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INDEX, ETA A N D R H O I N V A R I A N T S 

O N FOLIATED BUNDLES 

BY 

MOULAY-TAHAR BENAMEUR & PAOLO PIAZZA 

DEDICATED TO JEAN-MICHEL BISMUT ON THE OCCASION OF HIS SIXTIETH BIRTHDAY 

Abstract. — We study primary and secondary invariants of leafwise Dirac operators 
on foliated bundles. Given such an operator, we begin by considering the associated 
regular self-adjoint operator 0 M on the maximal Connes-Skandalis Hilbert module 
and explain how the functional calculus of 2 ) M encodes both the leafwise calculus 
and the monodromy calculus in the corresponding von Neumann algebras. When the 
foliation is endowed with a holonomy invariant transverse measure, we explain the 
compatibility of various traces and determinants. We extend Atiyah's index theorem 
on Galois coverings to foliations. We define a foliated rho-invariant and investigate its 
stability properties for the signature operator. Finally, we establish the foliated homo-
topy invariance of such a signature rho-invariant under a Baum-Connes assumption, 
thus extending to the foliated context results proved by Neumann, Mathai, Wein­
berger and Keswani on Galois coverings. 

Résumé (Indices, invariants êta et rho de fibres feuilletés). — Nous étudions certains inva­
riants primaires et secondaires associés aux opérateurs de Dirac le long des feuilles de 
fibres feuilletés. Etant donné un tel opérateur, nous considérons d'abord l'opérateur 
auto-adjoint régulier 0 M qui lui est associé sur le module de Hilbert maximal de 
Connes-Skandalis, puis nous expliquons comment le calcul fonctionnel de 0 M permet 
de coder le calcul longitudinal ainsi que le calcul sur les fibres de monodromie dans 
les algèbres de von Neumann correspondantes. Lorsque le feuilletage admet une me­
sure transverse invariante par holonomie, nous expliquons la compatibilité de diverses 
traces et déterminants. Nous étendons le théorème de l'indice pour les revêtements 
d'Atiyah aux feuilletages. Nous définissons l'invariant rho feuilleté et étudions ses 
propriétés de stabilité lorsque l'opérateur en question est l'opérateur de signature. 
Finalement, nous établissons l'invariance par homotopie feuilletée de l'invariant rho 
de l'opérateur de signature le long des feuilles sous une hypothèse de Baum-Connes, 
prolongeant ainsi au contexte feuilleté des résultats prouvés par Neumann, Mathai, 
Weinberger et Keswani dans le cadre des revêtements galoisiens. 

2000 MATHEMATICS SUBJECT CLASSIFICATION. — 52J20, 58J28, 58J42, 19K56. 
KEY WORDS AND PHRASES. — MEASURED FOLIATIONS, FOLIATED BUNDLES, GROUPOIDS, ETA-INVARIANTS, RHO-

INVARIANTS, MAXIMAL FOLIATION-C*-ALGEBRA, BAUM-CONNES MAP, FOLIATED HOMOTOPY INVARIANCE. 
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Introduction and main results 

The Atiyah-Singer index theorem on closed compact manifolds is regarded nowa­

days as a classic result in mathematics. The original result has branched into several 

directions, producing new ideas and new results. One of these directions consists 

in considering elliptic differential operators on the following hierarchy of geometric 

structures: 

— fibrations and operators that are elliptic in the fiber directions; for example, a 

product fibration M x T —> T and a family {De)eeT of elliptic operators on M 

continuously parametrized by T; 

— Galois T-coverings and T-equivariant elliptic operators; 

— measured foliations and operators that are elliptic along the leaves; 

— general foliations and, again, operators that are elliptic along the leaves. 

One pivotal example, going through all these situations, is the one of foliated bundles. 

Let r —* M —• M be a Galois T-cover of a smooth compact manifold M, let T 

be a compact manifold on which V acts by diffeomorphism. We can consider the 

diagonal action of V on M x T and the quotient space V := M X p T , which is 

a compact manifold, a bundle over M and carries a foliation ¿7. This foliation is 

obtained by considering the images of the fibers of the trivial fibration M x T —• T 

under the quotient map M x T —• M Xp T and is known as a foliated bundle. More 

generally, we could allow T to be a compact topological space with an action of Y by 

homeomorphisms, obtaining what is usually called a foliated space or a lamination. 

We then consider a family of elliptic differential operators (Dg)eeT on the product 

fibration M x T —> T and we assume that it is T-equivariant; it therefore yields a 

leafwise differential operator D = {Di^^y/cj on V, which is elliptic along the leaves 

of £7\ Notice that, if dimT > 0 and F — { 1 } then we are in the family situation; if 

dimT = 0 and T ^ { 1 } , then we are in the covering situation; if dimT > 0, T ^ { 1 } 

and T admits a T-invariant Borel measure z/, then we are in the measured foliation 

situation and if dimT > 0, T ^ { 1 } then we are dealing with a more general foliation. 

In the first three cases, there is first of all a numeric index: for families this is 

quite trivially the integral over T of the locally constant function that associates to 

6 the index of DQ\ for T-coverings we have the T-index of Atiyah and for measured 

foliations we have the measured index introduced by Connes. These last two exam­

ples involve the definition of a von Neumann algebra endowed with a suitable trace. 

More generally, and this applies also to general foliations, one can define higher in­

dices, obtained by pairing the index class defined by an elliptic operator with suitable 

(higher) cyclic cocycles. In the case of foliated bundles there is a formula for these 

higher indices, due to Connes [18], and recently revisited by Gorokhovsky and Lott 

[23] using a generalization of the Bismut superconnection [13]. See also [39]. Since 
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our main focus here are numeric (versus higher) invariants, we go back to the case of 

measured foliated bundles, thus assuming that T admits a T-invariant measure v. 

The index is of course a global object, defined in terms of the kernel and cokernel 

of operators. However, one of its essential features is the possibility of localizing it 

near the diagonal using the remainders produced by a parametrix for D. On a closed 

manifold this crucial property is encoded in the so-called Atiyah-Bott formula: 

(1) ind(Z?) = • & « ) - • & « ) , VAT> 1 

if Ri = Id — DQ and Ro = Id — QD are the remainders of a parametrix Q. Similar 

results hold in the other two contexts: T-coverings and measured foliations. One 

important consequence of formula (1) and of the analogous one on T-coverings is 

Atiyah's index theorem on a T-covering M —> M, stating the equality of the index 

on M and the von Neumann T-index on M. Informally, the index upstairs is equal 

to the index downstairs. On a measured foliation, for example on a foliated bundle 

(M XpT, £7") associated to a T-space T endowed with a T-invariant measure z/, we also 

have an index upstairs and an index downstairs, depending on whether we consider 

the r-equivariant family {De)eeT or the longitudinal operator D = (PL)L<EVI&\ the 

analogue of formula (1) allows to prove the equality of these two indices. (This 

phenomenon is well known to experts; we explain it in detail in Section 4.) 

Now, despite its many geometric applications, the index remains a very coarse 

spectral invariant of the elliptic differential operator D, depending only on the spec­

trum near zero. Especially when considering geometric operators, such as Dirac-type 

operators, and related geometric questions involving, for example, the diffeomorphism 

type of manifolds or the moduli space of metrics of positive scalar curvature, one is 

led to consider more involved spectral invariants. The eta invariant, introduced by 

Atiyah, Patodi and Singer on odd dimensional manifolds, is such an invariant. This 

invariant is highly non-local (in contrast to the index) and involves the whole spec­

trum of the operator. It is, however, too sophisticated: indeed, a small perturbation 

of the operator produces a variation of the corresponding eta invariant. In geometric 

questions one considers rather a more stable invariant, the rho invariant, typically 

a difference of eta invariants having the same local variation. The Cheeger-Gromov 

rho invariant on a Galois covering M —• M of an odd dimensional manifold M is the 

most famous example; it is precisely defined as the difference of the T-eta invariant 

on M, defined using the T-trace of Atiyah, and of the Atiyah-Patodi-Singer eta in­

variant of the base M. Notice that the analogous difference for the indices (in the 

even dimensional case) would be equal to zero because of Atiyah's index theorem on 

coverings; the Cheeger-Gromov rho invariant is thus a genuine secondary invariant 

The Cheeger-Gromov rho invariant is usually defined for a Dirac-type operator D and 
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we bound ourselves to this case from now on; we denote it by p(2)(D). Here are some 
of the stability properties of rho: 

- let (M,g) be an oriented riemannian manifold and let £> s i g n be the signature 
operator on M associated to the IMnvariant lift of g to M: then p( 2 )(I) s i g n ) is 
metric independent and a diffeomorphism invariant of M; 

- let M be a spin manifold and assume that the space 5#+(M) of metrics with 
positive scalar curvature is non-empty. Let g G 9l+{M) and let Ds

g

pin be the 
spin Dirac operator associated to the T-invariant lift of g. Then the function 
^ + ( M ) 3 g —> p( 2 )(Z^ p i n ) is constant on the connected components of ^ + ( M ) 

There are easy examples, involving lens spaces, showing that p( 2)(Z) s l g n) is not a 
homotopy invariant and that (M) 3 g —• p( 2 )(Z^ p i n ) is not the constant function 
equal to zero. For purely geometric applications of these two results see, for example, 
[15] and [46]. These two properties can be proved in general, regardless of the nature 
of the group T. However, when V is torsion-free, then the Cheeger-Gromov rho 
invariant enjoys particularly strong stability properties. Let Y = TTI(M) and let 
M ^ M b e the universal cover. Then in a series of papers [29], [30], [31], Keswani, 
extending work of Neumann [41], Mathai [36] and Weinberger [57], establishes the 
following fascinating theorem: 

- if M is orientable, Y is torsion free and the Baum-Connes map K*(BY) —> 

K*(C'^iaxr) is an isomorphism, then p( 2)(Z) s l g n) l s a homotopy invariant of M; 

- if M is in addition spin and $ + ( M ) ^ 0 then p(2)(D
s

g

pin) = 0 for any g G 

^ + ( M ) . 

(The second statement is not explicitly given in the work of Keswani but it follows 
from what he proves; for a different proof of Keswani's result see the recent paper 
[45].) Informally: when Y is torsion free and the maximal Baum-Connes map is 

an isomorphism, the Cheeger-Gromov rho invariant behaves like an index, i.e. like 

a primary invariant: more precisely, it is a homotopy invariant for the signature 

operator and it is equal to zero for the spin Dirac operator associated to a metric of 

positive scalar curvature. 

Let us now move on in the hierarchy of geometric structures and consider a foliated 
bundle (V := M Xp T, 57"), with M —> M the universal cover of an odd dimensional 
compact manifold and T a compact T-space endowed with a T-invariant Borel (prob­
ability) measure v. We are also given a T-equivariant family of Dirac-type operators 
D := (De)eeT on the product fibration M xT —> T and let D = (D^Lev/p D e t n e 

induced longitudinally elliptic operator on V. One is then led to the following natural 
questions: 

1. Can one define a foliated rho invariant pv(D',V,&)! 

2. What are its stability properties if D = Z ) s i g n and D = Z)sPin? 
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3. If the isotropy groups of the action of T on T are torsion free and the maximal 
Baum-Connes map with coefficients 

K?(ET;C(T)) - K*(C(T) x m a x r ) 

is an isomorphism, is pv{V, ¿7) := p^(-D s l g n; V, £7) a foliated homotopy invariant? 

The goal of this paper is to give an answer to these three questions. Along the way we 

shall present in a largely self-contained manner the main results in index theory and 

in the theory of eta invariants on foliated bundles. 

This work is organized as follows. In Section 1 we introduce the maximal C*-
algebra S m associated to the T-space T or, more precisely, to the groupoid $ := TxT. 

We endow this C*-algebra with two traces rr^g and T£v, v denoting as before the T-

invariant Borel measure on T. We then define two von Neumann algebras W*eg($), 

W*v($) with their respective traces; we define representations S m —> W r* e g(^), S m —> 
and show compatibility of the traces involved. 

In Section 2 we move to foliated bundles, giving the definition, studying the struc­
ture of the leaves, introducing the monodromy groupoid G and the associated max­
imal C*-algebra $ m . We then introduce two von Neumann algebras, W*(G) and 
W*(V, 67), to be thought of as the one upstairs and the one downstairs respectively, 
with their respective traces T" , r£. We introduce representations 25m —• W*(G), 
$™ —> W*(V, £7) and define two compatible traces, also denoted rr^g and r^v, on the 
C*-algebra $ m . We then prove an explicit formula for these two traces on <Sm. We 
end Section 2 with a proof of the Morita isomorphism Ko(ffim) ~ Ko($m) and its 
compatibility with the morphisms 

Treg,*i T&v,* : ^o(Sm) C, <eg,*5<v,*:^0(^m)->C 

induced by the two pairs of traces on S m and $ m respectively. 

In Section 3 we move to more analytic questions. We define a natural $m-Hilbert 
module £ m with associated C*-algebra of compact operators ^$m(£m) isomorphic 
to $ m ; we show how Sm encodes both the L2-spaces of the fibers of the product 
fibration M x T —» T and the L2-spaces of the leaves of £7. We then introduce a T-

equivariant pseudodifferential calculus, showing in particular how 0-th order operators 
extend to bounded Hm-linear operators on Sm and how negative order operators 
extend to compact operators. We then move to unbounded regular operators, for 
example operators defined by a T-equivariant Dirac family D := (De)eeT and study 
quite carefully the functional calculus associated to such an operator. We then treat 
Hilbert-Schmidt operators and trace class operators in our two von Neumann contexts 
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and give sufficient conditions for an operator to be trace class. We study once again 

various compatibility issues (this material will be crucial later on). 

In Section 4 we introduce, in the even dimensional case, the two indices ind^ p(Z)), 

md^own(D) with D = (De)eeT and D := (DL)L(=.Vic?, and show the equality 

huC (D) = ind* o w n(L>). 

This is the analogue of Atiyah's index theorem on Galois coverings. We also introduce 

the relevant index class, in K0(^Bm), and show how the von Neumann indices can be 

recovered from it and the two morphisms, 

r?eg : $m -» C, T£v : $m -> C r?eg : $m -» C, T£v : $m -> C 

defined by the traces r?eg : $ m -» C, T£ v : $ m -> C. 

In Section 5 we introduce the two eta invariants rj^p(D), Ti^own(D) and, finally, the 

foliated rho-invariant pv(D\ V, £7") as the difference of the two. This answers the first 

question raised above. We end this section establishing an important link between 

the rho invariant and the determinant of certain paths. 

In Section 6 we study the stability properties of the foliated rho invariant, showing 

in particular that for the signature operator it is metric independent and a foliated 

diffeomorphism invariant. This answers the second question raised above. 

Finally, in Sections 7, 8 and 9 we prove the foliated homotopy invariance of the sig­

nature rho-invariant under a Baum-Connes assumption, following ideas of Keswani. 

In order to keep this paper in a reasonable size, we establish this result under the 

additional assumption that the foliated homotopy equivalence is induced by an equiv-

ariant fiber homotopy equivalence of the fibration defining the foliated bundle (we 

call this foliated homotopy equivalences special). Thus, Section 7 contains prepara­

tory material on determinants and Bott-periodicity; Section 8 gives a sketch of the 

proof of the homotopy invariance and Section 9 contains the details. With these three 

sections we give an answer, at least partially, to the third question raised above. Most 

of the material explained in the previous part of the paper goes into the rather com­

plicated proof. Some of our results are also meant to clarify statements in the work 

of Keswani. 
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Notations 

M 
r 
M 
F 
T 
v 

V 
r(o) 
Uc 

Ur 
Om 
v 
G 

<Éc 
<3r 
ßm 
BEc 
'reg 
' av 
also <eg  

also TaV 

Ê -* M x T 
Wav(Q) 
Wreg(Q) 
7Treg 

7TaV 

rv 

also TV 

WÏ(G;E) 
W;(V,?;E) 
Tv 

closed manifold 
fundamental group of M 
universal cover of M 
fundamental domain for the deck transformations 
a compact T-space 
a IMnvariant Borel measure on T 
the groupoid T x V 
isotropy group of T at 9 G T 
— CC(T x T): algebraic crossed product algebra 
= C(T) x r T: reduced crossed product algebra 
= C(T) x>max T: maximal crossed product algebra 
= M x r T: the foliated space 
the groupoid (M x M x T)/T 
the compactly supported convolution algebra of G 
the regular completion of $ c 

the maximal completion of $ c 

the modified algebra when E —• V is a vector bundle 
regular trace of £2r or $ m 

trivial or averaged trace on $ m 

regular trace of $ r or $ m 

trivial or averaged trace on $ m 

the T-equivariant lift of E 
average von Neumann algebra of $ 
regular von Neumann algebra of $ 
regular representation of $ r in W*eg(^) 
average representation of $ m in W£v($) 

trace on W£s(&) 
trace on W*v(^) 
regular von Neumann algebra of G with coefficients in E 
leafwise von Neumann algebra with coefficients in E 
trace on W*(G; E) 

1.1 
1.1 
1.1 
1.2 
1.2 
2.1 
2.2 
2.2 
2.2 
2.2 
2.2 
1.4 
1.4 
2.4 
2.4 

1.3 
1.3 
1.3 
1.3 
1.4 
1.4 
2.3 
2.3 
2.4 
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Tv 
<Sc 
Ôr 
&m 
D = (DL)LeV/i 

b = фв)еет 
Dm 
Фг 
lnd(0m) 
IND(0m) 
indSp(¿) 
ind^own(¿>) 
indSp(¿) 
ï/downP) 
pv(D,V,g) 
pv(V,Q) 

trace on W*{V,9\ E) 
the prehilbertian $c-module C~ , 0(M x T, £") 
the completion of &c into a Hilbert $r-module 
the completion of &c into a Hilbert $m-module 
leafwise geometric operator 
T-invariant fiberwise geometric operator 
the induced regular operator on Sm 

the induced regular operator on &r 

the index class of 0 m in K*($m) 
the index class of 0 m in K*($m) 
measured index upstairs 
measured index downstairs 
eta invariant upstairs 
eta invariant downstairs 
foliated rho invariant associated to D 
foliated rho invariant for the signature operator 

2.4 
3.1 
3.1 
3.1 
3.3 
3.3 
3.3 
3.3 
4.2 
4.2 
4.2 
4.2 
5.1 
5.1 
5.2 
6.2 

1. Group actions 

1.1. The discrete groupoid — Let V be a discrete group. Let T be a compact 
topological space on which the group T acts by homeomorphisms on the left. We 
shall assume that T is endowed with a T-invariant Borel measure v\ this is a non-
trivial hypothesis. Thus (T, v) is a compact Borel measured space on which T acts 
by measure preserving homeomorphisms. We shall assume that v is a probability 
measure. We consider the crossed product groupoid := T x T; thus the set of 
arrows is T x r, the set of units is T, 

S (0, 7 ) = 7 - ! 0 and r(0, 7) = 0. 

The composition law is given by 

We,1')o{e,1) = {1'e,i1). 

We denote by Hc the convolution *-algebra of compactly supported continuous func­
tions on $ and by L1^) the Banach *-algebra which is the completion of Hc with 
respect to the Banach norm || • ||i defined by 

Il/Ih := maxisup 
rET YEr 

I M 7)1; sup 
eel YEr 

1/(7-^, 7- 1)!}-

The convolution operation and the adjunction are fixed by the following formulae 

(f*g)(0,i) = 
71 er 

/ (^7i )5 (7r 1 «,7r 1 7) and /* (0 , 7 ) = fil^e,^). 
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For 6 G T we shall denote by T(0) the isotropy group of the point 0: T(9) := {7 G 
r I 70 = 0}. So, T(0) is a subgroup of T and the orbit of 0 under the action of T, 
denoted T0, can be identified with Y/Y{6). Finally, we recall that $ := r~1(0) and 
that & 0 := 

1.2. C*-algebras associated to the discrete groupoid ^ . — For any 6 G T, 
we define the regular ^representation 7r̂ eg of Uc in the Hilbert space £2(T), viewed 
as £ 2 ($ e ) , by the following formula 

< g ( / ) (e ) ( 7 ) := 
7'er 

/(70,77' ^ ( V ) . 

It is easy to check that this formula defines a ^representation 7r̂ eg which is L1 con­
tinuous. Moreover, we complete L1^) with respect to the norm sup6»GT ||7i>eg(-)|| and 
obtain a C*-algebra UT. The C*-algebra Ur is usually called the regular C*-algebra 
of the groupoid ̂ , it will also be denoted with the symbols C*($) or C(T) x r T. 

If we complete the Banach *-algebra L1^) with respect to all continuous *-
representations, then we get the C*-algebra S m , usually called the maximal C*-
algebra of the groupoid See [49] for more details on these constructions. Other 
notations for Um are Cm($) and C(T) x m T. 

By construction, any continuous *-homomorphism from L1^) to a C*-algebra B 
yields a C*-algebra morphism from S m to B. In particular, the homomorphism 7rreg 

yields a C*-algebra morphism 

7T g • ^G^JTI ^ ̂ G/f • 

1.3. von Neumann algebras associated to the discrete groupoid ^ . — At 
the level of measure theory, recall that we have fixed once for all a T-invariant borelian 
probability measure v on T. We associate with ^ two von Neumann algebras that 
will be important for our purpose. 

The first one is the regular von Neumann algebra W*eg($). It is the algebra 
L°°(T, B(£2T)', u)r of T-equivariant essentially bounded families of bounded operators 
on £2T, so it acts on the Hilbert space L2(T x T,v). An element T of W*eg($) is 
thus (a class of) a familly {Te)$eT of operators in £2(T), which satisfies the following 
properties: 

— For any £ G L2(T x T) the map 6 1—• <Te^e^e> is Borel measurable where 

6 (7) 7); 
0 1—• HT0II is ^-essentially bounded on T; 

- For any 7 G T, we have T7<9 = 7T0. 

Notice that if we denote by R* : —> the operator 

( Ä # ( * ) := f («7), 
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then 7 r := R+oToR*^ for any T G B(£2T). That Wr*eg(^) is a von Neumann algebra 
is clear since it is the commutant of a unitary group associated with the action of T. 
The ^representation 7rreg is then valued in W*eg($) as can be checked easily, and we 
have the ^representation 

TTav: шт —> w:v(m 

This ^representation then extends to the maximal C*-algebra $ m . 
The second von Neumann algebra that will be important for us will be called the 

average von Neumann algebra W*v($) and we proceed now to define it. We set 
$ 0 := (T x T)/ ~ where we identify (0,7) with (0,7a) whenever aO = 9. Then ^ 0 

is Borel and an element T of W£v($) is (a class of) a family (To)eeT of operators in 
£2(T9), which satisfies the properties: 

— For any measurable (as a function on $Q) i/-square integrable section £ of the 
Borel field t2{Y/T(9)) over T, the map 6 \-> <To£oi£e> is Borel measurable 
where ^[7] := £[0,7] 

— 9 h-> ||T^|| is ^-essentially bounded on T; 
— For any 7 G T, we have T7# = 7T0; 

Here we denote by ii* : ^2(r/r(<9)) -> ^2(r/r(7<9)) the isomorphism given by 
(R*€)[<*] := f[<*7], and 7T := R* o T o Again W^v(^) is a von Neumann 
algebra; for more details on this constructions see for instance [21], [20] 

There is an interesting representation 7rav of Lx(^) in W*v($) defined as follows. 
Let / G C c (^ ) ; for any 9 G T, we set 

* n / ) ( 0 ( * =["]):= 
ver/r(0) [B]=v 

/ ( c^a/r 1)^), £ G ¿ 2(r/r(0)). 

Remark 1.1. — If we identify Y/T(9) with the orbit T9 then 7rav becomes 

*r(f)(tW) = 
e"ere aO"=d' 

f{6',a)Z{0") = 

nEr 

f{6',a)Z{0"-1O') 

Proposition 1.2. — For any f G L1^) and any 9 G T, the operator ^QV{f) is bounded 
and the family irav(f) = {^ev(f))deT defines a continuous *-representation of Ll{$) 
with values in W*v($). Hence, 7Tav yields a *-representations of the maximal C*-
algebra S m in W*v($). 
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Proof. — If we set for any/ G C c (#) , /o(M') := E7*=0' 7), then for # G C c (#) 
we have: 

( /* 0)0(0,0') = 
1.6=6' 

(/* 0)0(0,Y') 

1e=e' 71 er 

(/* 0)0(0,Y') (Y-1O',Y1-1Y) 

0"er.0 ^.O^O" , 72-
1.0"=0 

/(^ ,,7i)p(ö , ,,72) 

0"er.0 
/o(0",0')<7o(0,0") 

= (/o*St>)(0,0'). 

Since 7rav(f) is simply convolution by the kernel /0, we deduce that TT is a represen­
tation of the convolution algebra £2C. Now, the kernel (/*)o is given by 

(ruo,0') = 
76=6' 

f(Y-1O',Y-1)= 

a6'=6 
f(6,a) = fo(6>,0). 

It remains to prove that 7rav is L1 -continuous. But, we have: 

Ikî v( /tèll! 
O'ere 7 er 

/(0' ,7)£(7- 1^ ,) | 2 

< 

O'ero 7 er 
1/(0', 7)1) x 

7 er 
ino',lìmiti2) 

< ii/iii 
0'eroder 

l/(Ö',7)l-IC(7-1Ö')|2 

< ll/lli 
7 er 0"er0 

K(Ö")|2|/(7Ö",7)I 

< l l / l l ? № 
So, hav(f)\\=supeeT\\nr(f)\\<\\f\\i. 

We therefore deduce the existence of a *-homomorphism of C*-algebras: 

TTav: шт —> w:v(m 

1.4. Traces. — For any non negative element T = {Te)eeT of the von Neumann 
algebra Wr*eg($) (resp. W^)), we set 

r v (T) := 
T 

<Te(<5e),öe>^(Ö), 

where in the regular case, <5e stands for the 6 function at the unit e of T, while in the 
second case it is the S function of the class [e] in T/r(6). 
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Proposition 1.3. — The functional rv induces a faithful normal positive finite trace. 

Proof — Positivity is clear since T is non negative in the von Neumann algebra if 
and only if for v-almost every 0 the operator TQ is non negative. If the non negative 
element T = (Te)eeT satisfies ru(T) = 0 then <Te(5e),5e> = 0 for i/-almost every 0. 
But, the T-equivariance of T implies that 

<Te(57),S7> = 0, V7 G T and v a.e. 

Therefore, TQ — 0 for /̂-almost every 6 and hence T = 0 in W*EG(^). In the second 
case, the proof is similar again by T-equivariance and by replacing 51 by <J[7j. 

If T(n) | T is an increasing sequence of non negative operators which converges 
in the von Neumann algebra to T, then for i/-almost every 0, the sequence T(U)Q 
increases to TQ. But then since the state <-(SE), SE> is normal, the conclusion follows 
by Beppo-Levi's property for v. 

If now T is in the von Neumann algebra W*EG($) then writing TQ as an infinite 
matrix in £2T and using the T equivariance we deduce that 

rpOi,ß _ 1в 
If we now consider a second operator S in W*($), then we have 

(TeSe)e>e ~-
7<Er 

TIE,7 ç7,e _ 

7^r 

oe,7 1 Tl \e 
°-y0 7̂0 ' 

by the T-equivariance property. The T-invariance of measure v can now be applied 
to yield that ru{TS) = ru{ST). A similar proof works for the von Neumann algebra 

W*ffî-

We define the functionals r"eg and T£V on Uc by setting for / G S c 

(2) < e g ( / ) := 
o 

f(O,e)dv(O) 

(3) Tav(f) := 
JT 9€r(0) 

№9) du{6). 

Lemma 1.4. — 1. We have TV O 7rreg = Tr"eg and TV O 7Tav = t£v. 
2. Hence, rr^g and T£v extend to finite traces on S r and S T O. 

Proof. — The statement for the regular trace is classical and we thus omit the (easy) 
proof. We consider for any / € L1^) the Borel family of operators (^gv(f))eeT 
denned in the previous paragraph. For any / € S c, denote as before by /o the 
function 

/o(M') := 
70=0' 

/(0' ,7). 
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Then we know that 7rav(/) is given as convolution with /0. If / G S c, then we have, 
using the identification T/T(0) = TO: 

JT 
<*r(f)6e,5e>dv(8) = 

IT 
W,6)dv{9) 

IT 
7er(0) 

f(O,Y)dv(O) 

= <v(/)-

As a Corollary of the above Lemma notice that the traces rr^g : S r —> C and 
Tav : ffirn —• C induce group homomorphisms 

(4) T^g,, : t f 0 ( 8 r ) - R , T^g,, :tf0(Qm)-R, 

2. Foliated spaces 

2.1. Foliated spaces. — Let M be a compact manifold without boundary and 
let T denote its fundamental group and M its universal cover. The group T acts 
by homemorphisms on the compact topological space T and hence acts on the right, 
freely and properly, on the space M x T b y the formula 

(m, 0)7 := (m7,7 0), (ra, 0) G M x T and 7 G T. 

The quotient space of M x T under this action is denoted by V. We assume as before 
the existence of a IMnvariant probability measure v. If we want to be specific about 
the action of T on T we shall consider it as a homomorphism \£ : T —> Homeo(T). We 
do not assume the action to be locally free ^ . 

If p : M x T —• V is the natural projection then the leaves of a lamination on V 
are given by the projections LQ = p(Me), where 0 runs through the compact space T, 
and 

(5) M0:=M x { 0 } . 

It is easy to check that this is a lamination of V with smooth leaves and possibly 
complicated transverse structure according to the topology of T, see for instance [12]. 
By definition, it is easy to check that the leaf LQ coincides with the leaf LQ> if and 
only if 0' belongs to the orbit T0 of 0 under the action of T in T. We shall refer to 
this lamination by (V, J7) and sometimes shall call it a foliated space or, more briefly, 
a foliation. If T(0) is the isotropy group of 0 G T then we see from the definition 
of LQ that LQ is diffeomorphic to the quotient manifold M/T(0) through the map 
LE —• M /r(0) given by [ra',0'] —• [m^], if 9' = 70. Note however that LQ is also 

t1) Recall that an action is locally free if given 7 G T and open set £7 in T such that 7(0) = 9 for any 
0 G U then 7 = 1. 
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diffeomorphic to M/Y(Of) for any 6' G YO. Moreover the monodromy cover of a leaf 

L is obtained by choosing 0 £ T such that L = LQ and by using the composite map 

M Me -> (Me)/T(6) ~ Le = L. 

which is a monodromy cover of L corresponding to 0. 

Notice that the set of 6 G T for which Y(0) is non-trivial has in general positive 

measure. This is the case, for instance, when there exists a subgroup Yi of T whose 

action on T has the property that v(TFl) > 0, where TFl is the fixed-point subspace 

defined by I V In fact, one can construct simple examples where the measure of the 

set of 6 G T for which Y{6) is non-trivial is any value in (0 ,1 ) . See Example 2.2 for a 

specific situation. 

Example 2.1. — As an easy example where this situation occurs naturally, consider 

any Galois covering M' of M with structure group Yf such that 7Ti(M/) ^ 1. Assume 

the existence of a locally free Y'-action \£' : Tf —• Homeo(T) on T and let V be the 

resulting foliated space. Assume the existence of an invariant measure v on T. Since 

Yf is a quotient of Y := 7Ti(M) we have a natural group homomorphism TT : Y —> Yf 

and thus an action \£ := Won of Y on T. By definition v is also V-invariant. The 

isotropy group of this action at 6 G T is at least as big as the fundamental group of 

M'. Notice that one can show that 

(M x T ) / r = (Mf x T)/Y' = V. 

Summarizing: V is a lamination where the set of leaves with non-trivial monodromy 

has measure equal to ^(T) = 1. 

Example 2.2. — Take M to be any manifold whose fundamental group is a free product 

of copies of Z , for example a connected sum of S 1 x § 2 9s, so that now Y is the free 

group of rank k. Let {71,72, . •. ,7/J be the generators. Let T be S2. Let C C S 2 

be a parallel and let U C S 2 one of the two hemispheres bounded by C. Let ^ (71) 

be any measure-preserving diffeomorphism of S2 that fixes U. We then define W on 

the other generators in an arbitrary measure-preserving way. Then any point 0 in U 

would have nontrivial isotropy group Y(9). Clearly, one can jazz up this example by 

selecting any T and finding a single homeomorphism whose fixed point set is a set of 

nonzero measure. 

Example 2.3. — Following [38] we now give an example of a lamination with the set 

of leaves with non-trivial monodromy of positive measure and, in addition, of a rather 

complicated sort. Take a (generalized) Cantor set K of positive Lebesgue measure in 

the unit circle. Choose now a homeomorphism (j) of the circle admitting K as the fixed 

point set. Let M be any closed odd dimensional manifold with 7Ti(M) = Z. Consider 

the foliated space V obtained by suspension of (j): thus V = M x^S1 with Z = 7Ti(S1) 
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acting on S1 via 4> and acting by deck transformations on M. The set of 8 G S1 such 

that {7 G Z|7# = 0} is non-trivial is equal to K, hence it has positive measure. Using 

[38] page 105/106, we can find a Radon ^-invariant measure v on S 1 and v(K) > 0. 
Notice that in this class of examples, although the measure is diffuse, one can even 

ensure that the set of leaves with non-trivial holonomy has positive transverse measure. 

These laminations show up in the study of aperiodic tillings and especially of quasi-

crystals. In [12] for instance, the measured foliated index for such laminations, a 

primary invariant, is used to solve the gap-labelling conjecture. The authors expect 

potential applications of the foliated rho invariant to aperiodic solid physics. 

2.2. The monodromy groupoid and the C*-algebra of the foliation. — Let 
M, T and T be as before. We define the monodromy groupoid G as the quotient 
space (M x M x T)/T of M x M x T by the right diagonal action 

(m, 777/, 0)7 := (7717,777/7,7 

The groupoid structure is clear: the space of units G^ is the space V = M x^T, the 
source and range maps are given by 

5(777, TTV, 0] = [777/, 0} and r[m, TTV , 6} = [777, 0], 

where the brackets denote equivalence classes modulo the action of the group T 

It is not difficult to show that G can be identified in a natural way with the usual 
monodromy groupoid associated to the foliated space (V, ¿7), as defined, for example, 
in [44]. More precisely given a smooth path a : [0,1] —• L, with L a leaf, choose any 
lift /3 : [0,1] —• M of the projection of the path a in M through the natural projection 
V —• M. Then there exists a unique 0 G T with a(0) = [/3(0),0] and we obtain in 
this way a well defined element [/3(0), /3(1), 0] oiG which only depends on the leafwise 
homotopy class of a with fixed end-points. This furnishes the desired isomorphism. 

We fix now a Lebesgue class measure dm on M and the corresponding T-invariant 
measure dm on M. We denote by $ c the convolution *-algebra of continuous com­
pactly supported functions on G. For / , g G $ c we have: 

(/*^)[m,m/,6>] = 
IM 

f[m,m"\0]g[m"\m!\0]drh" and /*[m,m ,,0] = f[m',m,0}. 

More generally, let E be a hermitian continuous longitudinally smooth vector bundle 
over V; thus E is a continuous bundle over V such that its restriction to each leaf 
is smooth [38]. Consider END(E') := (s*E)* <g> (r*E) = Hom(s*£, r*E), a bundle of 
endomorphisms over G. We consider := CC°°'0(G,END(£)) the space of continu­
ous longitudinally smooth sections of END(E'); this is also a *-algebra with product 
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and adjoint given by 

Ui*h)[m,m',0] = 
IM 

h[m,m\6]o f2[m",fh',0] dm", 

r[m,m',O] = (f[m\m,0])*. 
Let £ b e its lift toMxT; denote by H0 the Hilbert space He = L2(Mx {#}; E~ ) . 

Any / G SJf7 can be viewed as a smooth kernel acting on HQ by the formula 

^ e g ( / ) ( № ) := 
M 

f\m,m\0]{£(m'))drti, for any £ e He , 

and this defines a *-representation n™9 in . We point out that the representation 
TTQ69 is continuous for the L1 norm defined by: 

ll/Hi := max{ sup 
(m,6)eMxT • 

| | /[m,m^]Mm'; sup 
(mi)GMxT 

\f[m',m,0}\\Edm'}. 

If we complete 25c with respect to the C* norm 

ll/llreg : = sup 
0GT 

*r f l(/)ii> 

then we get $ f , the regular C*-algebra of the groupoid G with coefficients in E. 
When E = V x C then we denote this C*-algebra simply by <Br In the same way, if 
we complete 2JC with respect to all L 1 continuous ^representations, then we get the 
maximal C*-algebra of the groupoid G, that will be denoted by <3m and simply by 
cBm when E = V x C. 

2.3. von Neumann Algebras of foliations. — The material in this paragraph 
is classical; for more details see for instance [18], [25] [9], [17], [35]. 

The representation 7rreg defined above takes value in the regular von Neumann al­
gebra of the groupoid G. More precisely, the regular von Neumann algebra W*(G; E) 
of G with coefficients in E, acts on the Hilbert space H = L2(T x M, E\v® dm), and 
is by definition the space of families {Se)eeT of bounded operators on L2(M, E) such 
that 

— For any 7 G T, S7e = JSQ where ^SQ is defined using the action of T on the 
equivariant vector bundle E; 

— The map 6 H-> \\SQ\\ is ^-essentially bounded on T; 
— For any (£,77) G H2, the map 0 i-> <So(£o),rjo> is Borel measurable. 

The von Neumann algebra W*(G;E) is a type 11^ von Neumann algebra as we 
shall see later. It is easy to see that for any S G $f, the operator 7r r e g(5) belongs to 
W;(G;E). 

In the same way we define a leafwise von Neumann algebra that we shall denote by 
WZ(V,&;E)', this algebra acts on the Hilbert space [21] H = J 0 L2(LE, E\Lo)dv(0) 
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where Le is, as before, the leaf in V corresponding to 0. Equivalently, and using the 
identification of the leaves with quotient of M under isotropy, W* (V, ¿7; E) can be 
described as the set of families {Se)eeT of bounded operators on {L2{MQ/T{0), E\e)eET 
such that 

— The map 0 \—> \\S$\\ is ^-essentially bounded on T. 
— For any square integrable sections £,77 of the Borel field (L2 (Mg/Y{0), Eg))eeT 

the map 0 i-> <SQ(£O), rje> is Borel measurable. 
— S7e = for any (<9,7) eTxT. 

Notice that r(70) = 7r(0)7 - 1 and hence the definition of 7S0 is clear. 

Proposition 2.4. — There is a well defined representation 7rav from the maximal 
C* algebra 2 ^ to the leafwise von Neumann algebra W* ( V, 7; E) such that for 
f G CC(G, END(JE)) the operator (7rav(/))^ is given by the kernel 

fo(x,y) = 0 if Lx T¿ Ly and /o([m,0], [m',0]) := 
yer(0) 

/[ra,ra'7,0]. 

Proof. — For simplicity we take E the product line bundle. For / G CC(G) the 
formula 

((*av(/))* Í) (x) : = 
uo 

fo(x,y)£(y)dy, ÇeL2(Le)ixeLecV. 

defines a bounded operator on L2{LQ). Indeed the sum on the RHS in the definition 
of /0 is finite since / is compactly supported. Moreover, when restricted to the leaf 
LX the kernel /0 is supported within a uniform neighborhood of the diagonal of LX. 
We have: 

lkav(/)MOll! = 
lo 'Le 

fo(x,x')£(x')dx'\2dx 

< 
<Le 'L6 

\fo(x,x')\dx' 
'Le 

\fo(x,x'№(x')\2dx' dx 

< II/0II1 
'Le 

\t(x')\2 

Le 
|/o(x, x')\dxdx' 

< Il /olit i l i-

Here ll/olli stands for the I,1-norm 

Maxi sup 
x'evJLx 

f0(x,x')\dx, sup 
xeVJLx 

\fo(xix,)\dxf). 

Therefore, we have 

8Up||7rav(/)|| < H/olll. 
Oer 
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But now it is easy to check that ||/o||i < ||/||i- On the other hand 7RAV is a *-
representation; since for f,g G CC(G) one has, with proof similar to the one given 
for & 

(/ * 9)o = /0 * £0 and ( /* ) 0 = (/0)*. 

To sum up, these arguments prove that 7vav on $ c extends to a continuous mis­
representation of the $ m in the von Neumann algebra W*(V,S7). This completes 
the proof. • 

2.4. Traces. — We fix once and for all a fundamental domain F for the free and 
proper action of T on M. Let x D e the characteristic function of F. Then we set for 
any non-negative element S G W*(G\E), 

Tv(S) := 
u 

ti(MxoSeoMx)dis(6), 

where tr is the usual trace of a non-negative operator on a Hilbert space. 
We shall also denote by x t n e induced function \ ® 1T> i.e. the characteristic 

function of F x T in M x T. Since F x T is a fundamental domain for the free and 
proper action of T on M x T, we shall also denote by xe the same function % but 
viewed as the characteristic function of F inside a given leaf LQ, which is the image 
under the projection MxT^VoiMx {0}. We define a functional rv on the 
leafwise von Neumann algebra W*(V, ¿7; E), by setting for any non-negative element 
sew;{v,^E) 

Tv(S) := 
R 
T 

tT{MxeoSeoMX9)dv(0), 

where the MXE appearing in the integrand is the multiplication operator in the L2 

space of sections over Mg/T(0), by the characteristic function xe of F viewed in 
ME/Y{0). 

Proposition 2.5. — With the above notations we have: 

— the functional rv yields a positive semifinite normal faithful trace on W*(G, E); 
— the functional T£ yields a positive semifinite normal faithful trace on W* (V, 57; E). 

Proof — UR = S*Se W;(G\ E), then for any 0 G T, 

MxoReoMx = (SeMxY(SeMx) > 0. 

Therefore, tr(M x o Re o Mx) > 0 and hence rV{R) > 0. Moreover, rV{R) = 0 if 
and only if MXRQMX = 0 for v-almost every 0. The Y equivariance of R implies the 
relations 

MsylXR,yoM^2X = U>y \iM1-i^llXR$M1-il2X^ Ky-I, 7,71,72 € T. 
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The same relations hold for S. In particular, 

MlxReMlx = Ury [M xß 7-i 6,M x] C/7-i = 0. 

Since v is T-invariant, we deduce that M1XRQM1X = 0 v almost everywhere. Thus 

7'€r 
{MlfxSeMlxY(M1>xSeMlx) = MlxReMlx = 0. v - a.e. 0 eT. 

As a consequence, we get that for v almost every 6 eT and for any 7,7' G T, 

MyxSeMlx = 0, 

which proves that S = 0 in W*{G, E) and whence R = 0 in W*(G, E). On the other 
hand for any non negative A, B G W*(G] E), we have 

MXAQBQMX 

7er 
MXAQM1XBQMX 

7er 
MxAe{U1MxU1-i)BeMx 

7̂ r 
MxU1A1-ieMxB1-ieU1-iMx 

= 
7̂ r 

177 [M7-i xA7-i öM x57-i öM7-ix] É77-i 

and so, 

tr(M xA Ö JB öM x) = 

7€r 
tr [M 7-i xA 7-i öM x^ 7-i öM 7-i x 

= 
7̂ r 

tr [M x 5 7-i ö M 7-i x i 7-i ö M x ] 

Now the T-invariance of v yields again 

TV(AB) = 
IT 

tT{MxAeBeMx)dv{0) = 
7̂ r 

tr [MxBeM7-ixAeMx] di/(0) 

= 
JT 

tr(MxBeAeMx)dis(6) = ru(BA). 

The normality is a consequence of normality of tr and of the Beppo-Levi property. 
That rv is semi-finite is straightforward. 

Finally, according to our description of the leafwise von Neumann algebra 
W*{y,&',E), its elements are also equivariant Borel families. So, the proof of the 
first item is readily adapted to take care of the quotients by the isotropy groups. • 

Recall the two ^representations 

TTreg : B e -> W*v(G,E) TTreg : Bm e -> W*v(G,F,E) 
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Corollary 2.6. — The two junctionals r"eg := rv o 7rreg and r^v := r£ o 7rav are traces 
on £/ie C* -algebras $f and 2 ^ respectively^. Moreover they are explicitly given, 

for f G $f longitudinally smooth by the formulas 

(6) <eg(/) : = 
FxT 

trE[m,e] (/[™> ™> 0])dmdi/(0) 

(7) Tav (f):= 

JFxT yER(O=) 
toE[¥h,e] ™7, 0])dradi/(0). 

Proof. — We only need to show the two formulas (6) and (7). The first one is tauto­
logical, so we only sketch the proof of the second one. Let then / G $ c longitudinally 
smooth be fixed. The operator [7rav(/)]<9 acts on L2(Le,E) with Schwartz kernel f0 

given by 

M\m,eufh'e\) = 

7er(0) 

/[m,m ;7,0]. 

Therefore, the operator Mx[7r a v(/)]^MX has Schwartz kernel supported in F x F 
viewed in LQ x LQ. Recall that LQ is identified with M/T(0). We deduce 

T>av(/)] = 
'Fx! 

/o([m,0],[m,0])d/i^(m)di/(0), 

with dfj,e(fh) being the measure induced by dm on the leaf through 0. Whence, the 
formula is readily deduced. • 

In the sequel we shall also denote by rr^g the resulting trace on the maximal C*-

algebra 2 ^ , obtained via the natural epimorphism 25^ —• 

Remark 2.7. — The proof of the tracial property ofr"eg and T£v can also be carried out 
directly. Here are the details (we only treat the averaged trace r̂ v and for simplicity 
we take E equal to the product line bundle). Let /,/' be two elements of CC{G). We 
have: 

(f*f')[m,m',6} = 
F aer 

f[m, m"a, 0)f'[m"a, m', 9]dm". 

(2) These traces will not be finite in general. 
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Hence we deduce 

<M*f) = 
' FxFxT 7er(0) «er 

/[m, m'a, 0)f'[rh'a, 7717, Q\drh! drhdv(Q) 

'FXFXT 
y<Er(0)c*Er 

f'[rh', m^a 1,a0]f[rha 1 ,rh',aO]dm'drhdv(6) 

'FXF 
<*er 

T

7'er(0') 
/ ' [mY" 1 , mo" 1 , e'l/Ima" 1, m', e']drh'drhdv(Q') 

JFxT 7,er(0') 

(/' * f)[my'~\m\Oym'dmdis(e'). 

Now note that since 7' € r(0'), we ftave 

(/ ' * / ) [m 7 '~ \m' ,0 ' ] = (/ ' * /)[m,my,0']-

Therefore, we get 

<v(/*/ ' ) = <v(/'*/)-

Proposition 2.8. — i. Tfte trace induces a group homomorphism r"eg^ 

K0m—r. 
2. The trace r^v induces a group homomorphism T£V + : i f o ( ^ m ) —* ̂ -

Proof. — We only sketch the proof of this classical result: one shows, for instance, 
that L^W^G; E)) fl $ f , with L^W^G; £)) the Schatten-ideal of retrace class op­
erators, is dense holomorphically closed in Similarly L1(VF*(F, ¿7; £)) n7r a v(2^) 
is dense and holomorphically closed in 7rav(25^); t n ^ s finishes the proof by using the 
definition of T£V. • 

2.5. Compatibility with Morita isomorphisms. — The goal of this subsec­
tion is to prove the compatibility between the different traces defined so far and the 
isomorphisms induced in if-theory by Morita equivalence. 

Recall the G*-algebras Ur and £2m associated to the groupoid $ := T x T. Let di 
denote as usual the G*-algebra of compact operators on a Hilbert space. 

Proposition 2.9. — There are isomorphisms of C*-alaebras: 

(8) <ът~пт® ¿c. <ът~пт® ¿c. 

Proof. — We fix rho £ M and consider the subgroupoid G (rho) consisting of the 
elements which start and end in the image of {mo} x T in V: 

G(rh0) = {[m o,m oa,0],0 G T and a G T}. 

Notice that the composition in G (rho) can be expressed in the following way: 

[rriQ,rh0a
f,0'] o [mo,m 0a,aV] = [mo, rhocta\ 0f]. 
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Then there is a groupoid isomorphism between G(rao) and the groupoid $ given by 

[râo,râoa,0] i—• (6,a 1). 

In particular the reduced (respectively maximal) G*-algebras associated to G(rao) 
and $ are isomorphic: G*(G(rao)) — $r (respectively G^(G(m 0)) ^ $ m ) . Now the 
main result in [27], see also [8], together with the fact that the image of {rho} x T 
in V intersects every leaf of the foliation, we deduce that the stable C*-algebra $ r is 
isomorphic to the tensor product G*-algebra $ R ( G ) ^ . In the same way, the C*-algebra 
25m is isomorphic to the tensor product G*-algebra £2m(8>^, using the maximal version 
of the stability theorem which is valid as pointed out in [27]. • 

Denote by MT : K0(&r) -» K0(<8r) and Mm : K0(ttm) -> K0(&m) the isomor­
phisms induced in liT-theory by the isomorphisms (8). 

Proposition 2.10. — The following diagrams are commutative 

K0(<8r) 

Ko(ÏÏr) TREG,* 

'REG,* y 

R 

Ko(ÏÏr) 

Mr 
K0(<8r) 

' av,* 

R 
' av,* 

Proof. — Let us identify T with a fiber of the flat bundle V = M xr T ^ M. Let 
fi be an open connected submanifold of M contained in a fundamental domain F of 
the action of V. Let U be the projection in V of Q, x T. Then U —• T is an open 
neighborhood of T in V such that the induced foliation on U is given by the fibres of 
U —> T. The subgroupoid of G consisting of homotopy classes of paths drawn in 
leaves, starting and ending in U, can be describe as 

G% = {[m,m'<y90]e 
tlx M xT 

r 
[ra,0] G U and [râ'7,0] G £/}. 

An easy inspection of the groupoid laws in GVj shows that the bijection 

[ra,râ'7,0] I—• ( r â , ™ ' , ^ " 1 ) G fi x fi x (T x T), 

is an isomorphism of groupoids, so that the reduced (resp. maximal) G*-algebra of 
G% is isomorphic to ^t(L2fi) ® [C(T) xr T] (resp. <#(L2fi) ® [C(T) xm T]). Recall 
that $C{L2QL) denotes the nuclear G*-algebra of compact operators in the Hilbert 
space L2fi. 
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If we now fix a continuous compactly supported function ip on ft with L2 norm 

equal to 1 then for any continuous compactly supported function £ G we set: 

T(O[m,m ,,0] := 
7,7'er 

</?(ra7)<£(ra'7')£(7 *0,7 V ) -

Since if is supported in a fundamental domain, it is clear that only one couple (7,7') 
gives a non trivial contribution. Moreover, the function T(£) is well defined on G and 
is supported inside G^. The map T is a *-homomorphism from the algebra Uc to 
the algebra $ c which implements the Morita isomorphisms Mv and Mm in if-theory. 
Indeed, we have: 

T(O*T(£ ,)[m,m ,,0] = 
JM 

T(0[m, m", 0]T(Ç')[m", m', 0}dm" 

a,a',ß,ß'er 

&(ma)(p(rh' ß') 
'M 

W(m"ß)(p{m"a')dm" x 

Ç(a-4a-W(0~4/rV) 

a,a'Er 
<p(ma)(p(rhfa' 

ßer 

Ç ( a - 4 a - W ( 0 ~ 4 / r V ) 

a,a'er 
<p(ma)<p(m'a')(( * £')(<*~Ч оГ V ) 

= T(t*t')[m,m',e]. 

Hence, we conclude that 

г ( о * г ( о = г ( е * о -

In a similar way one checks that (T(£))* = T(£*) . 
T extends to a morphism between the corresponding reduced C*-algebras. More 
precisely, let / G L 2 (M), then the regular representation 7rreg is given for any ra G M 
by: 

(ж^Т(О)в(Л(ш) = 
M 7',7er 

(^(m7)(^(m/7/)£(7 10,7 1^,)f{rn')drn'. 

Denote by # : V —• C the function given by 

0(7') := 
M 

^ ( m Y - 1 ) / ! ^ ) ^ , 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



224 M.-T. BENAMEUR & R PIAZZA 

then, one easily shows that the function g belongs to £2(T) and that its £2-norm can 
be estimated as follows: 

IMIi = 
7' 

l<?(7')|2 = 
7' M 

0(m/7,"1)/(m,)^m/ I2 

= 

Y' IFY 
0(m /7 ,"1)/(m ,)^m / 

|2 
< 

M FY 
\f(rh')\2dm'=\\f\\l 

If we recall the regular representation of the algebra S c, denoted also by 7rreg, then, 
using g we can write: 

(7r r e gr(0) e(/)(m) = 
7 r̂ 

<f)(rh<y) 
7'er 

« 7 " 1 « , 7 " V M 7 / " 1 ) = 
7 r̂ 

0(m7)(7r^(O)(5)(7-1) 

Therefore, if we compute the L2-norm of the function (/7TregT(^))e(f) we get: 

| | ( W r ( O M / ) H ! = 
M -yer 

1Q^ma)^^)^)^-1) 
i2 

dm 

aEr 'Fa-1 
^ m a ) ^ ^ ) ^ ) ^ - 1 ) ! 2 |2dm 

aEr 

TToeg(£)(g)(a-1)|2 
Fa-1 

|0(râa)|2drâ 

= 11^(0(^)111 
< i i e i i i w i < i i a i i i / i i i . 

Summarizing: sup 0 G T \\(7rr^(T0)e\\ < U\\nr so that | | T ( 0 l k < U\\ur ™ required. 
It thus remains to show compatibility of the traces with respect to the homomorphism 
T, and only on the compactly supported functions. Let us start with the regular trace. 
We have: 

r£g(r(0) = 
JFxT 

T{£)[m,m,6]dmdv{6) 

JT 
£(O,Y) 

'M 
\y{fh)\2dmdu{6) 

JT 
t(0, l)du(0) 

= Treg (£) 

Note that when m G fi, only 7 = 1 contributes to the sum defining T(£). 
Let us now check, briefly, that T induces a morphism between the maximal C*-

algebras. It suffices to show that T is continuous with respect to the L1-norms on the 
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groupoids and G. But for £ E £2C and for any rh e Q we have 

J M 
(T£)[ra,râ',0]|dra' < |0(ra)| 

M 
\<ß{m')\dm' 

Y'Er 
mW 

< ||0||l||0l|oo||£||l. 

Hence, 

i ™ i i i < Wiii^iiociieiii-

Now let us check the compatibility with the average trace T£V. We have, for £ E $c: 

C ( T ( 0 ) = 
FxT yer(e) 

T(£)[ra,ra7,0]dra di/(0) 

JnxT 7er(0) 
T(£)[ra,ra7,0]dra di/(0) 
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= 
T7er(0) 

£(O,Y) 

A 
|^(ra)|2dra dv(6) 

= 
JTiev{6) 

£(O,Y)dv(o) 

= <v(0-

Note that in the expression T(£)[ra, 7727,0] for m G fi, only the couple (1,7) con­
tributes non trivially to the sum. • 

3. Hilbert modules and Dirac operators 

3.1. Connes-Skandalis Hilbert module. — Recall that V = M x r T where 
M —> M is the universal T-covering of the closed manifold M and where Y acts by 
homeomorphisms on the compact space T. We fix a hermitian vector bundle E over V 
and we denote by E its pull-back t oMxT. We define a right action of the convolution 
algebra ftc = CC(T xT) = Cc(&) on the space &c = C£°'°(M x T; E), of compactly 
supported sections of the vector bundle E which are smooth with respect to the M 
variable and continuous with respect to the T variable, as follows. 

{U){rh,6) = 

7er 
£(m 7 - \70)/ (70,7) , £ E £c, fE Qc 

A Sc-valued inner product <.; .> on Sc is also defined by [27] 

<6;6>(0 ,7) := 
' M 

<^i(m,7 16>);^2(m7 \6)> E [ i f l t 0 ] dm, 

where <.;.># is the hermitian scalar product that we have fixed of the vector bundle 
E. A classical computation shows that these operations endow the space £ c with the 
structure of a pre-Hilbert module over the algebra S c . 

As in the previous sections, we denote by ffîr and S m the reduced and maximal 
C*-algebras of the groupoid $ . Recall that there is a natural C*-algebra morphism 

À U"ui • U"p. 

The pre-Hilbert Sc-module 6C can be completed with respect to the reduced C*-
norm to yield a right Hilbert C*-module over Ur that we shall denote by &T. In the 
same way, we can complete &c with respect to the maximal C*-norm and define the 
Hilbert C*-module Sm over the C*-algebra iSm. It is then clear that the natural map 
6C —• &r, extends to a morphism of Hilbert modules Sm —> £r- More precisely, we 
have a well defined linear map 

Q ' Sm —• &r such that g(£f) = g(£)A(/) f G Hm and £ G êm. 
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We denote as in the previous sections by G the monodromy groupoid 

G:= 
M x M xT 

r 

The algebra <BC of smooth compactly supported sections of the bundle END(E') over 
G is faithfully represented in Sc by the formula [19] 

X(Q)(£)(m,O):= 

IM 
<¿?[ra, ra', 0]£(ra', 6)dfh!, ̂ eC c°°(G,END(S))^e 6C. 

Recall that cBr and S m are respectively the reduced and maximal C*-algebras 
associated with G and with coefficients in E. Given a C*-algebra A and a Hilbert A-
module 6, the algebra Ba(S) consists of bounded adjointable A-linear morphisms of 
&. Recall also that the C*-algebra ïKa{&) of A-compact operators is the completion 
in Ba(6) of the subalgebra of A-finite rank operators. The following proposition is 
proved in [27], see also [39] and [8]. 

Proposition 3.1. — For any (p G CBC , the map x(<p) &c &c is Uc-linear and the 
morphism x extends to continuous *-representations 

Xr : € —> XnMr) and Xm:BmE --> Kqm(Em) 

which are C* - algebra isomorphisms. 

Notice that the proof of this proposition is usually given for the holonomy groupoid 
of the foliation; however the same argument applies to the monodromy groupoid. Note 
also that the proof is usually given for the reduced C*-algebra but it remains valid 
for the maximal C*algebra too [27] [Remarque 5]. 

For any 9 G T, we have defined in Subsection 1.3 a representation of the 
maximal C*-algebra S m in the Hilbert space £2(T/T(9)). By using Remark 1.1 we 
can write 

TTo(e',j)ao") 

6>"er.0 70"=0' 
f(e',j)ao"), fe nc,^ee2(re)nude'ere. 

Using the 8m-Hilbert module & m together with the representation ir™, one defines 
the Hilbert space 

Эф := Sm ®-«. С\Т). 

Similarly 

Эф := Sm ®-« . С\Т). 

Lemma 3.2. — There exists an isomorphism of Hilbert spaces, between ${gV and 
the Hilbert space L2 {LQ , E) of square integrable sections of the vector bundle E over 
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the leaf Lo through 0, induced by the formula 

*o(Ç®f)(m,9) := 
7SR 

/(70) [£(m7-\70)], ^ e 6c and f e CC(T6). 

Similarly there exists an isomorphism ^o of Hilbert spaces between $Cr

e

eg and 
L2(MQ, E) induced by the formula 

**(£®<M("0 :=£(™7~\70)-

where 51 denotes the delta function at T. 

Proof — If a G then we can write for £ G <§c: 

g(a^0, a)£ (7717 1a 1,a7S) 

7^r 
/ ( 7 0 ) [«ma -S" 1 ,?* ) ] 

i9er 

g(a^0, a)£ (7717 1a 1,a7S) 

/(70) [«ma-S"1,?*)]zaza 

Hence, / ) is a smooth section of E over M# which is r(0)-invariant. Moreover, 
if f = S7o and if we denote by K7Q the (compact) support of £ in M x {7$} then the 
support of $o(£ 0 ^0) is contained in 

[^•7]-r(fl) , 

and hence is r(0)-compact. 
Let now # G S c be given. Then we have 

*«(£®7rir(o)(/))(m,0) = 

76r 

g(a^0, a)£ (7717 1a 1,a7S) 

7er 

f(YO) 

aEr 
g(a^0, a)£ (7717 1 a 1 , a 7 S ) 

= 
0',enET0 (30=0",a0'=0" 

f(a^0, a)£ (7717 1a 1,a7S) 

0',enET0 (30=0",a0'=0" 

f(a^0, a)£ (7717 1a 1,a7S) 

On the other hand, we compute 

*«(£®7rir(o)(/))(m,0) = 
e"€T9 

ttrh-ïïW") 

7l0=0" 
ttrh-ïïW") 

= 

0',enET0 (30=0",a0'=0" 
f(e')a(0"J)m67\e"). 

Hence, we obtain the equality <8> / ) = $ * ( £ <G> Jrg^ffX/)). 
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In order to finish the proof, we need to identify the scalar product on the Hilbert 
space . We have 

-i<Ç(mli0
,,),Ç(m1a,0')> = <*îv (<*,£>(/),/> 

e'ere 
* n < £ , £>)(/)(* W ) 

e'ere 
f(0') 

vEr 
<i,a>{o',ß)f{ß-lo') 

e',e"ere 
/(00/(0"; 

ße"=e' 'm 
<£(ra, /T V ) , £(râ/r \ #)>dm 

e',e"ere 
f(0')f(0") 

ote'=e" ' 
M 

<£(râ, aO'),£(fha, 0')>dra 

On the other hand, if we view $e(£ ® / ) as a section over the leaf LQ through 0, then 
we can use a fundamental domain FQ for the free and proper action of the isotropy 
group T(0) on M and write 

<Mt®f)M£®f)> = 
he 

< ® 0), $e(£ <8> /)(ra, 0) > dm 

#1,02̂ 0 
№)№) 

TLe=e1,<y2e=e2 
'Fe 

<£(m 7 l \ 0 i ) , £ (m 7 2 \62)>dm 

We fix a section <p : Y6 —> T of the map 7 1—> 7$. Then /? = <£>(0i) *7i is an element 
of the isotropy group T(0) and we have 

-i<Ç(mli0
,,),Ç(m1a,0')> 

e",e'ere 
f{9")f{9>) 

720=0' /3er(0) Ro 
< ( ( m f V ( f l " ) _ 1 ,0") , É(m72-\ fl')>dÄ 

e",e'ere 
/(0")/(0') 

720=0 '/3Er(0) F0ß-i<p(O")-i 

<£(mi,0 , ,),£(m 1^(0 , ,)/?72" 1^ ,)>dm 1 

e",e'ere 
WW) 

ae'=e" ßer(e) F0ß-itp(6")-i 
<Ç(mli0

,,),Ç(m1a,0')>dm 

Setting 5 = ip(8i)/3 V(#i) 1 and noticing that a fundamental domain FQ» is equal 
to FQ^O")-1 we get 

-i<Ç(mli0
,,),Ç(m1a,0')> 

a0'=0 ErO 
/ ( 0 / ( 0 0 

a0'=0" <5<Er(0") (FoQ-O")-1) 
< ( m i , 0"), f (mia, a" 10 / /)>dm 
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0',e"eT0 
f(0")f(0') 

otB'=e" (5er(0//) 'Fe,,5 
<f (râi, 0"), £(mia, a-W^dm 

0',e"eT0 
f(6")f(0>) 

otB'=e" 
IM 

<£(mi, aO'), £(mia, 0')>drh. 

Hence <£ 0 / , £ (8) / > = <$0(£ 0 / ) , 0 / ) > . It now remains to show that is 
surjective. Let 77 be a smooth compactly supported section over the leaf LQ and denote 
by 77 its lift into a r(0)-invariant section over M x 0 and by £0 any extension of 77 into 
a leafwise smooth continuous section over M xT. Let (p be a smooth function on M 
such that J2aer(e) aiP = 1 a n < ^ s u c n that f ° r a n y compact set K in LQ ~ M/T(6), 
the intersection of the support of <p with the inverse image of K, under the projection 
M —> LQ, is compact in M. We view <£> as a function o n M x T independent of the T 
variable and set 

£:= Q£0 

Then £ G C£°'°(M x T, E) and one checks immediately that $#(£ 0 ¿0) = 77. The 
proof of the second isomorphism is simpler and is left as an exercise. • 

Recall that we have defined two representations, that we have both denoted 7rav, 
respectively of the C*-algebras S m and $ m in the corresponding von Neumann alge­
bras of the discrete groupoid $ and of the monodromy groupoid G with coefficients 
in the vector bundle E: 

7rav: Bm-> Wt{V,(Q). 7r a v: < - > Wt{V,9\E). 

Recall also that we have defined a ̂ representation Xm of $ m in the compact operators 
of the Hilbert module 5 m : 

7rav: Bm-> Wt{V,(Q). 

Proposition 3.3. — Let S be a given element of 2>m. Then we have 

rfv(S) = $e o [xm(5) 0 „ r /^ ( r é J o 

$0 : (5m 0tt|v ^2(T0) —» L2(LQ,E) the isomorphism given in Lemma 3.2. In the 
same way, we have 

7Tr

e

e9(S) = *Q O [Xr(S) ®wre. / , 2 ( R ) ] O Vfr"1. 

mt/i *&Q : <§m 0 ^ 0 ^2(r) —> L2(MQ,E) the second isomorphism given in Lemma 3.2. 
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Proof. — Let us fix an element k G C£°'0(G; END(£7)) and give the proof for S = k. 
We compute for £ G 6C and / G CC[T9]: 

* * (x ( fc ) (0®/ )OM) = 
7er 

/ (7e )x ( * ) (0 (^7 _ 1 , 7ö ) 

= 

7er 
/(7*) 

'M 
fc[râ7 1,m',70]^(m',7Ö)dm' 

= 
7er 

/(70) 
/M 

A: [m, m ;7, 7 1,mj9)dfh' 

= 
7er 

/(70) 
'M 

fc[râ, râi, 0]£(rai7 1

ij0)drhi. 

On the other hand, we have: 

* n * ) ( * * t t ® / ) ) 0 M ) = 
aer(ô) 

fc[ra, m'a, 6] 
7£r 

f(70)Z(m'<y-\70)dm' 

-yer 
fho) 

aer(e) 
JFea 

ak[fh,m",6\Z{m"i 1,-y'0)dm" 

7'er 
fh'9) 

aer(0) 'Fga 
k[fh,m",6\Z{m"i 1,-y'0)dm" 

7'er 
fh'9) 

M 
fc[m,m",6']^(m"7'"1,7'0)^". 

So we ge 

<Mx(fc)(£) ® / ) = ^(fc)(<M£ ® / ) ) 

which proves the first statement by continuity. We omit the proof of the second 
statement as it is similar and in fact easier. • 

3.2. T-equivariant pseudodifferential operators. — This subsection is devoted 
to a brief overview of the pseudodifferential calculus relevant to our study. All stated 
results are known and we therefore only sketch the proofs. 

Let SC be as before C^°'°(M x T,E) endowed with its structure of pre-Hilbert 
Hc-module. Recall that if we complete the prehilbertian module 8C with respect to 
the regular norm on S c then we get a Hilbert C*-module SR over the regular C*-
algebra UR. In the same way, completing Hc with respect to the maximal C*-norm 
yields a Hilbert C*-module SM over the maximal C*-algebra S m . We fix two vector 
bundles E and F over V and we denote by E and F their pullbacks t o M x T into 
T-equivariant vector bundles; we let E$ be the restriction of E to MQ. We set, as 
before, ME := MQ. 
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Definition 3.4. — Let P : CC°°'0(M x T , £ ) - > G°°' 0(M x T,F) 6e a imear map. We 

shall say that P defines a pseudodifferential operator of order m on the monodromy 

groupoid G if there is a continuous family of order m pseudodifferential operators 

(Po)eeT, 

Pe : C?(Me,Ee) - C°°(M,,F,) 

satisfying: 
(1) (P{)(ft,J) = ( W , J ) ) ( m x { « } ) 
(2) P is T-equivariant: R^PR* X = P; 

(3) the Schwartz kernel of P, Kp, which can be thought of as a Y-invariant distribu­
tional section on M x M xT, is of T-compact support, i.e. the image of the support 
in (M x M x T)/r =: G is a compact set. 

Notice that (2) can be then restated as: P1Q = JPQ V0 G T, V7 G T, exactly as 
in the definition of the regular von Neumann algebra. The notion of continuity for 
families of pseudodifferential operators is classical and will not be recalled here, see, 
for example, [11], [42], [32], [55], [56]. Finally, because of the third condition P maps 
CC°°'0(M x T,E) into CC°°'°(M x T,F). 

Notice that a T-equivariant continuous family of differential operators acting be­
tween the sections of two equivariant vector bundles is an example of a pseudodiffer­
ential operator on G. 

If m G Z, we shall denote by \£™(G; E, F) the space of pseudodifferential operators 
of order < m from E to F(3) . We set 

tf~(G;25,F) := M W™(G;Ê,F) and ty~°°(G;Ê,F) := C] *™(G;25,F). 
mEZ mEZ 

Using condition (3) , it is not difficult to check that the space \P£°(G; i£, i£) is a 
filtered algebra. Moreover, assigning to P its formal adjoint P* = {P^eeT gives 
\££°(G; E, E) the structure of an involutive algebra; the formal adjoint is defined also 
for P G tf ™(G; Ê, F) and it is then an alement in tf ™(G; F, E). 

Remark 3.5. — Notice that Definition 3.4 fits into the general framework of pseu­
dodifferential calculus on groupoids, as developed by Connes and many others. More 
precisely, let P = (Po)oeT be a pseudodifferential operator on G as in Definition 3.4-
For any 0 G T and any x = [TO, 0] G LQ the diffeomorphism 

px,e:M ^Gx = r~\x) given by Px,o(rh') = [râ,râ',0], 

(3) The notation for this space of operators is not unique: in [34] it is denoted c(M x T;E,F) 
with x denoting equivariance and c denoting again of V-compact support; in [39] it is simply denoted 
as*f(B,F). 

ASTÉRISQUE 327 



INDEX, ETA AND RHO INVARIANTS ON FOLIATED BUNDLES 233 

allows to define a pseudodifferential operator Px on Gx with coefficients in s*E, viz. 

Px := {p~\Y o Pg o (pxj)*. It is easy to check that Px only depends on x and that 

the family (PX)X£V is a pseudodifferential operator on G in the sense of Connes. 

Conversely if we are given now a pseudodifferential operator (Px)xev in the sense 

of Connes, then a choice of a base point TOO in M allows to construct P = (Pe)eeT 

satisfying the assumptions of Definition 3.4, viz. P$ := p * ^ e o PX(Q) O (p~^ e)* with 

x(6) = [TOO,0] and [TO0] = m 0 . 

Remark 3.6. — According to [18] a pseudodifferential operator as in Connes, admits 

a well defined distributional Schwartz kernel over G. It is easy to check that this 

Schwartz kernel coincides with our Kp when the two families correspond as in the 

previous remark. 

Remark 3.7. — The construction explained in remark 3.5. also allows to establish 

an identification between Connes7 von Neumann algebra [18] for the groupoid G and 

our von Neumann algebra W*(G,E). It is easy to check that Connes' trace [18] 

corresponds to our trace rv through this identification. 

Lemma 3.8. — A pseudodifferential operator P of order m yields an Uc-linear map 

$ : 8C —• &c- Moreover, the following identity holds in $c: <£Pu,v> = <u,fl*v> 

Vu G 8c, Vv G & c . 

Proof. — Let £ G 8C and let / G Uc. By definition (£/)(•) = E ^ - i O O / W ) , l) 

with 7r : M xT —> T the projection. Hence: 

P(£f) = P 

7 
(Ä; - IOO / (77T ( - ) ,7 ) 

= £ ( ^ K - ^ ) ( - ) ) / ( 7 t ( - ) , 7 ) 
7 

= £(^K-^)(-))/(7t(-),7)= (P£)f 
7 

where in the second equality we have used the fact that 9* commutes with multipli­

cation by functions in C(T) (indeed, 9 is given by a continuous family) and in the 

third equality we have used the T-equivariance. The equality <£Pu,v> = <u,£P*v> 

is established in a straightforward way. • 

Proposition 3.9. — Let 9 be a pseudodifferential operator of order m between 8C and 

& c . Then we have: 

1. I /TO < 0 then 9 extends to a bounded adjointable Um-linear operator 0m from 

8m to ff'm and to a bounded adjointable ffir-linear operator £Pr from 8r to £7r. 
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2. Ifm<0, then Фш is an Um-linear compact operator from &ш to &ш and £Pr 

is an Йг-linear compact operator from Sr to £Fr. 

Proof — We only sketch the arguments, following [55]. For simplicity we take E and 
F to be the trivial line bundles, so that &c — &c- We give the proof for the maximal 
completion, the proof for the regular completion being the same. 

For the first item, one applies the classical argument of Hormander, see for example 
[53], reducing the continuity of order zero pseudodifferential operators to that of the 
smoothing operators. We omit the details. 

For the second item, one starts with £P of order < —n, with n equal to the dimension 
of M. Then Ф is given by integration against a continuous compactly supported 
element in G; in other words Ф = x(^)> w ^ К ^ GC(G). We already know that 
such an element extends to a compact operator Ф on Sm, see 3.1. If Ф is of order less 
than —n/2 then we consider Q := Ф which is of order less then — n and symmetric. 
We know that Q extends to a (compact) bounded operator on & ш \ thus if / G 6C then, 
in particular, | |<^/| | 2 < C | | / | | 2 which means that Ф extends to a bounded operator Ф 
on Srn • Similarly Ф* extends to a bounded operator Ф* and by density we obtain that 
Ф is adjointable with adjoint equal to Now, again by density, we have Q = £P*£P; 
thus we can take the square root of Q which will be again compact since Q is. Using 
the polar decomposition for Ф we can finally conclude that Ф is compact which is 
what we need to prove. 

If the order of Ф is m < 0 then we fix £ G N such that m2£ < — n; then we proceed 
inductively, considering (Ф* fl)2 and applying the above argument. • 

Let P = (Рв)вет be an element in Ф^(О); its principal symbol o~e(P) defines a 
Г-equivariant function on the vertical cotangent bundle Ty(M x T) to the trivial 
fibration M x T - ^ T ; equivalently, cr^(P) is a function on the longitudinal cotangent 
bundle T * ^ to the foliation (V, £7"). If, more generally, P G &C(G\E,F), then its 
principal symbol will be a Г-equivariant section of the bundle Hom(7Ty (E), ny(F)) := 
7ry(E*)<g>7Ty(F) with 7Ty : Ty(MxT) —> ( M x T ) the natural projection; equivalently, 
o~t(P) is a section of the bundle Нот(7г^^, ir^F) over the longitudinal cotangent 
bundle -KCJ : T*67 —> V. We shall say that P is elliptic if its principal symbol cr^(P) 
is invertible on non-zero cotangent vectors. We end this subsection by stating the 
following fundamental and classical result whose proof can be found, for example in 
the work of Connes [17], see also [38]. (Notice that in this particular case the proof 
can be easily done directly, mimicking the classic one on a closed compact manifold.) 

Theorem 3.10. — Let P G *£(G; E, F) be elliptic; then there exists Q G *~^(G; F, E) 

such that 

(9) Id — PQ G V-°°(G;F,F), Id-QP£ V-°°{G;Ê,Ê). 
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Notice that in our definition elements in W-oo are of T-compact support: this 
applies in particular to both S := Id — PQ and R := Id — QP . 

We end this subsection by observing that it is also possible to introduce Sobolev 
modules and prove the usual properties of pseudodifferential operators, see [56]. 
For simplicity we consider the case k G N. In order to give the definition, we fix 
an elliptic differential operator of order k, P; for example P = Dk, with D a Dirac 
type operator. This is a regular unbounded operator (see the next subsection). We 
consider the domain of its extension Dom9m and we endow it with the $m-valued 
scalar product 

<s,£>Jfc := <s,t> + <PmS,Pmt>. 

This defines the Sobolev module of order k, One can prove for these modules 
the usual properties: 

— different choices of P yield compatible Hilbert module structures; 
— if k > £ we have and the inclusion in Sm-compact 
— ii Re #™(G, E) then R extends to a bounded operator &{k) - » <S (*"m). 

Since we shall make little use of these properties, we omit the proofs. 

3,3. Functional calculus for Dirac operators. — Let D = {De)eeT be a Y-
equivariant family of Dirac-type operators acting on the sections of a T-equivariant 
vertical hermitian Clifford module E endowed with a T-equivariant connection. We 
shall make the usual assumptions on the connection and on the Clifford action ensuring 
that each DQ is formally self-adjoint. Recall that D — {DQ)Q^T e \£j(G; £) and that 
D induces a Hc-linear operator on &c that we have denoted by 2). 

Proposition 3.11. — The operator 0 is closable in Sr and in Sm. Moreover, the 
closures 2) r and 2) m on the Hilbert modules &r and 6m respectively, are regular and 
self-adjoint operators. 

Proof. — We give a classical proof based on general results described for instance in 
[55]. Since the densely defined operator 2) is formally self-adjoint, it is closable with 
symmetric closures in £ r and & m respectively. Let Q € 1^~1(G,E) be a formally 
self-adjoint parametrix for D: 

I d - DQ = S, ld-QD = R. 

For simplicity, we denote by TT the regular or the maximal representation, by £ n the 
corresponding Hilbert module and by 2)^ the closure of 2). Since Q has negative 
order, it extends into a bounded operator on c? ,̂ denoted by Q^, or simply by QN. 
On the other hand, we know that the zero-th order pseudodifferential operator DQ 
extends to a bounded iS -̂linear operator on If £ belongs to the domain of this 
closure (which is then there exists £ n in C^°,0(M x T, E) converging in the 7r-norm 
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to £ and such that (DQ)£n is convergent in the IT norm. We deduce that Qn(£) is well 
defined and is the limit of Q£n- Hence we deduce that belongs to the domain of 
©TT and that lmQn C Dom 0n. Hence, ^D7rQn is a bounded operator which coincides 
with the extension of DQ and we have with obvious notation, 

DttRtt = I -&tt, 

so g;2>; C DttRtt =1-^1 and hence Dom(g>;) C lm(Ql) + I m ( ^ ) . Since Qn 

is self-adjoint we deduce that 

Dom(®;) C Tm(Qw) + Im(^*) C Dom(07r). 

The last inclusion is a consequence of the fact that <̂f* is induced by a smoothing T-
compactly supported operator. So 2)̂  is self-adjoint. Now, the graph of S)^, G ^ ^ ) , 
is given by 

G(Q*) = {(Q*(v) + ¿MMQ*(v): + 3 , ( Л ( й ч , ч ' е а , } 

Hence G(0TT), which is closed in &n x & n, coincides with the image of a bounded 
morphism U of -modules given by 

U = 
Rtt &tt 

DttRtt DttRtt 

tow, as a general fact, the image of such morphism, when closed, is always ortho-
:omplemented. Thus 2)̂  is regular. • 

Recall that we established in Lemma 3.2 isomorphisms of Hilbert spaces 

*o:Sm ®7rr£
2(re)-+L2(Le,E), *o:Sm ®7rr£

2(re)-+L2(Le,E) 

Proposition 3.12. — Let : R —> C be a continuous bounded function. Then for any 
6 £ T, the bounded operator, acting on L2 (Lg, E), given by 

*o:[Sm ®7rr£
2(re]o Qo-1 

coincides with the operator I/J(DL6) where DL6 is our Dirac type operator acting on 
the leaf LQ. 
In the same way the operator, acting on L2(Me1 Eg), given by 

*o:[Sm ®7rr£
2(re]o Qo-1 

coincides with the operator ip(Dg). 

Proof. — We prove only the first result, the proof of the second is similar. Since the 
operator 2)m is a regular self-adjoint operator, its continuous functional calculus is 
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well denned. See [551. Let £ € £ c and let / e CJF0], then we have 

**(2>m(0®/)OM) = 
cEr 

f{lO)№){mi-\lO) 

= YJ№\RUW)\(™J) 
cEr 

= Y ^ ( 7 0 ) 0 ( Ä ; - i O O M ) -
-ver 

On the other hand, the action of the operator DL0 on the image of is given by 

(DLe o o /)(m, 0) = V / ( 7 ö ) ö 9 ( [ 7 - ^ ] ö ) ( m ) . 

7€r 
Since by definition of 2) we have 0(7 ^(ra,*?) = Do ([y 1£,]o)(m) we obtain that 

*9o(®m®I)o$-1 = DL9. 

If -0 is as above then we get as a consequence of the definition of functional calculus, 

W(DlO° = W (*9o(®m®I)o$o-1) 
= *9o(®m®I)o$-1 

By uniqueness of the functional calculus we also deduce that ^(2)m ®-0 = ^(2)m) <8> i", 
and hence the proof is complete. • 

Before proving the main result of this Subection, we recall two technical results 
about trace class operators. First we establish two useful Lemmas. The first one 
is classical and generalizes [53] Proposition A.3.2 while the second one is an easy 
extension of similar results for coverings established in [1]. 

Lemma 3.13. — Let S 6 W*(G,E); then the following statements are equivalent: 

- S isrv Hilbert-Schmidt (i.e. TU(S*S) < +oo); 
— there exists a measurable section Ks ofEND(E) over G such that for v-almost 

every 0 the operator SQ is given on L2(Me1Ee) by 

(SeÛ m = 
M 

Ks{m,m\0)£(fh,)dm', 

with 

J MxFxT 
tr (Ks(m,m\0)*Ks(m,fh',0)) dfhdfh' dv{0) < +oo 

where we interpret Ks as a T-equivariant section on M x M xT. 

Moreover in this case the rv Eilbert-Schmidt norm of S, II-S'Ĥ—HS : = T"(S*S), is 
given by 

\\S\\l-BS = 
MxFxT 

tr (Ks(fh, m', 0)*Ks(fh, ra', 0)) dm din' du(0). 
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Proof. — We have, by definition, 

M - h s = t"(S*S) = 
T 

\\SeMx\\
2

HSdu(e) 

where the integrand involves the usual Hilbert-Schmidt norm in L2(Mo,Ee). There­
fore the proof is easily deduced using [53] [page 251] • 

Lemma 3.14. — Let S be a positive self adjoint operator in W*(G,E); then the fol­
lowing statements are equivalent: 

- T"(S) < +oo; 
— for any smooth compactly supported function (f) on M, the measurable function 

T 36 —> Tr(M? o Se o M¿) 

is p-integrable on T, where the trace is the usual trace for bounded operators on 
the Hilbert space L2(M,E); 

— for any smooth compactly supported function (¡> on M, the function 

T 9 0 —> ||S¿ / 2 o M 0 | | | s 

is v-integrable on T. 

Proof. — We follow the techniques in [1] and use Lemma 3.13. The second and 
third items are clearly equivalent. Assume that ru{S) < +oo and let 0 be a smooth 
compactly supported function on M with uniform norm ||0||oo- We let be a finite 
subset of T such that the support of 0 lies in the union U 7 €r 0^7- Here F is a 
fundamenal domain as before. Then S 1 / 2 is rv Hilbert-Schmidt and if KS\/i is its 
Schwartz kernel, then we easily deduce 

J MxMxT 
|</>(ra')|2 tr(KSi/2(m,m\6)*KSi/2(m,m',6)) dm dm'dp(6) 

nETq *MxFjxT 
\(f)(m,)\2 tr (KSi/2(m,mf',0)* #5i/2(ra,ra',0)) dm dm'dv(6) 

< M L * 
YETq MxF-yxT 

tr (KSi/2 (râ, ra', 6)*KSi/2 (ra, ra', 6)) dm dm dv(6) 

< ML* 

YET 'MxFxT 
tr (#51/2(7717 1,ra/,70)*#5i/2(ra7 1,mf,j9)) dm dm! dp(0) 

= Ml x Card(T0) x r"(S) < +00. 
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Conversely, let 0 be any nonnegative smooth compactly supported function on M 
such that 6Y — X> where x is the characteristic function of F. Then we have 

T"(S) = J Tr(MxoSeoMx)du(e) 

= J Tr(MxoM(f)oS0oM(f)oMx)diy(e) 

< I Tr(M 0 o5 ö oM 0 )dz/(ö) < + 0 0 . 
JT 

Proposition 3.15. — Let S = (So)oeT be an element of the von Neumann algebra 
W*(G;E). We assume that So is an integral operator with smooth kernel for any 8 
in T and that the resulting Schwartz kernel Ks is a Borel bounded section over G. 

— If S is positive and self-adjoint, then S is rv trace class and we have 

(10) Tv(S) = 

FxT 
tY(Ks(rh, m, 6))dmdu(6)ì 

where F is a fundamental domain in M and where in the right hand side we 
interpret K{S) as a T-equivariant section on M x M xT. 

— If S is assumed to be ru trace class, then formula (10) holds. 

Proof. — Let us prove the first item. Let 0 be a smooth compactly supported function 
on M. The operator o So o acting on L2(Mo,E) has a smooth compactly 
supported Schwartz kernel and is therefore trace class with 

Tr(M^ oSeo Mr) = 
I Me 

\(j){m)\2Ks(rh, fh, 6) dm. 

Since Ks is bounded as a section over G and since v is a borelian measure, we have 

IT 
Tr(M^ oSeo M^)dv{0) < + 0 0 . 

This shows, using Lemma 3.14, that S is rv trace class and also that 5 1 / 2 is rv 

Hilbert-Schmidt. By Lemma 3.13 we deduce that the 5 1 / 2 is an integral operator 
with measurable Schwartz kernel ^51/2 satisfying 

l | 5 1 / 2 | | | S := 
JMXFXT 

tr (1̂ 51/2(771,m', 6yKSi/2(m,m',0)) dmdm'dv{6) < +00. 

On the other hand we also have 

Ks{m,m,6) = 
J M 

KSi/2 (m, m', 8)KSi/2 (777/, m, 6) dm 

J M 
Ksi/2 (m, m\ 8)KSi/2 (m, m , 6)* din 
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The last equality employs the fact that 5 1 / 2 is selfadjoint. Taking pointwise traces 

we get: 

trKs(rh,râ,9) = / tr(#51/2(m,râ',9)KSi/2(m,râ',9)*) dm 
J M 

= / tr (#51/2 (râ, râ', Q)*KSi/2 (râ, râ', 0)) cZrâ . 
J M 

Therefore 

r"(5) = l l ^ l U s = 
Fx3 

tr #5 (râ, râ, 9)dmdv(9) 

This finishes the proof of the first item. 

Regarding the second item, assume now that S is rv trace class i.e. r^dSI) is finite. 

Write S = U\S\ for the polar decomposition of S in W*(G,E). Then the operators 

| 5 | x / 2 and C/I5I1/2 are rv Hilbert-Schmidt and thus have L2 Schwartz kernels #|s|i/2 
and Ku\S\i/2. Using Lemma 3.13 and the polarization identity we deduce: 

< J 7 | S | 1 / 2 , | S | 1 / 2 > H S 

J Mx FxT 
tr #t/|5|i/2 (râ, râ', 0)#|5|i/2 (râ, râ', 6)* dm dm du(9) 

IMxFxT 
tr #£71511/2 (râ, râ', #)#|5|i/2 (râ', râ, 0) drâ dm du(9) 

J FxT 
tr Ks(m, râ, 0) drâ dz/(0). 

= 
= 
= 

Hence 

T»(S) = <U\S\1/2,\S\1/2>HS = 
'FxT 

tr #5(râ, râ, 0) drâ c^(0). 

The proof is complete. • 

Remark 3.16. — A proof similar to the one given above shows, as in [1] (Propo­

sition 1^.16), that if R = (Re)eeT has a continuous (or even Borel bounded) leaf-

wise smooth Schwartz kernel with T-compact support, then R is rv trace class with 

TV{R) = JFxTtrKR(m,m,9)dmdv(9). 

A similar statement holds for a leafwise operator in W* ( V, ¿7; E) with a Borel bounded 

leafwise smooth Schwartz kernel which is supported within a uniform C-neighbourhood, 

C E R, C > 0, of the diagonal of every leaf. 

Proposition 3.17. — Let ip : R —> C be a measurable rapidly decreasing function. The 

the operator îp(D) := (^{De))eeT satisfies the assumption of Proposition 3.15 (second 

item). In particular ip(D) has a bounded fiberwise-smooth Schwartz kernel and 

we have 

r"(V(£>)) = 
FxT 

tr(K^[m,m,9])dm dv(9). 
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Proof. — Using [38], Theorem 7.36 (which is in fact valid for any measurable rapidly 

decreasing function) we know that is bounded and fiberwise smooth and that 

ip(D) G W*(G, E) . Therefore it remains to show that ip(D) is rv trace class since 

then we can simply apply Proposition 3.15 (second item). But \ty{D)\ — \i\)\(p)\ 

and is a measurable rapidly decreasing function; therefore | ^ ( ^ ) | has a bounded 

fiberwise smooth Schwartz and thus satisfies the assumptions of Proposition 3.15 (first 

item). We conclude that I/J(D) is rv trace class. • 

A statement similar to the one just proved holds for the leafwise Dirac-type operator 

D := (DL)L£V/C?. In order to keep this paper to a reasonable size we state the 

corresponding proposition without proof. See [52]. 

Proposition 3.18. — Let : R —» C be a measurable rapidly decreasing function. Then 

the operator ̂ (D) := (ip(DL))Ley/c? is Tg- trace class, has a leafwise smooth Schwartz 

kernel which is bounded as a measurable section over the equivalence relation 

^Lev/tfL x L,and we have 

Tg(W(D)) = 

FxT 
tr(lfy([m,0], [rh,9]))drh dv{0) 

where now F x T is viewed as a subset in V. 

We are now in position to prove the main results of this section. 

Theorem 3.19. — Let for simplicity ij) : R —• C be a Schwartz class function. Then 

i/>(@m) G ̂ $m(£m) and the element Xm1 (ip(@m)) £ $ m admits a finite T£v trace and 

also a finite r^eg trace. Moreover 

~ Tav(X™X(^{®rn)) = T ? [(^(DL))LeV/F] where {^{DL))LeV/F is the correspond­

ing element in the leafwise von Neumann algebra W* (V, ¿7; E) and r£ is the 

trace on this von Neumann algebra as defined in Subsection 2.4-

~ rfegiXm1^^™)) = TV [(^(A?))0GT] where (tl>(Do))eeT is the corresponding 

element in the regular von Neumann algebra W* (G, E) and rv is the trace on 

this von Neumann algebra as defined in Subsection 2.4-

Proof. — We know from Corollary 2.6 that r£v = T^-O 7rav. Therefore 

<v(Xn(WZ>m)\)) tr(lfy([m,0], [rh,9]))drh dv{0) 

= Tgr( Qy([w|,0M], Otth,]))drh dv{0T 

The last equality is a consequence of Proposition 3.3. Now, using Proposition 3.12, 

we finally deduce 

<v(Xn(WZ>m)\)) = Tg ((MDL))L€V/F) < +00. 
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Hence we see from Proposition 3.1 that XrâHlVK®™)!) is trace class and the same 
computation with if) instead of | ^ | finishes the proof of the first item. The second 
item is proved repeating the same argument. • 

4. Index theory 

Let M, Г, and T be as in the previous sections and let (V, ¿7), with V = M xrT, 
the associated foliated bundle. We assume in this section only that the manifold M 
is even dimensional and hence that the leaves of our foliation are even dimensional. 
Let E be a continuous longitudinally smooth hermitian vector bundle on V and let E 
be its lift to M x T. Let D = {£>е)еет be as in the previous section a Г-equivariant 
continuous family of Dirac-type operators. The bundle E is Z2-graded, E = E+(&E~, 
and the operator D is odd and essentially self-adjoint, i.e. 

D0 = 
0 
D+ 

Do 
0 

V 0 e T 

and (De )* = D^. Let D := (D^^^y/p be the longitudinal operator induced by D 
on the leaves of the foliation (V, J7). 

4.1. The numeric index. — We consider for each 8 the orthogonal projection fl^ 
onto the L2-null space of the operator £>f. Similarly, on each leaf L, we consider 
the orthogonal projections onto the L2-null space of the operator DL. It is well 
known that these orthogonal projections are smoothing operators, but of course are 
not localized in a compact neighborhood of the unit space V, viewed as a subspace 
of the graph of the foliation equivalence relation. 

Proposition 4.1 
— The family := (Ilf)eeT belongs to the regular von Neumann algebra 

W^GjE^. Moreover it is a rv trace class operator. 
— The family Ii± := (TL^L^V/F belongs to the leafwise von Neumann algebra 

W*(V, £7';E±). Moreover it is a T£ trace class operator. 

Proof. — As we have already mentioned, for any Borel bounded function / : R —• C, 
the operator f(D) (respectively f(D)) belongs to the von Neumann algebra W*(Gy E) 
(to the von Neumann algebra W*(V, 57; E)). Hence, ft* belongs to W^G^E*) and 
n ± belongs to W;(V, £7"; JS?*). 

Recall on the other hand from Propositions 3.17, 3.18 that e~D is rv trace class 
and that e~°2 is r£ trace class. Hence the proof is complete since 

П = Ûe-Ù2 and U = Ile-D2. 
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Definition 4.2. — We define the monodromy index of D as 

(и) ind£ptD) := т"(П+)-т"(П-) 

We define the leafwise index of D as 

(12) i n d ^ f l ) :=т£(П+)-т£(П-) . 

As Z) + is elliptic, we can find a Г-equivariant family of parametrices Q := (Qe)eeT 
of Г-compact support with remainders R+ and R-\ the remainder families are Г-
equivariant, smoothing and of Г-compact support, i.e. 

R+=I- QD+ and R-=I- D+Q ; R± e *-°°(G, E*). 

We know that R± are both rv trace class. Let Q, R+,R- be the longitudinal operators 
induced on (V, &)\ thus Q, /2+ G W*(V, &\ E+) and G W;(V, ^5 #~) with R± r£ 
trace class, see Remark 3.16. 

Proposition 4.3. — For any N eN,N > I, the following formulas hold: 

(13) т < р ( 0 ) = т " ( А + ) А Г - т " ( Д _ ) А Г т а ^ п Р ) = т £ ( Д + ) " - т £ ( Д _ ) " 

Proof. — Let N = 1; then the proof given by Atiyah in [1] extends easily to the 
present context. Replacing the parametrix Q by QN := <3(1 + -R- + R- H hR-~ x, 
which is again a parametrix, reduces the general case to the one treated by Atiyah. • 

Using these formulas we shall now sketch the proof of the precise analogue of 
Atiyah's index theorem on coverings. 

Proposition 4.4. — The monodromy index and the leafwise index coincide: 

(14) i n < p ( £ ) = indlw n(£>). 

Proof. — Given e > 0 we can choose a parametrix Q € ^~1(G; E~, E+) with the 
property that the two remainders R± = (R±)o, 0 e T are such that each (R±)e is 
supported within an e-neighbourhood of the diagonal in Me x Me. Let &±jm • &m ~~* 
Sm be the induced operators on the Sm-Hilbert modules (5^; since R± are smoothing 
and of T-compact support we certainly know that <$±,m are Sm-compact operators. 
Let K± := Xm1(&±,m) € 25^ ; K± is simply given by the Schwartz kernel of R± and 
is in fact an element in CBC . In particular K± has finite rr^g trace and T£V trace. By 
arguments very similar (in fact easier) to those establishing Theorem 3.19 we know 
that 
(15) 

т£(Я±) = С(х™^±,т) = С(^) - т£(Я±) = С ( х ™ ^ ± , т ) = С ( ^ ) -
Thus, from (13), it suffices to show that 

T»{K±) = T»V{K±). 
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We can write 

Tav (K+) 
FXT TER(0) 

K± [TO, rri7,0] dm dv(0) 

J FxT 
K^m.m.O] dmdv{ß) -

'FxT 7€r(0);7/e 

K± [m, 7717,0] r̂n dz/(0) 

= Treg (K+) + 
/ F x T7€r(e);7^e 

If* [TO, 7717, ¿¿771 dv(6). 

Choosing e small enough we can ensure that K±[m,7717,0] = 0 V7 G r(0), 7 ^ e. The 

proof is complete. • 

Remark 4.5. — The possibility of localizing a parametrix in an arbitrary small neigh­

bourhood of the diagonal plays a crucial role in the proof of the above proposition. 

There are more general situations, for example foliated flat bundles M x p T with M 

a manifold with boundary, where it is not possible to localize the parametrix. In these 

cases the analogue of Atiyah's index theorem does not hold. 

4.2. The index class in the maximal C*-algebra. — Let be as in the previ­

ous subsection. As before we consider a parametrix Q := (Qe)eeT £ ^ r^" 1(G; E~,E+) 

with remainders R+ and The family Q defines a bounded Sm-linear operator 

2 m from <§~ to (S*. The families R+ and R- define Sm-linear compact operators 

&±,m on the Hilbert modules &^ respectively. 

We now define idempotents p ,p 0 hi M 2 x 2 ( ^ $ m (<§™) ® C) by setting 

(16) P 
q>2 

^+,771 
R-,mD+m 

R+m (I+R+m) Rm 
R-,mD2-m 

PO = 
'o 0> 

,0 I) 

We thus get a Xo-class [p - p0] e K0(yC%m(6m)). 

Definition 4.6. — The (maximal) index class IND(2)m) G Ko(^m) associated to th 

family D is, by definition, the image under the composite isomorphism 

lnd(0m) := ^x(IND(2)m)) G K0(Sm) 

of the class [p — po] • 

One also considers the index class in jRTn(Sm): 

(17) lnd(0m) := ^ x ( I N D ( 2 ) m ) ) G K 0 (S m ) 

with Ĵ max ' Ko(ffim) —> Ko($m) the Morita isomorphism considered in Proposition 

2.10. 
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Recall now the morphisms : K0(^M) —• C and rr^g , : K0($R) —> C. Using 
the natural morphism Ko{^Bm) —• Ko(<8r) we view both morphisms with domain 

(&n)-C 

(18) < v > , : f f o(&n ) - C , < e g i . : tf0(fgm) - C. 

Recall also that using the natural morphism ifo(^m) —• Ko(ffir) we have induced 
morphisms 

(19) < v , . : - ^ o ( î S m ) ^ C , <v,.:-^o(îSm)^C, 

Proposition4.7. — Let IND(0 m ) G K0($m) and Ind(2>m) € K0(&m) be the two 
index classes introduced above. Then the following formulas hold: 

(20) 

(21) 

md»up(D) = < e g j . ( IND (0 m ) ) = < e g j ,(Ind(2)m)), 

ind^o w n(I?) = C ( I N D ( i ) ) = C H y . 

Consequently, from (14), we Ziave the following fundamental equality: 

(22) < e g i,(Ind(2>m)) = <V ).(Ind(2)m)). 

Proof — We only need to prove the first equality in each equation, for the second 
one is a consequence of the definition of Ind(2)m) G i fo(S m ) and the compatibilty 
result explained in Proposition 2.10. For the first equality we apply (13) with N = 2 
and the parametrix Q. Using now (15), (16) we get 

in<C(£) = r"( ( i? + )
2 ) -T"( ( iL) 2 ) 

= < e g ( (5e + , m ) 2 ) -< e g ( (^_ , m ) 2 ) 

= <eg i.(IND(<Z)m)). 

The proof of the other one is similar. • 

Remark 4.8. — The equalities in Proposition 1^.1 can be rephrased as the equality be­

tween the numeric C* -algebraic index and the von Neumann index. Notice once again 

that there are more general situations where this proposition does not hold, in the sense 

that there exists a well defined von Neumann index but there does not exist a well-

defined C*-algebraic index we can equate it to. The simplest example is given by a 

fibration of compact manifolds L —• V —> T with V and L manifolds with boundary. 

The von Neumann index defined by the family of Atiyah-Patodi-Singer boundary con­

ditions is certainly well defined (this is the integral over T of the function that assigns 

to 6 G T the APS index of ) . On the other hand, unless the boundary family 

associated to {D^)eeT is invertible, there is not a well defined Atiy ah-Patodi-Singer 

index class in KQ(C(T)) = K°(T). For more on higher Atiy ah-Patodi-Singer index 

theory on foliated bundles see [34], [33]. 
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4.3. The signature operator for odd foliations. — We briefly review the defi­

nition of the leafwise signature operator in the odd case. Recall that when dim(M) = 

2m — 1, the leafwise signature operator is defined as the operator Dslgn acting on 

leafwise differential forms on V, defined on even forms of degree 2k by 

£>sign = jm^^fc+l^ o d - d O *), 

and on odd forms of degree 2k — 1 by 

Z J ^ = t m ( - l ) m - f c ( d o * + . o d ) , 

where d is the leafwise de Rham differential and * is the usual Hodge operator along 

the leaves associated with the Riemannian metric on the foliation [38]. An easy 

computation shows that the two operators and £ ) | l g n are conjugate so that 

their invariants coincide and it is sufficient to work with one of them. In contrast 

with [3], Dslgn will be in the sequel the operator D^n. Using the lifted structure to 

the fibers of the monodromy covers M x {0} of the leaves, we consider in the same 

way the T-equivariant family of signature operators .D s l g n = (DQlsn)$eT which actually 

coincides with the lift of Dslgn as can be easily checked. The following is well known, 

see [2], [3] for the first part and [28] for the second: 

Recall that the K\ index of Dslgn is the class of the Cayley transform of 2 } s l g n , see 

for instance [28]. 

Proposition 4.9. — The operator Dslgn is a leafwise elliptic essentially self-adjoint 

operator whose K\ index class is a leafwise homotopy invariant of the foliation. 

The square of Dslgn is proportional to the Laplace operator along the leaves and 

hence it is leafwise elliptic. The proof that Dllgn is formally self-adjoint is straight­

forward, see [3], and classical elliptic theory on foliations of compact spaces allows to 

deduce that it is essentially self-adjoint. Now Dslgn is unitarily equivalent to Dfgn 

and hence is also formally self-adjoint. We shall get back to the index class later on. 

The homotopy invariance means that if / : (V, ¿7) —• (V, is a leafwise oriented 

leafwise homotopy equivalence between odd dimensional foliations, then with obvious 

notations we have 

U Ind(L>sign) = Ind(L>sign') 

where /* is the isomorphism induced by the Morita equivalence implemented by / 

[28]. 

5. Foliated rho invariants 

Recall that T is a compact Hausdorff space on which the discrete countable group 

r acts by homeomorphisms, M is a compact closed manifold with fundamental group 

T and universal cover M and that V = M x r T is the induced foliated space. We are 
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also given a Borel measure v on T which is T-invariant. We assume in the present 
section that M is odd dimensional and whence that the leaves of the induced foliation 
57 of V are odd dimensional. We fix as in the previous section a Dirac-type operator 
along the leaves of the foliation (V, 57) acting on the vector bundle E. We denote 
by D this operator acting leafwise, so D = (D^Lev/F where each DL is an elliptic 
Dirac-type operator on the leaf L acting on the restriction of E to L. We also consider 
the lifted operator D to the monodromy groupoid G of the foliation (V, F) as defined 
in Section 3.2. More precisely, D = {De)eeT is a T-equivariant continuous family of 
Dirac type operators on M. 

5.1. Foliated eta and rho invariants. — The construction of foliated eta in­
variants was first given independently in the two references [47] [43] and the two 
definitions work in fact for general measured foliations. Notice that [47] works with 
the measurable groupoid defined by foliation, whereas [43] works with the holonomy 
groupoid. As we shall clarify in a moment, the choice of the groupoid does make a 
difference for these non-local invariants. We give in this paragraph a self-contained 
treatment of these two definitions following our set-up, but using the monodromy 
groupoid instead of the holonomy groupoid considered in [43]. 

We denote by kt and kt the longitudinally smooth uniformly bounded Schwartz 
kernels of the operators <ft{D) and (ft(D) obtained using the function (ft(x) '= xe~f x 

for t > 0. See Lemma 3.17. 

Lemma 5.1. — (Bismut-Freed estimate) There exists a constant C > 0 such that for 
any (TO,6) G M x T , we have: 

|tr(fet([m,ö],[m,fl]))| <C and |tr(fct([m,m,0]))| < C, fort<\. 

Proof. — A proof of these estimates appear already in [47]. We give nevertheless a 
sketch of the argument. 
The Bismut-Freed estimate on a closed odd dimensional compact manifold M is a 
pointwise estimate on the vector-bundle trace of the Schwartz kernel of D exp(—t2D2) 
restricted to the diagonal. See the original article [14] but also [37]. As explained for 
example in the latter reference the Bismut-Freed estimate is ultimately a consequence 
of Getzler rescaling for the heat kernel of a Dirac laplacian on the even dimensional 
manifold obtained by crossing M with S1. Since these arguments are purely local, 
they easily extend to our foliated case, using the compactness of V := M Xp T in 
order to control uniformly the constants appearing in the poinwise estimate. • 

The operators D2 and D2 (as well as the operators \D\ and \D\) are non negative 
operators which are affiliated respectively with the von Neumann algebra W*(V, 57; E) 
and the von Neumann algebra W*(G;E). (This means that their sign operators as 
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well as their spectral projections belong to the von Neumann algebra.) Moreover, 
according to the usual pseudodifferential estimates along the leaves (see for instance 
[55], [9]), the resolvents of these operators belong respectively to the C*-algebras 
X(WZ(y,&\E),T$) of r£-compact elements in WZ(V,&\E) and JC(W*(G;E),TV) 
of r^-compact elements of W*(G;E). We recall that these compact operators are 
roughly defined using for instance the vanishing at infinity of the singular numbers, 
and we refer, for example, to [9] for the precise definition of these ideals. Set 

D2 = 
•+oo 

0 
XdEx 

and D2 = 
r+oo 

/0 
XdEx, 

for the spectral decompositions in their respective von Neumann algebras. So E\ and 
E\ are the spectral projections corresponding to (—oo, A). Since the traces are normal 
on both von Neumann algebras, 

N(\)=T:V(EX) and JV(A) = < e g ( £ A ) , 

are well defined finite (Proposition 5.6 in the next subsection) non-decreasing and 
non-negative functions, which are right continuous. Hence there are Borel-Stieljes 
measures and ë on M, such that: 

rvMD)) = 
'R 

f(x)d<â(x) and rv{f{D)) = 
FR 

f(x)dë(x), 

for any Borel function / : R —> [0,+00]. Since N and N are finite, the measures $ 
and $ are easily proved to be cr-finite. 

Proposition 5.2. — The functions t i—> T^(De t2°2) and t »—• rv{De *2^2) are 
Lebesgue integrable on (0, +00). 

Proof — We have 

\TZ(De-t2D2)\<rZ(\D\e-t2D2) and Ir'iDe-t^^l^T'ilDle-*202). 

Therefore and since the function x \-+ \x\e t2*2 is rapidly decreasing, we know from 
Propositions 3.17 and 3.18 that for any t > 0 

T^(\D\e~t2D2) < +00 and rv{\D\e~t2ù2) < +00. 

We also have the formulae 

rU\D\e-*D2) = 
B+ 

^e~t2xdd{x) and r»{\D\e-t2£>2) = 
'R+ 

Vx~e-t2xdd(x). 
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Therefore, by Tonelli's theorem 

r+oc 

Jl 
r^(\D\e-tD)dt = 

poo 

Jo 
Vx r 

l 
e-t2xdtd$(x) 

< 
= 

f 
Jo 

Jxe x roc 

'l 

e-t2xdtd$(x) 

1 
2 r 

'0 

y/xe x 
f 
Jo x-^2{u + x)-1/2e-u dud<&{x) 

1 
2 r 

Jo 

e-x dV(x) 
T 

u-1/2e-udu 

VTT 

2 
^ ( e - ° 2 ) . 

The same proof show that 

»+oo 

Jl 
Tv(\D\e-t2£)2)dt <+oo . 

On the other hand, we have 

Jo 
\T^(De-t2D2)\dt < f 

Jo 
'FxT 

I tr(fet([m, 0], [m, 0])| dmdi/(0) dt 

< 
f 
Jo 

FXT 
Cdmdv(0) dt 

= C x vol(V, dm ® v) < +oo. 

Again, the same proof works as well for the regular trace and the regular von Neumann 
algebra. • 

We are now in position to define the foliated eta invariants. 

Definition 5.3. — We define the up and down eta invariants of our longitudinal Dirac 
type operator by the formulae 

nvup(D) := 2 
VTT 

+oo 

/o 
Tv{De-T2Ù2)DT and »?down(£>) := 

2 

0F 

r+oc 

lo 
r£(De-t2D2)dt. 

Since the traces on both von Neumann algebras are positive, the two eta invariants 
are real numbers. 

Definition 5.4. — The foliated rho invariant associated to the longitudinal Dirac type 
operator D on the foliated flat bundle (V, £7") is defined as 

p»(D;V,P) :=rtp(D) - V»dovin(D) 

with D the lift of D to the monodromy cover. 
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We are mainly interested in the present paper in the leafwise signature operator 
Dslgn and its leafwise lift to the monodromy groupoid D81gn. In this case, we can 
state the following convenient result. 

Lemma 5.5. — Denote by Aj the Laplace operator on leafwise j-forms. Then the 
foliated eta invariant of the operator D81gn on (V, £7") is given by 

rJ»(D8ign-V,&) = 
1 

0 

r+oo 

'o 
rv

9{d^e~t2^)dt. = 
1 

V5F 

r+oo 

'o 
rv

9{d^e~t2^)dt. 

Similar statements hold for the lifted family Dslgn. 

Proof. — This is an immediate consequence of a straightforward leafwise version of 
the computation made in [2, p. 67-68]. • 

5.2. Eta invariants and determinants of paths. — We review the notion of 
(log-)determinants of paths, adapting the work of de La Harpe-Skandalis [24] to 
our context. Recall that M is odd dimensional. For any von Neumann algebra M 
endowed with a positive semifinite faithful normal trace r, we denote by L1(M, r) the 
Schatten space of summable r-measurable operators in the sense of [22]. Recall that 
LX{M, T) C\M is a two sided *-ideal in M. By Propositions 3.17, 3.18 we have for any 
rapidly decreasing Borel function -0 

1>(D) := W>(Do))e€T G L1(W*(G;E),T1/) D W*(G; E) 

xP(D) := ̂ (DLe))eeT G L1 (W*(V, 17', E),r£) n W*(V, £7]E). 

We set D = U\D\ and D — U\D\ for the polar decompositions in the correspond­
ing von Neumann algebras. Then, this decomposition obviously coincides with the 
leafwise decompositions 

Do = Uo\D9\ and DL = UL\DL\. 

For any 9 G T with L = LQ, we write the spectral decompositions: 

IÀ>| = 
+oo 

0 
XdÉ{ and \DL\ = 

+oo 

0 
XdE%. 

As we have already remarked, the collection of partial isometries U = (Uo)oeT (resp. 
U = (ULe)oeT) as well as that of spectral projections E\ = (Ef)oeT (resp. E\ = 
(E^)oeT), all belong to W*(G,E )(resp. W;(V,S?;E)). 

Proposition 5.6. — We have TV{E\) < +oo and r^(E\) < +oo for any A G R+. 

Proof — We know that for any A < 0 the operator (|D| — A ) - 1 is r^-compact in 
W*(G; E). In the same way, the operator (\D\ — A ) - 1 is r^-compact in W*(V, ¿7; E) 
[17]. Hence the spectral projections of (\D\ — A ) - 1 are r^-finite and the spectral 
projections of (ID\ — A ) - 1 are r^-finite. This completes the proof. • 
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For any t > 0, the t-th singular number of the operator D with respect to the 

probability measure v is defined by [22] 

IH(D) = inf{|| |D|p||, p = p2=p* G W:(G;E) and / ti(Mx{I - pe)Mx)dv(0) <t}. 
JT 

In the same way, we define 

Vt(D) = mî{\\\D\plp = p2=p* G W;{V^E) and / tv(Mx(I -pLd)Mx)dv{6) < t}. 
JT 

From Proposition 5.6, we deduce that 0 < fJ>t(D) = /xt(|Z>|) < +00 and 0 < fJ>t(D) = 

/J>t(\D\) < +00. The spectral measure of \D\ with respect to the probability measure 

v is denoted /2, while the spectral measure of \D\ is denoted /i. So for D for instance 

we have 

ß(B) = j tr(MxlB{\DLe\)Mx)du(6) 

for any Borel subset B of the spectrum of \D\ and 

ß(B) = / tv{Mx\è{\De\)Mx)dv{6) 
JT 

for any Borel subset B of the spectrum of |jD|. 

We denote by J^^reg (resp. J'^E,triv) the subgroup of invertible operators in 

W*(G]E) (resp. in W*(V, &',E)) which differ from the identity by an element of 

the ideal X{W*(G\E),rv) (resp. ^C(W*(V, 67;£),r£)). The subgroup of bounded 

operators which differ from the identity by a r^-summable (resp. r^-summable) 

operator will be denoted JLX

E r e g (resp. dL\ triv). 

Whenever possible we shall refer to both von Neumann algebras W*(G;E) and 

W£(V,{7; E) as M. We shall then use the notation dCK (resp. JL1) and denote 

by r the corresponding trace. 

Lemma 5.7. — The space JL1 (resp. dtK) is a subgroup of the group of invertibles 

GL(M) of the von Neumann algebra M. 

Proof. — We only need to check the stability for taking inverses. Let then J + T be 

an invertible element in M such that T G Lx(M,r) (resp. $C(M, r ) ) . Then we can 

write 

(7 + T ) - 1 - J = (I + T ) - 1 ( / - ( / + T)) = - ( J + T ) - 1 T G L1 (M,T) ( resp. X{M,r)). 

Proposition 5.8. — Let 7 : [0,1] —> be a continuous path for the uniform norm. 

For any e > 0, there exists a continuous piecewise affine path 7 e : [0,1] —• JL1 such 
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that for any t G [0,1] we have \\j(t) - 7e(£)|| < e. Moreover, if 7(0) and 7(1) 6eZon# 
¿0 JL1, then we can insure that 7e(i) = 7(2) /or i = 0,1. 

Proof — Since 7 is continous for the operator norm, we can find S > 0 such that 

| * - * |< *=Hl7 ( * ) - 7 (« ) l l<e / 3 . 

We subdivide [0,1] into 0 = XQ < x\ < • • • < xn = 1 so that — #¿1 < for any 
j . On the other hand, the ideal Ll{M,r) O M is dense in ^ ( j ^ , r) for the uniform 
norm. Therefore, for any j = 0, • • • , n, we can find Je(xj) £ B(i(xj),e/Q), the ball 
centered at 7(2^) with radius e/9, such that 7e(a:j) € ^L 1 . We then define a path 
7e : [0,1] —> c/L1 which is affine on every interval [#¿,#¿+1] and prescribed by the 
values 7e(#j) for j = 0, • • • ,n. The path ye is then continuous and differentiable 
outside the finite set {xj,j = 0, • • • , n}. Moreover, for t G [XJ,XJ+I] we have 

Il7e(*) - le(Xj)\\ = t X ||7e(xi+i) - 7e(^)|| < ||7e(*i+l) ~ 1e(Xj)\\ 

< | | 7(x i + 1)-7(^)11 +26/9 < 56/9. 

Therefore, 

Il7(*)-7e(*)ll < Il7(t)-7(^)ll+ll7(^)-7 e(^)|| + ||7«(^)-7«(*)ll < €/3+e/9+5e/9 = e. 

Definition 5.9. — Given a continuous piecewise C1 path 7 : [0,1] —> JL1 for the L1-
norm in M, we define the determinant wT (7) by the formula 

Wt(Y):= 1 
2TTV-1 Jo 

T(j(t)-W(t))dt. 

When M is W*(G,E) this determinant will be denoted by wu(i) while when M is 
equal to W*(V, &\E) this determinant will be denoted 1^(7). 

We summarize the properties of the determinant in the following 

Proposition 5.10. — Let 7 : [0,1] —> JLl be a continuous piecewise C1 path for the 

Lx-norm. 

1. Assume that 

| | 7 ( « ) - / | | i < l , for any t G [0,1]. 

Then, for any t G [0,1] the operator Log(7(£)) is well defined in the von Neu­

mann algebra and we have 

wT(i) = 
1 

2TTV-1 
[ r (Log (7 ( l ) ) ) - r (Log (7 (0)) ) ] . 
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2. There exists 81 > 0 such that for any continuous piecewise C1 path a : [0,1] —• 

JLl for the L1 norm, with 

\\a(t) ~~ 7(*)lli ^ 7̂ and a(i) = 7(*)>* = 0,1, 

we have wT(a) = wT(/y). 

3. If 7 is a continuous piecewise C1 path for the uniform norm, then the deter­

minant wT(/y) is well defined. Moreover, wT(j) only depends on the homotopy 

class of 7 with fixed endpoints and with respect to the uniform norm. 

Proof — This proposition is a straightforward extension of the corresponding results 

in [24]. We give a brief outline of the proof here for the benefit of the reader. It is 

clear in the first item, since r is a positive trace, that the function t i—• Log(7(£)) is 

well denned (using for instance the series) and is a piecewise smooth path. Moreover, 

we have 

dt 
T(Log(<y(t))=r(7-

1(t] 
dj 

~dt 
(t) 

This completes the proof of the first item. 

Let a be a continuous piecewise C1 path satisfying the assumptions of the second 

item. We consider the continuous piecewise C 1 loop ¡3 : [0,1] —• JL1 given by 

0(t) = <y{t)-la{t) which satisfies {3(0) = /3(1) = I. We have 

-/111 < l l 7 W - 4 | x | l 7 ( t ) - / m -

Therefore, with S~ = 1 
inftero.il IM*)"1 II , we are done using the first item. 

The rest of the proof is similar and is omitted. 

Definition 5.11. — Let 7 : [0,1] —• be a continous path for the uniform norm such 

that 7(0) and 7(1) are in JL1. We define the determinant wT{^) by wT('j) := wr(a), 

for any continuous piecewise C1 path a : [0,1] —• JL1 such that 

\\a(t) — 7(£)||i < 51 and a(i) = 7(2), i = 0,1. 

Remark 5.12. — It is clear from the previous proposition that the above definition is 

well posed. 

We now set 

ip{x) := 
2 

VTT f 
e s2ds, i)t{x) := -e™^tx) and 

ft(x) := xe-*2*2 for x e M, and any t > 0. 

Then the function 1 — i/;t, the derivative and the function ft are Schwartz class 

functions for any t > 0. Using the results of the previous sections, we deduce that the 

operators I — ipti^m), tyt '(2)m) and / t (2 ) m ) are Sm-compact operators on the Hilbert 

module Sm. Moreover, their images under the representations in the von Neumann 
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algebras W*(G;E) and WZ(V,!7;E) are trace class operators. Note also that the 
operator ipt(@m) is invertible with inverse given by — e~ 2 7 r < ^ t 2 ) m ) , so ipt(@m) is a 
smooth path of invertibles in J^C^m (<Sm) whose image under 7r r e p o^" 1 in Wr*eg(G; E) 
is also a smooth path of invertibles in dL\ reg. The same result holds for the image 
under 7rav o x"1 in WZ(V, 67; E). We denote by 

7

r e g ( 2 ) m ) = ( 7r g(2W)t>o := ( ( ^ o ^ ) ( ^ ( 2 ) m ) ) ) ^ 

and 
7 - ( 2 > m ) = (7?v(2)TO))t>o := (U o , , ° X ^ ) ( ^ ( 2 ) m ) ) ) t > 0 

the resulting smooth paths in the two von Neumann algebras. Using the traces rv 

and Tp, we define 

< g , e ( 0 m ) := ̂ ( 7

r e g ' e ( 2 ) m ) ) and < v , e ( 2 ) r o ) := ^ ( 7 " ' ' ( 0 m ) ) . 

with 7 r e S l £ (2)m) the path ((7rPe» o Xm)(^(S>m))) and similarly for 7

a v ' e ( 2 U 

Theorem 5.13. — The following relations hold: 

l i m < e g j £ ( 2 ) m ) = 1 
2' 

Tup(D) and lim«4,,e(2>m) = ^down(^) 

and hence 
2p"(D; V, 9) = l i m [ < g ) e ( 2 ) m ) - < v , e ( 0 m ) ] . 

Proof. — We have by definition and by straightforward computation 

Yreg(Dm) 
t 

£ 
dt 

Yreg(Dm) 
t 

к ^ о у - . 1 ) iTTDm 2 
V5F 

- t 2 0 2 

C m 

= 2 i v ^ ( * r e g o X - 1 ) ( / t ( 2 > m ) ) . 

But we know by Proposition 3.12 that 

K e g o xñi) с м ад = (ft(De))eeT, 
where {De)oeT is the T-invariant Dirac type family. Hence we get 

7T 8(®m ) - 1 | 7 r g (2>m) = 2is/*(MDo))eeT, 

where this equality holds in the von Neumann algebra W*(G; E). Applying the trace 
t", integrating over (0,+00) and dividing by 2wr, we obtain 

l i m < g i e ( 2 ) m ) lim 
€-•0 

1 
V5F 

/•l/e 

e 
T"((ft(De))0eT)dt 

= 1 
VTT 

/»4-00 

'0 
T"((ft(De))eeT)dt = 

1 
2 

Tup(D) 

The proof of the second equality is similar and one uses the equality 

(T^ O X"1) (/*(2>m)) = (/t(̂ L))L6V/F, 
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which is proved in Proposition 3.12 . 

6. Stability properties of pv for the signature operator 

6.1. Leafwise homotopies. — Let T, T and M be as in the previous sections. 
Let V := M Xr T be the associated foliated flat bundle. Assume that M' is another 
T-coverings and let T" be a compact space endowed with a continuous action of Y by 
homeomorphisms. We consider M' x T and the foliated flat bundle V := M' x r T. 

Definition 6.1. — Let (V, 57") and (V, 57"') be two foliated spaces. A leafwise map f : 

(V, £7") —> ( V , &') zs a continuous map such that 

• Tfte image under f of any leaf of (V, 57") is contained in a leaf of ( V , 57'). 
• The restriction of f to any leaf of (V, ¿7) is a smooth map between smooth leaves. 

Remark 6.2. — 1. We do not assume, that the leafwise derivatives to all orders of 

f are also continuous. 

2. If V and V are smooth manifolds and f : V —• V is a differentiable map, then 

f is a leafwise map if and only if f* : T(V) —• T(V) sends T57" to T57"'. 

Roughly speaking, a leafwise map induces a "continuous map" between the quotient 

spaces of leaves. When the foliations are trivial, a leafwise map / : M xT —> M' x T' 

is given by 

/(m, 0) = (h(m, 0), k(0))9 (m, 0) e M x T, 

where k and h are continous and h is smooth with respect to the first variable. 
An easy example of a leafwise map occurs when / is the quotient of a leafwise map 

/ : M x T —» M' x T' between the two trivial foliations, which is (r, T^-equivariant 
with respect to a group homomorphism a : Y —> V. We shall get back to this example 
more explicitely later on. It is easy to construct a leafwise map between V and V 

which is not the quotient of a (r, F') equivariant leafwise map / . Moreover, if / exists 
then it is not unique: indeed, for example, if S € Z(T) C T is an element in the 
center of T, then the leafwise map fs := f o 5* (where 5* : M x T —• M x T is the 
diffeomorphism induced by the action of 5 on the right), is equivariant with respect 
to the same homomorphism a : T —• T' (because S G Z(r)) and also induces / . 

Given a foliated space (V, £7") in the sense of [38], a subspace W of (V, 57") will 
be called a transversal to the foliation if for any w G W there exists a distinguished 
neighborhood Uw of w in V which is homeomorphic to MP x (Uw fl W). Then one can 
show that the intersection of W with any leaf L of (V, 57") is a discrete subspace of 
L, that is a zero dimensional submanifold of L. Such a transversal is complete if it 
intersects all the leaves. In our example of foliated bundle V = M XpT, any fiber of 
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V —> M is a complete transversal which is in addition compact, and any open subset 

of such fiber is a transversal. 

Definition 6.3. — 1. Let (V, £7") be a foliated space. Two leafwise maps f,g : 

(V, 67) —> (V 7 , 67') ore leafwise homotopic if there exists a leafwise map 

H : (V x [0,1], £7 x [0,1]) -> (V*, £7') *uch too* ff(-,0) = / and # ( • , 1) = g. 

2. Let (V, 67) and (V 7 , 67') 6e £wo foliated spaces. A leafwise map f : (V, 67) —> 

(V 7 , 67') ¿5 a leafwise homotopy equivalence, if there exists a leafwise map g : 

(F , ,67 / ) -+ (F,67) sticft tfia* 

— g o f is leafwise homotopic to the identity of (V, 67). 

— / o g is leafwise homotopic to the identity of (V 7 , 67'). 

3. We shall say that the foliations (V, 67) and (V, 67') are (strongly) leafwise ho­

motopy equivalent if there exists a leafwise homotopy equivalence from (V, 67) to 

Note that according to the above definition, the homotopies in (2) are supposed to 

preserve the leaves. 

It is a classical fact that two leafwise homotopy equivalent compact foliated spaces 

(V, 67) and (V 7 , 67') have necessarily the same leaves dimension [10]. Note also that 

each leafwise homotopy equivalence sends a transversal to a transversal. 

Lemma 6.4. — A leafwise homotopy equivalence induces a local homeomorphism be­

tween transversals to the foliations. 

Proof. — See also [10]. Let / be the leafwise homotopy equivalence with homotopy 

inverse g, and denote by h : [0,1] x V —» V the C 0 0 ' 0 homotopy between gf and the 

identity. Let w € V. Let W be an open transversal of (V, 67) through w G W. Take a 

distinguished chart U' in (V 7 , 67;) which is an open neighborhood of f(w) and which 

is homeomorphic to D' x W' for some transversal W' at f(w). Then one finds an 

open distinguished chart U in (V, 67) such that f(U) C U'. Reducing W if necessary 

we can assume that U is homeomorphic to D x W for some disc D. Now, it is clear 

that since / is leafwise, it induces a map / : W —• W'. By the same reasonning, we 

can assume furthermore that g{U') is contained in a distinguished chart U\ in (V, 67), 

homeomorphic to D\ x W\. 

The homotopy h induces a continous map h : W —• W\ and this map (or its 

reduction to a smaller domain) is simply the holonomy of the path t 1—• h(t,w). 

Hence h is locally invertible and it s clear that h~lg is a continuous inverse for / . • 

When V = M Xr T and V = M' x r / T", a particular case of leafwise homotopy 

equivalence is given by the quotient of an equivariant leafwise homotopy equivalence 

between MxT and M' xT'. Recall that a fiberwise smooth map / : MxT —• M' xT' 

£7 x [0,1]) 
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is a continous map which can be written in the form 

/(m, 0) = (ft(m, 0), fc(0)), (m, 0) e M x T, 

with /1 smooth with respect to the first variable. If a : Г —• Г' is a group ho­
momorphism, then the fiberwise map / : M x T —• M' x T' is a-equivariant if 
/ ( (m,0) 7 ) = (/(m,0))a( 7). 

In the following definition we extend the action of Г and Г ' о п М х Т and M' x T' 
to M x [0,1] x T and M' x [0,1] x T' respectively, by declaring the action trivial on 
the [0,1] factor. 

Definition 6.5. — We shall say that f : (V, 57) —> (У',577) ¿5 a special homotopy 

equivalence if there exist continuous maps f : Af x T —• M' xT', g : Mf xT' M xT, 

Я : М х [ 0 , 1 ] х Г -> М х Г , Я ' : M ' x [ 0 , l ] x f -> M ' x f , and group homomorphisms 
a : Г -+ Г , /3 : Г -> Г suc/i tfcot; 

— f, g, H and Hf are fiberwise smooth; 
— f is a-equivariant; g is /3-equivariant; H is Г-equivariant, Hf is V-equivariant; 
- the restriction of H to M x { 0 } x T (resp. of H' to M' x { 0 } x V) is the identity 

map and the restriction of H to M x { 1 } x T (resp. of H' to Mf x { 1 } x V) is 
gof (resp. fog); 

- f : (V, SO -> (V, is induced by f : M x T —> M' x T*. 

If there exists such a special homotopy equivalence, we say that (V, 57) and ( V , 57"') 
are special homotopy equivalent. 

Lemma 6.6. — If the pairs (V, 57") and (У',57 7) are special homotopy equivalent, then 
they are leafwise homotopic equivalent. 

Proof. — The equivariance of H and H' with respect to a and /3, and the trivial 
action on the [0,1] factor, allows to induce leafwise maps H : V x [0,1] —> V and 
H' : V x [0,1] -> V by setting, 

H([m,0]]t) := [H(m,t,0)] and H\[m\#]\t) := [H'(fh\t,ff)\. 

In the same way the maps / and g induce leafwise maps / and g which are leafwise 
homotopy equivalences through the homotopies H and H'. • 

Lemma 6.7. — If f : (V, 57) —• (^,57"') is a special homotopy equivalence induced 
by /(7fi,0) = (/i(m, 0), fc(0)) as in the previous definition, then a : Г —• Г' is an 
isomorphism and к : T —> T' is an equivariant homeomorphism. 

Proof. — Let / and g be equivariant leafwise smooth maps which give a special 
homotopy equivalence as in the above definition. We denote by к and k' the continuous 
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equivariant maps induced by / and g on T and V respectively. So, 

k :T -*T' and k' :T' —> T. 

Since our homotopies send leaves to leaves, the composite maps k' ok and k o k' are 
identity maps. Moreover, if a and /3 are the group homomorphisms corresponding to 
the equivariance property of / and g respectively, then the homotopy H satisfies 

H{{m^e)1) = H{m^e)^oa){1), W e [0,1]. 

Therefore, applying this relation to t = 0, we get /3 o a = idr. The same argument 
gives the relation a o ¡3 = idr' • • 

Remark 6.8. — As already remaked, easy examples show that the foliations (V, 57) 
and (V,57 ' ) can be leafwise homotopy equivalent with non isomorphic groups V and 
V and non homeomorphic spaces T and T'. 

6.2. /^(V, £7) is metric independent. — We fix a continuous leafwise smooth 
Riemannian metric g on (V, F). g is lifted to a T-equivariant leafwise metric g on 
M x T , see [38]. So g = {g(0))eeT, where g{9) is a metric on M x {6} and we 
assume that this structure is transversely continuous and equivariant with respect to 
the action of T. In what follows we shall refer to the bundle of exterior powers of 
the cotangent bundle as the Grassmann bundle. Consider the T-equivariant vector 
bundle E over MxT, obtained by pulling back from V the longitudinal Grassmann 
bundle E of the foliation (V, £7). Assume for the sake of simplicity of signs that the 
dimension of M is 4£ — 1 that is in the notations of Section 4, m = 2£. Consider the 
associated T-equivariant family of signature operators (DQlgn)eET associated with g, 
as defined in Section 4. We denote by Dslgn the longitudinal signature operator on 
(V, 57) associated with the leafwise metric g acting on leafwise 2£ — 1 forms. 

Recall that v is a IMnvariant Borel measure on T. We have defined in Subsection 
5.1 a foliated rho-invariant pu(Dslgn; V, 57). We want to investigate the behavior of 
p̂ (£)sign. y cj^ u n d e r a change of metric and under a leafwise diffeomorphism. First, 
we deal with the invariance of pv with respect to a change of metric. Up to constant, 
we can replace p"(Dslgn\ V, 57), as it is usual, see [3] [16], by the p invariant of the 
foliation (V, 57) defined as: 

p"(V,9-;g) := 
1 

0 r 

poo 

'0 
Tu(Ue-tà) - r£(*de-tA) 

dt 
Vt 

where A and A are the Laplace operators on leafwise 2£ — 1 forms, associated with 
the metrics g and g respectively. 

Proposition 6.9. — Let V, M, T, v and (V, 57) be as above. Let (gu)ue[o,i] be a con­
tinuous leafwise smooth one-parameter family of continuous leafwise smooth metrics 
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on (V,£7). Then 

(23) Pv(V,&Mto) = tr{Vì&-ìg1). 

Proof. — The proof of this proposition in the case where T is reduced to a point was 
first given by J. Cheeger and M. Gromov in [16]. The Cheeger-Gromov proof extends 
to the general case of measured foliations and in particular to the case of foliated 
bundles and we proceed to explain the easy modifications needed for foliated bundles. 
Let DU) for 0 < u < 1, be the leafwise operator on 2£ — 1 leafwise differential forms 
of (V, 57), given by Du = *u o d, where d is the leafwise de Rham operator and * u 

is the leafwise Hodge operator associated with the metric gu. It is easy to see that 
u i—• Tp(Due~tAu) is smooth. Since V is compact, the elliptic estimates along the 
leaves are uniform and we have for instance 

$ ( e " r A o ) C Dom(A u), Vr > 0 and u e [0,1]. 

Here 91 denotes the range of an operator and Dom the domain. Therefore, we can 
follow the steps of the proof in [16] and deduce the fundamental relation 

^l„.0Tj(D.e-« 4 - )=r£ ^(0)de-tA°) + 2i 
au 

1 
dt 

Tg 
du 

{0)de~tAo)) 

Using integration by parts, we then deduce 

VTT • d 

du 
u=0 r 

€ 

Tg (Due-tAu) 
dt 
Vt = 2VÄr^(^(0)de-AAo) - 2 ^ ( £ ( 0 ) d e - A < > ) 

Using the normality of the trace r£ and the spectral decomposition in the type 11^ 
von Neumann algebra W*(V, 57; E), we deduce that 

lim 
A—y + OG 

2VÄr£(^(0)de-AAo) = 0. 

Now, the same estimates are as well valid in the type IIqo von Neumann algebra 
W*{G\E) with the normal trace rv. Hence, we are reduced to comparing the limits 
as e —> 0 of the difference 

2^lrv

9 Ä 0 ) d e - e A ° ) - 2 V ^ T ' A o ) d e - e A ° ) . 
du du 

Replacing the heat operators by corresponding parametrices which are localized near 
the units V, in the two groupoids involved, see for instance [17], the limit of the two 
terms in the above difference is proved to be the same by classical arguments, which 
finishes the proof. • 

According to the previous proposition we can now denote by py(V, 57) the signature 
rho invariant associated to any metric as before. All the leafwise maps considered 
in the rest of the paper are assumed to respect the orientations. 
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If we are now given a leafwise smooth homeomorphism / : V —• V7, then we 
can transport the leafwise metric g from V to f*g on V and form the correspond­
ing signature operator Dslgn' along the leaves of (V7, £7"') and also the Г-equivariant 
signature operator Dslgnf = (£) s is n 'в,)е>еТг corresponding to the lifted Г-invariant 
metric. Finally, the Г-invariant measure v on T, yields a holonomy invariant trans­
verse measure k(v) on the foliation (V, £7"). The leafwise smooth homeomorphism / 
sends transversals to transversals and allows to transport the measure A(v) into a 
holonomy invariant transverse measure f*A(v) on (V7, ST7). Such a measure yields by 
restriction to a fiber a Г'-invariant measure v' on T' so that /*A(z/) = A(i/). More 
precisely, a fiber V7 ,̂ of the fibration V —> M' is a transversal to the foliation £7"' and 
hence the holonomy invariant transverse measure /*A(i/) restricts to a measure on 
V^,. On the other hand, by fixing m'0 with [ra0] = we get an identification of Уш, 
with the space T'. It is an easy exercise to check that the corresponding mesure on X" 
through this identification is Г'-invariant and that the associated holonomy invariant 
transverse measure on the foliation (V7, £7"') is precisely /*A(z/). 

Proposition 6.10. — With the above notations, we have the following equalities for the 
eta invariants associated with the two signature operators Dslgn and Dslgn': 

^ o w n ( D s i « n ) = ^ o w „ ( ^ S i g n ' ) and < p ( D s i ^ ) = < ; ( D s i ^ ' ) -

Proof. — Let us prove, for example, the second equality (the first one will be ob­
tained in a similar way). Let W be the regular von Neumann algebra associated to 
(V, £7"), the vertical Grassmann bundle E and g. Let r be the trace defined by g 
and v and let W' and r7 be the corresponding objects, associated to ( V 7 ^ ' ) , f*g 
and the transported measure v' under the leafwise smooth homeomorphism / . The 
leafwise smooth homeomorphism / lifts to a leafwise smooth homeomorphism / be­
tween the monodromy groupoids G and G'. More precisely, for any x G V f lifts to a 
diffeomorphism fx : Gx —• G'j^ which induces, by the pull-back of forms, a unitary 
Ux between the spaces of L2-forms. Recall that the metric on (V7, £77) is f*g. The 
signature operator on G'j^ associated with the metric f*g is easily identified with 
the push-forward operator under / , that is the conjugation of the signature operator 
on Gx by the unitary Ux. Hence the functional calculus of 7 5 s l g n / ( : c ) is a l s o the con­
jugation of the functional calculus of Z ) | l g n by Ux. So, in particular, for any x G V 
we have 

m f ; / e x p ( - i ( ^ f x y ) 2 ) = UxDi^eM-t{D^a)2)U-\ 

Now, by definition of the trace r' associated with the image measure v1, one easily 

shows that 

T 'iU^expi-tiD^) 2)^ 1) = r(Ds^exp(-t(D^)2)). 
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Therefore, the /*A(z/) measured eta invariant of the G'-invariant family (Dslgn 'x,)x'ev' 
as defined by Peric in [43] coincides with the k(v) measured eta invariant of the G-
invariant family (Dx

lgn)xev On the other hand and as we already observed, these 
Peric measured eta invariants coincide with ours for the r'-invariant and T-invariant 
families of signature operators on Mf x T' and MxT respectively. Hence the proof 
is complete. • 

Corollary 6.11. — Let (V, 57, v) and (V', £7"', v') be two foliated bundles as above 
and assume that there exists a leafwise smooth homeomorphism between (V, 57) and 
(V, 57') such that f*v = v'. Then 

7Tav :$*-*w:(V,!?;E). 

Proof. — We use the two previous propositions. The first one allows to compute 
p"(V, 57) using any metric g. Then we apply the same proposition to pf*u(V,57') 
and compute it using the image metric f*g. Finally, the second proposition allows to 
finish the proof. • 

7. Loops, determinants and Bott periodicity 

As before, let S m be the maximal G*-algebra of the groupoid T x T; let Sm be 
the Sm-Hilbert module considered in the previous sections. Thus Sm is obtained 
by completion of the Hc-Module G£°(M xT,E). Let 0 m be the regular unbounded 
$m-linear operator induced by a T-equivariant family of Dirac operators. Let 

^^nrn(Sm) := {A e &&m(6m) such that A-lde ^Um^&m) and A is invertible}. 

Let n ( y ^ ^ m (Sm)) be the space of homotopy classes of loops in ^^s m (<5 m ) which 
contain the identity operator. Then, using the inverse of the Bott isomorphism 
p-1 : n(j/Xnm(8m)) - K0(X&m(6m)), the isomorphism (x"1). : KQ{Xnm{&m)) -
Ko(^Bm) induced by Xm • 2>m ~* -̂ $m(<S™)> and the inverse of the Morita isomor­
phism Mm • ^ o ( S m ) —• i^o(^ m ) of Proposition 2.10, we obtain an isomorphism 

7rreS:C-WC (G;E).7rreS(G;E) 7Tav :$*-*w:(V,!?;E). 

We denote by 0 : Q(Jf$C$m((?m)) —> Ko(ffim) the composition of these isomorphisms. 
Recall the representations 

7 r r e S : C - W C (G;E). 7Tav :$*-*w:(V,!?;E). 

Given a morphism a between two C*-algebras, we denote, with obvious abuse of 
notation, by Qa the induced map on homotopy classes of loops. We thus obtain maps 
ft7rres, ft*™, ^7rav; we define 

: QiJXnJSm)) - n(JX(W:(G;E))) ; 
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Oav : A(JKqm(Em)) - > A(JK(Wv*(V,F;E))) 

with 

crav := fÎ7Tav o íív-1. crav := fÎ7Tav o í í v - 1 . 

Recall, finally, that if £ is a loop in JL1(W*(V, ¿7; E)), or more generally in 
J^C(W*(V, &\E)), then £ has a well defined (log-)determinant w%{l) G C. Similarly, 
if I is a loop in ^(WZiGiE)), or more generally in JX(W*(G;E)), then * has a 
well defined (log-)determinant wuU) G C. 

Proposition 7.1. — The following diagram commutes: 

A(JKqm (Em)) 0 ^o(Sm) 

n(JX(W;(V,2-;E)) 
wg 

Tav,* 

Similarly, the following diagram commutes: 

A(JKqm (Em)) 
^o(ßm) 

av,* 
wg n(JX(W;(V,2-;E)) 

crreg 

Proof. — Recall that for a C*-algebra 4̂ the (inverse of the) Bott isomorphism ¡3 : 
K0(A) —> Ki(SA) is given by the map [p] —• [(exp(27ri£p)]; as there will be several 
C*-algebras involved, we denote this map by (3A- We observe that 

BBem o (X-1m)=<JiXnm(6m) o/?^m((Sm)) 

Therefore, 

= «*av o nCx"1). o <JiXnm(6m) o/?^m((Sm)) = « * a v o nCx"1). o <JiXnm(6m) o / ? ^ m ( ( S m ) ) 

= Птг^оПГу-1), 

av 

On the other hand, by definition of fhrav, 

fÎ7TaV O /Î̂ JS = (3x(Wj(V,&;E)) ° ^ÎVÏ 

therefore 

WpOÌÌTT™ O-ßßE = oßx(W*(Vigr.E)) OTT™ 

= т9 О TT* 

' av,* 
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where r^v is the trace on 2 ^ as defined in Subsection 2.4 and with the equality 
w&-°Px(wz(v,sr;E)) — T<? proved by direct computation. To finish the proof we simply 
apply Proposition 2.10. • 

Definition 7.2. — We shall denote by 

< v : f i ( ^ 8 m ( £ r o ) ) ^ C and < e g : í X ^ a m ( < S m ) ) - + C 

the compositions w^o <jav and wu o o~reg respectively. 

We can summarize the previous proposition by the following two equations 

(24) <v = С , . 0 в , wu = TV o 0. 
"'reg 'reg,* w * 

Remark 7.3. — Definition 7.2 can be extended to a path in d^n^iSm) provided the 
two extreme points are mapped by 7rreg o x" 1 and 7rav o xm

x into rv trace class and T£ 
trace class perturbations of the identity respectively. 

8. On the homotopy invariance of rho on foliated bundles 

Before plunging into foliated bundles and the foliated homotopy invariance of the 
signature rho invariant defined in Section 5, we digress briefly and treat a general ori-
entable measured foliation (V, 57). We denote by A the holonomy invariant transverse 
measure. We fix a longitudinal riemannian metric on (V, 57) and we denote by Dslgn 

the associated longitudinal signature operator. Let G be the monodromy groupoid 
associated to (V, 57). Then, as already remarked, Peric has defined in [43] a foliated 
eta invariant rjA(Dslgn), with Dslgn the lift of Dslgn to the monodromy covers, a G-
equivariant operator on G. The work of Peric employs the holonomy groupoid, but is 
is not difficult to see that his arguments apply to the monodromy groupoid as well. 
Ramachandran, on the other hand, has defined in [47] an eta invariant nA(Dslgn) 
using the measurable groupoid defined by the foliation, as we have already observed. 
We infer that the definition of foliated rho invariant is basically present in the lit­
erature. It suffices to define pA(Dsign) := rjA(Dsign) - rjA(Dsign). Assume now that 
G% is torsion-free for any x 6 V, then Connes has defined in [18] a Baum-Connes 
map K*(BG) —> K*(C*eg(V, 7)) which factors through a maximal Baum-Connes map 
with values in the If-theory of the maximal C*-algebra C^ a x(V, 57). Here BG is the 
classifying space of the monodromy groupoid, see [18], page 126. If (V, 57) is equal 
to the foliated bundle V = M XpT, then BG is given by the homotopy quotient 

Xr T, with ET equal to the universal space for Y principal bundles. The Baum-
Connes conjecture states that the Baum-Connes map is an isomorphism. We shall 
make a stronger assumption here, namely that the maximal Baum-Connes map is an 
isomorphism. This is a non trivial assumption and even if it is known to be satisfied 
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for instance for amenable actions, there are examples where it fails to be true. The 
general conjecture one would then like to make goes as follows. 

Let (V7, £7') be another foliation, endowed with a holonomy invariant transverse mea­
sure A' and let / : (V, £7) (V, £7') be a leafwise measure preserving homotopy 
equivalence. 

Conjecture. — If G% is torsion-free for any x G V and K*(BG) —• ^ * ( C ^ a x ( V , £7")) 
is an isomorphism, then pA(Dslgn) = pA (Dslgn/). 

We shall now specialize to foliated bundles. Let Г, T and M be as in the pre­
vious sections. Let V := M х г T and let (V, £7") be the associated foliated bundle. 
We assume the existence of a Г-invariant measure on T; let h(y) be the associated 
holonomy invariant transverse measure on (V, £7). Let D = (Db)bev/^ be a longitu­
dinal Dirac-type operator. Let D = (De)eeT be the associated Г-equivariant family 
of Dirac operators. As already remarked the rho invariant pA^ (D) defined above, is 
indeed equal to our rho invariant pv{D\ V, £7). Assume now that M' is the Г' universal 
covering of a compact manifold M' and let T" be a compact space endowed with a 
continuous action of Г' by homeomorphisms. We consider Mf x T' and the foliated 
bundle V7 := M' х Г ' T'. Let (V7, £7') be the associated foliated space. We assume 
the existence of a Г'-invariant measure v' on T" and we let A(z/) be the associated 
transverse measure on (V7, £7'). Given a measure preserving foliated homotopy equiv­
alence / : V —> V7, we can apply the general conjecture stated above to the invariants 
pA(̂ )(jT)), рл(^ with D and denoting now the signature operators. We obtain 
in this way a conjecture about the homotopy invariance of the signature rho invariant 
pu(V, £7) defined and studied in this paper; we shall deal with the general conjecture 
on foliated spaces in a different paper. In the rest of this section, we shall tackle the 
homotopy invariance of rho for the special homotopy equivalences descending from 
equivariant homotopies / : M x T —> Mf x T' as described in the previous section. 

8.1. The Baum-Connes map for the discrete groupoid T xi Г. — In order to 
tackle the homotopy invariance of our pv (V, £7) we first need to describe in the most 
geometric way the Baum-Connes map relevant to foliated bundles. This subsection 
is thus devoted to recall the definition of the Baum-Connes map with coefficients in 
the Г — С*-algebra C(T) and, more importantly, to give a very geometric description 
of it. There are indeed several definitions available in the literature, with proofs of 
their compatibility sometime missing. The differences are all concentrated in the 
domain and, consequently, in the definition of the application; the target is always 
the same, namely K*(C(T) x r Г) (which is nothing but K*(ffir) in our notation). 
Notice that if T is a point, we also have two different possibilities for the classical 
Baum-Connes map, depending on whether we consider, on the left hand side, the 
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Baum-Douglas definition of K-homology or, instead, Kasparov's definition; although 
the compatibility of the two pictures has been assumed for many years, a complete 
proof only appeared recently, see the paper [6]. Going back to our more general 
situation, we begin with the Baum-Connes-Higson definition [5], which is given is 
terms of Kasparov KK-theory and the intersection product: 

(25) »BCH : Kj{EY\ C(T)) -> Kj{C(T) xv T). 

The group on the left is, by definition, 

\im KK>T{Co{X),C{T)) 

with the direct limit taken over the directed system of all T-compact subset of ET. 
Similarly, there is a maximal Baum-Connes-Higson map: 

(26) VBCH : Kf(ET;C(T)) -> Kj(C{T) *m T). 

Next, we have the original definition of Baum and Connes [4], with the left hand side 
defined in terms of Gysin maps: 

(27) fxBC : Ki(T,T) - Kj(C{T) xrT). 

We are not aware of a published proof of the compatibility of these two maps. 
There is a third description of the Baum-Connes map with coefficients in C(T): con­
sider as set of cycles the (isomorphism classes of) pairs (X, E —> X x T) where X is 
a spinc proper T-manifold and E is a T-equivariant vector bundle on X x T; define 
the usual Baum-Douglas equivalence relation on these cycles, bordism, direct sum 
and bundle modification; we obtain a group that we denote by i f | e o ( T x T) with 
j = dim M mod 2. The Baum-Connes map in this case is denoted 

(28) M* : Kfeo(T хГ) - » Kj(C(T) xir Г) 

and is very simply described as the map that associates to [X, E —• X x T] the index 
class of the T-equivariant family (De)eeT-, with DQ the spinc Dirac operator on X 
twisted by E\Xx ,0y. Also in this case we have a maximal version of the map: 

(29) M* : Kf°{T x r) - K^CiT) xm T). 

Thanks to the Ph.D. thesis of Jeff Raven [48] it is now established that the two 
groups Kj(ET] C(T)) and Kjeo(T x T) are isomorphic and the two pairs of maps 
(25), (28) and (26), (29) are compatible; the proof of Raven's isomorphism is far from 
being trivial. Notice that, as in [29], we can consider orientable manifolds instead of 
spinc manifolds; thus the set of cycles for this version of Raven's group is given by 
pairs (X, E —• X x T) with X an orientable proper riemannian T-manifold and E a 
T-equivariant vector bundle on X x T endowed with an equivariant Clifford-module 
structure with respect to the Clifford algebra bundle of T*X. Introduce on these 
cycles the equivalence relation given by bordism, direct sum and bundle modification 
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as in [29] (Subsection 2.2, pages 59 and 60). The resulting group will be isomorphic 
to Kjeo(T x T) and the resulting Baum-Connes map will be compatible. In the rest 
of this work we look at the stability properties of our foliated rho-invariant for the 
signature operator under a bijectivity hypothesis on the map (29). However, in order 
to exhibit examples we do need to use the compatibility between (26) and (29) ; indeed 
almost all examples where the Baum-Connes assumption is satisfied are proved using 
the Baum-Connes-Higson description. 

8.2. Homotopy invariance of pv(V, ¿7) for special homotopy equivalences. 
— We can state the main result of this section as follows: 

Theorem 8.1. — Let V := M x r T and V := M' x r / V be two foliated flat bundles, 

with T and V discrete torsion-free groups^. Assume that there exists a special 
leafwise homotopy equivalence f : (V, 57) —> (V', 57') and letk :T —>T' be the induced 

equivariant homeomorphism . Let v' be a V-invariant measure on T'; let v := k*v' 

be the corresponding T-invariant measure on T. Assume that the Baum-Connes map 

(28) for the maximal C*-algebra 

^ : Kf°{T x Г) —• K*(C(T) x m a x Г) 

is bijective. Then 

(30) p"(V,£7) = pv'{V',<7'). 

Remark 8.2. — This theorem has been extended by Benameur and Roy to поп special 
leafwise homotopy equivalences in [7]. The main ingredient is the use of an appropriate 
Hilbert bimodule associated with the equivalence. 

Sketch of the proof. — We follow the method of Keswani, see [30], [31] and [29]. We 
simply denote the relevant signature operators by D' = (D'L,)L>eVI/у, Df = (D'e)oeT, 
Ф'ш and D = (DL)LeV/9, D = фв)вет, %>m- We shall first assume that T = T' 
and Г = Г'. Consider, with obvious notation, the trivial Г-equivariant fibration 
(M' U -M) x Г Г as well as the foliated space (X, 57u), with X := V U (-V) and 
57u induced by £7 and £7;. The longitudinal Grassmann bundles on V and — V define 
a longitudinally smooth bundle H over the foliated space X. Let H be the equivariant 
vector bundle on (Mf U —M) xT —• T obtained by pulling back the bundle H. All 
the constructions explained in the previous sections extend to (M' U —M) x T —> T 

and H as well as to (X, 57u) and H. More precisely, we treat (Mf U —M) x {9} as the 
leaf of the product foliation even if it is not connected and we consider the induced 
lamination 57u. So the leaves are not connected for us. Clearly, we can define the 

(4) The assumption on T and V can be replaced by the weaker assumption that the isotropy groups 
are torsion-free, as can be checked in the proof. 
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C*-algebra 2 ^ as the completion of the convolution algebra of compactly supported 
continuous sections over the corresponding monodromy groupoid Gu, with respect to 
the direct sum of the regular representations in L2(M'\E') 0 L2(M,E). Note that 
Gu can be identified with the space 

Gu = \(Mf U -M) x (Mf U —M) x Tl/r. 

The reader should note that 2 ^ is different from the C*-algebra of the monodromy 
groupoid of the disjoint union of the two foliations (V, 57') and (V, 57), and that 
25̂  is Morita equivalent to the C*-algebra 22m. Indeed, we then have a well defined 
22m-Hilbert module $£ m (this is nothing but S'm 0 6m) as well as an isomorphism 
Xm ' $m —> (&m) constructed in the same way as in the previous sections. Now, 
there are again representations 

^ r e g = « S W : < - ^ ( G u ; i î ) , 7Tav = (n?)eeT : < - W;{X,VU;H). 

Here, the von Neumann algebras W*(GU]H) and W* (X, 57u; H) are denned using 
^-essentially bounded families over T as in the previous sections, except that the 
operators act on the direct sums of the Hilbert spaces. Said differently, we are again 
simply allowing disconnected leaves. Finally, the previous constructions of traces and 
determinants on foliations, work as well for these two von Neumann algebras. So, 
extending obviously the constructions of Section 7, using the composition operation 
of Hilbert modules, we can consider determinants 

< g : f i ( y ^ S m ( ^ m ) ) ^ C < : i î ( y ^ f â m ( ^ m ) ) ^ C . 

Following the notation of Subsection 5.2, consider the path in d $C ̂ (tU rn) 

WE := (M&m) © №(S>m))- r t=l/e 
t=e 

Consider w^^We) and w^v(cWe) ( o n e can easily show that the determinants of these 
paths are indeed well defined, see Remark 7.3). The proof proceeds along the following 
steps: 

— we connect ^(2)^) 0 (^e(2)m))_1 to the identity using the small time path 
STe. This step is based on the injectivity of the Baum-Connes map and on the 
homotopy invariance of the signature index class; 

— we connect /^1/€(2)^n) 0 (^i / e (2) m )) _ 1 to the identity via the large time path 
LTi/e. This step is based on the surjectivity of the Baum-Connes map, on the 
foliated homotopy invariance of the space of leafwise harmonic forms and on the 
homotopy invariance of the signature index class; 

- we obtain in this way a loop I in </<^$m ( ^ m ) 5 i-e. an element of fi(j/^gm ( & m ) ) ; 
- we prove that w^eg(LTi/e) and w^v(LTi/e) are well defined and that 

(31) < g ( L T l A ) - 0 and < v ( L T 1 / e ) - C as e I 0 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



268 M.-T. BENAMEUR & Р. PIAZZA 

- we prove that (STe) and w^v(STe) are well denned and 

(32) (w"(STe)-w%{STe))^0 as e I 0 

Now consider the map 9 : f$C'nm{&m)) - » Ko(&m)- By the surjectivity of the 
Baum-Connes map one proves, using 9, the following fundamental equality: 

(33) < e g W - ^ a v W = 0 

which means that 

«eg(We) - « £ V ( V £ ) ) + « g ( £ T 1 / e ) - w^(LT1/e) + « g ( S T < ) - w^(STe)) = 0. 

Taking the limit as e j 0, using (31), (32) and recalling that 

Um« e g(<WC) - «£ v (W e ) ) = pv (V, 91) - p»(V, <7) 

we end the proof in the particular case T = T' and Y = Y'. In the general case we 
know that, since we have assumed the special homotopy equivalence, T and T' are 
homeomorphic and that the two groups are isomorphic. Therefore, the above proof 
can be adapted easily. • 

9. Proof of the homotopy invariance for special 
homotopy equivalences: details 

We shall now provide more details for the proof of Theorem 8.1; most of our work 
in the previous sections will go into the proof. We shall work under the additional 
assumption that T = T and Y = Yf. 

9.1. Consequences of surjectivity I: equality of determinants. — The fol­
lowing proposition will play a crucial role in our analysis. Recall that we have de­
fined traces TregjHt : i^o(^m) —• C and r£v^ : iiTo(^m) —• C; where in our notation 
nm:=C(T)xmY. 

Proposition 9.1. — Assume the Baum-Connes map 

M* : Kf°{T m Г) - K0(C(T) x m Г) 

surjective: then 
V _ V 

'reg,* ' av,*' 
Proof. — According to the definition of KQGO(T x Г), we know that each K-theory 
class a G KQ(C(T) xim Г) is, by the surjectivity of ¡1^, the index class associated to a 
Г-equivariant family of Dirac-type operators on manifolds without boundary. Using 
formula (22) (which is a consequence of the analogue of Atiyah's index theorem on 
coverings and the Atiyah-Bott formula), we end the proof. • 
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Proposition 9.2. — If the Baum-Connes map jJJX 

: K^eo(T x T) -> K0(C(T) xim T) is 

surjective, then and w"eg coincide on 0,(^^6^ ( (5 m ) ) . 

Proof. — Recall that w%v : fi(^em((5m)) -> C and < e g : ft(j/^m(5m)) C are 

defined by passing to the respective von Neumann algebras and then taking the de 

La Harpe-Skandalis (log-)determinant there (see Definition 7.2): in formulae 
< v : = t ü " o<7 w, < := wvoo™*. 

Using the commutative diagram of Proposition 7.1, as summarized in formula (24), 

and the equality of traces on K0 given by Proposition 9.1, we immediately conclude 

the proof. • 

Corollary 9.3. — Let V = M x r T and V = M' x r T be two homotopy equivalent 

foliated bundles as in the previous subsection, i.e. through a special homotopy equiva­

lence. Let tHjn — S'm 0 8m be the Um-Hilbert module associated to the disjoint union 

ofM'xT and —(M x T). Let I be a loop in Sl(Jft&m(Mm)). 

If the Baum-Connes map //><, is surjective, then 

(34) WU(l) = WU(l) 
av reg 

If we consider, in particular, the loop I £ Q ( y ^ g m ( ^ m ) ) defined in the sketch of 

the proof of Theorem 8.1, then we have justified formula (33). 

9.2. Consequences of surjectivity II: the large time path. — Let V = Mx^T 

and V = M' Xr T be two homotopy equivalent foliated bundles as in the previous 

subsection, i.e. through a special homotopy equivalence with T = V and T = T'. 

We consider the Cayley transforms of the regular operators 2) m : 6m —> &m and 
qf : g _> g • 

îl~ (2 ) m - i ld) (2) r o + i ld)- 1 , 'U':=(<2)'rn-ild)(0,

m + ild)-\ 

Let / : M x T —> M' x T be a fiberwise smooth equivariant map inducing the special 

homotopy equivalence between (V, £7) and (V',(7')] let g and g be choices for the 

homotopy inverses of / and / , with g : M' xT —> M xT inducing g. This notation 

should not cause any trouble even if the metrics are denoted by the same letters. 

Following [30] (Section 3) one can construct a path of unitaries in = &'m 0 & m , 

V{t),t e [0,2], connecting 2/ 0 IT1 = V(0) to the identity Id# m = V(2). The path 

V(£), t e [0,2] (which is denoted W(£) in [30]) is obtained by defining a perturbation 

a(t) of the grading operator defining the signature operator; the definition of <J(£), 

which is due to Higson and Roe, employs the pull back operator defined by the 

homotopy equivalence g (precomposed and composed respectively with an extension 

to Sm and &'m of the smoothing operators (cj)(De))eeT^ (0(^))6>GT, 0 being a rapidly 

decreasing smooth function with compactly supported Fourier transform). We omit 
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the actual definition of since it is somewhat lengthy and refer instead to [30], 
pages 968-969. 

Recall that our goal is to construct a path connecting ^ 1 / € (2)^ l ) 0 (V>i/e(®m))_1> 

(where ipa(x) = — exp(z7r̂ = J^X e~u^ du), to the identity on c# m . 
To this end, notice that the Cayley transform of the operator 2) m can be expressed 

as — exp(i7rx(2)m)), with 7rx(x) = 2arctan(x). 

Definition 9.4. — [30] A chopping function is an odd continuous function /JL : M —> C 
such that |/i(x)| < 1 and \imx^±OQ ji(x) = ± 1 . 

Both x(x) : = % arctan(x) and <p(x) := ^= fx e~u2du are chopping functions. Two 
chopping functions ii\ and ¡12 can be homotoped one to the other via the straight line 
homotopy ks = (1 — + s//2- Thus W 0 which is equal to — exp(i7r%(2) l̂)) 0 
— exp(—27rx(2)m)), can be joined to 

- exp(z7T0(2)^)) 0 - exp(-i7T0(2)m)), Q(x) = 
2 

VTT F 
/0 

e-u2 du 

via the path ^T(s) := — exp(z7r/cs(2)^)) 0 — exp(—27rA:s(2)m)). We denote by LT 

the concatenation of $C(s) and So LT is a path joining — exp(z7r0(2)^n)) 0 
— exp(—Z7r(/>(2)m)), with = ^= e~w cfax, to the identity. 

Definition 9.5. — Let e > 0 be fixed. The large time path LT\jt is the path obtained 
from the above construction but with the operators 2 ) m and *D'm replaced by ^ 2 ) m and 
\ 2)^ respectively. The large time path connects 

^ 1 / 6 ( C ) ® «Vêt®™))" 1 with ^i/eW = -exp iTT 
2 

VTT 
rx/e 

0 
e~u2du 

to the identity. 

For later use, we notice that 

(35) ^l/e = -exp(z7T01/e) , with Q1/E(x) = 
2 

VTT 

1/E 

'0 
e~u du. 

For each fixed e > 0 LTi/e is a path in drfC&m(&m) ( w e recall that this is the 

group consisting of the operators A G $$m(c#fm) such that A — Id G «#gmC#m) 

and A is invertible). In order to show this property we first recall that at the end 

of Subsection 3.2, Sobolev modules were introduced and the compactness of the 

inclusion Sm &m\ £ > k was stated. Observe then that if x is anv chopping 

function with the property that \' ~ V#2 as \x\ ~~* 00» then, using the compact­

ness of the inclusion of the Sobolev module S^ into & m , one proves easily that 

— exp(i7rx(2)m) G c / ^ ^ m ( ^ m ) . Notice now that both |- arctan(x) and ^= J* e _ u du 

satisfy this condition; thus LTi/e G J$C%m. 
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9.3. The determinants of the large time path. — Recall the isomorphism 

Xm •' $m ~Kttmffirn), and the representations 

7rreg : C - W;(GU; i f ) ; 7rav : < - W;(X, 57u; i f ) , with X = [MU(-M')]x r T. 

Proceeding as in Section 7, we can use x " 1 and 7rreg in order to define a path 
aTeg(LT1/e) in y ^ ( W ; ( G u ; if)). The end-points of this path are rv trace class per­
turbations of the identity; thus, see Remark 7.3, the determinant wv(areg(LTi/e)) is 
well defined and we can set 

< e g ( L T 1 / e ) := w»{o*°*(LT1/e)). 

Similarly, 

< v ( L T 1 / e ) :=<u (a a v (LT 1 / e ) ) 

is well defined (and we recall that £7U is the foliation induced on X by the foliations 
£7" and £7"' on V and V respectively). 

Proposition 9.6. — As e I 0 we have 

(36) < g ( L T 1 / e ) — 0 , < v ( L T 1 / e ) —> 0. 

Proof. — Fix 6 > 0 and recall that LTi/€ is the composition of two paths: the path 
Vi / e , connecting 

-exp(i7rx(^©^))0 -exp(-i7rx(-2)m)) (with x(a?) = 
2 
7T 

arctan(x)) to IdHm, 

and the straight line path «#i/ e, connecting ^i/e(2)™)) © (^i/e(®m))) 1 to 

-exp(27rx(^®D) ® -exp(-27Tx(^2)m)). 

Consider areg(LTi/e) in y^T(W*(Gu; if)); for the signature family P associated to 
M' U ( -M) xT -> T denote by fi := (Üe)0eT the element in W*(GU;H) defined 
by the family of orthogonal projections onto the null space. Then, proceeding as in 
Keswani [30], one can show that cr r e g(LT 1/ e) converges strongly to the path 

(37) Voo(t) 
-ft + N X , te [-1,3/21 

-eft + NX,L t€ [3/2,2] 

with 

e(t) = -
'exp(27rit) 

0 

0 

exp(—2TTÜ) 

More precisely: 0" r e g(^i/ e) converges strongly to the constant path fi-f- fi-1, whereas 

<7 r e g(Vi/c) (is homotopic, with fixed end-points, to a path that) converges strongly 

to Voo(£)- Similarly, if we denote by II G W*(X, Uu\ if) the projection onto the null 
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space of the longitudinal signature operator on X, then crav(LTi/e) converges strongly 
to the path 

(38) Voo(t) = 
- n + u1-, te [-1,3/2] 

-e(t)U + n-1 te [3/2,2]. 

We can now end the proof Recall the function </>i/e(x) := ^= J^E e~u2 du, see 
formula (35); consider the function a(a;) equal to zero for x = 0, equal to 1 for x > 0 
and equal to —1 for x < 0; let a7i/c(£) = (1 — t)4>1je + £a be the straight-line path 
joining </>!/e to a; consider the path 

Xi/e(t) := -exp(i7Tw1/e(t)(D
/) 0 - exp(-inm1/e(t)(D)). 

We notice that as e —» 0, 0i/ e converges pointwise to a. Using once again the spectral 
theorem for unbounded operators this means that, in the strong topology, 

(39) MP) — <*(P) as e | 0 

where we recall that P denotes the signature family on (Mf U (—M)) x T —> T. We 
go back to the path X1/e(t), which is a path in W^(GU; H) joining a r e g (^i / e (2)^)) 0 
(,0i/e(®m)))~1), i.e. ^1/e(D')) 0 (^1/e(D)))~1, to the constant path -ÏT + n-1. Con­
sider the loop 7!/e in W^(Gu;ijT) obtained by the concatenation of Xije(t), Vooit) 
and the reverse of <rTeg(LTi/e). By the above results the loop ryi/e is strongly null 
homotopic, thus its determinant is equal to zero. Summarizing: 

« ;>"*(LT 1 / e ) ) = «/"(KO + « " ( X ^ ) 

which can be rewritten as 

< e g ( L T l A ) = W"( Voo) + «;"(X 1 / e). 

Computing 

Voc(i)"1 
áVoo(í) 

di 

0, t e [-1,3/2] 

(2TH) 
'id 0 

,0 —Id. 
n, t e [3/2,2] 

and recalling that the von Neumann dimension of the null space of the signature 
operator is a foliated homotopy invariant, see [26], we deduce that u;' /(V 0 0(i)) = 0. 
Thus the first part of the proposition will follow from the following result: 

w"(X1/e) —• 0 as e JO. 

(5) Notice that the proof given by Keswani for coverings contains a few imprécisions; the argument 
given here corrects them. 
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However, this is clear from (39) and the normality of the trace, given that, by direct 
computation, 

w (X1/e) = 1 
2ni 

гЧф1/е(Р) - a(P) . 

Essentially the same argument, using the strong convergence of a a v(LT!/ e) to Voo 
(see (38)), shows that < v ( L T 1 / e ) —• 0. • 

9.4. Consequences of injectivity: the small time path. — So far, we have 
connected the t = 1/e endpoint of the path 

WE:= (Wt(D'm)O(Wt(Dm))-1) t=l/e 
2TTi in JtKvJMn) 

to the identity using the large time path LTi/e. We also showed that 

l i m « e g ( L T 1 / e ) - < v ( L T 1 / e ) ) = 0 

We now wish to close up the concatenation of V e and LTi/e to a loop based at 
the identity. This step will be achieved through the small time path STe, a path in 
^yC&mffirn) connecting the t = e end point of cWe to the identity. We shall want to 
ensure that 

(40) l i m « g ( 5 T e ) - < v ( 5 T £ ) ) = 0. 

The existence of a path connecting (^6(2)^) 0 ((0e(2)m))_1) to the identity is in fact 
not difficult and follows from the proof of the Hilsum-Skandalis theorem; what is more 
delicate is the construction of a path satisfying the crucial property (40). It is here 
that the injectivity of the Baum-Connes map is used, as we proceed now to explain 
in more details. 

Let V = M x г T and V = M' x г T be two homotopy equivalent foliated bundles as 
in the previous subsections, with M and M' orient able. We fix leafwise Г-equivariant 
metrics on M x T and M' x T. We denote by D = (De), D = (DL)LeVf^ and Фш  

respectively the Г-equivariant signature family, the longitudinal signature operator on 
(V, £7") and the $m-linear signature operator on the Sm-Hilbert module 6m. We fix 
similar notations for V = Mf XpT and we let as usual ${ш = ёш 0 &ш• We denote 
only in the rest of this paragraph by Л and Л7 the vertical Grassmann bundles on 
M xT and M' x T respectively. Consider the index classes Ind(2)m), Ind(2)^), two 
elements in Ki(Um). By the foliated homotopy invariance of the signature index class 
we know that Ind(2)m) = Ind(2)^). On the other hand, using the very definition of 
the Baum-Connes map we have Ind(2)m) = ^ [M, Л -> M x T] and Ind(2>^) = 
/XxfM'jA' —» M' x T], so that, by the assumed injectivity of /1^ we infer that 

(41) [M, A—> M xT] = [M',A' —> M' x Г] in Kfeo(TxsT). 
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This is the information we want to use. Before stating the main result of this subsec­
tion we give a convenient definition. 

Definition 9.7. — We shall say that a chopping function X is controlled if 

— the derivative of X is a Schwartz function; 
— the Fourier transform of X is supported in [—1,1] ^ ; 
— the functions X2 — 1 wid x(x2 ~~ 1) a r e Schwartz and their Fourier transforms 

are supported in [—1,1]. 

For the existence of such a function, see [40]. 

Theorem 9.8. — If [M, A — M x T] = [M',A' -+ M' x T] in Kfeo(T x T) then 
there exist a T-proper manifold Y, a longitudinally smooth T-equivariant vector bundle 
L —> Y x T and a continuous s-path of T-equivariant families on Y 

BS:=(BS,E)EET « G (0,1) 

such that 

1. for each s G (0,1) and 0 GT, (BS}Q) is a first order elliptic differential operator 

on Y acting on the sections of L\yx{0} 

2. the Hm-Hilbert bundle £m obtained by completing C^°(Y x T, L) contains &r

m 0 
Sm as an orthocomplemented submodule; thus there is an orthogonal decompo­

sition £m = (Sm © Sm) 0 (Sm 0 &m)^ 
3. for any controlled chopping function X the path — ex.p(I7RX($S)) is norm contin­

uous in the space of bounded operators in £m (here, for s G (0,1), $s denotes 
the regular Um-Hnear operator defined by the family (Bs^)eeT)', 

4- we have, in norm topology, 

lim(-exp(z7rx($s))) = Id* 

lim(-exp(i7Tx($s))) = 
s—>0 

( - exp(i7Tx(0'm)) 0 - exp(-i7Tx(®m)) 0 Idj_ 

with Id_L denoting the identity on (Sm © <Sm)±• 
5. -exp(z7Tx($ s))Gy^m. 

Proof. — If [M, A -> M x T] = [M', A'-+M'x T] in Kfeo(T x T), then we know that 
we can pass from (M, A —> M x T) to (M', A ; —> M' x T) through a finite number of 
equivalences. The most delicate one is bordism, so we assume directly that we have a 
manifold X endowed with a proper action of T, a T-equivariant bundle H on X x T, 
a proper T-manifold with boundary Z' and an equivariant vector bundle F' on Z' x T 

(6) Notice that it is impossible to have, as required in [30], that x is smooth and compactly supported 
(since, otherwise, x itself , which is the Fourier transform of x, would be rapidly decreasing and thus 
not a chopping function). 
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such that the boundary of Z' is equal to X and F' restricted to dZ' x T is equal to 
H. Consider the manifold with cylindrical ends, Z, obtained by attaching to Z' a 
cylinder [0, oo) x X; consider the cylinder W = X x R; these are proper T manifolds 
if we extend the action to be trivial in the cylindrical direction; extend bundles to the 
cylindrical parts in the obvious way. The T manifold Y appearing in the statement of 
the theorem is the disjoint union of Z, — Z and W, as in [29]. The bundle L is given 
in terms of H and its extension to the cylindrical parts. The equivariant families Bs, 
s £ (0,1), appearing in the statement of the theorem are explicitly defined (in [29] 
see: the last displayed formula page 70; the last displayed formula page 72; the second 
displayed formula page 76 and the first displayed formula page 77). We shall see an 
example in a moment. The common feature of these operators is that they are Dirac-
type on all of Y but look like an harmonic oscillator along the cylindrical ends. Since 
we have extended the action in a trivial way to the R-direction of the cylindrical 
ends we can decompose the Hilbert module defined on the cylinder (X x R) x T 
as &m(X) 0c L2(M). Using the spectral decomposition of the harmonic oscillator 
we see, as in [29], that there is an orthogonal decomposition of Hilbert modules 
Sm(X x R) = (6m(X x R))' 0- 1 (Sm(X x R))" with (&m(X x R))' equal to the 
tensor product of <§m(X) with the 1-dimensional space generated by the kernel of the 
harmonic oscillator and (6m(X x R))" equal to the tensor product of Sm(X) with 
the orthogonal space to this kernel in L 2(R). In particular, (Sm(X x R))' ~ 6m(X), 
so that the Hilbert module £ m obtained by completing C%°,0(Y x T, H) does contain 
6m(X) as an orthocomplemented submodule. Regarding the statements involving 
the continuity and limiting properties of — exp(¿7r25s), we shall treat only the first of 
the four steps proving Theorem 5.1.10 in [29]. Thus Y is the cylinder X x R and 

Bt ' 0 2>jc 

1>x 0 

1 
+ i 

x dx 

-dx -x 
with te (0,1]. 

The operator $ t restricted to (Sm(X x R))' is precisely 
0 <&x 

®x 0 
Let us consider 

$t restricted to the orthocomplement ((§ m(X x R))" and denote it S ,̂ so that 

Bt = 0 ®x 

®x 0 
Sift-

We can prove the norm-resolvent continuity of *6t (this notion extends to the C*-
algebraic framework) exactly as in [29]; we also obtain that /(5?*) goes to 0 in norm 
as t —• 0 for any rapidly decreasing function / . Using the fact that %2 — Id is indeed 
rapidly decreasing we see that x 2 (^t) ~ Id g ° e s to zero in norm as t —» 0. A similar 
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statement holds for x(^t)(x2(^t) ~ Id). Then, writing as in [30] 

- exp(i7rz) = /г(7г2(1 - z2)) + (шг)д(тг2(1 - z2)) 

with h and g entire, we prove that — exp(z7rx(5?t)) converges in norm to the identity on 
((SmpfxR))", so that — exp(i7rx($t)) converges to (two copies of) — exp(i7r2)x)©Id± 
as t —> 0. Of course, it is not true in this case that — exp(z7rx($t)) converges to the 
identity as t —» 1 but the idea is that there will be further paths of operators in JrfC&m 

with the property that their concatenation will produce the desired path, joining 
— exp(z7T0x) ® Idj_ to the identity up to stabilization. For the bordism relation these 
paths are obtained by adapting to our context, as we have done above, the remaining 
three paths appearing in the treatment of the bordism relation in [29]; see in particular 
the Subsections 5.1.2, 5.1.3, 5.1.4 there. 

Finally, let us comment about cycles that are equivalent through a bundle modifi­
cation. We are thus considering, in general, 

( X , B - > X x T ) ~ (X',E' -> X' x Г) = {X,Ê^>X x T) 

where, as explained for example in [29], X is a sphere bundle S2N —> X ^ X and 
E is the tensor product of (n x Ыт)*(Е) and a certain bundle V built out of the 
Grassmann bundle of X; V is defined originally on X and then extended trivially 
on all of X x T. Consider the two T-families of Dirac-type operators defined by the 
equivariant Clifford modules E —> X x T and E' —» X' xT respectively and denote 
them briefly by P = (Рв)вет and P' = (Рг

е)вет (for this argument we thus forget 
about the tilde). Let <§m and б'ш be the two Hilbert modules associated to these data 
and let Ф and Ф be the regular operators defined by the two families above. Then 
we want to show that there exist 

(i) an orthogonal decomposition of Hilbert modules S'm = &ш Ф &ш; 
(ii) a continuous s-path of Г-equivariant first order differential operators RS := 

(Нарвет, s G [0,2), on 
X with i?o = P' and with regular extensions <$s, s G [0,2); 
(iii) for any controlled chopping function x the path — exp(i7rx(< ŝ)) is norm con­

tinuous in the space of 
bounded operators in 
(iv) (-exp(z7rx($s))) —> (-ехр(г7гх(< )̂)) 0ЪЦ as s —> 2. 
The existence of the s-path RS := (Rsj)eeT, s G [0,2), is proved following the 

arguments in [29], Subsection 5.2: thus we write P' = P° + P1 + Z° where for 
each в G T, P$ is a vertical operator on the fiber bundle S2N —> X ^ X, PQ is a 
horizontal operator defined in terms of PQ and Z# is a 0-th order operator. Define 
RS, for s G [0,1] as RS := P° + P1 + (1 - s)Z° so that R0 = P' as required. Next 
observe, as in [29], that for each в G T the vertical operator PQ has a one-dimensional 
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kernel, when restricted to each sphere of the sphere bundle S2n —> X X; using 
the orthogonal projection onto the null space of these operators on spheres we obtain 
an orthogonal decomposition = 2/0 CU1' with 1l isomorphic to Sm • We can now 
define Rs for s G [1,2); consider R\ and its extension to 8m which is diagonal with 
respect to the orthogonal decomposition. The restriction of 3l\ to %l is, by definition, 

given that fl1 is zero on 2/; using the isomorphism between 2/ and Sm, 0° can 
be connected to 9, since they differ by the extension of a 0-th order operator Z\ (it 
will suffice to consider P° + (s - l)Zx, s G [1,2]). For the restriction of &x = P1 + 0° 
to 2/1" we consider instead the open path 9° + i^fP1, s G [1,2). Summarizing, we 
have defined a continuous s-path of regular operators 9is, s G [0,2). Using the fact 
that (01)2 is strictly positive on 2/1" one can prove the stated continuity properties, 
as well as the crucial fact that (— exp(i7rx (<$$))) —• (— exp(z7rx (#*))) 0ld_L as s —* 2. 
Putting together the above two constructions, the one for the bordism relation and the 
one for the bundle modification relation, one can end the proof of the first four items in 
the statement of the theorem. We finally tackle the property that — exp(27rx($s)) G 
J$C%m. From the fact that x is controlled, it suffices to show that f(^Bs) is in if 
/ is rapidly decreasing; let us see this property for the case of the cylinder considered 
above. With respect to the above decomposition, 

f(Bs) = f ( 0 <&x 
2>x 0 

)©/ ( f fO-

and it suffices to see that is compact. Write = (f(%t)(%t)N) o ( ^ ) ~ N , 
where we recall that t?2 is positive. Since / is rapidly decreasing the first operator is 
bounded; thus we are left with the task of proving that is compact. Recall that 

ft* is the restriction to (<Sm(XxR))" of (2) 2(g)Id 2 X2+^~ 2^ 2), with X = x dx 

Write V&t) N in terms of the heat kernel, using the inverse Mellin transform: 

(C2t)-N l 
(AT-l)! 

poo 
Jo 

e x p ( - ^ 2 ) t i V - 1 ^ . 

Observe that the heat kernel of (® 2 <g> Id 2 X2 + t~2X2) decouples. Using again the 
invertibility of t?2, the properties of the heat kernel of 2)2 and, more importantly, of 
the heat kernel of the harmonic oscillator, it is not difficult to end the proof. • 

Let Xe(x) := x(€X)- Then, up to a harmless stabilization, the above theorem 
allows us to connect (— exp(z7rxe(2)m)) ® — exP(—*7rXe(®m)) to the identity; we de­
note by 7f G d^Umi 7i = (7i(s))se[o,i] the resulting path. Recall, however, that 
our goal is rather to connect (—exp(z7r ê(2) n̂)) 0 — exp(—i7r0e(2)m)) to the identity, 
with 4>e(x) = f*x e~u2du. Take the linear homotopy between the two chopping 
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functions x and (j> and set 

M(t) := t (x(eC) © - x ( e 2 U ) +(!-*) (<^C) ® (x(eC) © -x(e2U)• 

Consider then the path 

7|(t) = -exp(«7rJW(t)). 

Definition 9.9. — The small time path STe is the path obtained by the concatenation 
ofi\ and 7%. 

So STe is a path in J4C&m and connects ̂ (®™)0(^ e(0m)) _ 1 = (-exp(z7r0e(2)^)) 
0 — exp(—i7r0e(2)m)) to the identity. 

9.5. The determinants of the small time path. — Let (X, ¿7), X = Z x r 

T, be a foliated bundle as in the proof of Theorem 9.8. Let L be a continuous 
longitudinally smooth vector bundle on X as in Theorem 9.8 and let £ m be the 
associated Hilbert iSm-module. Let $ m be the maximal C*-algebra associated to the 
groupoid Gz := (Z x Z x T)/Y. Recall the isomorphism Xm ' $ti ~~* ^nrn{£m), and 
the representations 

•K™Z:$L

m^W;{Gz;L); 7rav :<8i^W:(X,&;L) 

Proceeding as in Section 7, we can use Xm1 and 7rreg in order to define a path cr r e g(5T e) 
in J$C(W*(GZ] L)). The end-points of this path are rv trace class perturbations of 
the identity; thus, see Remark 7.3, the determinant wu (crTeg (ST€)) is well defined and 
we can set 

< g ( 5 T , ) := w»(o"*(STe)). 

Similarly, 
< V (5T , ) := w^v(ST€)) 

is well defined. The goal of this subsection is to indicate a proof of the following 

Theorem 9.10. — As e [ 0 we have 

(42) < e g ( 5 T e ) - < v ( 5 T £ ) ^ - - - > 0 . 

Proof. — To simplify the notation we shall assume that the injectivity radius of 
(Me,ge) is greater or equal to 1 for each 9 G T; we also assume that for each 0 G T 
the distance between ra and mj is greater than 1 for each ra G Me and for each 
7 G T(0), 7 / e . We begin by a few preliminary remarks. Recall that STe is the 
concatenation of two paths: j{ and 7|. Using the fundamental Proposition 3.12 we 
observe that 

<7av(7J(t)) = <7av(-exp(i7rX(0t)) = -eXp(inX(Bt)) 

and 
<7av(7J(t)) = <7av(-exp(i7rX(0t)) = -eXp(inX(Bt)) 
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with Bt = ((Bt)L)Lexi'9 the longitudinal differential operator induced by the V-
equivariant family Bt. (Once again, here and before the statement of Theorem 9.10 we 
are using, is a slight extension of the results proved in Section 3, allowing for manifolds 
with cylindrical ends and operators that are modeled like harmonic oscillators along 
the ends). Similarly, up to a harmless stabilization by Id_L (that will in any case 
disappear after taking determinants), we can write 

^ r e g (7 lW) = -expiTT (tX(eP) + (1 - t)<t>(eP)) , 

o-av(l№) = -expi7T(tX(eP) + (1 - t)<j>(eP)) 

where P and P are the signature operators on (Mf U (—M)) x T - ^ T and on (X, S r U) 
respectively (this is the notation we had introduced in the subsection on the large time 
path). One can prove that for j = 1,2 the paths cr r e g(7p and cr a v(7p are all made 
of trace class perturbations of the identity. Moreover, the determinants of these two 
paths are well defined individually and without the regularizing procedure explained 
in Proposition 5.8. We shall justify this claim in a moment. This property granted, 
we can break the proof of (42) into two distinct statements: 

(43) < s ( 7 f ) - i C ( 7 Ï ) — 0 

(44) < e g ( 7 l ) - < v ( 7 l ) — 0 . 

We now tackle (44) which is slightly easier since it involves exclusively operators on 
manifolds without boundary. 
First we observe that to each operator PQ and Pi, we can apply the results of [54], 
[51]. In particular, using the properties of x> which is of controlled type, and cf> we 
have: 

1- x(Pe) and x(PL), are given by 0-th order pseudodifferential operators with 
Schwartz kernel localized in an uniform .R-neighbourhood of the diagonal (re­
member that the Fourier transform of x is compactly supported); we shall as­
sume without loss of generality that R = 1; 

2. <t>(Po) and <P(PL) are each one the sum of a 0-th order pseudodifferential opera­
tors with Schwartz kernel localized in an uniform R = 1-neighbourhood of the 
diagonal and of an integral operator with smooth kernel; 

3. if x denotes the linear chopping function equal to sign(x) for \x\ > 1 and equal 
to x for \x\ < 1 then (x(Pe) - x(Pe))eer and [<j)(Pe) - x(Pe))eer are rv trace 
class elements given by longitudinally smooth kernels (indeed, the differences 
X — X and (f> — x are rapidly decreasing); 

4. similarly, (x(P L) - x(PL))Lex/<7" and (^(P L) - x(PL))L€X/<7u are r£ u trace 
class elements given by uniformly bounded longitudinally smooth kernels; 
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5. consequently, (x(Pe) ~ <t>(Pe))eeT and (x(PL) - 0(^L))LGX /^ u are both trace 
class elements given by longitudinally smooth kernels; indeed it suffices to write 
(x(Pe) - <t>(Pe))eeT = ((x(Pe) - x(Pe))eeT + (x№0 ~ </>&)) eer-

Notice that these properties imply easily the claim we have made about the determi­
nants of <7reg(72) and crav(7|). We go back to our goal, i.e. proving (44). We observe 
that since 7| is defined in terms of a linear homotopy, we have, by direct computation, 

<eg(7l) = - V (x(eP) - ф(еР)) <v(7 | ) = 1 
~2 

r£u (х(еР)-ф(еР)). 

Write 

т" (X(eP) - ф(еР)) = т" ((x(eP) - ф{еР)е) - (ф(еР) - ф(еР)е)) 

with ф(еР)е a compression of ф(еР) to а Г-equivariant б-neighbourhood of 
{(m, m, 0), rh G M, в G T} in M x M x T. Both x(eP) - Ф{еР)е) and 0(eP) - ф(еР)е) 
are individually trace class: indeed the first term is the e-compression of a longi­
tudinally smooth kernel (since x(€P) is already 6-local) and it is therefore rv trace 
class; the second term can be written as the sum (ф(еР) — x(eP)) + (x(eP) ~ Ф(€Р)е) 
and both terms are trace class; thus 

t" (x(eP) - ф(еР)) = т" ((x(eP) - (ф(еР)е) - т» (ф(еР) - ф(еР)£) . 

A similar expression can be written for r^u (x(eP) ~ <Ke^))- Consider now the dif­
ference w%eg(7|) — ^av(7l) which is the sum 

(45) 

(46) 

(т»(Х(еР) - ф(еР)е) - т»и(х(еР) - Ф(еР)с)) + 

(т»(ф(еР) - ф{еР)е) - т£и(ф(еР) - ф(еР)е)) . 

As already remarked the two differences xieP) ~ Ф(еР)е and x(eP) ~ (Ф(еР))е are 
given by longitudinally smooth kernel which are supported in an e-neighbourhood of 
the diagonal. Proceeding as in the proof of Proposition 4.4 we shall now prove that 
т^(х(бР) — ф(еР)е) — т£и (x(eP) — Ф(€Р)е) is in fact equal to zero for e small enough. 
Indeed, consider the Г-equivariant family x ( 6 ^ ) ; w e know that x(eP) € ^c(G, £ ) . 
Similarly, consider ф{еР)е G Ф°(С, E). We know that x(eP) - (ф(еР))€ G ф-°°(С, E) 
and that this operator extends to an element $х,ф G ^$m(^m)- Observe now that 

(К,ф)®КешЫ = Х(еРв)-ф(еРв)е, ( ^ ) ® w r I d = Х(еРв)-ф(еРв with L = Lg. 
Using Theorem 3.19 we thus can write 

r"(X(eP) - ф(еР))е) - r^(x(eP) - ф(еР))е) = <eg(^) - <v(^) 

where we have omitted the isomorphism x m

X • «##mG#m) —• BHm. Taking e small 
enough and proceeding precisely as in the proof of Proposition 4.4 we see that the 
right hand side is equal to zero for e small enough (it is in this last step that we use the 
fact that $х,ф is given by an e-localized smoothing kernel). Finally, the terms in the 
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second summand of (45) are individually zero since they are trace class elements given 
by longitudinally smooth kernels which restrict to zero on the diagonal. Summarizing: 

™reg(72) ~ ^av(7l) = 0 f o r e s m a 1 1 enough. 
We are left with the task of proving that 7J has well defined determinants and that 

(47) l i m < g ( 7 l

í ) - < v ( 7 Í ) = 0. 
e—»0 & 

To this end we begin by writing explicitly the left hand side: 

(48) <eg(7Í) = 
1 

2m Jo 
T' (-exp(-Í7Tx{eBt))) 

d 

dt 
-exp(z7rx(e£ t))) left 

(49) <v(7Í) = 
1 

2ni r 
'ft 

T'g (-exp(-ÍTTx(eBt))) 
dt 

- exp(iirx(eBt))) dt 

provided the right hand sides make sense. To see why the last statement is true, we 
begin by making a general comment on the traces we are using. Remember that the 
two paths of operators Bs and Bs, s G (0,1), are defined on foliated bundles that 
might have as leaves manifolds with cylindrical ends. We define the two relevant von 
Neumann algebras in the obvious way and we define the two traces rv and r£ as we 
did in Subsection 2.4. Needless to say, an arbitrary smoothing operator will not be 
trace class on such a foliation, since its Schwartz kernel might not be integrable in the 
cylindrical direction. (This is the typical situation for the heat kernel associated to a 
Dirac operator which restrict to a R+-invariant operator J¿ + DQ along the cylindrical 
ends.) We now write 

exp(27T2;) = /I(TT2(1 - z2)) + (inz)g(7r2(l - z2)) 

with h and g entire. Recall that x 1S °f controlled type; we shall now see that this 
implies that 1 — X2(Bt) is rv trace class and 1 — X2(Bt) is r£ trace class. Moreover 
these operators are given by longitudinally smooth kernels that are supported within 
a uniform (R = l)-neighbourhood of the diagonal. These statements are clear when 
(M, A - > M x T ) ~ (M', A' —• M' x T) through a bundle modification or a direct sum 
of vector bundles (indeed, from our discussion of the bundle modification relation in 
the proof of Theorem 9.8, it is clear that in this case we remain within the category 
of foliations of compact manifolds without boundary and it suffices to apply [50] 
for the latter property and [22] for the first). If (M,A -* M x T) ~ (M',A' -» 
M' x T) through a bordism, then we use the fact that BQ^ and (Bt)L are again of 
bounded propagation speed and restrict to harmonic oscillators along the cylinders of 
the relevant manifolds with cylindrical ends (this is needed in order to make claims 
about the trace class property). For the trace class property we also make use of the 
results in [22], proceeding as in [29] but using singular numbers instead of eigenvalues. 
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Using exp(i7rz) = h(ir2(l — z2)) + (i/Kz)g(/K2(\ — z2)) we can then conclude, as in [30] 
Lemma 4.1.7, that 

are8(7l<(i)) = -exp(Ì7rX(eBt)) and a a v( 7 l

e(t))^-exp(z7rX(6J5 t)), te [0,1] 

are piecewise continuosly differentiable in the L1 norm and that they both have a 
well defined (log-)determinant, as we had claimed (notice that in the proof of Lemma 
4.1.7 in [30] only the controlled property of x is used). 

Having justified (48) and (49), we next make the following: 

Claim. — There exists polynomials P\,P2 such that, uniformly in s G [0,1], 

(50) \\x(Bs)-x(eBs)\\1<p1(-e) \\x(Bs)-x(eBs)\\1<p2(-). 

Assume the claim; then using the inequality 

ll^llx^ll^llxHBlloo, A g LX(M,T) nM, BeM 

which is valid in any Von Neumann algebra M endowed with a faithful normal trace 
r, one can show, proceeding exactly as in Lemma 4.2.8 of [30], that there exist 
polynomials qi and #2 such that, uniformly in 5 G [0,1], 

(51) | | x 2 ( eB . ) - Id | | i<9 i (^ ) , ||x2(eB.)-Id||i<9i(^), 

We first end the proof of (47) using (51). 
For any entire function f(z) = X}n̂ =o anZn we define [/(2)] at '= J2n=o an^n- Consider 
the entire function h in the decomposition exp(z7rz) = /i(7r2(l — z2)) + (i^z)g{TT2(l — 
z2)). Proceeding as in Lemma 4.2.6 in [30] we show using the first inequality in (51) 
that for each a > 0 there exists an e > 0 and an integer Ne such that 

- \\h(n2(U-x2(eBs))) - [M7r2(Id-x2(eSs)))]Ne||1 < a 
- [ft(7r2(Id — x2(eBs)))]ive is of propagation less than 1. 

Remark here that Ne is in fact fixed by e and, with our conventions, can be set to 
be equal to the integral part of 1/e. Thus the left hand side of the above inequality 
can be thought of as a positive function of e, converging to 0 when e | 0. A similar 
statement can be made for the derivative of h(cBs) with respect to s. Applying the 
same reasoning to the second summand in the decomposition exp(i7rz) = h(n2(l — 
z2)) + (i'Kz)g('K2(\ — z2)) we conclude as in [30] Lemma 4.2.10, that for each a > 0 
there exists an e > 0 and an integer Ne such that 

(52) 
/ 

T' (- exp(-inx{eBt)] 
d 

dt 
{- exp(z7rx(eJ5t)))j dt 

r 
T' ( [ - exp(-mx(e^t))]ive; 

d 

dt 
([- exp(Ì7rx(eBt))]Ne) dt < a. 
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Similarly, using the second inequality in the claim and the second inequality in (51), 
we can prove that for each a > 0 there exists a S > 0 and an integer N$ such that 

(53) I / : 
T'g (-exp(-i7Tx{SBt))) 

d 

dt 
-exp(i7Tx{SBt))) dt 

f 
Jo 

T'g ([- exp(-Ì7rx(SBt))]Ns 

d 

dt 
[- exp(Ì7rx(SBt))]Ns) dt < a. 

Since the left hand sides of the inequalities (52), (53) can be thought of as positive 
functions of e and 5 converging to 0 as e j 0 and S I 0, it is clear that we can ensure the 
existence of a common value, say rj and Nv, for which both inequalities are satisfied. 
Consider again the difference \w"eg(i{) — Wav(7i)l t n a t w e rewrite as \Ae + Be + Ce\ 
with 

Ae :— Wreg7i 
Jo 

T ([ - exp(-i7rx(eJ5T))]A7€ 

d 

dt 
[- exp(Ì7Tx(e£t))];ve)) dt 

Be:= f 
Jo 

T ([- exp(-i7rx(eBt))]Ne 

d 
dt 

[- exp(i7rx(eBt))]N£)j dt 

r 
0 

T ([- exp(-inx(eBt))]Nt 

d 
dt 

[-exp(iTTx(eBt))]Ne))dt 

Be:= 
f T ([- exp(-i7Tx(eBt))]Ne)^([- exp(Ì7rx(eBt))}Ne)j dt - wavYe1 

We know that for each a > 0 there exists a common e such that \Ae\ < a and \Ce\ < a. 
On the other hand, using the fact that [— exp(inx(zBt))]Ne is of propagation equal 
to 1, we can prove, proceeding as in Proposition 4.4, that there exists e such that 
Be = 0. Thus we have proved (47) modulo the claim. 
We shall prove the claim for the particular case of the cylinder; let us prove, for 
example, the first inequality. Consider 

Bt = 
'0 D 
D 0 

1 
+ t 

x dx 

-dx -x, 
with te (0,1]. 

Observe that the left hand side of the first inequality in the claim is nothing but the 
last term in inequality (4.3) in [29]. Proceed now exactly as in the part of the proof 
of Lemma 4.7 in [29] that begins with the inequality (4.3). It is not difficult to realize 
that the proof given there, i.e. the proof of the first inequality in the claim, can be 
easily adapted to our von Neumann context using singular numbers and the results of 
Fack and Kosaki. More precisely, the operator B\ can be diagonalized with respect 
to the eigenfunctions of the operator X 2 , with 

X = 
x dx 

-dx -x 
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The functional calculus of B2 is then reduced to the functional calculus of the operator 

D' + ìXk. with D' = 
D2 0 

0 D2 

and where A& is an eigenvalue of X2 as in [29] . Now the Z^-norm ||x(JE?s) — x(e5s)||i 
is given by the sum over k of L1 -norms in corresponding von Neumann algebras of 
the operator (x — Xe)(D' + A&). By [22], this Z^-norm is expressed in terms of the 
singular numbers iiu

s(D' + \k) = fj,^(D') + Afc. This reduces the estimate to the similar 
estimate of the singular numbers of D' exactly as in [29]. This latter being a leafwise 
elliptic second order differential operator, we can use the estimate iis{D') ~ s2lv 

where p is the dimension of the leaves, see for instance [9]. Hence the proof of the 
first inequality of the claim is completed following the steps of [29]. The proof of the 
second inequality in the claim is similar. Thus we have proved the claim and thus 
(47) in the case of cylinders. For manifolds with cylindrical ends we split the relevant 
statements into purely cylindrical ones and statements on compact foliated bundles, 
as in [29]. We end here our explanation of the proof of (47). The proof of Theorem 
8.1 is now complete. • 
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