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ON THE LIMIT OF FAMILIES OF ALGEBRAIC 
SUBVARIETIES WITH UNBOUNDED VOLUME 

by 

César Camacho & Luiz Henrique de Figueiredo 

Dedicated to José Manuel Aroca on the occasion of his 60th birthday 

Abstract. — We prove that the limit of a sequence of generic semi-algebraic sets given 
by a finite number of formulas always exists and is a semi-algebraic set that can be 
explicitly given as a Boolean expression involving the primitives of the additive forms 
of the formulas. 
Résumé (Sur la limite des familles de subvarietés algébriques sans volume borné) 

On prouve que la limite d'une suite d'ensembles semi-algébriques génériques don­
nés par un nombre fini de formules existe toujours et est un ensemble semi-algébrique, 
ensemble qui peut être donné explicitement comme une expression booléenne impli­
quant les primitives des formes additives de formules. 

1. Introduction 

Bishop [2] proved that the limit set of a sequence of complex purely A;-dimensional 
algebraic subvarieties whose real volumes are uniformly bounded is again a purely 
fc-dimensional algebraic subvariety. On the other hand, there are many reasons why 
one should be interested in analyzing the limit sets of algebraic subvarieties with 
unbounded volume. One reason is the existence of families of algebraic curves of 
increasing degree that are integrals of families of polynomials differential equations 
on the plane with bounded degree, a badly understood phenomenon related to the 
sixteenth Hilbert Problem (see [4], for instance). Another reason is that, despite the 
existence of topologically complicated limit sets of curves with unbounded volume 
(see [6], for instance), much can be said about the limit sets of algebraic subvarieties 
which lie in a family of subvarieties with finite complexity (see [5] for a definition of 
this concept). 
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42 C. CAMACHO & L. H. DE FIGUEIREDO 

In this paper we consider the limit sets of one-parameter families of algebraic 
subvarieties, indexed by a natural number n, defined by a finite number of equations, 
each equation defined by a formula. Informally, a formula is a polynomial expression 
in which n appears in exponents only. Associated to each formula there is a height, 
which is the maximum number of nested n-th powers that appear in it. Here is the 
formal definition: 

Definition 1. — Formulas and their heights are defined recursively as follows: 

1. Every polynomial F G C[Xi,..., Xm] is a formula of height zero. 
2. If Fi and F2 are formulas, then Fi + F2 and F1F2 are formulas of height 

max(fti, /12)5 where hi is the height of Fi. 
3. If F is a formula of height h, then Fn is a formula of height h + 1. 

A formula of height zero is also called a primitive formula; it is simply a complex 
polynomial. 

At times we shall need to evaluate a formula F at a point z G Cm and for a 
particular n. In this case, we shall write F(z;n). 

The height is a measure of the complexity of the formula: it measures how the 
degree increases with n. A formula of height h has degree proportional to nh. More 
precisely, the degree of a formula of height h is @(nh), using Landau's asymptotic 
notation as modified by Knuth [3]. 

An example of a formula of height 3 is 

xy2(((x2 - y + 1)- - l)n + x)n + (xy)n + (yn - l)2 + 1. 

Note that the degree is 2n3 + 3 = 6(n3). 
The same polynomial family may be given by different formulas. For instance, 

( ^ + 2/)2 = (^)2 + 2xn2/ + 2/2. 

For our purposes, a convenient way to handle this issue is to express formulas in 
additive form. A formula is in additive form when it can be expressed as 

Qi¿? + Q2A% + ••• + Q^ï - P, 

where Qi, . . . , Qu and P are primitive formulas and A\, ..., Ai are arbitrary subfor-
mulas (necessarily of smaller height than the original formula). As we shall see later, 
additive forms help us to use induction on the height when working with formulas. 

Lemma 1. — Every formula can be written in additive form. 

Proof. — The proof is by induction on the number of operations required to obtain 
the formula according to Definition 1. If F is a primitive formula, then we can take 
/ = 0 and P = —F. If F = An, then F is already in additive form because we can 
take I = 1, Qi = 1, A\ = A, and P = 0. If F = A + B, then by induction A and B 
can be expressed in additive form, whose combination gives an additive form for F. 
If F = AB, then again by induction A and B can be expressed in additive form. By 
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performing the multiplication AB on their additive forms, we get an additive form 
for F. • 

As an example of the procedure described in the proof above, (xn + y)2 can be 
written in additive form as (x2)n + (2y)xn + y2. Note that the expression (xn)2 + 
2xny + y2 given earlier for (xn + y)2 is not in additive form. 

Definition 2. — The limit (as n —> oo) of a sequence (fin) of subsets of Cm is the set 
limOn of points that are limits of sequences of points lying in a subsequence of (0n). 
More precisely, 
lim Qn = {z G Cm : 3(zn), zn —> z, 3(fcn), kn —• oo, zn € 12fcn for sufficiently large n } . 

Thus, according to this definition, the family of real curves x2n + y2n = 1 converges 
to the border of the unit square given by x2 < 1, y2 < 1. Actually, the definition 
of limit applies to the curves xn + yn = 1 (note that we now allow both even and 
odd exponents). These curves converge to the union of the border of the unit square 
with the two rays given by x = — y, x2 > 1 (the curves actually alternate between 
these two limit sets, but our definition of limit covers this). Considered as a family 
of complex curves, xn + yn = 1 has as limit set the subset of C2 given by d([\x\ < 
1] ^ [\y\ < 1]) u [\x\ = \v\ > 1]> as it *s easy to verify-

We shall consider two situations: limit sets in Rm of families of algebraic subvari-
eties given by a finite number of formulas and limit sets in Cm of families of complex 
algebraic subvarieties. 

In the real case it turns out that it is easier to describe the limits of semi-algebraic 
subsets, instead of algebraic subsets. Semi-algebraic subsets will also play a role in the 
complex case. An algebraic subvariety is the set of points that satisfy a polynomial 
equation f(z) = 0. For simplicity, we shall write this set as [/ = 0]. A semi-algebraic 
set in Mm is one given by a Boolean expression on subsets of the form [/ > 0] or 
[/ > 0]. We shall also deal with basic closed semi-algebraic subsets, which are the 
solutions of a system of polynomial inequalities: [/i > 0, . . . , /&> 0], and with basic 
open semi-algebraic subsets, which are given by strict inequalities: [fi > 0, . . . , fk > 0]. 

One main difficulty in the theory of semi-algebraic sets is that the closure of a 
basic open semi-algebraic set is not necessarily the corresponding basic closed semi-
algebraic set obtained by relaxing the strict inequalities. That is, the closure of 
[fi > 0, . . . , fk > 0] is not always [/i > 0, . . . , /&> 0]. Nor is the interior of a closed 
semi-algebraic set equal to the corresponding basic open semi-algebraic set obtained 
by restricting the inequalities. That is, the interior of [/i > 0, . . . , /&> 0] is not always 
[/i > 0,... ,fk > 0]. However, these statements are true generically, in two senses: 
(i) they are true if we perturb the polynomials slightly, and (ii) relaxing or restricting 
the inequalities only adds or removes lower dimensional components. We say that 
a basic closed semi-algebraic set is generic when it coincides with the closure of the 
corresponding basic open semi-algebraic set obtained by restricting the inequalities. 
In other words, a basic closed semi-algebraic set given by [/i > 0, . . . , fk > 0] is generic 
when [fi > 0, . . . , fk > 0] = closure[/i > 0, . . . , /&> 0]. A generic algebraic set is, 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2009 



44 C. CAMACHO & L. H. DE FIGUEIREDO 

by definition, the boundary of a generic semi-algebraic subset. For a full discussion 
of real algebraic and semi-algebraic sets, see the book by Benedetti and Risler [1]. 

Our main result is the following: 

Theorem 1. — The limit of a sequence of generic semi-algebraic sets given by a finite 
number of formulas always exists and is a semi-algebraic set that can be explicitly 
given as a Boolean expression involving the primitives of the additive forms of the 
formulas. 

The corresponding algebraic version is also valid: 

Theorem 2. — The limit of a sequence of generic algebraic sets given by a finite num­
ber of formulas always exists and is an algebraic set that can be explicitly given as a 
Boolean expression involving the primitives of the additive forms of the formulas. 

In the complex case, the limit set of a family of algebraic sets given by a finite 
number of formulas has also an underlying semi-algebraic structure in the sense that 
it projects, by means of a rational map, onto a proper real semi-algebraic subset 
defined by expressions involving the absolute values of the primitives of the formulas. 
More precisely, we have the following result: 

Theorem 3. — The limit of a sequence of generic algebraic subsets given by a finite 
number of formulas with complex coefficients always exists; it is a subset with a com­
plex structure obtained by means of a rational pull-back on semi-algebraic subsets 
defined explicitly in terms of Boolean expressions involving the absolute values of the 
primitives of the formulas. 

As an example of the situation in the complex case, we consider the following 
generalization of the xn + yn = 1 example given earlier. Let Ai, A2, and P be 
complex polynomials. Then 

h m K + A? = P] = cKPil < 1] H [\A2\ < 1] H [P ^ 0]) U [\AX\ = \A2\ > 1]). 
This limit can be also understood as the pull-back by the polynomial map 

(AUA2): C 2 ^ C 2 
of the Reinhardt preimage of the semi-algebraic subset of R2 given by the second 
member of the equation above, where the axes of R2 are taken as \Ai\ and \A%\. 

2. The real case 

We start with the simplest cases and continue to more complicated cases until we 
reach general formulas in additive form. To simplify the exposition, we assume that 
all semi-algebraic sets are generic and we consider only formulas in which all n-th 
powers are even. 

The simplest non-trivial formula of height 1 is A2n — P, where A and P are real 
polynomials. We want to describe the limit of the algebraic subsets [A2n = P]. 

ASTÉRISQUE 323 



ON THE LIMIT OF ALGEBRAIC SUBVARIETIES WITH UNBOUNDED VOLUME 45 

As mentioned before, it is simpler to describe the limit of the semi-algebraic sets 
ftn = [A2n < P]. The strategy in the following lemma and in all subsequent lemmas 
in this section will be to give a candidate ft for ftoo = lim ftn and to show that ft^ C ft 
and ft C ft^, thus establishing that ft^ = ft. 

All lemmas in this section say that the limit of a formula can be expressed as a 
Boolean combination of formulas of smaller height. Thus, they will provide a basis 
for proving Theorem 1 by induction on the height of the formula. 

Lemma 2. — Let A and P be polynomials. Then \\m[A2n < P] = [A2 < 1, P > 0]. 

Proof. — Let ftn = [A2n < P], ft^ = limftn, and ft = [A2 < 1,P > 0]. We shall 
show that ftoo = ft. 

Take z G ftoo- Then, by definition, there are sequences zn —• z and kn —• oo 
with zn G ftfcn, that is, A(zn)2kn < P(zn). Since A(zn)2kn > 0, we get P(zn) > 0 
and hence P(z) = limP(zn) > 0. Moreover, the sequence (P(zn)) is bounded and 
so P(zn) < L for some L > 0. This implies that A(zn)2 < P(zn)^kn < Ll/kn. 
Therefore, A(z)2 = lim A(zn)2 < limL1/^ = 1. Hence, z G ft. 

Reciprocally, take z £ ft. Since ft is generic, we have that z = lim2;n, with 
zn e [A2 < 1,P > 0]. Prom A(zn)2 < 1 we get that A(zn)2k —• 0 as k oo. Since 
P(zn) > 05 there is a kn such that A(zn)2kn < P(zn), that is, zn G ftjtn. By increasing 
kn beyond n if necessary to get kn —•> oo, we conclude that z G ft^. • 

The genericity hypothesis is essential to the lemma as stated. Although the proof 
shows that ft^ C ft even when ft is not generic, the reverse inclusion is not always 
true when ft is not generic. The following example gives a taste of how things are 
more complicated in the general case. Let A = y(y — l)2 + 1 and P = x2(x — 1). Note 
that [P > 0] is not the closure of [P > 0] because [P > 0] contains the line [x — 0], 
which is not in the closure of [P > 0] since P is negative around x = 0. Similarly, 
[A2 < 1] is not the closure of [A2 < 1] because of the line [y — 1]. As a consequence, 
[A = 1, P > 0] is only partially contained in lim[An < P]; only [A = 1, P > 1] is part 
of the limit set. This example is typical of what happens in general: lim[A2n < P] is 
equal to [A2 < 1, P > 0], except that P > 1 when A = 1+, and A = 1 when P = 0~. 

The next lemma generalizes Lemma 2 and the xn + yn = 1 example given in §1: 

Lemma3. — Let Ai,...,Ak and P be polynomials. Then 
k 

\im[A2n + • • • + A2n < P] = p | \im[A2n < P] = [A2 < 1,. . . , A2 < 1, P > 0]. 
i=l 

Proof — Take z G lim[A2n H h A2/1 < P]. Then there are sequences zn —> z and 
kn ^ oo such that Ai(zn)2kn < A^Zn)2^ + • • • + Afc(̂ n)2A;- < P{zn). So 

fc & 
lim[A2n + • • • + A\n < P] C f| lim[A2n < P] = f|[A2 < 1, P > 0], 

¿=1 i=i 
by Lemma 2. Hence 2 G [A\ < 1,. . . , A\ < 1, P > 0]. 
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Reciprocally, take z G [A\ < 1, . . . , A\ < 1, P > 0]. Then z = limzn with Ai(zn) < 
1 and P(zn) > 0. Since Ai(zn)2r —• 0 as r —• oo, we have Ai(zn)2/Cn < P(zn)/k for 
sufficiently large fcn. As in Lemma 2, we can ensure that kn —* oo and conclude that 
zGlim[A2n + --- + A2n<P]. • 

The next lemma generalizes Lemma 2 for formulas of larger height. 

Lemma 4. — Let A be a formula and P be a primitive formula. Then 

Y\m[A2n <P] = lim[A2 < 1] n [P > 0]. 

Proof. — Take z G lim[A2n < P]. Then there are sequences zn —> z and A:n —> oo 
such that A(2;n; fcn)2/Cn < P(zn). Clearly, P(z) = limP(zn) > 0. As in Lemma 2, 
the sequence (P(zn)) is bounded and we have A{zn\kn)2kn < L for some L > 0. 
This implies A(zn;kn)2 < Lxlkn. Clearly, lim[A2 < L1/71] = lim[A2 < 1], because 
L^/n i Hence, z G lim[A2 < 1] n [P > 0]. Reciprocally, take z G lim[A2 < 
1] fl [P > 0]. Assume for the moment that P(z) > 0. Since [P > 0] is generic, there 
are sequences zn —> z and kn —> oo such that A(zn;A:n)2 < 1 and P(zn) > 0. Since 
{A{zn\kn)2kn/P(zn)) is bounded we have A(zn; kn)2kn < LP(zn), for some L > 0. 
Since lim[A2n < LP] = lim[A2n < P], we conclude that z G lim[A2n < P). Finally, if 
P(z) = 0, then z = limzn with P(zn) > 0, again because [P > 0] is generic. Since 
lim[A2n < P] is closed, we conclude that z G lim[A2n < P]. • 

The next lemma handles the reverse inequality. 

Lemma 5. — Let A be a formula and P be a primitive formula. Then 
\im[A2n > P] = [P < 0] U (lim[A2 > 1] D [P > 0]). 

Proof. — Take z G lim[A2n > P]. Then there are sequences zn —> z and kn —> oo 
such that A(zn;kn)2kn > P(zn). So, either P(z) < 0, or P(z) > 0 and A(zn; kn)2 > 
P(*n)1/fen- Since \im[P-l/nA2 > 1] = \im[A2 > 1], we obtain z G [P < 0] U (lim[A2 > 
1] H [P > 0]). Reciprocally, take z G [P < 0] U (lim[A2 > 1] D [P > 0]). Since [P > 0] 
is generic, there are sequences zn —> z and fcn —> oo such that A[zn\kn)2 > 1 and 
P(zn) > 0. As in Lemma 4, we may assume that P(z) > 0, and then the sequence 
(A(zn; kn)2kn/P{zn)) is bounded below by L > 0, i.e., A(zn; kn)2kn > LP(zn). Since 
lim[A2n > LP] = lim[A2n > P], we conclude that z G lim[,42n > P]. • 

Lemma 6. — Let A be a formula and P and Q be primitive formulas. Then 

\im[QA2n <P} = ([Q > 0]nlim[A2n < P])U([Q < 0]nlim[A2n > -P])U[Q - 0,P > 0]. 

Proof. — If Q(z) > 0 and z G lim[QA2n < P], then there are sequences zn z and 
kn oo such that Q(zn)A(zn; A:n)2fc- < P(zn) < L, with L > 0. Since l i m ^ / M 2 < 
L1/71] = \im[A2 < 1] and P(z) > 0, we obtain that z G [Q > 0] fl lim[A2n < P] 
by Lemma 4. If Q(^) < 0, then there are sequences zn —> z and A:n —• oo such 
that A(zn; kn)2kn > -P(zn)/Q{zn). By Lemma 5, either -P(z)/Q(z) < 0 or z G 
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lim[A2 > 1,-P/Q > 0], or equivalently P{z) < 0 or \\m[A2 > l,P(z) > 0], i.e., 
z G lim[A2n >-P]. • 

By setting Q = A in the limit above when A is a primitive formula, we get an 
expression for lim[A2n+1 < P], and from this an expression for lim[̂ 4n < P], which 
should convince the reader that restricting to even powers simplifies the exposition. 

Lemma 7. — Let A and B be formulas and P be a primitive formula. Then 
\im[A2n < P + P2n] = (lim[P2 < 1] H lim[A2n < P]) U (lim[P2 > 1] n lim[A2 < B2}). 

Proof. — Take z G lim[.A2n < P + P2n]. Then there are sequences zn —• z and 
kn -> oo such that A(zn; kn)2kn < P(zn) + B(zn\kn)2kn. If B(zn;kn) < 1, then 
B(zn; kn)2kn —> 0 and we have P(z) > 0 and A(zn; kn)2kn < L, where L is a constant. 
Thus A{zn]kn)2 < Lxlkri and so z G [P > 0] n lim[A2 < 1] = lim[A2n < P] by 
Lemma 4. So we get z G lim[P2 < 1] n lim[A2n < P]. If limP(^n; kn)2 > 1, then for 
n large P(2n) < KB(zn] kn)2kn for some constant X > 0. Thus A{zn\kn)2kn < (K + 
l)B(s„; fc„)2fcn, so z G lim[A2n < P2n]. Reciprocally, if z G lim[P2 < 1] n lim[A2n < 
P], then there are sequences zn —> z and fcn >• oo such that A{zn \ kn^)2kn < P(zn) < 
P(zn) + P(zn;fcn)2/e". If z G lim[P2 > l]nlim[A2n < P2n], then we have two possibil­
ities: either P(z) > 0 and then A(zn;kn)2k" < B(zn;kn)2kn < B(zn;kn)2kn + P(sn), 
or P(z) < 0 and then for n large B(zn;kn)2kn > -2P(zn). Since lim[A2n < P2n] = 
lim[2A2n < P2n] we can write 2A(zn)kn)2k" < B(zn;kn)2k" = 2B{zn;kn)2kn -
B(zn] kn)2k" < 2B(zn; kn)2k" + 2P(*n), i.e., A(zn] kn)2k- < B(zn; kn)2k- +P(zn). • 

The next lemma shows that Lemma 7 is an important tool for the general case: 

Lemma 8. — Let A\, ..., Ak, B\, ..., B\ be formulas and P be a primitive formula. 
Then 

\im[A2n + • • • + A2kn < P + B2n + • • • + Pfn] = 

= 
k 

i = 1 
\im[A2n < P + B2n + • • • + Bfn] = 

k 

i=i 

i 

3 = 1 
\im[A2n <P + B2n}. 

Proof. — Define Pi := P + B\n + • • • + B?n. We first show that 

lim[A2n + -- + A2n<P1] = 
k 

i=l 
\im[A2n < Pi]. 

Indeed, lim[^2n + • • • + A2n < P±] C f]k=1 \im[A2n < Pi], because A2n < A2n + • •. + 
A2n < Pi. Reciprocally, f|-=i lim[42n < Pi] C lim[A2n + • • • + A2n < Px]. because 
lim[42n < Pi] = lim[A2n < (l/fc)Pi], as in Lemma 3. 

We now proceed to show that 

lim[A2n < P + B2n + • • • + Pz2n] = 
i 

3 = 1 
lim[A2n<P + P2n]. 
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On the one hand, it is clear that lim[,42n < P+B]n\ C lim[A2n < P+P2n + - • >+B?n]. 
On the other hand, if z € lim [̂ 2n < P + P2n + • • • + Bf% then we have a relation 
Bh(z)2 < < Bit(z)2, where i1,..... i1 = 1,.....l. Then A(zn;kn)2k" < P(zn) + 
B^zn.kn)2^ + •.. + Btiz^kn)2kn < P(zn) + IB(zn, kn)2kn, i.e., * G lim[.42" < 
P + lB2n] = lim[A2n < P + P*71]. • 

The next lemma is the stepping stone to the proof of Theorem 1. Its proof is 
similar to that of Lemma 6, and we leave it to the reader. 

Lemma 9. — Let A\, ..., Ak, Bi, ..., Bi be formulas and P, Qi, ..., Qk, R\, ..., 
Ri be primitive formulas. Then 

lim[QU2n + • • • + QkA2n <P + RxB2n + • • • + RtB2n] 
= lim[A2n + • • • + A2n < P + B2n + • • • + B2n) 

provided that Q\, ..., Qk, R\, ..., Ri are positive. • 

We are now ready to prove Theorem 1. 

Proof of Theorem 1. — By Lemma 1, every formula can be expressed in additive form 
and the question is reduced to determining 

limlQiAf + • • • + QkAln < P + RiB2n + • • • + RiB2n], 

where Qi, ..., Qk, Ri, . •., Ri are positive, since the complete limit can be written 
as a finite union of expressions as above. By Lemma 9 it is enough to find 

lim[A2n + • • • + A2kn < P + B2n + • • • + Bfn], 

which by Lemma 8 is 
k i 

ftlJ]im [A2" <P + B2n}. 
i=lj=l 

Thus, it is enough to find the limit of formulas of the type [A2n < P+B2n}. Proceeding 
by induction on the height h of An — Bn — P, we have by Lemma 7 that for h = 0 
lim[A2n < P + P2n] = [P2 < 1] H [A2 < 1] n [P > 0] U [P2 > 1] fl [A2 < B2} 
and so this limit can be given by a Boolean expression involving the primitives of 
the formula. Again, by Lemma 7 if h > 0, then lim[A2n < P + P2n] = lim[P2 < 
1] H l imp2 < 1] D [P > 0] U lim[P2 > 1] fl lim[A2 < P2] is expressed in terms of limits 
of formulas of height smaller than h. Thus by induction hypothesis we conclude that 
lim[̂ 42n < P -I- P2n] exists, has a semi-algebraic structure, and can be given in terms 
of a Boolean expression involving the primitives of the formula. • 
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3. The complex case 

Consider now a formula of height ft > 1 written in additive form: QiA™ + • • • + 
QiA™ — P, where Qi, . . . , Qi, and P are complex polynomials in m variables and Ai, 
..., Ai are formulas of height < ft—1. We wish to describe lim[Q1 An1 +.........+ Qi Anl = P]. 
As in the real case, we start with the simplest situation, lim[An = P]. 

Lemma 10. — Let A and P be complex polynomials. Suppose that P ^ 0 and that A 
and P are independent in the sense that P \ dP A dA in the region where \A\ < 1. 
Then \im[An = P] = d([\A\ < 1] U [P ^ 0]). 

Proof. — Let z G lim[An = P]. Then there are sequences zn —> z and kn —» oo such 
that A(zn)kn = P(zn). There are two possibilities: \A(z)\ < 1, then |A(zn)| < 1 for 
large n and P(z) = limP(zn) = 0, i.e., z G [\A\ < 1,P = 0]; and \A(z)\ = 1, then 
z G [|;4| = 1] = P H 1 ] U [ P ^ Q ] . Since d([\A\ < 1] n [P / 0]) = [|;4| < 1] n [P = 
0] U [\A\ = 1] n [P ^ 0], we obtain that z G d([\A\ < 1] fl [P ^ 0]). 

Conversely, we wish to prove that \A\ < l]n[P = 0]U[|A| = l]n[P ^ 0] C lim[An = 
P]. Since lim[An = P] is closed, it is enough to show that 

[\A\ < 1] H [P = 0] U [\A\ = 1] H [P + 0] C lim[An = P]. 

First take z G [|A| < 1] D [P = 0]. Then \A(z)\ < 1 and P(z) = 0. In the plane 
(A, P) the graph Gkn of the map P = Akn approaches any point (A, 0) with \A\ < 1 
as kn —> oo. Thus, given £ > 0 there is N such that for each n > N the point 
(A(z),£n) G Gfcn satisfies |£n| < e. Since 5 := A~1{A(z)) nP-1(P(z)) is an algebraic 
subvariety of codimension > 2, there is a 1-disc z G ¿4 C A_1(J4(Z)), in general 
position with 5, such that P\u£ is a covering map of Ue over a neighborhood of 
0 G C. Thus, for kn large enough, there is wn G U£ such that P(wn) = £n. Since 
^4(wn) = A(z) and (.A(z),£n) G Gkn we obtain that P(wn) = A(wn)hn. Clearly, 
wn —• z and so z G lim[An = P]. 

Suppose now that z G ||A| = 1] n [P ^ 0]. Then \A(z)\ = 1 and P(z) ^ 0. 
In the plane (A, P) the horizontal line through the point (0,P(z)) intersects the 
graph Gkn of the map P = Akn in kn points over the points 2ln = {P(z)1^kn} in the 
^4-axis. For each of the points w G A~1(^in) we have P{z) = P(w) = yl(w)fc71. Since 
|p(z)|!/fcn _̂  foe graph Qk^ approaches the set|A| = 1, thus the set 5ln tends to 
fill the unitary circle. Therefore for each n we can find wn G ^4_1(2tn), wn —> z, such 
that P(wn) = A(wn)kn. • 

Lemma 11. — \im(\A\n = |P|) = a ([A| < 1] n [|P| ^ 0]) = lim[An = P). 

Proof. — Same as above. • 

Lemma 12. — Suppose P and Q are polynomials, not identically zero, and let A be a 
formula of positive height ft. Assuming that, for n large, P \ dPAdA and Q \ dQAdA, 
we have 

\im[QA = P} = d{\im[\A\ < 1] n [P ^ 0]) U d([lim[|,4| > 1] n [Q ^ 0]). 
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Proof. — Take z £ lim[<2An = P]. Then there are sequences zn —> z and kn —> oo 
such that Q(zn)A(zn] kn)kn = P(zn). We have the following possibilities: 

• lim \A{zn\kn)\ < 1. Then for, n large, \A(zn]kn)\ < 1 and P(z) = limP(zn) = 0. 
Thus * G l i m p | < 1] fl [P = 0]. 

• lim lA(zn;fcn)l = 1. Then z G lim[|A| = 1] = lim[|A| = 1] n [P ̂  0] = lim[|A| = 
1] n [Q ^ 0] 

• lim |A(zn; fen)| > 1. Then for n large |A(zn; fen)| > 1 and Q(z) = limQ(zn) = 
\\mP(zn)A(zn\kn)-kn = 0. 

Reciprocally, if z G lim[|A| < 1] fl [P = 0], then there are sequences zn —> z and 
kn —• oo such that P(z) = 0 and lim |A(zn; kn)\ < 1. Assume that Q(z) ^ 0. Let 
2) = {w : A(w; kn)| < l,n > 1}. Then D ^ 0 and since (A( •, fen) is bounded in £>, 
it is a normal family. Then there is a subsequence, say (A( -;kn)), which converges to 
a holomorphic function A, i.e., lim A(w; kn) = A(w). Since \A(z)\ < 1, we have £n = 
A(z)ln -> 0 as ln -> oo. As by hypothesis 5n := A " 1 ^ * ) ; fcn) fl {P / Q)'1 {{P / Q){z)) 
is a codimension 2 algebraic subvariety for n large, there is a neighborhood z £ U 
such that (P/Q)|[/nA-1(A(^);fcn) projects onto a neighborhood of 0 G C. Thus, there is 
wn G U D A-"1^*); fen), such that (P/Q)(wn) = fn. Therefore P(iun) = <2(wn)£n = 
Q(it;n)A(2;)Zn = Q(wn)A(wn; kn)ln. Clearly, wn —> z and so z G lim[Q.An = P]. 
Similarly, if z G lim[|A| = 1] we have that z G lim[Q-An]. On the other hand, if 
z G l i m p | > 1] fl [Q = 0] then Q(z) = 0 and lim\A(zn; kn)\ > 1. If P = 0 then 
* G lim[QAn = P]. We assume P(z) ^ 0. Define the domain 2) = {w : A(w; kn)_1| < 
1, n > 1}. On 2) the sequence (A( •; fcn)_1) is normal and converges to a holomorphic 
function B, i.e., limA^fen)-1 = B(w)~1. Thus B(z) > 1 and rjn = B(Z) ~ln 0 
as /n —> oo. By hypothesis A~1(B(z)\kn) fl Q_1(0) is a codimension 2 algebraic 
subvariety for n large. Then, since P(z) ^ 0, there is a neighborhood z £ U such 
that Q/-P|c/nA( •-fc )(^(/20) ProJects over a neighborhood of 0 G C. Thus there is 
wn £ A-1(B(z)]kn) fl U such that (Q/P)(wn) = rjn = B(z)~l™ = A(wn;kn)~ln or 
Q(wn)A(wn; kn)ln = P(wn). Clearly, wn —> z and so z £ \im[QAn = P]. • 

3.1. Example. — Let us compute \im[(An + P)n = Q). 

lim[(An + P)n = Q] = a(lim[|An + P| < 1]H[Q^0]) 

= lim[|A" + P| < 1] H [Q = 0]) U (limpn| = 1] n [Q ^ 0]) 

lim[|An + P| < 1] = limP|n < 1 + |P] 

- P ! 2 < 1 ] 
Iim[|Ar = l] = [\A\ = 1] 

Thus, 

lim[(^n + P)n = Q] = [\A\2 < 1] H [Q = 0] U [|A| = 1] n [Q ̂  0] 

= P |2 < l ] n [ Q = 0]U [|;4| = 1]. 
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Thus this limit is the pull back by a rational map of a Reinhardt variety over a 
semi-algebraic subset of R2. This example reflects pretty well the general picture 
described in Theorem 3. 

Suppose that Q±,..., Qi, P G C[#i,..., #m]. In what follows we will write 

QAn = [Q1Art + ..- + QlA? = P] 

QAn(i) = [Q1A? + .-- + &A? + -.. + QlA? = P] 

Lemma 13. — Suppose that Qi, . . . , Qi, P G C[xi,..., xm] and assume that Zq1 , Zqj , 
ZQk intersect in general position if i 7̂  j ^ k ^ i. Let A\, ..., A\ be formulas of 
positive height h. Then 

1. limlQxA? + + QiAf = P] = U!,i=iMl^il = 1̂ 1 > 1] U (ZQi n 

zQj)\Ji = i lim ||A| < 1] n l im^M? + • • • + Q^l + • • • + Ant = ^] 
2. lim[QiAJ + • • • + QtA? = P] = \JiJ=1 lim[|^| = \Aj\ > 1] U (ZQi n ZQ.) U 

a(lim[|Ai| < 1] n • • • n lim[|;4j| < 1] H [P / 0]) 

Proof. — Write fti:=U!=ilim[|j4i| < 1, n2:=f]li=1\im[\Ai\ > 1]. Then Lemma 13 
follows from the next two lemmas. • 

Lemma 14. — We have: 

lim[Qi A\ + • • • + Q, A? = P] H Kx 
1 

= [j limPil < 1] n lim[Qu4? + • • • + QiA? + • • • + Qz^F = P] 
¿=1 

= 3(lim[|Ai| < l]n---nlim[|A,| < 1] n [P ^ 0]) 

Proof — Let z G \im[QiA^ + • • • + QiA^ = P] C\ 7Z±. Then there are sequences 
zn —• z and fcn -> 00 such that Qi(zn)Ai(zn; kn)kn + \-Qi(zn)Ai(zn; kn)kn = P{zn). 
Suppose first that lim |Ai(zn; kn)\ < 1. Then en(zn) = Qi(zn)Ai(zn; kn)kn —> 0 as 
n —» 00 and if we define 

fn{zn) := P(zn) - Q2(zn)A2(zn;kn)kn Qi(zn)Mzn; kn)kn, 

then we have fn(zn) — en(zn). Let Zn = /~1(0) and Z = \imZn. We claim that 
2 G Z. Indeed, if z £ Z then there are neighborhoods z G V and Z C W with 
VC\W = 0. For n large zn eV and fn1{en) S W a contradiction since fn(zn) = en 
and /n(zn) = £n and zn 2. Then there is wn G Zn = / ^ ( O ) , ^ -» 2, i.e., 
fn(wn) = 0, wn —• z. This means that 

Q2(t0^2fcnKi)*n + ''' + Qz K O ^ K * ) ^ = P(wn) 

and so z G lim[|Ai| < 1] D lim[Q2^2 + ' ' * + QiA? = p\- Similarly, if z G Uu then 

z 
z G (J lim[|Ai| < 1] H lim[QiA? + • • • + qJ^ + • • • + QjA? = P]. 

¿=1 
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Reciprocally, suppose there are sequences zn —> z and wn —• z such that /n(wn) = 0 
and en(^n) -» 0. Then Zn = /~1(0) —• Z. Since wn G Zn and wn -» z, then 
z e Z. Therefore for any S small positive there is yn G e~1(8) fl / " ^ 0, i.e., 
^n(2/n) = fn(Vn)- We will show now that for the points in the region 1Z\ we have 

a ( p 1 | < i ] n . . . n [ | ^ J | < i ] n [ p ^ o ] ) = 

= 
i 

i = 1 
[|i4j| < 1] n limfQiA? + • • • + QiA? + • • • + QjA" = P] (**) 

= lim[Qii4J + • • • + Q,i4|* = P]. 

We proceed by induction on /. For / = 2 we have, by Lemma 12, 

a p ^ i j n O ^ K i n i P ^ o ] ^ 
= [\Ai\ < 1] n 0([|A2| < 1] n [P ^ 0]) U [\A2\ < 1] n a([ |^| < 1] n [P ^ 0]) 
= [|Ai| < 1] n ]im[Q2A% = p] u 0^21 < 1] n l i m ^ A ? = P] 
= UmlQiA? + Q2A2 = P]. 

For Z > 2, we have 

d([\A1\<l)]n - nQAi\ < 1) n [P # 0]) = 

= 
I 

i=l 
(\Ai\ < 1) n d([\A!\ < 1] D • • • n ( |^|) n • • • n (\Ai\ < 1) n [P ? 0]) 

l 

t=l 
(|i4i| < 1) n lim[Qii4J + • • • + QiA? + • • • + QtA? = P] 

= lim[QiA? + • • • + Q|i4? = P}= lim[Qii4? + • • • + QtAf = P], 

where the last two equalities are derived by induction hypothesis on (**). 

Lemma 15. — We have: 

limFQiA? + • • • + QLA? = P]fMl2 = 
i 

i,j = 1 
\im[\Ai\ = \Aj\ > l} U (ZQinZQj) 

Proof. — Suppose now that 

z G l impi l > 1] D • • • fl \im[\Aq\ > 1] U lim[|Ag+i[ = 1] D • • • n limpz| = 1]. 

Then q ^ 1 and 

Qi(*n)(Ai)(*n; *n)*n + • • • + Qq(zn){Aq)(zn; kn)kn = R(zn)y 

where 

R(zn) := P(zn) - Q9+i(2;n)(Ag+1)(zn; A;n)fc" QK^)(^)(*n; fc»)*w 
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is locally bounded at z. For any i,j = l,...,q,i # j , we can write the next inequality 
where, for simplicity, we wrote i = 1 and j = 2: 

|Qi(*n)Pi(*»; Mlfcn - IQ2(*n)P2(*n; Ml*" < 
q 

t=3 

\Qt(zn)\\At(zn;kn)\k" + \R(zn)\. 

Thus, dividing both members of this expression by n?=3 Î Mzn)|fen> we obtain a left 
member locally bounded at z. Then there is a bounded sequence {An} such that 

q q 
|Qi(*„)Pi(z„)|fcVniA*(*")|fc" =*n\Q2(zn)\\A2(zn)\k"/]l\At{zn)\k», 

t=3 t=3 

i.e., 

|Qi(*OI|Ai(*n)|fcn = \n\Q2(zn)\\A2(zn)\k". 

Thus, either z G ZQIHZQ2, or |;4i(zn)l = (^\Q2(zn)\/\Q1(zn)\)1'k»A2(zn). There­
fore, lim[|i4i(2fn;fcn)|] = lim[|A2(*»;fcn)l]- Thus, z G U i ^ i M ^ O = MIAjIll u 
(ZQ. fl Z Q J . This shows that for I > 1, 

lim[Qii4? + • • • + Q,A? = P] H K2 C [lim[|^|] = lim[|^|]] U (ZQi fl ZQ.) (*) 

We now proceed to show the converse to (*). Suppose z G [\Ai\ = \Aj\ > 1] U 
(ZQ. D ZQ.). For simplicity take i = 1, j = 2 and z G [|̂ 4i| = |A2| > 1], \Ai(z)\ > 1, 
i = 1, . . . , k, \Aj(z)\ < 1, j = k + 1,. . . , I. Consider the expression 

an := Qi(AiM3 • • • + Q2(A2M3 • • • Ak)n 

We claim that the curve an = 0 approaches 2 as n —* 00. Indeed, from an(w) = 0 we 
obtain 

( ^ i M j r w = -(Q2/QiXw). 

For any u; close to z such that arg(—Q2/Qi)(w) is irrational we have that 
(—Q2/Qi)(u))1^n approaches the circle of center 0 G C and radius 1 as n —• 00. 
Therefore (Ai/A2)(z) is in the closure of the sequence ((—Q2/Qi(w))1/n)n. On the 
other hand, if 

bn:=P/(A3---Ak)n- 1/(4, ...Ak)n 
i 

3=3 
QjA", 

then bn(z) —> 0 as n —> 00. Therefore the curve bn — 0 approaches z as n —> 00. Thus 
there is zn G [an = bn], zn —• 2, i.e., 

z 
(QiA?/(4, • • • Ak)n + Q2A%/(A3 • • • Ak)n)(zn) = 1/(A3 • • • Ak)n(P - £ Q^)(*„) 

3=3 

or Qi(z„)Aj(z„)n + • • • + QK^)^(^)" = P(*„). 
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Lemma 16. — Suppose that Q\A™-\ \-QiA™ is a formula of positive height h. Then 

lim[|Qu4? + • • • + QtA?\ < 1] 

= 
i 

i = 1 
\hn[\Ai < 1|] n lim[|Qii4J + • • • + QiAf + • • • + QiA?\ < 1] 

i 

i,j = l,iy£j 
[lim \Ai\ = lim\Aj\ > 1] U (ZQI n ZQJ). 

Proof. — Let z G lim[|QiA™ H h QiA?\ < 1]. There is zn —> z and fcn —• oo such 
that |Qi(2n)Ai(zn)*» + --- + Qi{zn)Ai(zn)kn \ < 1. Suppose that lim |A1 (Zn ; Kn)| < 1, 
then £n = \Q\Ai(zn)kn\ —> 0 and there is it;n —> 2 such that \Q 2(1*1 n)A2(wn)kn H h < 1. 
Qi(wn)Ai(wn)kn\ < LJTherefore, z G ULilimP*| < 1], then z G \Ji=1hm[\Ai < 
l |]nlim[|QiA?H-..+Q^4---+Q/^r| < 1. On the other hand, if z G f |Lilim[l^| > 
l ] n ^ + i lim [ | ^ < l | ] , then 

Qiiz^A^(zn^kn)kn + '- + Qq(zn)Aq(zn;kn)kn < 1 + S(zn), 

where S(zn) = \ Ylj=q+i Qj(zn)Aj(zn)kn\, is locally bounded at z. Proceeding as in 
Lemma 13, we obtain that for any i,j = l , . . . ,g either z G (l im|^ | = lim|Aj|) 
or z G ZQ1 D ZQ.. The proof of the converse follows the same line of arguments of 
Lemma 13. • 

Proof of Theorem 2. — In order to describe lim[QiA± + • • • + QiAf = P] we first 
use induction on / by means of Lemma 13, which reduces the problem to describing 
lim[Qj4n = P] and lim[|A| < 1] where QAn - P has height h > 1. Then we proceed 
by induction on h. For h = 1 Lemma 12 gives lim[QAn = P] = d(lim[|A| < 1) H (P ^ 
0)] U 3(lim[|A| > 1] fl [Q / 0]), which reduces the problem to height h - 1. It only 
remains to find lim[|A| < 1] and this follows from Lemma 14. 

Thus we have shown that this limit can be expressed by algebraic relations between 
|J4I|,..., |J4J| and |P|. • 

4. Algebraic curves as integrals of differential equations 

Lemma 17. — Given polynomials A and P, there is a family (Xn) of polynomial vector 
fields of fixed degree such that [A2n = P] ¿5 an integral curve of Xn. 

Proof — Let Xn be the field corresponding to the following differential equation: 

x = -2nPAy + PyA, y = 2nPAx - PXA. 

Let f = A2n- P. Then 

xfx + yfy = 2n(PyAx - PxAy)f, 

as can be easily verified. This shows that [/ = 0] is an integral curve of Xn. • 
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Thus, we have curves of increasing degree that are integral curves of polynomial 
fields of fixed degree. The next lemma says that in this case the field is essentially 
unique. The following proof is essentially due to B. Scardua. 

Lemma 18. — Suppose that [fn = 0] is a family of polynomial curves indexed by their 
degree. Assume that each curve is an integral curve of two differential equations of 
bounded degree: u)n = 0 and nn = 0. Then, for n large enough, ujn = 0 and nn = 0 
define the same foliation. 

Proof. — Forget the indices, for simplicity. 
The hypotheses imply that 

df A UJ = f£dx A dy 

df A n = fLdx A dy, 

where I and L are polynomials. 
Assume that UJ A n ^ 0. 
If df A O 7̂  0, then we can write 

u = adf + PSI. 

The coefficients a and (3 are determined as follows: 

UJ A n = adf Ad a = 
LJ A ft 
df AQ 

df AUJ = (3df AQ => p = df Au 
df AQ 

Therefore 

13 = e 
L' a = 

UJ A n 
fLdx A dy 

and so 
UJ = 

UJ An 
dx A dy 

df 
fL + 

e 
L 

O, 

or 
Luo = 

UJ An 
dx A dy 

df 
f 

+ lO 

Assume that / is irreducible. Since LUJ — £n has bounded degree, we must have 
that fdx A dy divides u Ail, that is, 

UJ An = ffidx A dy, 

for some polynomial [i. Hence, LUJ — \idf + in. 
Now d£ = duj — 1 and dL = dn~ 1, and so fidf has bounded degree. Since dfn —• oo 

we conclude that fin — 0 for large n. 
If df A n = 0, then we take df AUJ ^ 0. If both expressions vanish identically, then 

UJ, n, and df define the same foliation. • 

Moreover, as the next lemma indicates, formulas that are more complicated than 
A2n = P are not likely to be integral curves of fields of fixed degree. 
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Lemma 19. — Let A, B, and P be bivariate polynomials such that A(0,0) = 0 = 
B(0,0) and (A, B) = 1. Then the curves in the family An + Bn = P are not integral 
curves of a family of polynomial fields of degree 2. 

Proof — Suppose that A and B have degree k and P has degree j . Let / = An + 
Bn — P. Suppose that / is an integral curve of the 1-form 

u = adx + bdy, 
with a and b polynomials of degree 2. Then 

df AUJ = fLdx A dy, 
with L a polynomial of degree 1. This equation is equivalent to 
{nAn~xAx + nBn~xBx - Px)b - (nA™-1 Ay + nB^By - Py)a = (An + Bn - P)L. 
For n large, because A(0,0) = 0 = 5(0,0), we obtain 

(1) Pxb-Pya = PL 
(2) nAn-1 (Axb-Ava) + nBn-x (Bxb - Bya) = (An + Bn)L. 
Because (A, B) = 1, we get 
(3) n(Axb - Aya) = AL 

n(Bxb - Byd) = BL 
(The proof is at the end.) 

Suppose that P is homogeneous of degree j , A and B are homogeneous of degree A:, 
and a and b are homogeneous of degree 2, in equations (1) and (3). This is not a 
restriction because it suffices to compare the homogeneous parts of highest degree in 
these equations. 

Equation (3) can be written as 

n 
Ay Ax 

—By Bx 
a 
b 

= L 
A 
B 

If A = AxBy - AyBx, then 

n a 
b 

= 
L 
A 

Bx Ах 
By Ay 

A 
B 

Since, by Euler's formula, kA = Axx + Ayy and kB = Bxx + Byy, we get 

n a 
b 

= 
L 

kA 
Bx Ax 
By ~Ay 

Ax Ay 
Bx By 

x 
y 

= 
L 

kA 
о - д 
д о 

x 
y 

= 
L 
k 

-y 
x 
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which implies that 

a = — 
3 
kn y, b = L 

kn x. 
Prom (1), we get 

P1 L 
kn X + Py 

L 
kn 

y = PL, 

that is, 
Pxx + Pyy = nkP, 

which implies that P is homogeneous of degree nk. Since n is arbitrarily large and P 
has a fixed degree, this is cannot happen. Therefore, / is not an integral curve of UJ. 

We still have to prove that (2) implies (3). In fact, let a = Axb — Aya and 
p = Bxb - Bya. Then 

nAn~la + nBn~x p = L(An + Bn), 

that is, 
An-1 (na - LA) = Bn-\-nP + LB). 

Since (A,B) = 1, this implies that A^K-rtfi (nb + LB) and Bn-1 ((na - LA). Hence, 
there is a polynomial A such that 

AAn_1 = -n(3 + LB 
XB71'1 = (na - LA) 

Comparing degrees, we get A = 0 for large n. Therefore, 

(-ra/? + LB) = 0 = (na- LA), 

as claimed. • 

Define the length of a formula as the minimum number of its primitives of degree 
> 1. So, for instance, the formula 

(x + l)2n + ((x-y- l)n + y)n + y2-l 

has length 4. 
Suppose that C is a family of curves given by the zeros of a formula of positive 

height. Let / be the length of the formula and assume that the curves defined by the 
zeros of its primitives intersect transversely in the complex domain. If V is a family 
of vector fields of degree k such that the elements of C are integral curves of the 
corresponding elements of V, then / < k2 + k +1 , as this last expression is the number 
of singular points of the elements of V. In particular if / > k2 + k + 1 the elements in 
C can not be integral curves of a family of polynomial vector fields of degree < k. 

Theorem 4. — Every generic basic closed one-dimensional semi-algebraic set in the 
plane is the limit of an family of algebraic curves that are integral curves of a family 
of polynomial vector fields of fixed degree. 
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Proof. — Let ft be a generic basic closed semi-algebraic set. It is known (but hard 
to prove) that every basic open semi-algebraic set in the plane can actually be given 
by two inequalities [1]. Since ft is generic, this also applies to ft and we can write 
ft = [P > 0, Q > 0]. We shall show that ft = \im[A2n < P] for 

A = Q 
n 

- 1. 

Indeed, 
[A2 < 1] = [ (^ - l)2 < 1] = [0 < Q < 2n] 

n 
Hence, 

{ z : A2(z) < 1, for sufficiently large n } = [Q > 0]. 
and so 

{ z : P(z) > 0, A2(z) < 1, for sufficiently large n } = [P > 0, Q > 0]. 

Lemma 2 then says that 

lim[A2n < P] = [P > 0, Q > 0] = ft, 

if [A2 < 1, P > 0] is generic for sufficiently large n. 
As mentioned in §4, the curves [A2n = P] are integral curves of a family of poly­

nomial vector fields of fixed degree. (Note that, although A has coefficients that 
depend on n, the vector fields are still of fixed degree. The general case is described 
in Lemma 20 below.) • 

Lemma 20. — Let 

A(z;n) = 
l 

j=-k 
aj(z)n3 

be a real polynomial in z and n. Then 

lim [A(z; n)2n < P(z)\ = 
n—+00 

0, if aj ^ 0 for some j > 1; 
[al < 1,0 < P] U [a§ = 1, e2a~^z) < P{z)], otherwise. 

Proof. — First, notice that if aj ^ 0 for some j > 1, then the limit is empty. 
Next, suppose that z G lim[yl2n < P]. Then, there is a sequence zn —> z such that 

a-k(zn) 
nk + 

a-fc+i(2n) 
nfc-i + ••• + a-i(*n) 

n 
+ a0(2;n) 

2n 
< P(zn). 

If a0(2) = 0, then 0 < P(z). 
Finally, assume that ao(z) ^ 0. Then, ao(zn) ^ 0 for n large enough. Letting 

B(w; n) = a - 1 (w) 
a0(w) 

1 
n 

+ ••• + a-k(w) 
a0(w) 

1 
nk' 

we have 
a0(zn)2n(l + B{zn;n))2n < P{zn). 
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For n large enough, we have \B(zn;n)\ < 1 and then 
n\oga0(zn)2 + 2ralog(l + B(zn;n)) < log P(zn). 

If a0(z)2 = 1, we have 2a_i(z) < logP(z), i.e., e2a-^ < P(z). If a0(z)2 < 1, we 
have 0 < P(z). • 
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