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GRADIENT KAHLER RICCI SOLITONS 

by 

R o b e r t L. Bryant 

To Jean Pierre Bourguignon, on the occasion of his 60th birthday. 

Abstract. — Some observations about the local and global generality of gradient 
Kahler Ricci solitons are made, including the existence of a canonically associated 
holomorphic volume form and vector field, the local generality of solutions with a 
prescribed holomorphic volume form and vector field, and the existence of Poincaré 
coordinates in the case that the Ricci curvature is positive and the vector field has a 
fixed point. 

Résumé (Solitons gradients de Kähler-Ricci). — Nous proposons quelques observations 
sur les généralités locale et globale des solitons gradients de Kähler-Ricci, y compris 
l'existence d'une forme de volume holomorphe et d'un champ de vecteurs canonique-
ment associés, la généralité locale de solutions pour une forme de volume holomorphe 
et un champ de vecteurs donnés, et l'existence de coordonnées de Poincaré dans le 
cas où la courbure de Ricci est positive et le champ de vecteurs a un point fixe. 

1. Introduction and Summary 

This article concerns the local and global geometry of gradient Kahler Ricci soli

tons, i.e., Kahler metrics g on a complex n-manifold M that admit a Ricci potential, 

i.e., a function / such that Ric(#) = V 2 / (where V denotes the Levi-Civita connection 

of M . 

These metrics arise as limiting metrics in the study of the Ricci flow gt = —2 Ric(#) 

applied to Kahler metrics. Under the Ricci flow, a gradient Kahler Ricci soliton on 
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52 R. BRYANT 

evolves by flowing under the vector field V / , i.e., 

1.1 g(t) = exp ( - t v / ) 
* [do 

In particular, if the flow of V / is complete, then the Ricci flow with initial value #0 

exists for all time. 

The reader who wants more background on these metrics might consult the ref

erences and survey articles [3, 5, 10]. The references [8, 9, 6, 14] contain further 

important work in the area and will be cited further below. 

1.1. Basic facts. — Unless the metric g admits flat factors, the equation Ric(p) = 

V 2 / determines / up to an additive constant and it does no harm to fix a choice of / 

for the discussion. For simplicity, it does no harm to assume that g has no (local) flat 

factors and so this will frequently be done. Also, the Ricci-flat case (aka the Calabi-

Yau case), in which Ric(#) = 0, is a special case that is usually treated by different 

methods, so it will usually be assumed that Ric(#) ^ 0. (Indeed, most of the latter 

part of this article will focus on the case in which Ric (o) > 0) . 

1.1.1. The associated holomorphic vector field Z. — One of the earliest observa

tions [2] made about gradient Kàhler Ricci solitons is that the vector field V / is 

the real part of a holomorphic vector field and that, moreover, J ( V / ) is a Killing field 

for g. In this article, I will take Z = | ( V / — i J ( V / ) ) to be the holomorphic vector 

field associated to g. 

1.1.2. The holomorphic volume form T . — In the Ricci-flat case, at least when M 

is simply connected, it is well-known that there is a ^-parallel holomorphic volume 

form T , i.e., one which satisfies the condition that i n 2 2 _ n T A T is the real volume 

form determined by g and the J-orientation. 

In § 2.2, I note that, for any gradient Kàhler Ricci soliton g with Ricci potential / 

defined on a simply connected M , there is a holomorphic volume form T (unique up 

to a constant multiple of modulus 1) such that i n 2~n e~f T A T is the real volume 

form determined by g and the J-orientation. Of course, T is not ^-parallel (unless g 

is Ricci-flat) but satisfies V T = \ df 0 T . 

This leads to a notion of special coordinate charts for (#, / ) i.e., coordinate 

charts ([ / , z) such that the associated coordinate volume form dz = dz1 A • • • A dzn 

is the restriction of T to U. In such coordinate charts, several of the usual formulae 

simplify for gradient Kàhler Ricci solitons. 

1.1.3. The T-divergence of Z. — Given a vector field and and volume form, the 

divergence of the vector field with respect to the volume form is well defined. It turns 

out to be useful to consider this quantity for Z and T . The divergence in this case is 

the (necessarily holomorphic) function h that satisfies Lz T = hT. 
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GRADIENT KAHLER RICCI SOLITONS 53 

By general principles, the scalar function h must be expressible in terms of the first 

and second derivatives of / . Explicit computation (Proposition 4) yields 

1.2 2h = tig V 2 + | V / | I
2 = R (9, + | V / r , 

where R(g) = t r p ( R i c ( # ) ) is the scalar curvature of g. In particular, h is real-valued 

and therefore constant. Now, the constancy of R(g) + | V / | 2 had already been noted 

and utilized by Hamilton and Cao [6]. However, its interpretation as a holomorphic 

divergence seems to be new. 

1.2. Generality. — An interesting question is: How many gradient Kâhler Ricci 
solitons are there? Of course, this rather vaerue Question can be sharnened in several 

ways. 

The point of view adopted in this article is to start with a complex n-manifold M 

already endowed with a holomorphic volume form T and a holomorphic vector field Z 

and ask how many gradient Kahler solitons on M there might be (locally or globally) 

that have Z and T as their associated holomorphic data. 

An obvious necessary condition is that the divergence h of Z with respect to T 

must be a real constant. 

1.2.1. Nonsingular extension. — Away from the singularities (i.e., zeroes) of Z , this 

divergence condition turns out to be locally sufficient. 

More precisely, I show (see Theorem 2) that if H C M is an embedded complex 

hypersurface that is transverse at each of its points to Z , and go and fo are, re

spectively, a real-analytic Kahler metric and function on then there is an open 

neighborhood U of H in M on which there exists a gradient Kahler Ricci soliton g 
with potential / whose associated holomorphic quantities are Z and T and such that g 
and / pull back to H to become go and / o - The pair (g, / ) is essentially uniquely 

specified by these conditions. The real-analyticity of the 'initial data' go and fo is 

necessary in order for an extention to exist since any gradient Kahler Ricci soliton is 

real-analytic anyway (see Remark 4) . 

Roughly speaking, this result shows that, away from singular points of Z , the local 

solitons g with associated holomorphic data ( Z , T ) depend on two arbitrary (real-

analytic) functions of 2n—2 variables. 

1.2.2. Singular existence. — The existence of (local) gradient Kahler solitons in a 

neighborhood of a singularity p of Z is both more subtle and more interesting. 

Even if the divergence of Z with respect to T is a real constant, it is not true in 

general that a gradient Kahler Ricci solition with Z and T as associated holomorphic 

data exists in a neighborhood of such a p. 
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54 R. BRYANT 

I show (Proposition 6) that a necessary condition is that there exist p-centered 
holomorphic coordinates z = <<w<on a p-neighborhood U C M and real num
bers hi,...<,h<n such that, on Uw<<, 

1.3 Z = h1z l 
d 

Bz1 
+ --- + hnzn d 

dzn' 

In other words, Z must be holomorphically linearizable, with real eigenvalues. ^ 
In such a case, if Lz T = hT where h is a constant, then h = hi + • • • + hn. I 

show (Proposition 7) that, moreover, in this case, one can always choose Z-linearizing 
coordinates as above so that T = dz1 A • • • A dzn. 

Thus, the possible local singular pairs (Z, T) that can be associated to a gradient 
Kahler Ricci soliton are, up to biholomorphism, parametrized by n real constants. 

Using this normal form, one then observes that, by taking products of solitons of 
dimension 1, any set of real constants (hi,..., hn) can occur (see Remark 9). Since, 
for any gradient Kahler Ricci soliton g with associated holomorphic data (Z, T) , the 
formula Ric(#) = LRe(^) g holds, it follows that if g is such a Kahler Ricci soliton de
fined on a neighborhood of a point p with Z(p) = 0, then hi,..., hn are the eigenvalues 
(each of even multiplicity) of Kic(g) with respect to g at p. 

However, this does not fully answer the question of how 'general' the solitons are 
in a neighborhood of such a p. In fact, this very subtly depends on the numbers hi. 
For example, if the hi G R are linearly independent over Q, then any gradient Kahler 
Ricci soliton g with associated data (Z,Y) defined on a neighborhood of p must be 
invariant under the compact n-torus action generated by the closure of the flow of 
the imaginary part of Z. This puts severe restrictions on the possibilities for such 
solitons. 

At the conclusion of Section §3, I discuss the local generality problem near a 
singular point of Z and explain how it can best be viewed as an elliptic boundary 
value problem of a certain type, but do not go into any further detail. A fuller 
discussion of this case may perhaps be undertaken at a later date. 

1.3. The positive case. — In Section § 4,1 turn to an interesting special case: The 
case where g is complete, the Ricci curvature is positive, and the scalar curvature R(g) 
attains its maximum at some (necessarily unique) point p G M. 

This case has been studied before by Cao and Hamilton [6], who proved that this 
point p is a minimum of the Ricci potential / , that / is a proper plurisubharmonic 
exhaustion function on M (which is therefore Stein), and that, moreover, the Killing 
field J ( V / ) has a periodic orbit on 'many' of its level sets. 

(1) Of course, it is by no means true that every holomorphic vector field is holomorphically linearizable 
at each of its singular points. 
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GRADIENT KAHLER RICCI SOLITONS 55 

For simplicity, the Ricci potential / will be be normalized so that f(p) = 0, so 

that / is positive away from p. 

I show (Theorem 3) that under these assumptions there exist global Z-linearizing 

coordinates z = (zl) : M —> Cn, so that M is biholomorphic to Cn (which generalizes 

an earlier result of Chau and Tarn [8]). (2) Moreover, as a consequence, it follows that 

every positive level set of / has at least n periodic orbits of J ( V / ) , a considerable 

sharpening of Cao and Hamilton's original results. 

This global coordinate system has several other applications. 

For example, I show that there is a Kahler potential <j> for g that is invariant under 

the flow of J ( V / ) and that this potential is unique up to an additive constant. (Which 

can be normalized away by requiring that (j)(p) = 0.) 

As another application, I show how to normalize the choice of Z-linearizing holo

morphic coordinates up to an ambiguity that lies in a compact subgroup of U(n). 

This makes the function \z\ well-defined on M, so it is available for estimates. 

As an illustration of such use, I show that there are positive constants r and oi , 

a2, &i, 62, ci, and C2 such that, whenever x<<^*ù< 

ri.4 

ai log x< <;:!^^^^ < a2 log w< << 

h log I z < d(z,0] < b2 log I \z\ 5 

<:ù log Id \2 ̂ c<<<< <C2 f}og\z\\ 
.2 

<< 

I also give some bounds for a\ and a2- Perhaps these will be useful in further work. 

1.4. The toric case. — This section studies the geometry of the reduced equation 

in the case when a gradient Kaher Ricci soliton g defined on a neighborhood of 0 E Cn 

has toric symmetry, i.e., is invariant under the action of Tn, the diagonal subgroup 

of U(n). This may seem specialized, but, for example, if the associated holomorphic 

vector field is where h = (hi,..., hn) and the real numbers h±,..., hn have the 

'generic' property of being linearly independent over Q, then g has toric symmetry. 

Thus, metrics with toric symmetry are the rule when Z has a 'generic' singularity. 

I first derive the equation satisfied by the reduced potential, which turns out to 

be a singular Monge-Ampere equation. (The singularities are, of course, related to 

the singular orbits of the Tn-action.) I then show that, nevertheless, this singular 

(2) On 27 July 2004, about 12 hours before the first version of this article was posted on the arXiv, 
Chau and Tarn posted the first version of their article arXiv:math.DG/0407449 in which they prove, 
under the same hypotheses as in Theorem 3, that M is biholomorphic to Cn. I saw their posting 
just before I posted this article. Their method is different and does not produce Z-linearizing coor
dinates, but has the advantage that it applies in the case of expanding solitons. In the second (much 
shortened) version of their article, posted on 2 August, 2004, they deduce their biholomorphism 
result from already-known results about automorphisms of complex manifolds. See [9]. 
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56 R. BRYANT 

equation has good regularity and its singular initial value problem is well-posed in 

the sense of Gerard and Tahara [11]. 

As a consequence (Corollary 5) , it follows that, for any h G Rn, any real-analytic 

Tn_1-invariant Kahler metric on a neighborhood of 0 G Cn_1 is the restriction to Cn_1 

of an essentially unique toric gradient Kahler Ricci soliton on an open subset of Cn 

with associated holomorphic vector field Z = and associated holomorphic volume 

form T = dz. In particular, it follows that, in a sense made precise in that section, 

the toric gradient Kahler Ricci solitons on Cn depend on one 'arbitrary' real-analytic 

function of (n—1) (real) variables. 

Next, I show that the reduced (singular Monge-Ampere) equation is of Euler-

Lagrange type, at least, away from its singular locus, and discuss some of its con

servation laws via an application of Noether's Theorem. (This is in contrast to the 

unreduced soliton equation, which is not variational). 

1.5. Acknowledgement. — This work is mostly based on notes written after 

a conversation with Richard Hamilton during a visit he made to Duke University 

in 1991. Section 4 is more recent, having been written after further conversations 

with Hamilton during a semester I spent at Columbia Universitv in the spring: of 

2004. 

It is a pleasure thank Hamilton for his interest and to thank Columbia Universitv 

for its hospitality. 

2. Associated Holomorphic Quantities 

In this section, constructions of some holomorphic quantities associated to a gra
dient Kahler Ricci soliton g on a complex n-manifold Mn with Ricci potential / wil 

be described. 

2.1 . Preliminaries. — In order to avoid confusion because of various different con

ventions in the literature, I will collect the notations, conventions, and normalizations 

to be used in this article. 

2.1.1. Tensors and inner products. — Factors of 2 are sometimes troubling and con

fusing in Kahler geometry. 

For a and b in a vector space V, I will use the conventions a o b w< l 
2 

a (g) b + b 0 a) 

and a Ab = a <S) b — b® a. In particular, a (g) b = a o b + l 
2 a Ab. 

A real-valued inner product ( , ) on a real vector space V can be extended to Vc = 

C <S> V in several different ways. A natural way is to extend it as an Hermitian form, 

i.e., so that 

2.1 [Vi + ÎV2,Wi + i w 2 ) = [(VUW!) + (V2,W2)) + i ( ( V 2 , W l ) - (vi,W2)) 
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GRADIENT KAHLER RICCI SOLITONS 57 

and that is the convention to be adopted here. 

If the real vector space V has a complex structure J : V —• V, then Vc = V^GV0 '1 

where V1,0 is the +i-eigenspace of J extended complex linearly to Vc while V0,1 is the 

(—i)-eigenspace of J. It is common practice to identify v G V with v1,0 = v — i Jv G 
V1'0, but some care must be taken with this. 

For example, an inner product (,) on V is compatible with J if (Jv, Jw) = (v, w) 

for all v,w G V. Note the identity 

(2.2; v ,1,0 
<w 

1,0' = 2\ cw<< 

For any J-compatible inner product (,) on V (or equivalently, quadratic form' 

there is an associated 2-form 77 denned by 

(2.3) T)(v, w) = (J<<<v, w). 

2.1.2. Coordinate expressions and the Ricci form. — Letx<<<$*sqqq z = f i> 
J : U -> Cn be a 

holomorphic coordinate chart on an open set U C M. The metric g restricted to U 

can be expressed in the form 

[2Ä g = gijàzloç<<\z3 

for some functions g^ = g^ on U. The associated Kahler form ft then has the 

coordinate expression 

w< n= y i jdz iAdz j<< . 

Note that gijdzi(S)dzj = g - 2iÜ. 

The Ricci tensor Ric(p) is J-compatible since g is Kahler, and hence has a coor

dinate expression Ric(#) = RjkdzJodz* where Ä = Rkj- Its associated 2-form p is 
computed by the formula 

[2.6] P = i 
2 

ßijd̂ Adx<<<<̂ ' = -iddG 

where 

(2.T G = log det(̂ m̂mkj). 

While p is independent of the coordinate chart used to compute it, the function G 

does depend on the coordinate chart. 

The scalar curvature R(g) = tro(Ric(^)) has the coordinate expression 

(2.8) R(g) = 2JsRiS 

and satisfies <p^ùm x<< = 2n p A CI n-l 
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58 R. BRYANT 

2.1.3. The gradient Kâhler Ricci soliton condition. — The following equivalent for
mulation of the gradient Kâhler Ricci soliton condition is well-known: 

Proposition 1. — A real-valued function f on M satisfies Ric(#) = D2f if and only 
if p = \ dd f and D0,2f = 0. This latter condition is equivalent to the condition that 
the g-gradient of f be the real part of a holomorphic vector field on M. • 

2.2. The associated holomorphic volume form. — In this subsection, given a 
gradient Kàhler Ricci soliton g with Ricci potential / on a simply-connected complex 
n-manifold M, a holomorphic volume form on M (unique up to a complex multiple 
of modulus 1) will be constructed. 

2.2.1. Existence of special coordinates. — The following result shows that there are 
coordinate systems in which the Ricci potential is more closely tied to the local coor
dinate quantities. 

Proposition 2. — If g is a gradient Kahler Ricci soliton on M with Ricci potential f, 
then M has an atlas of holomorphic charts (U,z) satisfying log det(^j) = —/. 

Proof. — To begin, let (U, z) be any local holomorphic coordinate chart on M, with 
quantities gij and G defined as above. 

Since / is a Ricci potential for g, i.e., Ric(o) = D2f, it follows from (2.6) and 
Proposition 1 that 

(2.9; -iddG = iddf. 

Thus, / 4- G is pluriharmonic. Assuming further that the domain U of the coordinate 
system z is simply connected, there exists a holomorphic function p on U so that 

;2.io; f = -G+p + p. 

Now let w be any other local coordinate system on the same simply connected do
main U in M and write 

(2.ir w<< i 
2 

hij dw1 A dwJ. 

Then H = log det(hij) is of the form 

(2.12) H=G+J+J 

where J is the log-determinant of the Jacobian matrix of the change of variables from 
z to w, i.e., 

(2.13 dz1 A dz2 A • A dzn = eJ dw1 A dw2 A • • • A dwn . 

It follows that every point of U has an open neighborhood V on which there exists 
a coordinate chart w for which —H = f, the Ricci potential. • 
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GRADIENT KAHLER RICCI SOLITONS 59 

Definition 1 (Special coordinates). — Let g be a gradient Kahler Ricci soliton on M 

with Ricci potential / . A coordinate chart (U,z) for which logdet(^j) = —/ will be 

said to be special for (#, / ) . 

Remark 1 (The volume form in special coordinates). — A coordinate chart (£/, z) is spe

cial for (g, / ) if and only if the volume form of g satisfies 

(2.14; dvol^ x< 
1 

n! 
<^ùm 

x<< 

> 2 

n 
e ^ dz A dz. 

Theorem 1 (Existence of holomorphic volume forms). — Let M be a simply connected 

complex n-manifold endowed with a gradient Kahler Ricci soliton g with associated 

Kahler form Q, and a choice of Ricci potential f. Then there exists a holomorphic 

volume form T on M, unique up to muliplcation by a complex number of modulus 1. 

with the property that 

'2.15) dvolg ̂ ùù 
1 

n! 
<ww $*ù 

'in 

2 

n 
e~fT A T . 

Proof. — For any two (#, /)-special coordinate charts z and w on the same domain U, 

the ratio of their corresponding holomorphic volume forms is a constant of modulus 1. 

The volume forms of special coordinate systems are thus the sections of a flat 

connection Vo on the canonical bundle of M, i.e., the bundle whose sections are the 

holomorphic volume forms on M. Since M is simply connected, the canonical bundle 

of M has a global Vo-flat section T that is unique up to a multiplicative constant. 

By construction, T satisfies (2.15). Its uniqueness up to multiplication by a con

stant of modulus 1 is now evident. • 

Definition 2 (Associated holomorphic volume forms). — Given a gradient Kahler Ricci 

soliton g with Ricci potential / , a holomorphic volume form T satisfying (2.15) will 

be said to be associated to the pair (g, /). 

Remark 2 (Scaling effects on T) . — Scaling a gradient Kahler Ricci soliton g by a con

stant produces another gradient Kahler Ricci soliton and adding a constant to / will 

produce another Ricci potential for g. 

If T is associated to ( # , / ) , then, for any real constants A > 0 and c, the re

form Ànec T is associated to ;A2 9, f+2c). 

2.3. The holomorphic flow. — Write the ^-gradient of / as Z + Z where Z is of 

type (1,0). Thus, Z w< l 2 
V / - i J ( V / ) ) . 
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60 R. BRYANT 

2.3.1. The infinitesimal symmetry. — By the standard Kahler identities, Z is the 

unique vector field of type (1,0) satisfying 

2.16) df = -iZ^n. 

Writing Z — X — iY — X — i JX, it follows that, in addition to X being the one-half 

the gradient of / , the vector field Y = JX is ^-Hamiltonian. Thus, the flow of Y 

preserves ft. 

Since Z is holomorphic by Proposition 1, the flow of Y also preserves the complex 

structure on M. 

Hence, Y must be a Killing vector field for the metric g. 

Thus, a gradient Kahler Ricci soliton that is not Ricci-flat always has a nontrivial 

infinitesimal symmetry. 

Proposition 3. — The singular locus of Z is a disjoint union of nonsingular complex 

submanifolds of M, each of which is totally geodesic in the metric g. 

Proof — Since Z is holomorphic, its singular locus (i.e., the locus where it vanishes) 

is a complex subvariety of M. However, since this locus is also the zero locus of Y = 

—Im(Z), which is a Killing field for g, this locus is a submanifold that is totally 

geodesic with respect to g. In particular, it must be smooth and hence nonsingular 

as a complex subvariety. • 

2.3.2. Z in special coordinates. — Assume ([/, z) is a special local coordinate system. 

Since 

[2.\T dG = 9iJ dgij 

x<< 
dzk <^$*ùù 

the formula for Z in special coordinates is 

f2.18) Z = Ze-
d 

dze 
x<<< 23 

Ik <^$ùù dgi} 
dzk) 

d 
w<<< 

Thus, the equations for a gradient Kahler Ricci soliton in special coordinates are that 

the functions Ze defined by (2.18) be holomorphic. 

In fact, the expression in (2.18) can be simplified, since the closure of f2 is equivalent 

to the equations 

(2.19" 
dgij 

<^ù* 
x<< 

d9ik 
dzi ' 

Thus, 

'2.20) Zl = -2g 
w<<ù:; àgi-. 

dzk 
= -2 g ¿3 x<< d9ik 

dzi 
= 2 o « . 9fk 

dg Ik 

dzi 
= 2 

dg 
dzó ' 

where I have used the identity ^ù 
vm 9fk x<< $*ù and the identity 9ik9 ik w< ̂ *ùù and its 

derivatives. 

ASTÉRISQUE 321 



GRADIENT KAHLER RICCI SOLITONS 61 

2.3.3. The T-divergence of Z. — Since Z is holomorphic, the Lie derivative of T 

with respect to Z must be of the form h T where h is a holomorphic function on M 

(usually called the divergence of Z with respect to T) . 

Replacing T by AT for any A E C* will not affect the definition of ft, so the 

function ft is intrinsic to the geometry of the soliton. On general principle, it must be 

computable in terms of the first and second covariant derivatives of / , which leads to 

the following; interpretation of a result of Cao and Hamilton: 

Proposition 4. — The holomorphic function ft is real-valued (and therefore constant). 

Moreover, 

[2.21] 2ft = R(g) + 2\Z I2 

where R(g) is the scalar curvature of g and \Z\2 is the squared g-norm of Z. 

Proof. — In special coordinates, where T = dz1 A • • • A dzn, the function ft has the 

<<^$*ùmk 

2.22 ft = 
dZ£ 

dz£' 

Thus, by (2.20), 

(2.23) ft = 2 
dg ¿3 

dz* dzi' 

which shows that the holomorphic function ft is real-valued and therefore constant 

Moreover, since p = iddf, it follows that 

i 
2 

P i o t r T. 
l &; J o â 

Adzh = p = iddf = d Z-iQ 

[2.24 
x<< 2, 

a 9tk< 
w<< dzh 

<< i 
2 

^$ùù 
dz1 

dzi 
+ Z* dgek 

dzi 
dzj Adzk. 

In particular, in view of (2.19) and (2.18), 

'2.25 
R(g) = 2g 

<< 
Rjk = 2gfk 9ik 

dZl 

dzi 
+ Z" 

<$^^ 

dzi 
= 2h + 2g x<< z£ 

<^*m 

dzi 

= 2ft + 2Zl gfk Qgfk 
dz1 

= 2h-9i Ik zlzk = 2h-2 \Z 2 
5 

as claimed. • 

Remark 3 (Interpretations). — It was Cao and Hamilton [6, Lemma 4.1] who first 

observed that the quantity R(g) + |V/ |2 is constant for a (steady) gradient Kahler 

Ricci soliton. Since Z = | ( V / - i J ( V / ) ) , one has 2\Z\2 = |V / | 2 , so their expression 

is the right hand side of (2.21). 
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62 R. BRYANT 

The interpretation of R(g) + |V/ |2 as the T-divergence of Z seems to be new. In 

fact, for any gradient Ricci soliton g (not necessarily Kahler) with Ricci potential / , 

one has the identity 

(2.26) x<< (e-̂  dvolg) = 2ft v<<<dvolg . 

where R(g) + | V / | 2 = 2h is a constant. This points out the importance of the modified 

volume form <<dvolg in the general case. 

In a sense, this constancy can be regarded as a sort of conservation law for the Ricci 

flow. Note that, since A / = R(g), this relation is equivalent to the equation A0(e^) = 

2ft e ' . 

2.4. Examples. — The associated holomorphic objects constructed so far make it 

possible to simplify somewhat the usual treatment of the known explicit examples. 

The following examples will be useful in later discussions in this article. 

Example 1 (The one-dimensional case: Hamilton's cigar). — Suppose that M is a Rie-

mann surface. Then T is a nowhere vanishing 1-form on M and Z is a holomorphic 

vector field on M that satisfies d (T(Z) ) = ftT, where ft is a constant. There are 

essentiallv two cases to consider. 

First, suppose that ft = 0. Then T ( Z ) is a constant, say T ( Z ) = c. 

If c = 0, then Z is identically zero, and, from (2.20) it follows that, in special 

coordinates z — (z1) the real-valued function g11 is constant. In particular, in special 

coordinates g = ^nld^1!2, so g is flat. 

If c 7̂  0, then Z is nowhere vanishing and, after adjusting T and the special 

coordinate system by a constant multiple, it can be assumed that c = 2, i.e., that 

T = dz1 and Z = 2 0/dz1. Then (2.20) implies that g11 = z1 + z1 + C for some 

constant C. By adding a constant to z1, it can be assumed that C = 0, so it follows 

that, in this coordinate system 

'2.27 9 = 
Idz1 |2 

<où^$**** 

Since M is supposed to be simply connected, one can take z1 to be globally defined. 

Thus M is immersed into the right half-plane in C in such a way that g is the pullback 

of the conformal metric defined by (2.27). Of course, this metric is not complete, even 

on the entire right half-plane. 

Second, assume that ft is not zero. Then T(Z) is a holomorphic function on M 

that has nowhere vanishing differential. Write T(Z) — hz1 for some (globally defined) 

holomorphic immersion z1 : M —> C. Then, by construction, T = dz1 and Z = 

hz1 d/dz1. By (2.20), it follows that 

[2.28] 911 x<< 
i 
2 

C + ft \z li2 
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for some constant c, so z1(M) C C must lie in the open set U in the w-plane on which 
c + ft^2 > 0. In fact, g must be the pullback under z1 : M —• U C C of the metric 

2.29 
2\dw\ I2 

c + h\w\ I2' 

This metric on the domain U C C is not complete unless both c and ft are nonnegative 
and it is flat unless both c and ft are positive. In this latter case, this metric is simply 
Hamilton's 'cigar' soliton [12]. 

Consequently, in dimension 1, the only complete gradient Kahler Ricci solitons are 
either flat or one of Hamilton's 'cigar' solitons (which are all homothetic to a single 
example). 

Note that, under the Ricci flow gt = — 2Ric(#), the metric (2.29) evolves as 

2.30; 9(t) = 
2\dw\ I2 

e2htc _|_ ̂  1^ I2 w<< 
2 d e~htw) i2 

c + ft e~htw\ i2 <^*mm -t) * 9o] 

where $(t)(w) — ehtw is the flow of twice the real part of Z = hwd/dw. 

Example 2 (Products). — By taking products of the 1-dimensional examples, one can 
construct a family of complete examples on Cn: Let fti,..., ftn and c i , . . . , cn be 
positive real numbers and consider the metric on C™ defined by 

(2.31 9 = 
n 

k=l 

2\dwk\ |2 

[Ck + ftfc \Wk\ 2\ ' 

This is, of course, a gradient Kahler Ricci soliton, with associated holomorphic volume 
form and vector field 

2.32 T = dw1 A dw2 A • • • A dwn, Z = 
n 

k=l 

x<<<$* d 
dwk 

The Ricci curvature is 

2.33 Ric(<?) = 
n 

k=l 

2ckhk \dwk\ I2 

ck + hk \wk\2 x2-

Although these product examples are trivial generalizations of Hamilton's cigar 
soliton, they will be useful in observations to be made below. 

Also, note that, even if the hk are not positive, as long as the Ck are positive, the 
formula (2.31) defines an incomplete gradient Kahler Ricci soliton on the poly cylinder 
defined by the inequalities Ck + hk\wk\2 > 0. 

Example 3 (Cao's Soliton). — One more case of an easily constructed example is the 
gradient Kahler Ricci soliton metric g on Cn that is invariant under U(n), discovered 
by H.-D. Cao [2]. The form of this metric can be derived as follows: 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



64 R. BRYANT 

Suppose that such a metric g is given on Cn. (One could do this analysis on 

any U(n)-invariant domain in Cn, and Cao does this, but I will not pursue this more 

general case further here.) The group U(n) must preserve the associated holomorphic 

volume form T up to a constant multiple and this implies that T must be a constant 

multiple of the standard volume form dz1 A • • • A dzn. Since T is only determined 

up to a constant multiple anyway, there is no loss of generality in assuming that 

T = d^1 A - • -Adzn. Furthermore, the vector field Z must also be invariant under U(n), 

which implies that Z must be a multiple of the radial vector field. Since d(Z-"T) = h T 

where h is real, it follows that 

f2.34l Z = h 
n 

k=l 

w< d 
<^ùù 

Now, the condition that g be rotationally invariant with associated Kâhler form 

closed implies that 

(2.35} 9iï = a [r << c^*ù (r) Z ZJ 

for some function a of r = \z1\2+'"+\zn\2 that satisfies ra'(r)+a(r) > 0 and a(r) > 0 

(when n > 1). Thus G = logi a{r) n-l . ra'(r)+a(r)) in this coordinate system. Now, 
the identity G = —/, the equation (2.16), and the above formula for the coefficients 

of ft, combine to yield 

:2.36 8G = iZ^n = 
h 

2 
ra (r)+a(r), )dr = x<< 

h 

2 
8 ra(r)) 

Supposing that n > 1 (since the n = 1 case has already been treated), it follows 

that G + h 
2 •ra(r) must be constant, i.e., that 

(2.37; ai r n-l [ra(r) 
<< 
<^* t(h/2)ra(r) = a (o: n 

Upon scaling T by a constant, it can be assumed that a(0) = 1, so assume this from 

now on. Also, one can assume that h is nonzero since, otherwise, the solution that is 

smooth at r = 0 is simply a(r) = a(0) = 1, which gives the flat metric. 

The ODE (2.37) for a is singular at r = 0, so the existence of a smooth solution 

near r = 0 is not immediately apparent. 

Fortunately, (2.37) can be integrated by quadrature: Set b(r) = (h/2)ra(r) and 

note that (2.37) can be written in terms of b as 

;2.38; b r \n—1 e6 [r] 6' r c<< (h/2) nrn-l^ 

Integrating both sides from 0 to r > 0 yields an equation of the form 

(2.39) - 1 n ̂ *ùw< i!ebl <^* <$*ù M 
n-l 

k=0 

-b(r 
< 

fc! 
x<< 

h 

,2. 

n $ùù 

n ' 
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Set 

(2 .4CT F(b) = ( - l )n (n - l ) ! e6 x<<< ww 
n-l 

k=0 

-b k 

kl 
~ eb 

= (-l)n(n-l)!e6 

n n(n+l) 
+ . . . xw 

Now, F has a power series of the form Fib) = 0 
n 

bn 1 + n 
n+1 

6 + . " , so F can 

be written in the form F(b) ww 1 
n 

www n for an analytic function of the form f(b) = 
w (1 + 1 

n+1 w^*mm The analytic function / is easily seen to satisfy fib) > 0 for all b 

and to satisfy the limits 

' 2 . 4 1 ' lim 
ò—>+oo ' 

p^ùw< = 00 and lim f(b) 
o—• — oo 

<^*ù n n\. 

In particular, / maps R diffeomorphically onto (— vn!, oo) and is smoothly invertible. 

Of course, f (0) = 0. 

Since (2.39) is equivalent to x<<< n ^*ùù h 
2 r n 

1 
when ft > 0 it can be solved 

for r > 0 by setting Hr) = f-X h 
K2 r ), yielding a unique real-analytic solution with a 

power series of the form 

(2.42; b(r) = 
ft 

2 r — 
ft2 

4 (n+r 
2 

R = (-l)n(n-l)!e6 

Consequently, when ft > 0, the solution b is defined for all r > 0 and is positive 

and strictly increasing on the half-line r > 0. In particular, the function 

(2.43^ a(r) = 
2 b(r) 

ft R 
w<< 

ft 

2(n+r 
<^*mm 

is a positive real-analytic solution of (2.37) that is defined on the range 0 < r < oo 

and satisfies ra'(r) + a(r) = b'(r) > 0 on this range, so that the expression (2.35) 

defines a gradient Kahler Ricci soliton on Cn. 

An ODE analysis of this solution (which Cao [2] does) shows that when ft > 0 the 

resulting metric is complete on Cn and has positive sectional curvature. 

When ft < 0, the solution b(r) only exists for r < — ̂  y/n\. It is not difficult to 

see that the corresponding gradient Kahler Ricci soliton on a bounded ball in Cn is 

inextendible and incomplete. 

Chau and Schnürer [7] have shown that Cao's example is stable in a certain sense 

and hence is 'isolated' in an appropriately defined neighborhood in the space of Kähler-

Ricci solitons on Cn. 

3. Potentials and local generality 

In this section, the question of 'how many' gradient Kahler Ricci soliton metrics 

could give rise to specified holomorphic data (T, Z) on a complex manifold M will be 

considered. While this question is not easy to answer globally, it is not so difficult to 

answer locally. 
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Thus, throughout this section, assume that a complex n-manifold M is specified, 
together with a nonvanishing holomorphic volume form T on M and a holomorphic 
vector field Z on M such that d(Z - j T) = hT for some real constant h. 

3.1. Local potentials. — Suppose that U C M is an open subset on which there 
exists a function <j> such that 0 = ^ dd(j) is a positive definite (1, l)-form whose asso
ciated Kàhler metric g is a gradient Ricci soliton with associated holomorphic data T 
and Z and Ricci potential f. 

By (2.16), 

;s.i) 

2df = -2iZ^n = Z-j {dd4>) = - Z - j (dot) 

= - Z - . (d(30)) = - Lz(d</>) + d(o0(Z)) 

= 5 ( a 0 ( z ) ) - ( L z ( ô 0 ) - a ( L z ( 0 ) ) ' 

By decomposition into type, it follows that 

3.2; d [V ~ d<t> 'Z) = 0. 

Consequently, F = 2 / - d<j)\ Z) = 2 / - AMZ) is a holomorphic function on U. 

3.2. Nonsingular extension problems. — Suppose now that p G U is not a 
singular point of Z. Then, by shrinking U if necessary, F can be written in the 
form F = dH(Z) for some holomorphic function H on the p-neighborhood U. Re
placing <j) by (j)+H+H, gives a new potential for Q that satisfies the stronger condition 

3.3; d<t>(z) = d0(z) = 2/ . 

This function (j) is unique up to the addition of the real part of a holomorphic function 
that is constant on the orbits of Z. 

Of course, (3.3) implies that d(f>(Y) = 0, i.e., that (j) is invariant under the flow 
of y , the imaginary part of Z. 

3.2.1. Local reduction to equations. — In local coordinates z = z1) For which T = 
dz1 A • • • A dzn. one has / = — G so <\> satisfies the Monge-Ampere equation (3) 

(3.4) det 
d2ô 

= (-l)n(n-l)!e6 
e ^ X) = 1 

as well as the equation 

'3.5) dcf>(Y) = 0. 

Conversely, if 0 is a strictly pseudo-convex function defined on a p-neighborhood U 
that satisfies both (3.4) and (3.5), then the Kahler metric g whose associated Kahler 

(3) It is interesting to note that this equation is not of Euler-Lagrange type, even locally, unless Z = 0, 
i.e., the Ricci-flat case. Of course, in the Ricci-flat case, the variational nature of this equation is 
well-known. 
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form is ft = \ ddcj) is a gradient Kahler Ricci soliton on U with associated holomorphic 
form T and holomornhic vector field Z. 

Remark 4 (Real-analyticity of solitons). — Note that, because (3.4) is a real-analytic 

elliptic equation for the strictly pseudo-convex function </>, it follows by elliptic regu

larity that <j> (and hence g) is real-analytic as well. 

Now, (3.4) and (3.5) are two PDE for </>, the first of second order and the second of 

first order. While this is an overdetermined system, it is not difficult to show that it 

is involutive in Cartan's sense. 

In fact, an analysis along the lines of exterior differential systems leads to the 

following result as a proper formulation of a 'Cauchy problem' for gradient Kahler 

Ricci solitons in the nonsinecular case: 

Theorem 2 (Nonsingular extensions). — Let Mn be a complex n-manifold endowed with 

a holomorphic volume form T and a nonzero vector field Z satisfying d ( Z - j T ) = hT 

for some real constant h. 

Let Hn~x C M be any embedded complex hypersurface that is transverse to Z, 
let fto be any real-analytic Kahler form on H, and let fo be any real-analytic function 
on H. 

Then there is an open H-neighborhood U C M on which there exists a gradient 
Kahler Ricci soliton g with associated Kahler form ft, holomorphic volume form T , 

holomornhic vector field Z, and Ricci potential f that satisfy^ 

(3.6: H*ft — ftoj and vw<<<<<^$ 

Moreover, g is locally unique in the sense that any other gradient Kahler Ricci soliton g 
defined on an open H-neighborhood U C M satisfying these initial conditions agrees 
with g on some open neighborhood of H in U C\U. 

Proof — The first step in the proof will be to construct a special set of local 'flow-
box ' coordinate charts adapted to the hypersurface H, the holomorphic form T , and 
the holomorphic vector field Z. 

To begin, note that, since, by hypothesis Zp does not lie in TpH C TPM for 

all p G H, the (n—l)-form Z - < T is nonvanishing when pulled back to H. 

Let p G H be fixed. Since H* (Z -J T ) does not vanish at p, there exist p-centered 

holomorphic coordinates w2,..., wn on a p-neighborhood V in H such that V*(Z 

T ) = dw2 A • • • A dwn. 

Since H is embedded in M , there exists an open neighborhood U C M of V C H 

with the property that U fl H = V and so that each complex integral curve C C M 

( 4) Notation: If P C Q is a submanifold, and is a differential form on Q, I use P*<f> to denote the 
pullback of to P. 
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of Z that meets U does so in a connected open disk U fl C that intersects H in a 
unique point. 

Consequently, there exist unique holomorphic functions 22,. . . ,zn on U satisfying 
dz2{Z) = . . . = dzn(Z) = 0 and V*(zj) = wJ for 2 < j < n. Moreover, there exists 
a unique function z on U with the property that z1 vanishes on V = U fl H and so 
that U*T = dz1 Adz2 A--- Adzn. Since the functions z1,..., zn have independent 
differentials on U, it follows that by shrinking V (and hence 17) if necessary, it can be 
assumed that (U, z) is a p-centered holomorphic coordinate chart whose image z(U) C 
Cn is a polycylinder of the form z{\ p% for some p 1 , . . . , pn > 0. By shrinking p1 if 
necessary, it can be arranged that w<<< > 0. 

By construction, Z = F(z)d/dz1 for some holomorphic function F defined 
on z U) c Cn. Thus, U*{ ' Z - j T ) = F (z)dz2 A ••• A dzn. Since y f Z - i T ) = 
dw2 A • • • A dwn, it follows that F ;o,™2,...,wn) = l for (o,w2, . . . ,wni G 
Moreover, since d ( Z -j T) = h T, it follows that dF/dz1 = h. Consequently, in these 
coordinates Z = (1+hz1) dldz1. 

Now write Z = X — iY, where X and Y are commuting real vector fields. The 
integral curves of Y are transverse to the hypersurface H and there exists a real 
hypersurface R C U that is the union of the integral curves of Y in U that pass 
through V = U fl H. The vector field X is everywhere transverse to R in U. 

Now let be a real-valued function on V such that V*(Qo) = ^ddi/jQ. Such 
an ^o_P°tential tp is unique up the the addition of the real part of a holomorphic 
function of w2,..., wn. Extend'-00 to a function ^ on by making it constant along 
the integral curves of Y. Similarly, extend V*(fo) to a function / i on R by making it 
constant along the integral curves of Y. 

Finally, consider the initial value problem for a function 0 on a neighborhood of R 
in U given by the real-analytic PDE 

:3.7 det 
d2<t> 

dzidzi 
)e*d* << = l 

subject to the real-analytic initial conditions 

'3.8 
(j)(z) = ^i(z) 

Lx(<j>)(z) = 2f1(z) 
for all z G R C U. 

It is easy to check that (3.7) and (3.8) constitutes a noncharacteristic Cauchy problem. 
Hence, by the Cauchy-Kovalewski Theorem, there exists an open neighborhood W C 
U containing R on which there exists a solution <j) to this problem. 

Now, the solution <f> produced by the Cauchy-Kovalewski Theorem is real-analytic 
and strictly pseudo-convex. By uniqueness in the Cauchy-Kovalewski Theorem, 0 
is the unique real-analytic solution. Since, as has already been remarked, elliptic 

ASTÉRISQUE 321 



GRADIENT KAHLER RICCI SOLITONS 69 

regularity implies that any strictly pseudo-convex solution of (3.7) must be real-

analytic, it follows that (j) is the unique solution of (3.7) that satisfies (3.8). 

By its very construction, the (1, l)-form Q = ^dd(f) is then the Kahler form of 

a gradient Kahler Ricci soliton metric on W C U that satisfies V*Q, = V*fio> that 

has W*Y and W*Z as the associated holomorphic volume form and vector field, 

respectively, and has / = ^d^tX) as Ricci potential, which, of course, satisfies V*f = 

V*f0. 
Now, if one replaces ib by ib + H + H for some holomorphic function H = 

H(w2,...,wn on V, then one finds that the solution 6 is replaced bv bv <b + 

H(z2,...,zn) + H(z2,...,zn), , so that Ct is unaffected. 

The argument thus far has shown that every point p G H has an open neigh

borhood C / c M o n which there exists a gradient Kàhler-Ricci soliton gu with the 

desired extension properties and associated holomorphic data. It has also shown that 

this extension is locally unique. Now a standard patching argument shows that there 

exists an open neighborhood U C M of the entire complex hypersurface H on which 

such an extension exists and is unique in the sense described in the statement of the 

theorem. • 

Remark 5 (Local generality). — Theorem 2 essentially says that the local gradient 

Kahler Ricci solitons depend on two real-analytic functions of 2n—2 variables, namely 

the potential functions (which is assumed to be strictly pseudo-convex but oth

erwise arbitrary) and /o (which is arbitrary). There is, of course, some ambiguity 

in the choice of the holomorphic coordinates zl, but this ambiguity turns out to de

pend on essentially n—2 holomorphic functions of n—l holomorphic variables, which 

is negligible when compared with two arbitrary (real-analytic) functions of 2n—2 real 

variables. 

3.3. Near singular points of Z. — The situation near a singular point of Z is 

considerably more delicate and interesting. 

3.3.1. Linear parts and linearizability. — Recall that, at a point p G M where Z 

vanishes, there is a well-defined linear map Z'p : TpM —• TpM (often called 'the linear 

part of Z at p') defined by setting Zf(v) = w if w = [V,Z](p) for some (and hence 

any) holomorphic vector field V defined near p and satisfying V(p) = v G TPM. 

In local coordinates z = [z1) centered on p, if 

3.9^ Z = Zj z) 
d 

dzi' 

where, by assumption ZJ (0) = 0 for 1 < j < n, then 

EWTfl x<< d 

dz1 (p, 
<^*ù 

dz1 
o 

d 

dzi Pi-
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The linear map Z'v : TpM —» TPM has a Jordan normal form and this is an important 

invariant of the singularity. In particular, the set of eigenvalues of Z' is well-defined. 

Proposition 5. — Let Z be the holomorphic vector field associated to a gradient Kàhler 

Ricci soliton g on M. At any singular point of Z, the linear part Z'p is diagonalizable, 

with all eigenvalues real. 

Proof. — If the data ( T , Z) is associated to a gradient Kâhler Ricci soliton g in a 

neighborhood of a singular point p of Z , then (2.24) shows that, in special coordinates 

centered on » , one has 

(3.11 
x< 
^*ùù <w Rjk [0] cw< 

dZi 

$^w< 0) . 

Because the matrices (<7ij(0)) and (i?i j(0)) are Hermitian symmetric and (pij(O)) is 

positive definite, one can choose the special coordinates so that (gij(0)) is a multiple 

of the identity matrix and ( i W O ) ) is diagonal. • 

Definition 3. — A holomorphic vector field Z on M is said to be linearizable near 

a singular point p if there exist p-centered coordinates w = (wl) on an open p-

neighborhood W and constants a* such that, on W, one has 

:3.12> Z = a)wj 
d 

dw1 ' 

The coordinates w = (wl) are said to be linearizing or Poincaré coordinates for Z 

near p. 

Not every holomorphic vector field is linearizable near its singular points, even if 

the linear part at such a point has all of its eigenvalues nonzero and distinct. 

Example 4 (A nonlinearizable singular point). — The vector field 

3.i3: Z = zl 
d 

dz1 + f2* 2 + wp^ùm d 

dz2 

on C 2 is not linearizable at the origin, even though its linear part there is diagonaliz

able with eigenvalues 1 and 2. 

This nonlinearizability is perhaps most easily seen as follows: The flow $>(t) of the 

vector field Z is 

'3.14: 
m(z\z2) = 

w< z\ > e 2 t [z2 << [z1 ?t) 

In particular * ( t + 2 T T Ì ) ^ which would be true if Z were holomorphically 

conjugate to the linear vector field 

^*ùù •^(0,0) x<< <^*ù d 

dz1 + 2z2 
d 

dz2' 
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This phenomenon, however, does not happen for singular points of holomorphic 
vector fields associated to a gradient Kahler Ricci soliton: 

Proposition 6. — Let Z be a nonzero holomorphic vector field on the complex n-
manifold M that is associated to a gradient Kahler Ricci soliton g. Then Z is lin-
earizable at each of its singular points. Moreover, the linear part of Z at a singular 
voint is diaoonalizable and has all its eiaenvalues real. 

Proof. — Let p G M be a singular point of Z. The diagonalizability of the linear part 
of Z at a singular point and the reality of the corresponding eigenvalues has already 
been demonstrated, so all that remains is to show that Z is linearizable near p. 

To do this, write Z = X — iY where X and Y are, as usual, real vector fields. As 
has already been remarked, the vector field Y is an infinitesimal isometry of g. In 
particular, the flow of Y is complete in the geodesic ball Br(p) for some r > 0 and 
is a 1-parameter group of isometries of the metric g restricted to Br (p) that fixes the 
center p. It follows that there is a compact, connected abelian subgroup T C U(TPM) 
whose Lie algebra is an abelian subalgebra t C u(TpM) that contains Yp' : TPM —> 
TPM, the linearization of Y at p and is such that the 1-parameter subgroup exp(tYp') 
is dense in T. 

Let $ : T —> Isom (Br (p), g) be the homomorphism induced by the exponential 
map, i.e., such that 

(3.16 $(*0(expp(v)) = expp(k •w<< v) 

for all v G Br(0p) C TpM. Then is a holomorphic isometry of g for all k G T. 
Now let dp, be Haar measure on T and choose any holomorphic mapping tp : 

Br(p) TPM ~ cn with the property that %l>(j>) = 0 and iP'(p) : TpM T0(TpM) 
is the inverse of the exponential mapping exp' : T0p(TpM) TpM. (It may be 
necessary to shrink r to do this. 

Define a holomorphic mapping w : Br(p) —• TVM by the averaging formula 

(3.17: w(z) = 
T 

k-1 << &(k)z) dfi 

for z G Br(p). Then w(p) = CL and, by construction, w f&(k)z) = k • w(z) for 
all z G Br(p) and all k G T. Moreover, also by construction, &(k)z) = k • w(z) In 
particular, by shrinking r again, if necessary, it can be assumed that w defines a 
T-equivariant holomorphic embedding of Br(p) into TPM ^ Cn. 

In particular, the holomorphic mapping w : Br(p) —• TPM satisfies 

(3.18^ w(expty(*)) =exp(tYp,)(w(z)), 

for all real t. Since w is holomorphic and Y is the imaginary part of the holomorphic 
vector field Z , it follows that, for z G Br(p) and t complex and of sufficiently small 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



72 R. BRYANT 

modulus, the identity 

'3.19] ™(exptz(2)) =exp(tZ'p)(w(z)) 

holds. In particular, the coordinate system w linearizes Z at p. • 

Remark 6 (The exponential map). — Of course, the exponential map expp : TPM —> M 

of g also intertwines the flow of Yp' on TPM with the flow of Y on M, but the 

exponential map is not generally holomorphic and so cannot be used to linearize Z 

holomorphically. 

Remark 7 (Complex vs. real flows). — The reader may want to remember that, for a 

holomorphic vector field Z = X — iY, the two real vector fields X and Y have 

commuting flows and that, moreover, the identity 

3.20) exP(a+i6)Z = exP2aX ° exP26F 

holds. (The factors of 2 are neglected in some references.) 

Corollary 1. — Let g be a gradient Kahler Ricci soliton on M and let Z be its asso

ciated holomorphic vector field. Let p G M be a singular point of Z and let A G R* be 

a nonzero eigenvalue of Zf of multiplicity k > 1. Then there exists a k-dimensional 

complex submanifold N\ c M that passes through p, to which Z is everywhere tangent, 

and on which Y is periodic of period 47r/|A|. 

/te/warA: # (Nonuniqueness of the N\). — The reader should be careful not to con

fuse the submanifolds N\ with the images under the exponential mapping of the 

eigenspaces of Z'p acting on TPM. Indeed, the N\ need not be unique. For example, 

for the linear vector field 

3.21; Z = zl 
d 

dz1 
+ 2z2 

d 

dz2' 

on C2, each of the parabolas ¿2 _ c/zl\2 = o for c G C is tangent to Z and the 

imaginary part of Z has period An on all of C2, so each could be regarded as N±. 

On the other hand, the line z1 = 0 is the only curve that could be regarded as N2, 

since this is the union of the 27r-periodic points of Y. 

Remark 9 (Existence at singular points). — Example 2 shows that diagonalizability 

with real eigenvalues is sufficient for a linear vector field to be the linear part of a 

vector field associated to a (locally defined) gradient Kahler Ricci soliton. 
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3.3.2. Prescribed eiqenvalues. — Let &(k)z) = k • w(z)n be a nonzero real vector 

and define 

3.22 x<<< fk G Zn I k • h = 0} = Zn n h± c Rn. 

Then Ah is a free abelian group of rank n — k for some 1 < k < n. The number k 

is the dimension over Q of the Q-span of the numbers hi,..., hn in R. Let AjJ" C Ah 

consist of the k G Ah such that k — (fei,..., knj with each fci nonnegative. 

Consider the linear holomorphic vector field 

f3.23 x<<< 
n 

<^*ù 

^ù** d 
x<< 

on Cn. Let Zh = Xh — iYh be the decomposition into real and imaginary parts. 

The closure of the flow of Yh is a connected compact abelian subgroup Th C U(n) of 

dimension k. (In fact, in these coordinates, Th lies in the diagonal matrices in U(n).) 

Note that and (hence) Xh are invariant under the action of Th. 

3.3.3. Normalizing volume forms. — In addition to knowing that Z can be linearized 

near a singular point, it will be useful to know that this can be done in such a way 

that it simplifies the coordinate expression for T as well: 

Proposition 7 (Volume normalization at Z-singular points). — Set h = /ii + • —h hn and 

let T be a nonvanishing holomorphic n-form defined on an open neighborhood U of 

the origin in Cn that satisfies d (Zh-.T) = ÄT. 

Then there exist Z\,-linearizing coordinates w = (wl) near the origin in Cn such 

that, on the domain of these coordinates T = dw1 A • • • A dwn. 

Proof. — There exists a nonvanishing holomorphic function F on U that satisfies 

3.24^ T = F(z) dz1 A •. • A dzn 

and the function F must be invariant under the flow of Z^. In particular, it follows 

that F has a power series expansion of the form 

;3.25 F(z) = c0 + 

k€A+\{0} 

^*ù zk 

where zk is the monomial V)fcl (zn\kn when k = ki,..., kn) and the Ck are 

constants, with c0 ^ 0 (since, by hypothesis F(0) ^ 0). 

Now, the series 

(3.26) G(z) = c0 + 

k€A+\{0} 

Ck 
x<<< zk 
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converges on the same poly cylinder that the series (3.25) does. The resulting holo

morphic function G is evidently invariant under the flow of Zh and satisfies 

%2T G + z1 
dG 

dz1 
= F. 

Because G satisfies (3.27), the function w1 = z1G(z) satisfies 

'3.28) d ^ A d ^ A - ' - A dzn = F(z) dz1 A dz2 A • • • A dzn. 

Moreover, since G is Zh-invariant, the function w1 satisfies Lzh w1 = hiw1. 

Thus, replacing z1 by w1 in the coordinate chart results in a new Zh-linearizing 

coordinate chart in which T = dz1 A • • • A dzn. • 

Corollary 2 (Local normal form near singular points). — Let Z and T be a holomorphic 

vector field and volume form, respectively on a complex n-manifold M. Let p G M be 

a singular point of Z . 

// there exists a gradient Kahler Ricci soliton g with Ricci potential f on a neigh

borhood of p whose associated holomorphic vector field and volume form are Z and T 

respectively, then there exists an h G Rn and a p-centered holomorphic chart z = (zl) : 

U —• Cn such that, on U, 

3.29 Z = hi z{ 
d 

dzi 
and Y = dz = dz1 A • • • A dzn. 

Proof. — Apply Propositions 6 and 7. • 

3.3.4. Local solitons near a singular point. — In view of Corollary 2, questions about 

the local existence and generality of gradient Kàhler Ricci solitons with prescribed Z 

and T near a singular point of Z can be reduced by a holomorphic change of variables 

to the study of solitons on an open neighborhood of 0 G Cn with Z = Zu for some h ^ 0 

and T = dz = dz1 A • • • A dzn. 

Proposition 8 (Solitons with a prescribed singularity). — Let <j) be a strictly pseudo-

convex function defined on a Th -invariant, contractible neighborhood of 0 G Cn that 

satisfies 

3.30 det 
d2(f> 

dztdzJ e 
l 
2 
d<f>( x<< = 1 

and 

(3.31 d<j>(Yh) = 0. 

Then Q, ̂ù i 
2 

dd(j) is the associated Kahler form of a gradient Kahler Ricci soliton with 

Ricci potential f = l 
21 

d(f)(Xh) whose associated holomorphic vector field and volume 

form are Zh and dz1 A • • • A dzn respectively. 
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Conversely, if g is a gradient Kahler Ricci soliton defined on a T^-invariant, 

contractible neighborhood of 0 € Cn and f is a Ricci potential for g that satis

fies / (0 ) = 0 such that the associated holomorphic vector field and volume form arevvv 

and dz1 A • • • A dzn, respectively, then g has a Kahler potential 0 that satisfies (3.30) 

and (3.31). 

Proof — The first part of the proposition follows by computation, so nothing more 

needs to be said. It remains to establish the converse statement. 

Thus, consider a gradient Kahler Ricci soliton g defined on a Th-invariant, con

tractible neighborhood U of 0 G Cn with Ricci potential / satisfying / (0 ) = 0 whose 

associated holomorphic volume form and vector field are T = dz and Z^, respectively. 

The metric g will necessarily be invariant under Th, as will its associated Kahler 

form Q,. Since Qn = n\\n2 2~ne~f T A T, it follows that / , too, must be invariant 

under Th. 

On U, there will exist some Kahler potential <j> so that Q = ^ddcj). By averaging <f> 

over Th, it can be assumed that <j> is Th-invariant. By subtracting a constant, it can 

be assumed that (f)(0) = 0. 

As has been already noted in § 3.1, the difference F = 2 / —d^(Zh) is a holomorphic 

function on U. By construction, F is also necessarily Th-invariant and vanishes at 0. 

Since 6 is Th-invariant, it follows that w<< ^*ùù = 0. Thus F = 2 / - (ty(Zh) = 2 / -

d0(Xh) is real-valued and holomorphic and therefore constant. Thus, F vanishes 

identically, i.e., / = l 
2 

d(j> Xh). 

Now, however, by construction, (j) satisfies (3.30) and, since (j) is invariant under 

the flow of Fhj it also satisfies (3.31). • 

Remark 10 (Analyticity in the singular case). — The equation (3.30) is a Th-invariant 

real-analytic Monge-Ampere equation whose linearization at a strictly pseudo-convex 

solution </> is given by 

(3.32] Au + 2 lXh u = 0 

where A is the Laplacian with respect to the metric g associated to O = ^ ddcj). Of 

course, this is an elliptic equation. 

It follows by elliptic regularity that any gradient Kahler Ricci soliton is real-

analytic, even in the neighborhood of singular points of Z. 

Example 5 (Existence with prescribed h). — By considering Example 2, one sees that, 

for any h, there is a sufficiently small ball around the origin on which there is at least 

one strictly pseudo-convex solution <j> to (3.30). 

3.3.5. A boundary value formulation. — Suppose now that 0 is a strictly pseudo-

convex solution of (3.30) defined on a Th-invariant bounded neighborhood D c C n 
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of 0 G Cn with smooth boundary 3D. Let g be the corresponding gradient Kahler 
Ricci soliton. 

Any solution u of (3.32) in D that vanishes on the boundary will also satisfy 

3.33) 0 = 
' D 

I Via I2 ! + l 
2 
R(g)u2 dvolg , 

as follows by integration by parts using the identities p = Lxh ft and dvolg = -^ftn. 
In particular, by shrinking D if necessary, it can be assumed that any solution u 

to (3.32) in D that vanishes on 3D must vanish on D. 
It then follows, by the implicit function theorem, that any Th-invariant function tp 

on dD that is sufficiently close (in the appropriate norm) to (p on 3D is the boundary 
value of a unique pseudo-convex solution <j> of (3.30) that is near </> on D. The 
uniqueness then implies that <j) must also be Th-invariant and so must, in particular, 
satisfy (3.31). 

Note that the metric g does not always uniquely determine <t> by the construction 
given in Proposition 8 since one can add to <j> the real part of any Th-invariant holo
morphic function that vanishes at 0 G Cn. (Depending on h, there may or may not be 
any nonconstant Th-invariant holomorphic functions on a neighborhood of 0 G Cn.) 
However, this ambiguity is relatively small. 

Thus, local gradient Kahler Ricci solitons near 0 G Cn with prescribed holomorphic 
data (Z, T) = (Zh,dz) do exist and have a 'degree of generality' that depends on the 
number k. The most constraints appear when k reaches its maximum value n and 
the least when k reaches its minimum value 1. 

4. Poincaré coordinates in the positive case 

Throughout this section, M will be a noncompact, simply connected complex man
ifold and g will be a complete gradient Kahler Ricci soliton with postive Ricci cur
vature. Moreover, it will be assumed that the scalar curvature R(g) has at least one 
critical point. 

4.1, First consequences. — Cao and Hamilton [6, Proposition 4.2] prove the 
following useful result: 

Lemma 1. — The scalar curvature R(g) has only one critical point and it is both a 
local maximum and the unique critical point of f, which is a strictly convex proper 
function on M. 

Proof — Since R(g) + 2\Z\2 = 2h by Proposition 4, the function R(g) > 0 is bounded 
by the constant h and any critical point of R(g) is a critical point of \Z\2 = | | V / | 2 . 
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On the other hand, since V 2 / = Ric(g), which is positive definite, the formula 

(4.11 d l 
V2 V / 2' ( V / ) = V 2 / ( V / , V / ) = Ric(<7)(V/, V / ) 

shows that ^ | V / | 2 cannot have any critical point away from where V / = 0. Moreover, 

any point p where V / vanishes satisfies R(g)(p) = 2/i, which is the maximum possible 

value of R(g). 

Since V 2 / = Ric(#) is positive definite, the function / is locally strictly convex. 

Since g is complete, / can have at most one critical point, i.e., point where V / = 0, 

and it must be a nondegenerate minimum of / . 

By hypothesis, there does exist a (unique) critical point of / ; call it p. By adding 

a constant to / it can be assumed that f(p) = 0. It remains to show that / is proper, 

i.e., that /_1([a, b]) C M is compact for any closed interval [a, b] C R. 

Since R(g) + 2|Z|2 = 2h and since R(g) > 0, it follows that \Z\ < \/ft, so that Z 

has bounded length. In particular, writing 

(4.2 Z = X - ÏY = l 
2 

V / - iJ(v/V 

one has |X|2 = |Y|2 = i |Z |2 1 
2 

h, so X and Y have bounded lengths as well. Since g 

is complete, their flows are globally defined on M. 

Let 7 : R —» M be any nonconstant integral curve of V / , i.e., 7'(t) = V/ (7 (* ) ) Ï « 

for all t g R . Consider the function 4>{t) = f(y(t)). Straightforward computation 

yields <f>'(t) = |V / (7 ( i ) ) | 2 > 0 and 

4.3) 4>"{t) = 2Ric(9) (V/ (7( i ) ) , V / ( 7 ( i ) ) ) > 0, 

so <j) : R —> R is strictly convex and increasing. It follows that 0 increases without 

bound along 7. 

Since V 2 / is positive definite, the critical point p is a source singularity of the vector 

field V / . Let C / c M b e the open set that consists of p and all of the points q in M 

whose at-limit point under V / is equal to p. Since / strictly increases without bound 

on each integral curve of V / , it follows that / maps each integral curve of V / that 

lies in U diffeomorphically onto (0, 00). Moreover, for each c > 0, the set /_1(c) fl U 

is compact and diffeomorphic to 52n_1. Indeed, / : U —• [0,00) is proper. 

Now suppose that U ^ M. Then, by the connectedness of M, there exists a 

point q £ M \ U that is not in the interior of M \ U, i.e., a point q 0 U such 

that there exists a sequence qi G U that converges to q. This implies, in particular, 

that f(qi) > 0 converges to f(q) = c. Thus, c > 0 and, for i sufficiently large, 

qi must lie in /_1([0 ,c+l ] ) fl U, which has been shown to be compact and must 

therefore contain its limit points. Thus q lies in / -1 ( [0 , c+ l ] ) fl U, although, by 

construction, q £ U. Thus, U = M and / is proper, as claimed. • 
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Remark 11 (M is Stein). — As Cao and Hamilton remark, since p = iddf is the Ricci 
form of g, which is positive, the proof shows that / is a strictly plurisubharmonic 
proper exhaustion function on M. This implies that M is Stein and, as Cao points 
out in [4, Proposition 3.2], that M is diffeomorphic to R2n. 

However, as will be seen in Theorem 3, one has the stronger result that M is 
biholomorphic to Cn. 

The following result, also known to Cao and Hamilton, (5) gives constraints on the 
rate of growth of the Ricci potential. 

Lemma 2 (Growth of / ) . — Let p be the critical point of R(g) and let f be the Ricci 
potential, normalized so that f(p) = 0. There exist positive constants c\ and c<i such 
that, for all x G M, 

(4.4 1 -h (ci d(x,p] \2 - 1 < fix) < c2d(x,p). 

Proof — Since g is complete, there exists a geodesic joining p to x whose length 
is d(p, x). Let a : R —>• M be such a unit speed geodesic with a(0) — p and a(s) = x 
such that d(p, x) = s. 

Consider the function (j)(t) = / ( a ( t ) ) . By the Chain Rule, and the fact that a has 
unit speed, 

4.5 </>'(*) = Vf(a(t)) • a'(t) < |V/(a(t)) | < y/2h. 

Since 6(0) = 0, it follows that /(*) = /(«(«)) = 4>(s) < V2hs. Thus, one can 
take C2 = V2h. 

For the other ineaualitv, note that, again, bv the Chain Rule, 

(4.6 4>"{t) = V2f(a(t))(a'(t)<,a'(xwwt))<< = Riefe) ( « ( * ) ) ( « ' ( * ) , « ' ( * ) ) 

and the right hand side of this equation is positive since Ric(#) is positive. More
over, if Amin(<7) > 0 denotes the minimum eigenvalue of Ric(g), which is a positive 
continuous function on M, it follows that 

[1.1] <f>"(t)>\min(g)(a(t))>0c<<.xw 

In particular, 0 is a convex function on R. 
Let 7*0 > 0 be sufficiently small that it is below the injectivity radius of g at p 

and sufficiently small that Xmm(g)(y) > ^Amin(^)(p) for all y lying within Bro(p). 
Let a= \ Xmin(g)(p) > 0. 

(5) H.-D. Cao, personal communication, 2 June 2004. 
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Then&(k)z) = k > a for \t\ < r0 while </>"(£) > 0 for |t| > r0. Because 0(0) = </>'(0) = 0, 

it follows that </>(t) > A(t) for all t G R where 

(4.8) A(t) = 
l 
2' 

at2 for |t| < r0; 

ar0|t| - l 
2 ar02 for |t| > r0. 

Since there exists a positive constant Ci such that 

lower bound follows. 

A(t) > Jl + (Clt)2-- 1 , the desired 

• 

Remark 12 (An alternative growth formulation). — Another formulation of Lemma 2 is 

that the function c: M \ {»} —• R defined by 

:4.9) c(x) = 
/ ( * ) ( / ( * ) + 2] 

d(x,p) 
> 0 

is bounded above and has a positive lower bound. 

The bounds of Lemma 2 can be simplified somewhat if one stays sufficiently far 

from p: 

Corollary 3. — For every r > 0, there exist positive constants c\ and c<i such that, for 

all x outside the ball of radius r, one has 

4.10) ci d(x,p) < f(x) < c2 d(x,p). 

Remark 13 (The growth rate of/). — For any vector v G T M , one has 

4.11) Bic(g)(v,v) < Amax(o) \v 2 

where Amax(<7) ' M —•> R is the maximum eigenvalue function for Ric(p). Since g 

is Kahler, the eigenvalues of Ric(#) occur in pairs and, since Ric(#) > 0, it follows 

that Amax(^) < \R{g). In particular, by Proposition 4, one has the more explicit 

inequality 

[4.12 R\dg)(v,v) < l 
2 R{g) H 2 < 1 

2 2h - V/l2) \v\2. 

Now let 7 : (0, oo) —• M be the arclength parametrization of a nonconstant integral 

curve of Vf , such that p is the limit of 7(5) a s s - 4 0+. Thus, |V/(7(5)) |7/(5) = 

V / ( 7 ( s ) ) for all s > 0. 

Let 6(s) = / (7(5)) . One then computes via the Chain Rule that 

(4.13) <P'(s) = \Vf(7(s))\<V2h. 

and hence that 

C4.14Ì 4>"(a) = Riete; 
V / ( 7 ( s ) ) V / ( 7 ( s ) ) 

| V / ( 7 ( s ) ) r | V / ( 7 ( S ) ) | 
w<< 
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By the positivity of Ric(#) and (4.12), this implies 

f4.15 0 < (f>"(s) < l 
2 

2h - (0'(s); 
2 

Moreover, it is clear that, as s —• 0+, the quantity on the right hand side of (4.14) 

has Amin(g)(0) > 0 as a lower bound for its infimum limit. Thus, the infimum limit 

of (f>"{s) as s —> 0+ is positive. 

From these relations, several conclusions can be drawn. The function </> is increasing 

and strictly convex up on (0, oo). On the other hand, since (j)' is bounded above, 

it follows that </> grows at most linearly. Moreover, there must be a sequence of 

distances —> oo such that (b"(sk) —• 0. Since, by (4.14) 

(4.16 <t>"{sk) > Amin(flf)(7(sfc)), 

it follows that \min(g)(l(sk)) —> 0 as k —• oo. 

4.2. Poincaré coordinates. — Let T be the associated holomorphic volume form 

on M, normalized so that T has unit size at p. This determines T up to a complex 

multiple of modulus 1. Let Z be the associated holomorphic vector field. 

Since Z vanishes at p, the eigenvalues of Z' are the eigenvalues of the Ricci tensor 

at p, which are real and positive, say hi,..., hn > 0. Set h = hi + - — + hn > 0, as 

usual. 

Theorem 3 (Poincaré coordinates). — There exists a global special coordinate system z : 

M —>• Cn that linearizes Z. In particular, M is biholomorphic to Cn. 

Proof. — By Proposition 6, there exists a small open ball U about p on which there 

exist p-centered holomorphic coordinates w = (wl) : U —• Cn that linearize Z. By 

shrinking U if necessary, it can be assumed that U = f~1 ([0, e)) for some small e > 0. 

Note that, since the wl linearize Z, the identity 

(4.17) wH x<<< (9) lù 
ehit ̂w<< 

q) 

holds for all q G U and all t G C in the connected domain containing 0 G C for 

which exptz(q) lies in U. In particular, this implies that 

(4.18 <^*ù 
,exP2tx' x<< ̂ *ù eM <^*ù <xx 

for all a G U and all £ G R in the interval containing 0 G R for which exp0+x(q) lies 

in U 

Now, for q G M distinct from p, write q = exp2t/x(<7/) f°r some qf e U and £' G R. 

Define 

(4.19 x<< 
Q) 

<< ehit m^c<< <<^m 

If exp2t,x(q') = exp2t„x(q") for some q" G and £7/ G R, then one sees from (4.18) 

that ehit"wi(q,f) = ehit wi(qf), so zl(q) is well-defined. 
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Since the flow of X is holomorphic and wl is holomorphic on U, the function z% : 

M —• C is also holomorphic. Moreover, by construction, 

4.20 w<< 
,exP2tX :«) << e' 

hit <^* 1) 

for all q G M , which implies that 

(4.21Ì w< ̂*c<< (q) = e ./lit $^** cc 

In particular, the Lie derivative of z% by Z is hiz1. 

The fact that the mapping z = (zl) : M —» Cn is one-to-one and onto now follows 

immediately since, as was observed in the proof of Lemma 1, the gradient flow lines 

of V / = 2X all have p as a-limit point and the flow of V / exists for all time. 

Finally, in these coordinates T = F(z) dz^-'-Adz71 for some nonvanishing entire 

holomorphic function F on Cn. However, since d ( Z - i T ) = / i Y , it follows immediately 

that dF(Z) = 0. Since all of the eigenvalues of Z'p are positive, this is only possible 

if F is a constant function. By scaling one of the zl by a constant, it can be arranged 

that F = 1. 

Thus, the resulting global coordinate system ( M , z) is special and linearizes Z , as 

desired. • 
Remark 14 (Previous results). — Chau and Tarn [8, Theorem 1.1] proved that M is 

biholomorphic to Cn under the additional hypothesis that all the eigenvalues hi are 

equal. In a very recent posting to the arXiv [8], they prove a result that implies that M 

is biholomorphic to Cn under the hypotheses of Theorem 3. However, their result does 

not provide Z-linearizing coordinates, which is the main purpose of Theorem 3. 

4.3 . Coordinate ambiguities. — The reader may find it surprising that any local 

Z-linearizing coordinates zl defined on a neighborhood of the Z-singular point p 

extend to global coordinates on Cn that are special for any gradient Kaher-Ricci 

soliton defined on Cn with positive Ricci curvature whose associated holomorphic 

vector field is Z. 

This is perhaps made less surprising by the following result: 

Proposition 9. — Let h = (hi,..., hn) G W1 be a vector with hi > 0 for 1 < i < n. 

Consider the vector field 

(4.22; c<< = hi zl 
d 

dz1 

on Cn. Then the set Gh of biholomorphisms é : Cn -> Cn that preserve Zh is 

a complex Lie group of dimension d^ where > n is the number of vectors k = 

[ki,..., kn) G Zn that satisfy ki>0 and k • h G {hi,..., hn}. 

SOCIÉTÉ M A T H É M A T I Q U E DE FRANCE 2008 



82 R. BRYANT 

Moreover, ifU C Cn is any connected open neighborhood ofO G Cn, then any locally 

defined biholomorphismx<<(17,0) —• (Cn,0) that preservesx<<is the restriction to U 

of an element of Gh. 

Proof — Let U C Cn be an open neighborhood of 0 and let<<= (wi(z)) : U —• Cn 

be a local biholomorphism that preserves Z. Since Z has only one singular point, 

namely 0 G Cn , it follows that ip(0) = 0. Moreover, by construction, the functions wl 

must satisfy dwl(Z) = hiw1. It follows that each w% has a power series expansion 

about 0 G Cn of the form 

(4.23 wl = 
(k>0 I k-h=hi] 

<www 

Since the right hand side has only a finite number of terms, this power series is a 

polynomial and hence globally defined on Cn. It remains to see that it is invertible. 

Consider the n-form dw = dw1 A • • • A dwn. By the above analysis dw = F(z) dz 

for some polynomial F(z). By hypothesis, ip is a local biholomorphism, so F(0) ^ 0. 

Since Lzdw = (hi + • • • + hn)dw by construction, it follows that dF(Z) = 0, i.e., 

that F is Z-invariant. This implies that F is constant and hence nowhere vanishing. 

Now, by hypothesisw<<is locally invertible, with, say, a local inverse<<<(V,0) —> 

(Cn,0) . However, by construction, cxx preserves Z , so, by the argument given above, 
<< is also a polynomial mapping and hence extends to a global polynomial map

ping 7T : (Cn,0) -> (Cn,0). Since ^ o TT : (Cn, 0) -> (Cn,0) is a polynomial mapping 

that is the identity on some neighborhood of 0, it must be the identity everywhere 

on Cn. In particular, 7r is the global inverse of tj) extended to Cn , which is now revealed 

to be an element of Gh, which is what needed to be shown. 

Finally, it is clear that, for any i and any choice of constants clk G C for (i, k) such 

that k G Zn satisfies kj > 0 for 1 < j < n and k • h = h*, the formula (4.23) defines a 

polynomial wl that satisfy Lz wl = hiW1. 

Moreover, for any choice ofw<<constants c = (c£) where (z, k) satisfies k G Zn 

with kj > 0 for 1 < j < n and k • h = hj, the corresponding collection of functions wl 

satisfies 

(4.24) dw1 A • • • A dwn = F{c{) dz1 A • • • A dzn. 

where F is a polynomial of degree n in the d parameters clk G C. 

As long as F(clk) ̂  0, the polynomial mapping ipc = (wl) is a local (and therefore 

global) biholomorphism of Cn that preserves Z and hence lies in Gh- Thus, the clk 

define global holomorphic coordinates on Gu that embed it into Cdh as an open set. • 

Remark 15 (The structure of Gh). — If /¿1 , . . . ,/x/c > 1 are the multiplicities of the 

eigenvalues (h i , . . . , hn), then Gh is the semi-direct product of a reductive subgroup 
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isomorphic to GL(/X!,C) x ...GL(/ifc,C) with a nilpotent subgroup biholomorphic 

to where u i = 4 - /ii2 Hk2-
When n = 1, one has Gh ~ C* = GL(1, C). When n = 2, one has either 

1. 4 = 2 if h = IhxM) with neither hi/h2 nor /12Mi an integer (in which 
case Gh = C* x C*); 

2. 4 = 3 if h = (hu h2) with either hi/h2 or /12/^1 an integer greater than 1; or 
3. 4 = 4 if h = (h, h) (in which case Gh = GL(2,C)). 

When n > 2, there is no upper bound for 4 that depends only on n. For example, 
when n = 3, one has dn 1 k) — & + 6 for any integer A; > 1. 

4.4. Global consequences. — Throughout this section, g will be a complete gra
dient Kahler Ricci soliton on Cn with positive Ricci curvature whose associated vector 
field Z is given by (4.22) where h = (ft i , . . . , hn) and 

4.25 0 < hi < h2 < • • • < hn . 

The compact abelian group Th C U(n) will denote the closure of the orbit of Y, 
the imaginary part of Z. 

The existence of global linearizing coordinates for a gradient Kahler Ricci soliton 
gives elementary proofs and/or improvements of several known results. 

4.4.1. Periodic orbits. — The first result sharpens Theorem 1.1 of the article [6] of 
Cao and Hamilton. 

Proposition 10 (Periodic orbits of J ( V / ) ) . — For all c > 0, the flow of J(V/) pre
serves the (smooth) level set f~l(c) C M and has at least n periodic orbits on / _1 (c ) . 

Proof — Since Z = \ ( V / — i J ( V / ) ) , and since hi > 0 for 1 < i < n, it follows that 
J ( V / ) is periodic of period 2ir/hi on the z*-axis. Moreover, since / increases without 
bound as \zl\ —• 00, this axis meets each level set f~x(c) for c > 0 in a circle. Thus, 
there are at least n distinct periodic orbits of J ( V / ) within each such level set. • 

4.4.2. An invariant potential. — As has already been seen, the metric g is invariant 
under Th. It turns out that one can canonically choose a Kahler potential for g: 

Proposition 11 (Canonical potentials). — There is a unique T^-invariant Kahler poten
tial <\>: Cn -+ R satisfying Q = | ddcf) and <p(0) = 0. 

Proof — Since M = Cn, there exists at least one Kahler potential (j) for g, i.e., such 
that f] = ^ ddcj). Since Th is compact, by averaging (j) over Th, one can assume that (j) 
is Th invariant and by adding a constant, one can assume that 0(0) = 0. 

If (j) were also Th-invariant and satisfied = ^ dd<j>, then the difference 0 — 0 would 
be the real part of a Th-invariant holomorphic function H. In particular H would be 
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invariant under the flow of Y and hence of Z. However, as has already been seen, 

the only holomorphic functions on Cn that are invariant under the flow of Z are the 

constants. Thus <j> — 4> is constant. The normalization </>(0) = 0 then guarantees the 

uniqueness of 6. • 

4.4.3. Normalized linearizing coordinates. — The ambiguity in the linearizing coor

dinates for the vector field Z represented by the group Gh can be used to simplify the 

potential for g. 

Theorem 4 (Normalized coordinates). — Let (j) be the unique Y^-invariant Kàhler po

tential for g, normalized so that 0(0) = 0. Then there exists an element ^ G Gh, 

unique up to composition with an element of the compact group U(n) fl Gh, such that 

(4.26) 
w<<<^*ù 

z 1|2 + ••• + Z w< |2 •f Eïjki (z) )zizjzkzl 

for some real-analytic functions Eijki = Ejïki — Eîjik = Ekiij defined near 0 G Cn. 

Proof. — Let / be the Ricci potential for g, normalized so that / (0 ) = 0. Since / 

is Th-invariant and since, by (3.2), the difference 2 / — d<p(Z) is holomorphic and Th-

invariant, it follows by the same argument as above that 2 / — d(f)(Z) is constant and 

hence vanishes identically. Thus 

(4.27) dMZ) = dMX) = 2 / . 

Because (j) and / are real-analytic they have convergent power series expansions 

near 0 G Cn. Since / (0 ) = 0 and / has a critical point at 0, it has an expansion of 

the form 

4.28 / = l 
2-fij Z Z^ -\- fij Z Z^ + 1 

2 
fij Z Z^ + Oi \z\3)-

where fij = fji and fij = fjT. Because of the positivity of the hi and the invariance 

of / under the flow of Y, it follows that = 0 and (hi-hj)fij = 0 for all i and j . 

Moreover, since / is strictly convex up at the origin, the Hermitian form fijZlP is 

positive definite. 

Thus, by making a linear change of variables that preserves Z (i.e., by applying a 

transformation in GL(n, C) fl Gh), it can be arranged that 

4.29 / = l 
2 
<< <^* I2 + ••• + l 

2' 
w<< \zn |2 <p^ùm z\3 I. 

Next, consider the part of / that is pure in z or z, i.e., consider the expansion 

(4.30 / = l 
2 
w<< I*1 2 + ••• + 1 

2 hn zn 2 + 
k>0, |k|>3 

fkZ << + fkZ < 
+ fa z)zlzj. 

where /k G C and fij = fji vanishes at z = 0. The invariance of / under the flow of Y 

implies that fk = 0 for all k, so these 'pure' terms do not appear after all. 
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Finally, consider the part of the remainder that is linear in the variables z% or z% 

and vanishes at z — 0 to order at least 3, i.e., write 

(4.31 / = l 
2' 
w< \zk\2 + Q* << zi <^*m z) 

mm 
+ fzjkl1 x<< •z%zjzkzl, 

where Ql(z) is a holomorphic function of z that vanishes to order at least 2 at z = 0 

and fijkl — fjikl — fijlk fklij' 
Again, the fact that / is invariant under the flow of Y implies that Q% must sat

isfy Lz Ql = hiQ1, i.e., that Ql has an expansion of the form 

(4.321 Q\z) = 

k>0 I k-h=hi} 

CkZ 

with cl = 0 unless |k| = ki + ••• + kn > 1. In particular, this implies that Ql is 

a polynomial in z since the right hand side of (4.32) can contain only finitely many 

terms. Now consider the change of variables defined by 

(4.33: wi = zi + 
2 

hi 
Q*(z) 

This transformation belongs to Gh by definition and satisfies 

(4.34) / = 1 
2 

hk \wk\ 2 4- /ijkl 
&(k)z) = k • w(z) 

for some functions f~h1 with the same symmetry and reality properties as the corre

sponding fmi-

Since Lx 4> = 2 / and 0(0) = 0, it follows that 0 has a power series expansion 

4.35 0 = \wk\2 + EÏJki(w)wiwjwkw\ 

as desired. The uniqueness of the transformation ^ = (wl) up to composition with 

an element of U(n) fl Gh is now evident. • 

4.4.4. Totally geodesic submanifolds. — Since the fixed locus of an isometry of g must 

be totally geodesic, one has the following result: 

Proposition 12 (Geodesic subspaces). — / / hi has multiplicity p>i > 0 and has the prop

erty that, for all k, hk ^ mhi for any integer m > 1, then the fii -plane in Cn defined 

by zj = 0 when hj ^ hi is totally geodesic. 

More generally, if Y has a periodic point q with period T > 0, then the union of 

the T-periodic points is a nontrivial totally geodesic linear subspace of Cn generated 

by the zl-axis lines for which hi is an integer multiple of An/T. • 

Remark 16 (Geodesic axes). — The reader might wonder whether or not the hypoth

esis of hi having no 'supermultiples' is necessary in order for the /^-eigenspace of Zh 

in Cn to be totally geodesic. 

The answer is clearly 'yes' in general Z-linearizing coordinates: For example, if n = 

2 and h = (1, k) for some integer k, then, any of the curves z2 = \(zl)k could be taken 
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to be the ^1-axis in Zh-linearizing coordinates. They all have the same tangent space 

at the origin, so at most one of them could be geodesic for a given gradient Kahler 

Ricci soliton g defined near 0 G C2 with associated holomorphic vector field Z^. 

However, if one uses ^-normalized coordinates as provided by Theorem 4, there 

is a canonical CMi C Cn associated to the eigenvalue hi of multiplicity fii by the 

equations *J = 0 when hj ^ hi. It is still not clear to me whether this canonical 

subspace is totally geodesic unless hi satisfies the 'no supermultiples' condition. 

4.4.5. Growth of f in linearizing coordinates. — Now that global linearizing coordi

nates are available, it makes sense to ask about the growth of the metric g and its 

related quantities in those coordinates. 

One particularly useful quantity to estimate will be the size of |V/ |2(*) as \z\ —• oo. 

Note that, because of (4.3), the function | V / | 2 is strictly increasing on the nonconstant 

flow lines of V / . On the other hand, |V/ |2 = 2h — R(g) is bounded by 2h. Define 

(4.36 x<<<^* lim inf 
|s|->oo 

v / |2 z) > 0 «BRI À+ = sup 
z 

IV/ |2 < 2ft. 

Proposition 13. — For any r > 0, there exist constants a\ > 0, a2 > 0, b\, and b2 

such that, for all z G Cn with \z\ > r, 

'4.37 x<< log 1*1 + 61 < /(*) < a2 log 1*1 + 62 . 

Explicitly, one can take 

(4.38) ai = 
1 

hn 
inf 

\z\=r 
|V/(z) |2(s)>0 and a2 = 

<^*ù 

hi 
< 2h 

fti" 

Proof. — Fix r > 0 and note that there exist constants mr > 0 and Mr > 0 such 

that 

(4.391 mr < f(z) < Mr when \z\ = r. 

Moreover, taking a\ and a2 as defined in (4.38) and using the fact that |V/ |2(z) and 

|*| both increase along the flow lines of V / , one sees that 

:4.40 hn^i < |V/(*) |2 < hia2 when \z\ > r. 

Now, the flow of V / = 2Re(Z) in Z-linearizing coordinates is 

(4.4r exptv/ * w< z n <^* w<<< i^ùmmm 
c<< 

so, since 0 < h\ < • • • < hn, it follows that 

(4.42) <^poo 
1*1 < exPtVf ^^xww w<< ehnt\z\. 

In particular, it follows that, for t > 0. 

(4.43) $*ù 
w 

hi 
(log |exptv/l z1 ,zn: - log u n . 
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and 

(4.44) 
1 

hn 
log( |exptv/ z1 ,zn I - log 1*1) <t. 

On the other hand, since Ly/ / = |V / | 2 , it follows that 

(4.45) f(z) + hn a1 t < /(exp£V/ *] zn < f(z) + h! a2t 

for alH > 0 and z satisfying \z\ = r. Combining this with the above inequality gives, 

for alH > 0 and z satisfying \z\ = r, 

(4.461 w< exptv/ <^ù w<< -a2 log|exptv/i (z1 ,zn < f(z)-a2 \og\z\. 

Since every w G Cn with \w\ > r is of the form w = exptVyr(*) for some t > 0 and z 

with \z\ = r, it follows that 

(4.47 f(w) < a2 log \w\ + (Mr - a2 logr) 

for all w G Cn with \w\ > r. Thus, taking b2 = Mr — a2 logr verifies the claimed 

upper bound on / . 

The lower bound follows by combining the lower bound on t with the lower bound 

on / : 

(4.48) mr -hai (log(|exptv/ z1 x<< - l o g N ) < /(exptv/i <^*ù x<< 

which gives 

EE!] (mr - ai logr) + ai log < f(w), 

for all w G Cn with \w\ > r. • 

Note that, as a function of r, the expression ai defined in (4.38) is increasing and 

its limit as r —* oo is A_//in-

Corollary 4. — For any e > 0, there exists r > 0 such that, for z G Cn with \z\ > r, 

(4.50 
x<<x 

hn 
— e log |*| < / ( * ) < 

<< 

<< 
<pml log|*|. 

In particular, there exist constants b\ > 0 one? b2 > 0 s^c/i&(k)z) = k • w(z) /or a// * G Cn 

with \z\ > r, 

[4.51] 6i log |*| < d(z,p) < b2 log |z|. 

Proof — The first statement follows by elementary reasoning from Proposition 13 

while the second follows by combining the first with Corollary 3. • 

Note that Corollary 4 implies that the ratio / ( * ) / log \z\ is bounded above and has 

a positive lower bound as 1*1 —» oo. Set 

(4.52 ß- = lim inf 
p^*ùùù 

f(z) 
log |*| 

and x<< lim sup 
| s | - k x > 

<^*,; 

log |*| ' 
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Then Corollary 4 implies 

;4.53) 
x<< 

<^* &(k)z) = k • w(z) < 
w< 

hi' 

Proposition 14. — One has the bounds p>- < 2n < in other words 

(4.54 lim inf 
cw<^m 

<^ù** 

log\z\ 
&(k)z) = k • w(z) 

x<<<^* 

^*vww 

log kl ' 

Proof. — Suppose these bounds do not hold and let R > 0 be fixed large enough so 

that there exist positive constants a\ and a2 where either a2 < 2n or else a\ > 2n 

and positive constants b\ and bo so that 

[4.55] ai log |*| < f(z) < a2 log |*| 

and 

(4.56) 6i log |*| <d (* ,0 ) <62log|* | 

hold whenever |*| > R. (Remember that, in these linearizing coordinates p = 0.) 

Let M > 0 be sufficiently large that d(*,0) < M when |*| < and consider any 

real number p that is larger than both logR and M/b2. 

Consider the ^-metric ball BblP(0). Since d(*,0) < b\p for * G £?blP(0), it follows 

that either |*| < R or &ilog|*| < i.e., |*| < ep. Since ep > i2, in either case it 

follows that |*| < ep. Thus BblP(0) is contained in the flat metric ball B®P(0). 

On the other hand, if |*| < ep, then either |*| < R or else d(*,0) < b2p. In the 

former case, d(*, 0) < M < 62P, by construction. In either case, * lies in the ^-metric 

ball Bb2P(0). 

Thus, one has inclusions 

(4.57; BblP(0) Q B°eP(0)CBb2P(0). 

Now, the volume form for g on Cn is 

(4.58) volp = e ^ volo 

where volo = in 2~ndz A d* is the volume form of the flat metric on Cn. 

Consequently, the volume of the g-metric ball Bb2P(0) is at least as large as the 

volume of the flat metric ball B®P (0) which is given by the integral 

\z\<eP 
e 

x<< volo <^* 
\z\<R 

e x<< volo + 
\z\=e" 

\z\=R 
e << volo 

'4.59Ì > 
\z\<R 

e x<< volo + 
\*\=ep 

\z\=R 
Z |"aavolo 

p^m 
\z\<R 

e << volo + vol >S2n-l 

's=R 

>s=ep 
S 2n-l-a2 ds 
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Now, if a,2 < 2n, then the above would imply 

f4.60i vol! ̂ p ( O ) , 0 ) > 
\z\<R 

e - / volo + 
vol ' g2n-\ 

2n — 0,2 
e 2n—02JP w< R 2n—a-2> 

< 

However, because g has positive Ricci curvature, by the Bishop Comparison Theo

rem [13, Theorem 1.3] the volume of Bb2P(0) is bounded by a constant times p2n. 

Obviously, such a bound is not compatible with (4.60) for all p sufficiently large. 

Thus, a,2 > 2n. 

In the other direction, the volume of the ^-metric ball BblP(0) is at most as large 

as the volume of the flat metric ball B^P(0), which obeys the upper bound 

\z\<eP 
$*ùù 
xww 

volo = 
J\z\<R 

<^*m vol0 + 
\z\=R 

>\z\=eO 
e'* vol0 

4.61) < 
\z\<R 

e-' vol0 + 
z\=R 

\z\=e» 
\z -a1 volo 

cw<< 
\z\<R 

erf volo + voll [S2n-l 
' s—R 

s=ep 
S ,2n-l-ai j 

If ai > 2n, then this would imply 

4.62) vo\(BblP(0),g) < 
\z\<R 

<< volo + 
vol(52n"1) 

a\ — 2n 
^**mw<< _ e(2n-ai)/o 

and the right hand side is bounded as a function of p. Thus, vol[BblP(0),g) would 

be bounded, independent of p, which, because g is complete and of positive Ricci 

curvature on the noncompact manifold Cn, violates Theorem 4.1 of [13], which asserts 

that g must have at least linear volume growth. Thus a\ < 2n. • 

Remark 17 (Growth off in examples). — In the case of Hamilton's soliton (Ex

ample 1) and, more generally Cao's soliton (Example 3), one has hi = hn 

and A_ = A+ = 2n/ii, so equality holds in the bounds of Proposition 14. 

On the other hand for the product examples (Example 2), 

(4.63) / ( * ) = 

n 

k=l 
log ï + (hk/ck)\zk\2) 

which satisfies 

;4.64) lim inf / ( * ) 

|*|-oo lOg |Z| 
= 2 while lim sup 

w<<< 

|Ä|_+oo 10g 1*1 
= 2n. 

In particular, note that this implies A_ < 2hn < 2h. 

Remark 18 (Growth of the potential 0). — Let <f) be the Th-invariant potential for g, 

i.e., ft = ^ ddcf), and assume that (j) is normalized so that (f)(0) = 0. 
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Since l_v/ <t> = / , it follows that (j) is determined in terms of / and that Corollary 4 

implies growth bounds for </> as well. For example, one sees that there exist positive 

constants r, ci, and c2 so that, whenever \z\ > r, one has 

(4.65) ci [log M 
2 <www$*ù <c2 log 1*1 ,2 

<ww 

It should be possible to derive C -bounds on <p (and hence on g) using the fact 

that </> satisfies an elliptic Monge-Ampere equation, but I do not see, at present, a 

good way to do this so as to get any useful information. 

5. The toric case 

In this last section, some remarks will be made about the reduction of the gradient 

Kahler Ricci soliton equation in the 'toric' case, which will now be defined. 

Throughout this section, Tn will denote the maximal abelian subgroup of U(n) 

that consists of diagonal matrices. Although there is no symplectic form specified 

on Cn, the mapping un : Cn -+ Rn defined by 

(5.1 Hn z1 ^ùmm x<< (I*1! 
2 ,\zn 2 

will sometimes be referred to as the 'momentum mapping' of Tn. 

Definition 4 (Toric metrics). — A Tn-invariant Kahler metric g that is defined on a 

connected Tn-invariant open neigborhood of 0 6 Cn will be said to be toric. 

Remark 19 (Toric ubiquity). — While, at first glance, the toric condition seems to be 

rather special, note that any gradient Kâhler Ricci soliton g on a neighborhood of 0 € 

Cn that has (Z, T) = (Zh,d*) as its associated holomorphic data is invariant under 

the torus Th- If h is 'generic' in the sense that the real numbers hi,..., hn are linearly 

independent over Q, then Th = Tn and hence g is toric. 

Thus, in some sense, the toric case is 'generic' among complete gradient Kàhler 

Ricci solitons with positive Ricci curvature. 

5.1. Symmetry reduction in the toric case. — Assuming an n-torus symmetry 

allows one to reduce the number of independent variables in the gradient Kahler Ricci 

soliton equation (3.4). 

Proposition 15. — Let g be a toric gradient Kâhler Ricci solition defined on a con

nected open neighborhood of 0 G Cn with a nonzero associated holomorphic vector 

field Z and holomorphic volume form T (defined with respect to a Ricci potential f 

satisfyinq f(0) = 0). Then 

1. The vector field Z is linearized in the coordinates z = zl , so that Z = Zh for 

some nonzero h = ;h i , . . . , f cn)€Rn; 
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2. The n-form T is cdz1 A • • • dzn for some nonzero constant c; and 

3. q has a unique Kahler potential satisfying 6(0) = 0 of the form 

'5.2) 4>lz) = u z1 |2 \z2 2 
5 zn\2) 

for some real-analytic function u defined on an open neighborhood of 0 G Mn. 

Moreover, u satisfies the singular real Monge-Ampere equation 

(5.3 det 
l<i,j<n 

r{ d 
xwww 

<;,, du 

dri 
exp 

1 
2 

n 

3 = 1 

hór3 
du 

dri 
,, c\ r r • • - r . 

where 

;5.4) 

n 

3 = 1 

du 

drò 
^*ù = \c\2 and 

du 

drJ 
(0) > 0, 1 < j < n. 

Conversely, for any nonzero h G M.n and any nonzero complex constant c, if u is a 

real-analytic function defined on an open neighborhood of 0 G Rn that satisfies (5.3) 

and (5.4), then the function (j) defined on a Tn-invariant neighborhood of 0 G Cn 

by (5.2) is the Kahler potential of a toric gradient Kahler Ricci soliton on the open 

neighborhood of 0 G Cn where it is strictly pseudo-convex. 

Proof. — To begin with, let me point out a fact that will be used several times in 

the following argument: Any TP-invariant holomorphic function defined on a con

nected open neighborhood of 0 G Cn is constant there. This follows, for example, 

by examining the effect of Tn on the individual terms in the power series of such a 

function. 
Now, since g is toric, its associated holomorphic vector field Z is invariant under 

the action of Tn and hence must vanish at 0 G Cn and commute with each of the 

scaling vector fields Zi = z1-^. It follows easily that Z = Z^ for some h G Mn. (For 

the definition of Zh, see (3.23).) 

Let / be the unique Tn-invariant Ricci potential for g that satisfies / (0 ) = 0 and 

let T be a holomorphic volume form associated to g and / . Since T is uniquely 

determined up to a complex number of modulus 1, it follows that, under the action 

of Tn, T must transform multiplicitively by a character of Tn. It then follows easily 

that T = cd* for some nonzero constant c. 

Let (f) be the unique Tn-invariant Kahler potential for g that satisfies (j)(0) = 0. As 

has already been remarked, (j) is real-analytic and so can be expanded as a convergent 

power series in the variables z% and z\ However, Tn-invariance evidently implies that 

this power series can be collected in terms of the quantities r% = \zl\2. Thus, the 

existence of a function u satisfying (5.2) follows. 
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As argued in § 3.2, the quantity 2 / - <9</>(Zh) is a holomorphic function on a neigh

borhood of 0 G Cn. By construction, it, too, is Tn-invariant and vanishes at 0 G Cn, 

which implies that it vanishes identically. Thus, 90(Zh) = d^(Xh) = 2f. 

The rest of the argument follows by substituting the formula (5.2) into (3.4), mul

tiplying by r1 • • • rn, and rearranging terms, which gives (5.3). 

Note that the stated positivity conditions on the first derivatives of u are needed in 

order that the corresponding <j> be strictly pseudo-convex in a neighborhood of 0 G Cn 

and the relation with |c|2 follows by computing the coefficient of r1 • • • rn in the power 

series expansion of the left hand side of (5.3). 

The converse statement follows by computation. • 

Remark 20 (Normalizations). — Given a solution u to (5.3) that satisfies u(0) = 0, 

one can obviously scale in the individual coordinates so as to arrange that 

5.5) é = r1 + • • • + rn + 0! \r?) 5 
thereby reducing to the case \c\ — 1, so it suffices to consider this case. Note also 

that the resulting Kahler soliton g is already in the normalized form guaranteed 

by Theorem 4. 

Remark 21 (pseudo-convexity of toric potentials). — A Tn-invariant function 4> of the 

form (5.2), i.e., 0 = u o fj,n for some u defined on a domain V C Mn, is strictly 

pseudo-convex on the domain (//n)-1(F) C Cn if and only if the symmetric matrix 

xvvv Sij 
du 
Ori 

+ ^*<< 
d2u 

drldri 

is positive definite on the part of V that lies in the orthant defined by the inequali
ties rl > 0. 

5.1.1. A singular initial value problem. — Although (5.3) is singular along the hy-

persurfaces rl = 0 in Rn, it turns out that the methods of Gerard and Tahara [11] 

can be used to prove an extension theorem. 

Theorem 5. — Let v be a real-analytic function on an open subset V C Rn_1 with the 

property that i/j = v o /in_i is strictly pseudo-convex on ,/¿71-1 - l V)cCn-\ 

Then there exists an open neighborhood U CW1 ofV x {(V and a real-analytic 

function u on U with the properties 

1. u [r\ ,rn"1 ,0) = V r1 << -1 for (r1 ^*ùù x<< ̂ *mm 

2. u satisfies (5.3) with \c\ = 1; and 
3. (j) = u o fin is strictly pseudo-convex on /in~1(t/') C Cn. 

Moreover, u is locally unique in the sense that any for any other pair (U, u) with 

these properties, there is an open neigborhood W of V x { 0 } contained inU C\U such 

that u and u agree on W. 

ASTÉRISQUE 321 



GRADIENT KAHLER RICCI SOLITONS 93 

Proof. — For the sake of clarity, write t = rn and let the lower case latin indices run 

from 1 to ra—1. Then after dividing both sides of (5.3) (with |c| = 1) by r1 • • -r""1 

and the exponential factor, this equation takes the form 

(5.7 det 
Sij 

du 
<ww 

^*ùù d2u 

drldri 

d(tut) 

x<<< 

<< di tut) 
dri 

(tdt 2u 

ù^$** 
w<< 

2 tut 1 — 
1 2 m —1 

o^mm 
x<< du p^ùm w 

Note the first crucial aspect of this equation, which is that the t-derivatives of u 

occur as either tut or t(tut)t = (tdt)2u, i.e., as the 'regular singular' versions of the 

t-derivatives at t = 0. 

Expanding the left hand side of (5.7) along the last column shows that this equation 

can be written in the form 

(5.8) 

det Sa 
ßri 

du 
opll 

d2u 

dr{dri 
[tdt )2u = te w pùl 

2 
tut] 1 2 n-1 

c<< 
^^*m fin. 

drJ 

w< Qij << 
du d2u 

dr ' dr2 

d [tut) d ù* 

dr1 dri 

where Qij = Qji are certain polynomials in the variables rl and the first and second 

derivatives of u with respect to the variables r \ 

In particular, note that the right hand side of (5.8) is an entire analytic function 

of the variables rl and t, the first and second derivatives of u with respect to the 

variables r% the expression tut and its first derivatives with respect to the r \ 

In what follows, it will be particularly important that this right hand side is also in 

the ideal generated by t and the quadratic expressions a(tutl d(tut) 
^x<< drò 

Now, set 

(5.9) << [r1,...,rn-1,t) = v(r\...,rn-1) + z{r\...,rn-\t) 

and define 

(5.10] F r1 ipm -1 w<< p^ùm Sij 
dv 
w<< + rj 

d2v 

drldrJ 

Note that, by hypothesis, det(Fi?(r,0)) ^ 0 for r G V C R71'1. In particular, the 

expression 

5.11 det F << w<< 
dz 
Qri 

+ rj 
d2z 

drldr3 5 

which is what the coefficient of (tdt)2u on the left hand side of (5.8) becomes when 

one substitutes u — v + z into that equation, is an analytic expression in r G V, t, 

and the partials of z that is non-vanishing on V when one sets t = z = 0. 
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Thus, substituting u = v + z into (5.8) and dividing by the determinant factor 

yields an equation for z of the form 

(5.12; tdt) |2 z = E r,t.z, 
dz 

w<<< 
,tzt, 

d2z 

dridri ' 

<9' ̂ *ùù 

Qri 

where the function E is 

1. real-analytic on an open neighborhood of V x {0} in V x R x Ri+n+2-"(n+i) and 

2. in the ideal generated by t and the products of pairs of the last in—1) variables 
(i.e., the 'slots' containing the entries d(tzt) 

m^* 
Now, turning to Chapter 8 of Gerard and Tahara [11], one sees that (5.12) is of 

the form to which their Theorem 8.0.3 applies. (6) Consequently, (5.12) has a unique 

real-analytic solution z(r,t) (denned on some neighborhood of V x { 0 } C Rn) that 

satisfies the initial condition 

5.13) z\ [r\ x< $*ù L,o: = 0 for (r1 cww -1> G V. 

Using this solution z to define u via (5.9), one sees that (5.7) has a correspondingly 

unique real-analytic solution satisfying the initial condition 

5.14) < (r1 m^ù* -1 ,0) = V r1: ,rn >,-l for (r1 w<< -1 ev, 

as claimed. The existence of an open neighborhood U of V x { 0 } such that 6 = uo un 

is strictly pseudo-convex on x<< ,-1 Vs C Cn is routine. • 

Corollary 5 (Singular initial value problem for toric solitons). — Let gf be a real-analytic 

toric Kahler metric on a Tn_1 -invariant, connected open neighborhood V C Cn_1 ofO. 

Then, for any h G Rn there exists a Tn-invariant open neighborhood C Cn 

of V x { 0 } and a toric gradient Kahler Ricci soliton g^ on whose pullback to V 

is g', whose associated vector field is Z^, and whose associated holomorphic volume 

form with respect to its Tn -invariant Ricci potential h vanishing at 0 G Cn is T = 

dz1 A • • • A dzn. 

Moreover, g^ is locally unique in that any extension of g' with these properties 

agrees with g^ on some open neighborhood ofVx { 0 } . 

Remark 22 (Contrast in initial value problems). — Note that Corollary 5 has a very dif

ferent character from Theorem 2. Not only is the nature of the initial data different, 

but, in the case of Corollary 5, one is imposing initial conditions along a submani-

fold that is everywhere tangent to the holomorphic vector field Z = Zh, rather than 

(6) While I do not want to state their full theorem here, I will give the gist: The two properties listed 
for the function E are easily seen to imply that there exists a unique formal power series solution of 
the form z(r, t) = z\(r)t + Z2(r)t2 + • • • to (5.12). The main import of the quoted Theorem 8.0.3 
is that this series actually converges to an analytic solution on some open neighborhood of V x {0}. 
(The need for a theorem is caused by the singularity at t = 0, which renders the standard method 
of majorants ineffective in proving the convergence of the formal series.) 
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sverywhere transverse. The difference, of course, is that Corollary 5 addresses a sin

gular initial value PDE problem that is, in many ways the analogue of the sort of ODE 

problem one encounters in the theory of regular singular points of ODE. 

Because the generalization of the ODE concept of 'regular singular point' to the 

:ase of PDE is very delicate (cf. the book of Gerard and Tahara), it is somewhat 

remarkable that this theorv actuallv applies in this case. 

5.1.2. A Lagrangian formulation. — While the reduced equation (5.3) is singular 

along the hypersurfaces r% = 0, it is regular on the open simplicial cone defined 

by rl > 0. Indeed, setting r% — ep\ the equation (5.3) with |c|2 = 1 can be written in 

the form 

(5.15) det 
l<i,j<n 

d2u 
w<<p^ùm e 

x< 
2 

du 
dp1 + ••• + h ri. du 

2 dpn = e 
< ùm^* x<< 

Setting Ui = J^i, this can be further rewritten into the form 

(5.16 e 
h. 
2 w< + ••• + hn 

2 Un dui &(k)z) = dun xw< e"1 + - + << dp' A---A dp". 

Thus, on R2n+1 with coordinates u,pl,Ui, if one defines the contact form 

(5.17 6 = du — Ui dp* 

and the closed ^-primitive (7) n-form 

(5.18: # = e 
' h-. 

2 m + ••• + hn 
2 Un dui A---A dun <p^*mm l+-+Pn dp1 A • • • A dpn, 

Then the solutions of the original equation (5.3) correspond to the integral manifolds 

of the Monge-Ampère ideal 

(5.19) 1= (0 ,d0,#) . 

Since \£ is closed and dO A \I> = 0, the (n+l)-form II = 6 A \P is closed and hence 

is the Poincare-Cartan form (see [1]) of a contact Lagrangian for the function u. 

In particular, it follows by Noether's Theorem that the symmetries of the Poincare-

Cartan form give conservation laws for the reduced equation. 

This is interesting because this system turns out to have a number of symmetries 

that are not apparent from the symmetries of the original equation. 

Remark 23 (Affine symmetries and equivalences). — For example, consider the affine 

transformations on M2n+1 of the form 

5.20 

u — s u + CLiBl pk + c , 

Ui = Al Uj + ai, 

= B) pj + 6* 

(7) If (M2n+1,0) is a contact manifold of dimension 2n+l, then an n-form $ on M is said to be 
9-primitive if dö A ̂  = 0 mod 0. 
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where Ap B1-, s ^ 0, â , b1, and c are real constants satisfying the n2+2n+l equations 

5.21 

4 
w< 

< ^ùm 
$*xw 

xw<p 
kùùùù 

= hj for 1 < j < n, 

i 
cw< 

= 1 for 1 < j < n, 
< 

ev 
hi 
2 

+ - + 2 On det < ^*mw< o^*mm det(S) . 

Such transformations, which constitute a Lie group of dimension n2 + 1, preserve the 

forms 6 and T up to constant multiples and hence preserve the system X. 

Obviously, the system depends on the vector h = (h\,..., hn). However, by leaving 

off the second of the above four conditions, one finds transformations that define 

equivalences between any two systems with h = hx + • • • + hn ^ 0 and any two 

systems with h = hx + • • • + hn = 0 but h ^ 0. The system corresponding to h = 0 

is, of course, the system that gives Ricci-flat toric Kahler metrics.) 

Remark 24 (Algebraic coordinates). — The function u is, in some sense, not that im

portant, since only the derivatives of u appear in the formula for the metric. Thus, 

one can actually formulate the essential part of the exterior differential system as a 

system on R2n. 

Assuming that none of the hi are zero, one can coordinatize the system algebraically 

as follows: Set vi = e^hiUi. Then the form T can, after multiplying by a constant, be 

written in the form 

£.22) T = d^i A • • • A dvn — 
hi•• • hn 

2n 
dr1 A---A drn, 

and the contact condition that du — Ui dp1 = 0 can be replaced by the condition 

(5.23 
n 

i=l 

2 dvi 

hi Vi 
A 

dr1 
<< = 0. 
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