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THE PROJECTIVE HULL OF 
CERTAIN CURVES IN C2 

by 

Reese Harvey, Blaine Lawson & John Wermer 

Dedicated to Jean Pierre Bourguignon 
on the occasion of his sixtieth birthday 

Abstract. — The projective hull X of a compact set X C Pn is an analogue of the 
classical polynomial hull of a set in Cn. In the special case that X C Cn C Pn, the 
affine part X D Cn can be defined as the set of points x G Cn for which there exists 
a constant Mx so that 

\p(x)\ <M£supx \p\ 

for all polynomials p of degree < d, and any d > 1. Let X(M) be the set of points x 
where Mx can be chosen < M. Using an argument of E. Bishop, we show that if 
7 C C2 is a compact real analytic curve (not necessarily connected), then for any 
linear projection 7r : C2 —• C, the set 7(M) PI n~1(z) is finite for almost all z G C. 
It is then shown that for any compact stable real-analytic curve 7 C Pn, the set 7 — 7 
is a 1-dimensional complex analytic subvariety of¥n — 7. Boundary regularity for 7 
is also discussed in detail. 

Résumé (L'enveloppe projective de certaines courbes dans C2). — L'enveloppe projective X 
d'un compact I c P " est l'analogue de l'enveloppe polynomiale classique d'un sous-
ensemble de Cn. Dans le cas particulier où X C Cn C Pn, la partie affine I f l C n 
peut être définie en tant qu'ensemble de points x G Cn pour lesquels il existe une 
constante Mx telle que 

U a O | < M ^ s u p x \p\ 

pour tous les polynômes p de degré < d, et tout d > 1. Soit X(M) l'ensemble 
de points x où Mx peut être choisi < M. En utilisant un argument d'E. Bishop, 
nous montrons que si 7 C C2 est une courbe analytique réelle compacte (non né­
cessairement connexe), alors pour toute projection linéaire 7r : C2 —• C, l'ensemble 
7(M) Pi7r_1(z) est fini pour presque tout z G C. Nous montrons alors que pour toute 
courbe analytique réelle compacte stable 7 C Pn, l'ensemble 7—7 est une sous-variété 
de Pn — 7 analytique complexe de dimension 1. Nous discutons également en détail 
la régularité de la frontière de 7. 

2000 Mathematics Subject Classification. — 30H05, 32Q99. 
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242 R. HARVEY, B. LAWSON & J. WERMER 

1 . I n t r o d u c t i o n 

The classical polynomial hull of a compact subset X of Cn is the set of points 
x eCn such tha t 

(1.1) |p(x) | < suplp 
X 

for all polynomials p. 

In [4] the first two authors introduced an analogue for compact subsets of projective 
space. Given I c P n , the projective hull of X is the set X of points # G Pn for which 
there exists a constant C = Cx such tha t 

(1.2) l | p ( z)ll<adSup i |p | 
x 

for all sections Pe#0(Pn,e>(d)) 

and all d > 1. Here O(d) is the d-th power of the hyperplane bundle with its stan­
dard metric. Recall t ha t H°(Fn, 0(d)) is given naturally as the set of homogeneous 
polynomials of degree d in homogeneous coordinates. If X is contained in an affine 
chart X C Cn C Pn and x G Cn, then condition (1.2) is equivalent to 

(1.3) \p(x)\ < M x d s u p | p | 
X 

for all polynomials p of degree d 

and all d > 1 where Mx = pJ\ + \\x\\*Cx and p depends only on X. Therefore the 
set i n c n consists exactly of those points x G Cn for which there exists an Mx 
satisfying condition (1.3). 

This paper is concerned with the case where X = 7 is a real analytic curve. In [4] 
evidence was given for the following conjecture. 

Conjecture 1.1. — Let 7 c Pn be a finite union of simple closed real analytic curves. 
Then 7 — 7 is a 1-dimensional complex analytic suvariety o/Pn — 7. 

This conjecture has many interesting geometric consequences (see [7], [5], and [6]). 
The assumption of real analyticity is important . The conjecture does not hold for 

all smooth curves. In particular, it does not hold for curves which are not pluripolar. 

One point of this paper is to prove Conjecture 1.1 under the hypothesis tha t the 
function Cx is bounded on 7. We begin by adapting arguments of E. Bishop [2] to 
prove the following finiteness theorem. 

Theorem 1.1. — Let 7 c C2 be a finite union of simple closed real analytic curves. 
Set 

7M= {xe^}nC2:Mx<M} 
where Mx is the function appearing in condition (1.3). Let n : C2 —> C be a linear 
projection. Then 

Y/MUr-1(z) is finite for almost all z G C. 

Consequently, 7 D 7r X(Z) is countable for almost all z G C. 
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THE PROJECTIVE HULL OF CERTAIN CURVES IN C2 243 

In Section 3 this theorem is combined with results from [4] and the theorems 

concerning maximum modulus algebras to prove the following. 

A set X C Pn is called stable if the function Cx in (1.2) is bounded on X. 

Note tha t if X is stable and I c C n c P n , then the function Mx is bounded on Cn 

b y p ^ l + H2. 

Theorem 1.2. — Let 7 C Pn be a finite union of simple closed real analytic curves. As­

sume 7 is stable. Then 7 — 7 is a 1-dimensional complex analytic subvariety of¥n — 7. 

2 . T h e finiteness t h e o r e m 

Let X be a compact set in Cn and denote by Vd the space of polynomials of 

degree < d on Cn. 

Definition 2.1. — Denote by X H Cn the set of all x e Cn such tha t there exists a 

constant Mx with 

(2.1) |P(s)|<M*sup|P| 
X 

for every P eVd and d > 1. The set X fl Cn is called the projective hull of X in Cn. 

As noted above, the projective hull, defined in [4], is a subset of projective space Pn, 

and the set X ( l C n is exactly tha t part of the projective hull which lies in the affine 

chart Cn C Pn. Closely related to Definition 2.1 is the following. 

Definition 2.2. — Fix a number M > 1 and a point z G Cn 1. Then we set 

XM(Z) = {w E C : \P(z,w)\ < M d s u p 
X 

| P | , VPePd and V d > 1} 

and let X(z) = U M > I XM(z) = {w e C : (z,w) e X}. 

We consider a special case of these definitions. We fix n = 2 and consider a simple 

closed real-analytic curve X in C2. Let A denote the unit disk in C. 

Theorem 2.1. — Fix M > 1. For almost all z e A, XM(Z) is a finite set. 

Corollary 2.1. — For almost all z € C the set X(z) is countable. 

We shall prove Theorem 2.1 by adapting an argument, for the case of polynomially 

convex hulls, by Erret t Bishop in [ 2 ] . We shall follow the exposition of Bishop's 

argument in [ 1 0 , Chap. 12]. 

Definition 2.3. — The polynomial Q(z,w) ~ E n , m cnmZnWrn is called a unit polyno­

mial if maxn?m |cnm| — 1. 
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244 R. HARVEY, B. LAWSON & J. WERMER 

Definition 2.4. — The polynomial Q(z,w) = Yjn,mcnmZnwrn is said to have bidegree 

(d, e), for non-negative integers d and e, if cnm = 0 unless n < d and m < e, and d, e 

are minimal with this property. 

Note tha t d e g Q <d + e< 2 d e g Q . 

Definition 2.5. — Fix M > 1. For each z G C set 

SM(s) = {weC: \Q(z,w)\ < (Md+e)sup \Ql 

VQ G C[z, IÌ;] of bidegree (d, e) for d, e > l } . 

We now fix a number M > 1 and keep it fixed throughout what follows. 

Theorem 2.2. — For almost all z G A, SM(Z) is a finite set. 

Theorem 2.1 is an immediate consequence of Theorem 2.2. To see this, fix z G A 

and choose w G XM{Z). Choose next a polynomial Q of bidegree (d, e) and let 

5 = d e g Q . Then 

\Q{z,w)\<M6\\Q\\x<Md+*\\Q\\x 
and so w G SM(Z). Since this holds for all such XM{Z) C SM{Z). By Theorem 2.2 

SM(Z) is a finite set for a. a. z G A, so I M ( ^ ) is a finite set for almost all z G A. 

Thus Theorem 2.1 holds. 

We now go to the proof of Theorem 2.2. 

Lemma 2.1. — Let Q be a plane domain, let K be a compact set in Q, and fix zo G Ct. 

Then there exists a constant r, 0 < r < 1, so that if f is holomorphic on ft and 

| / | < 1 on Q, and if f vanishes to order X at ZQ, then \ f\ < rx on K. 

Proof. — We construct a bounded and smoothly bounded subdomain f20 of Q. with 

CIQ C O, zo G f̂ o and K C ^o- Denote by G(zo,z) the Green's function of f2o with 

pole at ZQ. 

Then e~(G+lif) is a multiple-valued holomorphic function on do with a single-

valued modulus e_G, and this modulus is = 1 on dfto (H is the harmonic conjugate 

of G). Consequently, 
yye-A(G+it f ) 

is multiple-valued and holomorphic on fi05 and its modulus is single-valued and < 1 

on dQ,Q. By the maximum principle for holomorphic functions, for each z G K, we 

have | / / e _ A ( G + ^ | < 1 at z and so 

|f (z)|< [e-(z0,z)]y 
Put t ing r = supK e G, we get our desired inequality. 
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THE PROJECTIVE HULL OF CERTAIN CURVES IN C2 245 

Lemma 2.2. — Let Q be a bounded plane domain and K a compact subset of ft. Let 

C be an algebra of holomorphic functions on ft. Put \\<j)\\ = supK \4>\ for all <\> € C. 

Fix f,g € C. Then there exist r, 0 < r < 1 and C > 0 such that for each pair of 

positive integers (d, e) we can find a unit polynomial F^ e of bidegree (d, e) such that 

(2.2) \\FdAf>9) || <Cd+erde. 

Proof. — Choose a subdomain fti of ft with K c ft\ C fl\ C ft. Choose CQ > 1 with 

| / | < Co, \g\ < CQ on f^i. Consider an arbitrary polynomial 

F(z,w) = 
d 

n=0 

e 

m=0 

Enmzn wm 

and let h be the function F(f,g) in C. Fix a positive integer A. The requirement 

tha t h should vanish at z$ to order A imposes A linear homogeneous conditions on 

the cnm, and hence has a non-trivial solution if A < (d + l ) (e + 1). We may assume 

tha t the corresponding polynomial F is a unit polynomial. Since 

DVH 

Azv 
(*o) = 0, i/ = 0 , l , . . . , A - l , 

Lemma 2.1 gives us some r, 0 < r < 1, such tha t 

\h\< sup Ihi 
fìi 

on 

Since F is a unit polynomial, 

\h\< 
d 

n=0 

e 

m—0 
| c „ m | - | / r - M m < ( ^ + l ) ( e + l)C70d+e on î î i . 

Hence for large C, 

| | / i | | < ( d + l ) ( e + l)C0d+e < Cd+erx. 

We choose A = de. Since de < ( d + l ) ( e + l ) , we get 

\\nf,9)\\ = \\h\\ < Cd+e rde 

as desired. 

Note. — We shall apply this result to the case when K is the unit circle, Q is an 

annulus containing K, and C is the algebra of functions holomorphic on ft. 

The curve X in our Theorem 2.2 is real analytic by hypothesis, and hence can be 

represented parametrically: 

* =/(C), w = g(0 Cefi 
where f, q are functions in C. 
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246 R. HARVEY, B. LAWSON & J. WERMER 

Lemma 2.3. — Let r, C and F^e be as in Lemma 2.2. Fix ro, r < r*o < 1. Then there 

exists do such that 

(2.3) (MC)d+erde < r$e for d,e > do. 

Proof. — We write ~ for "is equivalent to". 

(2.3) - (MC)d+e < 
ro 

r 

de 
~(d + e) log(MC) < de log 

ro 

r 
1 

e + 
1 

d 
log(MC) < log ro 

r 

The last inequality is t rue for d, e > do for some suitable do. We are done. 

Wi th M , r, ro fixed, we choose do as in (2.3). Henceforth, we tacitly as­

sume d, e > do-

Definition 2.6. — Fix d, e and put F = Fde as above. Then 

F(z,w) = 
e 

3=0 

G3 (z) w3 

where for some j = jo, Gj0 is a unit polynomial of degree < d. We define 

T(d,e) = { z e A : \ G j o ( z ) \ < R R } . 

Lemma 2.4. — Let F be a unit polynomial in z, of degree k, and let a be a positive 

number. Put A = {z e A : |F(z)| < ak}. Then 

m(A) < 48a, 

where m is 2-dimensional measure. 

Proof. — This is Lemma 12.3 in [ 1 0 ] , and a proof of it is given there. 

Lemma 2.5. — Fix d,e. Fix a point z\ G A — T(d1e). Then there exists a unit 

polynomial B in one variable, of degree < e, such that for every WQ £ SM(ZI), we have 

\B(w0)\ < r01/2de 

Proof. — Define the polynomial A in one variable by A(w) = F(zi,w), where 

F = Fd,e- As in Definition2.6 then 

A(w) = 
e 

j=0 

GMw* 

and GjQ is a unit polynomial in z\. Since z\ £ T(d, e), we have 

(2.4) Gjo(Zl)\ > 
\de 

ro • 
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Fix Wn G SM(ZI). Then 

\F(zlfvjo)\ < Md+e • \\F\\X 

< Md+e Cd +e rde by (2.2) 

< rdr 0 by (2.3). 

We shall divide A by its largest coefficient K. Note tha t 

1*1 > |G,O(zi)L > T1/2 de0 
by (2.4). Pu t B(w) = A(w)/K. Then d e g B < e and 

\B(wo)\ = \M*>o)\ 
\K\ 

\F(zuw0)\ 

\K\ < 
rae 

1 de 
\de 

r0 ' 

We are done. 

Lemma 2.6. — For each d, 
ra(T(d,e)) < 48rf. 

Proof. — Fix e and fix d. Wi th GjQ as above, write G = Gj0. Then d e g G < d. 
By definition of T(d, e), if z G T(d, e), then 

\G(z)\<r 0 
1/2de = (r|e)d<(r|e)degG, 

and so 
T ( d , e ) ç { z e A : | G W | < ( r | e ) d e ^ } . 

Therefore, 
ra[T(d,e)] < ra{* G A : |G(*)| < afc} 

where A = r1/ 
20e 

and k = degG. By Lemma 2.4, m{z G A : \G(z)\ < ak} < 48a, 

and so m[T(d,e)] < 48r o 
1/2e , as was to be shown. 

Definition 2.7. — Fix e and and set 

He = {z : z G A - T ( d , e ) for infinitely many d } . 

Lemma 2.7. — If z* e He, then SM(Z*) has at most e elements. 

Proof — Fix z* G He. Then there exists a sequence {dj} such tha t z* G A - T(d/, e) 
for each j . By Lemma 2.5, for each j there is a unit polynomial B« with d e g R < e 
such tha t 

(2.5) Bj(w0)\ < r0 
1/2 

(die) for each WQ G SM(Z*)-

Since degi?j < e for all j , and each Bj is a unit polynomial, there exists a sub­
sequence of the sequence {Bj} converging uniformly to a unit polynomial B* on 
compact sets in the w-plane. Because of (2.5), B*(wo) = 0 for each wo G SM(Z*). 
Also, degB* < e. Hence the cardinality of SM(Z*) is < e. We are done. 
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248 R. HARVEY, B. LAWSON & J. WERMER 

Proof of Theorem 2.2. — Our task is to show tha t m{z G A : SM(Z) is infinite } = 0. 

Fix e. Fix z G A — He. Since z £ He, we have z G A — T(d, e) for only finitely many d, 

so z G T(d, e) for all d from some d = k on. Therefore, 

z G 

oo 

d=fc 

T ( d , e ) 

and so 

(2.6) A - # e C 
00 

k=ko 

oo 

k=ko 

T ( d , e ) 

By Lemma 2.6, m(T(d ,e ) ) < 48r 
o 

for each d. Therefore, 

m 

oo 

k=l 

T ( d , e ) < 4 8 r 0

2 e 

for each k. So the right hand side of (2.6) is the union of an increasing family of sets 

each of which has m-measure < 48r 0

2 . Thus (2.6) gives 

(2.7) m(A-He) <48r 0

2 e. 

Also, by Lemma 2.7, we have 

(2.8) If Z* G tfe, then#{5 jwrCO} < e 

Fix z G A such tha t the set SM{Z) is infinite. Then z £ He for each e, tha t is, 

z G A — He for all e. Hence, { z G A : SM(Z) is infinite } C A — i J e . Therefore 

777,(2: G A : SM(Z) is infinite } < ra(A-Ue) < 4 8 r 0

2 e 

by (2.7). We now let e —> 0 0 and conclude tha t rajz G A : SM(Z) is infinite } = 0. 

Theorem 2.2 is proved. 

Proof of Corollary 2.1. — Fix r > 0 and apply Theorem 2.1 to the curve pr(X) where 

pr : C 2 —• C 2 is given by p r ( z ) = rz. Since p r ( X n C 2 ) = (prX) fl C 2 , we conclude 

tha t Theorem 2.1 holds with A replaced by ^ A . 

Theorem 2.3. — Theorem 2.1 remains valid without the assumption that X is con­

nected, that is, it is valid when X is a finite union of real analytic simple closed 

curves in C 2 . 

Proof. — Write X = 71 U 72 U • • • U 7A/ where each 7^ C C 2 is a simple closed real an­

alytic curve. Choose a neighborhood Q, of the unit circle K in C and complex analytic 

maps (fk,9k) : f̂c —> C 2 , k = 1 , . . . , N whose restriction to K is a parameterization 

of 7fc. We now apply the following. 
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Lemma 2.8. — Let Ct be a plane domain and K a compact subset of ft. Let C be 

an algebra of holomorphic functions on fl. Put \\(j>\\ = supK \</>\ for all (f) G C. Fix 

fk,9k € £ for k = 1 , . . . , N. Then there exist r, 0 < r < 1 and C > 0 such that for 

each pair of positive integers (d, e) with d + e > N, we can find a unit polynomial F^e 

of bidegree (d, e) such that 

(2.9) Fdte(fk,9k)\ < Cd+r r deN for & = 1 , . . . ,7V. 

Proof. — We fix a point ZQ G ft and choose F^e so tha t Fd^e(fk,gk) vanishes to 

order de/N at z0 for all k. This is possible if d + e > N. We then proceed as in the 

proof of Lemma 2.2. 

One can now carry out the arguments given above for the case of one component. 

The only difference is tha t in the estimates, re0 will be replaced by r^N. • 

3. T h e ana ly t i c i ty t h e o r e m 

Let 0(1) —> Pn denote the holomorphic line bundle of Chern class 1 over complex 

projective n-space, endowed with its s tandard U(n+1)-invariant metric | | . ||. Follow­

ing [4], we define the projective hull of a compact subset X C Pn to be the set X of 

points x G Pn for which there exists a constant C = Cx such tha t 

(3-1) | | P ( x ) | | < C x d s u p | | P | | . 
X 

for all holomorphic sections P G #°(Pn, 0 ( d ) ) and all d > 1. 

Note. — Recall tha t the holomorphic sections H°(Pn, 0(d)) correspond naturally to 

the homogeneous polynomials of degree d in homogeneous coordinates [Zo , . . . ,Zn] 

for Pn. From this one can see (cf. [4, §6]) tha t if X is contained in an affine 

chart Cn C Pn, then XflCn is exactly the "projective hull of X in Cn" introduced in § 2. 

Moreover, the function MR appearing in (2.1) can be taken to be mc = py/i + ||CII2cc 
for C £ X fl Cn, where p is a constant depending only on X. 

For each x G X there is a best constant C(x) = min{Cx : (3.1) holds VP} . The 

set X is called stable if the best constant function C is bounded on X. We know 

from [4, Prop. 10.2] tha t if X is stable, then X is compact. 

The point of this section is to prove the following projective version of the main 

theorem in [9]. 

Theorem 3.1. — Letj c Pn be a finite union of real analytic closed curves and assume 

7 is stable. Then 7 — 7 is a one-dimensional complex analytic subvariety ofFn — 7. 
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Note. — When this conclusion holds, one can show tha t , in fact, 7 is the image of a 
compact Riemann surface with analytic boundary under a holomorphic map to PN. 
We will prove this in § 4. 

Proof. — Assume to begin tha t n = 2. Since 7 is real analytic, it is pluripolar, i.e., 
locally contained in the {—oo}-set of a plurisubharmonic function (which is ^ —00). 
Therefore, by [4, Cor. 4.4] we know tha t 7 is also pluripolar. In particular, it is 
nowhere dense. As noted above, 7 is closed by stability. Hence, we may choose a 
point x G P 2 and a ball B centered at x such tha t 7 C P 2 — B. Let 

(3.2) P2 _ {x} JL> pi 

be linear projection with center x. This projection (3.2) is naturally a holomorphic 
line bundle ^ 0 ( 1 ) , and 

(3.3) P 2 - B —> P 1 

can be identified, after scalar multiplication by some constant r > 0, with its open 
unit disk bundle. 

Cover P 1 with two affine charts: VQ = P1—{0} and Voo = P 1 — { 0 0 } , and assume tha t 
7 fl 7T-1(0) = 7 n 7r_1(oo) = 0 . By symmetry we may restrict at tention to 7r_1(Vr00). 
This chart has an identification 

t t - ^ K o ) ^ C2 = {(z,w) : z,w e C} 

with the property tha t V00 maps linearly to the z-axis and n can be writ ten as 
7r(z, W) = z. The subset P 2 — B, intersected with this chart, is represented by 

(3.4) (P2 - B) n C2 = Uz,w) : \w\2 < \z\2 + 1} . 

Set 
ÎÎ = C - tt(7) and C/ = 7 r - 1 ( n ) = C 2 - 7 r - 1 ( 7 r ( 7 ) ) . 

Proposition 3.1. — Let 7 c C be a stable real analytic curve with the property that 

(3.5) 7 n C 2 C Uz,w) : \w\2 < \z\2 + l}. 

Then •jdU is a 1-dimensional complex analytic subvariety ofU. 

Proof. — Note to begin tha t since 7 is compact, condition (3.5) implies tha t 

(3.6) 7T : 7 D U —• ft is a proper map. 

Consider now the algebra A of functions on 7 fl U given by restriction of the holomor­
phic functions on [/, i.e., 

A={fcnU- . f eO(U)} . 
We now claim tha t ( A , 7 ( 1 U,ft,ir) is a maximum modulus algebra, as defined in [ 1 , 
p. 64]. Given (3.6) this means tha t we need only prove the following. 
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Lemma 3A. — For each ZQ € ft and each closed disk D C ft centered at ZQ, the 

equality 

(3.7) \f(z0,w0)\ < sup 
7RI7R-1(aD) 

l/l 

/io/ds for all f € A. 

Proof — By hypothesis (3.5) there exists an R > 0 such tha t 

7 PI 7r_1(i^) c D x A 
è * 

where Ar = {w : \w\ < r}. In particular, we have tha t 

(3.8) JND(D x AR) = 7 n (3D x A ^ ) = 7 fi 7r_i(&D). 

Now Theorem 12.8 in [4] states tha t 

7 fi 7T_1(Z)) = 7 f ] ( D x Atf) C polynomial hull of 7 fi D(D x AR). 

Applying (3.8) gives 

7 fl 7T 1 (D) C polynomial hull of 7 fl n 1 {3D), 

and Lemma 3.1 follows immediately. 

We have now shown tha t (A, 7 fl f/, ft, 7r) is a maximum modulus algebra. Further­

more, since 7 is stable, we know from Theorem 2.1 tha t there exists an N > 0 such 

tha t 

il(N) = {z £ ft : # (TT -1 (^ ) fl 7) < iV} 

has positive measure. (Since 0 — [jN Cl(N) has measure zero.) It now follows from 

Theorem 11.8 in [1] tha t : 

(i) Çl = il(N), and 

(ii) there exists a discrete subset A C ft such tha t 7 fl 7r 1 (ft — A) has the structure 

of a Riemann surface on which every function in A is analytic. 

Since A is the restriction of holomorphic functions on U to 7, condition (ii) implies 

tha t 7 fl 7r-1(ft — A) is a 1-dimensional complex analytic subvariety of 7r_1(ft — A) = 

U - r-1(A) . 
It now follows tha t 7 fl U is a 1-dimensional complex analytic subvariety of U. 

To see this, fix zo £ A and choose a small closed disk D C ft centered at z$ 

with DC\A = {zo}. The arguments above show tha t 7 fl n~1(D) is contained in 

the polynomial hull of the real analytic curve 7fl7r_1(9Z>). Applying s tandard results 

[ 1 , §12] proves Proposition 3.1. 

Proposition 3.1 together with the discussion preceding it, give the following. 

Corollary 3.1. — The set 7 — 7r (^7) is a complex analytic subvariety of dimension 1 

in P2 - T T - 1 ^ ) . 
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Observe tha t for every point y G P — 7 there is a point x G P — 7 such tha t 

ir(y) £ TT(7) where IT is the projection (3.2) with center x. Consequently, Corollary 3.1 

proves Theorem 3.1 for the case n = 2. 

Suppose now tha t n = 3 and choose x G P3 — 7. The set of such x is open and 

dense since 7 is a compact pluripolar set of Hausdorff dimension 2 (cf. [4, Cor. 4.4 

and Thm. 12.5]). Let LT : P3 — {x} —• P2 be the projection with center x. One sees 

easily tha t 

n (7 ) C n 7 , 

and by the above II7 —II7 is a complex analytic curve in P2 — II7. Standard arguments 

now show tha t 7 — 7 is a complex analytic curve in P3 — 7. Proceeding by induction 

on n completes the proof of Theorem 3.1. 

4. B o u n d a r y R e g u l a r i t y 

The conclusion of Theorem 3.1 implies a strong regularity at the boundary. For 

future reference we include a discussion of this regularity. 

Theorem 4.1. — Let 7 C Pn be a finite disjoint union of real analytic regular closed 

curves, and suppose V is a 1-dimensional complex analytic subvariety of the comple­

ment Pn — 7. Then the closure 

V = 

m 

j=1 
VI 

t 

k=m-\-l 

v'k 

where: 

1) Each Vj is a 1-dimensional complex analytic subvariety of finite area in Pn — 7 

whose closure Vj is an immersed variety in Pn with non-empty boundary dVj = jj 

consisting of a union of components 0 / 7 . In particular, there exists a connected 

Riemann surface Sj, a compact subdomain Wj C Sj with real analytic boundary, and 

a generically injective holomorphic map 

PJ : SJ —• Pn with pj (Wj) = Vj 

which is an embedding on a neighborhood of dWj and has pj(dWj) = jj. 

2) The closure of each Vk is an irreducible algebraic curve in Pn with 7^ C Reg(Ffc) 

where 7^ is a (possibly empty) finite union of components of 7. 

Note. — When 7 is stable and V = 7, each 7^ is non-empty for m < k < i. 

Theorem 4.1 can be put into a more succinct form. 
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Theorem 4.2. — Let 7 and V be as above. Then there exists a Riemann surface S (not 

necessarily connected), a compact subdomain W C S with real analytic boundary, and 

a holomorphic map p : S —> P n which is generically infective and satisfies 

1) p(W) = V, 

2) p is an embedding on a tubular neighborhood of dW in S and 

3) p(dW) is a union of components ofj. 

Proof of Theorem J^.l. — We assume n = 2. The case of general n is similar. 

We first note tha t V has finite area and finitely many irreducible components 

V i , . . . , Vi. This follows from work of Shiffman, but can be seen directly as follows. 

Choose any p G P2 — V and let TT : P2 — {p} —> P1 be projection. Then TT\V is finitely 

sheeted over P1 — 7r(7), and therefore V has finitely many components. In fact 7r\v 

must also be finitely sheeted over all of P1 . To see this note tha t V can contain no fibre 

of 7r since p £ V = V U 7. Hence, the intersection /ir~1(x) fl V for x G ir(j) is at most 

countable. If it were infinite, one easily sees tha t the sheeting number in contiguous 

domains of P1 — 7r(7) is unbounded. Choosing two distinct such projections and an 

easy estimate shows tha t the integral of the projective Kahler form on V is finite. 

Now each irreducible component Vj of V defines a current [Vj] by integration whose 

boundary is supported in 7. By the Federer Flat Support Theorem [3, 4.1.15], 

d[Vj} = nJhi] 

where 7^ = suppd[VJ] is a union of connected components of 7 (appropriately ori­

ented) and rij > 0 is a locally constant integer-valued function on 7^. Order the Vj so 

tha t d[Vj] ^ 0 for j = 1 , . . . , m and d[Vj] = 0 for j > m. 

Since 7 is a regularly embedded real analytic curve, it has a complexification E D 7 

which is a union of regularly embedded closed complex analytic annuli. Let £ j denote 

tha t par t of £ which is the complexification of 7^ for j < m. Write E j =Ej U77 U E ~ 

where E^1 are the components of T,j — 7^ with signs chosen so tha t S + is the "outer 

strip", tha t is, so tha t 

«t í = iî -ъ-
Consider the current [Vj] = [Vj] + nj [Zj+] which has 

d[v;} = nj[1+}. 
The structure theorem of King [8] implies tha t supp[VJ*] is a 1-dimensional subvariety 
of P2 - 7+. It follows tha t Vj* is an analytic continuation of Vj and in particular 

Uj = 1 and E - C Vj. 

Defining pj : Sj —» V* to be the normalization of V* and setting Wj = p-\Vj) 
completes par t 1) unless there exist Vi ^ Vj which share some common boundary 
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components. In this case Vi and Vj are analytic continuations of each other and can 

be combined into a single component of V. Eliminating all common boundaries in 

this manner completes part 1). 

Note tha t after fusing components, one may obtain algebraic curves which contain 

a non-empty union of components of 7 in their regular locus. These will be listed 

in par t 2). The remaining components of V (whose current boundaries are zero) are 

algebraic curves by King [8]. 
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