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WITTEN LAPLACIAN ON A LATTICE SPIN SYSTEM 

by 

Ichiro Shigekawa 

Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday 

Abstract. — We consider an unbounded lattice spin system with a Gibbs measure. 
We introduce the Hodge-Kodaira operator acting on differential forms and give a 
sufficient condition for the positivity of the lowest eigenvalue. 

Résumé (Laplacien de Witten sur un système de spin sur réseau). — Nous considérons un 
réseau de spin muni d'une mesure de Gibbs. Nous introduisons l'opérateur de Hodge-
Kodaira agissant sur les formes différentielles, et nous donnons une condition suffi­
sante pour la positivité de la plus petite valeur propre. 

1. Introduction 

In this paper, we consider the spectral gap problem for a lattice spin system. Here, 
in our case, the single spin space is R and so it is non-compact. This is sometimes 
called an unbounded spin system. 

We consider a model that each spin sits on the lattice Z d , and so the configuration 
space is R z . We suppose that a Gibbs measure is given in M z , which has the 
following formal expression: 

(l . i) v = Z 1 exp -2 J 

i,j€Zd 

(xi-xj)2-2 

iezd 

U(x*) n 
iezd 

dx\ 

Here U is a function of K, called a self potential and i ~ j means that \\i — j\\i = 
Sfc Nfc ~ 3k\ — 1- Under this measure we define the Hodge-Kodaira operator and 

discuss the posit ivity of the lowest eigenvalue of the operator. For unbounded spin 
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116 I. SHIKEGAWA 

systems, the Poincaré inequality, the logarithmic Sobolev inequality and other prop­
erties are well discussed, e.g., Zegarlinski [11], Yoshida [10], etc. In particular, Helffer 
[5, 6, 7, 8] dealt with this problem in connection to the Witten Laplacian. In fact, he 
proved the positivity of the lowest eigenvalue of the Hodge-Kodaira operator acting 
on 1-forms. From this point of view, we generalize his result to any p-forms (p > 1), 
i.e., we will prove that the lowest eigenvalue of the Hodge-Kodaira operator acting on 
p-forms is positive. 

The organization of the paper is as follows. In Section 2, we discuss the Witten 
Laplacian on a finite dimensional space and in Section 3, we summarize differentia] 
forms, the Hodge-Kodaira operator and the Weitzenbock formula, which is crucial in 
the later argument. In Section 4, we give an estimate of spectral gap for 1-dimensiona] 
case. Last in Section 5, we prove the positivity of the lowest eigenvalue of the Hodge-
Kodaira operator. We only consider the finite region case but we give a uniform 
estimate. In fact, it is independent of the choice of region and the boundary condition. 
So the result is valid for the infinite volume case as well. 

2. Witten Laplacian in finite dimension 

We give a quick review of the Witten Laplacian, which we need later. Details 
and related topics can be found in Hellfer [8], Albeverio-Daletskii-Kondratiev [1], 
Elworthy-Rosenberg [4], etc. Simon et al [3] is also a good reference for the super-
symmetry. 

Our interest is in the infinite dimensional case, but we start with the finite dimen­
sional case. Suppose we are given a C2 function $ on R N and define a measure v 
by 

(2.1) v{dx) = Z^e'^dx. 

Here Z = J^N e 2®dx so that v is a probability measure. Define a Dirichlet form £ 

by 

(2.2) SU, 9) = RN 
(V/,Vs)e- 2 *¿z, 

where V = (c?i,..., 9JV), dk = (V/, Vg) stands for the Euclidean inner product. 
We must specify the domain of S. (2.2) is well-defined for / , g e CQ°(RN). SO at 
first, S is defined on CQ°(RN). Let us give an explicit form of the dual operator dj 

of dj in L2(v). To do this, note that 

RN 
djfge 2®dx = -

RN 
fdi(ge-2*)dx = -

RN 
f(dj9 - 2dj$g)e-2*dx, 
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WITTEN LAPLACIAN ON A LATTICE SPIN SYSTEM 117 

which means 

(2.3) д* = -dj + 20,-Ф. 

Here dj is the dual operator of dj in L2[y). 
From this, we can see that the dual operator of V has dense domain and so V is 

closable. Moreover the generator 21 is given by 

(2.4) %1 = -
7 

m = E 
3 

(d2f - 2d^djf) = A / - 2(V$, V/ ) . 

This is valid for / G CQ°(RN). We can show that 21 is essentially self-adjoint and so, 
by taking closure, we may regard 21 as self-adjoint operator. The domain of S is a set 
of all functions / G L2(y) with V / G L2(u;RN). 

We now define a Witten Laplacian. Let J: L2{dx) —> L2(v) be a unitary operator 
defined by 

(2.5) //(*) = e*f. 

Let us obtain a operator Xj which satisfies the following commutative diagram: 

(2.6) 

L2(dx) —*—+ L2{y) 

L2(dx) —!—• L2{u) 

It is not hard to see that 

Xj = e - * d j e * = dj + dj*. 

We denote the dual operator of Xj in L2(dx) by Xj. Here we use the following 
convention. * stands for the dual operator in L2(v) and ~ stands for the dual operator 
in L2(dx), dx being the Lebesgue measure in WN. Xj has the following form: 

Xj = -dj + dj*. 

This is also equal to e ®d*-e®. The operator A associated with the generator 21 = 
— Y^j djdj is computed by 

A = e"*2le* = - e " * 
I 
7 

Э*дЛеф = - I 
7 

I 
7 

(-о,- + о,-Ф)(Л + ЛФ) = I 7 ( ^ + ^ * - ( ö i * ) 2 ) 

= A + A $ - | V $ | 2 . 

Definition 2.1. — A = A + A $ - | V $ | 2 in L2(dx) is called a Witten Laplacian. 
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118 I. SHIKEGAWA 

21 and A are unitarily equivalent to each other but we distinguish them and call A 
as the Witten Laplacian, which is an operator in L2(dx). 

The following commutation relation is easily checked. 

Proposition 2.1. — In L2(iy), we have 

(2.7) 

(2.8) 

(2.9) 

[di,dj]=0, 
[di,d*\ = 2didj$, 
[di,dj]=0, 

Further, in L2(dx), we have 

(2.10) 

(2.11) 

(2.12) 

[Xi, Xi] = о, 

[ХиХД = 2дфФ, 

[х,-Д,-] = о. 

3. Witten Laplacian acting on differential forms 

In Section 2, we have introduced the Witten Laplacian. We now proceed to the 
Witten Laplacian acting on differential forms. 

Let us quickly review the exterior algebra. In the sequel, we will deal with multi­
linear functionals on RN. Let t be a p-linear functional and s be a g-linear functional, 
e.g., t is a functional from R^ x • • • x WN into R which is linear in each coordinate. 

> v ' 
p 

We define p + a-linear functional t 0 s by 
(3.1) t <g> «(Vi, . . . ,Vp, V p + i , . . . ,Vp+q) — t(Vi, . . .iVp)s(vp+iJ . . . , Vp+q). 

t <S> s is called a tensor product. We also define the alternation mapping Ap by 

(3.2) Apt(vi,...,vp) = 1 
p 

creôp 
( S g n a ) * ^ ! ) , . . . , ^ ) ) 

for p-linear functional t. Here & p is the symmetric group of degree p and sgncr stands 
for the signature. If p-linear functional 0 satisfies Ap6 = 6, 6 is called alternating. We 
denote the set of all alternating functionals of degree p by /\P(RN)*. For 6 € /\P(RN)* 

and 7? G WCR1*)** we define their exterior product 6 A rj by 

(3.3) e Arj = (p + qy. 
plqì 

Ap+q(0®ri). 

Taking an orthonormal basis 0 i , . . . ,6N in (R N )* , any element of /\P(RN)* is repre­
sented as a unique linear combination of the following elements 

(3.4) 9tl A---A0ip. 
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WITTEN LAPLACIAN ON A LATTICE SPIN SYSTEM 119 

We define an inner product in /\P(RN)* so that all elements of the form (3.4) become 
an orthonormal basis in /\P(RN)*. 

AP(RN) = RNx f\p(RNy has a structure of vector bundle and a section of AP(RN) 
is called a differential form of degree p. The set of all sections is denoted by r(^4p(M i V)). 
Since the vector bundle ^ ( R ^ ) is trivial, any section can be identified with a mapping 
from R^ into /\P(RN)*. In the sequel, we use this convention. r o o ( A p ( R i v ) ) denotes 
the set of all smooth differential forms and rQ°(Ap(R i V)) denotes the set of all smooth 
differential forms with compact support. 

We introduce some operators in f\p(RN)* as follows. For 0 £ (R N )*, we define 
ext(0): /\P(RN)* — /\P+1(RN)* by 

(3.5) ext(0)(jj = 0 A lu 

and for v e RN, we define int(ö) : /\p(RNy —> /\p~1(RNy by 

(3.6) (int(7j)cj)(7Ji, . . . , 7Jp_i) = W(V, Vu . . . , Vp-l) 

Taking a standard basis {e i , . . . , e^} of RN and its dual basis {61,..., 0^} , we define 
operators a\ (a1)* by 

(3.7) 

(3.8) 

a% = int(e^), 

(a*)* = ext(0*). 

Here we regard a*, (a*)* as operators on an exterior algebra R 0 (RN)* 0 /\2(RN)* 0 
• • • 0 /\N(RNy. They satisfy the following commutation relation: 

(3.9) 

(3.10) 

(3.11) 

[ a \ a ' ] + = 0 , 

[ a \ ( a ' r ] + = «%, 

[(a*)*, («*)•]+=0. 

Here [ , ]+ stands for an anti-commutator, i.e., [a*,aJ']+ = a1 a3 -f a3a1. 
For differential forms, the covariant differentiation V can be defined. More gener­

ally, the covariant differentiation V is defined for tensor fields as follows: 

V* = E 
i 

0l <g> dit. 

Here we remark that the operator is considered in L2(is), i.e., the reference measure 
is v. The dual operator of V in L2(v) is given by 

V*( 
i 

oi ® и) = 
i 

eiti 

and so we have 

V*Vt = Ee*ieit -y£(d*-2di$di)t. 
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120 I. SHIKEGAWA 

For differential forms, we can define the exterior differentiation as follows. Let u 
be a differential form of degree p. Then its exterior derivative is defined by du = 
(p + Vlj and it is written as 

(3.12) d = E 
i 

ext(Qi)ai = E 
i 

a'd*. 

Hence, its dual operator is expressed as 

(3.13) d* = E 
i 

a'd*. 

Using these operators, the Hodge-Kodaira Laplacian is defined as —(dd* + d*d). 
The following formula is called the Weitzenbock formula: 

Theorem 3.1. — We have the following identity. 

(3.14) dd* + d*d = V*V + 2 
i,3 

aiajQ (ai)*aj 

Proof. — By (3.12) and (3.13), we have 

dd* + d*d = y2{(a*ydi ajd* + a* 91 (a')*ô*} 
i<3 

ij 
{(a*) V did* - {a')*a' ffjdi + (a*) V d*di + a V ) * d*di} 

{(аГаПдг,д*] + [(аГ,^}+д*д^ 
i,3 

= (a*) V d*di + aV)* d*di} 

i,3 
a*) V d*diY2didi$(ai)*ajд*д. 

i*3 i 
= V*V + Y2didi$(ai)*aj. 

i,3 
This is what we wanted. 

So far, the reference measure has been v. The isomorphism J: L2(dx) —> L2(y) 
can be extended to differential forms. Under the Lebesgue measure, the corresponding 
exterior differentiation and its dual operator are given by 

(3.15) 

(3.16) 

D = e~*de*, 

D = e-*cfe*. 

So the operator DD+DD can be defined similarly and it has the following expression: 
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WITTEN LAPLACIAN ON A LATTICE SPIN SYSTEM 121 

Theorem 3.2. — We have the following identities: 

(3.17) DD + DD-- E 
i 

№ + 2 E 
i,3 

didjQiciya?. 

We call the operator DD + DD in L2 (dx) as the Witten Laplacian and distinguish 
from dd* + d*d, which is defined in L2(dv) and is called the Hodge-Kodaira Laplacian. 

We remark that the operators aJ\ (a1)* are independent of the underlying measure 
and so we used the same notation. 

Proof. — We easily have 

DD + DD = e~*(dd* + d*d)e* 

= e"*{V*V + 2 V o¿a* (a ¿) V } e * 
ij 

= V XiXi + 2 V дфФ (a*) V . 
i ij 

This is the desired result. 

Due to this unitary equivalence, the following theorem is well-known (see, e.g., [2]). 

Theorem 3.3. — The Hodge-Kodaira operator DD + DD with a domain T^(AP(RN)) 
is essentially self-adjoint in L2{dx\ /\P(RN)*). Furthermore, d*d + d*d with a domain 
rg°(A^(R i V)) is essentially self-adjoint in L2(v]/\P(RN)*). 

4. Witten Laplacian in one-dimension 

In this section, we give an estimate of the bottom of the spectrum in 1-dimensional 
case. In the sequel, the state space is R and the underlying measure is Lebesgue 
measure. We denote the Hamiltonian by </> instead of $ to distinguish. We define an 
operator X<¡, = df -f dt = 4i. Using this operator, the Witten Laplacian can be 
written as 

(4.1) — DQ = XfhXfk, 

which acts on scalar functions, and 

(4.2) - Di = XcttXj, + 2</>"(t) 

which acts on 1-forms. Here we identify 1-forms with scalar functions. This is possible 
since the dimension of fiber space is 1-dimension. Our aim is to give an estimate of 
the lowest eigenvalue of —Di, which we denote by Ai (</>). From (4.2), we can see that 
Ai(0) > 2c if <j> is convex and 4>N(t) ^ c. Noting that X& = —df -\- dt<f>, we have 

x^x* - x^Xt = (-dt + <t>')(dt + </,') - (dt + <t>')(-dt + 4,') 
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122 I. SHIKEGAWA 

= -d\ - <t>" - <i>'dt + (j>'{dt + 4?) + d2 - 4>" - 4>% - (j>'{-dt + <j>') 

= -24>", 

which means 

(4.3) - Di = ХфХф. 

As in Definition 2.1, we have 

(4.4) — Do = XfkXs = 
d2 

dt2 + <A'(t) 2 -f'( i) 

and further 

(4.5) — Di = X^Xa) = d2 

dt2 
+ <f>>(t)2 + <t>"(t). 

We note that the pair of Do and Di has a supersymmetric structure. In fact, in 
the space L 2 (R) 0 L 2 (R), we define 

(4.6) Q = 
O 

X(k 
X<f, 
0 

Then Q is symmetric and satisfies 

Q2 = 
x^x^ 

0 

0 
XfpXcf) 

-DQ 

0 
0 

- • l 

By using the following well-known fact (see, e.g., [3, Theorem 6.3]), we can see that 
—Do and — Di have the same spectrum except for 0. 

Proposition 4.1. — Let T be a closed operator in a Hilbert space H. Then T*T and 
TT* has the same spectrum except for 0. 

By this special structure, we have that eigenvalues of —Do coincide with those of 
—Di excluding 0. 

The next Lemma shows that a bounded perturbation preserves the positivity of 
the lowest eigenvalue. 

Lemma 4.2. — Let x be a bounded function. We denote by x s u p , XINF the infimum 
and the supremum of x 5 respectively. Then we have 

(4.7) Ai(0) > e - ^ - p - ^ A i ^ + x). 

Proof. — Note that 

e~x{-dt + 4>' + x V = -e~xdtex + <p' + X' 

= - e - * ( e V + e*dt) + <t>' + x' = -dt + <f>' = X*. 
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WITTEN LAPLACIAN ON A LATTICE SPIN SYSTEM 123 

Hence we have 

(-•iu,tfc) = (X^u.X^u) 

= ((-flfc + ¿ > , (-Qt + Ф» 
= (e-x(-dt + ф' + x')exu, e-x(-dt + ф'+ x')exu) 
> e-2x3up((_ ö t + ф' + x>)exu, (-dt + ф' + x')exu) 

> c - 2 ^ p A i ( 0 + x)l|c xti||l 
> e -2Xsup A l (0 + x)e2Xinf||w||2 

= e-2^-^X1(ct> + x)\\u\\l 

This means (4.7). 

The equation (4.7) can be written as 

Ai(0 + x) > e - 2 ( X s u p~ X i n f ) Ai(0) . 

This implies the following. If the function (j) is a sum of a convex function and a 
bounded function, then the lowest eigenvalue of — Di is positive, and further the 
operator — D 0 has a spectral gap. To be precise, writing (j) = V + W with V" > c and 
W being bounded, we have the following estimate: 

\1(<f>)>2ce-2<w'»»-w™\ 

Lastly we give another type of estimate of the lowest eigenvalue for a double well 
potential of the form at4 — bt2. To do this, we recall the harmonic oscillator —21 = 
— + at2 on L 2(R, dx). It is well-known that the lowest eigenvalue of this operator 
is y/a with an eigenfunction e _ v ^ * I 2 . Using this, we have the following: 

Proposition 4.3. — If Mt) = at4 — bt2, then we have 

(4.8) Ai(<£) > 2 \ / 3 a - 2 6 . 

Proof. — Prom (4.5), 

(-Diu, и) = 
d2 

dt2 
\-<j>"(t) + <p'(t)2)u,u) 

> ( ( " 
d2 

dt2 
±<t>"{t))u,u) 

= (( -
d2 

dt2 
f 12at 2 - 2b)u,u). 

Here the operator — -^+12at2 is a harmonic oscillator and hence the lowest eigenvalue 
is 2\/3o- This yields that 

( - • i w , u) > ((2v /3a - 2b)u, u), 

which is the desired result. 
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124 I. SHIKEGAWA 

5. Positivity of the lowest eigenvalue for the Witten Laplacian 

Lattice spin systems are characterized by Gibbs measures on X = RZ<*. To define 
a Gibbs measure, we have to introduce a Hamiltonian. Suppose we are given an 
potential U: R —> R. Then the Hamiltonian is defined by 

(5.1) 9(x) = 
a,jEZd 
i-j 

G (xi - xj)2 + 
a E Zd 

U(x*). 

Here x = (x*) i e Zd and i ~ j means that \\i - = \h - j i | + • • • + \id - j d \ = 1. 
(xl — x3)2 stands for an interaction between particles. We only deal with this type 
of nearest neighbor interaction. We can generalize it to finite range interaction but 
we restrict ourselves to nearest neighbor interaction for the sake of simplicity. The 
expression of (5.1) involves an infinite sum and it is no more than a formal expression. 
The Gibbs measure is sometimes expressed as 

(5.2) v = Z-'e-^dx. 

But it does not make sense since $(x) diverges and the Lebesgue measure dx is nothing 
but a fictitious measure. 

Precise characterization of Gibbs measures is given by the Dobrushin-Lanford-
Ruelle equation. For a given finite region A C Zd (we denote this fact by A <I Zd) 
and a boundary condition 77 G X, we define a Hamiltonian on R A by 

(5.3) Фл,ч(а:) = 
a,jEZd 
i-j 

JW-xif* 
ieA 

U(xi) + 2 
a,jEZd 
i-j 

J(x%-n>)2 

and introduce a measure on R A by 

(5.4) vAtV = Z^e-^^dxA. 

Here dx\ denotes the Lebesgue measure on R A . Let = o-{xl; i £ A c } . We also 
denote xa = (xl; i E A) and xac = i € A c ). Then v is called a Gibbs measure if 
the conditional probability with respect to &ac is given as 

(5.5) EV\ • \xAc = T]aA = VAtri(dXA) 0 SrfAC(dxAc) 

for any A <£ Zd. Here 8VKC is the Dirac measure at a point r)A* G R A C , T/Â  being 
the restriction of 77 to A c . The existence and the uniqueness of such measures is a 
subtle problem. In this paper, we only consider finite region measure and will give 
uniform estimates. Then our result holds for the infinite system if it exists. In fact, 
suppose that estimates are uniform. Take any differential form 0 which depends on 
finite variables. We can find a finite region A which contains these variables. Then, 
by the identity (5.5), we have 

E"[(dJB,dff) + (d*0,d*0) \xa° = Va°] > kE»[{0,6) \xAc = r?AC]. 
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WITTEN LAPLACIAN ON A LATTICE SPIN SYSTEM 125 

Then, by integrating with respect to rjAc, we have 

E»[{dß,dß) + (d*0,d* #)] > kEv[{0,0)]. 

Now we fix A (£ Z d and rj E X and the Hamiltonian is given by (5.3). As was 
discussed in the previous section, the Hodge-Kodaira operator dd* + d*d is well-
defined on R A . Our aim is to show that the bottom of the spectrum a(dd* + d*d) is 
positive for p-forms (p > 1). Under the unitary operator J: L2(dxA) —• L2(uAfrj), we 
consider the Witten Laplacian DD + DD in L2(dxA). 

Prom now on, we fix p > 1. Indices / , J , . . . denote p distinct elements z'i, ¿2, . . . , ip 

of A. We denote \I\ = p. When / = { ¿ 1 , . . . , we set dx1 — dx11 A • • -Adxlp. So any 
p-form 9 can be written uniquely as 6 = ^jOidx1. From the Weitzenbock formula, 
we have 

(DD + DD)Q = V X<JTi V + 2 V ftöj* (a*) V" V Ojdx1 

i I i,j I 

= E E XiXidjdx1+2 5 2 0 , 5 2 dï* wyjdx1 

I i I i 

+2j26iJ2 ^ * (ai)*aJdxI 

I i& 

= V Y" XiXiOidx1 + 2 V e¡ V д^Фах2 

7 t / iei 
+ 2 \ Oí > didj* (a*)VaV. 

i i#j 
Therefore 

{(DD + DD)0,e) 

= EE XiXi9i> +EE **x*0'>9*) 
I % I iei 

+ 2 Y didj$ (a*) VdxJ, Y °JdxJ)(ô/ 52 
i i#j J 

^ EE ZiXfrM+2 y;(ô/ 52 **x*9*2  

7 i I iei 

+ 2 Y didj$ (a*) V d x J , Y °JdxJ) 
i i#j j 

= E E X i X i 9 i > + E E * * x * 0 ' > 9 * ) + 2 E ( ^ E d?*> 0i) 
I iei I i&i I iei 

+ 2 y (flj y didMayaUx1, V 6»jdxJ) 
i i#j J 

^ E E ZiXfrM+2 y ; ( ô / 5 2 0 / ) 

J iE/ I iei 
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126 I. SHIKEGAWA 

+2 Y 2dP\\eI\\l -±jY< 2*H^ll2 

I,J i#j J 
= y"(Yl(aira>dxz,dxJ)(0IìeJ)+2 Y 2dP\\eI\\l -±jY< 2*H^ll2jY< 2*H^ll2 

I iEI I,J i#j J 
To get positivity of the left hand side, we estimate the right hand side term by term. 
We state our result as a theorem. 

Theorem 5.1. — Suppose U is decomposed as U = V + W so that V" > c > 0 and W 
is bounded. Wsup and W[nf denote the supremum and the infimum of W, respectively. 
If 2(c + SdJr)e-^Ws^-Wìn^ > 16d J , then the lowest eigenvalue of DD + for 
p-forms is greater than {2(c -f Sd^f)e~2^Wsu^~Win^ — 16d^}p . Therefore there is no 
harmonic p- forms for p > 1. 

Proof. — We first estimate the second term. To do this, we first compute djdi$. For 
i 7̂  j , we have 

didj$(x) = didj 
k,lEA 

J { x k - x l ) 2 + 

k€A 
' U(xk) + 2 

fc€A,J€Ac 
J { x k - r f f 

- 4 J?, i ~ j 

0, otherwise. 

For i = j , we have 

а?Ф(а:) = и"(х*) + 8 y d . 

Hence 

2 yVfl j V f t o ^ Ó V d x 1 , V 0j<toJ) 
I,J I#J J 

= - 8 ^ ^ ( 0 / ]T)(a*) V"dxJ, 0jd:r J) 
7, J 

= - 8 S y " ( Y l ( a i r a > d x z , d x J ) ( 0 I ì e J ) 
I, J 

= - 8 / V c ( / , J ) № , ^ ) . 
J.J 

Here we set c(I, J ) = (52ir^j(al)*ajdxI,dxJ). c(J, J ) = 1 or - 1 only when J and J 
differs by only one element and they are adjacent to each other. Otherwise c(7, J ) = 0. 
For each fixed / , there are utmost 2dp J 's with c(7, J) ^ 0. Therefore we have 

- % / E c(J,4 J T \c(I, J)\{ > - 4 J T \c(I, J)\{\\ej\\l + \\6jf2} 
I,J I,J 

> Y 2dP\\eI\\l - ± j Y < 2*H^ll2 
/ J 
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= - 1 6 d p ^ £ > ' l l 2 - | Q i | 
i 

Eventually the second term is estimated as follows: 

2 У > / Y] дгд^аУаЧх1 У>/ Y]>-16dpqУ|Qi|2 

I, J i& J I 
We will show that the first term is greater than the second term if JP is sufficiently 

small. To estimate the first term, we need to compute ((XiXi + 2<92$)0j, 0j) and we 
regards it as a function of xl for a moment. So other variables are fixed. We denote 
other variables by y*, i.e., 

1,' = { ^ Ь 6 А \ т е К А \ « . 

The variables {xJ}je\ are decomposed into x% and y%. Then 

*(x) = y1) = U(xi) + ±d/(x{)2 - x1 

i Q A 
j - i 

4xj -f 
J G Ac 

4 ^ + Qi(yi). 

It is enough to consider the 1-dimensional Hamiltonian of the form 

(j)(t) = U{t) + Ad f t 2 - at. 

In this case, let us estimate the lowest eigenvalue of a operator X^X^ -f 2(j)"(t). 
Here X^ = dt + 0', dt = j - v But we have already considered the 1-dimensional 
case in the previous section and so we are ready to estimate ((XiXi + 2d2$)0[10i). 
In fact, by Lemma 4.2, the lowest eigenvalue of XiXi + 2d2$ is greater than (c -f 
8d J)e-2^w^-w^\ 

((DD + DD)9,0) 

Z E E ( ( M + 2^^) f l j , 0/) + 2 yVfl/ V didj* {a'YaPdx1, V 0 j ¿ r J ) 
/ iei I,J i#j j 

* E E 2 ( c + 8 d ^ ) e _ 2 ( W 8 u p _ w ' i n t ) l i b i l i - i 6 d p ^ E libili 
r o'cí r 

= V 2 p ( c + 8 ^ ) e - 2 ^ - - ^ - ) | | 0 7 | | 2 - 1 6 ^ V ll^ll 2 

= p{2(c + Sdjf)e-2^w^-w^ - 16d,/}||0||2. 

This is what we wanted. 

When U is a double well potential, we can give another kind of estimate. This 
time, we use Proposition 4.3. 

Theorem 5.2. — Assume that U is of the form U(t) = at4 — bt2. If VSa — b—Ad^ > 0, 
then the lowest eigenvalue of DD + DD for p-forms is not smaller than 2(y/Sa — b — 

4dc/)p^ Therefore there is no harmonic p-forms (p > 1). 
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Proof. — A proof is almost same as the previous one. This time, one dimensional 
Hamiltonian is of the form 

</>(t) = at4 - bt2 + 4d f t 2 - at. 

By Proposition 4.3, the lowest eigenvalue of XiX{ + 2(j)"(t) + 0'(£)2 is not smaller than 
2\/3a - 2b + Sd J . Hence we have 

((DD + DD)6,6) 

У>/ Y] дгд^аУаЧх1 QIQI) +2 

V ( 0 / У , ОДФ (a*)* a w , > ejdxJ) 
/ iei ij &i J 

> V Y{2VÛ -2b- SdjmW2 - \UpJ V ) W°i\\2 
i iei i 

= 2(Vte-b-4djr)p\\9\\l 

This completes the proof. 

Lastly we will show that any differential form can be decomposed into three parts; 
exact, coexact and harmonic, which is usually called the Hodge-Kodaira decomposi­
tion. We have seen the positivity of the lowest eigenvalue, the decomposition follows 
easily. We state it as a theorem. 

Theorem 5.3. — Under the assumption of Theorem 5.1 or Theorem 5.2, the following 
Hodge-Kodaira decomposition holds: For p = 0, 

(5.6) L2(u) = { constant functions } 0 Ran(cT) 

and for p > 1, 

(5.7) L 2(i/; /\P(RA)*) = Ran(d) 0 Ran(d*)-

Proof. — We only give a proof for p > 1. Set 

T=(d,d*): L2(is;/\P(RA)*) ^ L2(u; ^p+1(RAy) ^ L2(u- /\p-\RAy). 

Here, by taking a closure, T is defined as a closed operator. Then we can have 
—Dp = T*T. In fact, both operator coincides for smooth p-forms with compact 
support. So the identity follows from the essential self-adjointness of Dp. Thus we 
have 

—Dv = dd* + d*d 

on the domain of Dp. Since the lowest eigenvalue of —Dp is positive, it has an inverse 
operator, which we denote by — G. Then for uj € L2{y\/\P(RA)*) we have 

u = (dd* + d*d)Gu = d(d*Gu) + d*{dGu). 

The orthogonality between d(d*Gu) and d*(dGu) follows easily from the property 

d2 = 0. This completes the proof. • 
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