definition 36. Then 
(E+ © H-, VE+ © V H - , E' © # + , VE- © V H + , [£}) = 0 G i f r ° e l ( M ) . 

Proof. — The decomposition of the complex (59) in several short exact sequences as 

in (57) gives rise to short exact sequences of flat vector bundles as was remarked at 

the ends of §2.1.1 and §2.2.2. Through this decomposition, [£] is reduced to canonical 
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links associated to short exact sequences as in relation (iii) of Definition 4 (as was 

remarked after Definition 36) and the lemma follows. • 

Consider now the exact sequence ( 4 4 ) . Denote by nfE the i t h degree de Rham 

cohomology of the fibres of TT with coefficients in the restriction of (E, V E ) (to the 

fibres) and similarly for E' and E". The associated long exact sequence in cohomology 

( 4 5 ) also reads: 

(60 ) 0 _ > ^E' -N* n?E - M * n?E" — TTIE' -----> Evi —>TTdimZE"-—> 0, 

Let [i + j] be the equivalence class of links corresponding to (44 ) constructed at 

the beginning of §4.1.1. 

Proposition 43. — 7Te([i + j}) coincides with the equivalence class of links between 

(irfE' 0 TTJ+E") - (n^E' - 7T| Eff) and nfE - n^E associated to ( 6 0 ) . 

The proof of this proposition is delayed in the following paragraphs. 

We are now in position to prove Theorem 27 using Proposition 43. 

The definition of 7r* on K®el is clearly compatible with the isotopy of / . If / 

is parallel, then ire([f]) is itself a parallel isomorphism between TT+E 0 TT^F and 

ir^E 0 7r*F. This proves the compatibility of 7r* with relation (i) of Definition 4. 7r* 
is also obviously compatible with direct sums as in relation (ii) of Definition 4. The 

compatibility of 7r* with relation (iii) is a direct consequence of the above proposition 

and Lemma 42. 

The commutativity of the right square of diagram ( 4 9 ) was proved in Lemma 23. 

The commutativity of the central square of diagram ( 4 9 ) is tautological. The com­

mutativity of the left square of diagram ( 4 9 ) is a consequence of the last statement 

of Theorem 25. 

4.2.2. Sheaf theoretic direct images and short exact sequences. — Back to the model 

exact sequence ( 4 4 ) , consider E' as a subbundle of E. The vertical exterior differential 

operator dVE respects the subbundle (over B) Q?(Z,E') of the vertical de Rham 

complex (fi*(Z, E), dVE). This filtration 0 C fi(Af, E') c 0 ( M , E) gives rise to some 

spectral sequence, and to some filtration 0 C FH*(Z, E) C Hm(Z, E) of the fiberwise 

cohomology of E. The (EQ, do)-term of this spectral sequence is the direct sum of the 

fiberwise de Rham complexes of E' and of E"\ consequently, the £i-term is the direct 

sum 7r\Ef 0 -K\E" of the fiberwise cohomology of E' and of E". 

Let s: E —• E' be a smooth vector bundle morphism such that s o i is the identity 

of E', then E" will be identified with the subbundle Kers of E so that E will be 

identified with E' 0 E". Thus E inherits two flat connections V# and VE' © VE", 

whose difference is (as was used in Lemma 1 in a nonflat context) a one form u with 

values in Hom(£ , / /, E'). On any closed ^''-valued form, dVE applies as a;A so that the 
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operator d\ of the spectral sequence is given by 

(61) di = [wA]: H*(Z,E") —• i T + 1 ( Z , £ ' ) -

This is exactly the linking maps of the exact diagram (45), and the spectral sequence 

converges at E2 which is the filtrated fiberwise cohomology of E. 

Thus the exact diagram (45) decomposes in two exact sequences: 

(62) 0 — • FH^Z.E) —+ nfE' - H TT^E" —-+ H*(Z,E)/FH*(Z1E) —> 0. 

The canonical link associated to (45)-(60) is the direct sum of the two canonical 

links of these two exact sequences modulo the canonical isotopy class of isomorphism 

between (graded) cohomology and (graded) filtrated cohomology. 

(63) <K?E = H*(Z,E) ^ FH*(Z,E) 0 (H*(Z,E)/FH*(Z,E)). 

4.2.3. "Adiabatic" limit of harmonic forms. — Put V# = ( V E ' 0 V E " ) + 9u for any 

9 G [0,1], then VE = Vi , and V# is flat for any 9 G [0,1]. Moreover, the flat 

bundles (E, V0) and (E, V E ) are isomorphic for any 9 > 0 through the automorphism 

M E ' 0 0IdE» of E. For any 9 > 0, dVe (as dVE) also respects the subbundle E') 

of il(Z,E), and the associated spectral sequence is isomorphic to the preceding one 

if 9 is positive, so that the considerations of the preceding paragraph apply verbatim 

for 9 G (0,1]. 

Put any riemanian metric on M , and endow E = EF 0 E" with a direct sum 

hermitian metric. The Hodge theory of the fibres of n provides for any 9 G (0,1] an 

isomorphism between the (graded) kernel $£m

Q of the fiberwise Euler-de Rham operator 

0o = dVd + {dVEY and the cohomology of the de Rham complex associated with dVe. 

In particular, the dimension of ${ \ is constant for any i when 9 goes over (0,1]. The 

isomorphism class provided by parallel transport along (0,1] of ${Q is isotopic to the 

twist of the de Rham cohomology by I d ^ 0 0IdE". 
Let d?E' and dVE" be the fiberwise exterior differential operators on EF) and 

fi(Z,i5") respectively obtained from V E ' and V E " , and define 0' = d v*' + ( d v ^ ) * 

and 0" = dv*" + ( d v * " ) * . Then 0# = 0' + 0" + 0(w + a;*) so that one has a 

continuous family of elliptic operators on B x [0,1]. Suppose that is compact, this 

ensures the positivity of the minimum positive eigenvalue of 0' + 0" along all B, 

which will be denoted by A m i n . There exists e > 0 such that 9u is bounded by | A m i n 

in L2 norm for all 9 < e. Then for any y G B and any 9 < e, 0# has no eigenvalue 

equal to ±^sfIL. Thus the (graded) direct sum of eigenspaces of 0# corresponding 

to eigenvalues belonging to [— ^p- , is a finite rank vector bundle on B x [0,e] 

whose restriction to B x { 0 } equals Ker0' 0 Ker0". 

As 0 converges to 0, ^P9edVDP9D converges to P9°(UJK)P^° and this is the image 

of [a; A] through the Hodge isomorphism &Q = 7n£" 0 TT\E". 
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This proves that ${q converges to the kernel ^{q of P^°(uA)P^° as 0 converges 

to 0, because the dilation factor | does not modify the kernels. This limit subspace 

<#o is identified by Hodge isomorphism £70 = H(Z, E') 0 H(Z, E") with the filtrated 

fiberwise cohomology of E as seen around Equation (61). Consequently, the parallel 

transport along [0,1] for ${ is, modulo the Hodge isomorphisms, in the same isotopy 

class as the isomorphism (63) between fiberwise cohomology of E and its filtrated 

counterpart. 

4.2.4. End of proof of Proposition 43- — Clearly 

[H+0] - [H+0] = [F+0] - [F-0] = TTEu([E]) E Ktop(B) 

for any positive 6. Following the construction of canonical links, the equivalence class 

of links 7T£([i + j]) is isomorphic (modulo Hodge isomorphisms at the boundaries) 

to the class of links between [£7j] — [£7 ]̂ and \$£\] — obtained by parallel 

transport along [0,1] of some kernel bundle on 5 x [0,1] associated to the above 

model deformation of dVE and canonical links at the boundaries. 

However we will cut at some 6 G (0, e] to perform the construction. In fact over 

B x (0,1], the triple ({0}, {0}, 0) is suitable (because of fiberwise Hodge theory). Over 

B x [0,6:], one has Z-graded vector subbundles &q and ${q of 17(Z, E) which are all 

respected by dVd and 2)#. Let 9^B be the orthogonal projection onto &q, the triple 

({0}, {0}, —9^e<J)e) is suitable, with associated kernel bundles £7̂ . 
To describe the canonical link between &"$ — £7̂~ and ${~q — ttt^ of Definition 40 

over B x (0,6:], one observes that we are in the special case studied in §4.1.3. On 

B x (0,e] x [0,1], one puts (following the notations of §4.1.3) tj> = - (1 - t)^*®9, 

A = £7̂~ and <p = Idg-. The obtained kernel bundle is the kernel of 

tD0 + Idg- : F+o O F-o -----> F-o 

i.e. tKt = {(o", —*2W) /<7 G &o}. For t = 0 the link between £7#~ — £7# and itself is 
tautological. For t = 1 the link is associated to the exact sequence (58) 

0 —> —y —> 5 7 —> tt~Q —> 0 

(o, - Doq) ----> -Doq 

which is isotopic through the obvious isomorphism fJC% = £7̂  (obtained for any t by 

parallel transport along [0,£]) to the exact sequence 

(64) 0 _ > _ > ^ + -Do gr- _^ _ o. 

It follows that 7Ti([i + j]) is the composition of the Hodge isomorphism 7r\E = J^i, 

the parallel transport M\ = $(q, the canonical equivalence class of links between 

<#0~ — $£~^ and £7#~ — 9"q associated to (64) as in Definition 36, the parallel transport 

again £7# = £70 and the Hodge isomorphism again £70 = 7T\E' 0 mEn. 
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The convergence of \P9E<FQP9e to P9'°(u;A)P^0 as 6 converges to 0 proves that 

the equivalence class of links between — and &"Q — £7̂~ converges to the 

equivalence class of links between — ${~^ and 57"J — J7q provided via the Hodge 

isomorphisms ff0 = n\E' © ir\E" and = FH(Z,E) © H(Z, E)/FH(Z, E) by 

Definition 36 and (62). 

In the case of compact B, Proposition 43 follows from this convergence and the 

compatibility of the adiabatic limit of harmonic forms with (63) checked in the pre­

ceding paragraph. In the case of noncompact B one concludes using the fact that 

i f top is stable by inductive limit along an exhaustion of compact sets, so that two 

equivalence classes of links whose restrictions to any compact subset agree are equal. 

5. 77-forms 

The goal of this section is to prove Theorems 28, 29 and 31. The construction of rj-

forms occupies three paragraphs: preliminaries of algebraic nature are given in §5.1, 

the adaptation to suitable triples of the construction of family index transgression 

forms is performed in §5.2. In §5.3, the construction is completed, and the existence 

part of Theorem 28 is proved. The anomaly formulae obtained in (91) and (92) allow 

to complete the proof of Theorem 28 and to prove Theorems 29 and 31 in §5.4. 

5.1. Z2-graded theory 

5.1.1. ^-graded bundles and superconnections. — Consider a complex vector space 

V which decomposes as V = V+®V~, with a Z2-graduation operator r\v± = ± Id |v± . 

The supertrace of a £ EndV is defined by Tr sa = Tr(r o a), (this is the trace on V+ 

minus the trace on V~). EndF is also Z2-graded (even endomorphisms respect both 

parts V+ and V~ and odd ones exchange them). The supercommutator in EndF is 

defined for pure degree objects as 

[ a , 6 ] = a 6 - ( - l ) d e g a d e g f e 6 a 

and bilinearly extended to EndF. This is such that the supertrace vanishes on super-

commutators. 

Suppose now that E is a Z2 graded vector bundle on M , that is E = E+(&E~ where 

E+ and E~ are complex vector bundles themselve. The supertrace is defined as above 

and extends naturally on Endj^-valued differential forms, with values in ordinary 

differential forms. EndE-valued differential forms inherit a global Z2-graduation, 

ordinary differential forms being Z2-graduated by the parity of their degree. They 

act on i£-valued differential forms and multiply in the following way 

(65) (a ® a)((3 ® b) = ( - l ) d e g a d e g / 3 ( a A ^ ) ^ ( a 6 ) 
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where a® a and (3<g>b are decomposed tensors in the graded tensor product of differen­

tial forms with either EndE or E. The supercommutator of EndE-valued differential 

forms is defined in the same way as above but by considering the global graduation. 

With this convention, the supertrace allways vanishes on supercommutators. 

A superconnection A on E is the sum of a connection V which respects the decom­

position of E and of a globally odd EndE-valued differential form u. Its curvature is 

its square A2 = (V + (j)2 = V 2 + [V,a>] + a;2, a global even EndJ^-valued differential 

form (A2 is not a differential operator). 

Following (6), denote by ch(^4) = <j)Trs exp -A2 the Chern-Weil form representing 

the Chern character of any superconnection A. It is an even degree differential form 

on M. The space of superconnections on E is convex (and of course contains ordinary 

connections) so that the preceding Chern-Weil and Chern-Simons theory also works 

for superconnections (especially Formula (7)). Thus ch(A) is closed and its cohomol­

ogy class is the same as the Chern character of E in complex cohomology (this means 

ch(£' + ) — ch(E~) because of the Z2-graduation). 

5.1.2. Special adjunction. — A hermitian metric on E = E+ 0 E~ will be supposed 

to make this decomposition orthogonal. Let (3 be a differential form and a G Endl£, 

the adjoint of a will be denoted by a*. For EndE-valued differential forms, there are 

two notions of adjunction: the ordinary adjoint of /3 ® a is /3 ® a*, while its special 

adjoint is 

(66) (ß®a)s = (-l) 
deg/3(deg/3-l)  

2 -deg /?dega^cg a * 

following the convention implicitely used in [11] §I(c) and (d). If uj\ and o>2 are 

any (multidegree) EndjEJ-valued differential forms, denote by ujf and u;f their special 

adjoints, then for the product (65): 

(67) (<jJ\W2)S = (¿2^1-

Denote by lj* the usual adjoint of the relations between usual and special ad­

junctions and the supertrace is as follows: 

(68) Tta(Lj*) = Tra(uj) and d>Trs(u;s) = cf>Trs(uj) 

in particular, 0Tr5(o;) is real if a; is a special autoadjoint (multidegree) EndE-valued 

differential form. 

Let uj be some globally odd EndE1-valued differential form, and A = V + w a 

superconnection on E. Then the adjoint of A is defined by 

(69) As = V*+us. 

Thus \(A + As) is the sum of V n = | ( V + V * ) (which respects the hermitian metric 

of E) and of some special autoadjoint EndE-valued differential form of globally odd 
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degree. The following adjunction and commutation rules 

(70) [V*,u, s] = [ V , o , ] s and ( V * ) 2 = - ( V 2 ) * = ( V 2 ) 5 

have the following consequences 

(71) ( , 4 s ) 2 = (A2)3 and ch(As) = ch(A), 

In particular, ch(|(^4 + As)) is a real form. Finally, Lemma 13 and formulae (28) 

and (31) are also valid in the context of superconnections. 

5.2. Adaptation of Bismut's superconnection 

5.2.1. Definition of Bismut and Lott's Levi-Civita superconnection. — Remember the 

definitions of PTZ and THM from §3.4.1. Let y £ B. For any vector u G TyB, its 

horizontal lift is a global section of the restriction of THM to Zy = 7r~1(y) such 

that at any point of Zy one has 7r*uH = u. 

Consider some vector bundle £ on M with a connection Vf and hermitian metric 

h^. is not supposed to be flat nor to respect h*. Remember the definition of & 

from (37). The flow associated to vector fields of the form send fibres of TT to fibres 

of 7T diffeomorphically, so that there is some fiberwise Lie differentiation operator 

which acts on £-valued vertical differential forms & (it is defined using the connection 

V^) . Put then for any local section a of 6 (see [11] Definition 3.2) 

(72) Vuo = LV£ 
Ho 

V is a connection on & as can be proved following [11] (3.8) to (3.10). 

If u and v are vector fields defined on a neighbourhood of y G B, then the vector 

field PTZ[uH,vH] on Zy = /ir~1(y) depends on the values of u and v at y only. Let 

it- A 2 TB —> End o d d((S) be the operator which to u and v G TyB associates the 

interior product by — PTZ[uH, vH] in A*T*Z ® £. lt can be extended to a globally 

odd EndS-valued differential form (of differential form degree 2) on B. 

V + dv* + lt is a superconnection on & in the sense of §5.1.1 and also of [37], 
[3] Definitions 1.37 and 9.12 and [6]. It can be proved to coincide with the total 

exterior differential operator dM on £-valued differential forms (defined using V^) on 

M through the identification (37) as in [3] Proposition 10.1 (the proof of [11] §111 (b) 

cannot be adapted here because (dM)2 ^ 0 if is not flat). 

Remember the definition of metric data gz, h^, ( | )z and ( , ) L 2 from §3.1.1 and 

(38). Define the adjoint connection V of V as in (22) by the following formula, valid 

for any element u of the tangent bundle of B and any local sections a and 6 of 6: 

(73) <vf<7 ,0) L 2 = u . M ) L a - (a,VJ)L2. 

Let T A : A2TB —> End o d d(<5) be the operator which associates to u and v G TyB 

the exterior product in Sy by the one form ( — P T Z [ u H , v H ] ) b (the dual through gz 
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to the vector field — PTZ[\iH, vH]) on ir~1(y). Before and after being extended to a 

globally odd End<S-valued differential form on B (of differential form degree 2), TA 

is the adjoint of LT, SO that LT — TA is a special autoadjoint End&-valued differential 

form in the sense of paragraph 5.1. 

and its adjoint (d v *)* as defined in §3.1.1 are also mutually special adjoint as 

End(S-valued differential forms (with differential form degree 0). The superconnection 

V + (d?*)* — TA is the adjoint of the superconnection V + dv* + IT in the sense of 

[11] §I(b) and Proposition 3.7, (and (69) above). 

The relevant Bismut-Levi-Civita superconnection in this context is defined for any 

t > 0 as in [11] (3.50) (and also (3.49), (3.30) and Proposition 3.4) by: 

(74) C t = (v + v 5 ) -
y/t 

2 ;dv« + (dv«r)-
l 

2y/i 
(LT-TA). 

In the case of a fibered product of the form (43), the construction of Ct is functorial 

if the horizontal subspace TH(B x # M) is taken to be the subspace of T(B x B M) 

consisting of vectors which are sent to THM by the tangent map of B x B M —> M. 

(It is not always isomorphic to the pullback of THM). 

5.2.2. Properties and asymptotics of the Chern character of Ct. — C 2 is a fiberwise 

positive second order elliptic differential operator so that its heat kernel exp — C 2 is 

trace class. The Chern character of Ct is defined to be 

ch(Ct) = 0Tr s exp-C t

2 . 

Lemma 44. — ch(Ct) is a real form. It is a constant integer ifVç is flat. 

Proof. — The superconnection Ct is for any t the half sum of V + y/tdvs + -^=LT and 

its adjoint V 5 + V*(d v 0* ~ ^ T A - T h e reality of ch(C t) follows from (71) and the 
comment after it. The case of flat connection is treated in [11] Theorem 3.15. • 

Remember the definition of the Euler form e and the connection V T Z from para­

graph 3.4.1, and put = | ( V { + V £ * ) A S I N ( 3 1 ) -

Proposition 45. — As t tends to 0, ch(Ct) has for any k > 1 an asymptotic of the 

form 

fch(C t ) Ek-1 
j=0 

tj + 1/2 Aj f 9(tk+i) ifdimZ is odd 

lch(C t) : Ek-1 
j=0 

if dimZ is even 

in either case: 

(75) lim ch(Ct) = 
t-»o 'z 

e ( V T Z ) A c h ( V , U ) . 
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Proof. — The asymptotics with X^f=IIDIMZ a r e classical results on heat kernels (see 

[3] §§2.5 and 2.6 and appendix after §9.7). 

The limit formula (and thus the vanishing of the terms Aj and/or Bj for negative j) 

is a consequence of [11] (3.76). The connection is supposed to be flat in [11], 
which is not the case here: thus formula [11] (3.52) does not hold true here. However, 

consider defined as in [11] (3.56) without taking [11] (3.52) into account, then the 

z = 0 case of the Lichnerowicz-type formula of [11] Theorem 3.11 holds true here. 

Thus the rescaling formula [11] (3.75) and its consequence [11] (3.76) remain true 

here. (This is only a matter of Clifford degrees which has nothing to do with the fact 

that be flat or not). 

In particular, if dimZ is odd, then the same argument as in [11] (3.79) applies, and 

both sides of the equality (75) vanish. • 

5.2.3. Calculating Ct for the product with the real line. — Consider now the product 

manifold M = l x M and its obvious submersion n = M R X 7r onto B = R x B. 

Extend £ tautologically to M with constant (with respect to 5 ) hermitian metric and 

connection d ^ + (where CJR = ds-j^ is the trivial canonical differential along R) . 

Consider any smooth real positive function / on R such that / ( 1 ) = 1 and endow the 

vertical tangent bundle of 7r with the metric jf^9Z- Choose THM = TR 0 THM as 

horizontal bundle of 5r. Let's calculate the Bismut-Lott Levi-Civita superconnection 

Ct in this context. 

The equivalent here of the connection V defined in (72) is simply equal to d^ 4- V. 

The vertical exterior differential operator is unchanged, and so is the operator l t 

(defined at the beginning of §5.2). 

The volume form of the fibres of 5r on {s} x B is equal to / ( s ) _ - 1 f ~ times the 

corresponding volume form of the fibres on { 1 } x B. The punctual scalar product 

between vertical differential forms of degree k on {s} x B is equal to the one on 

{1} x B multiplied by f(s)k. Call 8 the infinite rank vector bundle on B of ̂ -valued 

vertical differential forms, and define Ny G End8 or End8 to be the operator which 

multiplies vertical differential forms by their degree. The global L2 scalar product on 

the restriction of 8 to {s} x B is thus equal to f(s)Ny~^K( , )x,2 (where ( , ) L 2 

defined in (38) is the one on { 1 } x B). 

It follows that the adjoint of is / ( s ) ( d v * ) * (if ( d v 0 * i s i t s adjoint on { 1 } x B) 

and the adjoint of l t is jf^TA (if TA is its adjoint on { 1 } x B). In the same way, 

following (22), one has ( d R + V ) 5 = dR + ds^- (Nv - ^ ) + V 5 . 

Thus if Ct,s denotes the Bismut-Lott Levi-Civita superconnection on {s} x B: 

Cm = | ( V + V ) 4 Vît 
2 ' 

d v * + / ( s ) ( d v O * 
1 

2\/t 
( t T - 1 TA 

f(s) 

Ct = CttS + dR 4- \di 
f(s) 
f(s) 

(Ny- dimZ 
2 
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One then computes: 

[dm, Ct,s] 
2 

f'(s)ds(d^y + 
f(s) 

2Vif(s)2 
dsTA 

[NV,CT,,] = 
Vt 
2 

(dv< - f(s)(d^y) + 
1 

2Vt 
-IT -

1 

/ (*) 
TA 

d® + l-ds^-j^-Ny , Ct:S 

L 2 / (a ) J 4 
ds 

f(s) 

f(s) 
[dvt + f(s)(dvi)*)-

+ ds 
f(s) 

Wtf(s) 
—IT + 

1 

/ (*) 
TA 

= tds f'(s) 
fis) 

dCt,s 

dt 

c i = c l + dm 4 
1 

2 
ds 

f(s) 

f(s) 
[Nv-

dimZ 

2 
Ct,s 

= CLS + tds 
dr 

/ (*) 

dCt,a 

dt 
(76) Tr s e x p ( - C 2 ) = Tr s e x p ( - C 2

s ) - ids 
f(s) 

f(s) 
Tr s 

aCt,s 

Oí 
e x p ( - C t

2

s ) 

5.2.4. t —> 0 asymptotics of the infinitesimal transgression form. — The transgres­

sion Formula (7) yields here 

dì 
ch(Ct) = -d <j>Trs 

dCt 

dt 
exp -Cf 

so that for any 0 < S < T < +oo 

(77) ch(Cs) - ch(C T ) = d f </>Tr8 

fdCt 

K dt 
exp —Ctj dt 

Proposition 46. — One has the following estimate 

(78) as t —> 0 : 0Trs 

'dCt 

dt 
exp-Cf 

9(1) if dimZ zs even, 

. 0 ( H ) i/dimZ ¿s odd 

Proof. — This will be proved with the technique proposed in [3] Theorem 10.32: 

apply Proposition 45 on M , one obtains because of the factor t appearing in (76) an 

asymptotic of the form 

(l>Trs 

dCt 

dt 
e x p - C 2 

k-i 

j = - i 

Ejtj + 9(tk) if dimZ is even, 

k-i 

3=0 

Ejtj-i + 9(tk-%) if dimZ is odd. 

This proves the assertion for odd dimensional fibres. 
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Let V T Z be the Levi-Civita connection on the vertical tangent bundle of the sub­

mersion 7r over M (as defined at §3.4.1). If dimZ is even, let Jz denote the integral 

along the fibres of 7r, then E-i is the factor of ds in the decomposition of the form 

Jz e (V T Z ) ch(V^ u ) with respect to Q(B, C) = C°° (R, Q(B, C)) 0 ds A C°° (R, Q(B, C ) ) . 

This is because the Chern character is functorial by pullbacks. However, V T Z is not 

the pullback of V T Z - A direct calculation from the classical formula for Levi-Civita 

connections (see [3] formula (1.18)) yields 

VTZ = dR + VTZ + 
f(s) 

2f(s) 
ds 

so that V p Z = V y Z because da and ds both commute with V T Z - Thus the curvature 

of V T Z is the pullback of the one of V T Z and neither e (Vrz) nor c h ( V ^ ) have a ds 

component. This proves the vanishing of E-\. • 

5.2.5. Adapting Ct to some suitable triple. — Let x be a smooth real increasing 

function on M + which vanishes on [0, | ] and equals 1 on [1,-foo). Consider some 

suitable triple (/x +, /x~, ^ ) with respect to £, ft^, and gz in the sense of Definition 17. 

Put some hermitian metrics h± on and some connection V M on /x+ 0 /x~ which 

respects the decomposition. Denote | ( V + V * ) by V " . Consider the following t-

depending superconnection on (&+ 0 / i + ) 0 (S~ 0 /x~): 

(79) Bt = Vu Q Vu + 
2 

0 V « 
1 

2 ^ 
(tr - TA) = Ct © V M + 

Vt 

2 ' 
x(t)(W+W*). 

B2 is as C 2 a fiberwise positive second order elliptic operator, so that its heat kernel 

is trace class. Its Chern character is defined as is ch(Ct) , the supertrace being the 

trace on End(£ + 0 / i + ) minus the trace on End(£~ 0 / / " ) . 

Lemma 47. — ch(jBt) is real ifV^ respects h+ and h . For t < |, one has 

(80) ch(Bt) = ch(Ct) + ch(V„). 

Proof. — The equality is obvious. V is of differential form degree 0 so that V* is the 

special adjoint of ip. The reality follows from (71) (as does Lemma 44). • 

Call = KerS)^* and P x ± the orthogonal projection © ^ —• .^f*, (and 

pjv _ piï+ e p # - ) T h e associated connection on M = < # + © is 

(81) VH = PH (Vu Q Vu) PH. 

This connection respects the decomposition ^ + 0 , and it also respects the 

hermitian metric on ${ obtained by restriction of ( , ) p ® ̂  provided V M respects 

h± (this can be proved by a direct elementary computation). 
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It is proved in [3] Theorem 9.26 that: 

(82) lim ch(B t) = ch(V#) 
t—*+oo 

in the sense of any norm on any compact subset of B. 

Both Bt and its Chern character are functorial by pullbacks on fibered products 

as in (43) (if the horizontal subspace of the source manifold is taken as described at 

the end of §5.2). Note also that the construction can be performed with any smooth 

function x on B x R+ which vanishes on B x [0, e] and equals 1 on B x [A, -f oo) for 

any 0 < e < A, and which is increasing with respect to the variable in R+. This is of 

course not essential, but will be useful to prove some independence of the constructed 

forms on the choice of the function x-

5.2.6. t —> +oo asymptotics of the infinitesimal transgression form. — For any 

0 < S < T < +oo, the counterpart of (77) for Bt is here 

(83) ch(Bs) - ch(BT) = d f (t>Trs 

fdBt 

dt 
exp -B \ ' dt 

Lemma 48. — </>Tr5 ( ^ t e x p — B$) is a real form ifV^ respects h± (the hermitian 

metrics on fi^). If not, this form is changed into its complex conjugate if V M is 

changed into its adjoint connection with respect to h±. 

If is flat and if the suitable triple used in the construction of Bt is the trivial 

one ( { 0 } , { 0 } , 0 ) , then: 

(t>Trs 

dBt 

dt 
exp-B\^ = (f>Trs 

dCt 

dt 
exp -Ct = 0. 

Proof. — The second assertion is proved in [32]. It is reproved here as a direct 

consequence of (76), of the last assertion of Lemma 44 (and the fact that if is flat 

on £ over M , then dR + is also flat on the pullback of £ over M). 

In general, exp — B2 is a globally even End6-valued differential form, so that its su-

percommutator with is their usual commutator; and it is special autoadjoint if V M 

respects h± on ^ (if not, the two forms obtained from mutually adjoint connections 

on /i are mutually special adjoint). 

On the other hand, is for any t a special autoadjoint End(S-valued differential 

form, so that the product ^Mt. exp — B% is the special adjoint of (exp —B2)^- (if V M 

respect k^). Thus 

<j>Trs 

dBt 

dt 
exp -B \ = <f>Trs ( e x p - 5 2 ) 

dBt 

dt 
= (j>Trs 

dBt 

. dt 
exp -Bl 

and the reality follows (the case when V M does not respect h± is similar). 
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Proposition 49. — One has the following estimate: 

as t —• +00 : (t>Trs 

fdBt 
dt 

exp -B\ = 0 ( t - i ) . 

Proof. — The t —• +00 asymptotic is proved by the adaptation of [3] Theorem 9.23 

which is proposed (though not detailed) at the end of §9.3 of [3]. (Here x(t) is constant 

on a neighbourhood of +00, so that the arguments of the proof of Theorems 9.7 and 

9.23 of [3] apply). • 

This estimate together with formulae (80 ) and (78 ) prove the convergence of the in­

tegral J 0

+ ° ° c/)Trs exp -B2) dt. It follows from ( 8 2 ) , ( 83 ) , ( 8 0 ) , and Proposition 45 

that this integral is a transgression form in the following sense: 

( 8 4 ) d 
r+00 

Jo 
4>Trs 

dBt 

dt 
sxp-£ t

2 dt 
Jz 

e ( V T z ) A ch(V^) + ch(VM) - ch(V^) 

(where ch(VA t) = ch(VM+) — ch(V M - ) and accordingly for ch(V#)). The preceding 

considerations about functoriality apply here, so that this transgression form is func-

torial by pullbacks on fibered products as in ( 4 3 ) (if the horizontal subspace of the 

source manifold is taken as described at the end of §5.2) . 

5.3. Proof of the first part of Theorem 28 

5.3.1. Chern-Simons transgression and links. — Let E, F, G and H be vector bun­

dles on M with connections V e , V f , V g and V / / . Suppose there exists some link 

(K,£) between E — F and G — H as in ( 4 7 ) . One associates to (K,£) the differential 

form (defined modulo exact forms) 

( 8 5 ) ch([£]) = ch(VE © V H 0 V /r , r [ V f 0 V G 0 V * ] ) 

for some connection V # on K. It is easily checked from ( 9 ) and ( 1 0 ) that the class 

of this form modulo exact forms does not depend on the choice of Vk and is not 

modified by changing (K, £) by an equivalent link. It is possible to choose a unitary 

V k j so that ch([£]) is a real form (modulo exact forms) if it happens that V e , V f , 

V g and V # are all unitary connections. And of course 

( 8 6 ) ddx([t\) = ch (V £ ) + ch(Vtf) - ch (V F ) - ch(V G ) . 

For the composition of two links I and £', and any connections on the considered 

bundles one obtains (modulo exact forms and always from (9) and (10)): 

( 8 7 ) ch([f ot]) = ch([£\) + ch([£']). 
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5.3.2. Definition of the n-form and check of its properties. — Consider now some 

vector bundle £ with connection and hermitian metric h^ on M , some horizontal 

tangent vector space THM and vertical metric gz for the submersion n: M —» B, and 

vector bundles F + and F~ on B such that 

[F+]-[F~] = 7 r ? u [ £ ] € K?op(B). 

Put any connections Vp+ on F + and Vp- on F~ and choose some equivalence class 

of links [£] between F + - F~ and some family index bundles 0 / / " ) - 0 / / + ) 

provided by any suitable triple (with connections V # and V^, being 

the kernel bundles). 

Definition 50. — The families Chern-Simons transgression form is the (inductive limit 

of the) class modulo exact forms of the following differential form on (compact subsets 

of) B: 

» ? ( V € , V r z , V F + , V F - , [ < | ) = 
r+oo 

Jo 
qTrs 

'dBt 

dt 
exp -B \ dt+ 

Jz 
e ( V T z ) A c h ( V ^ V £ ) + c h ( [ 4 ) 

where ch([<£]) is computed with the connections V M , V # and Vp±. 

If B is noncompact, the above construction produces some projective collection of 

elements of Qodd(K, C)/dCleven(K, C) on compact submanifolds (with boundary and of 

the same dimension as B. In fact, this will be fully established in Proposition 51 below. 

The properties checked just hereafter are local and will also be valid for a noncompact 

B). This gives rise to an unambiguous object in ttodd(B, C)/dQeven(B, C) (which can 

be constructed by an analogue procedure to the one which was sketched just before 

Definition 40). 

It follows from (84), (8) and (86) that the form 7 7 ^ , V T z , Vp+, Vp- , [£]) verifies 

the transgression formula stated as property (a) in Theorem 28. 

The / 0

+ ° ° fi^s { ^ § ^ exp —Bfydt part of rj is functorial by pullback on fibered prod­

ucts as in (43) as was remarked at the end of subSection 5.2.6 just after the proof 

of Proposition 49. The ch are both functorial, as was remarked just before Equa­

tion (9), and e(Vrz) too, under the assumption on horizontal subspaces of the end of 

§5.2. This proves the naturality property (b) for rj. 

r/(V^, V T Z , Vp+, Vp- , [£]) is additive in the following sense: let £ 1 and £2 be bundles 

on M with connections V ^ and V^ 2 , let F*, F-f, F 2

+ and F2~ be bundles with 

connections on B such that [F+] - [F~] = 7 i f u [£i ] and [F 2

+ ] - [F2~] = 7 i f u [ £ 2 ] in 

K®op(B). Let [£i] be some link between F±~ — F f and some (couple of) family index 

bundles for £ 1 on B, and correspondingly for [£2]. The additivity (for direct sums) of 

the topological direct image construction ensures that £\ 0 £2 provides an equivalence 
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class of link between (F+ 0 F 2

+ ) — 0 F2 ) and bundles on B which form a couple 

of family index bundles for £i 0 £2 • Then 

r/(VC l 0 Vfc,Vrz, V F + 0 V F + , V F - 0 Vp- , [h ® e 2 ] ) = 

= , V T z , V F + , V F - , [h]) + , V T Z , V F + , V F - , [ £ 2 ] ) . 

This additivity is a direct consequence of the fact that the Chern character and the 

supertrace entering the construction of j 0 °° 0Trs ( ^ t e x p — B%) dt are additive for 

direct sums, and accordingly for Chern-Simons transgressions (10). Property (c) of 

Theorem 28 is thus established for rj. 

The vanishing of ^(V$, Vrz> V V [Id]) for any flat bundle (£, V^) is a con­

sequence of the first statement of Lemma 48 and of [11] Proposition 3.14 and Theo­

rem 3.17: Lemma 48 proves that the integrand of the first term in the definition of rj 

vanishes for alH > 0 (if it is computed using the trivial suitable triple ( { 0 } , { 0 } , 0 ) ) . 

In particular, the link [Id] in the third term ch([Id]) is trivial as link, but it links 

7Tj +£ — 7TJ-£ endowed with their sheaf theoretic direct image flat connections V 7 r+^ and 

V^-^, with 7Tj +£ — 7rj~£ endowed with their metric connections V#+ and V # - obtained 

by the projection on the kernel of the fiberwise Dirac operator (82). 

It is proved in [11] Proposition 3.14 that V#+ = V u + and accordingly on F~, and 

in [11] Theorem 3.17 (see also Remark 14 above) that, up to exact forms 

c h ( V . ! + c , V ^ ) - c h ( V V \ 4 ) = 
Jz 

e ( V T Z ) c h ( V « , V 4 " ) . 

Thus the two last terms in the definition of ry(V^, Vrz , V^-^ , [Id]) mutually 

compensate, and the property (d) of Theorem 28 is established for rj. 

5.3.3. Invariance properties ofrj. — The proof of the first part of Theorem 28 is thus 

reduced to the following 

Proposition 51. — f?(V£, Vrz? V F + , V F - , [£]) does not depend on té, nor on the func­

tion x n o r o n ^e construction of topological direct image and the choice of data 

used in it, provided the class of link [£] is modified by composition with the canonical 

link between the obtained representatives of the topological direct image when they are 

changed. 

rj(V^, Vtz, VJT+, V F - »[£]) of course depends on the other data in a way which will 

be precised later in §5.4.1. 

Proof. — This will be proved in two steps. 

First step: independence on h^, x , and on deformation ofxjj. — Consider the sub­

mersion 7r x Id[ 0 > i ] : M x [0,1] —• B x [0,1]. The vertical tangent space of n x Id[0,i] 

is simply the pullback to M x [0,1] of the one of 7r, and it will be supposed to be 
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endowed with a pullback metric. Choose some horizontal subspace THM for n and 
pull it back on M x [0,1], where it is a suitable horizontal subspace with respect to 
7r x Id[ 0,i]. These choices of horizontal subspaces verify the conditions of the end of 
§5.2 with respect to the maps B x { 0 } -> B x [0,1] and B x {1} ^ B x [0,1]. Call 
Vrz the associated pullback connection on the vertical tangent bundle of n x Id[ 0,i]. 

Consider some vector bundle £ on M , with connection V^, and any pair of bundles 
F + and F~ on B with connections Vp+ and Vp- such that - [F~] = ?if u[£] in 
K^op(B), and some equivalence class of link [£] between F+ — F~ and some couple of 
family index bundles for £. Pull back £ on M x [0,1] and F + and F~ on B x [0,1] and 
call £, F+ and F~ the pullbacks. Call V$, Vp+ and Vp- the pullback connections on 
them. Endow £ with some not necessarily pullback hermitian metric № and choose 
any suitable data ( / I - 1 - , / ! - , ^ ) with respect to n x Id[0,i] providing kernel bundles 

on B x [0,1]. Of course one has M = K e r 0 l £ ± 

[ F + ] - [F-] = W+
 e / r ] - \X e t+] = (7rxId I o, 1 , )f 1 K]€Äg > p (Bx[O f l]) . 

[£] naturally provides an equivalence class of link between F+—F and the restrictions 

to B x { 0 } of (${ 0 Jl~) — (${ 0 /1+), which can be extended (by parallel transport 

along [0,1]) to an equivalence class of link [£] on the whole B x [0,1] between F+ —F~ 

and (c# + 0 Jx~) 0 

Construct the differential form rj = ^(V^, Vrz , Vp+, Vp- , [£]) in the same way as 

in Definition 50 with respect to all these data on M x [0,1]. This must be made using 

a smooth function x o n 5 x [0,1] x R + vanishing o n B x [0,1] x [0,e], equal to 1 on 

B x [0,1] x [A, +oo) and increasing with respect to the variable in M + as was sketched 

at the end of §5.2.5. The obtained form rj verifies (a): 

drj = 
Jz 

e(V T z)ch(V^) - ch(Vp+) + ch(Vp-) 

where fz stands for integration along the fibres of 7r x Id[ 0,i]. Call rjo and rj\ the 

restrictions of rj to B x { 0 } and B x { 1 } respectively. Integrating this formula along 

[0,1] provides that the following differential form on B is exact: 

(88) d\ 
r[o,i] 

n = Vi - Vo + 
[0,1]

 Jz 
e(V T z)ch(Vç) -

' [0 ,1 ] 

ch(V F +) + 
[o,i] 

c h ( V F - ) 

but Vtz a n d V^ are pullback connections on M x [0,1] for the projection on the 

second factor M x [0,1] —• M and accordingly for Vp+ and Vp- on B x [0,1], so 

that their Chern characters or Euler form are pullback forms, and their integral along 

[0,1] vanish. It follows that rjo and rji are equal modulo exact forms. 

Now rjo and rji are both regular definitions of r/(V^, VTZ? Vp+, Vp- , [£]) as in Defi­

nition 50, because the class of link between F + — F~ and the restrictions to B x { 1 } 
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of (${ 0 Jl~) — (jH 0 is in the equivalence class of [£] (it can be deformed along 

[ 0 , 1 ] to the one between the restrictions on B x { 0 } ) (and because of the functoriality 

property of rj). This proves the independence of the class of rj modulo exact forms on 

and x, and also that a deformation of the suitable triple does not modify the class 

of rj modulo exact forms. 

Second step: general independence on the suitable triple used. — First remark that 

if (/ i + , /x~, '0) is a suitable triple, then (/x+ 0 £+,/x~ 0 ij;) is also suitable (C + 

and £~ are inert excess vector bundles) and gives rise to the same rj. The same is 

true for ( / i + 0 C ) ^ _ 0 C?^ 0 D e c a u s e the extra term due to Id^ appearing in 

(j)Trs {^§f exp —B2) is the supertrace on £ 0 ( of some End(£ 0 £)-valued differential 

form whose diagonal terms are equal. 

For some suitable triple (//+, ijj), giving rise to kernel bundles ^ T ± , one as­

sociates to it some positive kernel triple (/z + © A , / i ~ , ^ + ^ ) as just before Defi­

nition 37. One puts on B x [0 ,1 ] the bundles / I + = /x+ 0 A 0 Ji~ = [i~ 

and tjj = i/j + cos(^t)(p + sin(^t)t^- where i^- is the obvious embedding of ${~ 

into S~ 0 [i~. The obtained triple ( / I + ,/J~ , V>) is a positive kernel triple with re­

spect to 7r x Id[o,i]. Its kernel bundle restricts to (Ker2)J+*) 0 3i~ on M x { 0 } and 

( K e r 2 ) J + ) 0 A on M x { 1 } . Thus applying the above considerations to this case, 

proves that 771 constructed using ( / i + 0^ - , / i ~ , i p + 6 ^ ) (corresponding to M x { 1 } 

with an inert copy of A added to /x+0c5^~) and 770 constructed using (/x+0A, n~ ,ip+(p) 

(corresponding to M x { 0 } with an inert copy of $£~ added to / i + 0 A) differ from an 

exact form; the parallel transport along [0 ,1 ] from ( K e r 2 ) J ^ ) 0 ^ _ to (Ker2)^ + )0A 

(following K e r ( 2 ) ~ € + | M X { T } ) ) is easily checked to lie in the equivalence class of the link 

between ( K e r 2 ) ^ + ) and (Ker2)J*_+) - A obtained from ( 5 8 ) and Definition 36. 

The lemma is thus proved in full generality. • 

5.4. Anomaly formulae and their consequences 

5.4.1. Anomaly formulae. — The Chern-Simons theory ( 7 ) also applies for the Eu­

ler class: for any real vector bundle on M , consider p\: M x [ 0 , 1 ] —• M (the 

projection on the first factor) and the bundle = PJJFR on M x [0 ,1 ] , choose any 

euclidean metric and unitary connection V F r on FR, denote by VF R , t — V F R | M X { * } 

the restrictions of V F r to M x {£} for all t G [0 ,1 ] , and define 

( 8 9 ) e(VF R ,o, V F „ , I ) = 
[0,1] 

e ( V F J . 
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The class of e ( V F R , 0 , V F R , I ) in f2(M,C)/dfi(M, C) only depends on the limiting con­

nections V F R , O and Y F R , I and e ( V F R ) 0 , V F R ) I ) verifies the following transgression for­

mula 

de(V F ] R,o, V F R , I ) = e(VjrR,i) - e ( V F R J 0 ) . 

It is also functorial by pull-backs, and locally gauge invariant, and verifies a similar 

cocycle property (9) as does ch. Moreover, making the product of e(Vj?R) and ch(Vj3) 

yields the following equality modulo exact forms: 

(90) 

J[0,1] 
e ( V F J A c h ( V F ) = e ( V F R , o , V F R , I ) A c h ( V F , 0 ) + c ( V F R , I ) A c h ( V F , 0 , V F , i ) 

= e ( V F R , 0 ) A ch(V F ,o , V E , I ) + e ( V F R , 0 , V F R , I ) A c h ( V F , i ) . 

Take now the same model as in the first step of the proof of Proposition 51, but 

with not necessarily pullback connections nor fiberwise riemannian metric gz nor 

horizontal space THM. The obtained connection VTZ is of course not a pullback 

connection. Denote by and V £ z the connections on £ and on TZ corresponding 

to data on M x { 0 } and by V^1 and V j . z their counterpart on M x { 1 } . Consider 

pullbacks on B x [0,1] of some couple ( F + , F ~ ) of bundles on B with connections 

V F + and V F - such that [F+] - [F~] = 7if u[£] G K$op(B) with pullback connections, 

the counterpart of (88) in this setting is 

(91) 

rç^1, V T Z , V F + , V F - , [<]) - TKV C°, V T Z , V F + , V F - , [£[) = 

Jz 
e ( V ° z ) A ch(V|, V^ 1) + e ( V T z , V T z ) A ch(V^) 

where the integrand can be modified as in (90). 

Now one also can change the bundles on B in the following way: take suitable 

( / i + , /x~ , '0 ) and call &± = Ker^^, endow 0 /x~ and ${~ 0 /x+ with any 

connections and V ^ . Consider vector bundles F + , F~, G + and G~ on B such 

that - [F~] = [G+] - [G~] = 7 i f u [ £ ] e K$op(B), choose some connections V F + , 

V F - , V<3+ and V G - on them, and some links [£p] and [£g] between F + — F~ or 

G + — G~ respectively and ( j # + 0 /x~) — 0 / x + ) . Then from the construction of 

rj it follows that 

(92) 

*?(V«, V T Z , V F + , V f - , [£ F ]) = »,(V € , Vrz , V T , V A , [Id]) + ch([* F]) 

= »j(V € , V T Z , V G + , V G - , [tG]) - ch([eG}) + ch([eF\) 

= t j ( V € > V T Z , V G + , V G - , [tG]) + ch([eF o # ] ) 

where of course ch([^ F]) and ch([^G]) are computed with V F ± or V G ± respectively, 

and V T and V*. 

Formulae (91) and (92) give all the dependence of 77 on its data. 
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5.4.2. End of proof of Theorem 28. — If £ has vanishing rational Chern classes, then 

some finite direct sum £0£0- • -0£ is topologically trivial on X. The anomaly formulae 

(which are consequences of properties (a) and (b)) then relate rj for 0 0 • • • 0 

(and any direct sum of copies of direct image representatives) and rj for the canonical 

flat connection on the trivial bundle with corresponding flat direct image, which 

vanishes because of (d). Property (c) allows to simply divide by the number of copies 

of £ to obtain the desired 77, which is thus obtained using only (a), (b), (c) and (d). 

Remark. — One could generalise to bundles £ whose restrictions to the fibers of n 

have vanishing rational Chern classes by adding some property linking 77 for £ and 77 
for £ ® 7r*£ where £ is any bundle on B. Some more axioms are needed to obtain a 

general caractérisât ion. 

One could hope to obtain a caracterisation of 77 modulo the image of Klop(B) by 

the Chern character, with no care of links of bundles on B with someones obtained 

by analytic families index construction. However, the fact that one must consider 

a not controlled finite number of copies of £ would prevent to obtain more than a 

caracterisation modulo rational cohomology. 

5.4.3. Proof of Theorem 29. — The anomaly formulae (91) and (92) yield in the 

situation of Theorem 29 that 

r)(VE, V T z , V + £ 7 , V ^ , [Id]) - 7 7 ( V F , V T Z , V + f , V - f , [Id]) = 

Jz 
e ( V T Z ) c h ( V F , / * V F ) - c h ( 7 r , ( [ / ] ) ) . 

Both 77 vanish (this is property (d)), and that the right hand side vanishes is exactly 

the desired result in view of Definitions 7 and 26. 

5.4.4. Proof of Theorem 31. — Let (£, V e , a ) e Kch(M). If F + , F~, G+ and G~ 

are vector bundles on B such that [G+] - [G~] = [F+] - [F~] = 7 r ^ u [ £ ] e Kl°p(B). 

Consider any connections V F + , V F - , Vq+ and Vq- on them. It follows from (92) 

that 

r?(% V T Z , V F + , V F - , [iF]) - t , ( V € , V T Z , V G + , V G - , [lG]) = ch([^ o ^ ] ) . 

Formula (51) written with G + and G~ (with their connections) instead of F + and 

F~ thus provides the same class in K^B) (see (10), (13) and (85)). ?rpu(£, V$, a) is 

thus a well defined element in K^B). 

Suppose that (£,V$,a) = (£',V£>,o/) 6 JRTCh(M), and that / : f —• £' is some 

smooth vector bundle isomorphism, then 

a ; = a + c h ( V ^ / * V e / ) + i8 
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where (3 is a closed form lying in the image of K^op(M) by the Chern character. Thus 

if - [F~] = 7if u [ £ ] e K°op(B) with connections V F + on F + and V F - on F~, one 

has from (91) and (92) (for any suitable links [£%] and [£?]): 

rç(VE, V T z , V F + , V f - , ft]) - 7?(V^, V T Z , V F + , V f - , ft,]) = 

Jz 
e(Vrz) A ch(V€, / * V € / ) + ch(^ o 

Remember the definition of a: ftodd(M, C ) / d f t e v e n ( M , C) — • Kch(M) given just be­

fore Proposition 10. One obtains from the preceding equation: 

7 R P u ( £ , % a ) - 7 R F u ( £ ' , V e , a ' ) = 

= a 
Jz 

e ( V T Z ) A (ch(V €, / * V { / ) + a - a ' j + ch(^ o Ç 1 ) 

= a 
Jz 

e ( V T z ) A / ? J + a ( c h ( ^ o ^ - 1 ) > 

which vanishes in Kch(B), because chft o^T,1) e ch(X t

1

o p ( J B)) C # o d d ( £ , C ) and so 

does Jz e (Vrz) A /3 by virtue of the cohomological version of Atiyah-Singer families 

index theorem for K^op. 

Moreover the additivity of rj for direct sums (property (c)) yields 

7 T p u ( 6 0 6 , Vfc 0 Vfe,ai + a 2 ) = 7r, E u(Éi, V ^ , a i ) + 7 r p u ( £ 2 , a 2 ) . 

7 r p u is thus well defined as a morphism from i f c h(M) to if ch(i?). 

The commutativity of diagram (53) is a consequence of property (d) of rj. 

The commutativity of the right and the central squares of diagram (54) are tauto­

logical. The commutativity of the left square of (54) is a consequence of the cohomo­

logical version of Atiyah-Singer families index theorem for K^op. 

In the same way one has the following equality modulo exact forms: 

® K E U ( £ , % A ) ) = c h ( V F + , V F + ) - 2 0 m 
Jz 

e(Vrz) A a 

- c h ( V ; _ , V F - ) + 2i3m(V(V0 Vtz, V F + , V F - , [ £ } ) ) . 

Of course the connections on F + and on F " can be supposed to respect some hermi­

tian metrics on F + and F~ without changing the formula, and this makes and vanish 

the terms c h ( V F + , V F + ) and c h ( V F _ , V F - ) . 

The reality considerations for ch([£]) between (85) and (86) and the last statement 

of Lemma 48 imply that ry(V^, V T Z , V F + , V F - , [£]) is a real form (modulo exact forms) 

if it happens that V$, V F + and V F - respect some hermitian metrics on their bundles. 

Consider any connection V ^ which respects some hermitian metrics on £. The reality 
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of rç(Vf

tt, Vrz , V f + , V p - , [£]) and Formula (91) yield 

î K V ç . V t z , V F + , 7 p - , [ 0 ) = 

= * ? ( V ? " , V r z , V F + , V F - , [ ^ ) + 
•>z 

e (Vrz) A c h ( Y j u , V € ) 

2 i Jm(7 ? (V Ç ) V T 2 , V F + , V F - , [t])) = 
z 

e (Vrz ) A2i3m(ch(V €

u

> V c ) ) 

Now using (31)) one gets: 

B (ch(V£, V$) ) = 

z 
e ( V T z ) A (ch(V£, V$) - 2i3ma) 

Jz 
e(Vrz) A » ( f , V € , a ) 

and the last statement of Theorem 31 is proved. 

5.4.5. Influence of the vertical metric and the horizontal distribution. — If geometric 

data are changed on M , namely the vertical riemannian metric gz and/or the hor­

izontal subspace THM, this changes the connection Vtz, and this also changes the 

morphism 7T| E u . 

Lemma 52. — Let Vtz and 7 r , E u be associated to data gz and THM, let gz' and TH'm 

be other data and call and 7 T j E u / the associated connection on TZ and morphism 

from iirch(M) to Kch(B). Then, for any (£, V^,a) one has 

7 r p u , ( £ , V € , a ) - 7 r p u ( £ , V 4 , a ) = - a 

Jz 
e (Vrz ,V T Z ) ch (£ ,Vc , a ) 

Proof. — If dimZ is odd, 7 r p u and 7 r p u ' will be proved to vanish in §6.3. e also 

vanishes. If dimZ is even, it successively follows from (91) that 

»?(V€, V T Z , V F + , V F - , [i]) - » , (V € , Vrz , V F + , V F - , [t]) = 
Jz 

e ( V T z , V T Z ) Ach(V 4 ) 

^ u U v f ) a ) - 7 r p u ( ^ , V , , a ) = 

= a 
Jz 

( e ( V T Z ) - e ( V T z ) ) a -
'z 

ê ( V r z , V x z ) Ach(V e ) 

= a 
>z 

è(VTZ, V U ) A ( - ch(V f ) + da) 

this last equality is valid modulo exact forms because 

d ( e ( V T z , %z)a) = e ( V ^ ) a - e(VTZ)a + ( - l ) d e « c ( v « » v « ) e ( V r z , %z)da 

and e(Vrz, V ^ z ) is of degree dimZ — 1, with dimZ even. 
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If dimZ is even, and since e(Vrz> is of degree dimZ — 1, it follows that MKo 

is the biggest subgroup of on which there is no variation of 7 r p u when geometric 

data gz and THM are changed. This gives a topological significance to the direct 

image morphism 7 r p u on MKQ. 

In the language of [14], the geometry of the fibration should be encoded into 

some smooth refinement of the used If-orientation, (here it is the one associated 

to the fiberwise Euler operator) and the restriction of 7 r p u to MK$(M) would be 

independent of the choice of this smooth K-orientation. 

6. Fiberwise Hodge symmetry 

The goal of this part is to prove Theorems 32 and 33. All these results are conse­

quences of symmetries induced by the fiberwise Hodge star operator. Paragraph §6.1 

is essentially devoted to technical computations dealing with relations of this star 

operator with various geometrical features of the theory. 

6.1. Symmetries induced on family index bundles 

6.1.1. The fiberwise Hodge * operator. — Here we will make constant use of the 

notations introduced in §3.1.1, §3.4.1 and §5.2.1. For any vertical tangent vector 

w £ T Z , consider its dual one-form w b (through the fiberwise riemannian metric gz), 

and its Clifford action on A*T*Z <g> f 

(93) c(w) = ( w b A ) - LV 

(LV denotes the interior product by w); c(w) is skewadjoint with respect to ( | ) z and 

verifies c (w) 2 = — gz(w, w) , it is an isometry if # z ( w , w) = 1. 

Consider the vertical Hodge operator * z = c ( e i ) c ( e 2 ) • • • c ( e d i m z ) for any orthonor-

mal direct base e i , e 2 , . . . , e a i m Z of TZ. It is an isometry of 8 (endowed with ( , )l2), 

and it has the same parity as dimZ (with respect to the Z 2 grading of 8). Its in­

verse * ^ = ( - l ) i d i m Z ( d i m Z + 1 ) * z is also its adjoint with respect to both ( | ) z and 

( , )zJ2. Define the metrized exterior product of £ - v a l u e d vertical differential forms by 

the following formula on decomposed tensors: 

( a 0 a ) A ( / ? ® 6) = (aAß)h^(a,b) 

(a sign (_ i ) d e s a d e g / 3 should be put on the right side if £ would be Z2-graded, but this 

case will not be considered in the sequel, note also that this operation is independent 

of the riemannian vertical metric gz). Then for any 7 G 8 whose differential form 

degree is < dega: 

(94) ( a ® a) A ( * z 7 ) = ( - l ) î d e g o ( d e g a - 1 ) + d i m Z d e g a ( ( a ® a ) | 7 ) z d V o l z . 
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6.1.2. Symmetry induced by *z on fiberwise twisted Euler operators. — For any vector 

w G T Z , c(w) commutes with *z if dimZ is odd and it anticommutes with * z if dimZ 

is even. It follows from the two preceding formulae that if V£ is associated to and 

as in (22), then for any 7 and 7' in 6: 

(95) 
d z ( 7 A 7') = ( d v « 7 ) A 7' + ( - l ) d e g T 7 A (d v «V) 

h£ h€ h€ 
so that ( d V € ) . = ( . j j l + J d i m Z C d i m Z - l ) # z d V ^ z 

from which one deduces that 

(96) (dV€). = (.jjl+JdimZCdimZ-l) #z dV^z 

This formula can also be checked from [11] formulae (3.36), (1.30), (1.31) and the last 

sentence at the end of the first alinéa of §III(d). 

Suppose that ( / i + , tp) is a suitable triple with respect to £ endowed with té and 

V$, and produce kernel bundles and $ { ~ . If dimZ is even, * z respects the parity 

of vertical forms while *z exchanges this parity if dimZ is odd. It then follows from 

(96) that: 

Proposition 53. — J/dimZ is odd, (*z©Id M +)ot/;*o(*~ 1 ®Id A i -)) is a suitable 

triple for £ endowed with té and V£. It produces kernel bundles (*z 0 Id M - )J^~ and 

( • z e l d ^ ) ^ . 
7/dimZ zs ewen. T/ie JropZe , / /" , —(*z © Id^- ) 0 ^ 0 ( * z * 0 Id M +)) ¿5 suitable 

with respect to £ endowed with té and V£. produces kernel bundles (*z 0 ld M + ) ^ + 

and (*z 0 Id M -)<#~. 

Indeed denote in both cases by \I/ the third element of the proposed triples, then 

the triple ( / x + , / i ~ , ^ ) or ( / x ~ , \ I > ) for V£ is chosen so that (96) reads 

(97) 0 ? * = - ( ^ e i d ^ r ^ y ^ e f c V ) 
if dimZ is even 

2)J€± = (*z ® I d ^ ) " 1 ® ? ^ ® Id M ±) if dimZ is odd. 

6.1.3. Odd dimensional fibre case. — Suppose B is compact and the fibres of ir are 

odd dimensional. Consider some positive kernel triple (À, {0},<£>) for £, which is sup­

posed to be endowed with a connection which respects the hermitian metric té. 

(There exists some as was mentioned just before Definition 37). It is here needed that 

(f vanishes on 5 + (which is in fact the case in the above cited references [2] Proposi­

tion 2.2, or [3] Lemma 9.30 or [29] Lemma 8.4 of chapter I I I ) . Call CK^ the associated 

kernel bundle. It follows from Proposition 53 that ( { 0 } , A, (*z 0 Id\) o (p* o * z

x ) is 

suitable and gives rise to kernel bundles { 0 } and (*z 0 KL)<# + C 6~ 0 A. 

Lemma 54. — The triple (A, A, y + ( * z 0 Id A ) o <p* o *" X + ^+ÈDIMZ(DIMZ+I) I D A ) is 

suitable with kernel bundles { 0 } and { 0 } . 
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The point about the factor of Id^ is that it should be nonvanishing and purely 

imaginary if * | = Id but real (and nonvanishing) if * | = —Id. 

The vanishing of 7rfu on K®op in the case of odd dimensional fibres and compact B 

follows. If B is noncompact, one concludes using the fact that any element of K®op(B) 

whose restriction to any compact subset vanishes, is itself trivial. The vanishing of 

nfu on ift 0p is a consequence of its vanishing on K®op. 

Proof. — Consider any element (v, a) G A 0 ( S + belonging to the kernel bundle. The 

corresponding condition reads 

(dv* + {dvt)*)a =-<pv 

_^*(*-V) = i 1 + ^ d i m ^ d i m Z + 1 V 

Writing a = *z&', one obtains the following 

(dv* + (dv<)*) *z a' = - i - i - è d i ^ t d i m Z + D ^ v 

((dv< + (d4y)*za',a')L,= _ r l - i d i m * ( d i m Z + l ) ^ V ) ^ V ^ 

where ( , ) \ is the scalar product on A. It follows from (96 ) , and the fact that V$ 

respects the hermitian metric, that (d v* + (d v *)*)*z 1 S selfadjoint if *% = Id and 

antiselfadjoint if * | = —Id. Thus the right hand side of this equality is real whenever 

the left hand side is purely imaginary and conversely. In any case this proves that ip*af 

vanishes. Thus v vanishes, thus (d v* + (dv*)*)cr vanishes. It follows that a belongs 

to the (positive) kernel bundle associated to the triple ( { 0 } , A, (*z ® M a ) 0 ° 

But this kernel bundle vanishes, and so does a. 

The proof of the vanishing of the cokernel is similar. • 

Let ( S ^ S 7 ™ ) be any couple of family index bundles for £. It follows from the 

preceding lemma and Theorem 25 that there exists a canonical link £ ^ between 

£7+ — 57"" and { 0 } — { 0 } . These canonical links are all compatible, this means that if 
a n d ( ^ + j $C~) are couples of family index bundles for £i — £i and £2 — C2 

which are linked through some link £, then 

(98 ) TTl([l]) = [lg{0}] o [lg{o}]-1 

This is because the same construction as in the proof of Lemma 54 can be performed 

on M x [0 ,1 ] compatibly with a deformation as was used in §4.1.4. 

That 7 r ^ ( [ ^ ] ) is constant, (i.e. 717([^]) does not depend on [£]) is compatible with the 

action of if^p on links and the vanishing of 7 r E u on i f t o p . 

6.1.4. Symmetry on canonical links. — B is no longer supposed compact. Let £1, 

£2, Ci a n d C2 be bundles on M with connections V ^ , V^ 2 , V^1 and V^2 such that 

[£1] — [Ci] = [£2] — [C2] € i^topC^O- Let [£] be some equivalence class of link between 
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£1 — Ci and £2 — C2- One supposes that £1 — Ci and £2 — C2 admit respective couples 

of family index bundles (£7 +, 57") and ( $ + , 

Call (£7*+, £7*") and ( ^ * + , ^ * _ ) the respectively associated family index bundles 

for £1 — £i endowed with V£ and or for £2 — C2 endowed with Vg2 and V£2 obtained 

using the symmetric triples of Proposition 53. There are isomorphisms (of the form 

(*z©Id„±) ) 

9* * 9^ and 
9* * 9^ 

if dimZ is even, 

9* * 9^ and 9* * 9^ if dimZ is odd. 

This provides a link £*g- between £7+ — £7 and £7*+ — ¿7* if dimZ is even or between 

£7+ — £7~ and £7*~ — £7*+ if dimZ is odd. And a link £y accordingly. 

Remember the definition of 7i£ ([-£]) as an equivalence class of links between £7+ — £7~ 

and *@+ — *§~ from Definition 41. Denote by ^ ( [ f ^ ) the corresponding equivalence 

class of links between £7*+ — £7*~ and — ^*~. 

Proposition 55. — Thèse classes of links are compatible in the sensé that 

\ n № l = [r<?]-1°M№)°Pff] ifdimZ is even, 

[$>] = [t9\ o [ 4 ° > ] - i z/dimZ is odd. 

Proof. — The symmetry of family index bundles of Proposition 53 is valid on a de­
formation on B x [0,1] as was performed in §4.1.3 and used in §4.1.4 for the general 
construction of In the even dimensional fibre case, one obtains two constructions 
of £p and £p* in exactly the same terms as in §4.1.3 and §4.1.4 which are mutually 

isomorphic through * z . Thus [£&*] = 0 [£g] 0 [£g] and the first statement of 

the proposition follows from the fact that 7r^([^]) is constructed as a particular case of 

some (inductive limit of) [£g]. 

In the odd dimensional fibre case, first remark that the links of type [ £ ^ ] , though 

constructed under a compacity hypothesis, are globally valid for globally defined cou­

ple of family index bundles (if there exists some. This is because locally defined links 

between global objects yield global links, as was sketched just before Definition 40). 

One may then suppose that ^ + = *§~ = { 0 } (see (98)). The point is now that * z 

exchanges the parity, so that a link obtained through some couple of positive kernel 

family index bundles (see Definition 37) is mapped by * z to a link obtained through 

a couple of "negative kernel" family index bundles. The counterpart of (58) in this 

situation reads 

0 — * -^-> ^ — * Ker 2 & - . — — 0 

where the two last maps are orthogonal projections (after inclusion of À in À © 6 ) . 

The proposition is reduced to prove that the equivalence class of links associated to 
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A K ~~ 
this exact sequence (from Definition 36) equals [£#+ _^~® i p *] - This is a consequence 
of the fact that this link can be realised as a deformation, by an analogue construction 
to what was made in the second step of the proof of Proposition 51. • 

6.1.5. Symmetry on connections on the infinite rank bundle &. — Remember the 
definitions of the infinite rank bundle & from (36) and (37), and of the connections 

V and V 5 on 6 from (72) and (73) 
Consider the adjoint V^ of V$, and the connection V" on 6 which is associated 

to V̂ * in the same way as V is associated to through (72). Call the adjoint 
s 

connection of V~ defined in the same way as was V with respect to V in (73). 
g 

The reader is warned that the connection denoted here by V corresponds to the 
connection denoted by ( V ^ ) * in [11] Proposition 3.7, and that V~ and V v 5 here have 
no counterpart in [11]. 
Lemma 56. — For any vector u tangent to B, and any local section a of & 

Vu^a = *^1(Vu(*za)). and V u^a = * ^ 1 ( V u ( * z a ) ) . 

Proof. — Remember the definition of Vrz from §3.4.1. Denote airways by VTZ the 
associated connection on A*T*Z, it is compatible with the Clifford action (93), so that 
its associated covariant derivative commutes with *z- Let Vrz<g>£ be the connection 
on A*T*Z ® £ associated to VTZ and V$, its adjoint V£Z(g)£ with respect to ( | )z 
is nothing but the connection on A*T*Z 0 £ associated to VTZ and V *̂. Then the 
covariant derivatives associated to both VTZ®£ and V f ^ ^ commute with *z-

Let u be some vector tangent to B, and its horizontal lift. For any vector y 
tangent to the fibre, the vertical projection P T Z V l c y ^ h of the covariant derivative 
of M H along y for the connection VLC is independent of the global riemannian metric 
defining VLC- Moreover, if v is another vertical tangent vector at the same point as 
y, then the scalar product g z { P T Z V j J c y ^ H > v ) is symmetric in y and v. As proved in 
[11] (3.27) and (3.32), if (ei, e2,..., edimz) is an orthonormal base of TZ, then for 

s 
any local section a of <?, the connections V and V express locally on M as: 

(99) 

Vucr = V tz^HO- -+ 
i and k 

g z { P T Z V L c E I M
H ^ k ) e \ A { i e k a ) , 

Vf<7 = V T Z ^ U H 0 " " 
i and k 

g Z { p T Z V L C ^ H & k ) J i A { i e k a ) 

The lemma follows from the obvious corresponding formulae for V~ and V v 5 , the fact 
that Vrz<g>£ and V£Z(g)£ commute with *z, the fact that 

(e-A)^fe*z = - * z (eb

f cA)^ 

for any i and k and the symmetry in and of g z { P T Z V L C E I ^ H \ efc)-
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6.2. Proof of results about # g a t and K°EL 

6.2.1. End of proof of Theorem 32. — Suppose that E is a vector bundle on M with a 

flat connection VE (and hermitian metric hE), and construct the associated objects &, 

V and V as above. Let P: 8 — • Ker(d V i 5 + ( d V s ) * ) be the orthogonal projection, 

then it is proved in [11] Proposition 3.14 that V^E = P V P and = P V 5 P 

through the fiberwise Hodge isomorphism TT\E = Ker(d V j s + ( d V £ ? ) * ) . 

Consider on E the adjoint connection VE (which is flat). The direct image of the 

flat bundle (E, Vj£) will be denoted by nCE and the flat connection on it by SO 

that m{E, V£) = ( T r f E ^ s ) . _ 

As precedingly, call V~ and V v 5 the connections on 8 constructed from Vj£ as in 

(72) and (73), let P ~ : 8 — • Ker(d v ^ + ( d V * ) * ) be the orthogonal projection, then 

from [11] Proposition 3.14 again, VNCE = P~V~P~ and S7*RE ^ P~V~ 5P~ through the 

fiberwise Hodge isomorphism ir{E = Ker(d v ^ + ( d v ^ ) * ) . 

It follows from (96) that P~ = • z P * ^ 1 so that *z directly provides a smooth 

isomorphism TT\E = TT\E. It then follows from the preceding Lemma 56 that through 

this isomorphism V* E = V^E and V^E — V £ - £ . Now *z respects the + and ~ parts 

of 8 if dimZ is even, and exchanges them if dimZ is odd so that 

(100) ^XE^E) = (-l)dimZ(nlE,V;iE). 

[n particular, the first equation of Theorem 32 is proved. 

Suppose now that dimZ is even. Then if (£, V B , F , V F , / ) € K?EI(M) 

T T . ( £ , V £ , F , V F , / ) = 

= (n+'E © 7r , -F , V w + - £ 0 V x - F , v—E © 7T+-F, Vn-E © V , + . F , **([/])) 

= {K+E © TrrF, v ; + F © v ; , ̂ E © TT+f, v ; © v ; + F : 

KE © ( C F ) " 1 ] ° **([/]) ° [(Cs)- 1
 © C F D 

The reality of 7r* in the case of even dimensional fibres (second statement of The­

orem 32) follows from this, the first statement of Proposition 55 and the obvious 

compatibility of links of the form £#• with direct sums. 

The last equation of Theorem 32 was proved just after its statement. 

The proof of Theorem 32 is thus completed. 

6.2.2. Results on 7r<_. — If dimZ is odd, consider some (E, VE) £ i f f l a t ( M ) , there is 

a link [£^ E ] between irfE - n^E and { 0 } - { 0 } as defined at the end of §6.1.2 (see 

also the proof of Proposition 55), 

Definition 57. — For (jB, VE?) € JRTgat(Af), one defines 

(101) = (n+'E © 7r,-F, Vw+-£ 0 Vx-F, v—E © 7T+-F, Vn-E © V,+.F, **([/])) 
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Proposition 58. — 7r<_ defines a morphism from K^at(M) to K®el(B). 

The relation TT\ = d o 7r<_ is then tautological. 

The last but one statement of Theorem 33 (that 7r<_ is purely imaginary) is a direct 

consequence of the second statement of Proposition 55, since through the isomorphism 

induced by *z one has 

TT<-(E,V*)= WE> xTE' KE] O vSlr1) 

= WE> xTE' KE] O vSlr1) 
(and in general £^ = in the odd dimensional fibre case). In particular, if V E 

respects some hermitian metric on E then 

T^(E, VE) = (n+E, V ; + £ , n + E , V<E, [Id]) 

= - ( 7 r ! - ^ v ; _ £ ) 7 r ! - ß , v w - E I [ i d ] ) 

from which one deduces using (33), (34), Remark 14, [11] Theorem 0.1 and the 

vanishing of the Euler class of odd rank real vector bundles that: 

(102) 
yfchow^(E,VE) = 

1 

2 
;»(£?, V B , 0 ) - ® ( £ ? , V | , 0 ) ) 

1 
: 2 z 

e ( T Z ) A 2 5 ( Ê , V Ê , 0 ) = 0 . 

The relation 7r. = 7r<_ O d on K^el is proved by the following computation, which 

uses (98) and the compatibility of links of the form $p with direct sums: 

n*(E,VE,F,VF,f) = 

= (irtE © jrj-F, Vn+E © V X - F , TT, £ © TTI+F, V T - ß © V „ + F , * * ( [ / ] ) ) 

= (irtE © jrj-F, Vn+E,[lTT{0}E] + (irtE © jrj-F, Vn+E,[lTT{0}E] -1 

One deduces from this, Theorem 29 and the vanishing of the Euler class of odd 

rank real vector bundles that 9fc^ o 7r<_(i£, V # ) depends only on the topological K-

theory class of E. Its vanishing for general (E, VE) € K^at(M) follows this, (102), 

the additivity of 7r<_ and of $fch. and the fact that there is some integer k such that 

the direct sum of k copies of E is topologically trivial on M. 

The last statement remaining unproved in Theorem 33 is the vanishing of 7 r p u on 

if c n . It is delayed to §6.3. Let us now prove the above proposition: 

Proof. — The point to check is that 7iv ((£?', VE>) + {E",VE») - (E,VE)) vanishes 

in K®el(B) if E', E" and E come from a parallel exact sequence like (11). 

(nfE' 0 irfE"^E' 0 ir^E") and (n^"E,ir^E) are both couples of family index 

bundles for E (as topological vector bundle). They are thus canonically linked by 
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[ ^ T n ^ ' e T r i ^ " ] - ^ follows from Lemma 42 that 
(103) 

[n? E' e 7г, +я" e щЕ, v„+E,®v1[+B,,®v<E, 

щЕ' e щЕ" e *+E, v ^ e v ^ , , © ^ , KE

E,M,E„] = O E K°rel(B) 

But it follows from (98) (which is also valid on noncompact B for globally defined 
couples of family index bundles as in the proof of Proposition 55) that 

\*"ir\E'®Tr\E"\ ' ( [ & } e o [ C r 1 ([&} e o [Cr1-1 

so that the right hand side of (103) is easily recognized (using relation (ii) of Defini­
tion 4) to be equal to TIV_((£', V ^ ) + (£", VE") ~ (E,VE)). • 

6.3. End of proof of Theorem 33. — The Formulas (99) and their obvious 

counterpart for \ T and V ~ 5 prove that § ( \ T + V v § ) = | ( V + V 5 ) = V M . Denote by 

Ct the superconnection on 8 constructed from V* as Ct is from Vf: 

Ci = v n + 
2 

F*+(<£**)•) + l 

2V* 
(*r - TA) 

Remember the definition of Bt from (79), and let Bi be the modified superconnection 

constructed as in (79) from Ct (or V^*) and the suitable triple of Proposition 53 then 

Lemma 59. — We have 

QTrs 
dBi 

dt 
exp -B? = ( - l ) d i m Z 0 T r s 

dBt 

dt 
exp -B l 

In particular, (/)Trs ( ^ t e x p — Cf) vanishes z/V^ respects h^ and dimZ is odd. 

Proof. — For any w E T Z , c(w) commutes with * z if dimZ is odd and it anticommutes 

with *z if dimZ is even. Thus tT — T/\ = —c(T) also does. Then it follows from (96) 

that: 

Vt 

2 
F*+(<£**)•) + l 

2y/i 
i T - TA) = 

= - ( - l ) d i m Z * ^ 
Vt 

2 
(<F*+(<£**)•) + 

l 

2Vt 
(^T - TA) *z • 

Lemma 56 has the consequence that the covariant derivative with respect to V u 

commutes with * z . For Z2-graduation reasons, this proves that the exterior derivative 

associated with V n on End^-valued differential forms on B supercommutes with * z . 

Let NH be the graduation operator on AT*B which multiplies fc-degree differential 

forms by the properties above give the following formula: 

(104) Ct = _ ( - i ) < M » Z ( _ i ) " * d * z (-1)Nh. 
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Put IdM = Id^+ 0 IdM-. Then, using (97) instead of (96) one obtains 

(105) Bt = - ( - l ) d i m Z ( - l ) N H * z ® l d u ) - 1 B U * z ® I d u ) ( - l ) N " . 

Now it successively follows that 

Bf = { - i ) N " { * z e i d . ) - 1 B f ( * z e i d ß ) ( - i ) N » 

exp(-B 2) = ( - 1 ) N h ( * z © Id^)- 1 E M - B ? ) ( * z © Id / J)(-l) J V» 

dB t 

dt 
exp(-£?t

2) = 

= - ( - l ) d i m Z ( - l ) N » ( * z ® l d ß ) - i 
ydBl 

at 
E M - B ? ) { * z ® I d ß ) { - \ ) N » . 

In this context of infinite rank vector bundles, it remains true that the supertrace 
of the supercommutator of two L2-bounded End(S-valued differential forms, one of 
which is trace class, vanishes. Using the fact that Id^ has the same parity as *z, one 
can apply this to [ ( * z 0 IdM) _ 1 ,o;(*z 0 Id^)] to obtain 

Tta(u)) = Trs I U Z 0 Id,)- 1 o;(* z 0 Id,)) 

which is valid for any globally odd End((50 /x)-valued trace-class differential form a;, 
in particular for ^ L exp(—Bt2). Thus 

Tr s 

dB t 

dt 
exp(-B?) = - ( - l ) d i m Z ( - l ) A r * , & 8 

fdB't 
dt 

exp( -Bf ) ) ( - l ) N » . 

The fact that this form and ^ t exp(-B 2) and ^ L exp(—Bl2) are globally odd, im­
plies that only their odd differential form degree parts contribute to their supertrace. 
The equation of the lemma follows. • 

Suppose now that dimZ is odd. Denote by 0 the connection on the null rank vector 
bundle {0} on B. Consider any element (£, Vf,a) € K ch(M). Choose any suitable 
data (//+, fi~, i/J) giving rise to family index bundles and CK~. Let [iffi] be the 
canonical class of links between ^ + — ?K~ and {0} — {0} obtained just before (98). 
Then 

(106) 7Tpu(£,V,,a) = {0},0 
]z 

e ( V T z ) A a - ({0}, 0 , ^ , Vrz, O . O , ^ ] - 1 ) ) 

e(Vrz) vanishes. Theorem 33 is then reduced to the following lemma. Note that all 
arguments were local, but (106) and the following lemma have global meaning, so 
that the arguments also work for noncompact B. 

Lemma 60. We have 7y(V€, V T z , 0,0, = 0. 

Proof. — Compare rj(V^, Vtz , 0,0, [ ^ ^ ] - 1 ) with the form rj computed from the "ad­
joint" triple , /x+, (*z 0ldM+) ô * o (sic"1 ©Id^-)) . They are of course equal because 
7TjEu(£, Vf, a) can be written with the same formula by simply replacing rj by the other 
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one. The terms of the form JZ e(VTz)ch(V^, V^) vanish in both cases. The terms 

of the form /J" exp(-B^) are mutually opposite from the preceding lemma. De­

note by the "adjoint" family index bundles, it follows from (87) and the second 

equation of Proposition 55 that 

ch([l{O}]-1) + ch([l{O}]-1 = -ch([l*k]). 

But c h ( [ ^ ] ) vanishes because the (*^ + Id M ) isomorphism respect the connections 

(81) on kernel bundles. Thus both rj forms are mutually opposite. • 

7. Double fibrations 

Consider two proper submersions 7Ti : M —> B and 1T2 : B —> S and the composed 

submersion TT2 o 7TI : M —• S. The goal of this section is to compare direct image 

with respect to 7T2 o 7TI and the composition of the two direct images relative to 7Ti and 

7T2 for topological, relative and multiplicative/smooth If-theories, and then to prove 

Theorems 34 and 35. Unless otherwise stated, S is supposed to be compact. 

7.1. Topological if-theory. — Consider some vector bundle £ on M , some couples 

of family index bundles {ttt^ ,${~) and (£7 + , £7"~) for £ relatively to TT\ and to TT2 o TTI 

respectively and some couple ( ^ + , $~ ) of family index bundles for — ${~ (with 

respect to 7 ^ ) . 

Theorem 61. — There exists some canonical equivalence class of links [£g] between 

and £7+ - 9 " . 

This implies the functoriality of 7 r E u for double submersions of compact manifolds, 

and hence in full generality (see Definition 20). 

The canonicity is to understand in the same sense that in Theorem 25. The con­

struction of [£g] uses the convergence of Euler operators under adiabatic limits. The 

point is to obtain some spectral convergence which allows to understand the behaviour 

of the kernel and of eigenvalues converging to 0 in this limit. We closely follow the 

analysis performed in [5] §5 with some analogue of [5] Theorem 5.28 and formula 

(5.118) as goal. In fact we want to connect family index bundles on M for £ and on 

B for $ { ± . We will combine spectral convergence with the fact that if a > 0 is such 

that the Euler operator along the fibres of 112 O TTI has no eigenvalue equal to a nor 

—a along 5, then the eigenspaces corresponding to eigenvalues lying in [—a, +a] form 

vector bundles on S which are themselves family index bundles. (This was already 

used in §4.2.3). 
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7.1.1. Fiberwise exterior differentials:— We precise (in (108)) the decomposition of 

the exterior differential along horizontal and vertical differential form degrees corre­

sponding to [5] Theorem 5.1. 

The respective vertical tangent vector bundles associated with -K\, 7T2 and 7T2 O TT1 

will be denoted by TM/B, TB/S and TM/S. Choose some connection Vf on £ along 

M. Call <§M/5 ( r e s P - &M/B) tne infinite rank vector bundles on S (resp. B) of 

even/odd degree differential forms along the fibres of 7T2 O m (resp. 7Ti) with values 

in £. Choose any smooth supplementary subbundle THM of TM/B in TM/S. Of 

course THM = TT^TB/S. On the fibre of 7T2 O 7TI over any point s of 5, one obtains for 

£-valued differential forms an isomorphism analogous to (37): 

(107) GM/s^tofa\{s}),SM/B). 

For any b € B and any tangent vector U € TbB/S, call UH its horizontal lift as 

a section of THM over 7r f 1(b). For any s G S, the construction of (72) produces a 

connection on the restriction of 6 M/B o v e r 7 R ~ 1 { { 8 } ) which will be denoted V. We 

will denote by dH the exterior differential operator on Ctfjr^1^}), 8M/B) — &M/S 

associated to V. 

The "vertical" differential operator dv* will be denoted by dMlB on 6M/B and 

dM/s on 6Mjs- As was remarked at the beginning of §5.2, 

(108) DM/s = DM/B + DH + L T (through the identification (107)) 

where IT here stands for the restrictions to the fibres of 7T2 O m of the operator 

LT € A2(TB/Sy <8> E n d o d d ( £ M / B ) of §5.2. We will consider this tT as an element of 

End(§M/s (through the identification (107)). 

7.1.2. Fiberwise Euler operators. — Here we precise (in (109) and 110) the depen­

dence of the Euler operator on the parameter 0 of the adiabatic limit. This corresponds 

to [5] Definition 5.5. 

Endow TM/B with some (riemannian) metric gM^B and £ with some hermitian 

metric h£. Take some riemannian metric gBls on TB/S. Put on TM/S the riemannian 

metric for which the decomposition TM/S = TM/B 0 THM is orthogonal and which 

coincides with gMlB and T^\gBls on either parts. The adjoints in End<§M/s will be 

considered with respect to the L2 scalar product on 6M/s obtained from and this 

riemannian metric (as in (38)). These are not the adjoints (neither usual nor special) 

considered on ^ ( ^ ^ ( { s } ) ' &M/B) in §5.1. For instance, the adjoint ij, of IT here is 

not TA as it was in §5.2. 

Let dM/B* be the adjoint of dMlB with respect to gMlB and as endomorphisms 

of 6M/B, then dMlB and dM/B* are also adjoint as endomorphisms of 6M/s because 

of the choice of a riemannian submersion metric on M. Call dH* the adjoint of dH as 
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endomorphism of 6M/s and put: 

(109) 

de = dH + 
1 

V 

M/B +OlT and de* = dH* + \dM'B* + 6L*T 

Xi 

<DH = dH + dH* and q>v = dM'B + dM'B* 

<De = de + de* = 2 ) " 1 dH* + \dM'B* + 6L*T 

Let Ny be the endomorphism of 6M/B defined as in §5.2.3. Ny multiplies A;-degree 

vertical forms by k, "vertical" meaning forms along the fibres of 7Ti. Using THM, 

Ny extends to an operator on 6M/s through the identification (107). Let g$ be 

the riemannian metric on M such that TM/B and THM are orthogonal and which 

restricts to gMlB and -^^\gB on either part, the observation here is that 

(110) qf = 0Nv(dM's + df,s*)0-Nv 

where d?^^S* is the adjoint of dMls with respect to g$ and h^. The riemanian submer­

sion metric chosen here simplifies considerably the form of $f with respect to the case 

of [5] where such a choice is not allowed and forces more complicated conjugations 

than by 6Nv (see [5] §5(a)). 

7.1.3. Introducing some intermediate suitable triple. — In the adiabatic limit, the 

^-twisted Euler operator on M should converge to the Euler operator on B twisted 

by the kernel bundles on B for £ with respect to TTI . In the general setting considered 

here, this forces to introduce some suitable triple with respect to 7Ti in the global 

Euler operator. This is performed here, the induced 2 x 2-matrix decomposition 

of the modified 2)# is presented and the first estimates on the matrix elements are 

obtained by analogy with [5] §5. 

Consider some suitable triple ( / / + , ip) with respect to 7Ti (and £ with and 

and gM/B). / i ± are endowed with some hermitian metrics. Choose some connection 

V M on /x ± (which respects either part) and consider the associated Euler operator 

2 ) v " = dv» + ( d v " ) * on n(B/S, /x*). Take some function x as in §5.2.5. For 6 e (0,1], 

one puts 

a n ) 

Dow = Do + Du + 1 - X(0) 
e 

(W +W*) 

= qf + qf h 
1 

9 
0 ( i - x W ) * + * ( t r + t r ) € E n d o d d ( 5 M / s © f i ( B / S , M ) ) 

where ®(i-X(6>))i/> is obtained from 0 V and (1 — x ( ^ ) ) V ' as ® ^ is from 0 V c and ip 

in (39). Here ip is extended to forms on B/S through the isomorphism (107). The 

choice of a riemannian submersion metric on TM ensures the compatibility of the 

adjunctions of ip before and after extending it to forms on B/S. This result (111) 

corresponds to [5] Proposition 5.9 with 6 = ^ and with the extra term 6{lt + t>j<)-
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There is a double decomposition associated to 2)^. 

(112) 6mIB 0 ^ = Ker2)^ 0 ( K e r g ) ^ 

which gives a double decomposition of infinite rank vector bundles on S: 

6M/s e QiB/S,^) = tl(B/S,Kœ<Dl) 0 fi(B/5, ( K e r g ^ ) - 1 ) . 

The choice of a riemannian submersion metric induces that the second one is orthog­

onal: let p: 6M/S ® ̂ {B/S.JJL^) —• A(B/S,Ker 2)^) be the orthogonal projection, 

it is the tensor product of the identity in Çl(B/S) and the orthogonal projection on 

the first factor of (112). Put p1- = Id — p. For any positive 0 one decomposes the 

operator as a 2 x 2 matrix: 

D0 
W 

p®%p 
p®%p 

pDowpL 

pDowpL 

Ao 
1 
A0 
3 

A0 
2 < 

As in §5.2.5, the vector bundle Ker2)^ is endowed with the restriction of the metric 

on 6MIb ® AA±5 a n d with the connection V # obtained by projecting the connection 

on 6M/b ® ß onto it (in fact p(V 0 VM)p, see [5] Theorem 5.1 and formula (5.34)). 

Because of the compatibility of orthogonal projections, the exterior differential opera­

tor on ft{B/S, KerS)^,) associated to this connection is dv# = p(dH 0 dv»)p. Clearly 

(d^y = p(dH* 0 (d^y)p. Define then = dv* + ( d v * ) * . For any 0 < | (to 

ensure that = 0), one has 

(113) A{ = 2 ) v * + 0p(*r + 4 )p . 

Of course p(iT + £T)p is a bounded operator in the L2-topology, and this remark with 
the above equation replaces here equation (5.35) of Theorem 5.1 in [5]. 

In the same way, for 0 G [0, | ] 

(114) 
A* = p((dH + dH*) 0 (dv» + ( d ^ ) * ) ) ? 1 - + 0p(tT + 

and Al = p±((dH + dH*) 0 (dv<* + (rf v-)*))p + 0p±(tT + 4 ) P 

are uniformly bounded operators in the L2-topology. This is because of the choice of 

the riemannian submersion metric and is a simplification with respect to the corre­

sponding result Proposition 5.18 of [5]. 

7.1.4. Estimates on the operator A±. — First one wants to obtain results analogous 

to [5] Theorems 5.19 and 5.20. There are three differences between the situation here 

and [5]. The absence of conjugation (by CT in [5] Definition 5.4 and (5.10)) due to 

the choice of a riemannian submersion metric is a simplification and does not create 

any obstacle; the presence here of the term 0(LT + LT) does not change these results 

because of the fact that LT + £T is a bounded operator in the L2-topology and because 
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of its factor 0; more seriously, the commutator [D^.D^] in [5] which corresponds to 

[ 2 ) v , Ç)H] in the notations here, is to be replaced by 

Ai + (1- X(0))(f + ¥>*) = ®V*+V + f* + 9p{iT + L*t) 

Of course the first term has the required majoration property [5] (5.67). The operator 

ij) + -0* is a fiberwise kernel operator (along the fibres of 7Ti), and its kernel is smooth 

along the fibered double M xB M. Thus, if v is a smooth vector field on B, the 

commutator [ V > + V > * , V ^ ^ ^ e V ^ ] (where is the horizontal lift of v, a section 

of THM), is a fiberwise kernel operator with globally smooth kernel. In particular, it 

is bounded in L2-topology, and so is the (super)commutator [ip + 2 ) H + 2)M]. The 

estimate [5] (5.67) then follows from [5] (5.61) (whose equivalent here holds true). 

The conclusions of Theorems 5.19 and 5.20 of [5] remain thus valid here, namely the 

existence of some constant C such that for any 6 < \ and any section s of 6M/s ® A4^ 

(115) K ( ^ s ) l l L 2 > c llpx«llffi + 
i 
0 \\P

XS\\L* 

where || ||#i stands for the usual Sobolev H 1-norm. 

Secondly, one needs some equivalent of [5] Proposition 5.22, particularly the esti­

mate (5.71) contained in it. But the proof here is in fact easier than in [5] because 

Equation (114) provides a simplification of the corresponding Proposition 5.18 in [5], 
the extra term Q(LT + LT) is a uniformly bounded operator, (ip+ip*) too, and ^(ip+ip*) 

is part of A±, it does not disable the ellipticity of A6 and it is taken into account in 

the obtained estimates: there exist constants c, C and 0q such that for any 9 < #o> 

A € C such that |A| < ^ and any s G 6M/s ® A A ± ) 

( n e ) 
H(A-iiJ)-V«IU» <ce\\P±s\\L* 

\\(\ - Alr^aUi KCWpJ-sU*. 

7.1.5. Spectral convergence of Euler operators. — Our goal is to follow kernel bundles. 

This makes us now introduce some suitable triple (C +?C~?^) f ° r 2) V ^- We extend 

p and p1- to 6M/s ® ̂  m the following way: p induces the identity on and p x 

induces the null map on C±. Consider then 

d0 
w?P 

/p (2£ + ( l - x ( 0 ) ) ( p + Q * ) ) p 
pl<pLLl 

PLD0 
WP 

pl<pLLl 

A? + ( i - x W ) ( y + v*) 

A0 
3 

A? 

A0 
4 

(It is not essential that the same function x appears here and in (111)). Equation 

(113) obviously leads to the following equality for 0 G [0, | ] : 

(117) Ai + (1- X(0))(f + ¥>*) = ®V*+V + f* + 9p{iT + L*t)p = <DV

V*+ Op(cT + L*t)p 
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with the same remark (as after (113)) that p(LT + ^T)p 1S bounded. 
Using this, the remark after (114) above and (116) instead of [5](5.35), (5.49) and 

(5.71) respectively, the analysis performed in [5] §§5(d) and (g) applies here. The 
only difference is that the following equivalent here of the first line of [5] (5.89) (for 
the usual norm of bounded operators in L2-topology) is NOT true 

(118) I {A\ + (1 - xiß)){fP + 9*) - 0 ^ ) ( A - V ^ r 1 < C 0 2 ( 1 + |A|) . 

The set UT (or Ui) where A is supposed to lie, defined in [5] (5.76), is such that 
|A| < ciT (or f) and ||(A - 2>J*) _ 1 | I < f for some constants ci and c 2. But only 
the following consequence of (118) 

I (A{ + (1 - x№(<p + <p*) - ®Z«) (A - 2 ) ^ ) " 1 < c e 

is needed for establishing the equivalent of [5] (5.90). This last estimate can be 
obtained here directly from the remark after (117) and the properties of Ui. 

One obtains firstly the convergence of the resolvent of 2)^ ^ to any great enough 
positive integral power (A - 0^J(p)~k to p(X - 0^)~kp in the sense of the norm 
\\A\\i = tr(A*A)% ([5] Theorem 5.28), and secondly the convergence of the spectral 
projector of 2)^ with respect to eigenvalues of absolute value bounded by some 
suitable positive constant a to the orthogonal projector onto the kernel of 2)^* ([5] 
equation (5.118)). Thus 

Theorem 62. — There exists some £2 > 0 and a > 0, and a vector bundle $C on 
S x [0,62] such that ^C\sx{o} — KerS)^* and ft\sx{t} identifies with the direct sum 
of eigenspaces of 2 ) ^ corresponding to (all) eigenvalues lying in [—a,+a]. 

This is because all the used estimates are uniform along 5, which is compact. 

7.1.6. Construction of the canonical link (proof of Theorem 61). — The above 
eigenspaces are also eigenspaces for the squared operator (2)^, ^ ) 2 , they are thus 
naturally Z2-graded, and for any nonzero eigenvalue, 2 ) ^ exchanges bijectively the 
positive and negative degree parts. (In particular, there is no nonzero eigenvalue in 
[—a, a] if ( C + , C ~ 5 ^ ) is a positive kernel triple). 

In any case, on S x { 0 } , ( ^ + , $C~) are kernel bundles so that in K®QJS): 

[ ^ + l s x { o } e C ] - [ ^ l s x { o } e C + ] 7 T 2

E ; ( [ K e r 2 ) ^ ] - [ K e r 2 ) j : - ] 

= ^ № ( K D + I m + ] - ^ - ] ) -

The constructions of §4.1.2, §4.1.3 and §4.1.4 can be applied to 2) ,̂ on any compact 
subset of 5 x (0,1]. This is because 2) ,̂ is the sum of the fiberwise elliptic operator 
2)^ 0 2)M and an order 0 pseudo-differential operator, which does not destroy the 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



352 A. BERTHOMIEU 

ellipticity. (Only ellitpic regularity is needed to construct suitable triples). This does 

not work on [0,1] because of the explosion of Ae

A (115). 

Choose E\ G (0,^2) and some suitable triple ( A + , A - , 0) for 2)^, with respect to the 

submersion (7^ o m) x Id [ e i ) i j . One then obtains kernel bundles £^ on S x [ e i , l ] 

which verify the following equality in K% (S) for any 6 G [ e i , 1] 

0 A - ) | S x { e } ] - [ ( £ " © A + ) | S x W ] = (7T 2 o ffl)f
uK] + (7T2 o ffl)f

uK] - [A* -])-

This is clear on 5 x { 1 } and spreads by parallel transport along [e±, 1]. 

One obtains a class of links between ( ^ + | s x { o } © C ~ ) _ ( ^ ~ l s x { o } © C + )
 a n d 

((^? + 0 A " ) | < s - X { 1 } ) — ((£~ © A + ) | 5 X { ! } ) by composing the parallel transport along 

[0,62] for the canonical link between ( < # + | s x { t } © C ~ ) ~~ {&~\sx{t} © C + )
 a n d 

( ( - £ + © A - ) | 5 x { t } ) - ( ( -£"© A + ) | 5 x { t } ) of Theorem 25 (which may be applied to 2)*) 

for any t G [£1,62] and parallel transport again along [ e i , 1] for j f . 

Choose any couple of family index bundles (z/ + , v~) for fi+ — pT. 

Definition 63. — TTie canonical equivalence class of links [£^] of Theorem 61 is ob­

tained by composing the above link with the canonical links of Theorem 25 between 

( ^ + ©*/ + ) - 01/"") a n d ( < # + | s x { o } © C ~ ) - C#"~|sx{o} © C + ) 0™ / l a n d , a n d 

( ( ^ + © A-) |5x{1}) - ( (£~ © A+)|5x{1}) and (£7+ 0 - (£T~ 0 1/-) o n tte otter 

/ l a n d . 

This class of links is clearly independent of the choice of u+ or v , or of the triples 

( A + , A _ , 0 ) or (G~*~,C~, <p) because of the global compatibility of links obtained from 

Theorem 25. 

Now take two systems of suitable data (/x "̂, fi^,ipi) and (/xj> ^2) with respect 

to 7Ti (and £ with and /1^ and gM^B). There is a link (as constructed in §4.1.3) 

between ( K e ^ ^ ® ^ ) - ^ ® ^ ^ ^ ) and (Ker<%eM2-)-(^©Ker<yB). 
This link is obtained by constructing a families index map for a submersion of the form 

7Ti x Id[ 0 , i] : M x [0,1] —• B x [0,1]. This construction can be extended to the case of a 
7TiXld[o 1] - 7T2Xldro 1] 

double submersion in the following form M x [0,1] — B x [ 0 , l ] —•* 5x[0,1], 

and the compatibility of canonical links either for linked data or for one and for two 

submersions follows. 

7.2. Flat and relative if-theory. — The first goal of this section is to explain 

why (7T2 o 7 r i ) i = 7r 2! o7Tii on K^at: this is a by-product of the Leray spectral sequence 

(see §7.2.1). It is well known that the Leray spectral sequence fits with the adiabatic 

limit of the preceding section, the goal of §7.2.2 is to explain how this traduces in the 

language of links. This is needed in to prove Theorem 34 in §7.2.3. 
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7.2.1. Leray spectral sequence. — Consider some flat vector bundle (F, V F ) on M, let 
G9 = ir*iF with flat connections VG» , and H9 = (7̂ 071-1 )*F with flat connections V # « . 

Note that here the full Z-graduation is needed and not only the parity Z2-graduation. 
The vertical F-valued de Rham complex îî*(M/5, F) along M/S is filtrated by the 

horizontal degree: for any p, FPQ,9(M/S,F) consists of F-valued differential forms 
whose interior product with more than p elements of TM/B vanishes. Thus H9 is also 
filtrated from this filtration: FPH9 consists of classes which can be represented by 
some element in FPQ9(M/S, F) . This filtration is compatible with the flat connections 
of H9, so that for any p and k, 

(119) 0 • pp+1Hk • FPffk > ppuk/Fp+1Hk > 0 

is a parallel exact sequence of flat bundles. The corresponding flat connections will 
be respectively denoted by VFP+iffk, VEPHk and Vp/fc. 

It is proved in [31] Proposition 3.1 that the associated spectral sequence gives rise to 
flat vector bundles (Ep,q, Vp'q) on S with flat (parallel) spectral sequence morphisms 
dr: EC* —> EP-r«+r+1 (and E™x = Kerdr\Ep,<i/(Imdr fl Ep'q)). 

It is a classical fact (see [31] Theorem 2.1) that this spectral sequence is isomorphic 
to the Leray spectral sequence, and thus E%'q = HP(B/S, Gq) while for all sufficiently 
great r one has E™ ^ FpHp+q/Fp+XHp+q. 

Put E+ = 0 E™ and E~ = 0 Ep'q, and denote their direct sum (flat) 
p+q even p+q odd 

connections by V / and V ~ . Applying Lemma 42 to the complexes 

(120) dr Tpp-\-r,q—r—l dr rpp,q dr ^ Ypp—r̂ q+r+l dr ̂  
r r r 

proves in particular that [E+, VR+] — [E~, V ~ ] G K^&t(S) is independent of r. 
For r = 2, this is nothing but 7r2i([G+, VG+] - [G~, V G - ] ) = ^2\(^i\[F, V F ] ) . 
On the other hand, it follows from (119) that the element 

[FpH9,VFPH.]-
p-i 

i=0 
FiHyFi+iH'iV./t]eKOat{s) 

is independent of p. For p = 0, it equals [H9, V # ] = (̂ 2 ° ni)\[F, VF] , while for 
sufficienly great p and r, it equals [2£+, V + ] — [E~, V ~ ] . Thus 

Proposition. — We have TT2\ O TT\\ = (7r2 O m)\ : K^at(M) —• K^at(S). 

7.2.2. Compatibility of topological and sheaf theoretic links 

One has now two classes of links between E£ — E2 = 2̂1(̂ 11 [F, VF]) and H+ — 
H~ = (7r2 o 7Ti)i[F, VF] : the link [£top] constructed in subSection 7.1.6 and the sheaf 
theoretic one [i^t] obtained by combining links obtained using Definition 36 from 
(120) and (119). The geometric setting of adiabatic limit is here the same as in §7.1. 
The three triples (/ /+,/ /- ,^), (C+>C~> )̂ and (A+,A~,(^>) are taken trivial. 
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Proposition 64. — We have [4 o p ] = [̂ flat] • 

Proof. — First step: Hodge theoretic version of the Leray spectral sequence. — Such 

a theory was studied by various authors in various contexts [33] [16] [5] [31], the 

version corresponding to the situation here in explained in [31] §2 and §3. It can be 

summarized as follows: Eo is nothing but 6M/s ( s e e (107)) as global infinite rank 

vector bundle over S. Then there exists a nested sequence of vector subbundles Er 

of Eo = EQ which are for all r > 2 of finite rank and endowed with canonical flat 

connections V r . This sequence stabilizes for sufficiently great r. For any r, there 

is some canonical isomorphism Er = Er with the corresponding term of the Leray 

spectral sequence, for r > 2 it makes V r and V r correspond to each other. All the Er 

are naturally endowed with the restriction of the L2 hermitian inner product on 6M/s 

(which needs here to be obtained from some riemannian submersion metric). Finally 

for any r, let d% be the adjoint of the bundle endomorphism dr corresponding to the 

operator dr of the spectral sequence, and define 2) r = dr + d*, then ER+I := Ker2) r . 

For r = 0, do = dMlB, so that E\ identifies through the Hodge theory of the 

fibres of TTI with # i = fi(S/5, Ker2) v ) £ ft (B/S, G # ) in the notations of the preceding 

paragraph. Thus E\ identifies with vertical differential forms with values in 7TiiF, 
where "vertical" is to understand with respect to the fibration 7T2- Let p\ be the 

orthogonal projection of Eo onto E\, then d\ = p\dH acting on E\. It follows that 

E2 = Ker(pi2) |g ) identifies with vertical harmonic G*-valued differential forms, 

hence with ^ ( ^ u F ) . 

For any r > 2, Er can be described as follows ([31] Proposition 2.1): 

(121) 

Er = {so € 6M/s s u c n that there exists Si, «2? • • •, sr_i G &M/S verifying 

<bVso = 0, <I)Hso 4- 0 V 5i = 0 and 

(LT + 4 ) « i - 2 + ®HSI-I + 2>vrsi = 0 for any 2 < i < r - l } . 

Then in this description 2)rso = Pr({^T + ^r)SR-2 + 2 ) H s r _ i ) , where pr is the orthog­

onal projection of 6M/s o n t o Er. One can then prove along the same lines as in [5] 

§VI (a) (especially formulae (6.13) and (6.15)) that 

d M / % = 0, dHs0 + dM^Sl=0, 

LTSI-2 + dHsi.1 + dM/BSI = 0 for any 2 < i < r — 1 

and drso = Pr(^TSR-2 + dHsr-\). 

Second step: convergence of harmonic forms. — Use now the convergence of the 

resolvent (A — ( | ) r l^f) 1 (here both ¡1 and tp vanish) to pr(X — 2 ) R ) _ 1 P V ([31] 

Theorem 2.2) for sufficiently large r. One can deduce that the orthogonal projection pe 

of 6M/S o n t o Ker2) converges at 6 = 0 to pr. In other words Ker® is the restriction 
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to 5 x (0,1] of some vector bundle on S x [0,1] whose restriction to S x { 0 } is E^. 

There is a bigrading on &M/S-> from (107) according to horizontal (i.e. corresponding 

to ft*) and vertical (corresponding to the grading of SM/B) degrees. E^ decomposes 

with respect to this bigrading [5] Theorem 6.1. Consider some so G EQ? and call 

sP+*,q-i £ o r a n v ^ foe corresponding component of the Si introduced in (121). The 

above description of dr proves that for any sufficiently large r the differential form 

so + + . . . sP+r>q~r is closed. According to the scaling appearing in (109) the 

section pe(s0 + 0 s ? + 1 ' 9 _ 1 + 02s%+2'q~2 . . . 6rsp+r'q-r) is the rescaled harmonic form 

corresponding to some fixed cohomology class. Its convergence to so at 0 = 0 proves 

that the isomorphism between Ker® 1 ad Eoo provided by the parallel transport along 

[0,1] exactly corresponds to the isomorphism [Hm, V#] = [E*, V r ] obtained at the end 

of §7.2.1 from (119). 

Third step: eigenvalues converging to 0. — The convergence of the resolvent (A — 

( | ) r " 1 2 ) < ? ) ~ 1 to pr(X - © r ) - 1 ^ ([31] Theorem 2.2) for any r gives the following 

description of the vector bundle tK of Theorem 62 over S x [0,£ 2]: its restriction 

to 5 x {0} is the direct sum of eigenspaces of 0$ corresponding to "little" modulus 

eigenvalues while its restriction to S x { 0 } is the direct sum of the Er, each Er 

corresponding to eigenspaces associated to eigenvalues of order less than or equal 

to 0r~1. For any positive 0, (jK,dQ) form a complex whose cohomology is £. The 

convergence of the resolvents also prove that the operator ( | ) r - 1 2 ) on the suitable 

eigensubspace converges to 2) r , and accordingly for (jj)r~1de and dr. 

By proceeding exactly as in §4.2.4, one obtains that the canonical class of links 

between CK^ and £^ equals the canonical class of links associated by Definition 36 

to the Leray spectral sequence ((120) for all r ) . 

One may use the limit t —• 0 or si —> 0 in the construction of 4 o P - The two 

remaining components of the construction of £ t o p (parallel transport along [0,1] and 

£#) were shown to be equal to the two components of [^fj at] (the links coming from 

filtration of cohomology and from the spectral sequence respectively). • 

7.2.3. Proof of Theorem 31 — Consider some (£, V F , F , V F , / ) € K?el(M), then 

7 r 2 * o 7 T i * ( F , V F , F , V f , / ) equals (TT2! OTT^F, VF),TT 2 ! OTT^F, V F ) , 7 r 2 * ( 7 r i * ( [ / ] ) ) ) while 

( 7 r 2 o 7 r i ) * ( F , V £ ; , F , V F , / W u a l s ((TT2OTTO^JS, V F ) , (TT 2OTTIMF, V F M T T 2 O T T I ) * ( [ / ] ) ) . 

Consider the pull-back E of E to M x [0,1] with some connection V whose restric­

tions on M x { 0 } and M x { 1 } respectively equal V F and / * V F - There is a canonical 

(topological) class of link [£] between one-step and two-step direct images of E whose 

restrictions to M x { 0 } and M x { 1 } coincide with [£fop] and [£^op] (with obvious 

notations from the preceding subsection, this is because of the naturality of [ 4 o P ] ) -

Now TT2i{^u([/])) and (7r 2 )* ( [ / ] ) both correspond to the parallel transport along 
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[0,11. Thus 

(122) 

7T2* o T T U ( E , VF , F, V F , / ) - (TT2 O TTI).(E, VF , F, V F , / ) = 

= (7T2! o 7n,(£, V F ) , (TT2 O TTOKS, V F ) , ^ L ] ) 

- (TT2! O TTI\(F, V F ) , (TT2 O yn),^, V F ) , [ * £ P ] ) 

But in both cases [4op] = [̂ flat] and £nat is only obtained from parallel complexes of 
flat vector bundles (from either (120) or (119)). It follows from Lemma 42 that both 
terms in the right hand side of (122) vanish and this proves the theorem. The case of 
noncompact S follows directly from the fact that links of the form [£flat] are globally 
defined. 

7.3. Multiplicative and smooth If-theory 

7.3.1. Calculation of o 7rf}

u — (7r2 O 7Ti)fu. — Consider the vector bundles f on 
M, F+ and F~ on B and G + and G~ on S (with connections V$, V F + , V F - , VG+ 
and V Q - ) such that 

[ F + ) - [ F - ] = ^ ] e K l p { B ) and [ G + } - [ G - ] = (n 2 oir 1 )?»[t]eK? o p (S) . 

Choose some smooth supplementary subbundle T H M/S of TM/S in TM, such that 
T H M/S fl TM/B = T H M \ then nuTHM/S is a smooth supplementary subbundle of 
TJB/5 in TB. One can define connections V T M / S , VTM/S and VTB/S o n TM/B, 
TM/S and T-B/5 as at the beginning of the proof Lemma 56 from the choices of 
horizontal subspaces T H M , T H M/S and T T ^ T H M / S respectively. Let [ i F ] and [£G] be 
equivalence classes of links between either F + — F~ or G + — G~ and couples of family 
index bundles (as in Definition 50), and denote 771 = T/(V$, VTM/B» VF+, Vp-, [^F]) 

and 7712 = ry(Ve, V T M / 5 , V G +, V G - , [4-]): 

TTe(£,VTM/Ba= 
^ + , V F + , 

M/B 
e ( V T M / B ) a - ( F - , v F - , m ) e K c h ( B ) 

and ( ^ 2 0 ^ , ^ , 0 ) EU(£,V£,A)= 

= ( G+, VG+ 
M/S 

e(VTM/s-)« - ( G - , V G - , 7 7 1 2 ) G K c h ( 5 ) . 

Take vector bundles # + + , H+~, if + and # onS (with connections V++, V+_, 
V_+ and V__) such that TRG^F*] = [ ^ r ± + ] - [ i J ± - ] G K° o p (S) . Consider some classes 
of links [£+] and [£-] between H ± + — # ± _ and couples of families index bundles and 
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denote by rj± the forms r / (V F ±, VTb/s, V±+, V ± _ , [£±]): 

* § u № & V * , a ) ) = H++,V++ 
'B/S 

cÇVtb/s) 
'm/b 

cÇ^tm/b)® 

- ( # + " , V + _ , i 7 + ) - H++,V++ 

B/S 
e(VTB/s)Vi + ( f f ~ , V „ , r y - ) . 

Now G+ - G~ and ( # + + 0 H~) - (H+~ 0 H~+) are linked through [t+], 

[£-] and the construction of §7.1.6. Call [£top] the resulting link and ch([4op]) the 

associated Chern-Simons form as in §5.3.1, then 

TTEu(TTEu(£,V£,a))= 
G + , V G + , 

'm/s 
ni {e(VTB/s))e(VTM/B)ct 

j 

- IG", V G - , 77+ - 77_ - ch([4op]) 4 e(VTB/s)?7i 

Choose any supplementary subbundle of THM in THM/S, it then identifies with 

nlTB/S and is endowed with the connection tt^Vtb/s- Denote by eM/B/s the form 

e(VrM/5 5 V T M / B 0 ^\^\tb/s) defined in §89, then the following form 

CM/B/sda + (e(V T M /s) ~ *l ( e ( V T ß / 5 ) ) e ( V T M / ß ) ) « 

is exact so that in i f c h ( 5 ) : 

EM/B/5ch(V^)G+,VG+, G + , V G + 
rM/5 

e ( V T M / 5 ) « - ( G - , V G - , 7 7 1 2 ) 

with r?i2 = V+-rj- -Ch([4cp]) + 
M/S 

e ( V T B / 5 ) r 7 i -
'M/S 

^M/B/sdoL. 

For any (£, V^,a) G Mifo(-kf), one has da = ch(V^) — rk£ but for degree reasons 

JM/SeM/B/s vanishes (the degree of this form equals dimM — dim£ — 1) . Thus 

Proposition 65. — ̂ E U ° ^ - (^2 o 7Ti)pu) (£, V € , a) = a(77i2 - rç12) wftcre 

1̂2 = *?+ - - ch([4oP]) + 
B/S 

e(VTB/s)Vi + 
M / S 

EM/B /5ch(V^). 

An argument similar to just before Lemma 60 yields that this equality also holds 

true in the case of noncompact 5 . 

7.3.2. Proof of Theorem 35. — It is easily verified that rj12 is additive in the sense 

of property (c) of Theorem 28, is functorial by pullbacks over fibered products (with 

double fibration structure!); a direct calculation proves that it verifies the same trans­

gression formula (property (a) of Theorem 28) as 7712- In the case of a flat bundle 

(£, V^) , i 7 ^ here correspond to G± in §7.2.1, G± here correspond to H± of §7.2.1, 

and H±=b here correspond to E^ of §7.2.1: in any case, the suitable data are taken 
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trivial because all bundles are flat, and thus all the forms r?+, 77_ and 771 vanish (prop­

erty (d) of Theorem 28). Finally ch(V^) = rk£ so that the integral involving CM/B/S 

vanishes, and ch([4op]) also vanishes, because of Proposition 64 and Lemma 1 ([^flat] 

of Proposition 64 is obtained by using Definition 36 from parallel exact sequences of 

flat bundles). 

The coincidence of 7712 and 77 1 2 for elements of MKQ(M) is then obtained from the 

second statement of Theorem 28. 

Remark. — It is likely that rj12 = r)\i in any case, so that one would have 

(7T2 o m)fu(£, V*, a) - 7^(7rf,u(£, V 6 a)) = a 
JM/S 

eM/B/scHÇ, V*,a) 

for any (£, V$,a) G i f c n ( M ) . This formula would be compatible with Theorem 28 

and with anomaly formulae (91) and (92). A corresponding result is proved in [14], 
where the above discrepancy is compensated by a suitable composition of smooth 

if-orient at ions in the double fibration. 
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