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Séminaire BOURBAKI Novembre 2007 

60 e année, 2007-2008, n° 986, p. 143 à 164 

RAMANUJAN'S M O C K THETA FUNCTIONS 

A N D THEIR APPLICATIONS 

[d'après Zwegers and Ono-Bringmann] 

by Don ZAGIER 

INTRODUCTION 

One of the most romantic stories in the history of mathematics is that of the friend­

ship between Hardy and Ramanujan. It began and ended with two famous letters. 

The first, sent by Ramanujan to Hardy in 1913, presents its author as a penniless 

clerk in a Madras shipping office who has made some discoveries that "are termed 

by the local mathematicians as 'startling'." Hardy spent the night with Littlewood 

convincing himself that the letter was the work of a genius and not of a fraud and 

promptly invited Ramanujan to come to England for what was to become one of the 

most famous mathematical collaborations in history. The other letter was sent in 

1920, also by Ramanujan to Hardy, just three months before his death at the age of 

32 in India, to which he had returned after five years in England. Here he recovers 

briefly from his illness and depression to tell Hardy excitedly about a new class of 

functions that he has discovered and that he calls "mock theta functions." 

This letter has become celebrated, not only because of the tragic circumstances 

surrounding it, but also because it was mathematically so mysterious and intriguing. 

Ramanujan gives no definition of mock theta functions but only a list of 17 examples 

and a qualitative description of the key property that he had noticed: that these func­

tions have asymptotic expansions at every rational point of the same type as those 

of theta functions (Ramanujan used the word "theta functions" where we would say 

"modular forms" today, so that "mock theta functions" meant something like "fake 

modular forms"), but that there is no single theta function whose asymptotic expan­

sion agrees at all rational points with that of the mock theta function. Obviously, 

this is a basic property, but far from a complete definition. 

In the years since 1920, many papers have been written, including many by fa­

mous mathematicians like Watson, Selberg and Andrews, studying the 17 specific 

examples Ramanujan had given, proving the identities that he had stated, and find­

ing further identities of the same type. But no natural definition was known that 
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144 D. ZAGIER 

described what these functions are intrinsically and hence could give a natural expla­

nation of the identities between them and a method to construct further examples 

at will. The breakthrough came in 2002 with the thesis of a Dutch doctoral student, 

Sander Zwegers, who finally found the missing intrinsic characterization of mock theta 

functions. In fact, he did this in three different ways! Specifically, he observed that 

various known identities from the literature could be interpreted as saying that each 

of Ramanujan's examples belongs to at least one (and presumably to all, although 

probably not all 51 verifications have been carried out explicitly) of three infinite 

families of functions: 

(A) "Lerch sums" 

(B) "Quotients of indefinite binary theta series by unary theta series" 

(C) "Fourier coefficients of meromorphic Jacobi forms" 

(We will define and discuss these families in more detail below.) For each of these 

classes he was able to prove a specific type of near-modular behavior which therefore 

held in particular for Ramanujan's examples. What's more, this near-modularity 

property turned out to be the same for each of the three classes, so that the original 

problem was not only triply solved, but in a way that made it quite convincing that 

the essential property of these functions really had been correctly identified. 

In this talk we will describe Ramanujan's letter and the 17 original examples, 

describe each of the classes (A) - (C) and the nature of their modularity, formulate a 

general definition of mock modular forms, and describe further examples. In the final 

section, we will also discuss some of the beautiful recent work of Kathrin Bringmann 

and Ken Ono, based on these ideas, that has led to the solution of several well-known 

open problems in combinatorics and the theory of g-series. 

Before beginning the main story, there are two points that I would like to empha­

size. The first is that one of the reasons for the great usefulness (or "unreasonable 

effectiveness," to coin a phrase) of classical modular forms in number theory is that 

each modular form has calculable invariants—its weight, level, and a (known) finite 

number of its first Fourier coefficients—that suffice to characterize it uniquely. This 

means that to prove any conjectured identity between modular forms, like the famous 

formulas 

^ n ( i - « - ) = E("k2/24' te(-*)n2) + ( s q n 2 ) = te*n2) 

7 1 = 1 7 1 = 1 7 l € Z nÇ^X-hh 7 i £ Z 

of Euler and Jacobi, respectively, it suffices to calculate the invariants on both sides 

and check that they are the same; one does not need to know any further properties of 

the functions involved or even where they come from. Precisely the same principle will 

apply also to the larger class of mock modular forms motivated by and containing 
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Ramanujan's examples, as soon as we know their modular transformation proper­
ties, so that here, too, identities which previously required lengthy computations and 
great ingenuity for their proofs can now be established by an essentially automatic 
procedure. 

The second point is that all 17 of Ramanujan's mock theta functions were given 
in the form of g-hypergeometric series. (We recall that a g-hypergeometric series is a 
sum of the form £ £ L 0 An(q) where each An(q) e Q(q) and An+1(q)/An(q) = R(q, qn) 
for all n > 1 for some fixed rational function R(q,r) G Q(q, r).) Some modular forms 
are g-hypergeometric series, classical examples being the theta series and Eisenstein 
SPriPfi 

1 
2 

oo 

+ E 
n=l 

f2 and 
1 

24 + 

OO 

E«N 

n = l 

l+q2n 

(1 - q2nY ' 

respectively, but this is very rare and there is no known criterion for deciding whether 
a given g-hypergeometric series is modular or not. (There are fascinating conjectures 
due to Werner Nahm relating this question to deep questions of conformal field theory 
and algebraic if-theory [18, 25].) Ramanujan loved and was a supreme connoisseur of 
g-hypergeometric series, and his examples all quite naturally belonged to this category, 
but it is a complete red herring from the point of view of understanding the intrinsic 
modular transformation properties that make these functions special. It is perhaps 
precisely for this reason that it took so long for these transformation properties to 
be found, just as the theory of ordinary modular forms would have developed much 
more slowly if for some reason one had focused only on the rare g-hypergeometric 
examples. 

1. RAMANUJAN'S LETTER 

Ramanujan divided his seventeen examples into four of order 3, ten of order 5, and 
three of order 7, though he gave no indication what these "orders" were. (We'll see 
later that they are related to the levels of the corresponding mock modular forms.) 
We will discuss most of these functions here to illustrate various points involved. 

The mock theta functions of order 3 were denoted f, 0, v, and x- We give only the 
first three (changing q to — q in 4> and in order to simplify the relations): 

/(«) = 
OO 

E 
7 1 = 0 

g"2 

(1 + g)* • • • (1 + qnY 

Ф(ч) = 
OO 

E 
7 1 = 0 

(-яГ2 

(l + q2)(í + q4) •••(! + g2") ' 
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V>(<?) 
oo 

E n = l 

(-q) n2 

(1+ < ? ) ( ! + < ? 3 ) - - - ( l + g 2 " - 1 ) 

Ramanujan gives two relations among these functions (as well as a further relation 
involving / and \ ) , all proved later by Watson: 

Шя) - пя) = Кя) + Щя) = 1 - 2д + 2дА - 2д9 + • • • 

1 + « 1 + ç 2 1 + <?3 )••• 
where the expression on the right-hand side is, up to a factor q x / 2 4 , a modular form 
of weight \ . Already in this first example we see three points: 

— there are linear relations among the mock theta functions (here, <\> = f + 2ip); 
— the space they span contains a subspace of ordinary modular forms; 
— one must multiply by suitable powers of q to get the correct modular behavior. 

Ramanujan also describes the a s y m p t o t i c s of f(q) as q tends to a n y root of uni ty , a 
tvDica l result beiner 

e * t / 2 4 f ( _ e - * t j = _ * * / 2 4 t + 4 + o ( 1 ) a s t ^ O . 
y t 

Notice that, as Ramanujan asserts, this is similar to the type of expansion which we 
would have if q~1^24f(q) were a true modular form of weight | , except that then the 
subleading terms would have a form like t ~ x l 2 ^ n > 0 a n e~nn/24t rather than 4 + o ( l ) . 

The ten mock theta functions of order 5 have similar features, but are considerably 
more complicated. We discuss this case in more detail since it is quite typical. The 
functions come in five groups of two each, denoted fj <j)j, ipj, Xj a n d Fj with j € 
{ 1 , 2 } . (These are Ramanujan's notations, except that he omits the indices.) The five 
functions with index j = 1 are given by 

Мя) = 
оо 

E 
п = 0 

g " 2 

(1 + q) • • • (1 + qn) 

ФАЯ) = 
OO 

E 
71 = 0 

? " 2 ( l + ( ? ) ( l + < 7

3 ) - . - ( l + <? 2 n - 1 h 

ФЛя) = 
OO 

E 
7 1 = 1 

g n ( n + l ) / 2 ( 1 + g ) ( 1 + g 2 j . . . ( 1 + ( ? n - l ) ) 

X1 (q) 
00 

E 
7 1 = 0 

Яп 

(1 - qn+1) ... (1 - q2n) 

*ì(«) = 

OO 

E 
7 1 = 0 

g 2 ^ 

( l - g ) ( l - g 3 ) . . . ( l - g 2 n - i ) ' 
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and the five with index j = 2 are very similar, e.g., 

f2(q) = 
OO 

E 
n = 0 

qn{n+l) 

(1 + g ) • • • ( ! + <?") 

X 2 ( « ) = 

oo 

E 
n = 0 

qn 

( l - ^ + i ) . . . ( l - g 2 n + i j 

Again Ramanujan gives a number of linear relations among these functions or between 
them and classical modular forms (multiplied by suitable powers of q). These relations, 
later proved by Watson, can be summarized in the form 

(кШ / i ( - V 5 ) X i ( « ) - 2 ФЛ-q) Ф1Ш Ы-Jq) FAq) - A 
4 / 2 ( ^ / 9 ) -Î2\,-y/q) X2{q)Vq -<h{-q)/VQ MV<ïï -Ы-Vv F2(q)Vq) 

_(U1(q) VM W1(q)\ 
/ - 1 1 2 0 1 - 1 1 \ 

1 1 0 0 1 1 0 
V 2 - 2 - 3 1 - 1 1 - 1 / 

where Uj and Vj, multiplied by g - 1 / 1 2 0 for j = 1 and by g 1 1 / 1 2 0 for j = 2, are quotients 
of classical theta series and only W\ and W2 are functions of the new "mock" type. 
We thus see the same points as above, but in a more complicated setting: we have 
seven vectors, each consisting of two g-hypergeometric series, which span a space of 
dimension only 3 rather than 7, and this 3-dimensional space contains a 2-dimensional 
subspace of (weakly holomorphic) classical modular forms after multiplication by 
suitable rational powers of q. Again there are also asymptotic formulas as q tends to 
any root of unity. 

Finally, the three mock theta functions of order 7 are much simpler, since they 
form in a natural way a single 3-vector, with no linear relations. The three functions 
are 

F1 (q) 
OO 

E 
n = 0 

1 - qn+ 
(1 - qn+l)(l - qn+2) •••(!- q2n) ' 

„ 2 OO 

E 
n = l 

^ 2 ( 9 ) = 

^ 3 ( 9 ) = 
OO 

E 
n = l 

\U2(q) V2(q) W2(q)J 

((1 - qn+l)(l - qn+2) •••(!- q2n) 

nn(n-l) 

(1 - qn)(l - q"*1) • • • (1 - q2"-1) ' 

Since there are no relations, either among these functions or between them and clas­
sical modular forms, it is less apparent here than in the other cases what is special 
about these particular g-hypergeometric series. One answer (which was Ramanu­
jan's) is that they again satisfy asymptotic formulas at roots of unity of the same 
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type as for order 3 and 5. Another will appear later when we state identities re­
lating the functions ffj(q) to indefinite theta series and to mock Eisenstein series. 
But a third answer, which we can already state here, is simply at the level of the 
ç-expansions themselves. If we calculate to high order, we find that the coefficients 
of these expansions grow very rapidly, the coefficient of q5000 in (7i(q), for instance, 
being 1945224937571884136277772966. But if we multiply any of the series &j(q) by 
the infinite product nn=i( l ~~ Q?n)i which up to a rational power of q is a modular 
form, then in each case the first 5000 coefficients are all at most 10 in absolute value, 
suggesting that the functions &j(q) are indeed related in some non-trivial way with 
modular forms. 

2. LERCH-APPELL SUMS A N D MORDELL INTEGRALS 

In his famous lecture "The Final Problem" given on the occasion of his retirement 
as president of the London Mathematical Society in 1935, Watson [23] considered the 
mock theta functions from Ramanujan's last letter and in particular proved all of the 
identities and asymptotic expansions which Ramanujan had given for the functions 
of order 3. To do this, he first established a number of new identities—not actually 
all that new, as it transpired when Ramanujan's "lost notebooks" were discovered 
later—relating the mock theta functions to g-hypergeometric series of a much simpler 
form, a typical example being the identity 

OO 

n (1 - q") • / (?) = 2 
OO 

E 
n = —oc 

(-l)n 
qn(3n+l)/2 

1 + q" 

for the first mock theta function of order 3. 
In the first chapter of his thesis [28], Zwegers studies sums of the type appearing 

on the right-hand side of this formula, which he calls "Lerch sums" after M. Lerch, 
who studied functions of this kind in two papers [15, 16] (one in Czech and one 
in German) in 1892, though in fact they had been introduced some years earlier by 
Appell [3]. The transformation properties of these functions were studied by both 
Lerch and Appell and also by modern authors [19, 21], but Zwegers's analysis is very 
complete and we will follow his exposition here. 

It turns out to be convenient to normalize the Lerch sums, which are objects of 
weight 1, by dividing them by theta series of weight | , since the mock theta functions 
will eventually be expressed as linear combinations of such quotients. For fixed r E $) 
( = complex upper half plane) we define a function of two complex variables u, v by 

µ(u, v) = µ (u, v; t) a 1 / 2 

0(v) nez 

(-b)n gn(n+1)/2 

1 - aqn 
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where q = e 2 7 r 2 T , a = e 2 n i u , b = e 2 n l v (we will use these abbreviations throughout, 

and will omit the variable r when it is not varying) and 6(v) is the Jacobi theta series 

0(v) = 0(V;T) = E ( _ l ) " - l / 2 ^ / / 2 = g l / 8 f t l / 2 
OO 

n 
n = l 

(l-q^il-bq^il-b-Y'1)-

(The last equality is the famous triple product identity of Jacobi.) Zwegers shows 

that the function a has the symmetry property 

µ(u, v) = µ(v, u), 

the elliptic transformation properties 

µ(u + 1, v) = -µ(u, v), 

a-Hq-^^u + r, v) = -»(u, v) + a " 1 / 2 b1'2 q ^ 8 , 

and the modular transformation properties 

Ai(u,t;;r + 1) = C 8 ~ V M (CAT : = e2 7 r i / J V), 

(r/i)-1/2

 e ^ u - v ) 2 / T fM 
,U V —lv 

T T T 
= -µ(u, v) + 1 

2 
fi(w — v; r ) , 

where /i(z;r) = So
 Joahvx" d X ' a n m t egral °f a kind first introduced by 

Mordell [17]. These properties show that ¡1 behaves nearly like a Jacobi form of 

weight \ in two variables (a Jacobi form being a function of a modular variable r and 

one or more elliptic variables u, v,... with appropriate transformation properties; 

the exact definition in the one-variable case will be recalled in §4), and that its failure 

to transform exactly like a Jacobi form depends only on the difference u — v. ^ 

Zwegers then constructs a second, but now non-holomorphic, function (of u — v only) 

whose "non-Jacobiness" exactly matches that of /x, so that the difference of these two 

functions transforms in the correct way, though at the expense of no longer being 

holomorphic: 

T H E O R E M 2.1. — For r G S), z E C define R{z\r) by the convergent series 

R(Z:T) = E 
veZ+1 

( _ l ) " - i / 2 [ 8 g n ( l / ) _ E((v + %{z)/y)yfiy)}e-2™*q-v2l2, 

where y = ^ ( r ) and E{z) is the odd entire function 2 J* e n u du. Then the function 

j5(w,v;r) = ß{u,v;r) -
1 

2 
R(u — v\ T) 

t1) The fact that the "non-Jacobiness" of fj,(u,v) depends only on u — v can be explained by the 

fact that fi(u, v) has a decomposition of the form µ(u, v) = ^^~Q^~y^U~V^ + A (it — v), where 

C(z) = (2ni)~16'(z)/6{z) is the Weierstrass C-fimction, in which the first term is a true (meromorphic) 

Jacobi form and the second a function of u — v alone. The details will be given in a later publication. 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2009 



150 D. ZAGIER 

is symmetric in u and v and satisfies the elliptic transformation properties 

fl(u+l,v) = a~l bq~1/2jl µ^^(u + T,v) = -fi(u,v) 

and the modular transformation properties 

{S$(U,V;T+1) = - ( T / O - V V ' * " - ^ £ ( - , - ; — ) = £ ( « , « ) . 
r r r 

Now it is well-known that specializing the "elliptic" variables of a Jacobi form to 

torsion points ( = points of Q r + Q ) gives functions of r which are modular forms times 

rational powers of q. If we combine this with the two other facts that some or all 

mock theta functions can be written as linear combinations of the function II(U,V\T) 

with u and v in Qr + Q, and that the function /x can be modified in a simple way to 

give a function /2 which transforms like a Jacobi form, we deduce that a mock theta 

function, multiplied by a suitable rational power of q and corrected by the addition 

of a simple and explicit non-holomorphic function of r, becomes a modular form. For 

instance, using the identity of Watson for the mock theta function f(q) of order 3 

given at the beginning of this section and the transformation properties of the Lerch 

sums, Zwegers [27] shows that the function /13(r) = q~1^24f(q) (r G .fj, q = e 2 7 r 2 T ) 

can be "corrected" by adding to it the non-holomorphic unary theta series 

# 3 ( T ) = E s gn (n ) /3 (n 2 y /6 ) 9 - " 2 / 2 4 (I/ = 9 ( T ) ) , 

n = l ( m o d 6) 
where /3(x) is the complementary error function (or incomplete gamma function) 

roc poo 

0(x) = / u-1/2e-™du = 2 e-*t2dt = 1 - E(y/x) (x > 0), 
J X J yfx 

and that the corrected function /13(r) = /13(r) + RS(T) transforms like a modular form 

of weight \ with respect to the congruence group T(2). 

Finally, we mention that the correction terms for the mock theta functions can be 

written in a different form. For instance, we can write the definition of R^ir) as 

R3 (T) = 
V3 J-r 

g3 (Z) dz 

V (z + t) /i 

where q^(z), a holomorphic modular form of weight | , is the unary theta series 

g3 (z) = E 
n=l ( m o d 6 ) 

nqn2/24 OO 

E 
n = l 

f-l2\ 

K n J 
nqn^24. 

This type of formula will play a role in §5 when we give the general definitions of 

mock theta functions and mock modular forms. 
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3. INDEFINITE THETA SERIES 

Let ( , ) be a Z-valued bilinear form on Z r and Q(x) = 1/2 <x, x) the associated 

quadratic form. If Q is positive definite, then it is a classical fact that the theta 

series O(r) = £ , € Z ^ Q ( l / ) , or more generally 6 a , 6 ( r ) = £ „ G Z . + a e

2 v i < h ^ q ^ for 

any a, b G Q r , is a modular form of weight r/2 (and of known level and character). 

For indefinite theta series there is a well-known theory of non-holomorphic theta series 

due to Siegel, but no standard way to obtain holomorphic functions with arithmetic 

Fourier coefficients having any kind of modular transformation behavior. In the second 

chapter of his thesis, Zwegers shows how to do this when the quadratic form Q has 

signature (r — 1,1). Since many (presumably, all) of the mock theta functions have 

representations as the quotient of a theta series associated to a quadratic form of 

signature (1,1) by a theta series associated to a positive definite quadratic form of 

rank 1, this has an immediate application to the transformation behavior of mock 

theta functions. We will describe the general result first and then give some of the 

applications to mock theta functions at the end of the section. 

For Q indefinite, the theta series Oa,b as defined above is divergent, since its terms 

are unbounded (because there are vectors v G Z r with Q(v) < 0) and all occur with 

infinite multiplicity (because there is an infinite group of units permuting the terms). 

However, we can make it convergent by restricting the summation to the set of lattice 

points lying between two appropriately chosen hyperplanes in W. More precisely, let 

C be one of the two components of the double cone {x G R r | Q(x) < 0} , and for 

a, b G Q r and c, c' G C define 

O c,c' (T) = E 
veZr

+ q 

{sga((c,u)) - sgn( (c>>)) e2™<b-'V^ . 

This series now contains only positive powers of q and is absolutely convergent (al­

though this isn't obvious), so it defines a holomorphic function of r, but of course it 

is not in general modular. To remedy this, Zwegers introduces the modified function 

Ô c, c' (T) = E (E (<c, v> Vy) 
V-Q (c) 

- E 
<c', v> Vy 

V - Q(c') 
e

2pi<b, v> qQ(v) 

(y = 3(r)) 

with E(z) as in Theorem 2.1. Then from the relation E(x) = sgn(x) (1 - (3(x2)) we 

get O^ir) = G^(T) - *S,6(r) + * £ 6 ( T ) with 

Qc 

a,b (T)
 = E sgn((c, v))0 

<c, v>2 y 

-Q(c) 

e 2pi <b, v> q q(v) 

(which is rapidly convergent, with summands bounded by e -" 4"^" 2 for some A > 0). 

If c belongs to C f l Q r , then $1^(T) is a finite linear combination J2j Rj(T)Qj(T) where 

each Rj (r) is a sum of the same sort as occurred in §2 as the correction needed to make 
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mock theta functions modular (i.e., RJ(T) = J2nez+aj;

 s S n ( n ) P{^Kjn2y) q~Kon2 for 
some ctj G Q and Kj G Q > O ) and each 0j (r) is an ordinary theta series associated to the 
quadratic form QKc)1- and hence is a holomorphic modular form of weight (r — l ) /2 . 
(In the case of mock theta functions, one can choose 0J(T) = 0{r) independent of j , 
so that §c

ah(r) factors as 0(T)RC(T), and moreover the theta function #(r), here of 
weight | because r = 2, is the same for c and d. The mock theta function is then, 
up to a power of q, the quotient h{r) = &^C

B (T)/0(T) and its completed version is 
h(r) = h(r) - RC(T) + RC'(T).) Zwegers now shows ([28], Cor. 2.9): 

THEOREM 3.1. — The non-holomorphic function 6 a j& = 9%c

b (a, b G Q R , c, d G C) 
satisfies the same transformation equations {expressing 6 a >&(r + 1) and Qa^(—l/r) 
as finite linear combinations of functions OA',&/ (r)) as in the positive definite case, 
and in particular is a non-holomorphic modular form of weight r/2. 

Note that this theorem can also be used to get theta series associated to Q which 
are holomorphic modular forms. For instance, let 0 ( Q ) + be the component of 
the orthogonal group of Q mapping C to itself and T + congruence subgroup of all 
7 G 0 ( Q ) + preserving Z r + a and the function v e

2 n i ^ on U + a. Then 
$ c

a b = for any c G C and 7 G T+, so the function 6 ^ C = 6 ^ c (which is 
independent of c, as one can easily check) is both holomorphic and modular. 

We now give examples of the applications of these results to mock theta func­
tions. In [1], Andrews found representations for all of Ramanujan's fifth order mock 
theta functions except X i ( r ) a n d X2(T) as quotients O(T ) /0(T ) with 0{r) modular of 
weight \ and O ( r ) a theta series associated to a binary quadratic form of signature 
(1,1), a tvpical formula being 

f1 (q) = 1 
IIo

n=1 (1- qn) ( E - E E ) 
n>0\j\<n n < O U | < j n | 

f-iy' qn(5n+l)/2- j2 ^ 

Similar formulas for the seventh order functions were proved by Hickerson [12], e.g., 

^ i ( « ) = 
1 

nr=i(i-«") E -E 
r, s > U r, s < U 

— l ) r + s g ( 3 r 2 + 8 r s + 3 s 2 + r + s ) / 2 

Using these formulas and Theorem 3.1, we can find the modular properties of all of 

these mock theta functions. For example, from the first identity just given and its 

companion for / 2 we find that the sum of the holomorphic vector-valued function 

11 /60 J1^9)) a n c ^ ^ e non-holomorphic correction term ( f l j ' ^ j ) ? where 

RPAT) = E 
n = j ( m o d p) 

(") sgn(n) /3 
n - y 
6p 

^ - n 2 / 2 4 p (6fp, jGZ/pZ), 
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transforms like a modular form of weight \ with respect to the congruence subgroup 
T(5) of SL(2, Z) , while from the second one we find the even nicer result for the 
seventh order functions that, if we define 

M 7 ( T ) = 

/ « - 1 / 1 6 8 ^ i ( « ) \ 

_ - 2 5 / 1 6 8 p { ) 

q47/168 F3 (q) 
M7(T) = M 7 ( T ) + 

^ 7 , 1 (r)> 
# 7 , 2 ( T ) 

R7,3 (T) 
5 

then M i transforms in a modular wav with respect to the full modular group SL(2, Z ) : 

M 7 ( r + 1) = diag(CГ6l,CГ6l^CГ6 18 2 1)^7(r), 

M 7 ( - l / r ) = J7/7i (2sin67ri fc /7) 1 < , , < , M 7 ( r ) . 

4 . F O U R I E R C O E F F I C I E N T S O F M E R O M O R P H I C J A C O B I 

F O R M S 

We recall that a Jacobi form is a holomorphic function ip(r,z) of two variables r G S) 
and 2 £ C which transforms like a modular form with respect to the first and like an 

elliptic function with respect to the second. More precisely, a Jacobi form of weight k 

and index N/2 on the full modular group is a holomorphic function (p : ft x C —• C 

satisfying (p(%$, ^ ) = (cr + c ^ c * a / ( * r + d ) ^ Z ) f o r a n (a 6) G S L ( 2 5 z ) a n d 

(f(r,z + r r + = e - 7 r i j / v ( r 2 r + 2 r z ) ip(r,z) for all Q € Z 2 , as well as certain growth 

conditions which we omit. (For these and further details and explanations, see [9].) 

Examples are given by classical theta functions and by the Fourier coefficients of 

Siegel modular forms of degree 2, and an important property, already mentioned 

in §2 in connection with the mock Jacobi forms µ(u, v\ r ) , is that for any a, b G Q the 

specialization <p(r, ar + fr), multiplied by a suitable rational power of q, is a modular 

form with respect to r. 

The elliptic transformation property of <̂  implies that it has an expansion 

<p(Ti Z) = E 
l ( m o d JV) 

hl (T) 0 N,l (T, z), 

where /i/>(r) (-£ G Z) is the Fourier coefficient 

hl (T) = e-pil2 t/N j>z0 + l 
Zo 

f M > ( r , z) dz (any z 0 G C) 

and ON I(T, Z) is the unary theta series 

8NAT'Z) = E 
n = £ ( m o d AT) 

2-Kinz n2/2N 
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(which is itself a Jacobi form of weight \ and index N/2 on a subgroup of SL(2,Z)). 
The modular transformation property of ip then implies that the vector-valued func­
tion h = (h i , . . . , hjv) ' # -+ transforms like a modular form of weight k — \ on 
SL(2,Z). 

Zwegers observed that certain representations of the fifth order mock theta func­
tions found by Andrews [2] can be reinterpreted as saying that these functions are 
the Fourier coefficients of a meromorphic Jacobi form (= quotient of two holomorphic 
Jacobi forms), and proceeds to find a general theory of the transformation behavior of 
the vector-valued function h(r), defined by the same integral formula as above, when 
the Jacobi form ip is allowed to have poles. The complete result (Theorem 3.9 in [28]) 
is a little too long and technical to be included here. Briefly (in the simplest case 
when ip has only simple poles), it says that h can be completed to a non-holomorphic 
vector-valued modular form h(r) = (he(r))i ^ m o d N^ of weight k — | by the addition 
of a vector of functions which are linear combinations of functions Rv{r) of the same 
type as we encountered in §2 and §3, the coefficients in their turn being modular forms 
of weight A; — 1 if the poles of (p are at torsion points z = ar+6, a, b G Q. In particular, 
if k = 1 and the poles of <p are at torsion points, then the hi are C-linear combinations 
of the functions Rv and the functions he are mock theta functions of precisely the 
same kind as Ramanujan's. Moreover (now again for general k), the meromorphic 
Jacobi form has an expansion of the form <p(r,z) = J ^ h ^ r ) 0/V,^(T, Z) + Res with 
the same 6^^ as above and with "Res" being given as an explicit finite sum over the 
residues of </?(T, z) in the fundamental domain zo + [0,1) r + [0,1) for the action of 
Zr + Z on C. 

One peculiarity of the expansion just described is that the individual terms change 
as the base-point ZQ used to compute the Fourier coefficients h^(r) moves across 
certain lines in C, namely, those where (p(r, •) has a singularity on the boundary of 
the parallelogram zo + [0, l ] r + [0,1] C C. This is related to the so-called "wall-crossing 
phenomenon" in the theory of Donaldson invariants (which were in turn related to 
the theory of indefinite theta functions in [10]) and also to the similar wall-crossing 
phenomenon which has appeared more recently in the theory of black holes [22]. 

5. M O C K THETA FUNCTIONS A N D M O C K M O D U L A R FORMS 

In §§2-4 we have seen that each of Ramanujan's mock theta functions H(q) G 
Z[[<?]] acquires modularity transformation properties after carrying out the follow­
ing three steps: (i) multiply H(q) by a suitable rational power qx of q, e.g., #~ 1 / / 2 4 

for the mock theta function f(q) of order 3 or q47/168 for the mock theta function 
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5*3(q) of order 7; (ii) change the variable from q = e2niT to r with r 6 5 , set­
ting h(r) = e 2 7 r t A r i f ( e 2 7 r r r ) ; (iii) add a simple (but non-holomorphic) correction 
term to h(r) so that the corrected function h(r) transforms like a modular form of 
weight | for some congruence subgroup of SL(2, Z) . The correction has the form 
9*(T) = Y,nez+a S S N ( N ) /3(4Kn2y) q~Kn2 for some a G Q and K G Q > O , with /3(t) as in 
Sections 2 and 3, and is in turn associated (in a way which we will make precise in a 
moment) to the theta series g(r) = J2nez+a n QKn > which is a true modular form of 
weight §. Notice that steps (i) and (ii) would also be necessary in the case of ^-series 
which are attached to true modular forms; it is only in the final step that the "mock" 
aspect comes into play. 

One can therefore say that each mock theta function H(q) has two secret invari­
ants: a rational number A such that H(q) must be multiplied by qx in order to 
have any kind of modularity properties, and a "shadow" g(r) which is a unary theta 
series of weight | such that the holomorphic function h(r) = qxH(q) becomes a non-
holomorphic modular form of weight | when we complete it by adding a correction 
term g*(r) associated to g(r). This picture generalizes immediately to other weights 
and leads to the notion of a mock modular form of weight k, which we now describe. 
The space Mk of all such forms contains as a subspace the space Mk of classical mod­
ular forms of weight k (and arbitrary level and character), but since—as we already 
saw for Ramanujan's original mock theta functions—we will in general need to allow 
negative powers of q in the Fourier expansions at infinity or other cusps, we will define 
Mfc in such a way that it contains the larger space Ml of weakly holomorphic mod­
ular forms of weight k (= functions which transform like modular forms of weight k 
and are holomorphic in K, but may have singularities of type q~°^ at cusps). The 
space Mfc is of course infinite dimensional, but becomes finite dimensional when one 
adds conditions specifying the level of the form (i.e., the discrete group T C SL(2,R) 
and the character or finite-dimensional representation of T describing the modularity 
properties of the completed form) and the order of poles which we allow at the cusps. 
Each mock modular form h G MK has a "shadow" g = qf[h] which is an ordinary 
modular form of weight 2 — k. This "shadow" depends M-linearly on h and vanishes 
if and only if h is a modular form (which is then weakly holomorphic, since in 
we impose exponential growth conditions at the cusps), so that we have an exact 
sequence over R 

0 ^ M[ ^ M k M2-k . 

In fact the last map is also surjective, so that we have a short exact sequence and Mk 
can be seen as the extension of one space of classical modular forms by another. 
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The definition of the shadow map is as follows. For g{r) a modular form of 
weight 2 — k we define a new function g*(r) with dg* /df proportional to y~k g(r) by 

9*{T) = (i/2)"-1 r. {z + T)-kgc(z)dz = Yt

nk~lbn^(^ny)q-n, 
n>0 

if g = Y2n>o^nQn (sum over some arithmetic progression in Q), where gc(r) = 
g(—f) = ^ b n Q n and (3k(t) is the incomplete gamma function / ° ° u~k e~nu du. (Here 
we are assuming for convenience that g vanishes at infinity. For mock theta functions, 
the unary theta series g is in fact a cusp form.) Then to say that g is the shadow 
yf[h] of h means that the non-holomorphic function h(r) = h + g* transforms like 
a modular form of weight k, i.e., h{^r) = p(^f){cr + d)kh(r) for all 7 = ( c c j ) in 
a suitable subgroup T of SL(2,M), where p is a character (or, for vector-valued h, 
representation) of T. 

We can say this in another way. There is a canonical isomorphism between the 
space Mk of mock modular forms, which are holomorphic, but not quite modular, 
and a second space Mk of functions which are modular, but not quite holomorphic, 
the situation here being exactly analogous to the isomorphism (see [13] or §5 of [26]) 
between the space Mk of "quasimodular forms" (which are again holomorphic, but 
not quite modular) and the space Mk of "almost holomorphic modular forms". The 
isomorphism Mk = Mk sends the mock modular form h with shadow g to the com­
pleted function h = h + g* so to find the definition of the image space Mk we must 
see how to recover h from h. But this is easy: since h is holomorphic, we can just 
apply the Cauchy-Riemann operator d/df to get dh/df = dg*/df = y~kg, and from 
h and g we recover h as h — g*. The direct definition of Mk is therefore as follows. Let 
DJlk be the space of real-analytic functions F(r) in 9) which transform like modular 
forms of weight k (i.e., F(JT) = P(I)(CT + d)kF(r) for all 7 in some modular group 
r C SL(2,R) and some character or representation p of T) and have at most expo­
nential growth at the cusps. More generally, let Wlk,e be the space of functions which 
transform under some modular group V by F(JT) = p(j)(cr-\-d)k(cf-\-dYF(r). Since 
the derivative of a modular form of weight 0 is a modular form of weight 2, the map 
d/df sends 9Jtfc = 9Jtfc,o to 971 ,̂2 and the map d/dr sends 9Ko,̂  to SUfê - Also, the func­
tion y := 9 ( r ) belongs to SDT-i,-!, so we have isomorphisms • yr : fJJlk^e —> %Rk-r,£-r 

for any r G Z. This gives a commutative diagram 

a/ar yk a/ar 
ш к = жк,0 — ^ m k ¿ — ^ ж0,2-к — ^ ш2,2-к , 

А X 
и X 

/ O 

M2-k 
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and M f e is the space of functions F € 30t*: for which ykFf = yk dF/df belongs 
to M.2-ki or equivalently (since it already transforms like a modular form of weight 
(0,2 — k) by the above diagram), for which ykFf is anti-holomorphic: 

M f c = [F€mk 

9 i kdF, n \ 

Note that the composite map 9Jlk

 V 9Jlo,2-k V ^ d r 9ftk is, up to a factor of 4 
and an additive constant k(2 — k), the Laplace (or Casimir) operator in weight k, 
so that the elements of M.2 are in particular weak Maass forms (= non-holomorphic 
modular forms of at most exponential growth at the cusps which are eigenfunctions of 
the Laplace operator), but they are very special weak Maass forms since the eigenvalue 
under the Laplacian is only allowed to have the particular value | ( l — | ) . Following 
a suggestion of Bruinier and Funke, these functions are called harmonic weak Maass 
forms. 

The whole discussion can be summarized by the commutative diagram 

• C ^ y ui UT 

0 >- Mk >- Mk — M 2 - k — > • 0 , 

= ^ ^ complex 
conjugat ion 

o — ^ Ml ^ M f c ^ M2-k ^ 0 

We observe that the map 0 is linear over R but antilinear over C, so that the sequence 
0 —» Ml —> Mfc —> M2-k —> 0 is exact only over R. We could make it exact over C by 
replacing the last term by M2-k ; this would be more natural, but less aesthetic since 
holomorphic modular forms are more familiar than antiholomorphic ones. 

General Principle. A mock theta function is by definition a ^-series H{q) = 
Sn>o an QN s u c n that qxH(q) for some A G Q is a mock modular form of weight | 
whose shadow is a unary theta series of weight | , i.e., a function of the form 
^2nez£(n) N Q K R I 2 w i th K, £ Q>o and e an odd periodic function. It follows that if 
U C Q is any arithmetic progression containing no number of the form — nn2 — A with 
n 6 Z and e(n) ^ 0, then ^2ne^anqn^x is a true (though in general only weakly 
holomorphic) modular form of weight \ . This principle has many applications, one 
of which will be described in §7. 

6. N E W IDENTITIES A N D N E W EXAMPLES 

At the end of the introduction we mentioned that one application of Zwegers's the­
ory is that it now becomes as easy to prove identities among mock theta functions (or 
more generally, among mock modular forms) as it previously was for modular forms. 
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For example, the so-called "Mock theta conjectures" for the mock theta functions of 
order 5, which were stated by Ramanujan in his "Lost Notebook", were proved only 
in 1988 by D. Hickerson [11] after heroic efforts, but now with the knowledge of the 
transformation properties of the mock theta functions the proof becomes automatic: 
one only has to verify that the left- and right-hand sides of the identities become 
modular after the addition of the same non-holomorphic correction term and that the 
first few coefficients of the ^-expansions agree. Moreover, knowing the transformation 
behavior also allows one to find new identities in a systematic way. For instance, 
we mentioned in §3 that representations as quotients of a binary by a unary theta 
series were found in [1] for only four of the five vector-valued mock theta functions of 
order 5, but using the mock modular transformation properties one easily gets such a 
representation also in the missing case, and it actually turns out to be the best one, 
since it is the only one of the five functions whose completed version transforms under 

the full modular group SL(2, Z ) : if we set Ms(r) = 

then we have 

(M5,i(r)\ _ _2 ^-1/120(2-xi(g))\ 
(M5, 2 T) 3 q71/120 X2(q) 

- 3-2 M5,j (t) = 1 n (T) 
E 

|U,| / -J^I 

a + 6 = 2 ( m o d 4) 
a = 2j ( m o d 5) 

( -1 ) ° 
- 3 

a2 - b2 

s g n ( a ) 9 ( - 2 - 5 6 2 ) / i 2 0 

and the completed function M 5 = M 5 + (R5,1), where Rpj is defined as in §3, satisfies 

M 5 (r + 1) = ( ( f ° ) M 5 ( r ) , M5 (- 1/r) = V^/M ^-2 s in f 2 s in ^ \ \ 

V 2 s i n ^ 2sinf ) ) ' 

Similarly, for the mock theta functions of order 7, as well as Hickerson's identity for 
n(r)Mv ^(T) as an indefinite binarv theta series, we find the reDresentation 

n(7t) M7,j (T) = E | r | > | s | , rs>0 
2r=-2s=j ( m o d 7) 

s g n ( r ) (2e 6 («) - e2(r)e3(s) - e3(r)e2(s)) < f s / 4 2 

(where €N(S) — 1 if s = 0 (mod N) and 0 otherwise) of the product of MJJ(T) with 
77(7T) as a "mock Eisenstein series" of weight 1 (explaining the smallness of the Fourier 
coefficients of this product that was mentioned in §1), and also the representation 

n (T)3 M7,j (T) E 

ra>2|n|/9 
n=j ( m o d 7) 

(-)(-) m s g a ( n ) - g ) G - 2 / 8 - n V i 6 8 

of the product of M7j(r) with rj(r)3 as an indefinite theta series of weight 2. What's 
more, by methods obtained in a reasonably straightforward way by generalizing meth­
ods from standard modular form theory (holomorphic projection, Rankin-Cohen 
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brackets, etc.), one can produce infinitely many new examples of mock theta func­
tions or of more general types of mock modular forms. In particular, we can con­
struct vector-valued mock modular forms Mp(r) = ( M p ? J ( r ) = —Mp^j{r)). (modp) 
of length (p — l ) /2 of order p > 3 for any prime p by a formula like the one just given 
for M 7 , e.g., 

M11,j (T) 1 
n(T)3 E 

m > 2 | n | / l l 
n = j (mod 11) 

(-4) (12) 
m / \ n . 

'rasgn(n) - ^ ) ^ m 2 / 8 - n 2 / 2 6 4 

for p = 11, in such a way that the completed function Mp(r) = [MPJ(T))^ (MODP) 

with MPJ(T) = MPJ(T) + RPJ(T) transforms like a vector-valued modular form of 
weight | on SL(2,Z), thus directly generalizing the previous two cases p = 5 and 
p = 7. 

There are also many examples of other types. For instance, there is a family of 
scalar-valued functions having completions that transform like modular forms of every 
even integral weight k on the full modular group. The kth function Fk = Fk(r) is 
defined as 

Fk = E ( - i ) n 

' - 3 ' 
n — 1 / 

^ n ( n + l ) / 6 

1 - qn 

20 E 
r > s > 0 

12 ^ 

n2 - s2 
sk-l qrs/6 

(i.e., as a Lerch-like sum or as a mock Eisenstein series), the first two values being 

F2 = q 4- 2q2 + q3 + 2q4 - q5 + 3q6 - • • • , 

F 4 = 7q + 26q2 + 7q3 + 26q4 - 91q5 + • • • . 

Then the function 

fir) = E2{T) - 12F2(g) 
n(T) 

= q~1/24 (1 - 35q - ISOq2 - 273q3 - 595g4 ) , 

where E2(r) = 1 — 24 X^^=i ai{n)Qn is t n e usual quasimodular Eisenstein series of 
weight 2, is a mock modular form of weight § on the full modular group with shadow 
77(7-), and for each integer n > 0 the sum of 12F2n+2{r) and 24 n ( 2 ^ ) _ 1 [f,v]n (where 
[fi9]n denotes the n-th Rankin-Cohen bracket, here in weight ( | , | ) ) , is a modular 
form of weight 2n + 2 on SL(2,Z). In a different direction, the Eichler integral / = 

[fi9n"fe+1a(n) g n of a classical cusp form / = ]Ta (n )g n of weight A: is a mock 
modular form of weight 2 — k, but of a somewhat generalized kind in which the 
"shadow" is allowed to be a weakly holomorphic modular form. (This latter fact was 
observed independently by K.-H. Fricke in Bonn.) Yet another example—actually 
the oldest—is the generating function of class numbers of imaginary quadratic fields 
(more precisely, of Hurwitz-Kronecker class numbers), which was shown in [24] to 
be a mock modular form of weight | and level 4 with shadow ^ Qn , although the 
notion had not yet been formulated at that time. 
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7. APPLICATIONS 

Since the appearance of Zwegers's thesis, Kathrin Bringmann and Ken Ono and 
their collaborators have developed the theory further and given a number of beautiful 
applications, a sampling of which we describe in this final section. 

Define the rank of a partition to be its largest part minus the number of its parts, 
and for n, t € N and r G Z/ tZ let N(r,t;n) denote the number of partitions of n 
with rank congruent to r modulo t. The rank was introduced by Dyson [8] to explain 
in a natural way the first two of Ramanujan's famous congruences 

p(M + 4) = 0 (mod 5) , p(7£ + 5)= 0 (mod 7) , p(l l£ + 6)=0 (mod 11) 

for the partition function p(n): he conjectured (and Atkin and Swinnerton-Dyer [4] 
later proved) that the ranks of the partitions of an integer congruent to 4 (mod 5) or 
to 5 (mod 7) are equidistributed modulo 5 or 7, respectively, so that N(r, 5; 5^ + 4) = 
\p(M + 4), N(r,7\7l + 5) = \p(Jl + 5). (He also conjectured the existence of a 
further invariant, which he dubbed the "crank," which would explain Ramanujan's 
third congruence in the same way; this invariant was constructed later by Garvan and 
Andrews.) The generating function that counts the number of partitions of given size 
and rank is given by 

R(w; q) : = ^ ^ r a n k ( A ) 9 | | A | | = 

A 

oo 

E 
71 = 0 

« 2 

qn 
Vn^il-wq^il-w-iq™) ' 

where the first sum is over all partitions and ||A|| = n means that A is a partition 
of n. Clearly knowing the functions n i-» N(r,t;n) for all r (mod t) is equivalent 
to knowing the specializations of 9l[w\q) to all £-th roots of unity w = e2"K%alt. For 
w = — 1, the function 9i(w\ q) specializes to f(q), the first of Ramanujan's mock theta 
functions, which is qlj/24 times a mock modular form of weight ^. Bringmann and 
Ono [7] generalize this to other roots of unity: 

T H E O R E M 7.1. — If£^l is a root of unity, then #_1//24^(£; #) is a mock modular 
form of weight \ with shadow proportional to ( £ 1 / / 2 - £ - 1 / 2 ) J2nez(^) ™£ n / / 2 Qn ^24-

Remarks. 1. Note that the choice of square root of £ in the formula for the shadow 
does not matter, since n in the non-vanishing terms of the sum is odd. 

2. In fact Bringmann and Ono prove the theorem only if the order of £ is odd. (If 
it is even, they prove a weaker result showing the modularity only for a group of in 
general infinite index in SL(2,Z).) Also, both the formulation and the proof of the 
theorem in [7] are considerably more complicated than the ones given here. 
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Proof. An elementary identity stated in [8] and quoted in [4] and [11] says, after 
a slight rewriting, that: 

R (w; q) = 1 — w 

n « > i ( i - o 

oo 

E n= — oo 

( _ l ) n g ( 3 n 2 + n ) / 2 

1 — qnw 

Using the identity = 1 ^ ^ 2 we deduce from this that 

q-1/24 &(e27ria;q) _ 

g—/1 tut g /1 it* 

^(3r) 3/r/(r) 
(9(3a; 3r) 

+ < ? 1 / 6 V e e - 2 7 r £ a / i ( 3 a , £ T ; 3 r ) 

e {+-1} 
with #(v;r) and fj,(u,v;r) as in §2. The first term on the right is a weakly holomor­
phic modular form of weight | and the other two terms are mock modular forms of 
weight | , with shadow proportional to X^n=i (^r) ^ ^ n ^ 2 4 sin(7rna), by Theorem 2.1. 

• 
As a corollary of Theorem 7.1 we see that for alH > 0 and all r G Z / £ Z the function 

J2(N(r,t;n) -
n>0 

1 

1 
(n)) g n - 1 / 2 4 

is a mock modular form of weight | , with shadow proportional to 

E - E n = 2 r + l ( m o d 2t) n = 2 r - l ( m o d 2t) 

/ 1 2 \ 

\ n / 
n qn2/24 

Applying the general principle formulated at the end of §5, one deduces that the sum 

E 
netz, n>o 

(N(r,t;n) - 1 
t 

»(n)) g n - 1 / 2 4 

is a (weakly holomorphic) modular form for any arithmetic progression S C Z not 
containing any number of the form (1 —/i2)/24 with h = 2r±l (mod 2t). In particular, 
this holds if E is the set of n with ( x ~ 2 4 n ) = — 1 for some prime p > 3, and using this 
and methods from classical modular form theory the authors deduce the following 
nice result (stated there only for t odd and Q prime to t) about divisibility of the 
Dyson counting function N(r, t; n): 

T H E O R E M 7.2. — Let t > 0 and Q a prime power prime to 6. Then there exist 
A>0 and B e Z/AZ such that N{r,t\n) = 0 (mod Q) for all n = B (mod A) and 
r G Z/tZ. 

In a different direction, knowing the modularity properties of mock theta functions 
permits one to obtain asymptotic results, as well as congruences, for their coefficients. 
We give two examples. In §2 we described the weak Maass form h% (r) associated to 
Ramanujan's order 3 mock theta function f(q). In [6], Bringmann and Ono construct 
a weak Maass-Poincare series that they can identify (essentially by comparing the 
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modular transformation properties and the asymptotics at cusps) with /13 (r) , and 

from this they deduce a Rademacher-type closed formula for the coefficient a(n) of 

qn in f(q) of the form 

a(n) = 
1 

Vn - 1/24 k=1 

00 
V c f c ( n ) s inh(— V24n - 1) , 

where c*;(n) is an explicit finite exponential sum depending only on n modulo 2k, e.g., 

ci(n) = ( — l ) n _ 1 . This formula had been conjectured by Andrews and Dragonette in 

1966 (after Ramanujan had stated, and Dragonette and Andrews had proven, weaker 

asymptotic statements corresponding to keeping only the first term of this series), 

but had resisted previous attempts at proof because the circle method, which is the 

natural tool to use, requires having a very precise description of the behavior of f(q) 

as q approaches roots of unity, and this in turn requires knowing the modular trans­

formation properties of hs(r) = q~1^24f(q)- As a second example, Bringmann [5] 

was able to use this type of explicit formulas for the coefficients of mock theta func­

tions, combined with Theorem 7.1, to prove an inequality that had been conjectured 

earlier by Andrews and Lewis, saying that iV(0,3;n) is larger than iV(l,3;n) for all 

n = 1 (mod 3) and smaller for all other values of n (except n = 3, 9 or 21, where they 

are equal). 

We close by mentioning that mock theta functions (both in the guises of Appell-

Lerch sums and of indefinite theta series) also arise in connection with characters of 

infinite-dimensional Lie superalgebras and conformal field theory [21], and that they 

also occur in connection with certain quantum invariants of special 3-dimensional 

manifolds [14]. This suggests that mock modular forms may have interesting appli­

cations even outside the domain of pure combinatorics and number theory. 
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