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ON UNIQUENESS OF STATIONARY 
VACUUM BLACK HOLES 

by 

Piotr T. Chrusciel & Joäo Lopes Costa 

It is a pleasure to dedicate this work to J.-P. Bourguignon 
on the occasion of his 60th birthday. 

Abstract. — We prove uniqueness of the Kerr black holes within the connected, non-
degenerate, analytic class of regular vacuum black holes. 
Résumé (Sur l'unicité de trous noirs stationnaires dans le vide). — On démontre 
l'unicité de trous noirs de Kerr dans la classe de trous noirs connexes, analytiques, 
réguliers, non-dégénérés, solutions des équations d'Einstein du vide. 

1. Introduction 

It is widely expected that the Kerr metrics provide the only stationary, asymptoti
cally flat, sufficiently well-behaved, vacuum, four-dimensional black holes. Arguments 
to this effect have been given in the literature [12, 84] (see also [51, 77, 91]), with 
the hypotheses needed not always spelled out, and with some notable technical gaps. 
The aim of this work is to prove a precise version of one such uniqueness result for 
analytic space-times, with detailed filling of the gaps alluded to above. 

The results presented here can be used to obtain a similar result for electro-vacuum 
black holes (compare [13, 71]), or for five-dimensional black holes with three com
muting Killing vectors (see also [56, 57]); this will be discussed elsewhere [31]. 

We start with some terminology. The reader is referred to Section 2.1 for a pre
cise definition of asymptotic flatness, to Section 2.2 for that of a domain of outer 
communications ((^ext))> and to Section 3 for the definition of mean-non-degenerate 
horizons. A Killing vector K is said to be complete if its orbits are complete, i.e., for 
every p G J( the orbit (j)t[K](p) of K is defined for all t G R; in an asymptotically flat 
context, K is called stationary if it is timelike at large distances. 

2000 Mathematics Subject Classification. — 83C57. 
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196 P. T. CHRUSCIEL & J.L. COSTA 

A key definition for our work is the following: 

Definition 1.1. — Letvxx:;ù^^^^ be a space-time containing an asymptotically flat end 
^ext; and let K be stationary Killing vector field on ^ . We will say that (^f,&,K) 
is 7+-regular if K is complete, if the domain of outer communications ((^ext)) is 
globally hyperbolic, and if ((^ext)) contains a spacelike, connected, acausal hyper-
surface y Z> ye*t, the closure y of which is a topological manifold with boundary, 
consisting of the union of a compact set and of a finite number of asymptotic ends, 
such that the boundary dy := y \ y is a topological manifold satisfying 

<=)) ds* c <r+ := di ngg,, ,,xxxw k<̂ ext)> 

with dy meetinq every qenerator of S+ precisely once. (See Figure 1.1.) 

dy. ^ext 

vbn 

(^ext)I y 

FIGURE 1.1. The hypersurface y from the definition of /"'"-regularity. 

In Definition 1.1, the hypothesis of asymptotic flatness is made for definiteness, 
and is not needed for several of the results presented below. Thus, this definition 
appears to be convenient in a wider context, e.g. if asymptotic flatness is replaced by 
Kaluza-Klein asymptotics, as in [20, 23]. 

Some comments about the definition are in order. First we require completeness 
of the orbits of the stationary Killing vector because we need an action of R on M 
by isometries. Next, we require global hyperbolicity of the domain of outer commu
nications to guarantee its simple connectedness, to make sure that the area theorem 
holds, and to avoid causality violations as well as certain kinds of naked singularities 
in ((e^ext))- Further, the existence of a well-behaved spacelike hypersurface gives us 
reasonable control of the geometry of ((^ext))» and 1S a prerequisite to any elliptic 
PDEs analysis, as is extensively needed for the problem at hand. The existence of 
compact cross-sections of the future event horizon prevents singularities on the future 
part of the boundary of the domain of outer communications, and eventually guaran
tees the smoothness of that boundary. (Obviously I+ could have been replaced by I~ 
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ON UNIQUENESS OF STATIONARY VACUUM BLACK HOLES 197 

throughout the definition, whence<<would have become h<f~.) We find the require
ment (1.1) somewhat unnatural, as there are perfectly well-behaved hypersurfaces in, 
e.g., the Schwarzschild space-time which do not satisfy this condition, but we have not 
been able to develop a coherent theory without assuming some version of (1.1). Its 
main point is to avoid certain zeros of the stationary Killing vector K at the boundary 
of y\ which otherwise create various difficulties; e.g., it is not clear how to guarantee 
then smoothness o f w o r the static-or-axisymmetric alternative. ^ Needless to say, 
all those conditions are satisfied by the Schwarzschild, Kerr, or Majumdar-Papapetrou 
solutions. 

We have the following, long-standing conjecture, it being understood that both the 
Minkowski and the Schwarzschild space-times are members of the Kerr family: 

Conjecture 1.2. — Let («y#, g) be a vacuum, four-dimensional space-time containing a 
spacelike, connected, acausal hypersurface 5?, such that 5? is a topological manifold 
with boundary, consisting of the union of a compact set and of a finite number of 
asymptotically flat ends. Suppose that there existsxxhon a complete stationary Killing 
vector K, that ((^#ext)) is globally hyperbolic, and that dS^ C M \ ((^ext))- Then 
((^ext)) is isometric to the domain of outer communications of a Kerr space-time. 

In this work we establish the following special case thereof: 

Theorem 1.3. — Letvvxxwwww be a stationary, asymptotically flat, I+ -regular, vacuum, 
four-dimensional analxytic space-time. If each component of the event horizon is mean 
non-degenerate, then ((^ext)) is isometric to the domain of outer communications of 
one of the Weinstein solutions of Section 6.7. In particular, i f i s connected and 
mean non-degenerate, then ((̂ #ext)) is isometric to the domain of outer communica
tions of a Kerr space-time. 

In addition to the references already cited, some key steps of the proof are due to 
Hawking [48], and to Sudarsky and Wald [89], with the construction of the candidate 
solutions with several non-degenerate horizons due to Weinstein [93, 94]. It should 
be emphasized that the hypotheses of analyticity and non-degeneracy are highly un
satisfactory, and one believes that they are not needed for the conclusion. 

One also believes that no candidate solutions with more than one component of S+ 
are singularity-free, but no proof is available except for some special cases [69, 92]. 

A few words comparing our work with the existing literature are in order. First, the 
event horizon in a smooth or analytic black hole space-time is a priori only a Lipschitz 
surface, which is way insufficient to prove the usual static-or-axisymmetric alternative. 

t1' In fact, this condition is not needed for static metric if, e.g., one assumes at the outset that all 
horizons are non-degenerate, as we do in Theorem 1.3 below, see the discussion in the Corrigendum 
to [18]. 
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198 P. T. CHRUSCIEL & J.L. COSTA 

Here we use the results of [22] to show that event horizons in regular stationary black 
hole space-times are as differentiable as the differentiability of the metric allows. 
Next, no paper that we are aware of adequately shows that the "area function" is non-
negative within the domain of outer communications; this is due both to a potential 
lack of regularity of the intersection of the rotation axis with the zero-level-set of the 
area function, and to the fact that the gradient of the area function could vanish on its 
zero level set regardless of whether or not the event horizon itself is degenerate. The 
second new result of this paper is Theorem 5.4, which proves this result. The difficulty 
here is to exclude non-embedded Killing prehorizons (for terminology, see below), and 
we have not been able to do it without assuming analyticity or axisymmetry, even for 
static solutions. Finally, no previous work known to us establishes the behavior, as 
needed for the proof of uniqueness, of the relevant harmonic map at points where the 
horizon meets the rotation axis. The third new result of this paper is Theorem 6.1, 
settling this question for non-degenerate black-holes. (This last result requires, in 
turn, the Structure Theorem 4.5 and the Ergoset Theorem 5.24, and relies heavily 
on the analysis in [19].) Last but not least, we provide a coherent set of conditions 
under which all pieces of the proof can be combined to obtain the uniqueness result. 

We note that various intermediate results are established under conditions weaker 
than previously cited, or are generalized to higher dimensions; this is of potential 
interest for further work on the subject. 

1.1. Static case. — Assuming staticity, i.e., stationarity and hypersurface-
orthogonality of the stationary Killing vector, a more satisfactory result is available 
in space dimensions less than or equal to seven, and in higher dimensions on manifolds 
on which the Riemannian rigid positive energy theorem holds: non-connected config
urations are excluded, without any a priori restrictions on the gradient V(g(if, K)) 
at event horizons. 

More precisely, we shall say that a manifold 5? is of positive energy type if there 
are no asymptotically flat complete Riemannian metrics on 5? with positive scalar 
curvature and vanishing mass except perhaps for a flat one. This property has been 
proved so far for all n-dimensional manifolds 5? obtained by removing a finite num
ber of points from a compact manifold of dimension 3 < n < 7 [86], or under the 
hypothesis that 5? is a spin manifold of any dimension n > 3, and is expected to be 
true in general [14, 70]. 

We have the following result, which finds its roots in the work of Israel [61], 
with further simplifications by Robinson [85], and with a significant strengthening 
by Bunting and Masood-ul-Alam [10]: 
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Theorem 1.4. — Under the hypotheses of Conjecture 1.2, suppose moreover that 
(((̂ #ext))> 9) is analytic and K is hypersurface-orthogonal. Let 5? denote the man
ifold obtained by doublingw<across the non-degenerate components of its boundary 
and compactifying, in the doubled manifold, all asymptotically flat regions but one to 
a point. If 5? is of positive energy type, then ((^ext)) is isometric to the domain of 
outer communications of a Schwarzschild space-time. 

Remark 1.5. — As a corollary of Theorem 1.4 one obtains non-existence of black holes 
as above with some components of the horizon degenerate. In space-time dimension 
four an elementary proof of this fact has been given in [26], but the simple argument 
there does not seem to generalize to higher dimensions in any obvious way. 

Remark 1.6. — Analyticity is only needed to exclude non-embedded degenerate pre-
horizons within ((^#ext))- In space-time dimension four it can be replaced by the 
condition of axisymmetry and 7+-regularity, compare Theorem 5.2. 

Proof. — We want to invoke [18], where n = 3 has been assumed; the argument 
given there generalizes immediately to those higher dimensional manifolds on which 
the positive energy theorem holds. However, the proof in [18] contains one mistake, 
and one gap, both of which need to be addressed. 

First, in the case of degenerate horizons J^, the analysis of [18] assumes that the 
static Killing vector has no zeros on <ffi\ this is used in the key Proposition 3.2 there, 
which could be wrong without this assumption. The non-vanishing of the static Killing 
vector is justified in [18] by an incorrectly quoted version of Boyer's theorem [8], 
see [18, Theorem 3.1]. Under a supplementary assumption of J-1--regularity, the zeros 
of a Killing vector which could arise in the closure of a degenerate Killing horizon 
can be excluded using Corollary 3.3. In general, the problem is dealt with in the 
addendum to the arXiv versions viV, TV > 2, of [18] in space-dimension three, and 
in [20] in higher dimensions. 

Next, neither the original proof, nor that given in [18], of the Vishveshwara-Carter 
Lemma, takes properly into account the possibility that the hypersurface JV of [18, 
Lemma 4.1] could fail to be embedded. (2) This problem is taken care of by Theo
rem 5.4 below with 5 = 1, which shows that ((^#ext)) cannot intersect the set where 
W := —g(K, K) vanishes. This implies that K is timelike on (<(^ext)) 3 a n d null 
on dy\ The remaining details are as in [18]. • 

(2) This problem affects points 4c,d,e and f of [18, Theorem 1.3], which require the supplementary 
hypothesis of existence of an embedded closed hypersurface within J{\ the remaining claims of [18, 
Theorem 1.3] are justified by the arguments described here. 
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200 P. T. CHRUSCIEL & J.L. COSTA 

2. Preliminaries 

2.1. Asymptotically flat stationary metrics. — A space-time (^f,g) will be 
said to possess an asymptotically flat end if M contains a spacelike hypersurface yext 
diffeomorphic to Rn \ B(R), where B(R) is an open coordinate ball of radius R, with 
the following properties: there exists a constant a > 0 such that, in local coordinates 
on ^xt obtained from Rn\B(R), the metric 7 induced by g on yext, and the extrinsic 
curvature tensor Kij of yext, satisfy the fall-off conditions 

(2.1) vvcxx Sij pp ok ww:^p <<vxw Ok-i< xx<wx 

for some k > 1, where we write / = Ok (r°) ) if / satisfies 

(2.21 ped<< •dkJ = 0( vcwww 0 e k. 

For simplicity we assume that the space-time is vacuum, though similar results hold 
in general under appropriate conditions on matter fields, see [4, 25] and references 
therein. Along any spacelike hypersurface y, a Killing vector field X of (^#, g) can 
be decomposed as 

X = Nn + Y, 

where Y is tangent to y, and n is the unit future-directed normal to yext- The 
vacuum field equations, together with the Killing equations imply the following set o: 
equations on y, where Rijij) is the Ricci tensor of 7: 

(2.3 DiYj + wcc<< ssf 2NKij, 

'2.4 Rij (7) gd KkkKij jg 2KikKkj AT1 <cc^^ob,iii + DiDjN = 0. 

Under the boundary conditions (2.1) with k > 2, an analysis of (2.3)-(2.4) provides 
detailed information about the asymptotic behavior of (N,Y). In particular, one can 
prove that if the asymptotic region ye^t is contained in a hypersurface y satisfying 
the requirements of the positive energy theorem, and if X is timelike along yeKt, then 
(AT, Yl) - v - ^ (A0, A1), where the A^'s are constants satisfying (A0)2 > Y,i(Ai)2-
One can then choose adapted coordinates so that the metric can, locally, be written 
as 

2.5 g = -V2 dt + 0idxl \2 w< 7ì j dx dx , 

=e =7 
with 

(2.6) w^^ù << lùhg dtl = 0 

'2.7 lij Sij = Ok( gkkmù$ 0i = Ok( ̂ jfff V-l = ok (r-a 

for any k G N. As discussed in more detail in [7], in 7-harmonic coordinates, and in 
e.g. a maximal time-slicing, the vacuum equations for g form a quasi-linear elliptic 
system with diagonal principal part, with principal symbol identical to that of the 
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scalar Laplace operator. Methods known in principle show that, in this "gauge", all 
metric functions have a full asymptotic expansion (3) in terms of powers of In r and 
inverse powers of r. In the new coordinates we can in fact take 

x2.8; a = n-2. 

By inspection of the equations one can further infer that the leading order corrections 
in the metric can be written in a Schwarzschild form, which in "isotropic" coordinates 
reads 

0m bvxx!$m 
1 - m 2|x|™-2 
1 + m 2\x\n~2 t 

2 
dt2 + 1 + m 

2\x\n~2. 
4 

n-2 
N 

vbx 
wbb 

1 

where m G K. 

2.2. Domains of outer communications, event horizons. — A key notion in 
the theory of black holes is that of the domain of outer communications: A space-
time ( ^ , g) will be called stationary if there exists on ^# a complete Killing vector 
field K which is timelike in the asymptotically flat region ^ext.(4) For t e R let 
<j>t[K] • ̂  —> denote the one-parameter group of diffeomorphisms generated by 
K; we will write 4>t for </>t[K] whenever ambiguities are unlikely to occur. The exterior 
region ^ext and the domain of outer communications ((^ext)) are then defined as (5) 
(compare Figure 2.1) 
'2.9) k«̂ ext) > = /+ (Ut^(^ext) 

— :̂ #ext 

n r i (Ut<M^ext)) 

The black hole region and the black hole event horizon Jf?+ are denned as 

38 = bxx xhh ,* êxt)) ¨¨^^** = ^*dss. 

The white hole region W and the white hole event horizon Jf are defined as above 
after changing time orientation: 

^^^*oooo^^ ^^ ^ext), 3HP- = cxxrr r^^^dd^ d ^gggcvdbhte 

(3) One can use the results in, e.g., [15] together with a simple iterative argument to obtain the 
expansion. This analysis holds in any dimension. 
(4) In fact, in the literature it is always implicitly assumed that K is uniformly timelike in the 
asymptotic region <5̂ext, by this we mean that g(K,K) < — e < 0 for some e and for all r large 
enough. This uniformity condition excludes the possibility of a timelike vector which asymptotes to 
a null one. This involves no loss of generality in well-behaved space-times: indeed, uniformity always 
holds for Killing vectors which are timelike for all large distances if the conditions of the positive 
energy theorem are met [5, 25]. 
(5) Recall that I~(Q), respectively J~(Cl), is the set covered by past-directed timelike, respectively 
causal, curves originating from 17, while I~ denotes the boundary of I~, etc. The sets /+, etc., are 
defined as J-, etc., after changing time-orientation. 
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dl- .̂ ext, 

I Ô ext) 

*̂éxt 

<-̂<ext 

vc cww 

wb ww 

/nn 

êxt 

FIGURE 2.1. «yext, ^ext, together with the future and the past of ^ext-
One has ^ext C ^(^ext), even though this is not immediately apparent 
from the figure. The domain of outer communications is the intersection 
7+(^ext) H /~(^ext), compare Figure 1.1. 

It follows that the boundaries of ((^ext)) are included in the event horizons. We set 

(2.10; ;:!ôooxw <<bnjkl lwcftyy -^ext)) yx<<xxx US". 

There is considerable freedom in choosing the asymptotic region <5̂ ext- However, 
it is not too difficult to show, using Lemma 3.6 below, that /^(^ext)? and hence 
((«^ext))j J$?± an(i are independent of the choice of ^ext whenever the associated 
text 's overlap. 

Several results below hold without assuming asymptotic flatness: for example, one 
could assume that we have a region ^ext on which K is timelike, and carry on with the 
definitions above. An example of interest is provided by Kaluza-Klein metrics with an 
asymptotic region of the form (Rn \ B(R)) x Tp, with the space metric asymptotic to 
a flat metric there. However, for definiteness, and to avoid unnecessary discussions, 
we have chosen to assume asymptotic flatness in the definition of 7+-regularity. 

2.3. Killing horizons, bifurcate horizons. — A null hypersurface, invariant un
der the flow of a Killing vector K, which coincides with a connected component of 
the set 

vbxx tK) xbbb [0( K,K) 1 = 0, K^O}, 
is called a Killing horizon associated to K. 

A set will be called a bifurcate Killing horizon if it is the union of four Killing 
horizons, the intersection of the closure of which forms a smooth submanifold 5 of co-
dimension two, called the bifurcation surface. The four Killing horizons consist then 
of the four null hypersurfaces obtained by shooting null geodesies in the four distinct 
null directions normal to S. For example, the Killing vector xdt + tdx in Minkowski 
space-time has a bifurcate Killing horizon, with the bifurcation surface t = x = 0\. 

The surface gravity k of a Killing horizon jV is defined by the formula 

(2.111 d bc cbbw^^p p<<wcvvn -2*Kb , 
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where jmm ̂̂  + 2dvdvww<r A fundamental property is that the surface gravity K is 
constant over each horizon in vacuum, or in electro-vacuum, see e.g. [51, Theorem 7.1]. 
The proof given in [90] generalizes to all space-time dimensions n + 1 > 4; the result 
also follows in all dimensions from the analysis in [55] when the horizon has compact 
spacelike sections. (The constancy of K can be established without assuming any field 
equations in some cases, see [62, 82].) A Killing horizon is called degenerate if K 
vanishes, and non-degenerate otherwise. 

2.3.1. Near-horizon geometry. — Following [74], near a smooth event horizon one 
can introduce Gaussian null coordinates, in which the metric takes the form 

f2.12 S = ripdv2 + 2dvdr + 2rhadxadv + habdxadxb. 

(These coordinates can be introduced for any null hypersurface, not necessarily an 
event horizon, in any number of dimensions). The horizon is given by the equation 
{r = 0}; replacing r by —r if necessary we can without loss of generality assume that 
r > 0 in the domain of outer communications. Assuming that the horizon admits a 
smooth compact cross-section 5, the average surface gravity (K)S is defined as 

2.13) bcb S = -
D 
\s\ << 

<pdfih, 

where dfih is the measure induced by the metric h on 5, and \S\ is the volume of S. 
We emphasize that this is defined regardless of whether or not some Killing vector K 
is tangent to the horizon generators; but if K is, and if the surface gravity K of K is 
constant on 5, then (K)S equals K. 

On a degenerate Killing horizon the surface gravity vanishes by definition, so that 
the function cp in (2.12) can itself be written as rA, for some smooth function A. 
The vacuum Einstein equations imply (see [74, eq. (2.9)] in dimension four and [67, 
eq. (5.9)] in higher dimensions) 

(2.14) Rab = 
1 
2 

hahb !ù$ + 2dvdr 

where Rab is the Ricci tensor of hai, := hab\r=0i and D is the covariant derivative 
thereof, while ha << ha\r=Q. The Einstein equations also determine À b,bb, A\r=o 
uniquely in terms of ha and hab'. 

'2.15 À = 
2vb hahb Dak) 

(this equation follows again e.g. from [74, eq. (2.9)] in dimension four, and can be 
checked by a calculation in all higher dimensions). We have the following: (6) 

w Some partial results with a non-zero cosmological constant have also been proved in [26]. 
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Theorem 2.1 ([261). — Let the space-time dimension be n + 1, n > 3, suppose that a 
deqenerate Killinq horizon JV has a compact cross-section, and that <xx ww daX for 

some function A (which is necessarily the case in vacuum static space-times). Then 
2.U implies ha = 0, so that hab is Ricci-fìat. 

Theorem 2.2 ([47, 67]). — In space-time dimension four and in vacuum, suppose that 
a degenerate Killing horizon JV has a spherical cross-section, and that (JK, g) admits 
a second Killing vector field with periodic orbits. For every connected component JV§ 
of JV there exists an embedding of JV§ into a Kerr space-time which preserves ha, hab 
and A. 

It would be of interest to understand fully (2.14), in all dimensions, without re
strictive conditions. 

In the four-dimensional static case, Theorem 2.1 enforces toroidal topology of cross-
sections of JV, with a flat hab- On the other hand, in the four-dimensional axisym-
metric case, Theorem 2.2 guarantees that the geometry tends to a Kerr one, up to 
errors made clear in the statement of the theorem, when the horizon is approached. 
(Somewhat more detailed information can be found in [47].) So, in the degenerate 
case, the vacuum equations impose strong restrictions on the near-horizon geometry. 

It seems that this is not the case any more for non-degenerate horizons, at least 
in the analytic setting. Indeed, we claim that for any triple (iV, ha, hab)-, where N is 
a two-dimensional analytic manifold (compact or not), ha is an analytic one-form on 
AT, and hab is an analytic Riemannian metric on N, there exists a vacuum space-time 
( ^ , with a bifurcate (and thus non-degenerate) Killing horizon, so that the metric 
a takes the form (2.12) near each Killing; horizon branching out of the bifurcation 
surface S ~ N, with hab w< hab\ r=0 and ha << ha |r=o; in fact haij is the metric induced 
by g on S. When N is the two-dimensional torus T2 this can be inferred from [73] 
as follows: using [73, Theorem ¡2)1 with 0, ßa,9ab \t=0 <x 0, 2ha, hab] one obtains 
a vacuum space-time JK1 <<x S1 x T2 x <w<< ,0': with a compact Cauchy horizon 
S1 x T2g and Killing vector K tangent to the S1 factor of Jt'. One can then pass 
to a covering space where S1 is replaced by R, and use a construction of Racz and 
Wald [82, Theorem 4.2] to obtain the desired J( containing the bifurcate horizon. 
This argument generalizes to any analytic [N, ha, hab) without difficulties. 

2.4. Globally hyperbolic asymptotically flat domains of outer communi
cations are simply connected. — Simple connectedness of the domain of outer 
communication is an essential ingredient in several steps of the uniqueness argument 
below. It was first noted in [28] that this stringent topological restriction is a conse
quence of the "topological censorship theorem" of Friedman, Schleich and Witt [37] 
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for asymptotically flat, stationary and globally hyperbolic domains or outer commu
nications satisfying the null energy condition: 
(2.16) RpVY*Yv > 0 for null Y». 

In fact, stationarity is not needed. To make things precise, consider a space-time 
(</#,£j) with several asymptotically flat regions ^elxt, i = 1,... ,iV, each generating 
its own domain of outer communications. It turns out [41] (compare [42]) that the 
null energy condition prohibits causal interactions between distinct such ends: 

Theorem 2.3. —s / / g)cc is a globally hyperbolic and asymptotically flat space-time 

satisfying the null energy condition (2.16), then 

(2.17) « ^ x t » n JHd^xxLvv)v)) = 0forhsi^s j . 

A clever covering/connectedness argument (7) [41] shows then: (8) 

Corollary 2.4. — A globally hyperbolic and asymptotically flat domain of outer com

munications satisfying the null energy condition is simply connected. 

In space-time dimension four this, together with standard topological results [76], 
leads to a spherical topology of horizons (see [28] together with Proposition 4.4 below): 

Corollary 2.5. — In I+-regular, stationary, asymptotically flat space-times satisfying 
the null energy condition, cross-sections of S+ have spherical topology. 

3. Zeros of Killing vectors 

Let 5? be a spacelike hypersurface in ((^ext)); in the proof of Theorem 1.3 it will 
be essential to have no zeros of the stationary Killing vector K on 5?. Furthermore, 
in the axisymmetric scenario, we need to exclude zeros of Killing vectors of the form 
•f(o) + aK(i) on ((^ext))? where K(0) — K and i^(i) is a generator of the axial 
symmetry. The aim of this section is to present conditions which guarantee that; for 
future reference, this is done in arbitrary space-time dimension. 

We start with the following: 

Lemma 3.1. — Let ^ext C S? C ((̂ #ext))> and suppose that y is achronal in 
((^ext))- Then for any p G «̂ #ext there exists to G R such that 

ynl+(4>to(P)) = 0. 

(7) Under more general asymptotic conditions it was proved in [44] that inclusion induces a surjective 
homeomorphism between the fundamental groups of the exterior region and the domain of outer 
communications. In particular, 7ri(̂ ext) = 0 7ri(((̂ #ext))) = 0. 
(8) Strictly speaking, our applications below of [41] require checking that the conditions of asymptotic 
flatness in [41] coincide with ours; this, however, can be avoided by invoking directly [28]. 
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Proof. — Let p G ^ext. There exists t0 such that r := 4>t0{p) € ^ext- Suppose that 
y D 7+(0to(p)) ^ 0. Then there exists a timelike future directed curve 7 from r 
to q € y. Let qi e y converge to q; then qi G 7+(r) for z large enough, which 
contradicts achronality of y within ((^ext))- • 

Lemma 3.2. — Let S C 7+(^ext) be compact. 

1. T/iere erriste p G ^ext 5itc/i that S is contained in 7+(p). 
2. 7/5 C 9((^#ext))n/+(«y#ext) and if (((^ext))50) ¿5 strongly causal at S, ^ then 

for any p G #̂ext £Aene exists ¿0 € R ŝ cft £fta£ 5 fl I+((j)to(p)) = 0. 

Proof. — 1: Let # G 5; there exists pg G */#ext such that q G 7+(pg), and since 
IJt{Pq) is open there exists an open neighborhood &q C S of # such that ^9 C 7+(pg), 
By compactness there exists a finite collection &q., i = 1 , . . . , / , covering 5, thus 
5 C Uil+(pqi). Letting p G «̂ ext be any point such that pQi G 7+(p) for z = 1,. . . , 7, 
the result follows. 

2: Suppose not. Then ())i(p) G I~{S) for all z G N, hence there exists qi G S 
such that <̂  £+ 2dvdr+ i By compactness there exits q G 5 such that ^ —• <?• Let 
^ be an arbitrary neighborhood of q\ since q Gxcvùthere exists r G ^ D ((^ext))? 
p+ G ^ext5 and a future directed causal curve 7 from r to p+. For all z large, 
this can be continued by a future directed causal curve from p+ to 4>i(p), which can 
then be continued by a future directed causal curve to q^. But qi G & for i large 
enough. This implies that every small neighborhood of q meets a future directed 
causal curve entirely contained within ((̂ #ext)) which leaves the neighborhood and 
returns, contradicting strong causality of ((̂ #ext))- D 

It follows from Lemma 3.1, together with point 1 of Lemma 3.2 with S = {r}, that 

Corollary 3.3. — Ifre ynl+(^ext), then the stationary Killing vector K does not 
vanish at r. In particular if (^,9) is I+ -regular, then K has no zeros on y. • 

To continue, we assume the existence of a commutative group of isometries R x 
Ts_1, s > 1. We denote byxwwthe Killing vector tangent to the orbits R factor, and 
we assume that if (0) is timelike in J%e*t • We denote ggbycwwwKfff ̂  ,z = l , j j , s — 1 the Killing 
vector tangent to the orbits of the z'th S1 factor of Ts_1. We assume that eachfddd 
is spacelike in ((^ext)) wherever non-vanishing, which will necessarily be the cadse if 
((^ext)) is chronological. Note that asymptotic flatness imposes 5 — 1 < n/2, though 
most of the results of this section remain true without this hypothesis, when properly 
formulated. 

(9) In a sense made clear in the last sentence of the proof below. 
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We say that a Killing orbit 7 : R —» jjt is future-oriented if there exist numbers 
7i > ro such that 7(71) G 7+(7(ro)). Clearly all orbits of a Killing vector K are 
future-oriented in the region where K is timelike. A less-trivial example is given by 
orbits of the Killing vector dt + fic^ in Minkowski space-time. Similarly, in stationary 
axisymmetric space-times, those orbits of this last Killing vector on which dt is timelike 
are future-oriented (let ro = 0 and T\ = 2ir/£l). 

We have: 

Lemma 3.4. — Orbits through ̂ #ext of Killing vector fields K of the form K^ + 
a(i)K(i) are future-oriented. 

Proof. — Recall that for any Killing vector field Z we denote by </>t[Z] the flow of Z. 
Let 

Y := ]a{i)K{iy 

Suppose, first, that there exists r > 0 such that 0r[^] is the identity. ooSince ggand 
Y commute we have 

<j>T[K] = MK(o) + Y} = <t>T[K(o)} o 4>T[Y} = < f . 

Setting ro = 0 and T\ = r, the result follows. 
Otherwise, there exists a sequence U —> 00 such that (f)ti[Y](p) converges to p. 

Since /+(p) is open there exists a neighborhood ^ + C I+(p) of (f>i[K^](p). Let 
y+ = 0_i[K(o)](^+)) then every point in ^ + lies on a future directed timelike path 
starting in namely an integral curve of if(o)- There exists io > 1 so that U > 1 
and 6t. \Y](p) G y+ for i>i0. We then have 

ct>ti[K](p) = &4[Jf(0) +r] (p) = ^-i[if(o)](0i(^[i1(p))) € /ggg+(p) 

ddfccw 
Ĝ  + C/+(p) 

The numbers ro = 0 and T\ = U0 satisfy then the requirements of the definition. • 

For future reference we note the following: 

Lemma 3.5. — The orbits through ((^ext)) of any Killing vector K of the form K^ + 
Yla(i)K(i) are future-oriented. 

Proof. — Let p G ((^ext))> thus there exist points p± G ^ext such that p± G ^(p), 
with associated future directed timelike curves 7±. It follows from Lemma 3.4 together 
with asymptotic flatness that there exists r such that c/>T[K](p-) G /+(p+) for some 
r, as well as an associated future directed curve 7 from p+ to <j>T[K](jp-). Then the 
curve 7+ • 7 • 0r[lf](7_), where • denotes concatenation of curves, is a timelike curve 
from p to 4>T (p). • 

The following result, essentially due to [27], turns out to be very useful: 
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Lemma 3.6. — Let G R. For any set C invariant under the flow of K = cww< 
J2i OCÌKÌ, the set w<< << n^ext coincides with #̂ext> if non-empty. 

Proof — The null achronal boundaries <^m mm H c^ext are invariant under the flow 
of K. This is compatible with Lemma 3.4 if and only if IT\x<<< (C) <^*m = 0. If c 
intersects << •^ext) then I- <mù Hcy#ext is non-empty, hence x<< << D «/#ext Since #̂ext 
is connected. A similar argument applies if C intersects I- < êxt)- • 

We have the following strengthening of Lemma 3.2: 

Lemma 3.7. — Let << G R. // UCxt)),fl) is chronological, then there exists no 
nonempty set N which is invariant under the flow of *(0) + E* <*iKi and which is 
included in a compact set Cc (^ext)). 

Proof. — Assume that N C («^ext) is not empty. From Lemma 3.6 we obtain 
«̂ ext mm$*ù mm hence J+ (^ext; ww^*m [NY Arguing similarly with L I-we infer that 

!« êxt), C J+ [N] n j- i ùù^*ù 

Hence every point q in k êxt. is in 7+ (P) for some p E N. We conclude that 
ùù x<< n c ; pgAr is an open cover of C. Assuming compactness, we may then choose 
a finite subcover <<ù: Pi) DC x<<< This implies that each pi must be in the future of 
at least one pj, and since there is a finite number of them one eventually gets a closed 
timelike curve, which is not possible in chronological space-times. • 

Since each zero of a Killing vector provides a compact invariant set, from Lemma 3.7 
we conclude 

Corollary 3.8. — Let OLi GR. If X^ext)>,fl! is chronological, then Killing vectors of 
the form *(0) + Ei aiRi have no zeros in (^ext) 

4. Horizons and domains of outer communications in regular space-times 

In this section we analyze the structure of a class of horizons, and of domains of 
outer communications. 

4.1. Sections of horizons. — The aim of this section is to establish the existence 
of cross-sections of the event horizon with good properties. 

By standard causality theory the future event horizon x<<< ̂$*ùù (^ext) (recall that 
7± denotes the boundary of 7± is the union of Lipschitz topological hypersuriaces. 
Furthermore, through every point p G there is a future inextendible null geodesic 
entirely contained in <kù:; 'though it may leave x<<< when followed to the past of p). 
Such geodesies are called generators. A topological submanifold S of ^ + will be 
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called a local section, or simply section, if S meets the generators of w<< transversally; 
it will be called a cross-section if it meets all the generators precisely once. Similar 
definitions apply to any null achronal hypersurfaces, such as J?- or S±. 

We start with the proof of existence of sections of the event horizon which are 
moved to their future by the isometry group. The existence of such sections has been 
claimed in Lemma 5.2 of [16]; here we give the proof of a somewhat more general 
result: 

Proposition 4.1. — n H-neighborhood U x<<<$^*ùùùùùx<< ^ext)U/+ i«^ext) be a connected 
component of the event horizon J4? in a space-time $) with stationary Killing 
vector K(Q\ , and suppose that there exists a compact cross-section S of J#o satisfying 

S C S0 := <ow<<< M'ext). 

Assume that 

1. either 

((•^ext) <^ùmm ^ext is strongly causal, 

2. or there exists in ^w<<< a spacelike hypersurface w<<<^$nw<< achronal in 

l^ext)), so that S above coincides with the boundary of y: 

s = dy cS+. 

Then there exists a compact Lipschitz hypersurface So of So which is transverse to 
both the stationary Killing vector field K(0) and to the generators of So, and which 
meets every qenerator of So precisely once: in particular 

So = x<<< So)-

Proof. — Changing time orientation if necessary, and replacing JÍ by I+ <^*ùù \ 
J%o) I, we can without loss of generality assume that S = SQ — ¿%o — <p^ù*x<<<<< 

Choose a point p £ ^extj where the Killing vector K(o) is timelike, and let 

7p = cw<<< (p) 

be the orbit of K(0) through p. Then I~ (S) must intersect 7P (since So is contained 
in the future of ^fext)- Further, I~(S) cannot contain all of jp, by Lemma 3.1 or by 
part 2 of Lemma 3.2. Let q E 7P lie on the boundary of I~(S), then I+(q) cannot 
contain any point of S, so it does not contain any complete null generator of So. On 
the other hand, if I^~(q) failed to intersect some generator of So, then (by invariance 
under the flow of K(0)) each point of 7P would also fail to intersect some generator. By 
considering a sequence, {qn = </>tn ((?)}, along 7P with tn —• —oo, one would obtain a 
corresponding sequence of horizon generators lying entirely outside the future of {qn}. 
Using compactness, one would get an "accumulation generator" that lies outside the 
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future of all {qn} and thus lies outside of 

tha t S lies to the future of ^ext-

Set 

7+1 7p) = 7 + 1 («^ext) , contradicting the fact 

S 0 : = = / + ! (<z)n<?0, 

and we have just proved tha t every generator of So intersects So at least once. 

The fact tha t the only null geodesies tangent to So are the generators of So shows 

tha t the generators of 7+(g) intersect So transversally. (Otherwise a generator of 

7+(g) would become a generator, say T, of So. Thus T would leave So when followed 

to the past at the intersection point of 7+(g) and So, reaching which contradicts the 

fact tha t So lies at the boundary of 7 _ ( ^ E X T ) . ) As in [22], Clarke's Lipschitz implicit 

function theorem [29] shows now tha t So is a Lipschitz submanifold intersecting each 

horizon generator; while the argument just given shows tha t it intersects each genera

tor at most one point. Thus, So is a cross-section with respect to the null generators. 

However, So also is a cross-section with respect to the flow of 7 Q 0 ) , because for all t 

we have 

x<< 'So) 
ùù*^^ :<pt : :^*ùù 

and for t > 0 the boundary of 1+ l<T>t< xw is contained within ùx< 
<<< In other words, 

4H{ So. cannot intersect So, which is equivalent to saying tha t each orbit of the flow of 

*(0) on the horizon cannot intersect So at more than one point. On the other hand, 

each orbit must intersect So at least once by the type of argument already given — 

one will run into a contradiction if complete Killing orbits on the horizon are either 

contained within I+(q) or lie entirely outside of 7+(g) . • 

Now, both S and So are compact cross-sections of So. Flowing along the generators 

of the horizon, one obtains: 

Proposition 4.2. — S is homeomorphic to Sq. 

We note tha t so far we only have a C0,1 cross-section of the horizon, and in fact 

this is the best one can get at this stage, since this is the natural differentiability of 

Sn. However, if So is smooth, we claim: 

Proposition 4.3. — Under the hypotheses of Proposition 1^.1, assume moreover that 

So is smooth, and that ((^ext)) is globally hyperbolic. Then So can be chosen to be 

smooth. 

Proof. — The result is obtained with the following regularization argument: Choose 

a point p G ey#ext> such tha t the section S of Proposition 4.1 does not intersect the 

future of p. Let the function u be the retarded t ime associated with the orbit jp 

through p parameterized by the Killing t ime from p; this is defined as follows: For 

any q G ^ we consider the intersection J- x<< n7p. If t ha t intersection is empty 
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we set A) = 00. If J- (Q) contains 7P we set u( a) = -co. Otherwise, as j - << is 
achronal, the set j - (?) H7p contains precisely one point << (p) for some r. We then 
set x<< = r. Note that, with appropriate conventions, this is the same as setting 

(4.1 u(q) = M\ t : <j>t\ IP) <:!^*ù x<< 

It follows from the definition of u that we have, for all r, 

(4.2) << Mr)] ^*mm (r) + t. 

In particular, u is differentiable in the direction tangent to the orbits of Kr0), with 

;4.3) K(o) (u) = fl( K{0), Vu) = 1, 

everywhere. 
The proof of Proposition 4.1 shows that u is finite in a neighborhood of So; let 

So = u~1 (o)n<?0, 

and let ^ denote a conditionally compact neighborhood of So on which u is finite; 
note that So here is a 0t[jFf(O)]_translate of the section 5o of Proposition 4.1. 

Let n be the field of future directed tangents to the generators of <§o, normalized 
to unit length with some auxiliary smooth Riemannian metric on M. For q G So 
let jVq C TqM denote the collection of all similarly normalized null vectors that 
are tangent to an achronal past directed null geodesic 7 from q to </>u(q)(p), with 7 
contained in ((e/#ext)) except for its initial point. (If u is differentiable at q then jVq 
contains one single element, proportional to Vix, but jVq can contain more than one 
null vector in general.) We claim that there exists c > 0 such that 

(4.4) inf 
qes0,iqe^K, 

<$ù x<<< > c> 0. 

Indeed, suppose that this is not the case; then there exists a sequence qi G 5o and 
a sequence of past directed null achronal geodesic segments 7̂  from q{ to p, with 
tangents li at such that g(li,n) —> 0. Compactness of So implies that there exists 
q G SQ such that q% —> q. 

Let 7 be an accumulation curve of the 7 '̂s passing through q. By hypothesis, SQ is 
a smooth null hypersurface contained in the boundary of ((^Cxt)), with q G S0. This 
implies that either 7 immediately enters ((^ext)), or 7 is a subsegment of a generator 
of So through q. In the latter case 7 intersects S when followed from q towards the 
past, and therefore the 70's intersect J- [S)n (^ext) for all i large enough. But this 

is not possible since 5H J+ (P) = 0. We conclude that there exists SQ > 0 such that 
7(«o) G ((^ext) }. Thus a subsequence, still denoted by ni [so), converges to 7(50), 
and global hyperbolicity of ((^ext)) implies that the 7*'s converge to an achronal null 
geodesic segment 7 through p, with tangent / at SQ satisfying g(l,n) = 0. Since both 
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/ and n are null we conclude that / is proportional to n, which is not possible as the 
intersection must be transverse, providing a contradiction, and establishing (4.4). 

Let 0i,i = L .,...,AT, be a family of coordinate balls of radii 3r̂  such that the balls 
of radius T{ cover O, and let tpi be an associated partition of unity; by this we mean 

that the IP^S are supported in and they sum to one on &. For E < R := minr* let 

Pel [X) Then th << w<< (recall that the dimension of is n + 1 I, where <P is a positive 
smooth function supported in the ball of radius one, with integral one. Set 

(4.5) <p^*ùù 
N 

i=l 
(fi (fe * U, 

where * denotes a convolution in local coordinates. Strictly speaking, CPE should be 
denoted by (PE^, as it depends explicitly on the local coordinates on but we will 
not overburden the notation with yet another index. (10) Then ue tends uniformly to 
u. Further, using the Stokes theorem for Lipschitz functions [751, 

(4.6) DUE = 
N 

c<<< 
IPE*U D(fi + (FI IPE* DU 

<< 

N 

i=l 
(IF€ *U — U) D<fi + <fi <fe* DU << 

I II 

where we have also used <$*ù x<< <!:^ùù DL = 0. It immediately follows that the 
term I uniformly tends to zero as e goes to zero. Now, the term II, when contracted 
with K(o), gives a contribution 

(4.7) x<<< we * du IX) << 
'\v-x\<* 

K(0) [x) diu( ym [X - Y] )DN+1Y 

^*ù 
\y-x\<e 

Kto) (X) - K(0) (y) diu(y) 

=0(e) 

+ K(0) [y) << [Y xw< (X-Y] \DN+1Y 

= 1 by (4.3) 
= I-H 0(E). 

It follows that, for all e small enough, the differential DUE is nowhere vanishing, and 
that if(o) is transverse to the level sets of UE. 

To conclude, let n denote any future directed causal smooth vector field on 6 
which coincides with the field of tangents to the null generators of SQ as defined 

,10) This is admittedly somewhat confusing since, e.g., n;; 
^*ùù = I-H 0(E) << 

w< <Pi) (fe * U. 
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above. By (4.4) the terms 77 in the formula for due, when contracted with n, will 
give a contribution 

(4.8) 

7̂1 ife * du] w<< w<< 
'\y-x\<e 

(n\x) -n* y) diu (y) <<mù iv) diu( y) ̂ << x-y) dn+1y 

=0(e) >c 
> c + O <<< 

and transversality of the generators of to the level sets of ue, for e small enough, 
follows. • 

4.2. The structure of the domain of outer communications. — The aim 
of this section is to establish the product structure of 7+-regular domains of outer 
communication, Theorem 4.5 below. The analysis here is closely related to that 
of [27]. 

As in Section 3, we assume the existence of a commutative group of isometries 
R x TP-1 with s > 1. We use the notation there, with K(0\ timelike in ^ext5 and 
each K(i spacelike in ((e/#ext))-

Let r — = I-H 0(E) be the radius function in #̂ext- By the asymptotic analysis 
of [25] there exists R so that for r > R the orbits of the 's are entirely contained 
in ^ext> so that the function 

Hp) = 
JGET3-1 

r( g(p)№9, 

is well defined, and invariant under Ts_1. Here d[ig is the translation invariant mea
sure on Ts_1 normalized to total volume one, and g(p) denotes the action on ^ of 
the isometry group generated by the K^s. Similarly, let t be any time function on 
((-Cxt})5 the level sets of which are asymptotically flat Cauchy surfaces. Averaging 
over Ts_1 as above, we obtain a new time function t, with asymptotically flat level 
sets, which is invariant under Ts_1. (The interesting question, whether or not the 
level sets of t are Cauchy, is irrelevant for our further considerations here.) It is then 
easily seen that, for a large enough, the level sets 

ST,CR '- — t — T,r — a 

are smooth embedded spheres included in #̂ext-
Throughout this section we assume that= I-H 0(E) is 7+-regular. Let 5? be as in 

the definition of regularity, thus 5? is an asymptotically flat spacelike acausal hy
persurface in ((./#ext)) with compact boundary, the latter coinciding with a compact 
cross-section of S+. Deforming 5? if necessary, without loss of generality we may 
assume that 5? H ^ x t is a level set of i. We choose R large enough so that SQ,R is 
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a smooth sphere, and so tha t the slopes of light cones on the ST,CT'S, for a > R, are 

bounded from above by two, and from below by one half, and redefine ^ext so tha t 

{bi} Uj Ix<<< 
Consider 

V+ := w<< <^mm \ ^ext> n !^ext))-

Then is a null, achronal, Lipschitz hypersurface generated by null geodesies ini

tially orthogonal to Sq R . Let us write fa for fa[K(0\], and set 

= I-H 0(E) 
M x<< 5 

we then have 

= I-H 0(E) ßt,R. x<<<< i n ,-^ext w< 

(recall t ha t the flow of consists of translations in t in ^ex t ) which implies tha t 

every orbit of intersects ce?+ at most once. 

Since y is achronal it parti t ions ((^#ext)) as 

(4.91 (-#ext] << ^*mmm w<< («^ext ) u / - i x<<< 
(•^ext)! (disioint union). 

Indeed, as ( (^ext)) is globally hyperbolic, the boundaries 7± << o^ùl n < (^ext) 
are generated by null geodesies with end points on edge <w w<< ̂ext ) ) = 0 . 

We claim tha t every orbit of K(0\ intersects 5?. For this, recall tha t for any q in 

!(«^ext)) there exist points p± G ^ e x t such tha t q e Pi P±) ). Since the flow of << 

in ^#ext is by t ime translations there exist t± G M so tha t 0t± <km^ùù «^ext- Hence 

0*± (9) G /=F| («^3Xt) , which shows tha t every orbit of Kr0\ meets both the future and 

the past of 5?. By continuity and (4.9) every orbit meets 5? (perhaps more than 

once). Hence 

(4.IO; (•^ext) w< <vbnj w<<< M'ext)) 
^ùmm 

.^ext) w<<m^* w<< 

[for the second equality Proposition 4.1 has been used). Setting ^int = x<^^<< 

<y#ext> one similarly obtains 

(4.11) ^#int w<<<^ùm U/+C x<<< ̂ ùmm U J - x<< ^int disjoint union), 

(4.12) <vbn,;:^ù x<<< ^ùmm 

By hypothesis ^ \ ^ext is compact and so, by the first par t of Lemma 3.2, there 

exists p- G ^ex t such tha t 

(4.13; y^ <-̂ ext 
w<< <<< 

Choose £_ < 0 so tha t p _ e / + ( knw<< ); we obtain tha t y \ -̂̂ ext ci+ <^*mm 
I-H 0 

, hence 

= I-H 0( x<<< ^*ùù 

Since Sn B C y we have x<< 
C J + <:!ù By acausality of y and (4.9) we infer tha t 

y \ ye-xX C T I ^w<<< and hence <t>t-y ^ext, c / - ( ^ ) . 
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So, for p G y <^*,, the orbit segment 

, o] 3 t ,<w<< ,, 

SIARIÖ IN INE PAST UI w<< and finishes to its future. From (4.10) we conclude that 

4.14 « 2 C Ut€[t_i0] << [y \ y.xt) ; 

equivalently, 
C Ut€[0,_t. 0tl ^\^ext) . 

As the set at the right-hand-side is compact, we have established: 

Proposition 4.4. — Suppose that [Jt,g) is J+ -regular, then ^+ is compact. 

We are ready to prove now the following version of point 2 of Lemma 5.1 of [16]: 

Theorem 4.5 (Structure theorem). — Suppose that Jt,g I is an 7+ -regular stationary 
snace-time invariant under a commutative arouv of isometries R x Ts_1 , s > 1, with 
the stationary Killingssvectorw<^*tangent to the orbits of the R factor. There exists 
on ((e^ext)) a smooth time function t, invariant under Ts_1, which together with the 
flow of K^ induces the diffeomorphisms 

[4.15) («^ext) ) & Rx y, I^ext)) <<vc •^ext) = I-H 0(E) 
= I-H 0(E) 

where y := t 1(0) is asymptotically flat, (invariant under Ts x), with the boundary 
dy being a compact cross-section of . The smooth hypersurface with boundary y 
is acausal, spacelike up-to-boundary, and the flow of is a translation along the R 
factor in (4.15). 

Proof. — Prom what has been said, every orbit of if(0) through ((^#ext)) \ ^ext 
intersects ^+ precisely once. For p G ((^ext)) \ ^ext we let u(p) be the unique 
real number such that <t)u(p){p) £ while for p G ̂ ext we let u(p) be the unique 
real number such that 4>u(p)(p) € ^ext» The function u : ((^ext)) —» R is Lipschitz, 
smooth in ^#ext, with achronal level sets transverse to the flow of K^, and provides 
a homeomorphism 

(«^ext) ^ext « R X w<ml<< « R x ^ + U y.xt)-

The desired hypersurface y will be a small spacelike smoothing of ^_1(0), obtained 
by first deforming the metric g to a metric ge, the null vectors of which are spacelike 
for q. The associated corresponding function ue will have Lipschitz level sets which 
are uniformly spacelike for g. A smoothing of ue will provide the desired function t. 
The details are as follows: 

We start by finding a smooth hypersurface, not necessarily spacelike, transverse to 
the flow of K. We shall use the following general result, pointed out to us by R. Wald 
(private communication) : 
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Proposition 4.6. — Let So be a two-sided, smooth, hypersurface in a manifold M with 
an open neighborhood & such that M\ & consists of two disconnected components 
M_ and M_|_. Let X be a complete vector field on M and suppose that there exists 
T > 0 such that for every orbit <j>t(jp) of X, t G R, p G M, there is an interval \to,t\] 
with (t\ — to) < T such that (fit(p) lies in Af_ for all t < to, and 4>t{p) lies in M+ 
for all t > t\. If M has a boundary, assume moreover that dSo C DM, and that X 
is tangent to dM. Then there exists a smooth hypersurface Si C M such that every 
orbit of X intersects S\ once and only once. 

Proof. — Let / be a smooth function with the property that / = 0 in M_, 0 < / < 1 
in G, and / = 1 in M+; such a function is easily constructed by introducing Gauss 
coordinates, with respect to some auxiliary Riemannian metric, near So- For t G R 
and p G M let (j>t(p) denote the flow generated by X. Define F : M —• R by 

x<< P. << 
xw 

— oo 
f°<t>s [p)ds. 

Then F is a smooth function on M increasing monotonically from zero to infinity 
along every orbit of X. Furthermore F is strictly increasing along the orbits at points 
at which F > T (since such points must lie in M+, where / = 1). In particular, the 
gradient of F is non-vanishing at all points where F >T. Setting S\ = {F = T}, the 
result follows. • 

Returning to the proof of Theorem 4.5, we use Proposition 4.6 with X = x<< 

M = vw< <m^*ù w<< •̂ ext» 

and £0 = y n i . Letting t- be as in (4.14) we set 

0:= << (t_,-t_ 4>t <^ùm x<< 

by what has been said, & is an open neighborhood of 5?. Finally 

M_ := << -oo,t_] <:!^* w<< cw<< Ut€[ —t- ,00) << <^ù 

It follows now from Proposition 4.6 that there exists a hypersurface S\ C M which is 
transverse to the flow of if(o)-

Let T be any smooth, timelike vector field defined along Si, and define the smooth 
timelike vector field T on M as the unique solution of the Cauchy problem 

(4.16' <^*mm T = 0, T = f on Si. 

Since the flow of K(0) acts by time translations on #̂ext? it is straightforward to 
extend T to a smooth vector field defined on M, timelike wherever non vanishing, 
still denoted by T, which is invariant under the flow of if(o)» the support of which 
on y is compact. Replacing T by its average over Ts_1, we can assume that T is 
invariant under the action of Ts_1. 
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For all e > 0 sufficiently small, the formula 

(4.171 flel [Z\,Z2, = 9 [Z1.Z2) x<<< <$*ù T,Z2) I. 
defines a Lorentzian, R x Ts_1 invariant metric on the manifold with (ge-timelike) 

boundary ^^^^x<< •n/+ !«̂ ext. I. By definition of ge, vectors which are causal for g are 
timelike for a€. Wherever T / 0 the light cones of ge are spacelike for g, provided 
6 ^ 0 . 

Since g-causal curves are also ge-causal, 
communications with respect to $e. 

<p^ù** w<<;,, is also a domain of outer 

Set 
p^ùmmm cw<< [SO,R) <p^ùmm ) n ghw<< < 

where we denote by Je+(^) the future of a set Cl with respect to the metric ge. Then the 
^e+,s are Lipschitz, g-spacelike wherever differentiable, Ts_1 invariant, hypersurfaces. 
Continuous dependence of geodesies upon the metric together with Proposition 4.4 
shows that the ^e+'s accumulate at ^+ as e tends to zero. 

Let u€ : M —> IR be defined as in (4.1) using the metric ge instead of g. As before 
we have 

(4.18) << {4>t (p: *^$$$ x<< mù*w< so that *<0) ue) = 1. 

We perform a smoothing procedure as in the proof of Proposition 4.3, with 6 then 
replaced by a conditionally compact neighborhood of The vector field T in (4.16 
is chosen to be timelike on G\ the same will then be true of T. Analogously to (4.5 
we set 

(4.19Ì €̂,77 •— 
N 

i=l 
<Pi (pv*ue, 

so that the ue^ s converge uniformly on u to ue as 77 tends to zero. The calculation 
in (4.7) shows that 

K(o: <$*^^ > 
1 
2 

for 77 small enough, so that the level sets of ue „ near ^+ are transverse to the flow of 
^w<<< 

It remains to show that the level sets of ue^ are spacelike. For this we start with 
some lemmata: 

Lemma 4.7. — Let g be a Lipschitz-continuous metric on a coordinate ball 
&i of coordinate radius 3r^. There exists a constant C such that for any 

x<<<^$*ùù 

q G B(p,ri 
and for any timelike, respectively causal, vector Nq = <<p^*ùù G TqM satisfying 

U.20) 
<< 

x<< »2 = 1 
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there exists a timelike, respectively causal, vector field N = N»du on B ̂ :ù^* such 
that for all points y,z G B (p,2r,0 we have 

(4.211 w<<< < x<< < C \y- z 5 
c-1 < <ù \2 <c. 

< 
Proof. — We will write both cw and << :«) for the coordinate components of a vector 
field at q. For V = 0. , . . . ,n, let << << <!ù* v<< be any Lipschitz-continuous OAT basis 
for g on ^ . there exists a constant c such that on B (p,2ry we have 

<< 
^ù* 

cw< !^*ù x<< ̂*ù < x<< \y-z I-
Decompose iVg as iVg <^*ù nw ̂ *mm 

eri/' 4 , and for y e Gì set ATy cw< << :!^* w<< [v)\ (4.21 
easily follows. • 

Lemma4.8. — Under the hypotheses of Lemma J^.l, let f be differentiable on ft. 
Then V/ is timelike past directed on B(p, 2r*) if and only if N^d^f < 0 on ft for all 
causal past directed vector fields satisfying (4.20) and (4.21). 

Proof. — The condition is clearly necessary. For sufficiency, suppose that there exists 
q G B(p, 2ri) such that V/ is null, let Nq = AV/(g), where A is chosen so that (4.20) 
holds, and let N be as in Lemma 4.7; then N^d^f vanishes at q. If V/ is spacelike 
at q the argument is similar, with Nq chosen to be any timelike vector orthogonal to 
Vf(q) satisfying (4.20). • 

Let N be any g-timelike past directed vector field satisfying (4.20) and (4.21). 
Returning to (4.6) we find, 

'4.22 ijsfdueìTÌ << 
N 

i=l 
= I-H 0(E) iNdifi + (fi ìn (iprj * due) c<< 

i il 
For any fixed e, and for any S > 0 we can choose rjs so that the term / is smaller than 
S for all 0 < rj < rjs. 

To obtain control of II, we need uniform spacelikeness of due: 

Lemma 4.9. — There exists a constant c such that, for N as in Lemma 1.7, 

(4.23 N»duu€ < -ce 

almost everywhere, for all e > 0 sufficiently small. 

Proof. — Let << be an a-ON frame in which the vector field T of (4.17 equals 
T c< e(o)- Let <*^!! denote the components of due in a frame dual to x<< }. In this 

frame we have 

Ö = diag - 1 , 1 , ,1), 0e = diag I-H 0(E) №(0) <ù^* 1, . ,1 i. 
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Since du* is cL-null and past pointing we have 

tt(0 x<< 1 + (T(°) 2e 4 ) -
The last part of (4.18) reads 

K :o) 
0 a. '(0) + (0 

a(i) = 1. 

It is straightforward to show from these two equations that there exists a constant c\ 
such that, for all e sufficiently small, 

<< > ^mù* 
«?0 > c<<w \a(»)\ <Ci. 

Since A/" is ge causal past directed, (4.20) and (4.21) together with the construction 
of N show that there exists a constant c<i such that 

<<< < -c2. 

We then have 

N»dßue <l!: N (o) «(0) +: cw<< a(i) 

<< N(0) 1 + T(°) 2e- 4 ) + x<< a(i) 

<*ù N(0) 'l + (T(°) << - 1 ; x<< 
b;;:! + ^x<<< <<< + <p^mm a(0 

<0 by Cauĉ ĥy-Schwarz, as AT is g-timelike 

< 
C2 
4ci 

inf 
e 

•r(o) 2 e =: -ce, 

for e small enough. • 

Now, calculating as in (4.8), using (4.23), 

iN '<Prj * due (x) x<< 
\y-x\<rj 

<< < < ^*ù y) ù$*w<< <ù: •f << [y] x<<< (y). << ̂ mmùù dn+ly 

<Cr) <-C€ 

< -ce + 0(77), 

so that for 77 small enough each such term will give a contribution to (4.22) smaller 
than — ce/2. Timelikeness of Vwe?T7 on G follows now from Lemma 4.8. 

Summarizing, we have shown that we can choose e and 77 small enough so that 
the function ue^ : M —• R is a time function near its zero level set. It is rather 
straightforward to extend ue^ to a function on ((«/#ext)) ^5 w^h smooth spacelike 
zero-level-set, which coincides with 5? at large distances. Letting 5? be this zero 
level set, the function t(p) is defined now as the unique value of parameter t so that 
0t(p) € since the level sets of t are smooth spacelike hypersurface, t is a smooth 
time function. This completes the proof of Theorem 4.5. • 
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4.3. Smoothness of event horizons. — The starting point to any study of event 
horizons in stationary space-times is a corollary to the area theorem, essentially due 
to [22], which shows that event horizons in well-behaved stationary space-times are 
as smooth as the metric allows. In order to proceed, some terminology from that last 
reference is needed; we restrict ourselves to asymptotically flat space-times; the reader 
is referred to [22, Section 4] for the general case. Let (^K,g) be a C3 completion of 
(«^>fl) obtained by adding a null conformal boundary at infinity, denoted by J^+, 
to jjit, such that g = fl~2g for a non-negative function Q defined on jjt', vanishing 
precisely on<< and dQ, without zeros on<< Let <f + be the future event horizon 
in M. We say that (^,5) is ^+-regular if there exists a neighborhood G of <f + such 
that for every compact set C C G for which 7+(C;^#) ^ 0 there exists a generator 
of<<< intersecting I+(C\^() which leaves this last set when followed to the past. 
(Compare Remark 4.4 and Definition 4.3 in [22]). 

We note the following: 

Proposition 4.10. — Consider an asymptotically flat stationary space-time which is 

vacuum at larqe distances, recall that x<< = I- « êxt, <<:;ù («̂ ext. ). # « ^ e x t » IS 
globally hyperbolic, then [Jt,g] admits an x<<<regular conformal completion. 

Proof. — Let <M be obtained by adding to #̂ext the surface r = 0 in the coordinate 
system (it, f, 0, ip) of [34, Appendix A] (see also [32], where the construction of [34] is 
corrected; those results generalize without difficulty to higher dimensions). Let t be 
any time function on ((^#ext)) which tends to infinity when ^+ is approached, which 
tends to —oo when /+(«^ext) is approached, and which coincides with the coordinate 
t in ^ext as in [34, Appendix A]. Let 

G = ÍP t ) >o; ̂ x<< <:;; U<f+ ; 

then G forms an open neighborhood of . Let C be any compact subset of G such 
that x< (C\je) <<^* < ^ 0 ; then 0 ^ C PI ((^ext) c \t> oi. Let 7 be any future 
directed causal curve from C to ^ + , then 7 is entirely contained in ((^ext)), With 
t 07 > 0. In particular any intersection of 7 with 9^ext belongs to the set {* > 0}, 

so that at each intersection point 

u o 7 > inf u\ {¿=01 -nd̂ ext =:c> - 0 0 . 

The coordinate u of [34, Appendix A] is null, hence non-increasing along causal curves, 
so u o 7 > c, which implies the regularity condition. • 

We are ready to prove now: 

Theorem 4.11. — Let (^#,0) be a smooth, asymptotically flat, (n + 1)-dimensional 
space-time with stationary Killing vector K^, the orbits of which are complete. Sup
pose that ((^#ext)) is globally hyperbolic, vacuum at large distances in the asymptotic 
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region, and assume that the null energy condition (2.16) holds. Assume that a con
nected component J^o of 

Jt? := J?' U Jif+ 

admits a compact cross-section satisfying S c l + («^ext) • if 
1. either 

(«^ext) c<< (« êxt is strongly causal, 

2. or there exists in ((^#ext)) a spacelike hypersurface y D yext> achronal in 
((JZext)), so that S as above coincides with the boundary of y1: 

s = dy c<?+, 

then 
x<<< *(0)1 (S) <<^mm 

¿5 a smooth null hypersurface, which is analytic if the metric is. 

Remark 4.12. — The condition that the space-time is vacuum at large distances can 
be replaced by the requirement of existence of an <f+-regular conformai completion 
at null infinity. 

Proof. — Let E be a Cauchy surface for ((^ext))> and let ^ be the conformai com
pletion of M provided by Proposition 4.10. By [22, Proposition 4.8] the hypotheses 
of [22, Proposition 4.1] are satisfied, so that the Aleksandrov divergence O^i of S+, as 
defined in [22], is nonnegative. Let 5i be given by Proposition 4.1. Since isometries 
preserve area we have O^i = 0 almost everywhere on Ut4>t(Si) = Ut4>t(S). The result 
follows now from [22, Theorem 6.18]. • 

4.4. Event horizons vs Killing horizons in analytic vacuum space-times. — 
We have the following result, first proved by Hawking for n = 3 [49] (compare [38] 
or [16, Theorem 5.1]), while the result for n > 4 in the mean-non-degenerate case is 
due to Hollands, Ishibashi and Wald [55], see also [54, 60, 68]: 

Theorem 4.13. — Let c<<< 
$^*ùù 

be an analytic, (n + l) -dimensional, vacuum space-time 
with complete Killing vector K^y Assume that contains an analytic null hyper
surface S with a compact cross-section S transverse both to K^ and to the generators 
of S. Suppose that 

1. either (k) s ¿ 0 , where («>s is defined in (2.13), 
2. orn = 3. 

Then there exists a neighborhood ^ of S and a Killing vector defined on which is 
null on S. 

In fact, if K(q) is not tangent to the generators of S, then there exist, near S, 
N commuting linearly independent Killing vector fields Km w<< N)> N > 1, (not 
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necessarily complete but) with 2^-periodic orbits near £, and numbers 

such that 
(Ui{bi} Uj Ij), 

c<<< + = I-H 0(E) + . . . + = I-H 0(E) 

is null on £. 

In the black hole context, Theorem 4.13 implies: 

Theorem 4.14. — Let cw<< be an analytic, asymptotically flat, strongly causal, vac
uum, n + 1) -dimensional space-time with stationary Killing vector K^, the orbits 

of which are complete. Assume that (i^^t)) is qlobally hyperbolic, that a connected 

component w<< contains a compact cross-section S satisfying 

Sc/+(I e x t)w<<, 

and that 

1. either Ms 4 0, 

2. or the flow defined by K^ on the space of the generators of J4?Q~ is periodic w<< 
Suppose moreover that 

a) either 

b;:!*** jni+ i^ext) is strongly causal, 

b) or there exists in {(J%ext)) an asymptotically flat spacelike hypersurface 5?, 

achronal in ((^^t)), so that S as above coincides with the boundary of 5?': 

S = dy a£+<<. 

If K(Q) is not tangent to the generators of J$f, then there exist, on ^ e x t ) ) U ^ 0

+ , 

TV complete, commuting, linearly independent Killing vector fields ^ ( l ) > • • • ,K(N), 

N > 1, with 2TT-periodic orbits, and numbers Q m , . . . ,fJ cw such that the Killing 

vector field 

*<o) + I-H 0(E) + ••• <+ x<<<^mmm< 

is null onx<< 

Remark 4.15. — For /^-regular four-dimensional black holes 5 is a two-dimensional 

sphere (see Corollary 2.5), and then every Killing vector field acts periodically on the 

generators of w<<<<<. 

Proof. — Theorem 4.11 shows that £Q~ w<< <^*ùù vw<< (S) is an analytic null hyper

surface. By Proposition 4.3 there exists a smooth compact section of £Q which is 

transverse both to its generators and to the stationary Killing vector. ( n ) We can thus 

invoke Theorem 4.13 to conclude existence of Killing vector fields Kay. i = l,...,iV, 
defined near £Q~. By Corollary 2.4 and a theorem of Nomizu [78] we infer that the 

(n) The hypothesis of existence of such a section needs to be added to those of [55, Theorem 2.1]. 
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if(i)'s extend globally to ((^ext))- It remains to prove that the orbits of all Killing 
vector fields are complete. In order to see that, we note that by the asymptotic anal
ysis of Killing vectors of [5, 25] there exists R large enough so that the flows of all 
•K"(i)'s through points in the asymptotically flat region with r > R are defined for 
all parameter values t G [0, 2TT]. The arguments in the proof of Theorem 1.2 of [17] 
then show that the flows </>t[K^ys are defined for t G [0,2n] throughout ((^#ext))-
But (j)2n[K(i)} is an isometry which is the identity on an open set near <f0

+, hence 
everywhere, and completeness of the orbits follows. • 

5. Stationary axisymmetric black hole space-times: the area function 

As will be explained in detail below, it follows from Theorem 4.14 together with the 
results on Killing vectors in [6, 17], that 7+-regular, 3+1 dimensional, asymptotically 
flat, rotating black holes have to be axisymmetric. The next step of the analysis of 
such space-times is the study of the area function 

(5.1" W :=-det 3 k(u)>km) 'u,^=0,l' 

with if(0) being the asymptotically timelike Killing vector, andw<<the axial one. 
Whenever y/W can be used as a coordinate, one obtains a dramatic simplification of 
the field equations, whence the interest thereof. 

The function W is clearly positive in a region where if(0) is timelike a n d < < i s 
spacelike, in particular it is non-negative on ^ ext- As a starting point for further 
considerations, one then wants to show that W is non-negative on ((-#ext))-xww 

Theorem 5.1. — Let ( ^ , g) be a four-dimensional, analytic, asymptotically flat, vac
uum space-time with stationary Killing vector K(0\ and periodic Killing vector Km, 

jointly generating an RxU w< subgroup of the isometry group of w<<^*ù =^* I-H 0(E) 

globally hyperbolic, then the area function (5.1) is non-negative on ( ( ^<<,xw vanishing 
precisely on the union of its boundary with the (non-empty) set {0< = I-H 0(E) = 0}. 

We also have a version of Theorem 5.1, where the hypothesis of analyticity is 
replaced by that of 7+-regularity: 

Theorem 5.2. — Under the remaining hypotheses of Theorem 5.1, instead of analyt
icity assume that (JK, g) is J + -regular. Then the conclusion of Theorem 5.1 holds. 

Keeping in mind our discussion above, Theorem 5.1 follows from Proposition 5.3 
and Theorem 5.4 below. Similarly, Theorem 5.2 is a corollary of Theorem 5.6. 
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5.1. Integrability. — The first key fact underlying the analysis of the area func
tion W is the following purely local fact, observed independently by Kundt and 
Triimper [65] and by Papapetrou [80] in dimension four (for a modern derivation 
see [51, 95]). The result, which does neither require AT(0) to be stationary, nor 
the if(i)'s to generate S1 actions, generalizes to higher dimensions as follows (com
pare [11, 35]): 

Proposition 5.3. — Let x<< be a vacuum, possibly with a cosmoloqical constant 

(n + I] -dimensional vseudo-Riemannian manifold with n — 1 linearlu independent 

commuting Killing vector fields <^$ùù > M = 0,. . , 7 1 - 2- // 

;5.2) 2?dgt — [p^jt 1^(0) • A ... A K(n-2) Ip = o; ̂ 0 , 

then^12 

(5.31 vw<< ^ùùx<< A • • • A K(n-2) = 0. 

Proof. — To fix conventions, we use a Hodge star defined through the formula 

a A/3 = << l*a. fl) Vol, 

where the plus sign is taken in the Riemannian case, minus in our Lorentzian one, 
while Vol is the volume form. The following (well known) identities are useful [51]; 

5.4 * *0 = [-1Y n+l-s) <^*ùùù V<9 e As, 

(5.5) iK * 0 = *(0AK x<< V0 <e As, K e A1. 

Further, for any Killing vector K, 

(5.6) <o^ùmm = 0, 

The Leibniz rule for the divergence S:= w<<< reads, for 0 e As, 

[OAK) = *d * ( (OA if )(5=5) * d( <p^ùùm = * w<<<:;, — ixd * 0) 

[5.4 (5.6' 
w<< = I-H 0(E) <<o^mm (-1) (n+1- s+1) n+l-i n+1-<^*ùù -1 * *d * 0 

x< - 1 si (n+l-s) <<<p^ùm (-1 (n+i-s; )-n+l x<<< (60 A K) 

<<l - 1 s [n+l-s) - 1 $^^^x<< (-1: <<,;::: A if. 

Applying this to 6 = diiT one obtains 

x<<< [dKhK = -yKdK + << p^*ù 5dK AK 

w<< - 1 n+l. SdKAK. 

[12) Bv an abuse of notation, we use the same symbols for vector fields and for the associated 1-forms. 
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As any Killing vector is divergence free, we see that 

SdK = < << AK = - 1 \n+l %k Rie. 

Assuming that the Ricci tensor is proportional to the metric, Ric = Ag, we conclude 
that 

*d * dK A K << dK A K Aif = 0. 
Let Ufa) be the /i'th twist form, 

dK A K * dK, m: 
Aif( w< << 

The identity 

dK A K 
dK A Kx<< 

^* dK A K * dK A K A#(„)) 

= *i xw<< <<<i^m + x<< dK A K w<< = 0, 

together with 

<*mm^ù <ww,:^*$ x<<< ̂ $*ùù w<< ^*$ùùù dK A K 
w< 
<<w,;: dK A K = 0, 

and with Cartan's formula for the Lie derivative, gives 

(5.7: dl dK A K dK A K dK A K ̂ x< - 1 ' << 
Ml) 

<^* 
x<< 

da; w<< 
We thus have 

d * [dK mi A if I mi A • • • A if Mn-l) <jl cw< <<< <lù 
^^ 

>2 * dif( Ml, A << mi 
<< - 1 n-2 w< (Mn-l ^cw<< 

(M2) 
x<< 

(Mi! = 0. 

So the function * dK Pi) 
cw<^ùmm 

(Mi A if, (M2) A ... A << 
(Mn-l, 

is constant, and the result 
follows from (5.2). • 

5.2. The area function for a class of space-times with a commutative group 
of isometries. — The simplest non-trivial reduction of the Einstein equations by 
isometries, which does not reduce the equations to ODEs, arises when orbits have 
co-dimension two, and the isometry group is abelian. It is useful to formulate the 
problem in a general setting, with 1 < 5 < n — 1 commuting Killing vector fields K(a\, 

iz = 0 , . . . , s - l , , satisfying the following orthogonal integrability condition: 

(5.8; x<a^m 0 , . . . , s - l dK (m) Alf, (o) A-.-A K mx<< = 0. 

For the problem at hand, (5.8) will hold when s = n — 1 by Proposition 5.3. Note 
further that (5.8) with s = 1 is the definition of staticity. So, the analysis that 
follows covers simultaneously static analytic domains of dependence in all dimensions 
n > 3 (filling a gap in previous proofs), or stationary axisymmetric analytic four-
dimensional space-times, or five dimensional stationary analytic space-times with two 
further periodic Killing vectors as in [56]. It further covers stationary axisymmetric 
7+-regular black holes in n = 3, in which case analyticity is not needed. 

SOCIÉTÉ MATHÉMATIQUE DE PRANCE 2008 



226 P. T. CHRUSCIEL & J.L. COSTA 

Similarly to (5.2) we set 

Í5.9) dK A K <<<$*mm AK [a-r = 0 xw 

[5.10] JT := pG w<< : det 0 ww: 
x<< 

<pùl 
i,j=l,...s—l 

= 01. 

In the following result, the proof of which builds on key ideas of Carter [11, 121, 
we let if (o) denote the Killing vector associated to the R factor of : R x T s - \ and we 
let Ku\ denote the Killing vector field associated with the i — th S1 factor of Ts 1: 

Theorem 5.4. — Let w<<p^mm be an (n + l) -dimensional, asymptotically flat, analytic 
space-time with a metric invariant under an action of the abelian group G = R x T s _ 1 

with s-dimensional principal orbits, 1 < s < n — 1, and assume that (5.8) holds. If 
((^ext)) is globally hyperbolic, then the function 

(5.11] W :=- det ( fl( w<< <lpmmu 
fi,i/=0,...,s — 1 

is non-negative on ( ̂ ext) , vanishing on d( I^ext! uar. 

Remark 5.5. — Here analyticity could be avoided if, in the proof below, one could 
show that one can extract out of the degenerate 5 p 's (if any) a closed embedded 
hypersurface. Alternatively, the hypothesis of analyticity can be replaced by that of 
non-existence of non-embedded degenerate prehorizons within ((c^ext))- Moreover, 
one also has: 

Theorem 5.6. — Let n = 3, s = 2 and, under the remaining conditions of Theo
rem 5.4, instead of analyticity assume that (^,q) is 7 + -regular. Then the conclusion 
of Theorem 5.4 holds. 

Before passing to the proof, some preliminary remarks are in order. The fact 
that ^ \ 3?dgt is open, where 3?dgt is as in (5.9), together with (5.8), establishes 
the conditions of the Probenius theorem (see, e.g., [52]). Therefore, for every p £ 
3fdgt there exists a unique, maximal submanifold (not necessarily embedded), passing 
through p and orthogonal to Span{if( 0 ) , i f ( s _i)}, that we denote by &v. Carter 
builds his further analysis of stationary axisymmetric black holes on the sets Gv. This 
leads to severe difficulties at the set of (5.10), which we were not able to resolve 
using neither Carter's ideas, nor those in [91]. There is, fortunately, an alternative 
which we provide below. In order to continue, some terminology is needed: 

Definition 5.7. — Let K be a Killing vector and set 

[5.12' x<< <$^** [fl( K,K) = o, dK A K 
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Every connected, not necessarily embedded, null hypersurface 
K is tangent will be called a Killing prehorizon. 

^6 C oV\ K to which 

In this terminology, a Killing horizon is a Killing prehorizon which forms an em
bedded hypersurface which coincides with a connected component of J V \ K \ . 

The Minkowskian Killing vector dt - dx provides an example where JV is not a 
hypersurface, with every hyperplane t + x = const being a prehorizon. The Killing 
vector K = dt + Y on R x Tn, equipped with the flat metric, where Tn is an n-
dimensional torus, and where Y is a unit Killing vector on Tn with dense orbits, admits 
prehorizons which are not embedded. This last example is globally hyperbolic, which 
shows that causality conditions are not sufficient to eliminate this kind of behavior. 

Our first step towards the proof of Theorem 5.4 will be Theorem 5.8, inspired again 
by some key ideas of Carter, together with their variations by Heusler. We will assume 
that the if^ 's , 2 = 1,. . . , s — 1, are spacelike (by this we mean that they are spacelike 
away from their zero sets), but no periodicity or completeness assumptions are made 
concerning their orbits. This can always be arranged locally, and therefore does not 
involve any loss of generality for the local aspects of our claim; but we emphasize that 
our claims are global when the K^s are spacelike everywhere. 

In our analysis below we will be mainly interested in what happens in ((^ext)) 
where., bv Corollarv 3.8. we have 

x<<< ^$ùù — %dgt n ^ext)), 

in a chronological domain of outer communications. We note that $?dgt C{W = 0}, 
but equality does not need to hold for Lorentzian metrics. For example, consider in 
M1'2, JRT(O) — &x 4- dt and x<<w = <9y; then if(0) A ki11= dx A dy — dt A dy ^ 0 and 
W = 0. 

If the K^s generate a torus action on a stably causal manifold, (13) it is well 
known that 2f is a closed, totally geodesic, timelike, stratified, embedded submanifold 
of with codimension of each stratum at least two (this follows from [63] or [2, 
Appendix C]). So, under those hypotheses, within ((^ext))5 we will have 

(5.13) the intersection of 3?dgt with any null hypersurface JV is a 

stratified submanifold of JY, with o/K-codimension at least two. 

This condition will be needed in our subsequent analysis. We expect this property 
not to be needed, but we have not investigated this question any further. 

(13) Let t be a time-function on averaging t over the orbits of the torus generated by the 
's we obtain a new time function such that the 's are tangent to its level sets. This reduces 

the problem to the analysis of zeros of Riemannian Killing vectors. 
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Theorem 5.8. — Let w<<<< be an (n+i; -dimensional Lorentzian manifold with s > 1 
linearly independent commuting Killing vectors <ù^** , /x = 0, . . , 3 - 1 , satisfying the 
inteqrabilitv conditions (5.8), as well as :5.i3), with the K(i) 's, i = 1, . . , 5 - 1 , 
spacelike. Suppose that {W = 0} \ 3?dgt is not empty, and for each p in this set 
consider the Killinq vector field L defined as^1^ 

5.14; lp — tf(o) << x<< << <<< 0 'K{ (o) <$^* (0 i|Pif(j), 

where i <<<^ùm 1 ¿5 í/ie matrix inverse to 

(5.15) << WO) :=fl( if (i) << 
J). < ùùc<< { i , . . . , 5 - i} << 

Then the distribution lp C T^¿ of vectors orthogonal to lp is integrable over the 
non-empty set 

(5.16) {qeJt <cw<< 0 (Zp, lp) < < 0, w («) = 0} {q e J( lp < = 0 << 

If we define Sp to be the maximally extended over {W = 0}, connected, integral leaf 
of this distribution passing through p, then all Sp's are Killing prehorizons, totally 
geodesic in <JK \ {lp = 0}. 

In several situations of interest the 5p's form embedded hypersurfaces which coin
cide with connected components of the set defined in (5.16), but this is certainly not 
known at this stage of the argument: 

Remark 5.9. — Null translations in Minkowski space-time, or in pp-wave space-times, 
show that the S '̂s might be different from connected components of JV^,V\. 

Remark 5.10. — It follows from our analysis here that for q G Sp \ 2?dgt we have 
lq = lp. For q G Sp fl Sfdgt we can define lq by setting lq := lp. We then have lp = lq 
for all q E Sp. 

Proof. — Let 

(5.17) w := *(0) if(0),if(s_i)} if(0),if(s_i)} 

We need an equation of Carter [111: 

Lemma 5.11 ([11]). — We have 

Í5.18) w A dW = : - i w< Wdw. 

r14i If S = 1 then = 0 and lp = K(0V 
:i5i To avoid ambiguities, we emphasize that points at which lv vanishes do not belong to Sv. 
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Proof. — Let F = {W = 0} . The result is trivial on the interior F of F, if non-empty. 
By continuity, it then suffices to prove (5.18) on J£ \ F. Let 6 be the set of points 
in M \ F at which the Killing; vectors are linearly independent. Consider any point 

if(0),if(s_i)} and let (xa,xA) ), a = 0 , . . . , 5 - 1, be local coordinates near p chosen so that 

*(») x<<< and Span^ 9a _L Span dA •; this is possible by (5.8). Then 

w = — Wdx° <^*mm dx8'1 
5 

and (5.18) follows near p. Since & is open and dense, the lemma is proved. • 

Returning to the proof of Theorem 5.8, as already said, (5.8) implies that for every 

P i ^dgt there exists a unique, maximal. [n + 1 - s) -dimensional submanifold (not 
necessarily embedded), , passing through p and orthogonal to Span x<n,; xw<< >-i) '5 
that we denote by úp. By definition, 

(5.19) 0V n &dgt = 0 , 

and clearly 

(5.20 if(0),if(s_i)}vv^*ù w<< &v = Gq. 

Recall that p G W = 0 ^àgù then *(0) A ••• A c<< <p^m t¿ 0 in 0V and we may 
choose vector fields Ufa) e TM , /i = 0, ., s — 1, such that 

K(o) A ••• A w<< 
(8-1) << (0) << (s-1) = 1 

in some neighborhood of p. Let 7 be a Ck curve, k > 1, passing through p and con

tained in up. Since 71 G T7(s)<̂ p = Span [*<0), <mù [s-l) ^w< 7(s) I, after contracting 
£.18) with x<< ,wa_i,7) we obtain the following Cauchy problem 

(5.21) 
A 
ds 

[W o 7) » if(0),if(s_i)} <v;: 
w\P = 0. 

Uniqueness of solutions of this problem guarantees that ^ o 7(5) = 0 and therefore 
W vanishes along the (n + 1 — s)-dimensional submanifold Ov. Since G preserves W', 
W must vanish on the sets 

(5.22) Sp :— Gs - Up. 

Here Gs- denotes the motion of a set using the group generated by the K^s, i = 
1,.. . , s — 1; if the orbits of some of the K^s are not complete, by this we mean "the 
motion along the orbits of all linear combinations of the K^s starting in the given 
set, as far as those orbits exist". Since TqGv is orthogonal to all Killing vectors by 
definition, and the K^s are spacelike, the K^)S are transverse to 0P, so that the 
Sp's are smooth (not necessarily embedded) submanifolds of codimension one. 

On {W = 0}\3fdgt the metric q restricted to Span{Jf(0),..., K(s_1)} is degenerate, 
so that Span{K(0),..., K(s_i)} is a null subspace of TM. It follows that for q G 
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W = 0] 2?<igt some linear combination of Killing vectors is null and orthogonal 
to Span w<<< <^*ù (s-l \, thus in Tqffp. So for q G [W = 0 3?dgt the tangent 
spaces TqSp are orthogonal sums of the null spaces TqÛp and the spacelike ones 

Span [Km, if(0),if(s_i)} We conclude that the 5p's form smooth, null, not necessarily 
embedded, hypersurfaces, with 

f5.23) Sp — G • c [W = 0] ^dgt, 

where the action of G is understood as explained after (5.22) 
Let the vector t = SV x K, (m) jhc<< € R be tangent to the null generators of Sp, thus 

5.24) l^ùm >9( K, 
x<< << << ;,< = 0. 

Since det I <p^ùm w<< <^*m cw< <!;, 0 with one-dimensional null space on {W = 0} 3?dgt-> 
5.24) is equivalent there to 

(5.25) << vmù^p x<< <^mm = 0. 

Since the K(i) 's are spacelike we must have x<< ¿0, and it is convenient to normalize 

£ so that = 1. Assuming <^*x<aa from 5.25) one then immediately finds 

5.26) e = *(o) w<< ̂$*^^ <;:! <ù* *<0) x<<< ^x<< 0< *<0) x<< 
bvx^ù bx<< 

where h o^ù<w< is the matrix inverse to 

'5.27) h (0ü) = 0 <^*m << <^*mm G [ 1 , . . . , * - ! ] 

To continue, we show that: 

Proposition 5.12. — For each x<<<;: x<< t/ie function 

Sp3q^ <^*ùù w<< :o(i) < ^*ù ̂(0),^(i))(9) 

zs constant over Sp. 

Proof — The calculations here are inspired by, and generalize those of [51, pp. 93-
941. As is well known, 

(5.28) dh{ d)(i) = -h [i)(m) h w<< dh m <^*ù 

Prom (5.4: '5.5) together with 2k 
w<< 

<^*ù 
xww 

= 0 we have 

dh :o(i) << d\ 01 w^*mmmw<< ww diK Km <n,;; x<< dKU) 

if(0),if(s_i)} - 1 2( n+1-2) - 1 x<<,;:: (i) x<< - l ì )n* < << c<<< 
^*m 
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with a similar formula for d\ 9( K,o) ' KU) . Next, 

dü (i) = d{ -h (i)U) fl( K(o)>KU)-

<,,;:! ifl( if(0),if(s_i)} ^cww dh (i)U) + h1 << ù* 51 [Km >KU) 

mc<< - 0 'Kto),K << h i )(m) < < << dh is) (m) + h w< (m) d[ 0' if(0),if(s_i)} 

<^*ù h (i)(m x< - 1 x<< if(0),if(s_i)} Ci), U)(s) * ^*w<< 
w<<<< 

A*düT(m)) 

+ - 1 n * (*(0) A*dî (m); 

<< - 1 <^ùm < x< * <<m^*m K(s) + *(0) I A *dK( m 

c<< - 1 ,n+l Ti1 w< [m * A *dK( (rn 5 

and 

**(0> <kmp^^ù :;o^< x<< << - 1 \n+l w<< p^ù*x<< /1 ;i)(m) * * (£ A '(rn) 
<< h{ i)(m <o^ùm ,iK ̂ *mm {£ A *dK m))-

Since ' x<< £ x<< <o^mù <p^ùmm (0 w<< = 0, we obtain 

**(0) •^(3-1) ^ A *dK m <op^ùm c<< **<0) <^*m 
(s-2) cw<< 

cw< 
if(0),if(s_i)} (m) 

+ :-l <o^m x<< <^*m *dK{ (m) Sp 

w<< << iK, (s-2) 
{I A t jp. 

<< *dK (m) Sp 
< - 1 ùù MK, (0) <<$*ù 

[s-i) 
<wwm^* (m] ùù 

ùù -1 x<< A * [dK, 
(m) 

AK (8-1] A---A K( (o) k,;:^$ 
cw<<< 

and therefore 

£.29) *k(0) << (s-1 * dQ, (i) \sp = 0. 

This last result says that dft^\sp is a linear combination of the K^s, so for each i 
there exist numbers 6 l such that 

(5.30) dQ (i) sp ̂ *ù xw<< ̂*^$ 

Now, the cw<< 's are clearly invariant under the action of the group generated by the 
w<,^*ù , which implies 

0 = w^*mmdsw <<< (0 = 0' ̂ *<< I, a <<^*m l 

This shows that a<"> ̂ (m: is orthogonal to all Killing vectors, so it must be proportional 
to I. Since TqSp = i1-, we are done. • 

Returning to the proof of Theorem 5.8, we have shown so far that Sp is a null 
hypersurface in {W = 0} \ 2?&Qt, with the Killing vector lv := £ as in (5.14) tangent 
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to the generators of Sp. In other words, Sp is a prehorizon. Furthermore, 

(5.31) TqJt 3Y e TqSp for some p 

W = 0, K, (0) A • • • A s-1) 1*^0, Y ±lp. 

For further purposes it is necessary to extend this result to the hypersurface Sp 
defined in the statement of Theorem 5.8. This proceeds as follows: 

It is well known [43] that Killing horizons are locally totally geodesic, by which we 
mean that geodesies initially tangent to the horizon remain on the horizon for some 
open interval of parameters. This remains true for prehorizons: 

Corollary 5.13. — Sp is locally totally geodesic. Furthermore, if 7 
geodesic such that 7(1) 0 Sp, then 7(1) G Sfdgt-

: [0,i; —> Sp is a 

Proof. — Let 7 : / —> M be an affinely-parameterized geodesic satisfying 7 (0) = q G 
Sp and 7 0 G TqSp <w:ù^^ 7(0), lP) = 0. Then 

5.32; 
d 

dt 
0' lit) )' P̂, = 0' x<<^$* 

:*) 7 ùù ùc< <^*ù 7 x<< <p^*ù lp = 0, 

where the first term vanishes because 7 is an affinely parameterized geodesic, while 
the second is zero by the Killing equation. Since 0(7(0), lp) = 0, we get 

(5.33) 0 v<< t) <^*ù = 0, Vt G /. 

We conclude that 7 remains perpendicular to Zp, hence remains within 5P as long as 
a zero of A • • • Aif(0),if(s_i)} is not reached, compare (5.31). • 

Consider, now, the following set of points which can be reached by geodesies ini
tially tangent to Sp: 

5.34 Sp w<< {q : 3 a geodesic segment 7 : [0,11 —> M such 

that 71 I] = q and 7( (s) G Sp for s G [0,1)] {q •• lP{ = 0}. 

Then Sp C Sp, and if G Sp \ Sp then 9 G «2^* by Corollary 5.13. We wish to show 
that Sp is a smooth hypersurface, included and maximally extended in the set (5.16); 
equivalently 

(5.35 Sp — Sp. 

For this, let q G Sp, let & be a geodesically convex neighborhood of q not containing 
zeros of Zp, and for r G ̂  define 

(5.36) #r = exp^<<c r <<<^* cw< < ^*m 

here exp^>r is the exponential map at the point r G 6 in the space-time (^, g|̂ >). It 
is convenient to require that 6 is included within the radius of injectivity of all its 
points (see [64, Theorem 8.7]). Let 7 be as in the definition of Sp. Without loss of 
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generality we can assume that 7(0) G (?. We have 7(5) J_ lp for all s G [0,1), and by 
continuity also at s = 1. This shows that 7QO, 1]) C Rq. 

Now, i?7(o) is a smooth hypersurface in 6\ It coincides with Sp near 7(0), and every 
null geodesic starting at 7(0) and normal to lp there belongs both to i?7(o) and Sp until 
a point in 3?dgt is reached. This shows that J£7(o) is null near every such geodesic until, 
and including, the first point on that geodesic at which Sfdgt is reached (if any). By 
(5.13) -R7(o)n5p is open and dense in R7(o)- Thus the tangent space to i?7(o) coincides 
with lp at the open dense set of points -R7(o) H5P, with that intersection being a null, 
locally totally geodesic (not necessarily embedded) hypersurface. By continuity i?7(o) 
is a subset of (5.16), with Ti27(0) = lp everywhere. Since i?7(o) C 5p, Equation (5.35) 
follows. 

The construction of the Sps shows that every integral manifold of the distribution 
lp over the set 

(5.37 w<<< {q G M ^dgt <^*ù lp,lp) m = 0, ùw< << = 0} 

can be extended to a maximal leaf contained in Q \ {q\lp(q) = 0}, compare (5.16). 
To finish the proof of Theorem 5.8 it thus remains to show that there exists a leaf 
through every point in Cl\ {q\lp(q) — 0}. Since this last set is contained in the closure 
of Q, we need to analyze what happens when a sequence of null leaves SPn, all normal 
to a fixed Killing vector field lq, has an accumulation point. We show in Lemma 5.14 
below that such sequences accumulate to an integral leaf through the limit point, 
which completes the proof of the theorem. • 

We shall say that S is an accumulation set of a sequence of sets Sn if S is the 
collection of limits, as i tends to infinity, of sequences qni G Sni. 

Lemma 5.14. — Let SPn be a sequence of leaves such that lPn = lq, for some fixed 

q, and suppose that pn —> p. Iflq(p) ? 0, then p belongs to a leaf Sp with lp = lq. 
Furthermore there exists a neighborhood ^ of p such that if(0),if(s_i)} {lq(p)^)QSpnW<< 
is the accumulation set of the sequence x<<<^* cw< [Pn] << mù^$ 

<<<p^*ù 
fi W, n G N. 

Proof — Let ^ be a small, open, conditionally compact, geodesically convex neigh
borhood of p which does not contain zeros of lq. Let SPn be that leaf, withinx<< 
of the distribution lq which contains pn. The 5Pn's are totally geodesic submani-
folds of °i/ by Corollary 5.15, and therefore are uniquely determined by prescribing 
P̂n Spn . Now, the subspaces if(0),if(s_i)} x<<w (Pn) << obviously converge to lq(p)± in the 

sense of accumulation sets. Smooth dependence of geodesies upon initial values im
plies thatwww< ww<<e<<xwP^,Pn<< IqVPn ,_L> converges in w<< for any k, to <^*mm Mp) x<< ). Since 
W vanishes on exP^,pJ (lq(Pn << ), we obtain that W vanishes on <p^*ùc<< :^(p)±). 
Since <p^ù exp^,p„ :^(Pn)x) w<n;:ù ^^*$<< for any ̂ )Q^)SpnW Upu^) we conclude that 
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Tr expqf p w<< <^$ù (r) for any r G exp^>p ùw<<< • So exp^p (IçiP^ is a leaf, 

withm ^ , through p ot the distribution lq over the set (5.1b), and e 
SvCiW is the accumulation set of the totally geodesic submanifolds 

exp^ ( Mp^) << 
5 Spn fl^'s. • 

The remainder of the proof of Theorem 5.4 consists in showing that the Sps cannot 
intersect ((̂ #ext))- We start with an equivalent of Corollary 5.13, with identical proof: 

Corollary 5.75. — Sp is locally totally geodesic. Furthermore, if 7 : [0,1) —> Sp is a 
geodesic segment such that 7(1) ^ Sp, then lp vanishes at 7(1). • 

Corollary 3.8 shows that Killing vectors as described there have no zeros in 
((^ext))» and Corollary 5.15 implies now: 

Corollary 5.16. — Sp D ((^ext)) is totally geodesic in ((-#ext)) (possibly empty). • 

To continue, we want to extract, out of the 5p's, a closed, embedded, Killing 
horizon SQ. NOW, e.g. the analysis in [55] shows that the gradient of q(Ip, lp) is either 
everywhere zero on Sp (we then say that Sp is degenerate), or nowhere vanishing there. 
One immediately concludes that non-degenerate 5p's, if non-empty, are embedded, 
closed hypersurfaces in ((^ext))- Then, if there exists non-empty non-degenerate 
SJs, we choose one and we set 

'5.38' SQ — SP. 

Otherwise, all non-empty S'p's are degenerate; to show that such prehorizons, if non
empty, are embedded, we will invoke analyticity (which has not been used so far). So, 
consider a degenerate component 5P, and note that Sp does not self-intersect, being 
a subset of the union of integral manifolds of a smooth distribution of hyperplanes. 
Suppose that Sp is not embedded. Then there exists a point q E 5P, a conditionally 
compact neighborhood & of q, and a sequence of points pn G Sp lying on pairwise 
disjoint components of 0 D 5P, with pn converging to q. Now, Killing vectors are 
solutions of the overdetermined set of PDEs 

^)QSpnW — R̂ $*<<wY 
— 1L fivp^ai 

which imply that they are analytic if the metric is. So g(lp, lp) is an analytic function 
that vanishes on an accumulating family of hypersurfaces. Consequently q(IPJP) 
vanishes everywhere, which is not compatible with asymptotic flatness. Hence the 
5p's are embedded, coinciding with connected components of the set {q(IP,IP) = 0 = 
W} \ {lp = 0}; it should be clear now that they are closed in ((^ext))- We define Ŝ " 
again using (5.38), choosing one non-empty 5P, 

We can finish the proof of Theorem 5.4. Suppose that W changes sign within 
((^ext))- Then SQ is a non-empty, closed, connected, embedded null hypersurface 
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within ((^ext))- Now, any embedded null hypersurface SQ is locally two-sided, and 
we can assign an intersection number one to every intersection point of SQ with a curve 
that crosses SQ from its local past to its local future, and minus one for the remaining 
ones (this coincides with the oriented intersection number as in [45, Chapter 3]). Let 
p G SQ , there exists a smooth timelike future directed curve 71 from some point 
q G ̂ #ext to p. By definition there exists a future directed null geodesic segment 72 
from p to some point r G ^ext intersecting S precisely at p. Since ~<#ext is connected 
there exists a curve 73 C ̂ #ext (which, in fact, cannot be causal future directed, but 
this is irrelevant for our purposes) from r to q. Then the path 7 obtained by following 
71, then 72, and then 73 is closed. Since SQ does not extend into ^ext5 7 intersects SQ 
only along its timelike future directed part, where every intersection has intersection 
number one, and 7 intersects SQ at least once at p, hence the intersection number 
of 7 with SQ is strictly positive. Now, Corollary 2.4 shows that ((̂ #ext)) is simply 
connected. But, by standard intersection theory [45, Chapter 3], the intersection 
number of a closed curve with a closed, externally orientable, embedded hypersurface 
in a simply connected manifold vanishes, which gives a contradiction and proves that 
W cannot change sign on ((̂ #ext))-

It remains to show that W vanishes at the boundary of ((^ext))- For this, note 
that, by definition of W, in the region {W > 0} the subspace of Tj^ spanned by 
the Killing vectorscw<<< is timelike. Hence at every p such that W(p) > 0 there 
exist vectors of the form if(0) + Yl,ai^{i) which are timelike. But d((^ext)) C 
J~(^ext)U/+(^ext)> and each of the boundaries /~(^ext) and /^(^ext) is invariant 
under the flow of any linear combination of K^s, and each is achronal, hence W < 0 
on d((^ext))5 whence the result. • 

In view of what has been said, the reader will conclude: 

Corollary 5.17 (Killing horizon theorem). — Under the conditions of Theorem 5.4, 
away from the set ^dgt as defined in (5.9), the boundary ((^ext)) \ ((^ext)) is a 
union of embedded Killing horizons. • 

Let us pass now to the 

PROOF OF THEOREM 5.6: Let 

7T : i^ext, ^)QSpnW w<< p^*ùww / ( R x u ( i ; 

p^$*< 
denote the quotient map. As discussed in more detail in Sections 6.1 and 6.2 (keeping 
in mind that, by topological censorship, ((^ext)) has only one asymptotically flat 
end), the orbit space Q is diffeomorphic to the half-plane w<mù x > 0] from 
which a finite number h > 0 of open half-discs, centred at the axis [x = 0] , have 
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been removed. As explained at the beginning of Section 7, the case h = 0 leads toww 
Minkowski space-time, in which case the result is clear, so from now on we assume 
h > 1. 

Suppose that {W = 0} fl ((^#ext)) is non-empty. Let po be an element of this set, 
with corresponding Killing vector field IQ := lPo. Let WQ be the norm squared of IQ: 

Wo := fli Jo,¿0)-

In the remainder of the proof of Theorem 5.2 we consider only those 5p's for which 
(Ui{bi} Uj Ij), 

Sp C W = 0] •n [Wo = 0} < 
We denote by Ctt(p; the image in Q, under the projection map ̂ *ù of Spn !«^ext) << 

^x<<< . Define 

Q = ;(^ext»/ RxU( l ) ) , 

<^*ù$$ {W0 = 0} n [^ = 0" n '(^ext) x<<ww / RxU( l ) << 

Thenw<<is a closed subset of Q, with the following property: through every point q 
of WQ there exists a smooth maximally extended curve CQ, which will be called orbit, 
entirely contained in W0B. The Cg's are pairwise disjoint, or coincide. Their union 
forms a closed set, and locally they look like a subcollection of leaves of a foliation. 
(Such structures are called laminations; see, e.g., [39].) 

An orbit will be called a Jordan orbit if CQ forms a Jordan curve. 
We need to consider several possibilities; we start with the simplest one: 

CASE I: If an orbit CQ forms a Jordan curve entirely contained in Q, then the cor
responding Sp = 7r-1(Cq) forms a closed embedded hypersurface in ((^ext))> and a 
contradiction arises as at the end of the proof of Theorem 5.4. 

CASE II: Consider, next, an orbit CQ which meets the boundary of Q at two or more 
points which belong to 7r(^), and only at such points. Let Iq C CQ denote that part 
of CQ which connects any two subsequent such points, in the sense that Iq meets dQ 
at its end points only. Now, every Sp is a smooth hypersurface in M invariant under 
R x U(l), and therefore meets the rotation axis si orthogonally. This implies that 
7r~1(Iq) is a closed, smooth, embedded hypersurface in ((./#ext))? providing again a 
contradiction. 

To handle the remaining cases, some preliminary work is needed. It is convenient 
to double Q across {x = 0} to obtain a manifold Q diffeomorphic to R2 from which 
a finite number of open discs, centered at the axis {x = 0}, have been removed, see 
Figure 5.1. Connected components of the event horizon correspond to smooth 
circles forming the boundary of Q, regardless of whether or not they are degenerate. 
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cww 

FIGURE 5.1. The quotient space Q and its double Q. 

From what has been said, every C„ which has an end point at <p^m is smoothly 
extended in Q across \x = 0] by its image under the map w<< I—> mù^wwai I. We will 
continue to denote by Cq the orbits so extended in Q. 

The analvsis of CASES I and II also shows: 

Lemma 5.18. — An orbit Cq which does not meet dQ can cross the axis 
most once. 

x = 0) at 
• 

An orbit Cq will be called an accumulation orbit of an orbit Cr if there exists a 
sequence qn G Cr such that qn —» q. Every orbit is its own accumulation orbit. It is 
a simple consequence of the accumulation Lemma 5.14 that: 

Lemma 5.19. — Let Cq be an accumulation orbit ofCr. Then for every p G Cq there 
exists a sequence pn G Cr such that pn —• p. • 

We will need the following: 

Lemma 5.20. — Let rn G Cr be a sequence accumulating at p G TT (*0 \dQ. Then 
p G Cr, and Cr continues smoothly across [x = 0 at p. 

Proof. — By Lemma 5.14 there exists an orbit Cp crossing the axis x = 0 transver-
sally at p. Lemma 5.19 shows that Cr crosses the axis. But, by Lemma 5.18, Cr can 
cross the axis only once. It follows that Cr — Cp and that p G Cr- • 

Abusing notation, we still denote by W and WQ the functions Won and Wo on. If 
W and Wo vanish at a point lying at the boundary 9Q, then the corresponding circle 
forms a Jordan orbit. We have: 

Lemma 5.21. — The only orbits accumulating at dQ are the boundary circles. 
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Proof. — Suppose that rn G Cq accumulates at p G dQ. Then, by continuity, W(p) = 
WQ(P) = 0, which implies that the boundary component through p is a Jordan orbit. 
But it follows from Lemma 5.19 that any orbit accumulating at dQ has to cross the 
axis more than once, and the result follows from Lemma 5.18. • 

The remaining possibilities will be excluded by a lamination version of the Poincare-
Bendixson theorem. We will make use of a smooth transverse orientation of all the 
Sp's; such a structure is not available for a general lamination, but exists in the 

problem at hand. More precisely, we will endow ^<<w:!^* w<<< with a smooth vector 
field Z transverse to all Spsx<<<The construction proceeds as follows: Choose any 
decomposition of (^ext' Û $w<<as R x y, as in Theorem 4.5: thus each level set 
5?t of the time function t is transverse to the stationary Killing vector field KQ, with 
the periodic Killing vector K\ tangent to 5?t • Let q G Sp fl S^Q; as the null leaf Sp is 
transversal to S^o, the intersection S?o H Sp is a hypersurface in «y# of co-dimension 
two. There exist precisely two null directions at q which are normal to S^o fl Sp, one 
of them is spanned by lo(q)', we denote by Zq the unique future directed null vector 
spanning the other direction and satisfying Zq = Tq + Zq, where Tq is the unit timelike 
future directed normal to S^o at q, and Zq is tangent to 5?. 

The above definition of Zq extends by continuity to q G Sp fl Ĵ o-
Transversality and smoothness of IQ imply that there exists a neighborhood GQ of 

q and an extension ZQ of Zq to 6Q with the property that Zq(r) is transverse to Sr 
for everv r G ü„ satisfying Wo .r = W r = 0. The neighborhood ÜQ can, and will, 
be chosen to be invariant under R x U 1) ; similarly for Zq{r). 

Consider the covering of ^0n W = o] n \W = 0 by sets of the form ÜQ fl S^Q . 
Asymptotic flatness implies that wxx Wo = 0} n W = 0] is compact, which in turn 
implies that a finite subcovering 0i := 0qi can be chosen. Let (fi be a partition of 

unity subordinated to the covering of (^ext )U<f+ by the &iS together with 

0Q := ^ext, x^*mm W = 0 n-{^o = 0} mm 

The ifi's can, and will, be chosen to be : R X Ufi' Ì—invariant. Set 

Z := 
i>l 

mc<<< 

Then Z is smooth, tangent to an(i transverse to all Sps. 
Choose an orientation of Q. The vector field Z projects under TT to a vector field 

Zb on Q transverse to each Cq. For each r G Cq we define a vector Vq(r) by requiring 
Vq(r) to be tangent to C\ at r, with {Vq, Zb} positively oriented, and with Vq having 
length one with respect to some auxiliary Riemannian metric on Q. Then Vq varies 
smoothly along Cq, and each Cq is in fact a complete integral curve of its own Vq. 
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The vector field Vp along Cp defines an order, and diverging sequences, on Cp in the 
obvious way: we say that a point r' G Cp is subsequent to r G Cp if one flows from r to 
r' along VD in the forward direction; a sequence rn € Vp is diverging if rn = <f> v,,:!^** 
where <p(s) is the flow of Vp along Cp, with sn f oo or sn \ —oc. 

By Lemma 5.14, if a sequence rn G C9n tends to r G Cg, then the tangent spaces 
TCgn accumulate on TCq. This implies that there exist numbers en G {±1} such 
that enVqn ww< ̂Vq< r) 1 and this is the best one can sav in general. However, the 
existence of Z guarantees that <p^$* (r») w<<< r . 

We are ready now to pass to the analysis of 

CASE III: In view of Lemmata 5.18 and 5.21, it remains to exclude the existence 
of orbits Cq which are entirely contained within Q\dQ, and which do not intersect 
7T(j^), or which intersect 7r(gf) only once, and which do not form Jordan curves in 
Q. Since {W = 0} fl cî o is compact, there exists p G Q and a diverging sequence 
qn £ Cq such that qn —> p. Again by Lemmata 5.18 and 5.21, p £ dQ. The fact that 
Cp is a closed embedded curve follows now by the standard arguments of the proof 
of the Poincare-Bendixson theorem, as e.g. in [53]. The orbit Cp does not meet dQ 
by Lemma 5.21. If Cp met 7r(^), it would have an intersection number with {x = 0} 
equal to one by Lemma 5.18, which is impossible for a Jordan curve in the plane. 
Thus Cp is entirely contained in Q, which has already been shown to be impossible 
in CASE I, and the result is established. • 

Similarly to Corollary 5.17, we have the following Corollary of Theorem 5.6, which 
is essentially a rewording of Lemma 5.21: 

Corollary 5.22 (Embedded prehorizons theorem). — Under the conditions of Theo
rem 5.2, away from the set 3?dgt as defined in (5.9), the boundary ((^ext)) \ ((^ext)) 
is a union of embedded Killing prehorizons. • 

5.3. The ergoset in space-time dimension four. — The ergoset E is defined 
as the set where the stationary Killing vector field K^ is spacelike or null: 

(5.39) E := {P\ 0( <ww K(0) w<< >0}. 

In this section we wish to show that, in vacuum, the ergoset cannot intersect the 
rotation axis within ((^ext)), if we assume the latter to be chronological. 

The first part of the argument is purely local. For this we will assume that the 
space-time dimension is four, that if (0) = X has no zeros near a point p, that K^ =Y 
has 27r-periodic orbits and vanishes at p, and that X and Y commute. 

Let T be any timelike vector at p, set 

(5.40) T := •27T 

0 
w^* [Y] .fdt, 
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then T is invariant under the flow of Y. Hence T1- is also invariant under Y. Letw<< 
denote expp(T±) D 6, where 6 is any neighborhood of p lying within the injectivity 
radius of expp, sufficiently small so thatcw<^mis spacelike; note that S^o is invariant 
under the flow of Y. A standard argument (see, e.g., [2] Appendix C) shows that Y 
vanishes on 

x<< := expp ;Kervr < 
and that siv is totally geodesic. Note that T € Ke rv r , which implies that ssv is 
timelike. 

We are interested in the behavior of the area function W near the set of points 
where Y vanishes. We have VW|^ = 0 and 
(5.41 ^)QSpnW << pôiw<< ^$*w< (0< {X,X >0 i(Y,Y] -9(X,Y)2) 

= - 2 x<< X,X)a(VuY,VvY) -01 [X,VuY)a(X,VvY) k 
The second term vanishes because X,Y]=0 I, with Y vanishing on si : 

XaV„Ya\ ̂ )QSpnW VnYu = --XaVaY„ + YaVaXv 
=0 

:-[X,Y]v=0. 

Now, the axis si is timelike, and the only non-vanishing components of the ten
sor VYXV have a spacelike character on si. This implies that the quadratic form 
V'fjYaVvYoc is semi-positive definite. We have therefore shown 

Lemma 5.23. — If X is spacelike at p G si, then W < 0 in a neighborhood of p away 
from si. 

Under the conditions of Theorem 5.1, we conclude that X cannot be spacelike on 
si n ((^ext))- To exclude the possibility that g(X, X) = 0 there, (16) let w be defined 
as in (5.17), 

w = X" A Y c<<w; 
here, and throughout this section, we explicitly distinguish between a vector Z and 
its dual Zb := g(Z, •). We will further assume that X is causal at p, and that the 
conclusion of Lemma 5.11 holds: 

5.42) dW A w = Wdw. 

Let T denote the field of vectors normal to 5?$ normalized so that g(T,X) = 1; 
note that Tp is, up to a multiplicative factor, as in (5.40). Let 7 be any affinely 

(!6) The analysis in Section 6 shows that X cannot become null on si D ((^ext)) when the vacuum 
equations hold and the axis can be identified with a smooth boundary for the metric q; this can be 
traced to the "boundary point Lemma", which guarantees that the gradient of the harmonic function 
p has no zeros at the boundary {p = 0}. But the behavior of q at those axis points which are not on 
a non-degenerate horizon and on which X is null is not clear. 
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parameterized geodesic such that 7(0) = P, 71 (0) J. Tp and 7(0) X Xp; a calculation 
as in (5.32) shows that 

01 w<< p^*ù x<< I = 0 

along 7. As y is tangent to S^e, from (5.42) we obtain 

(5.43) 
dW 

ds 
<< Y,Y = Wdw (7,r,y). 

=dWAX>AYb(<y,T,Y) 

Now, iydit; = jSfyw — d iyw) = — d(ÌYw), so that 

<o^ù : 7 , r , r = -d ^)QSpnW ^*mmm 

= d -fll IY,X) <<< + 0 [Y,Y)Xb ^*mm 

x< - 0 (Y,X dY* + 9( YX. dXb :ix + 
x<< YX 

ds 

Inserting this in (5.43), we conclude that 

(5.44) d 
ds 

W 

0(YX) <^* x<< fll [Y,X] 

<< YX) 
dY*> + dXb ^*mcw X 0' 

W 
(Y,Y 

=-f 

Let h be the metric induced on 5?e by g. Then h is a Riemannian metric invariant 
under the flow of Y. As is well known (compare [19]) we have c~1s2 < g(Y,Y) = 
h(Y,Y) < cs2. Since T G KerVF we have dYb(T,-) = 0 at p. It follows that the 
function / defined in (5.44) is bounded along 7 near p. If g(X, X) = 0 at p, then the 
limit at p of W/g(Y9Y) along 7 vanishes by (5.41). Using uniqueness of solutions of 
ODE's, it follows from (5.44) that W vanishes along 7. But this is not possible in 
((•^ext)) away from si by Theorem 5.1. We have therefore proved that the ergoset 
does not intersect the axis within ((^ext)): 

Theorem 5.24 (Ergoset theorem). — In space-time dimension four, and under the con
ditions of Theorem 5.1, is timelike on ((^ext)) H si. • 

A higher dimensional version of Theorem 5.24 can be found in [20]. 
A corollary of Theorem 5.24 is that, under the conditions there, the existence of 

an ergoset implies that of an event horizon. Here one should keep in mind a similar 
result of Hajicek [46], under conditions that include the hypothesis of smoothness of 
BE (which does not hold e.g. in Kerr [81]), and affine completeness of those Killing 
orbits which are geodesies, and non-existence of degenerate Killing horizons. On the 
other hand, Hajicek assumes the existence of only one Killing vector, while in our 
work two Killing vectors are required. 
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6. The reduction to a harmonie map problem 

6.1. The orbit space in space-time dimension four. — Let (jH , g) be a chrono
logical, four-dimensional, asymptotically flat space-time invariant under a R x U(l) 
action, with stationary Killing vector field = X and 27r-periodic Killing vector 
field K(d =Y. Throughout this section we shall assume that 
(6.i) 

((e/#ext)) = R x M, where M is a three dimensional, simply connected manifold 

with boundary, invariant under the flow of Y, with the flow of X consisting of 

translations along the R factor. Moreover the closure M of M is the union of a 

compact set and of a finite number of asymptotically flat ends. 

Recall that (6.1) follows from Corollary 2.4 and Theorem 4.5 under appropriate con
ditions. 

Because X and Y commute, the periodic flow of Y on ((^ext)) defines naturally 
a periodic flow on M; in our context this flow consists of rotations around an axis 
in the asymptotically flat regions. Now, every asymptotic end can be compactified 
by adding a point, with the action of U(l) extending to the compactified manifold 
by fixing the point at infinity. Similarly every boundary component has to be a 
sphere [50, Lemma 4.9], which can be filled in by a ball, with the (unique) action of 
U(l) on S2 extending to the interior as the associated rotation of a ball in R3, reducing 
the analysis of the group action to the boundary less case. Existence of asymptotically 
flat regions, or of boundary spheres, implies that the set of fixed points of the action is 
non-empty (see, e.g., [6, Proposition 2.4]). Assuming, for notational simplicity, that 
there is only one asymptotically flat end, it then follows from [83] (see the italicized 
paragraph on p.52 there) that, after the addition of a ball Bi to every boundary 
component, and after the addition of a point ¿0 at infinity to the asymptotic region, 
the new manifold M U Bi U {¿0} is homeomorphic to 53, with the action of U(l) 
conjugate, by a homeomorphism, to the usual rotations of S3. On the other hand, it is 
shown in [79, Theorem 1.10] that the actions are classified, up to smooth conjugation, 
by topological invariants, so that the action of U(l) is smoothly conjugate to the usual 
rotations of S3. It follows that the manifold M U Bi is diffeomorphic to R3, with the 
U(l) action smoothly conjugate to the usual rotations of R3. In particular: a) there 
exists a global cross-section M2 for the action of U(l) on M U Bi away from the set 
of fixed points STF, (17) with M2 diffeomorphic to an open half-plane; b) all isotropy 
groups are trivial or equal to U(l); c) SI is diffeomorphic to R. (18) 

We will use the symbol si to denote the set of fixed points of the Killing vector Y in M or in 
f̂, as should be clear from the context. 

,18) we are grateful to Allen Hatcher for clarifying comments on the classification of U(l) actions. 
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Somewhat more generally, the above analysis applies whenever M can be compact-
ified by adding a finite number of points or balls. A nontrivial example is provided by 
manifolds with a finite number of asymptotically flat and asymptotically cylindrical 
ends, as is the case for the Cauchy surfaces for the domain of outer communication 
of the extreme Kerr solution. 

Summarizing, under (6.1) there exists in ((^ext)) an embedded two-dimensional 
manifold M2, diffeomorphic to M2 « [0, oo) x R minus a finite number of points 
(corresponding to the remaining asymptotic ends), and minus a finite number of 
open half-discs (the boundary of each corresponding to a connected component of 
the horizon). We denote by M2 the manifold obtained by removing from M2 all its 
boundaries. 

6.2. Global coordinates on the orbit space. — We turn our attention now to 
the construction of a convenient coordinate system on a four-dimensional, globally 
hyperbolic, R x U(l) invariant, simply connected domain of outer communications 
((^ext))- Let M2 and M2 be as in Section 6.1. We will invoke the uniformization 
theorem to understand the geometry of M2; however, some preparatory work is useful, 
which will allow us to control both the asymptotic behavior of the fields involved, as 
well as the boundary conditions at various boundaries. 

For simplicity we assume that ((^ext)) contains only one asymptotically flat region, 
which is necessarily the case under the hypotheses of Theorem 2.3. On M2 there is a 
naturally defined orbit space-metric which, away from the rotation axis {Y = 0}, is 
defined as follows. Let us denote by g the metric on space-time, let X\ = X, X2 = Y, 
set hij = g(Xi,Xj), let W denote the matrix inverse to hij wherever defined, and on 
that last set for ZUZ2 € TPM2 set 

(6.2) q(Z1,Z2) = Q(ZuZ2)-ht>g(Z1,Xi)Q(Z2,Xj). 
Note that if Z\ and Z2 are orthogonal to the Killing vectors, then q(Zi,Z2) = 
g{Z\.Z2). This implies that if the linear span of the Killing vectors is timelike (which, 
under our hypotheses below, is the case away from the axis {Y = 0} in the domain 
of outer communications), then q is positive definite on the space orthogonal to the 
Killing vectors. Also note that q is independent of the choice of the basis of the space 
of Killing vectors. 

To take advantage of the asymptotic analysis in [19], a straightforward calculation 
shows that q equals 

(6.3) q(Z1,Z2) = j(Z1,Z2) -y(Y,ZiWY,Z2) 
^)QSpnW 

where 7 is the (obviously U(l)-invariant) metric on the level sets of t (where t is any 
time function as in Section 6.1) obtained from the space-time metric by a formula 
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similar to (6.2): 

(6.4) ^(Z1,Z2) = g(Z1,Z2) 
q(Z1,X)0(Z2,X)CW 

9(X,X) 

(So 7 is not the metric induced on the level sets of t by g.) The right-hand-side is mani
festly well-behaved in the region where X is timelike; this is the case in the asymptotic 
region, and near the axis on ((^ext)) under the conditions of Theorem 5.24. 

In any case, the asymptotic analysis of [19] can be invoked directly to obtain 
information about the metric q at large distances. Recall that if the asymptotic 
flatness conditions (2.1) hold with k > 1, then by the field equations (2.1) holds with 
k arbitrarily large. We can thus use [19] to conclude that there exist coordinates xA, 
covering the complement of a compact set in R2 after the quotient space has been 
doubled across the rotation axis, in which q is manifestly asymptotically flat as well 
(see Proposition 2.2 and Remark 2.8 in [19]): 

(6.5; QAB - SAB = ok-3(r x). 

To gain insight into the geometry of q near the horizons, one can use (6.4) with X 
being instead the Killing vector which is null on the horizon. It is then shown in [18] 
that each non-degenerate component of the horizon corresponds to a smooth totally 
geodesic boundary for 7. (It is also shown there that every degenerate component 
corresponds to a metrically complete end of infinite extent provided that the Killing 
vector tangent to the generators of the horizon is timelike on ((.^ext)) near the hori
zon, but it is not clear that this property holds.) Some information on the asymptotic 
geometry of 7 in the degenerate case can be obtained from [47, 66]; whether or not 
the information there suffices to extend our analysis below to the non-degenerate case 
remains to be seen. 

6.3. All horizons non-degenerate. — Assuming that all horizons are non-
degenerate, we proceed as follows: Every non-degenerate component of the boundary 
dM is a smooth sphere S2 invariant under U(l). As is well known, every isometry 
of S2 is smoothly conjugate to the action of rotations around the z axis in a flat R3, 
with the rotation axis meeting S2 at exactly two points. Thus, as already mentioned 
in Section 6.1, we can fill each component of the boundary dM by a smooth ball 
B3, with a rotation-invariant metric there. We denote by 7 any rotation-invariant 
smooth Riemannian metric on R3 which extends the original metric 7, and by q 
the associated two-dimensional metric as in (6.3). From what has been said we 
conclude that every non-degenerate component of the horizon corresponds to a 
smooth boundary dM/\](l) for the metric q, consisting of a segment which meets 
the rotation axis at precisely two points. The filling-in just described is equivalent to 
filling in a half-disc in the quotient manifold. Since the boundary dM is a smooth 

ASTÉRISQUE 321 



ON UNIQUENESS OF STATIONARY VACUUM BLACK HOLES 245 

U(l) invariant surface for 7, it meets the rotation axis orthogonally. This implies 
that each one-dimensional boundary segment of 9M/U(1) meets the rotation axis 
orthogonally in the metric q. 

Consider, then, a black hole space-time which contains one asymptotically flat end 
and N non-degenerate spherical horizons. After adding N half-discs as described 
above, the quotient space, denoted by M2, is then a two-dimensional non-compact 
asymptotically flat manifold diffeomorphic to a half-plane. Recall that we are assum
ing (6.1), and that there is only one asymptotically flat region. We will also suppose 
that 
(6.6) W > 0 on ((^ext» \x<<and^)QSp 
(6.7) on ((̂ #ext)) H si the stationary Killing vector field X is timelike. 

Note that those conditions necessarily hold under the hypotheses of Theorem 5.1, 
compare Theorem 5.24. 

By (6.6) the metric q is positive definite away from si. Near si the metric 7 
denned in (6.4) is Riemannian and smooth by (6.7), and the analysis in [19] shows 
that si is a smooth boundary for q. After doubling across the boundary, one obtains 
an asymptotically flat metric on R2. By [19, Proposition 2.3], for k > 5 in (2.1) there 
exist global isothermal coordinates for q: 

(6.8) q = e2u(dx2 + dy2) with u x2+y2—*oo 0. 

In fact, u = Ofc_4(r~ ). The existence of such coordinates also follows from the 
uniformization theorem (see, e.g., [1]), but this theorem does not seem to provide the 
information about the asymptotic behavior in various regimes, needed here, in any 
obvious way. As explained in the proof of [19, Theorem 2.7], the coordinates (x,y) 
can be chosen so that the rotation axis corresponds to x = 0, with M2 = {x > 0}. 

The next step of the construction is to modify the coordinates (x, y) of (6.8) to a 
coordinate system (p, z) on the quotient manifold M2, covering [0, 00) x R, so that p 
vanishes on the rotation axis and the event horizons. This is done bv first solving the 
equation 

\PR = 0, 
on$^^= M2 fl {x2 + y2 < i?2}, with zero boundary value on dM2, and with Pr = x 
on {x2 + y2 = R2}. Note that 

C= sup x-pR, 
w<<<<< 

is independent of R, for R large, since x and pR differ only on the event horizons. 
Since Aax = 0, the maximum principle implies 

x — C < pr < x on Qr. 
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By usual arguments there exists a subsequence p^ which converges, as i tends to 
infinity, to a ^-harmonic function p on M2, satisfying the desired boundary values. 
By standard asymptotic expansions (see, e.g., [15]) we find that Vp approaches Vx 
as x2 + y2 —> oo. In fact, for any j G N we have 

(6.9) p — X — 
3 

г=0 

<*i(y>) 
(x2+y2)i/2 + O((z2 + 2/2r0+1)/2) 

where <p denotes an angular coordinate in the (x, y) plane, with ai being linear com
binations of cos(z<p) and sin(i<p), with the expansion being preserved under differ
entiation in the obvious way. In particular Vp does not vanish for large x, so that 
for R sufficiently large the level sets {p = R} are smooth submanifolds. The strips 
0 < p < R are simply connected so, by the uniformization theorem, there exists a 
holomorphic diffeomorphism 

(x,y) (a(x,y),p(x,y)) 

from that strip to the set {0 < a < R, /3 G R}. By composing with a Mobius map we 
can further arrange so that the point at infinity of the (x, 2/)-variables is mapped to 
the point at infinity of the (a, /3)-variables. As the map is holomorphic, the function 
a(x, y) is harmonic, with the same boundary values and boundary and asymptotic 
conditions as p, hence a(x,y) = p(x,y) wherever both are defined. If we denote by z 
a harmonic conjugate to p, we similarly obtain that z — (3 is a constant, so that the 
map 

(6.10) (x,y) i-> (p,z) 

is a holomorphic diffeomorphism between the strips described above. Since the con
stant R was arbitrarily large, we conclude that the map (6.10) provides a holomorphic 
diffeomorphism from the interior of M2 to {p > 0, z G R}, and provides the desired 
coordinate system in which q takes the form 

(6.11) q = e2u{dp2+ dz2). 

From (6.9) and its equivalent for z (which is immediately obtained from the defining 
equations dxp = dyz, dyp = —dxz) we infer that й —* 0 as у/p2 + z2 goes to infinity, 
with the decay rate u — Ok-±(r ) remaining valid in the new coordinates. 

In vacuum the area function W satisfies AqVW = 0 (see, e.g., [91]). If we as
sume that W vanishes on d((^ext}) U si (which is the case under the hypotheses 
of Theorem 5.1), then W = p on d((^ext)) U si. Since Aqp = 0 as well, we have 
Aq(VW — p) = 0, with W — p going to zero as one tends to infinity by [19], and the 
maximum principle gives 

(6.12) Vw = p. 
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6.4. Global coordinates on ((^ext))« — According to Section 6.1 we have 

((^ext)) \ & ~ m x s1 x r ; X r, 

and this diffeomorphism defines a global coordinate system (t, <p, p, z) on (\^ext))x<<< 
with X = dt and Y = d^. Letting (xA) = (p,z) and (xa) = (t, <p), we can write the 
metric in the form 

0 = 5afe(^a + 6aAdxA)(dxb + 0 V ^ ) + qABdxAdxB, 

= :0a 
with all functions independent of t and (p. The orthogonal integrability condition of 

Proposition 5.3 gives 
dOa = 0, 

so that, by simple connectedness of R+ xR, there exist functions fa such that 0a = dfa. 
Redefining the xa's to xa + fa, and keeping the same symbols for the new coordinates, 
we conclude that the metric on ((^ext)) \ s/ has a global coordinate representation 

as 
(6.13) a = -p2e2Xdt2 + e"2A(d<p - vdt)2 + e2û{dp2 + dz2) 

for some functions v(p,z), A(p, z), with p, z and u as in Section 6.3, see in particular 
(6.12). We set 

(6.14) U = A + lnp, so that Bid^dtp) = p2e~2U = e~2X. 

Let lj be the twist potential defined by the equation 

(6.15) duj = *(dY AY), 

its existence follows from simple-connectedness of ((^ext)) and from d * (dF A7) = 
0 (see, e.g.,[91]). As discussed in more detail in Section 6.7 below (compare [91, 
Proposition 2]), the space-time metric is uniquely determined by the axisymmetric 

map 

(6.16) $ = (A,u) : R 3 \ ^ ^ H 2 , 

where H2 is the hyperbolic space with metric 

(6.17) 6:=dA2 + e 4 W , 

and si is the rotation axis si := {{0,0, z),z G R} C R . The metric coefficients can 
be determined from $ by solving equations (6.45)-(6.47) below. The map $ solves 
the harmonic map equations [36, 881: 

(6.18) \T\2 := (AA - 2eAX\Duj\2)2 + e4A(Au; + 4£>A • Du)2 = 0, 

where both D and A refer to the flat metric on R3, together with a set of asymptotic 
conditions depending upon the configuration at hand. 

We continue with the derivation of those boundary conditions. 
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6.5. Boundary conditions at non-degenerate horizons. — Near the points 
at which the boundary is analytic (so, e.g., at those points of the axis at which X 
is timelike), the map defined by (6.10) extends to a holomorphic map across the 
boundary (see, e.g., [30]). This implies that u extends across the axis as a smooth 
function of p2 and z away from the set of points {q(X, X) = 0}. 

Let us now analyze the behavior of u near the points Z{ G si where non-degenerate 
horizons meet the axis. As described above, after performing a constant shift in the 
y coordinate, any component of a non-degenerate horizon can locally be described by 
a smooth curve in the ( := x -f iy plane of the form 

(6.19) y = 7(z), 7(0) = 0, j(x) = y{-x). 

Near the origin, the points lying in the domain of outer communications correspond 
then to the values of x + iy lying in a region, say Cl, bounded by the half-axis {x = 
0, y > 0} and by the curve x + ry(x), with x > 0. 

To get rid of the right-angle-corner where the curve x + ^{x) meets the axis, the 
obvious first attempt is to introduce a new complex coordinate 

(6.20) w := a + i(3 = —z£2. 

If we write 7(rr) = a2X2 + 0(x4), then the image of {x + i^ix), x > 0} under (6.20) 

becomes 

(6.21) fi(x + ii(x)) = 2a2x3 + 0(x5) i (x2 - alx4 + 0(x6)) 

= it + 2a2\t\3/2 + 0(\t\5/2) 

The remaining part {iy, y € K.+ }, of the boundary of fi, is mapped to itself. It follows 
that the boundary of the image of fl by the map (6.20) is a C1'1/2 curve. Here Ck'x 
denotes the space of fc-times differentiable functions, the fc'th derivatives of which 
satisfy a Holder condition with index A. 

To improve the regularity we replace — iÇ,2 by /2(C) = _»C2+cr3C3 f°r some constant 
<r3. Then (6.21) becomes 

(6.22) f2(x + ij(x)) = (2a2 + $ta3)x3 + 0(x5) - i (x2 + 0(x4)) -3(a3)0(z4) 

w<< 
= ii+(2a2 + 3?<73)|t|3/2 + 0(|t|5/2). 

The remaining part of the boundary of ft is mapped to the curve f2{iy), with y > 0: 

(6.23) h{iy) = $scr3y3 i(y2-$to3y3) 

= it + <Za3(\t\3/2 + 0(\t\2)). 
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and is thus mapped to itself if a3 is real. Choosing a3 = — 2a2 £ R one gets rid of the 
offending |£|3/2 terms in (6.22)-(6.23), resulting in the boundary of /2(fi) of C2'1/2 
differentiability class. 

More generally, suppose that the image of x + ij(x) by the polynomial map C |-» 
w = /fe-i(C) = ~*C2 + ••• nas a real Part equal to /32k-ix2k~1 + 0(#2/c+1); then 
the substraction from fk-i of a term /^fc-iC2*-1 leads to a new polynomial map 
£ —> w =x<<<< which has real part /?2fc+i£2/c+1 + 0(x2fc+3), and the differentiability 
of the image has been improved by one. Since all the coefficients /?2fc+i are rea^ 
the maps fk map the imaginary axis to itself. One should note that this argument 
wouldn't work if 7 had odd powers of x in its Taylor expansion. 

Summarizing, for any k we can choose a finite polynomial fk((), with lowest order 
term — i(2, and with the remaining coefficients real and involving only odd powers of 
£, which maps the boundary of £1 to a curve 

(6.24) (-e,e) 9 *»-(/*(«), «>(*)) 
;o,t), 
(0(ifc+1/2),t), 

* > 0; 

t < 0, 

which is Ck'1'2. 

Note that 

(6.25) MO :=>/*A(C) = C(l+0(|C|))cw<<, 

where denotes the principal branch of the square root, is a holomorphic diffeomor-
phism near the origin. So 

(6.26) ^)QSpnW^)w<QSpnWw<<< 

and we have 

(6.27) dwdw = 4\M'k\2dÇdÇ = 4Mtó\2dÇdÇ. 

We claim that the map 
w I—> Tj := p -\- iz 

extends across p = 0 to a Ck diffeomorphism near the origin. To see this, note that 
we have again Ap = 0 with respect to the metric dwdw, with p vanishing on a Cfc'1//2 
boundary. We can straighten the boundary using the transformation 

(6.28' w = (a, /?)-(<*- p(/3), /?) = w + (0(\ß\ fc+1/2 ,0) = ti; + 0(M fc+l/2> 

where // is as (6.24), and O(-) is understood for small \w\. Extending p with — p 
across the new boundary, one can use the standard interior Schauder estimates on 
the extended function to conclude that w h-» p(w) is C '̂1/2 up-to-boundary. Now, 
the condition dz = *dp, where • is the Hodge dual of the metric q, is conformally 
invariant and therefore holds in the metric dwdw, so z is a C^1'2 function of w. By 
the boundary version of the maximum principle we have dp ^ 0 at the boundary 
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(when understood as a function of w), and hence near the boundary, so dz is non-
vanishing near the boundary and orthogonal to dp. The implicit function theorem 
allows us to conclude that the map w i—• 77 is a Ck'1^2 diffeomorphism near w = 0. 

Comparing (6.8) and (6.11) we have 

(6.29) e2ûdridfj = q = e2udÇdÇ = eÀ lu 
4|«MI2 

dw dw. 

in particular dwdw = e2ukdr]dr], and from what has been said the function is 
£rfc-i,i/2 Up {.Q boundary. Hence 

(6.30) e2û = „2u+2uk 
4MKI2 

where u is a smooth function of (x2,y), while i\)'k is a non-vanishing holomorphic 
function of £ = x 4- iy, Uk is a Ck~l function of 77 = p + iz, and 77 1—• w is a Cfc 
diffeomorphism, with it; having a zero of order one where the horizon meets the axis. 
Finally x + iy is a holomorphic function ofx<<ô *ùmcompare (6.26). 

Choosing k = 2 we obtain 

(6.31) x<< 
1 

2 
In |w| + Ûi + Û2, 

where w is a smooth complex coordinate which vanishes where the horizon meets the 
axis, U2 = — Inx<<<12/2 is a smooth function of (x,y), and u\ is a C1 function of (p, 2). 

Taylor expanding at the origin, from what has been said (recall that 77 i—̂  ^ is 
conformal and that, near the origin, {p = 0} coincides with {a — p(/3) = 0}) it follows 
that there exists a real number a > 0 such that 

(p, z) = (a~2(a - M/3)), a~2p) + 0((a - /x(/3))2 + (32), 

which implies 

(6.32) (a,(3) = (a2p,a2z) + 0(p2 + z2). 

Here we have assumed that z has been shifted by a constant so that it vanishes at 
the chosen intersection point of the axis and of the event horizon. 

We conclude that there exists a constant C such that 

(6.33) |û + 
1 
2 

In p2 + z2\ <C near (0,0; 

This is the desired equation describing the leading order behavior of u near the meeting 
point of the axis and a non-degenerate horizon. 

6.5.1. The Ernst potential. — We continue by deriving the boundary conditions sat
isfied by the Ernst potential (17, u;) near the point where the horizon meets the axis. 
Here U is as in (6.13)-(6.14), and UJ is obtained from the function v appearing in the 
metric by solving (6.45) below. 
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Our analysis so far can be summarized as: 

(6.34) x + iy = C »"* f̂c(C) = w<<^ùm ^)QSpnW^)QSpnW^)QSpnW 

Each map is invertible on the sets under consideration; and each is a Ck diffeomor
phism up-to-boundary except for the middle one, which involves the squaring of a 

complex number. 
Using £ = tph (y/iw), the expansion 

i/j-^c + id) = (c + W)(l + 0 /c2 + d2; 

which follows from (6.25), together with (6.32), we obtain 

x + iy = a -z + ip + 0(p2 + z2). 

Equivalently, 

(6.35) x = 
ap 

2(z+ y/^Tp2) 
+ 0(p2 + z2), y = a z + z2 + p2 

2 
+ 0(p2 + z2). 

To continue, in addition to (6.1), (6.6) and (6.7) we assume that 

(6.36) The level sets of the function t, defined as the projection on 

the R factor in (6.1), are spacelike, with d^t = 0; 

this is justified for our purposes by Theorem 4.5. Thus, the Killing vector is 
tangent to the level sets of t, so that 

^)QSpnW^)QSpnW^)QSpnW 

where h is the Riemannian metric induced on the level sets of t. As shown in [19], 
we have 

(6.37) hid^dy) = f(x,y)x2, 

where the function f(x,y) is uniformly bounded above and below on compact sets. 
Recall that U has been defined as — | ln^^^p-2), and that (p, z) have been nor

malized so that (0,0) corresponds to a point where a non-degenerate horizon meets 
the axis. We want to show that 

(6.38) U = \b z+^z2 + p2 + 0(1) near (0,0). 

(This formula can be checked for the Kerr metrics by a direct calculation, but we 
emphasize that we are considering a general non-degenerate horizon.) To see that, we 
use (6.37) to obtain 

ln(Bwp"2) = ln(x2p"2) + ln(flwaT2) = 21n(xp"1) 4- 0(1). 
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We assume that p2+z2 is sufficiently small, as required by the calculations that follow. 

In the region 0 < \z\ < 2p we use (6.35) as follows: 

ln(x p 1] x<< In 
a + /2 Z 

p 
Z 2 

P2 + 1 Oi 9 
3 / 2 

+ 
z 2 

p l / 2 > 

2(z+y/z2 + p2) 

= - I n 2(s + y/z2 + p 2 ) + 0(1) 

In the region z < 0 w e note that 

1 

P 
2(z + v ^ 2

 4- p2) 
2{z + z2

 + P 2 ) 2 ( - * + V ^ + P 2 ) 

P 2 ( - 2 + z2 + p 2 ) 

<< 
2 

2( -z + Vz2 + P2] 
< 

'2 
(z2+p2y/jj* 

Hence, again by (6.35), 

m(£ p x) = In 
a < l 

< 2(z + z2 + p2) 0(p2+z2) 

2(z + z2 + p2) 

= In 
a 0((p2 + z2)3/4' 

2(z z2 + p2) 
= - In 2(z + z2 + p2) )+o(i). 

In the region 0 < p < z/2 some more work is needed. Instead of (6.35), we want to 

use a Taylor expansion of p around the axis a = 0, where a is as in (6.20). To simplify 

the calculations, note that there is no loss of generality in assuming that the map ifik 

of (6.25) is the identity, by redefining the original (x,y) coordinates to the new ones 

obtained fromcww<Since in the region 0 < p < z/2 we have ¡3 > 0, the function p(/?) 

in (6.28) vanishes, so 

^)QSpnW ^)QSpnW 

=P((3(0,Z))=0 

+dpa(0,z)p + O(p2) : dpa(0,z)p + O(p2). 

Note that dpa(0,z) tends to a2 as z tends to zero, so is strictly positive for z small 

enough. Instead of (6.35) we now have directly 

x = 
a 

2(f3+VP2 + a 2 ) 

x 

P 

dpa{0,z) +Q(p) 

2(13+ y/(32 + a2) 
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In the current region a is equivalent to p, ß is equivalent to z, ß2 + oc2 is equivalent 
to 2, and z is equivalent to 2(z + 22 + p2), WHICH LEADS TO THE DESIRED FORMULA: 

LNORP-1) = - In 2(ß + x//32 + a2) + 0(1) 

= - In 2(* + \A2 + fl2 
2(j9 + s/ß2 + a2) 

2(^+ 7Ì2 + P2) 
+ 0(1) 

= -LR 2(^ + VZ2 + P2) + 0(1) 

This finishes the proof of (6.38). 
Let us turn our attention now to the twist potential u: as is well known, or from [24, 

Equation (2.6)] together with the analysis in [19], a; is a smooth function of (x,y), 
constant on the axis {x = 0}, with odd x-derivatives vanishing there. So, Taylor 
expanding in x, there exists a constant LOQ and a bounded function Co such that 

c<< = coo + u(x,y)x2 

(6.39) <=x<< 
w(x,y) ap + /2(z + z2 + p2) iO(p2 + z2\ 

\2 

2 > + 'z2 + p2) 
In our approach below, the proof of black hole uniqueness requires a uniform bound 

•n the distance between the relevant harmonic maps. Now, using the coordinates 
(A,a;) on hyperbolic space as in (6.17), the distance d& between two points (xi,u;i) 
and (#2,^2) *s implicitly defined by the formula [3, Theorem 7.2.1]: 

cosh(db) — 1 = 
(e-2xx _e-2*2)2 + 4 iui - lü2)2 

2g —2a:i —2x2 
Using the (U,u) parameterization of the maps, with U as in (6.14), the distance 
measured in the hyperbolic plane between two such maps is the supremum of the 

function dt, 

cosh((ib) — 1 = 
p4 e -2Ü! — e -2U2 i2 + +dpa(0,z)p \2 

2p*e-2U1-2U2 
1 
2 

e 2(U!-U2) 
+ e2 +w<<<dp 

- 2 +2 9 
-4 02(C/1+C/2) [üû^ — üüo) |2 

(a) (6) 
Inserting (6.38) and the analogous expansion for the Ernst potential of a second 
metric into (a) above we obviously obtain a bounded contribution. Finally, assuming 
u;i(0,0) = a;2(0,0), up to a multiplicative factor which is uniformly bounded above 
and bounded away from zero, (b) can be rewritten as a square of the difference of two 
terms of the form 

(6.40) fi :=ù>i(ai + p 1 2(z + rï2~Vf)0{p2 + z2) \2 
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with i = 1,2. We have the following, for all z2 + p2 < 1: 

1. The functions fi in (6.40) are uniformly bounded in the sector \z\ < p: 

l/il < c [ai 2{z+^/z2+p2)0(p+z2/p]ww< w<< 

2. For 0 < p < — z we write 

0 < z z2+p2 = \z\ 1 + P2 
z2 - 1 ) < C 

P2 
c<<^*ù 

so that 

+dpa(0,z)p 1 

|z| 11/2 
0(p2 + z2)) 2 :C(ai + 0(|z|3/2))2 $^*ù 

3. For 0 < p < z one can proceed as follows: by (6.37), together with the analysis 
of u) in [19], there exists a constant C such that near the axis we have 

(6.41) C - V < gid^dy) = h{dv,dv) < Cx2, x< ̂ $*ù x=C 
w<<^*m 

<Cx2 

(recall that h denotes the metric induced by g on the slices t = const, where t 
is a time function invariant under the flow of d^). But 

(6.42) 
(ui - UJ2) w< 

p4e-2U1-2U2 p^mm 
+dpa(0,z)p i2 

01( ,̂̂ )52( ,̂9<< l̂ll̂ ,) 
< 2 (vi - wo) \2 - (u2 - Up) 2 

+dpa(0,z)p+dw<< 

2 ^1 — Cu>0 
5i (dipidy) 

t 2 0i(d<p,d<p) 
02(9vp,^) 

+-2 Ĉ2 — ^0 
02(^,9^) 

v 2 B2(du,,du,) 
+dpa(0,z)p 

<c2 = +de2(t/2-C/1) <C2 = e2(U1-U2) 
where gi denotes the respective space-time metric, while Xi denotes the respec
tive x coordinate. Uniform boundedness of this expression, in a neighborhood 
of the intersection point, follows now from (6.38). 

We are ready now to prove one of the significant missing elements of all previous 
uniqueness claims for the Kerr metric: 

Theorem 6.1. — Suppose that (6.1); (6.6)-(6.7) and (6.36) hold. Let (Ui,Ui), z = 1,2, 
be the Ernst potentials associated with two vacuum, stationary, asymptotically flat 
axisymmetric metrics with smooth non-degenerate event horizons. If uj\ = UJ2 on 
the rotation axis, then the hyperbolic-space distance between (UI,UJI) and (U2,uo2) is 
bounded, going to zero as r tends to infinity in the asymptotic region. 

Proof. — We have just proved that the distance between two different Ernst poten
tials is bounded near the intersection points of the horizon and of the axis. In view 
of (6.7), the distance is bounded on bounded subsets of the axis away from the hori
zon intersection points by the analysis in [19]. Next, both o;a's are bounded on the 
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horizon, and both functions p2e~2Ua's are bounded on the horizon away from its end 
points. Finally, both u;a's approach the Kerr twist potential at infinity by the results 
in [87] (the asymptotic Poincaré Lemma 8.7 in [21] is useful in this context), so the 
distance approaches zero as one recedes to infinity by a calculation as in (6.42), to
gether with the asymptotic analysis of [19]; a more detailed exposition can be found 

in [31]. 

6.6. The harmonic map problem: existence and uniqueness. — In this sec
tion we consider Ernst maps satisfying the following conditions, modeled on the local 
behavior of the Kerr solutions: 

1. There exists iVdh > 0 degenerate event horizons, which are represented by 
punctures (p = 0, z = b{), together with a mass parameter m¿ > 0 and an
gular momentum parameter a¿ = ±ra¿, with the following behavior for small 

+dpa(0,z)p+dpa(0,z)p 

(6.43) 17 = In 
xww 

\2rrii/ 
+ 

1 

2 
In 1 

(z-bi) )2 

„2 
+ 0(n). 

The twist potential UJ is a bounded, angle-dependent function which jumps by 
—4Ji = —Aairrii when crossing bi from z < bi to z > bi, where J{ is the "angular 
momentum of the puncture". 

2. There exists Nn^ > 0 non-degenerate horizons, which are represented by 
bounded open intervals (c~,c+) = I* C si, with none of the previous fy's 
belonging to the union of the closures of the I{. The functions U — 2 In p and UJ 
extend smoothly across each interval Ii, with the following behavior near the 
end points, for some constant C, as derived in (6.38): 

(6.44) \U-
1 
2 

Ini p2 + ( * - C ± ) 2 + Z - C ± ) | < C near (0,cf). 

The function u is assumed to be locally constant on g/ \ (Ui{bi} Uj Ij), with 
expansions as in (6.39) nearby. 

3. The functions U and UJ are smooth across si \ (Ui{bi} Uj Ij). 

A collection {bi.rrii}^, Ij, j = l,...,iVndhj and {ujk}, where the u^'s are the 
values of Ui on the connected components of si \ (Ui{bi} Uj Ij), will be called "axis 
data". 

We have the following [24, Appendix C] (compare [33, 93] and references therein 
for previous related results): 

Theorem 6.2. — For any set of axis data there exists a unique harmonic map $ : 
R3 \ si —> M2 which lies a finite distance from a solution with the properties 1.-3. 
above, and such that UJ = 0 on si for large positive z. • 
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Here the distance between two maps $1 and $2 is defined as 

d($i ,$2)= sup d6($i(p),$2(p)), 
w<<<< 

where the distance p^ùùis taken with respect to the hyperbolic metric (6.17). 
We emphasize the following corollary, first established by Robinson [84] using dif

ferent methods (and assuming \a\ < m, which Weinstein [91] does not); the approach 
presented here is due to Weinstein [91]: (19) 

Corollary 6.3. — For each mass parameter m and angular momentum parameter a £ 
(—m,m) there exists only one map $ with the behavior at the axis corresponding to an 
7+ -regular axisymmetric vacuum black hole with a connected non-degenerate horizon 
centered at the origin and with to vanishing on S/ for large positive z. Furthermore, 
no 1+-regular non-degenerate axisymmetric vacuum black holes with \a\ > m exist. 

Proof — Theorem 4.5 shows that (6.1) and (6.36) hold, (6.6) follows from Theo
rem 5.1, while (6.7) holds by the Ergoset Theorem 5.24. One can thus introduce 
(p, z) coordinates on the orbit space as in Section 6.2, then the event horizon cor
responds to a connected interval of the axis of length £, for some £ > 0. Let (U,u) 
be the Ernst potential corresponding to the black hole under consideration, with u 
normalized to vanish on S/ for large positive z. Let J be the total angular momentum 
of the black hole, there exists a Kerr solution (UK, &K), with UJK normalized to vanish 
on SI for large positive 2, and such that the corresponding "horizon interval" has the 
same length £. We can adjust the z coordinate so that the horizon intervals coincide. 
The value of u on the axis for large negative z equals 4 J, similarly for LUK, hence 
UJ = UJK on the axis except possibly on the horizon interval. Theorem 6.1 shows that 
(U,UJ) lies at a finite distance from (UK^K)- By the uniqueness part of Theorem 6.2 
we find (U,u) = (UK,UK), thus the ADM mass of the black hole equals the mass of 
the comparison Kerr solution, and \a\ < m follows. • 

6.7. Candidate solutions. — Each harmonic map (A, a;) of Theorem 6.2 with 
-Ndh + Nndh > 1 provides a candidate for a solution with N^h + n̂dh components of 
the event horizon, as follows: let the functions v and û be the unique solutions of the 

(19) Yet another approach can be found in [77]; compare [72, Section 2.4]. In order to become 
complete, the proof there needs to be complemented by a justification of the assumed behavior of 
their potential $ (not to be confused with the map <1> here) on the set {p = 0}. More precisely, 
one needs to justify differentiability of $ on {p = 0} away from the horizons, continuity of <£ and 
$>; at the points where the horizon meets the rotation axis, as well as the detailed differentiability 
properties of near degenerate horizons as implicitly assumed in [72, Section 2.4]. 
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set of equations 

(6.45) 
(6.46; 
(6.47) 

dpv = -e4Xp dzuj, dzv = e4Xp dpuj, 
dpu = p [(0p\)2 - (0ZX)2 + \e4X{{dpuj)2 - (dzuj)2)] + dp\ 

dzu = 2 p [dpX dz\ + \e4Xdpuj dzu] + dzX, 

which go to zero at infinity. (Those equations are compatible whenever (A, a;) satisfy 
the harmonic map equations.) Then the metric (6.13) satisfies the vacuum Einstein 
equations (see, e.g., [95, Eqs. (2.19)-(2.22)]). Every such solution provides a candidate 
for a regular, vacuum, stationary, axisymmetric black hole with several components 
of the event horizon. If N^h + ^ndh = 1 the resulting metrics are of course the Kerr 
ones 

At the time of writing of this work, it is not known whether any such candidate 
solution other than Kerr itself describes an /^-regular black hole. It should be em
phasized that there are two separate issues here: The first is that of uniqueness, which 
is settled by the uniqueness part of Theorem 6.2 together with the remaining analy
sis in this section: if there exist stationary axisymmetric multi-black hole solutions, 
with all components of the horizon non-degenerate, then they belong to the family 
described by the harmonic maps of Theorem 6.2. Note that Theorem 6.2 extends 
to those solutions with degenerate horizons with the behavior described in (6.43). 
Conceivably this covers all degenerate horizons, but this remains to be established. 

Another question is that of the global properties of the candidate solutions: for 
this one needs, first, to study the behavior of the harmonic maps of Theorem 6.2 near 
the singular set in much more detail in order to establish e.g. existence of a smooth 
event horizon; an analysis of this issue has only been done so far [69, 91] if Â h — 0 
away from the points where the axis meets the horizon, and the question of space-time 
regularity at those points is wide open. Regardless of this, one expects that for all 
such solutions the integration of the remaining equations (6.45)-(6.47) will lead to 
singular "struts" in the space-time metric (6.13) somewhere on 

7. Proof of Theorem 1.3 

If is empty, the conclusion follows from the Komar identity and the rigid 
positive energy theorem (see, e.g. [18, Section 4]). Otherwise the proof splits into 
two cases, according to whether or not X is tangent to the generators of<<<to be 
covered separately in Sections 7.1 and 7.2. 

7.1. Rotating horizons. — Suppose, first, that the Killing vector is not tangent 
to the generators of some connected componen t<of<<= Jf + fl/+(.y#ext)- Theo
rem 4.14 shows that the isometry group of {JK, Q) contains R x U(l). By Corollary 2.4 
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((^ext)) is simply connected so that, in view of Theorem 4.5, the analysis of Section 6 
applies, leading to the global representation (6.13) of the metric. The analysis of the 
behavior near the symmetry axis of the harmonic map 3> of Section 6.5 shows that $ 
lies a finite distance from one of the solutions of Theorem 6.2, and the uniqueness part 
of that last theorem allows us to conclude; compare Corollary 6.3 in the connected 

case. 

7.2. Non-rotating case. — The case where the stationary Killing vector X is 
tangent to the generators of every component of ^ + will be referred to as the non-
rotating one. By hypothesis V(g(X, X)) has no zeros on S+, so all components of 
the future event horizon are non-degenerate. 

Deforming 5? near 35? if necessary, we may without loss of generality assume that 
5? can be extended across S+ to a smooth spacelike hypersurface there. 

For the proof we need a new hypersurface 5?" which is maximal, Cauchy for 
((«y#ext)), with X vanishing on 35?". Under our hypotheses such a hypersurface 
will not exist in general, so we start by replacing (^ ,g) by a new space-time (^ / ,£ | / ) 
with the following properties: 

1. (^',g') contains a region ((^ext))' isometric to (((«^ext)),0); 
2.(Ui \g!) is invariant under the flow of a Killing vector X' which coincides with 

X On ((^ext)); 
3. Each connected component of the horizonw<<is contained in a bifurcate Killing 

horizon, which contains a "bifurcation surface" where X' vanishes. We will 
denote by S the union of these bifurcation surfaces. 

This is done by attaching to ((^ ext)) a bifurcate horizon near each connected 
component of <f + as in [82], invoking Corollary 5.17. 

We wish, now to construct a Cauchy surface 5?' for ((^ext))' such that 35?' = S. 
To do that, for e > 0 let ge denote a family of metrics such that ge tends to g, as e 
goes to zero, uniformly on compact sets, with the property that null directions for ge 

are spacelike for g. Consider the family of £e-null Lipschitz hypersurfaces 

(Ui{bi} Ujw<<< Ij), 

where J+ denotes the boundary of the causal future with respect to the metric ge. 
The c/f̂ 's are threaded with g€-null geodesies, with initial points on S, which con
verge uniformly to g-null geodesies starting from 5, hence to the generators ofx<< 
(withinx<<^*m It follows that, for all e small enough, jVe intersects 5? transversally. 
Furthermore, since <§+ is smooth, decreasing e if necessary, continuity of Jacobi fields 
with respect to e implies that the jV^s remain smooth in the portion between S and 
their intersection with 5?. Choosing e small enough, one obtains a smooth g-spacelike 
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hypersurfacew<with boundary at S, by taking the union of the portion of JY€ be
tween S and where it meets<<<with that portion of 5? which extends to infinity and 
which is bounded by the intersection wi th<<and smoothing out the intersection. 
The hypersurface 5?1 can be shown to be Cauchy by the usual arguments [9, 40]. 

By [27] there exists an asymptotically flat Cauchy hypersurface 5?" for ((^ext))j 
with boundary on 5, which is maximal. 

We wish to show, now, that ((^ext)Y > and hence ((^#ext))j are static; this has been 
first proved in [89], but a rather simple proof proceeds as follows: Let us decompose 
X' as Nn + Z, where n is the future-directed normal to y", while Z is tangent. The 
space-time Killing equations imply 

(7.1) DiZj+DjZi = -2NKij, 
where gij is the metric induced o n < < K i j is its extrinsic curvature tensor, and 
D is the covariant derivative operator of gij. Since 5?" is maximal, the (vacuum) 
momentum constraint reads 
(7.2) DiKij = 0. 

From (7.1W7.2) one obtains 

(7.3) DiiK^Zj) = -NKijKij. 
Integrating (7.3) over y", the boundary integral in the asymptotically flat regions 
gives no contribution because<<approaches zero there as 0(l/rn_1), while Z ap
proaches zero there as 0(l/rn~2) [25]. The boundary integral at the horizons vanishes 
since Z and N vanish on S = dS^" by construction. Hence 

(7.4) 
w<<< 

NKijKa = 0. 

On a maximal hypersurface the normal component AT of a Killing vector satisfies the 
equation 
(7.5) AN = KijKaN, 
and the maximum principle shows that N is strictly positive except at dS?n 
Staticity of ((^ext))' along 5?" follows now from (7.4). Moving the yfns with the 
isometry group one covers ((^ext))' [27], and staticity of ((^ext))' follows. Hence 
((^ext)) is static as well, and Theorem 1.4 allows us to conclude that ((^ext)) is 
Schwarzschildian. This achieves the proof of Theorem 1.3. • 

8. Concluding remarks 

To obtain a satisfactory uniqueness theory in four dimensions, the following issues 
remain to be addressed: 
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1. The previous versions of the uniqueness theorem required analyticity of both the 
metric and the horizon. As shown in Theorem 4.11, the latter follows from the 
former. This is a worthwhile improvement, as even C1-differentiability of the 
horizon is not clear a priori. But the hypothesis of analyticity of the metric 
remains to be removed. 

In this context one should keep in mind the Curzon solution, where analyticity 
of the metric fails precisely at the horizon. We further note an interesting recent 
uniqueness theorem for Kerr without analyticity conditions [59]. However, the 
examples constructed at the end of Section 2.3.1 show that further insights are 
needed to be able to conclude along the lines envisaged there. 

The hypothesis of analyticity is particularly annoying in the static context, 
being needed there only to exclude non-embedded Killing prehorizons. The 
nature of that problem seems to be rather different from Hawking's rigidity, 
with presumably a simpler solution, yet to be found. 

2. The question of uniqueness of black holes with degenerate components of the 
Killing horizon requires further investigations. Recall that non-existence of sta
tionary, vacuum, 7+-regular black holes with all components of the event hori
zon non-rotating and degenerate, follows immediately from the Komar identity 
and the positive energy theorem [58] (compare [18, Section 4]). Furthermore, 
the results here go a long way to prove uniqueness of degenerate, stationary, 
axisymmetric, rotating configurations: the only element missing is an equiva
lent of Theorem 6.1. We expect that Theorem 2.2 can be useful for solving this 
problem, and we hope to return to that question in the near future. 

In any case, the above would not cover solutions with degenerate non-rotating 
components. One could exclude such solutions by proving existence of maximal 
hypersurfaces within ((^ ext)) with an appropriate asymptotic behavior at the 
cylindrical ends. The argument presented in Section 7.2 would then apply to give 
staticity, and non-existence would then follow from [26], or from Theorem 1.4. 

3. The question of existence of multi-component solutions needs to be settled. 
And, of course, the question of classification of higher dimensional stationary black 

holes is largely unchartered territory. 
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