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I N F I N I T E DIMENSIONAL O S C I L L A T O R Y I N T E G R A L S 

W I T H P O L Y N O M I A L P H A S E F U N C T I O N AND T H E T R A C E 

F O R M U L A F O R T H E H E A T S E M I G R O U P 

by 

Sergio Albeverio & Sonia Mazzucchi 

It is a special honour and pleasure to dedicate this work 
to Jean-Michel Bismut, as a small sign of gratitude 

for all he has taught us by his inspiring work 

Abstract. — Infinite dimensional oscillatory integrals with a polynomially growing 
phase function with a small parameter e G R + are studied by means of an analytic 
continuation technique, as well as their asymptotic expansion in the limit € J, 0. The 
results are applied to the study of the semiclassical behavior of the trace of the heat 
semigroup with a polynomial potential. 
Résumé (Intégrales oscillantes en dimension infinie avec une phase polynomiale et formule de la 
trace pour le semigroupe de la chaleur) 

Nous étudions les intégrales oscillantes en dimension infinie avec une phase de 
croissance polynomiale à petit paramètre e G 1R+ au moyen d'une technique de pro­
longement analytique. Nous donnons aussi leur développement asymptotique en e 
lorsque e i 0. Nous présentons une application de ces résultats à l'étude du comporte­
ment semiclassique de la trace du noyau de la chaleur avec un potentiel polynomial. 

1. Introduction 

Oscillatory integrals on finite dimensional Hilbert spaces, i.e. expressions of the 
form 

(1) / e-i*Wg(x)dx, 
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18 SERGIO ALBEVERIO & SONIA MAZZUCCHI 

(where $ : R N —• R is the phase function and e € R + a real positive parameter) are a 
classical topic of investigation, having several applications, e.g. in electromagnetism, 
optics and acoustics. They are part of the general theory of Fourier integral operators 
[27, 35]. Particularly interesting is the study of the asymptotic behavior of these 
integrals in the limit e I 0. The generalization of the definition of oscillatory integrals 
to the case where the integration is performed on an infinite dimensional space, in 
particular a space of continuous functions, presents a particular interest in connection 
with applications to quantum theory such as the mathematical realization of Feyn-
man path integrals [1, 7] (see also, e.g. [26, 36] and references therein; applications 
include—besides quantum mechanics—quantum field theory and low dimensional ge­
ometry, see, e.g. [10] and references therein). In the case where the integration is 
performed on such spaces and on general real separable Hilbert spaces, the theory was 
for a long time restricted to oscillatory integrals with phase functions $ which can be 
written as sums of a quadratic form and a bounded function belonging to the class of 
Fourier transforms of complex measures. In [8, 9] these results have been generalized 
to phase functions with quartic polynomial growth. In this paper we consider a gen­
eralization of the oscillatory integral (1) and its infinite dimensional analogue, in the 
case where the imaginary unity i in the exponent is replaced by a complex parameter 
S G C + E { ^ C : Re(*) > 0}: 

(2) I(s) EE Je-i*Wg(x)dx. 

Strictly speaking I(s) has an oscillatory behavior only for s being a pure imaginary 
number. By generalizing the results of [8], we prove (in section 2) a representation 
formula which allows us to compute an infinite dimensional oscillatory integral of the 
form (2), with a phase function $ having an arbitrary even polynomial growth, in 
terms of a Gaussian integral. In the non degenerate case (i.e. when the Hessian 
of the phase function is non degenerate), we compute (in section 3) the asymptotic 
expansion of the integral as e [ 0 in powers of e. In the degenerate case the situation 
is more involved. In section 4 we handle in detail a particular example and apply this 
result to the study of the asymptotic behavior of the trace of the heat semigroup 
Tr[e~^H], t > 0, in the case where H is the essentially self-adjoint operator on 
C£° EE Cg°(R d) c L2(Rd) given on the functions (f> € Cg° by 

(3) I T ^ ) = ( - y A s + V ( x ) ) ^ ) , 

where h > 0 and V is a polynomially growing potential of the form V(x) = \x\2N, 
x G R D , N £ N. This corresponds to exhibiting the detailed behavior of Tr[e~*H], 
t > 0, "near the classical limit". Indeed H can be interpreted as a Schrodinger 
Hamiltonian (in which case ft is the reduced Planck's constant), and consequently 
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19 OSCILLATORY INTEGRALS 

e~%H as a Schrodinger semigroup with imaginary time, i.e. the heat semigroup. In 

recent years a particular interest has been devoted to the study of the trace of the 

heat semigroup and of the corresponding Schrodinger group e~%H, t € R , (related 

to the heat semigroup by analytic continuation in the "time variable" t) and their 

asymptotics in the "semiclassical limit h I 0" (see, e.g., [46], [1, 4, 12] and also 

[16, 17, 18, 20] for related problems). In particular one is interested in the proof 

of a trace formula of Gutzwilier's type, relating the asymptotics of the trace of the 

Schrodinger group and the spectrum of the quantum mechanical energy operator H 

with the classical periodic orbits of the system. Gutzwiller's heuristic trace formula, 

which is a basis of the theory of quantum chaotic systems, is the quantum mechanical 

analogue of Selberg's trace formula, relating the spectrum of the Laplace-Beltrami 

operator on manifolds with constant negative curvature with the periodic geodesies 

(see, e.g., [25] and [3, 4, 12]). 

In the case where the potential V is the sum of an harmonic oscillator part and 

a bounded perturbation Vb that is the Fourier transform of a complex (bounded 

variation) measure on M d, rigorous results on the asymptotics of the trace of the 

Schrodinger group and the heat semigroup have been obtained in [4, 12] by means of 

an infinite dimensional version of the stationary phase method for infinite dimensional 

oscillatory integrals (see [7] for a review of this topic). 

The paper is organized as follows. In section 2 we give the definition and the main 

results on infinite dimensional oscillatory integrals of the form (2) with a polynomial 

phase function 3>, in section 3 we study the asymptotic expansion of the integral in 

the case where the origin is a non degenerate critical point of while in section 4 

we study a degenerate case and apply these results to the asymptotics of Tr[e~%H], 

t > 0, as h I 0. 

2. Infinite dimensional oscillatory integrals 

The present section is devoted to the study of the oscillatory integrals with complex 

parameter s. In the following we shall denote by (j#, ( , ) , || ||) a real separable infinite 

dimensional Hilbert space, s will be a complex number such that Re(s) > 0, g : $( —> C 

a Borel function. 

Let us consider the generalization of the oscillatory integral (1) to the case (2) where 

the imaginary unity i in the exponent is replaced by a complex parameter s £ C + = 

{z e C : Re(*) > 0 } : 

(4) 1(a) = / e-i*Wg(x)dx. 

In the case where 5 is a pure imaginary number, by exploiting the oscillatory behav­

ior of the integrand, the oscillatory integral (4) can still be defined as an improper 
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20 SERGIO ALBEVERIO & SONIA MAZZUCCHI 

Riemann integral even if the (continuous) function g is not summable. In the case 
where the phase function $ is a quadratic form, the integral (4) is called Fresnel in­
tegral We propose here for the general case (4) a modification of the Hormander's 
definition [27], also considered in [5, 23] in connection to the generalization to the 
infinite dimensional case. This modification is as follows: 

Definition 2.1. — Let / : RN —• C be a Borel function, s G C + a complex parameter. 
Let <fi be a subset of the space of the Schwartz test functions S(Rn). If for each (j> G 
such that 0(0) = 1 the integrals 

Is(f,ct>):= / (27rs-1)-n/2e-^x\2f(x)cl>(ôx)dx 

exist for all S > 0 and lim^o h (/, 0) exist and is independent of 0, then this limit 
is called the Fresnel integral of / with parameter s (with respect to the space <̂f of 
regularizing functions) and denoted by 

(5) F3(f) 
8 

Rn 
e-iW2f(x)dx 

By an adaptation of the definition of infinite dimensional oscillatory integrals given 
in [23] it is possible to define the oscillatory integral with parameter s on the Hilbert 
space namely 

(6) 1(8) = 
s 

w 
e-i "XU g(x)dx 

as the limit of a sequence of (suitably normalized) finite dimensional approximations 

[12]. 

Definition 2.2. — A Borel measurable function / : & —> C is called £7S integrable 
if for each sequence {Pn}neN oí projectors onto n-dimensional subspaces of such 
that Pn < Pn+i and Pn —> / strongly as n —• oo (I being the identity operator in 
the finite dimensional approximations of the Fresnel integral of / , with parameter s, 

(7) Fspn(f) = 
0 

PnH 
e-§l|Pn*f fipnx)d{pnx) 

exist (in the sense of definition 2.1) and the limit limn__,.00 57P (g) exists and is inde­
pendent of the sequence {Pn}-
In this case the limit is called the infinite dimensional Fresnel integral of / with 
parameter s and is denoted by 

[Se- i^2f(x)dx. 

f is then said to be integrable (in the sense of Fresnel integrals with parameter s). 
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OSCILLATORY INTEGRALS 21 

The description of the largest class of functions which are integrable in this sense 
is an open problem, even in the finite dimensional case. Clearly it depends on the 
class <fi of the regularizations. The common choice is <fi = S(Rn), [5, 23]. In this case 
[5, 7, 23] the space of integrable functions includes (in finite as well as in infinite 
dimensions) the Presnel class í7(^0> that is the se^ °f functions / : .#—• C that are 
Fourier transforms of complex bounded variation measures on $£\ 

f ( x ) = / e ^ d ^ / í » ) = uf(x) v e r t 

sup^2 \fif(Ei)\ < oo, 
i 

where the supremum is taken over all sequences {Ei} of pairwise disjoint Borel subsets 
of 3£, such that U¿£¿ = 
In fact for any / G it is possible to prove a Parseval type equality that allows to 
compute the infinite dimensional oscillatory integral of / (with purely imaginary pa­
rameter s) in terms of an absolutely convergent integral with respect to the associated 
complex-valued measure ¡if [5, 23]. Indeed given a self-adjoint trace-class operator 
B : $C —> such that (J — B) is invertible, a function / G Í7(<̂ 0> / = /¿/ and a 
positive parameter h G R + , it is possible to prove that the function e~^^x,Bx^ f(x) is 
Fresnel integrable and the corresponding Fresnel integral with parameter s = — i/h is 
given by 

(8) 
r-i/h 

w 
eà№2e-™{x>Bx)ei{x>v)f(x)dx 

= (det(I - B))-1'2 f e-V^+y'V-^'^+vVpfida) 
J M 

where det(J - B) = | det(J - B)\e~ni Ind V~B) is the Fredholm determinant of the 
operator (I — B), \ det(I — B)\ its absolute value and Ind((J — B)) is the number of 
negative eigenvalues of the operator (I — B), counted with their multiplicities. 

Let us also recall, for later use, a known result on infinite dimensional oscillatory 
integrals. 

Let ${ be a Hilbert space with norm | • | and scalar product (•,•). Let also || • || 
be an equivalent norm on ${ with scalar product denoted by (•,•). Let us denote the 
new Hilbert space by ${. Let us assume moreover that 

(£1,2:2) = (xi,x2) + (x1,Tx2), Xi,x2 G 3C 

\\x\\2 = \x\2 + (x,Tx), X G ¿k, 

where T is a self-adjoint trace class operator on ${. The following holds (see [11, 12]): 
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22 SERGIO ALBEVERIO & SONIA MAZZUCCHI 

Theorem 23. — Let f : ${ —» C be a Borel function, f is integrable on ${ (in the 

sense of definition 2 . 2 ) if and only if f is integrable on ${ and in this case 

(9) / e-%W2f(x)dx = det(I + [ e~iW2f(x)dx 

Recently the class of "Fresnel integrable functions" in the sense of definition 2.2 

has been further enlarged. In particular in [9] the Parseval type equality (8) has been 

generalized to the case where $ { is finite dimensional but the phase function is an even 

degree (not necessarily second order) polynomial, while in [8] a corresponding result 

has been proved for infinite dimensional Hilbert spaces and phase functions which are 

the sum of a quadratic and a quartic term. 

Let us also remark that definition 2.2 can be seen as an extension of a line of develop­

ment relating infinite dimensional integrals of probabilistic and oscillatory type, going 

back to Cameron, see, e.g., [19], [37] and corresponding references under "analytic 

approach" in [1, 7]. 

In the following we shall extend these results to infinite dimensional Hilbert spaces 

and suitable polynomial phase functions of higher degrees. The main idea is a gen­

eralization of a Parseval-type equality, obtained by modifying the definition 2.1 by 

restricting the class of regularizing functions to a class <fl of analytic functions. 

Let a G M, in the following Ia will denote the open interval (0, a) if a > 0 and (a, 0) 

if a < 0; Da will denote the sector of the complex z— plane 

Da := {z = \z\e^ G C : \z\ > 0, <p G 

and <¿f a(R n) will denote the space of functions (f> G <^(R n) satisfying the following 

assumptions: 

1. for any x G M n the function 

z I—• (j)(zx), Z G R , x G E N 

can be extended to an analytic function in Da, which is continuous in the closure 

Da of Da. 

2. for any z G Da the map 

x I—• 4>z(x) := (t>(zx), zeC, xeRn 

is bounded. 

Clearly < ^ ( R n ) C <^ a(M n) if a < ß. As an example the function x G R n e-IMI2 i s 

an element of <^' 7 ry 4(R n). 

Given a real separable Hilbert space of with inner product ( , ) and norm 

|| ||, let us consider the abstract Wiener space ( j^ , $) built on where (25, | |) is 
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OSCILLATORY INTEGRALS 23 

the Banach space completion of $ { with respect to the measurable norm | | and 
let fi be the standard Gaussian measure on 25 associate with $ { (see [24, 32] and 
the Appendix of the present paper). $C is sometimes called the reproducing kernel 
Hilbert space of 25. Let us denote by c the norm of the continuous inclusion of $ { in 25. 

Theorem2.4. — Let s,r G C, s = \s\eia and r = \r\ei(5, with a,/? G [-7r/2,7r/2]. Let 
us assume that for any tp belonging to the closure I-a/2 °f I-a/2> the angle (3 + 2N(p 
is included in the interval [—7R/2,TT/2]. 
Let B : $( —> ttt be a trace class symmetric operator such that (I — B) is strictly 
positive. Let V2N • $t —> R be a positive, continuous in the | \-norm and homogeneous 
function of order 2N, i.e. V2N(XX) = ^2NV2N(X), for any A G R, x G !H. Let 
g : ${ —> C satisfy the following assumptions: 

— for any x G ttt the map 

z H-» g(zx), z e R, x ert 

can be extended to a function which is analytic on D_a/2 and continuous in 
D-a/2-

- 3KX > o, 3K2 e (o, l/c2), Vxert 

(10) I g i z x ^ K K ^ e ^ ^ - ^ ^ l Vz G D_a/2 

— the function x i—> ga(x) = g(e %a'2x), x G is continuous in the | • \-norm. 

Then the infinite dimensional oscillatory integral with parameter s and regularizing 
class 9 ^ _ A / 2 of the function f : ${ —> C 

(II) f(x) = ei<x<Bx)-rV™Wg(x), X e $C% 

is well defined and it is given by 

(12) 
S 
h e - i i x , { I - B ) x ) - r V 2 N ( X ) g ( x ) d x = 

<8 

e l ( ^ ß U ) - r r « % M - c , ( | s | - l / 2 w M 

V2N resp. ga being the stochastic extensions of V2N resp. ga to 25. 

Proof. — The right hand side of (12) is well defined, indeed under the assumption 
of | |-norm continuity, the functions V2N and ga can be extended by continuity to 
random variables V2N and ga on 25, which coincide with the stochastic extensions of 
V2N and ga of V2N and ga /i-a.e. (cfr. Appendix, which is based on [24]). Moreover 
for any A G C + and for any increasing sequence of n—dimensional projectors Pn in 
c^T, the family of bounded random variables e~XV2N°Pn(') = e~xv^(') ( p n being the 
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24 SERGIO ALBEVERIO & SONIA MAZZUCCHI 

stochastic extension of Pn to ^converges ¡1—a.e. to e XV2N('\ 
As 5 is symmetric trace class, the quadratic form on ${ x 

x G $C i-> (x, Bar) 

can be extended to a random variable on 25, denoted again by ( • , B • ). Moreover the 
random variable ' ,B ' ) is in (see appendix). The bound (10) for 2 = s-1/2 
extends by continuity to ga : <S —> C and by Fernique's theorem the integral on the 
right hand side of (12) is convergent. 
Let {PN}NEN be a sequence of finite dimensional projection operators on ${ converging 
strongly to the identity as n —• 00. Let (/> G <^_a/2(^n) De a regularizing function. 
For any S > 0 let us consider the regularized finite dimensional approximations 

(13) (27TS-1) - " /2 
PnH 

e-HP~*,V-B)P~X)-TV2N(PnX)g(PnX)ftSPnX)d(PnXyftSPnX)d(PnXy 

For any z € E + the integral (13) is equal to 

(14) 
/ А . п / 2 
^ 27г~' PnH 

e-^(PnX,(I-B)PnX)-rz2NV2N(Pnx)g^pnX>j^zS^^(PnX,(I-B)PnX) 

By the assumptions on the functions </>, g, as well as on the parameters s and r, and by 
Fubini and Morera theorems, the integral (14) is a function of the variable z which is 
analytic in the sector and continuous on -D_a/2, and coincides with the value 
of the integral (13) on R + . By a straightforward application of the reflection principle 
[33] it is a constant function on the whole closed sector D_a/2. In particular for 
z = s-1/2 := |s|-1/2e~iQ;/2, we conclude that 

(27T5-1)-N/2 
Pn& 

c-f(^»*.a-B)^»*>-rv2JV(pn*)p(pnX)0(jpn^d(pnX)0(jpn^d 

= (27r)"n/2 
'pnM 

e - I<Pnz , ( J -B)Pn*) - rS -"V2„(P^Pn*) - rS -"V2„ 

By letting S I 0 and using again the dominated convergence theorem the latter is 
equal to 

lpnM 
e±(PnX,BPnx)-rs-NV2N(Pnx)g(s-l/2p^xj 

e - ! l ! ^ | | 2 

(2tt)"/2 
d(Pnx) 

w 
e±(Pnx,BPnx)-rs NV2N(Pnx)~«^s\-l/2pnX>)d^x>) 

By letting n —> oo and by the dominated convergence theorem the latter converges 
to the right hand side of (12) • 
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OSCILLATORY INTEGRALS 25 

Remark 2.5. — Theorem 2.4 generalizes the results obtained in [8] concerning the 

oscillatory integrals of the form 

(15) [ e^x^eiXV^g(x)dx. 

Indeed the Parseval type equality (12) allows one to compute explicitly infinite di­

mensional oscillatory integrals with polynomial phase of higher degree, provided that 

the parameter s has a non vanishing real part. For instance one can compute infinite 

dimensional oscillatory integrals of the form 

F- ^^eiXV™Wg(x)dx 

with À G M + and a G [-n/N, 0]. 

Remark 2.6. — In the case s G M + , theorem 2.4 relates a Gaussian integral on the 

Banach space B with an integral on its reproducing kernel Hilbert space $ { . 

If the operator (I — B ) : $ { —• $ £ is not strictly positive, formula (12) does not 

hold. In the following we shall generalize the results of theorem 2.4 to the case where 

(I — B ) has non positive eigenvalues, by restricting the class of polynomial phase 

functions V2N-
Given a trace class symmetric operator B : $ ( —• the number of non positive 

eigenvalues of (I — B ) (counted with their multiplicity) is finite. We shall denote 

by the kernel of / — B , by $ { - the subspace of $ { where I — B is negative 

definite, and by the subspace of $C where / — B is positive definite. We have 

= 0 &o © Let us introduce the notation ^Ti = © ^ T 0 , = 

and x G $£ = x\ + X2, with Xi G $£i, i = 1,2. Clearly d i m ( ^ i ) < +oo and this 

fact will be used in the following. Let us denote by (¿#2, $2) the abstract Wiener 

space associated with tKi and by //2 the Gaussian measure on 25 2 associated with J#2 • 

Theorem 2.7. — Let s,r G C , s = \s\eloc and r = \r\ei(3, with a,(3 G [—7R/2,7R/2] . 

Let us assume that for any G I-a/2> ^ e angle (3 + 2Nip is included in the interval 

( - 7 T / 2 , 7 R / 2 ) . 

Let B : $ £ —> ${ be a trace class symmetric operator. Let V^N • № —• K satisfy the 
assumptions of theorem 2.4- Let us assume moreover that there exists a constant K3 
such that for any X\ G ^f\,x2 G №2 one has V2N(XI + x2) - V2N(XI) > K3. Let 
g : ${ —* C satisfy the following assumptions: 

- for any x e & the map 

z I -> g(zx), z G M, x G M 
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26 SERGIO ALBEVERIO & SONIA MAZZUCCHI 

can be extended to a function which is analytic in D_a/2 and continuous in 

D-a/2-
- 3K4,K5,5> o, 3K6 G (o,i/c2), Vxi e r t u x 2 er t2 , Vz e D_a/2: 

(16) \g(z(x1 + z2))| < jft:4|e^5|̂ 1|2 -̂5+ (̂Jft:6|x2|2^2-<x2,Bx2))̂  

— £/ie function x i-» ^a(x) = #(e 2a/2x); # G ¿5 continuous in the \ \-norm. 

Then the infinite dimensional oscillatory integral with parameter s and regularizing 
class 9^_A/2 of the function (11) is well defined and it is given by 

(17) 
s 
H e-i{x^I-B)x)-rV2N{x)g^dx = ^27rj-dim№)/2 

#lX$2 
e-J(a;i,(J-B)xi> 

EI(A;2,JBU;2>-RS- ^ ( x 1 + c , 2 ) - A ^ p l ^ + ^ J ) ^ ^ ) x ^^ 

Proo/. — The proof is completely analogous to the proof of theorem 2.4. Let us con­
sider a sequence {Pn}neN of finite dimensional projection operators on ${2 converging 
strongly to the identity as n —> oo. Because of the conditions on the parameters 
5, r G C, the regularized finite dimensional approximations of the integral 

(27rs_1)"(n+d*m(^l))/2 
L X Pn 3~C 2 

e-i(x1,(I-B)x1)e-i{PnX2,(I-B)PnX2)-rV2N(PnX2+Xl),BPrix2 

g(Pnx2 + xi)(j)(ô(Pnx2 + xi))dxi x d(Pnx2) 

are equal to 

(18) (27r)_dim('*l)/2 
$t l X Pn ?H 2 

e-±(x1,(I-B)x1)e±(PnX2,BPnX2)-rS-NV2N(PnX2+X1))-

g(s-1/2(Pnx2 + x1)) 
e-l\\PnX2\\2 

(2tt)»/2 
ofoi x d(Pnx2) 

= (27r)~dim(^l)/2 
' # 1 X $2 

e-|<a:i,(/-B)x1>EI<Pnx2,JBPnx2)-r5-IVVr2iv(PnX2+x1) 

§a(|5r1/2(Pnx2 + xi))da?i x dn(v2)> 

As by our hypothesis we have the inequality 

\e-i(x1,(I-B)x1)e±(Pnx2,BPrix2)-rs-NV2N(PnX2+x1)~a,BPrix2 (\8\-1'2(PnX2+X1))\ 
< ^4e^5ls_1/2;ril2Ar"5e_i<;z;i'(jr_jB)a;i>~!T*l|sriV cos(/3-̂ v«)̂ iv(̂ i) 

e-\r\\s\-N cos((3-Na)K3e -̂\PnX2\l2 

the dominated convergence theorem can be applied and by letting n —> co the integral 
(18) converges to the right hand side of (17). • 
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Remark 2.8. — In theorem 2.7 the convergence of the integral on the subspace 3£\ is 

due to the fast decreasing behavior of the function e~rs V2N instead of e~^',^I~B^'\ 

as the latter has an exponential growth on fH\. For this reason the assumptions of 

theorem 2.7 include the condition that for any ip G ï-a/2i the angle /3 -f 2N(p is 

included in the open interval ( — 7 r / 2 , 7 r / 2 ) , instead of the closed one (as in theorem 

2.4). On the other hand this restriction allows us to admit a stronger growth of 

the function g on the subspace and to replace condition (10) of theorem 2.4 by 

condition (16). 

3. The asymptotic expansion 

In the following we shall put s := s' = |s' |e Z O ! , r := y , w i t n e G R + and s ' , r ' 

satisfying the assumptions of theorem 2.4, and we shall study the asymptotic behavior 

of the integral 

(19) / (e) := 
r* 

I* 
e - h ( x X i - B ) x ) - r - v M g { x ) d x 

in the limit e | 0. Let us assume the operator B : ${ —» $( be of trace class, 

symmetric and such that I — B > 0 and the functions V2N,9 satisfy the assumptions 

of the theorem 2.4. Let us denote by gs> : 25 —> C the function given by gs'(u) := 

<7 a ( | s ' | - 1 / 2 o;) (ga being the stochastic extension of x i-» g(e~ia/2x), x G Assume 

that gs satisfies the following hypothesis: 

1. Vu; G 25, the function A i—> gs

f(Xu) is 2m—times continuously differentiate in 

A G R . 

2. Vfc = 1 , . . . , 2m, 3 a polynomial Q k in the variables |A| and |u;| such that Vu; G 25, 

V A g R 
dk 

\d\k gA>«>)\x=\ <Qfc(|Â|,M) 

For notational simplicity in the following we shall adopt the short writing 

g(k) (A,w): = dk 

^ . ' ( A " ) | A = X -

The following holds: 

Theorem 3.1. — Under the assumptions above the integral 1(e) admits the following 

asymptotic expansion 

(20) 
m—1 

1(e) = ] T e n C n + 0 ( e m ) 
n = 0 

and the leading term is Cq = det(7 — B) 1 / / 2 #(0 ) . 
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Proof. — By equation (12) the integral 1(e) is equal to 

(21) f e i (^) -r ' s ' - -e^VMgAV-euj )Miü] 
J<Ë 

For any u> € let us consider the function / : R+ —• C, given by 

^)(A,a;)P2m_fc(A,a;)e-^,-^2iV-2^(-)) e G R + 

By expanding /(e) in power series of ŷ e we get 

/(e) = 
2m-1 

n 
CnV? + R2m(\R) 

where 
Cn = 

k,l : k+(2N-2)l=n 

L 
e^(u;'ßa;)|/(2m)(tv^)|(l - tf^dtdßiuj) 

and R2m — (2m-l)! Si /(2m)(V^)(i - *)2m_1*, with 

/ (2 - ) (A) = 
2m 2m! 

fe!(2m-fc)! 
^)(A,a;)P2m_fc(A,a;)e-^,-^2iV-2^(-)) 

and Pfc(A, a;) are polynomials (in A and V(o;)) denned by ^^x=^~r ' s ' Nx™ 2^2N^ = 
Pk(\,u)e-r'S'~Nx2N~2V™("). By substituting into (21) we get 

/ ( 6 ) = 
m—l 

n=0 
Cnen + <#m(e) 

(22) Cn = 
k,l : k+(2N-2)l=2n 

(-r')l8'-Nl 
l\k\ 

/ e ^ B ^ g ^ k \ ^ ) V 2 N ( u ) l d ^ ) 

and 
Rm(E) = Em 

(2m - 1)! B O 
e*<w»Bw>/(2m)(tv )̂(l - t f ^ d t d ^ u j ) . 

By the assumptions on the function the integrals in the formula (22) are well 
denned, as well as the remainder that satisfies the following estimate 

(23) |#m(e)| 
Em 

(2m - 1) Ы Jo 

L 
e^(u;'ßa;)|/(2m)(tv^)|(l - t f^dtdßiuj ) 

Em 
( 2 m - 1)! 1$ Jo 

LEL<«,BA;> 
2m 

fc=0 

2m! 
fc!(2m - fc)! \ 9 {k \ t&u) \ 

|P2m_fc(^,o;)|6-^s,""teiV"1^^(l - t f ^ d t d ^ u ) 

< em [ I ' e*<w'Bw>0>m(*v̂  M)(l - t f ^ d t d ^ u j ) , 
JçB JO 
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where <0m(A, \UJ\) denotes a polynomial in the variables A, \v\ and 

lim / f 1 e^B">0m{tV~e, M)(l - t)2rn-1 dt d (̂uj) < oo. 
*±o J * Jo 

The leading term is given by 

Co =9(0) 
1$ 

e^^Buj)dfx(u) = g(0) det(J - £)~1/2, 

with det(J—B) being the Predholm determinant of the operator I—B (see Appendix). 

Remark 3.2. — Theorem 3.1 allows one to handle the asymptotic behavior of infinite 
dimensional integrals with a complex phase function $ of the form 

*(*) : = - S - ( x , ( I - B ) x ) - r ' V 2 N ( x ) , xe<£. 

It generalizes both the Laplace method (for the study of the asymptotics of integrals 
with real phase functions) and the stationary phase method (for the study of the 
asymptotics of integrals with purely imaginary phase functions). According to theo­
rem 3.1, the only critical point contributing to the asymptotic behavior is the origin 
x = 0. Indeed one can easily verify that the only real stationary point of the phase 
functional is x = 0 and formula (20) is the asymptotic expansion around this critical 
point. 

If the operator (I — B) : $C —• ${ is not strictly positive, the results of theorem 3.1 
are no longer valid. For instance, in the case where (/ — B) has a non trivial kernel, 
the phase function $ : $ { —> C, 

*(*) := -S-(x, (I - B)x) - r'V2N(x) 

has a degenerate critical point in x = 0, i.e. $'(0) = 0 and Ker$"(0) ^ {0} . In 
the case where the negative eigenspace of the operator / — B is not empty, the phase 
function <I> could have critical points xc G $ { different from 0 and the asymptotic 
behavior of the integral should be determined by these critical points. Let us consider 
for instance a factorisable integral of the following form: 

(24) 1(e) := 
'^1X^2 

e-fjXl,(I-B)x1)-fjx2,(I-B)x2)-^V2N(x1)-rLv2N(x2)dxidx2 

where dim^i = 1. By theorem 2.7 1(e) = Ii(e)I2(e), with 

J2(c) = / ê a;2'jBa;2̂ e-r,̂ ,)~iVeN~1̂ 2Jv̂ 2)̂ 2(̂ 2) satisfies the assumptions of theo­

rem 3.1, and i i is of the form I\(e) = JR e^y2~$y2N dy, with a > 0 and A G C+. In 

particular if a = 0, A = 1, then h(e) = e1/2^r%2iV), while if a = 1, A = 1/2N, then 

Ii(e) ~ e"2ivT (where ~ means that the quotient of both sides tends to 1 as e j 0). 
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In the non factorisable case the situation is more involved. Indeed in principle one 

should apply an infinite dimensional version of the saddle point method and analyze 

the behavior of the integral around non real stationary points. Actually a detailed 

treatment of the saddle point method in the case where the dimension of the space 

on which the integral is performed is greater than 1 is still lacking (see however [31]). 

In the following we give an example of the study of the asymptotics of the integral in 

a degenerate (non factorisable case) and apply this result to the study of the trace of 

the heat semigroup with a polynomial potential. 

4. A degenerate case 

Let (c#p,t, ( , ) , J)II) be the Hilbert space 

Jirp,t := { 7 € H1([0,t];Rd) : 7 ( 0 ) -

with inner product 

(71,72) = ( 7i (T)72 ( R ) D R + 
Jo 

l\{r)^2{r)dT. 

The present section is devoted to the study of the asymptotic behavior as e [ 0 of an 

infinite dimensional Fresnel integral (with parameter s/e) of the form 

(25) 7(e) := 
rs/e 

Hp,t 

e - A / 0 7 ( r ) 2

d r - f / ; | 7 ( r ) | - d r 

with N G N, N > 2, and S , R G C + satisfying the assumptions of theorem 2.7. 

Heuristically the integral (25) can be written as " J# ei^^djn, where the phase 

function $ : $£v,t —• R is given by 

(26) *( 7 ) = - r 
2 Jo 

Y ( R ) 2 D R — R f\l{r)\2Ndr 
Jo 

and the asymptotic behavior of 1(e) should be determined by the stationary points 

of the phase functional 3>, i.e. the points such that 

* , ( 7 ) ( 0 ) = 0, V0 G MPìt 

being the Frechet derivative. One can easily verify that the null path 7 = 0 is a 

stationary point of $ and it is degenerate, namely Ker ($" (0 ) ) is not trivial. Indeed 

(27) (*"(O)(0),V> = - « f 4>{T)i>{r)dT := -s(<j>, (I + L)fl>), 

where L is the unique self-adjoint operator on $ { P t t defined by the quadratic form 

(4>,I4) = - [ <Kr)i>(r)dT. 
Jo 
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We easily see that L for any -0 G $£p,t is given by: 

(28) Ltf (t) = 
Jo 

sinh(r — u)tp(u)du — 
1 

( l - e * ) ( l - e - * ) 
/ sinh(r — u)ilj(u)du+ 
'o 

1 
(1 - c*)(l - c-*) 

/ sinh(£ + r — u)i/j(u)du, 
Jo 

The kernel of 7 -f L is given by the solution of the equation 

(29) ^( r ) + 
1 

( l - e * ) ( l - e - * ) 
/ (sinh(t -f* T — u) — sinh(r — u))'il)(u)du+ 

Jo 

+ / sinh(r — u)ip(u)du = 0 

with the periodic condition ip(0) = ip(t). By differentiating (29) twice, it is easy to 

see that if ib satisfies (29) then 

$ { T ) = 0, VTG[0,*], 

so that the only solutions of (29) satisfying the periodic condition ip(0) = ip(t) are 
the constant paths. From (27) the kernel of $"(0) is the d— dimensional subspace: 

«er[*"(0)] = {7 G tfPtt : 7(T) = x Vr G [0,t], x G 

Let us decompose the Hilbert space & p j into the direct sum <rtPit — 1 © rt^i 
where ^ = Xer[*"(0)] and # 2 = ITe r^O) ] - 1 , 7 ( r ) = 71 (r) + 7 2 ( r ) , 71 (r) = 
£ _ 1 Ci(u)du, 72(T) = 7 ( r ) - 7i(r). In particular 

j# 2 = { 7 € # V t t f 7(r)dr = 0}. 
Jo 

As one can easily verify that for any 72 G $C2,71 G $(\ one has 

2̂iv(7i + 72) - V 2 N ( 7 i ) = f h i ( r ) + 7 2 ( r ) \ 2 N d r - A 7 I ( T ) | 2 Ì V < Ì T > 0 , 
Jo 

the assumptions of theorem 2.7 (with g = 1) are satisfied and 

(30) 7(e) = (27r)- d / 2 

B2xH1 
e - i < « . . ^ > - A « w - / . i h i W + « » w i , N * 4 M 2 ( w s ) x dm 

= (27r)- r f/ 2 

B2 x Rd 
e-i<«..^>-A«w-/.ihiW+«»wi,N*4M2(ws) x dm 

where X = rs N and ( ^ 2 , $2) is the abstract Wiener space built on M 2 . 
By putting x := y/ey/t and expanding the term \y/euj2(r) + #| 2 J V we have 

7(e) = 
/27re\-<*/2 

/ e - " l * l 2 " f(x,e)dx, 
'ïïid 
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where 

/(*,€)= / e - ( ^ L - ) + U l ^ 2 ( r ) + , r ^ - M , X , - ) { I / I H ) 

f(x,e)= f е-е«т2,(Л-^)72)е-^^(х,^72)а72 

The asymptotic behavior of / (x , e) as e | 0 can be simply determined by expanding 
the integrand in powers of e. Indeed 

f(x,e)= f е-е«т2,(Л-^)72)е-^^(х,^72)а72 

where Lx : -* ^2 is the unique bounded self adjoint operator determined by the 
quadratic form 

(31) {cj>, { I + Lx)i>) = f 4>{T)i>{T)dT + 2iVA|x|2JV-2 / <j){T)rp(T)dT 
Jo Jo 

+ 4N(N - l)X\x\2N~4 f X<P{T) xip(T)dr, 
Jo 

Ф, ф e $£2 

and one can easily see that LX is given by 

(32) 

LXII>(T) = B I sinh(^ — T)i/j(u)du + 
Jo 

B 

( l - c * ) ( l - c - * ) 
/ sinh(r — u)^(u)du+ 

B 

(1 - e*)(l - e-*) 
/ sinh(t + r — u)\l)(u)du. 

Jo 
B is the dx d matrix denned by 5 := ^42(ar) — ldxd and 

A2(x)^ = 2JVA|a?|2"-2^ + 4N(N - l)X\x\2N-4xiXj, i j = l , . . . ,d. 

Moreover 

(33) ^2JV (» ,VC72) = T |v^72 ( r ) + x|2Ardr - t\x\2N - 2iV|x|2iV-2 
•A) 

/ \fex^2{r)dr 
Jo 

- eN\x\2N~2 f \l{r)\2dr - 2N{N - l)e\x\2N~4 
'o 

/ (x7(r))2dr=:e3/2p(x,e,72) 

(where we have used the fact that J * ^ ( ^ d r = 0 as 72 G #2)1 and for any £,72 we 
have 

(34) lim^(x,e,72) = 
elO 

m 
(N - 3)!3! 

8\x\2N-6 f (xl2(s))3ds+ 
Jo 

+ 2N(N - l)\x\2N~4 f xl2(s)\l2(s)\2ds. 
Jo 
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By expanding e Xel/29(x,e,j2) a r G u n d e = 0: 

(35) 
f(x,E) = f e - è « 7 2 , ( / + I - x ) 7 2 ) e - A c 1 / 2 g ( x , € , 7 2 ) d 7 2 = A(x,e) - Xe1/2f2(x,e), 

where 

/ i ( r r , c ) = / e - ^ ^ 2 ' ( / + L - ) 7 2 ) d 7 2 = det(/ + L c c ) - 1 / 2 

and 

(36) f2(x,e)= [ ^ ( x , 6 , 7 2 ) e - ^ ( ( 7 2 ' ( / + ^ h 2 ) e - w A e l / 2 ^ ^ 2 ^ 7 2 , 

with u G (0,1) . 

For the calculation of the spectrum cr(Lx) of Lx, it is convenient to replace the stan­

dard basis of Rd with an orthonormal basis which diagonalizes the symmetric matrix 

A2(x). By denoting its eigenvalues by a2, i = 1 , . . . , d, it is easy to verify that the 

spectrum of Lx is given by a(Lx) = {Xijn,i = 1 , . . . , d, n = 1 , 2 , . . . } , where 

Ai,n = 
a2i -1 

-I I 47T2Tl2 ' 
1 + 

i = 1 , . . . , d, n = 1 ,2 , . . . 

are eigenvalues of multiplicity 2. By applying Lidskij's theorem [45] and the 

Hadamard factorization theorem (see [47], theorem 8.24) one gets 

det(J + Lx) = 
det cosh(A(x)t)-l ^ 

A2(x)(cosht-l) j for X ̂  0 

( 2 c o s h t - 2 ) " d

; for x = 0 

The next result follows easily by the integral representation (36) of the function f2. 

Lemma 4.1. — / 2 ( 2 , e) is a C°° function of both x G M d and e := y/e G R + . Moreover 

for any x G Rd, / 2 ( ^ , 0 ) = 0 and lim ejo ^ ^ , € g i " / { 2 ^ ' ° ^ = C(#)> where C is a positive 

function of x G M d . 

Proo/. — First of all we have 

(37) / 2 ( 2 , e) = 
'M2 

u \ t \ x \ 2 N 

e 
( \ ~\ Villas V \yfel2{s)+x\2Nds 

g(x,€,^2)e
 2 Jo ' 2 W e e Jo , v w 

_ l - u  
2 

e 
2iV|*| 2 "- 2 f h(s)\2ds+4N(N-l)\x\2N-4 r(x>y(s))2ds) 

0 0 'a72 
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By expressing the infinite dimensional integral on the Hilbert space №2 as an integral 
on the abstract Wiener space {i,$(2, $2) associated with ^2 one gets: 

(38) f2(x,E) = e 
u\t\x\2N e f 5 ( x > c , ( ^ ) c * < ^ ^ > c - ^ / o l ^ W + a B ' a N d ' 

02 
1-u  2 e 

2N\x\2N~2 £ \u;2(s)\2ds+4N(N-l)\x\2N-* £(xu;2(s))2ds) 

where the functions 

u2 ^ g(x,e,u2) 

0J2 »-> (0*2, £0^2) 

Ш2 /t \\fcüJ2(s) -f x\2Nds 
0 

u;2 2N\x\2N'2 
C 

\w2(s)\2ds + 4N(N - l)\x\2N-4 / (xuj2{s))2ds 
'0 

represent the stochastic extensions to $2 of the corresponding functions on <#2- The 
stochastic extensions are well defined because of the regularity of the functions in­
volved. Analogously 

(39) /2(^,6) = I ^(a:,e,o;2)e-i(^2'L^2)e-wAel/2^x'e'u,2)d/i(a;2). 
02 

Representation (38) shows the absolute convergence of the integrals involved, while 
representation (39) shows the regularity of /2 as a function of y/e. 
By a direct computation we obtain 

/2(x,0) = s(ar,0l«2)c-*«Wa-L-Wa>d/I(w2), 

where 

(40) g(x,0,u2) = 

" * 8 | * Г - 6 / 0 W S ) ) 3 d S + 
+2N(N - l) |x|2"-4 J j xcj2(s)\u>2(s)\2ds, 2N>6 

4f*xu)2(s)\u>2(s)\2ds, 2N = 4 

and 

(41) lim 
€10 

/2(A,€) - / 2 ( S , 0 ) 
cl/2 

/ p4(a;2,x)e-^^2'L^2>d/i(a;2)<oo, 
/02 
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where 

(42) gAu)2,x) = 

/0' Ыз)\Ыз 

3|х|2/0' Ыз)\Ыз + 12S¿(xU2(8))*\üb(8)\*d8, 

(?)l*r-4J>2(s) |4<fc 

+4(^)(V)kr-6/0t(^2(S))2|u)2(S)|2dS 

+16(?)l*r-4J>2(s)|4<fc 

2N = 4 

2JV = 6 

2iV > 8. 

By equation (35), the integral 7(e) can be represented as the sum 7(e) = 7i(e) + 
72(e), where 

I1(E) = /2ne\-d/2 
I e~^2Nh(x,e)dx, 
'Rd 

J2(e) = - AE1/2 27T€N-d/2 

I 5 / 
/ e-^l-l2"/2(x,6)cte 

4 —d 4 — d 
Lemma 4.2. — I2(e) = 0(e~^ w ) , as e 10. 
Proof. — By scaling 

(43) 72(e) = -\e1'Hd{2Tr)-d'2edl2N-d'2 
f 
Rd 

e-tx^2Nf2(e^2Nx,e)dx 

= -\td(27r)~d/2ed/2N-d/2+1/2 
Rd 

e-tX(l-u)\x\2N 
02 

~g{eV2Nx,e,u2) 

_i-£ (2N\e1'2Nx\2N~'2 J* \uJ2(s)\2ds+4N(N-l)\e1/2Nx\2N-* f̂ e1'2"xu2{s))2dŝ j 

e-tx^2Nf2(e^2Nx,e)dx 

By the dominated convergence theorem, the definition (33) of the function g, lemma 
4.1 and equation 41 we get: 

(44) lim 
eiO 

h(e) 
3-d 3-d e 2 27V 

• -Xtd(2n)~d/2 
Rd 

tA(l-u)|x|2iV 

/ g{x,0,u2)e^LQUJ2)d^(u2)dx = 0, 
J $2 

where g(x,0,uj2) is given by (40), and 

(45) lim 
ejO 

I2(E) 
4-d 4-d e 2 27V 

-A*d(27rrd/2 / e-tA(l-u)|x|2iV 

/ gt(u2,x)e^2>L°"2Uv{u2)dx<oo, 
H2 

9A(U2, X) being given by (42). 
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Lemma 43. h{e) = € - ^ ( c o s h t - l ) d / 2 2 d / 2 t - d / 2 ^ A - ^ ^ ^ + 0 ( 6 ( 2 - D ) ^ ) 

as e 10. 

Proof. — 

(46) h(e) = 
/2we\-d/2 

Rd 
e ~ W áet(I + Lx)-V2dx 

,2ney*/* f e - ^ x r d e t ( c o ^ A ^ - \ Y 1 / 2 d x 
= JRde àetKA*(x){cosht-l)) 

_ / c o e h t - i y / » /• e - y w - d e t ( ^ ^ * ) - ^ ' ^ d x 
V 27re / jRd V A (x) 

By scaling 

I1(e) = Ct€^r-i f e -^2Ndet 
*Rd 

^coshiAie1^x)t) - V 

A2(e1/2Nx) 

-1/2 
I dx 

^ d d 
/ e-^*l2"det 

c o s h C e ^ " 1 ) / 2 ^ ^ ) - ^ 

e(N-i)/NA2(x) 

-1/2 
dx 

( \ d/2 

with Ct = td[ COS2*~1 ) • Let a2(#), i = 1,....,d be the eigenvalues of the matrix 

A2(z). Then 

Ji(€) = Ctca^ 2 / e-At|x|2^ e 2ÌV H i ^ W 
[li >/«Mh(c(i>r~1)/2J>ra<(»)*) - 1 

-.dx 

= Cte™ 2 
fRd 

e-\t\x\™ 2d/2t-d 

Ui V 1 + ^ ^ ^ 6 ( ^ - 1 ) / ^ a 2 ( x ) t 2 

dx 

= Cte^-Ì2d'2t-d 
Rd 

e~At|*|2" 
n ( > -

£2^iie(JV-1)/Jvaf(x)t2 

(1 + |1c^(Me(W-l)/JVa2(a.)t2)3/2. 

with 0< 6 (0,e(N-1)/2Jvoi(x)<) and & e (0,1). We have 

/i(e) = /i,i(e)+71,2(€), 

where the first term is equal to 

Ihl(e) = e-d^r cosh t—V 

2TT 

d/2 
2d/2 Rd 

e-At|x|2N dx 

j N — 1 cosh t — 1 
2TT 

d̂ 2 2d/2^-d/2N y-d/2h e-At|x|2N dx 
Rd 

= e - ^ c o s h i - i)d/22rf/2f-d/2JVA-d/2JV 
T{d/2N) 
NT(d/2) 
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and the second term is equal to 

Jli2(e) = ( ^ l ^ l \ d ' \ ä , 2 N 2 ä , 2 f е-Л.|х|-
V 2тге / JRd 

m -

(Ci cosh(^€(^-1)/2^ai(g;)t)c(aAr-l)/Ara2^^2yVt2, 
24 

(1 ++ Ci cosh(^€(^-1)/2^ai(g;)t)c(Ar-l)/Ara2^^2yV2, 
12 

- l)dx 

and it satisfies the following relation 
Ji,2(e) _ _ ? _ ( c o s h t - i y / z d/2 

à o e - d ^ i + ^ i _ 24 V 2TT J 
/* e-At |xr Va2(x )dx<oo . • 

By combining lemma 4.2 and 4.3 we get: 

Theorem 4.4. — As e J. 0 £/ie infinite dimensional oscillatory integral 1(e) (25) ftas 
the following asymptotic behavior: 

(47) 1(e) = e~d^(cosht - 1) |d/22<i/2f-d/2JV ̂ -d/2N T(d/2N) 
NT(d/2) 

+ o ( ^ 2 - d ^ ) 

The latter result can be applied to the study of the asymptotic behavior of the 
trace Tr [e~^ ] , t > 0 of the heat semigroup, where H : D(H) C L2(Rd) -+ L2(Rd) is 
the quantum mechanical Hamiltonian given on the dense set of vectors -0 £ S(Rd) by 

(48) Ht/>(x) = 
h2 

2 
A ^ x ) + F(x)^(x), 

with V(x) = \\x\2N, N e N, N > 2, A > 0, x e Rd, N G N. 
It is well known that i f is an essentially self adjoint operator on Co°(Rd) (see [42], 
theorem X.28). i f is a positive operator and is the generator of an analytic semigroup, 
denoted by e~iH, t > 0 (the "heat semigroup" with potential V). Its trace Tr[e~^] 
is well defined as V(x) is smooth and increases at least quadratically at infinity, hence 
the spectrum of H consists of (real positive) eigenvalues An, n G Nd. By a standard 
WKB argument one can deduce that there exists a positive constant a (depending on 
N) with 

liminf -—T- > 0. 
|n|-K» \n\a 

Theorem 4.5. — The trace of the heat semigroup Tr[e~%H], t > 0, forH as in equation 
(48), is given by the infinite dimensional Fresnel integral (with parameter s = 1/h, in 
the sense of definition 2 . 2 ) 

(49) Тг[е-*я1 = (2coshí - 2)-d'2 f e " * £ +Wa<fa-* /0*^"'й(*у 
Np,t 

For h I 0 the following asymptotics holds: 

(50) Trie" И h-d^t-d/2Nx-d/2N T(d/2N) 
2d/2NT(d/2) + o ( i ï 2 - d ^ ) 
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Proof. — The proof of (49) is divided into 3 steps. 
lst Step: By Feynman-Kac formula (see e.g.[45, 46]) T r [ e - ^ ] is given, for t > 0 by: 

(51) Tr[e-*H] = 
dx 

!Rd (27TÍ)d/2 C[O,T] 
e-UV<Vha^+Vhx^>ds>du((a) 

dx 
V (2irt)W C[0,t] 

-XhN-1 f* \a(s)+x\2Nds j v 
e Jo d/i(a) 

where C[0,t] is the space of continuous paths a : [0, t] —• Rd such that a(0) = a(t) and 
is the Brownian bridge probability measure on it (see, e.g. [46] for this concept). 

Let us introduce the Hilbert spaces YQ,* and Ypj of paths, 

{7e / i1 (0 , i ;Rd) : 7(0)=7(*) = 0} 

with norms 

||7||2y0(=|7l= [ \ ( s )2ds . 
Jo 

N I L t = hll = / 7(s)2ds + 
'o 

f l { s f d s . 
Jo 

It is well known that (z, Yb,t, C[o,t]) is an abstract Wiener space. 
First of all (see remark 2.6) the integral in (51) on C[o,t] with respect to the Brownian 
bridge measure can also be written in terms on an infinite dimensional integral (with 
parameter s = 1) on the Hilbert space Yqj (in the sense of definition 2.2): 

C[0,t] 
C-*/Ov^VhaW+Vhx^)^dM(a) = 

'Yo,t 
e - m ' e - i So V(^(«)+V**)*. 

so that 

(52) Tr[e-*H] = 
dx 

rRd (27Tt)d/2, Yo,t 

-XhN-1 f* \a(s)+x\2Nds j v 
e Jo d/i(a) 

2nd Step: By the transformation formula relating infinite dimensional integrals on 
Hilbert spaces with varying norms (theorem 2.3), we get a relation between the inte­
gral on Yo,t and the integral on YPif Indeed 

IMI2 = W2 + (7,T7) 

where T is the unique self-adjoint trace class operator on Yb,t defined by the quadratic 
form 

(7i,3172)= / 7iW72(5)d5. 
Jo 
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Indeed (see [12] for details) rj = T7, 7 G Yb,t if and only if 

(53) 

' r,(s) + 7 (5) = 0, 

< 77(0) = 0 

k v(t) = 0 

5 € [0, t] 

and det(J + T) = (§MfL^ . By inserting this into equation (9) we obtain: 

í e - | l 7 | 2e -* /oy(^s )+^ )dsá7 
JY0 + 

' t 
V sinh t 

d/2' 

Yp,t 

í e-|l7|2e-*/oy(^s)+^)dsá7 
JY0 + 

and by equation (52) 

(54) Tr[e-iH] = 
dx 

lRd (27rsinh¿)d/2 'Yp,t 

c-ill"+E.»""«a/(»7 + Çtfit;i)di7)dj,l 

Srd Step: The final step is a transformation of variable formula for integrals on the 
Hilbert space ^p,t- Yp,t can be regarded as a subspace of £Cv,t and any vector 7 G 3(v,t 
can be written as a sum of a vector 77 G Ypj and a constant in the following way: 

7 (5) = rj(s) + a;, 5 G [0,*], 7 € .Äp.t, V £ lp,t, 2 = 7(0). 

We have to compute a constant Ct such that for integrable functions / 

J#P,t 
e-m\2f(rï)drï = Ct 

Rd 
dx 

Yp,t 
e-i^+*\\2f(rj + x)dn. 

By Pubini theorem 

(55) 
Hp,t 

e-èii7ii2j(7)d7 = 
Yp,t Yp,t 

e-ill^ll'fin + fìdnW 

where Y^t is the space orthogonal to YVyt in &Ptt- One can easily verify 

that Yĵ t is d—dimensional and it is generated by the vectors {vi}i-i,...td, with 

>- / , ; , s G [0,t], êj being the vector of the canonical 
2v2y sinht(cosht—1) / 

basis in Rd. The right hand side of (55) is equal to 
1 

!Rd (2тг)-/2 Y 
Yp,t 

c-ill"+E.»""«a/(»7 + Çtfit;i)di7)dj,l 

where £(s) = ^ ViVi(s), i = 1,..., d. By writing the finite dimensional approximation 

of J e~2ll^+X)i /(77 4- ^2iyiVi)dri, by the formula for the change of variables 
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in finite dimensional integrals and by noting that 

<wj,vi> Hp,t Sji 2 c o s h £ - 2 

/ sinh t 

where Uj G $(Pìt is the vector given by Uj(s) = êj, s G [0,£], we get 

r lÁmíl e - Í J n + ^ y i V i { i 2 f ( v + J^yiVi)dV)dy 

_ / V 2 c o s h í - 2 \ d  

~ ^ Vsinht i 

1 

Rd (2TT)d/2 Hp,t 

e-1/2||n+ E I XIUI||2 F5N+ Exiui)dn ) dx 

so that the constant C t is equal to (^2J™±*z?Y. 
z ^ V V2TT sinh t / 

By combining these results we get equation (49). 

The asymptotic behavior of the trace T r [ e - ^ ] as h | 0 follows by equation (49) and 

theorem 4.4. • 

Remark 4.6. — In [6, 12] the representation (49) is proved for the case where V is a 

quadratic function plus a bounded perturbation (of the type of a Fourier transform of 

a complex measure) by means of a different technique (a Fubini theorem for infinite 

dimensional oscillatory integrals with respect to non-degenerate quadratic forms), 

that cannot be applied in our present case. Indeed the quadratic part of the phase 

function appearing in the integral on the right hand side of (49) can be written as 

/ 7 2 ( s )ds = - ( 7 , 1 , 7 ) , 
Jo 

with L : ${p,t —> &p,t is the operator (28). As we have seen, L is not invertible and 

det L = 0. This fact forbids the application of the Fubini theorem as stated in [6, 12] 
and a direct application of the methods of [6, 12]. 

Remark 4.7. — A representation equivalent to (51) is discussed in [46] for other con­

tinuous potential V with e~v G L1. However the limit h j 0 discussed in [46] is not 

the semiclassical limit we discuss here. To the best of our knowledge our limit for our 

type of polynomially growing potentials has not been rigorously discussed before. In 

addition our result on this problem, besides coming as a direct application of a study 

concerning oscillatory integrals, also provides a method to derive an explicit expan­

sion formula in fractional powers of h in terms of classical orbits (we shall however 

not provide here details on this, our main point was to indicate the method which 

permits us to obtain them). 
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Appendix 
Abstract Wiener spaces 

Let (<#, ( , ) , || ||) be a real real separable Hilbert space. Let v be the finitely addi­
tive cylinder measure on defined by its characteristic functional i>(x) = e'^IMI . 
Let | | be a "measurable" norm on that is | | is such that for every e > 0 there 
exist a finite-dimensional projection P e : & —• such that for all P l P e one has 

!/({*€ #| \P(x)\ > e}) < e, 

where P and Pe are called orthogonal (P J_ P e ) if their ranges are orthogonal in 
(<#, (, ) ) . One can easily verify that | | is weaker than || ||. Denoting by <B the 
completion of $ { in the | |-norm and by i the continuous inclusion of $ { in one can 
prove that // = j / o i - 1 i s a countably additive Gaussian measure on the Borel subsets 
of <B. The triple (i,^f,^) is called an abstract Wiener space (see, e.g., [24, 32]). 
Given y G one can easily verify that the restriction of y to $ { is continuous on 
J^T, so that one can identify 2T as a subset of $C. Moreover 2T is dense in $C and 
we have the dense continuous inclusions ST C $ ( C 25. Each element y G 2T can be 
regarded as a random variable n(y) on ( $ , /x). A direct computation shows that n(y) 
is normally distributed, with covariance \\y\\2. More generally, given 2/1,2/2 G 2?*, one 
has 

/ n{y1)n{y2)dfi = (2/1,2/2). 

The latter result allows the extension to the map n : ${ —> £ 2 (25 , / / ) , because is 
dense in Given an orthogonal projection P in with 

P(x) = 
n 

i=l 
<ei,x>ei 

for some orthonormal e i , . . . , e n G the stochastic extension P of P on $ is well 
defined by 

P(.) = 
n 

2=1 

n(ei)(-)ei. 

Given a function / : . # — • $ 1 , where ( $ 1 , || is another real separable Banach 
space, the stochastic extension / of / to $ exists if the functions / o P : ^ 
converge to / in probability with respect to /x as P converges strongly to the identity 
in $ { . If g : $ —> $ 1 is continuous and / := g\#, then one can prove [24] that the 
stochastic extension of / is well defined and it is equal to g \i—a.e. Moreover for any 
h G $£ the sequence of random variables 

n 

г=1 

hin(ei), hi = (ei, h) 
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converges in £ 2 ( $ , / / ) , and by subsequences // a.e., to the random variable n(h). 
Given a self-adjoint trace class operator B : ${ —> the quadratic form on $ { x ${\ 

x E $( i-> (x, Bx) 

can be extended to a random variable on denoted again by ( • , B • ) . Indeed 
for each increasing sequence of finite dimensional projectors Pn converging strongly 
to the identity, Pn(x) = Y^i=iei{ei^) ({ei} being a CONS in the sequence of 
random variables 

w E B -> 
n 
i,j=1 (e i , J Be j )n(e i )(o;)n(e J )(a;) 

is a Cauchy sequence in /x). By passing if necessary to a subsequence, it con­
verges to ( • , B • ) /i—a.e.. 
Let us assume that the largest eigenvalue of B is strictly less than 1 (or, in other 
words, that ( J — B) is strictly positive). Then one can prove that the random vari­
able g( • ) : = E 2 < ' ' B ' > is /i-summable. Indeed by considering a CONS {e*} made of 
eigenvectors of the operator B, bi being the corresponding eigenvalues, the sequence 
of random variables 

9n : $ -+ C , U fn(u) = еЕГ=1 W»(«*)(")eÌ ЕГ-i bi([n(ei)(ü;)]a

 j 

converges to g(u>) //-a.e., as n —> oo. 
On the other hand one has 

/ gn(u;)dfi(uj) = 
n n e _ I ( l _ 6 I ) X 2 

V2TT 
dxi № - ^ ) ) " 1 / 2 

2=1 

so that / gndn converges, as n —> oo, to (de t (7—i? ) ) - 1 / 2 , where det(J—B) denotes the 
Fredholm determinant of (I — B), which is well defined as B is trace class. Moreover 
0 < gn < 9 n + i for each n . It follows that, as n —> oo, / gnd[i —• J gd\i = (det(7 — 
B))"1/2. By an analogous reasoning one can prove that, for any y e $C, the sequence 
of random variables fn: 

U fn(u) = е Е Г = 1 W » ( « * ) ( " ) e Ì Е Г - i bi([n( e i)(ü;)] a

 j 

where yi = (y,ei), converges //—a.e. as n goes to oo to the random variable / ( • ) = 

c n( i , ) ( . ) e i<••*•> a n d that 

(56) / fndiA [fdiA= (det(I - J B ) ) - V 2 e è ( 2 / , ( / - B ) - 1

2 / ) 

(see [29, 32]). 
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