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TEST CONFIGURATION AND GEODESIC RAYS 

by 

X i u x i o n g C h e n &; Y u d o n g Tang 

Dedicated to Professor J. P. Bourguignon, 
with affection, gratitude and admiration 

Abstract. — This paper presents recent research findings on the connection between 
test configuration and geodesic ray in Kähler metric space. The purpose was to gain 
insight on the degeneration of Kähler metrics along geodesic rays. A result associating 
every smooth test configuration a C 1 , 1 geodesic ray is proved and exemplified with 
toric degenerations. Furthermore, we show that the ¥ invariant agrees with Futaki 
invariant, thus acts as a good substitute in general C 1 , 1 geodesic rays without a 
background test configuration. Based on the assumption of simple test configuration, 
we extend Donaldson's correspondence between solutions of Monge-Ampère equation 
and holomorphic discs. Results indicate that Chen and Tian's analysis on Monge-
Ampère equation via holomoprhic discs could apply in simple test configuration. 

Résumé (Configuration de test et rayons géodésiques). — Cet article présente les dernières 
découvertes sur la connexion entre la configuration de test et les rayons géodésiques 
dans les espaces métriques kâhleriens. Un résultat qui associe à chaque configuration 
de test lisse un C1'1-rayon géodésique est démontré, et nous fournissons des exemples 
avec des dégénérations toriques. D'autre part, nous montrons que l'invariant ¥ s'ac­
corde avec celui de Futaki, et forme ainsi un bon substitut dans le cas de C1'1-rayons 
géodésiques généraux sans configuration de test. En nous basant sur l'hypothèse d'une 
configuration de test simple, nous étendons la correspondance de Donaldson entre les 
solution de l'équation de Monge-Ampère et les disques holomorphes. Les résultats 
indiquent que l'analyse de Chen et Tian sur l'équation de Monge-Ampère par le biais 
des disques holomorphes pourrait s'applique dans les configurations de test simples. 

1. Introduction 

The purpose of this paper is to explore the connection between geodesic rays in 

the space of Kâhler metrics and test configurations in algebraic manifold [15]. This 
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140 X. CHEN & Y. TANG 

is a continuation of [9] in some aspects. In [7], the first named author and E. Calabi 

proved that the space of Kâhler potentials is a non-positive curved space in the sense 

of Alexanderov. As a consequence, they proved that for any given geodesic ray and 

any given Kâhler potential outside of the given ray, there always exists a geodesic ray 

in the sense of metric distance (L2 in the Kâhler potentials) which initiates from the 

given Kâhler potential and parallel to the initial geodesic ray. The initial geodesic 

ray, plays the role of prescribing an asymptotic direction for the new geodesic ray out 

of any other Kâhler potential. When the initial geodesic ray is smooth and is tamed 

by a bounded ambient geometry, the first named author [9] proved the existence of 

relative C1,1 geodesic ray from any initial Kâhler potential. (These definitions can be 

found in Section 2.) Similarly, as remarked in [9], a test configuration should play a 

similar role. One would like to know if it induces a relative C1'1 geodesic ray from any 

other Kâhler potential in the direction of test configuration. In [3], Arezzo and Tian 

proved a surprising result that for a smooth test configuration with analytic (smooth) 

central fiber, there always exists a general fiber sufficiently closed to the central fiber, 

such that there exists a smooth geodesic ray initiated from that fiber metric, and be 

asymptotically closed to the test configuration (or approximating to some analytic 

metric in the central fiber). A natural question, motivated by Arezzo-Tian's work, is 

if there exists a relative geodesic ray from arbitrary initial Kâhler metric which also 

reflects the same geometry (i.e., degenerations) of the underlying test configuration. 

In section 3, we prove 

Theorem 1.1. — Every smooth test configuration induces a relative C1'1 geodesic ray 

from any Kâhler potential in the given class. ^ 

Test configurations can be viewed as algebraic rays, which are geodesies in a finite 

dimensional subspace( with new metric) of space of Kâhler metrics. The geodesic rays 

induced by a test configuration are the rays parallel to the algebraic ray. They auto­

matically have bounded ambient geometry introduced by the first named author [9]. 

Theorem 1.2. — For simple test configuration^, if the induced geodesic ray is smooth 

regular ^ , then the generalized Futaki invariant agrees with the ¥ invariant ^ . 

In 1982, E. Calabi asked if there always exists an extremal Kahler metric in every 

Kahler class [5]. This is a very ambitious conjecture which includes his famous con­

jecture on Kahler Einstein metric ( when the first Chern class has a definite sign) as 

t1) Following ideas of [9], the smooth assumption can be reduced to a lower bound of the Riemannian 
curvature of the total space. 
<2) Definition 2.3. 
(3) Definition 2.1, it is also equivalent to Definition 6.2 in this case. 
(4) The ¥ invariant is defined bv the first named author f9l. 
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TEST CONFIGURATION AND GEODESIC RAYS 141 

a special case. It was soon pointed out by Levine [19] that Calabi's conjecture can 

not hold for general Kahler class. However, it is understood among the experts that, 

with some modification, Calabi's conjecture might hold for general Kahler manifolds. 

Unfortunately, it is truely subtle and elusive to search/fromulate a correct statement 

regarding the existence of constant scalar curvature Kahler (cscK) metrics. 

The generalized Futaki invariant or algebraic Futaki invariant is an algebraic no­

tion which relates to the stability of projective manifolds. In the late 1990s, S. T. 

Yau conjectured that the existence of Kahler Einstein metrics in Fano manifolds is 

equivalent to some form of Stability of the underlying polarized Kahler class. Even 

though what stability notion to use is also part of puzzle, this is indeed a fundamental 

conjecture with respect to Kahler Einstein metrics. According to G. Tian [34] and 

Donaldson [12], this equivalence relation should be extended to include the case of 

the constant scalar curvature (cscK) metric in a general Kahler class. In [34] , G. 

Tian introduced the notion of K-Stability and in the same paper, he proved that the 

existence of K E metric implies weak K stability. In [13], Donaldson proved that, in 

algebraic manifold with discrete automorphism group, the existence of cscK metrics 

implies that the underlying Kahler class is Chow-Stable. In this paper, Donaldson 

actually formulated a new version (but equivalent) of K-Stability in terms of weights 

of Hilbert points. In Kahler toric varieties, the existence of cscK metrics implies that 

the underlying Kahler class is Semi-K stable [15]. Now it is a well-known conjec­

ture that the existence of constant scalar curvature metrics, is equivalent to the K 

stability of the underlying complex polarization ( the so called "Yau-Tian-Donaldson 

conjecture ) . 

In [9], the first named author used the ¥ invariant to define geodesic stability. 

Theorem 1.2 states that geodesic stability in the algebraic manifold, is a proper gen­

eralization of K stability, at least conceptually. The first named author believes that 

the existence of KE metrics is equivalent to the geodesic stability introduced in [9]. 

Note that the geodesic stability introduced in [9] is a mild modification of a similar 

concept of S. K. Donaldson [12]. 

The Yau-Tian-Donaldson conjecture is a central problem in Kahler geometry now. 

Through the hard work of many mathematicians, we now know more about one di­

rection ( from existence to stability), cf. Tian [34], Donaldson [16] , Mabuchi [22], 

Paul-Tian [23], Phong-Sturm [24], Chen-Tian [10]... But on the direction from al­

gebraic stability to existence, few progress has been made though. However, in toric 

manifolds, there has been special results of Donaldson [15] and Zhou-Zhu [37]. 

There is a recent intriguing work by V.Apostolov, D.Calderbank, P.Gauduchon and 

C.W.Tonnesen-Friedman [2]. They constructed an example which is suspected to be 
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142 X. CHEN & Y. TANG 

algebraically K stable (5), but admits no extremal Kâhler metric. Perhaps one might 

speculate that, the geodesic stability aforementioned is one of the possible alternatives 

since it appears to be stronger than K stability and it is a non algebraic notion in 

nature. 

The converse to Theorem 1.1 is widely open. In other words, it is hard to com-

pactify a geodesic ray. The rays induced by any test configuration is very special in 

many aspects. For instance, generally speaking, the foliation of a smooth geodesic 

ray is a family of open strips which cover the base punctured disc. However, for the 

smooth geodesic rays induced from a test configurations, the strips always close up 

as punctured disc, or we may say that, the orbits are periodic. Unfortunately, hav­

ing a periodic orbit does not appear to be enough to construct a test configuration. 

It would be a very intriguing problem to find a sufficient condition so that we can 

"construct" a test configuration out of a "good" geodesic ray. 

Question A. — Is there a canonical method to construct some test configura­
tion/algebraic ray such that it reflects the same degeneration of a geodesic ray? 
What is natural geometric conditions on the "good" geodesic ray? 

Our second main result is to establish the correspondence between smooth regulai 

solutions of Homogeneous complex Monge-Ampere equation ( H C M A ) on simple test 

configurations and some family of holomorphic discs in an ambient space W which 

will be explicitly constructed. We prove, in section 5: 

Theorem 1.3. — There is a one to one correspondence between smooth regular solu­
tions of HCMA on simple test configuration M. and families of holomorphic discs in 
W with proper boundary condition. ^ 

Note that in the case of disc, S. K. Donaldson [14] and S. Semmes [30] established 

first such a correspondence between the regularity of the solution of the H C M A equa­

tion and the smoothness of the moduli space of holomorphic discs whose boundary lies 

in some totally real sub-manifold. The theorem above is a generalization of Donald­

son's result. Following this point of view, the regularity of the solution is essentially 

the same as the smoothness of the moduli space of these holomorphic discs under 

perturbation. As in [14], we proved the openness of smooth regular solutions in 

Section 6. 

Theorem 1.4. — Let p(t) be a smooth regular geodesic ray induced by a simple test 

configuration. Then there exists a parallel smooth regular geodesic ray for any initial 

point sufficiently close to p(0) in C°° sense. 

(5) Generalized K stable for extremal Kahler metrics, cf. [32]. 
(6) In a followup work, we expect to extend this to all smooth test configurations. 
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TEST CONFIGURATION AND GEODESIC RAYS 143 

An immediate corollary is that the smooth geodesic ray constructed by Arezzo-

Tian is open for small deformation of the initial Kahler potential. One may wonder 

what about the closeness of these solutions? Note that the first named author and 

Tian [10] studied the compactness of these holomorphic discs in the disc setting and 

we believe that the technique of [10] can be extended over here. 

In Section 7, as a special case, we explore the geodesic rays induced by toric de­

generations [15]. In particular, we found plenty of geodesic rays whose regularity is 

at most C1'1 globally. We prove: 

Theorem 1.5. — The geodesic ray induced by a toric degeneration has the initial di­

rection equal to the extremal function in the polytope representation. 

More interestingly, we can write down the geodesic ray explicitly in polytope repre­

sentation. Thus, the various invariants and energies can be calculated explicitly. This 

should have general interest since there are very few non-trivial examples of geodesic 

segments or rays in the literature. 

Acknowledgments. — Both authors are grateful to G. Tian for many insightful 

discussions. The first named author is grateful to S. K. Donaldson for many discus­

sions in this subject. 

The first named author has been lecturing on these theorems since spring of 2007. 

In particular, he lectured in a week long conference on geometric analysis (June 17-22, 

2007) held at Luminy, Prance. 

When we are ready to post our paper, the authors noticed Phong-Sturm's work [27] 

which overlaps with our theorem 1.1. 

2. Preliminary 

2.1. Geodesic rays in Káhler potential space. — Let (M,ÜJ, J) be a com­

pact Káhler manifold of complex dimension n. This means J is an integrable com­

plex structure and the symplectic form UJ is compatible with J. In another word, 

(JÜ(J-, J-) = (JÚ(-, •), and g = ̂ ^^s<<J-) is a metric. 

In local complex coordinates za = xa + iya, denote the metric g = ÜJ(-,J-) by 

gapdza <g> dz@. Then gap is the complexification of the real metric g^. 

By definition, u =<< w< 
2 

ga$dza Adz?. Let 

(1) H = {</>£C°°(M):gaß + 
d2(j) 

dzadzp 
> 0 } . 

It follows from the dd lemma that H is the moduli space of all Kahler metrics in the 

class [a;] 
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144 X. CHEN & Y. TANG 

H is an infinite dimensional manifold with formal tangent space TH^ = C°°{M). 

T. Mabuchi [211 defined a metric as the following: Let 01,02 G TH<j>. 

(2] 01,02 >UJ4> ^^ 
M 

0102«/J ùù^^ 
^^ù 

0102 
^0 
n! ùù 

M 
0102 

+ iddd) n 

nl ^^ 

This metric was also defined in S. Semmes [29] and S.K. Donaldson [12]. Under this 

metric, the geodesic equation for curve 6{t) G H is the following: 

(3' 0 " 00 
a/3 

0a 0* = 0. 

It is just the Euler-Lagrange equation of the energy EU(t)) ^^ 
^^ 
'o 02 

ùù 

n\ v 
According 

to Semmes [29], the geodesic equation can be transferred into a Complex Monge-

Ampère equation: Let 0,1 xS1 a Riemann surface. Now 0 is originally defined 

for t G [0,1]. Extend 0 to be S1 invariant function on E. Let z = t + is be complex 

coordinate of E, xbb 3 a n be a local coordinates on M. Then the geodesic 

equation is transformed into 

(4) det 
9*3 + 0a^ 0az 

02^ <t>zz 
= 0. 

In another word, it is n + i<9<90) ,n+l = 0 on M x E. where 0 = 7r*o; is the Dull back 

of uj bv the proiection 7r : M x E M. 

A geodesic segment connecting two points 0o and 0i is the solution of the following 

Drichelet boundary value problem. 

(5) det 9OL$ + 0a^ 0CKZ 

0z^ 0zz 
= 0 on M x E, 

(6) 0 ^ùù 0o on M X 0 X s1 5 

(7) 4> ùù^^ <f>I on M x 1 x s1. 

Definition 2.1. — Smooth regular solution: We call 0 a smooth regular solution (some­

times smooth solution for simplicity) of the Monge-Ampère equation, if 0 is smooth 

and if 9a3 + 0a^ : > 0 hold on all fibers. 

In [8], The first named author proved the existence of a C1'1 solution to above 

equation. He used the continuity method to solve det = ef equation, and proved the 

following: For every e > 0, there is a unique smooth solution 0e with \dd(j)e\ < C. The 

C only depends on the background metric and the manifold. In fact, his proof works 

for Monge-Ampère equation on general compact complex manifold with boundary. 

He also proved the uniqueness of the limit when e —> 0. Notice that the uniqueness 

is expected since H is negatively curved space. T. Mabuchi [21], S. Semmes [29] 

and Donaldson [12] showed that H is negatively curved in formal sense and later, 
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TEST CONFIGURATION AND GEODESIC RAYS 145 

the first named author and Calabi [7] proved it is negatively curved in the sense of 

Alexander ov. 

The regularity beyond C1,1 is missing. Our example in section 7 shows a solution 

with no global C3 bound. A similar setup [14] to the geodesic equation is concerned 

Monge-Ampère equation o n M x D instead of M x (IxxxxxIn that setup, Donaldson 

showed that there exists boundary value such that there is no smooth regular solution. 

In this direction, a deep analytic result is [10]. The first named author and Tian 

characterized the singularity in detail by analyzing the holomorphic discs associated 

to a solution. 
In the geodesic ray case, the equation holds on M x [ 0 , o o ) x ; S1 instead of MxIxS1xx 

Bv chaneine: variable: z = e 1 (t+is) the strip 0,oo I x S1 goes to a punctured disc. 
The equation becomes [tl+iddcj)) |7l+L = O o n M x D - 0 .^hdddd The well posed question for 

geodesic ray is a "starting potential, as well as prescribing an asymptotic direction. 

This "asymptotic direction" is usually given by either a known geodesic ray with 

bounded geometry or a smooth test configuration. In [9], we study the existence of 

geodesic ray with given geodesic ray as "asymptotic direction." Part of the goal of this 

paper is to established the existence result with respect to test configuration and to 

explore the relation of geodesic rays with test configurations. 

2.2. Test configuration and equivariant embedding. — Test configuration 

is defined first by Donaldson [15]. He used test configurations to study the relation 

between stability of projective manifolds and the existence of extremal Kahler metrics. 

Test configuration is parallel to the notion "special degeneration" introduced by Tian 

[34] earlier. Both notions describe a certain degeneration of Kahler manifolds. As 

discussed already in [12], the geodesic ray represents also degeneration of Kahler 

metrics. Therefore, it is natural to relate these notions together. 

Following Donaldson's definition, 

Definition 2.2. — Let L —> M be an ample line bundle over a compact complex man­

ifold. A test configuration M. consists of: 

1. a scheme Ai with a C*—action. 

2. a C*— equivariant line bundle C —> M. 

3. a flat C*—eauivariant man tt : M —> C, where C* acts on C bv multiolication. 

Any fiber Mt dd 71 -1 dd for t 7^ 0 is isomorphic to M. The pair 7 / , Mi is 

isomorphic to [C\Mt,Mt, for some r > 0, in particular, Lr,M' ^^ ,Li,M1). 

Test configuration is more explicit in the view of equivariant embedding [28]. 

Without loss of generality, assume r = 1. For large k, Ck —• M —• C can be 

embedded into o(i; pN X C c equi-variantly. It means there is a C* ac­

tion on Oil pN x C /nr which restricts to the C* action of the embedded 
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146 X. CHEN & Y. TANG 

Ck -> M -> C. In fact, the embedding of each fiber M* is just the Kodaira embed­
ding by the linear system xxx MuCk hhh Moreover, one can make the S action on 
0(1] -+PN x C ^ C w < < unitary. 

In the rest of the paper, we always treat test configurations as equi-variantly em­
bedded with r = l,fc = 1. Therefore, we work on a subspace of PN x C. Also, 
in geodesic ray problem, there is no loss of generality to only look at truncated test 
configuration M —> D. 

At last, we define a special kind of test configuration. 

Definition 2.3. — Simple test configuration: A test configuration M C PN x D is 
called simple if the total space is smooth (M is a smooth sub-manifold of PN x D) 
and the projection ir : M —> D is submersion everywhere. 

By definition, the central fiber of a simple test configuration is automatically 
smooth. 

3. Relative C11 geodesic ray from smooth test configuration 

3.1. Existence. — As mentioned before, test configuration represents some degen­
eration of a Kâhler manifold along a C* action. Geodesic ray represents a degeneration 
of Kâhler metrics along a punctured disc. So it is natural to relate the truncated test 
configuration to a geodesic ray. We have the following theorem: 

Theorem 3.1. — A smooth truncated test configuration M —• D induces a relative 
C1'1 geodesic ray from any given initial point p eH. 

The existence is a direct application of the first named author's result [8]. The key 
ingredient of this theorem is the boundary estimate in [8]. For Homogenous complex 
Monge-Ampere equation, there is an extensive literature in the subject (cf. [4], [18], 
[35]...). 

At present, we assume that the total space of the test configuration is smooth. We 
expect that these results can be extended to singular test configurations accordingly. 
For instance, in [9], the first named author took another approach to construct the 
geodesic ray. Using techniques in [9], the smoothness condition here can be reduced 
to a uniform lower bound of the Riemannian curvature of the total space. 

Proof. — Consider a smooth test configuration over a disc: (C -* M -+ D) ^ 
(0(1) PN x D D) Assume the total space is smooth, i.e, , M C PN x D is 
smooth. Let Q be the Fubini-study metric on PN x D. Actually, it means the pull 
back of Fubini-study metric on PN by projection: PN xD^ PN. 
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TEST CONFIGURATION AND GEODESIC RAYS 147 

Now solve the equation 

(8) <<xx :,,^^^$$$ ,n+l ^$^^ 0 on M, 

(9) ib = 0 on dM. 

According to [8], this equation has aC1,1 solution (it is not exactly the same situation 

as in [8], but the techniques are the same). The following shows that: This solution 

corresponds to a geodesic ray in the Kahler class CI (L). 

The C* action on M induces a biholomorphic map i : (L i ,Mi) x (D-0) -

[C,M) - Mq. NOW i maps (e,x,z) 6 (L i ,Mi) x (D - 0) to z o (e,x, 1) C ( £ , M ) . zo 

is the C* action of test configuration, and (e,x, 1) G (Li, Mi) . The map i pulls the 

equation to 

(10) ^n;;:^^ù ^^^lhhh hhk >n+L = 0. 

on Mi x (D - 0) , with boundary condition i*V> = 0 on Mi x S1. 

Let u = Q\Mi, and 7T : Mi x (D - 0) —• Mi be the projection, then 

Proposition 3.2. — TO = THHT*U;+V-1031o /or some smooth function rj. 

Proof. — Let h be the Fubini-Study hermitian metric on Oil) —> p * . So Q = 

-V^ìddìogh and bcccww= -yj^lddlogfh. Note TT*O; = - v ^ î ô ô l o g h i . hi is the 

pull back of the hermitian metric on line bundle L\ —» Mi by trivial projection 

TT : (Li, Mi) x ( D - 0 ) -> (L i ,Mi ) . So TO = TT*U;+V-1031og ZU 
1 i* h and ?7 = log Ali xx^m 

• 

Proposition 3.3. — xww^$ùùùmm is a geodesic ray. 

Proof. — We have shown TO = TT*U;+V-1031o \n+L = 0 on M x (D - 0). It remains to 

show the S1 invariance of (p. First, we check the S1 invariance of rj. By assumption, 

S1 action on Oil) —> PN x C is unitary. So the h is preserved by S1 action. This 

immediately implies that V = log hi 
i*h 

is S1 invariant. Now we check é. é is 51 

invariant because the boundary condition ip = 0 is S1 invariant, and the uniqueness of 

Monge-Ampère solution. In another word, for the unique solution, the S1 symmetric 

on the boundary will force the S1 symmetry in the interior. Now both 77 and I/J are 

51 invariant, so is (p. • 

Back to the proof of the theorem 3.1: At this moment, we have associated a 

relative C1,1 geodesic ray to the test configuration. The ray starts from a fixed point 

p, because we solved the equation with boundary condition tp = 0. However, for 

another arbitrary point q, one can go back to the equation 8, solve ip = ip0 on dM 

and obtain the relative C1'1 ray from q. ipo is the S1 extension of the potential 

difference between q and p. • 
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148 X. CHEN & Y. TANG 

In [3], Arezzo and Tian constructed an analytic geodesic ray from a test configura­

tion when the central fiber is analytic. Such test configurations in [3] are simple test 

configuration (cf. Defi. 2.3). Using the openness Theorem 6.5, we know that there 

are smooth geodesic rays near the ray they constructed. 

When the test configuration is simple (cf. Defi. 2.3), one may expect some better 

regularity of the induced geodesic ray. Using the correspondence in section 5, the 

techniques developed by the first named author and Tian in [10] would apply. We 

expect a similar regularity result here: For any boundary condition 4> G Ck,a, there 

sxists nearby perturbation 0e, \(j)e — 0|cfe.<* < e? such that the HCMA with boundary 

yalue 4>e has a almost smooth solution (7\ When the test configuration is not simple, 

bad regularity may appear, maybe due to lack of the correspondence in section 5. 

For example, in the case of toric degenerations: The total space is smooth when the 

total polytope is delzant, but the central fiber is never smooth. The geodesic ray 

is piece wise smooth and has no global C3 bound. The singularity set on polytope 

representation has real codimension 1. 

Back to the question raised in the introduction: given a geodesic ray, how to 

construct a test configuration which represents the same degeneration? Donaldson's 

construction of toric degenerations [15] is very inspiring: He chose piecewise linear 

functions to approximate an arbitrary direction. A piecewise linear function can lead 

to a well defined test configuration. In principle, one might view the degenerations 

represented by a test configuration are dense in all possible geometrical degenerations. 

Donaldson's construction suggests a way to choose a good approximation, which re­

flects the same character of degeneration. 

3.2. Special cases: geodesic line and Toric variety. — One example of geodesic 

ray is the geodesic line generated by a holomorphic vector field. Let M be a Kah-

ler manifold with Kahler form uo. Let X be a holomorphic vector field such that: 

X = w<< d 
dwa 

for some real potential / . It is well known that Im(X) is killing vector 

field. Let a(t) be the flow generated by Re(X) = Vw/ . Then, the 1-parameter family 

<<o It) = a t)* is a geodesic line, t G —00, 00). 

Nontrivial example of geodesic rays can be explicitly constructed in toric varieties. 

For a toric variety, there is an associated polytope. More specifically, there is a 

biholomorphic map / : M° î^ùmmm '2mZn -* P° x Tn. Here M° is an open dense 

subset of M where the toric action is free. P is a polytope in Rn satisfying Delzant 

conditions. Represent a toric-invariant Kahler metric as UJ\M° = iddf, then there is 

a map f from 

w<< '2mZn -+p° X rj-\n 
5 v (u,v) IX = 

df 
du 

oom^ùm 
I. 

(7) For definition of almost smooth solution, see the first named author and Tian [10]. 
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TEST CONFIGURATION AND GEODESIC RAYS 149 

Under this map , the Kahler form u is translated into dxAdy. The complex structure 

is translated into 

h ) j = 
0 G 

G"1 0 
dd 

where 

w<< ^l 
d2g 

dxidxj 1 and g ̂ ^^vcc + f lhh ̂ ^ X<i Uì, at x = 
df 
du' 

In another word, in the symplectic chart, the complex structure has a potential g. 

This transformation is really helpful for the geodesic equation. The geodesic equa­

tion, in the polytope representation, is linear for complex structure potential g(t). In 

other words, 

(12) 9 (t) = 0. 

This immediately implies the existence of smooth geodesies segment connecting any 

two toric metrics. It is just the linear interpolation of the two end potentials. 

4. Connection between algebraic notions and geometric notions 

4.1. Algebraic ray and geodesic ray. — Test configurations can be viewed as 

algebraic rays. The induced geodesic rays are parallel to the algebraic ray. 

Definition 4.1. — Two rays pi(t) and p2(t) in the space of Kahler metrics are called 

parallel if pi(t) — P2(t) is uniformly bounded. 

The equality <p = rj + i*ip can be interpreted geometrically, rj represents the degen­

eration of the metric from the algebraic C* action, ip is the difference between the 

algebraic ray and the differential geometric ray. Notice that i\) is C1,1 bounded. We 

will elaborate above statement in the following: 

Recall that w<<p^^ ̂̂ ^bv L i , M / o^mm 'O(l) ,PN is embedding. The group GL(N + 

1,C) acts on (0(1),PN). If one looks at the dual bundle of 0(1) (i.e. the universal 

bundle e, x j e vvv + 1 X pN : e = Xx] 5 the action is simply A ̂ 6, x Ae, Ax), y A e 

GL(N + 1,C). The natural dual map between Oil) and universal bundle passes the 

action from one to the other. 

Consequently, the action acts on the Hermitian metric of 0 (1) , thus on its cur­

vature. The following lemma shows that this action preserves the positivity of the 

Hermitian curvature. 

Lemma 4.2. — Let A G GL(N +1, C) and h be the Fubini-Study hermitian metric on 

0(1). Then, -idd\ogA*h > 0. 
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Proof. — It suffices to prove that the action preserves the negativity of curvature 

on the universal bundle. Under the action A, the metric of e = XQ, XI, Xpj e 

0(—1) changes into ||Ae||2 from standard Fubini-Study metric ||e||2. Notice that the 

action A~l\ UA for U e U(N + l) is transitive on PN and this action preserves A*h. 

Thus, one only need to show the negativity at one point. Let's consider the point 

V = A-1 ; i ,o , . . . ,o ; 
7 

and e = (Xo,TO = TT*U;+V l,Xi+i...,XN ). At this point p, we have 

:i3) fddq -ìaaiogiiAe |2 ^mm - 1 
n 

<<;;,, k,l^i 

mw<< AjidXkAdXi<<. 

To show the positivity, it suffices to show that the null space of the matrix Ajk,j ^ 

l,fc<<ppi must be empty. If v = a0, . . . ,ai_i,ai+i, . . .a^ is a null vector, then the 
vector Av* must be of form [c ? 0,0,0, . . , 0 ) , because of non-sineularitv of A. Bv 

scaling c = 1, A will map two vectors to (1,0, ...,0) I, which is a contradiction. • 

As a consequence, the GL(N + 1, C) action induces a finite dimensional subspace 

HN C H. Note that HN consists of those metrics obtained by the GL{N + 1,C) 

action. 

The space HN is a symmetric space. Its dual is the unitary group U(N + 1). 

Under the natural metric of symmetric spaces, the C* action (as a 1-parameter family 

of metrics) is a geodesic ray in HN- It is interesting to consider the limit of these 

algebraic rays when one raises the dimension of ambient space PN(we can raise the 

power k of Ck and do Kodaira embedding, then pull the ray back to the class ci(L) 

by dividing out the scalar k). First, it is easy to derive that all the embedding induces 

the same geometric geodesic ray. 

Lemma 4.3. — Different embedding of a test configuration into projective spaces in­

duce the same geodesic ray provided the rays start at the same point. 

Proof. — By different embedding, one essentially raises the power k of Ck -+ M -> D 

first. Then, we use sections of H°(M,£k^ to embed Ck —> M into 0(1) ->PN xD. 

The Fubini-Study metric naturally induces a metric on Ck, which has curvature in 

class kci(C). To get a geodesic ray in the Kahler class ci(L), one takes the k-th. root of 

the Fubini metric on Ck to get a Hermitian metric hk on C. Notice that log fr*: 
xww is the 

potential difference of the background metric Q>k and fin. When we solve the Monge-

Ampère equation, by uniqueness of the solution, the potential difference log hk 
wii^m 

goes 
into the difference between the C1'1 solutions (f>k and (/>n, such that the ray potential 

rjk + i*(ßk = rin + i*(j)n. • 

As k —> co, it is expected that these algebraic rays converge to some geometric 

geodesic rays. This is a natural extension of the classical problem: Use Bergman 
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metrics to approximate a given Kahler metric. There is extensive literature on this 

topic, cf. Tian [33], Zelditch [36], Lu [20], Phong-Sturm [25] and Song [31]. 

4.2. Bounded ambient geometry and test configuration. — In [9], the first 

named author introduced the notion of "bounded ambient geometry" to study geodesic 

rays. Briefly speaking, a geodesic ray is called to have bounded ambient geometry if 

the following holds: There exists a metric g on M x S1 x [0, oo) such that the ray has 
aC1-1 relative potential under g, and g has uniformly bounded curvature. 

The geodesic ray induced by a smooth test configuration always has bounded am­

bient geometry. To see this, one restricts the metric Q, + idz A dz to the punctured 

part M — Mo. Since Q + idz A dz has bounded geometry on the restriction 

clearly has bounded geometry. The punctured part is holomorphically identified with 

M x S1 x [0,oo). Thus the ray has bounded ambient geometry. Actually, it is a 

stronger version of bounded ambient geometry since the metric g on M x S1 x [0, oo) 

can be compactified into a fibration over a disc. In general, this is not necessarily 

true. 

In [9], it is proved that: Let p(t) be a geodesic ray with bounded ambient geometry, 

then for any other potential 0o> there is a unique relative C1'1 geodesic ray starting 

from (f>o and parallel to p(t). Alternatively, we can use this to derive the existence of 

geodesic rays, based on the algebraic ray. 

4.3. Futaki invariant, ¥ invariant and geodesic stability. — The classical 

definition of Futaki invariant is the following: Let M be a Kahler manifold with 

Kahler metric UJ. Let X be a holomorphic vector field on M. Let h be the solution 

of Ah = R - R. Futaki invariant is a linear functional: T(X) bb; 'm X(h)ujn. The 

definition is independent with the metric u chosen in a fixed class. In particular, when 

X = <ww d 
wwi^m 

TO = TXW M www h aLü pmm p^^ 
w<<<^mm \UJN. 

Ding and Tian [11J generalized the Futaki invariant to a class of singular varieties. 

Briefly speaking, they embed the variety into a projective space PN, and consider 

the restriction of ambient holomorphic vector fields tangent to the variety on regular 

points. Also they consider the restriction of ambient Fubini-study metric u) and define 

Futaki invariant in similar fashion. 

In test configuration, Donaldson's algebraic definition of Futaki invariant is: Let 
C —• M —> D be a test configuration. Consider the C* action on the central fiber 

Lq —> MQ, and its powers L% —• MQ. Let ¿4 = d i m i ^ = dim#°(M0;L§) and Wk be 

the weight of the C* action on highest exterior power of Hk. Then F(k) = wk/kdk 

has an expansion 

(14) F(k) = F0 + F1k - L F2k -2 
-hTO = fqq^^ 
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The coefficient F\ is called the Futaki invariant of the C* action on (L0,M0). He 

proved that if the central fiber is smooth, then the algebraic Futaki invariant agrees 

with the classical Futaki invariant. 

Using Futaki invariant, Donaldson defined stability. A pair (L, M) is K-stable if: 

For each test configuration for (L ,M) (i.e, ( Iq ,Mi ) = (L ,M)) , the Futaki invariant 

of the C* action on (Lo, Mq) is less than or equal to zero, and the equality only occurs 

when the configuration is a product configuration. 

This algebraic definition agrees with an early geometric definition of K-stability 

by Ding and Tian. In [11], they used a C* action of PN to obtain the limit of the 

varieties Mt, then studied the Futaki invariant of the limiting variety MQ. The spirit 

is similar to Donaldson's setup of test configuration. 

Notice that in test configuration, the stability is to check the Futaki invariant of 

the central fiber. However, one would like to have some criterion that doesn't need a 

specific central fiber. Just as the bounded ambient geometry only concerns behavior 

before reaching the limit, the ¥ invariant is a nice notion parallel to Futaki invariant 

and doesn't need a specific central fiber. 

Definition 4.4. — [9] For a smooth geodesic ray p(t), ¥ invariant is defined to be 

15^ ¥ = lim 
£—•00 

dE 

dt 
w< lim 

<hy^m 

dp 

dt 
[R - R) ujn. p 

The K-engery is convex along geodesies. So HE 
dt is monotone and the limit exists 

'either it is positive 00 or a finite number). 

The first named author defined the notion of geodesic stability by ¥ invariant: M 

is weakly geodesically stable if every geodesic ray has nonnegative ¥ invariant. M 

is geodesically stable if every geodesic ray has positive ¥ invariant. Conceptually, 

this is parallel to K-stability for test configurations. However, geodesic rays represent 

all possible geometrical degenerations. Therefore, it would not be a total surprise if 

geodesic rays detect some instabilities that test configuration method can't detect. 

To clarify this analogy further, we prove the following. 

Theorem 4.5. — For simple test configuration, if the induced geodesic ray is smooth 

regular, then ¥ invariant agrees with Futaki invariant ^ . 

Proof. — By definition of simple test configuration, the central fiber is smooth. Fol­

lowing [15], the algebraic Futaki invariant is exactly the classical Futaki-invariant 

applying to holomorphic vector field (induced by the C* action) in the central fiber. 

Denote the associated HCMA on M by [tl + iddc/) IN+l = 0, è is the smooth regular 

solution. Let coc be the restriction of 'tl + iddcj) on Mq. The S1 action of the C* action 

(8) It is the same up to a sign. 
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is a Hamiltonian action on Mo- Let / be the hamiltonian potential. In another word, 

df = ivuc, where v is the S1 action vector field. The Futaki-invariant of the C* action 

is 

1 6 v =< f< R - R w < C< 

Now we look at ¥ = Hind<<oo dp 
dt 

R-R] mxww 

The C* action induces a diffeomorphism i : M-M0-*Mx[0,oo)xSw<<1<.< Identify 

M x [0, oo) x S1 with M — Mn this way, then 

'IT lim 
£—•00 

% ( Up <hh^mm lim 
£—•00 

i* Rp — RUJC • 

So it suffices to show, 

(18) lim 
£—•00 

i* 
dp 

at 
= — / + const. 

The assumption è is smooth regular means Mx[0,oo hdd > 0 for all fiber MT C M. 

So it induces a smooth foliation F by holomorphic discs on A4. ^ Translate into 

M x [0,co) x S1, U F is a foliation by holomorphic punctured discs. i*F in turns 

induces an S1 action on M x [0,00) x 51 , which is moving along the leaf of i*F in 51 

direction. By identifying the fiber Mt with Mte 1 0\ = 1) trivially in M x [0,oo) xS1 , 

the S1 action is Hamiltonian action with hamiltonian dp 
dt ' 

under the symplectic form 

ujp. In M x [0,oo) x S1 notice that the identification between M+ and M+o preserves 
the symplectic form since Mx[0,oo)xS1. for 1*1 - 1 . 

Translate this into the context oî M, we have: If we identify the fiber Mt with 

Mte hi M, via the 51 action of the (7* action, then the S1 action induced by foliation 

F(on M) is hamiltonian action with hamiltonianift + Xn+!t under symplectic form i*ujp. 

Now we take limit towards the central fiber. Under this limit, the central fiber M0 

should be identified with itself via the S1 rotation of the C* action. Also, originally, 

the 51 action induced by F is trivial on Mo- But, under the identification (which is 

distorted in M0), the limit S1 action should be the reverse of S1 action of the C* 

action on central fiber. 

At last, we can take the limit of 2* dp 
öt 

Because the leaf vector on M x [0,00) x S1 

is a 
dt gf dp 

at->/5 
d 

dza and 

(19: 
d2P 

dt2 
ww gf 

dp 

dt ß 

'dp 

dt. 
a 

= 0 

So the dp 
dt is constant along leaves. Therefore, when passing into M, the i* 

dp 
dt is 

constant alone: leaves of F. But F is foliation of discs and well defined on the central 

fiber, so i* dp 
dt 

converges smoothly as moving towards the central fiber in M. The limit 

(9) See 5.2 for foliation induced by smooth regular solution of HCMA. 
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of the hamiltonian i* d¿_ 
dt 

is the hamiltonian of the limiting action. So linu 7* -•oo 1 dp 
dt 

w<< 
—f + const, and the theorem is proved. • 

5. Monge-Ampère equation on Simple test configurations 

Following Donaldson's idea [14], we want to extend the correspondence in [14] to 

the case of Monge-Ampère equation on simple test configurations. 

But to explain the background and the motive, we start with a review on Don­

aldson's result. M is a Kâhler manifold with a given Kâhler form LJ. We solve the 

equation TT*uj + iddó n+l wwc O o n M x D with boundary condition è = ÓQ on M x OD. 
7T is the natural projection to M. 

Donaldson and Semmes independently constructed the following manifold W —> M. 

W is glued by local holomorphic cotangent bundle over M. There exists a lifting of M 

into W for every Kâhler metric u + iddcf). If one take the lifting of M x D into W xD 

by the solution u + iddcf), then one will obtain a family of holomorphic discs. These 

discs are the lifting of the foliation induced by the degenerated form TT*OJ + iddcf). 

Conversely, if one has the family, then it can induce a solution to Monge-Ampère 

equation. This correspondence is powerful. It relates the regularity of a solution of 

HCMA equation to the regularity of moduli space of holomorphic discs in the sense 

of Fredholm theory. 

The construction of Donaldson and Semmes works for a product manifold like 

M x D. However, a test configuration of real interest is not a product space. So the 

previous construction would not work here directly. We solve this problem by taking 

a new point of view on the old construction: View W x D as a global construction 

over M x D. Then we can derive an analogy in non-product case. This viewpoint 

might potentially be generalized to other cases. 

5.1. Construction of W —• M. — Recall a test configuration is simple (Defi. 2.3) 

if: The total space M is smooth (M. is a smooth sub-manifold of PN x D) and the 

projection 7T : Ai —» D is submersion everywhere. 

From the definition, any simple test configuration is a fibration over the disc. Each 

fiber is smooth because n : M —• D is submersion evervwhere. 

Let M be a simple test configuration. We solve Q + iddcf) n+l = 0 on M. Since 

7T : M —> D is submersion everywhere, so M is locally product space. To see this 

explicitly in the complex coordinates: First, choose a complex coordinate Mx[0,oo)x 

for U C M. The projection z = z Mx[0,oo)xS1 is holomorphic and dz 
dxi 

^ 0 by assump­

tion of submersion. Now one can easily cook up a tuple Z, X{. ? Xin. such that the 

transition between Z, Xix , 1 Xin and w<<< 5 %n is non-degenerate. {2^ Xix ,. ' Xin. 
is the product holomorphic coordinate we are looking for. 
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In the future, such product coordinate is denoted by (z,w) with z G D and w G Mz. 

Cover M with local product charts Ui. On Ui, suppose that the Ç} = iddpi- Write 

T*M/T*C over Ua by local coordinates {z,w,q) We glue these charts together, and 

define the transition between Mx[0,oo over Ua and v,x,p) over Up: 

20 

z = V, 

xw www ^^^ppp as defined in M. 

^^^^ ̂  
^ 

$$p 
^^^^ 

dwj 
+ 

^^^$ IP/3 - POL 
dwj ^^ 

One can verify these local charts (z,w,q) glue up to a complex manifold W —• .M. 

Define a form 6 on each fiber of W —• -D, 

211 e \Wt xw dqi A di¿;¿. 

Here 6 is well defined only on the fiber, so 0|w"t is a family of forms. 

The real part of © is a symplectic form on Wt. So Wt is a symplectic manifold and 

we can talk about Lagrangian sub-manifolds of Wt. 

Definition 5.1. — For a Lagrangian sub-manifold Lt, Lt is called LS-submanifold if 

0|z,t is non-degenerate. Lt is called LS-graph if it is LS-submanifold and also be a 

graph over Mt. 

By straightforward calculation, one can see: Locally, LS-graphs are of forms d(j) for 

some real potential <j> on Mt, and Q\Lt = dd(j). Our main result in this Section is: 

Theorem 5.2. — Let M be a simple test configuration. There is an associated manifold 

W M. such that: 

1. A smooth solution J> of (Q + idd<p] vn+l = 0,0 = 00 on dM. induces a family 

of holomorphic discs G : M x D -> M -> W factoring through the foliation 

on M, such that the image of G\ ̂ ^$p is a LS-graph in Wz —> Mz for all z and 
Mx[0,osqo ùù*:: is a totally real sub-manifold ofW. 

2. If a family of holomorphic discs G : MxD -> W respects the projection W —> D, 

i.e, TTOG: M x D - x + D w w is a projection to D. Also assume it satisfies the 

boundary condition G\ ::w^^ ̂̂  ̂ ^^$^^ for z G 3D, where AZĵ 0 is the lifting of Mz 

by metric Q + idd(j)qqo, then the image of G xww is a LS-submanifold in Wz for all 

z. Moreover, if assuminq these imaqes are LS-qraphs, then the family projects 

to a foliation of M and induces a smooth solution <b to (ii + iddcj) IN+l = 0 with 

(p = 0o on dM. 

Following Donaldson [14], we prove this theorem by discussion from both side of 

this correspondence in next two subsections. 
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5.2. One side of the Correspondence. — Now suppose there is a smooth so­

lution ó for fíi + iddó) \n+l — 0 on M, (j) = 4>o on dM, with Í2 + iddó positive on 
Mt. 

In local product coordinates [z,w] of M, write Q + iddó = iddi. Since iî + iddci) 

has rank n, it has a 1-complex dimension kernel. Let X = w< 
dz + 77A d 

w<< 
be in kernel 

of iddf, then 

22) 3 3 / 
9 

<9¿ 
+ sss^^ 

d 

xww 
k^m (Vafa0 + fzï) aw? (Va faz +^^^$w<< <ipp 

= 0. 

Thus, 

¡23; Mx[0,oo^^)x fz(3 
vxx 
cww^^ 

[24] fzz <<<w b^^ faz' 

A direct calculation shows 

(25) X,X] w< 
drf 

dz 
<< << 

drf 

dwa 

d 

dm? << 
dif 

dz 
<< 

m^ù drf 
cw<< 

d 

dwa 

= 0. 

This means that the kernel distribution is holomorphically parametrized by z G D. 

Therefore a smooth regular solution implies a foliation of M by holomorphic discs. 

The M can be lifted to a graph in W, using the form + iddcj). On local product 

charts Ui, £1 = iddpi, we can lift M to graph d(pi + 0) in each fiber. The lift is well 

defined globally due to the way we glue W. 

In [14], Donaldson showed in the lifting of M, the foliation is lifted up to a family 

of holomorphic discs in W. More importantly, these holomorphic discs take boundary 

value in a totally real sub-manifold A^0. The same technique can be extended to our 

case. 

Theorem 5.3. — For a simple test configuration, the smooth solution of the HCMA 

equation induces a foliation of holomorphic discs on M which can be lifted up to a 

family of holomorphic discs with in W. These discs have boundary in a totally real 

sub-manifold. 

Proof. — As above. • 

5.3. The other side of the correspondence. — It is reasonable to consider the 

reverse correspondence locally. We have the following theorem: 

Theorem 5.4. — Suppose G : DxU ^ W is a smooth map which respects the pro­
jection and holomorphic in D. Assume for all r G dD, U is mapped to be LS-graph 
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and this LS-graph family has a global potential <fo. Then for each r G D, G maps U 

to an immersed LS-submanifold in W. Moreover, if assuming these LS-submanifolds 

are LS-graphs (10^, then this family induces a smooth solution to the Monge-Ampère 

equation with boundary condition (j> = (fo­

in above theorem, U is an open set of real dimension 2n. G:DxU —> W is smooth 

and respects the projection. In another word, for TT : Ww<<ùD, TTOG is identity on 

D. G is holomorphic in D variable. For each r G dD, U is mapped to be a LS graph 

over MT and this LS-graph family have a global potential (fo. This just means these 

LS-graphs are lifting of M using ft + idd(j)Q on the boundary. 

Proof. — Consider G*6 on D x U. 6 is well defined on fibers Wt, so G*6 is well 
defined on fibers Ut'mDxU. We should view G*6 as a family of forms on U+. Denote 

real coordinates on U by qj, write G*e = <Tjk ~\~ÌSjk )dqjAdqk. It is straightforward to 

show vvn,;o^^^^ is holomorphic function over D: Let w<< be coordinates on D x U. Let 

v,x,p) be a local coordinates in W. The map G is V = z, X = x{ z,q ,p = p <p< ). G 

is holomorphic, so dx 
dz 

xww dp 
FIR = 0. Now Q\wt = dpi Adxi,G*@\ut xxw dpi dxi 

dqó dqk 
dqj Adqk, 

therefore d 
dz Jjk + iSjk ^^ d dpi dxi 

dz dqj dqk 
= 0. 

On the boundary r G dD, G maps U to LS-graphs. But 0 is purely imaginary on 

LS-graphs. Thus, G*Q is also purely imaginary. A holomorphic function on the disc 

with pure imaginary value on 3D must be constant, so Mx[0)xS1. must be constant 

on every disc in DxU. This also implies the Jacobi of the map G( FR, •) : U WT is 

non-degenerate, since the pull back image G*0 is non-degenerate. It follows that the 

image G(r. U) is an immersed LS-submanifold. 

Now assume G(TM) is actually a LS-graph, i.e, the projection TT o Gir. -) is dif-

feomorphism. Following [10], we find a global potential for this family of LS-graphs 

(modulo the local potential of the background metric). 

First, consider the case when U is a very small open ball. Let Da be a small 

open set in D. Without loss of generality, G maps DaxU into a single chart in W. 

Since they are LS-graphs, one can solve a real potential (pa for this family in the local 

product chart by d(pa 
dxi = Pi- (fa is unique up to a smooth function in z G D. 

Choose a finite covering Da c D, and make U so small such that DaxU all fit 
in single charts in W. This can be done if one fixes a finite chart covering of W —> D 

in first place and then replace U by small subset if necessary. Solve the potential wn 

respectively in each DaxU, and the geometry of >V implies 01 Vet-Pa] = d - Pß 
on every fiber Mt of M. So on each fiber, the difference Va - Pa) po - Pß] I must 

be constant. It follows that Va - Pa differ with (pp — p/3 by a smooth real function of 

(10) Thanks to Song Sun, we noticed that the interior LS graphs are exact because the boundary LS 
graphs are exact. For definition of exact LS graphs, cf, Donaldson [14]. 
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z on intersection. The fact Hx{p,S) = 0, (S is the sheaf of C°° functions) implies 

one can adjust cpa by function of z such that Wot - Pa = Pß - Pß-Therefore they give 

the global potential <t> = Vot- Poe- <t> is unique up to a function of 2 on D. 

The next step is to make 0 satisfy the boundary condition mMx[0,oo Let X = 
d 
dz + ww d_ 

p^ùm be the tangential vector of the foliation noG : D xU —> M. There exists 

a 1-1 form Çt' on M. such that ix^' = 0 and its restriction to Mt is idd(fa Mx[0,oo)xS 

Locally, Çl' = i\ d2<p 
r. 

>dwaWB 

dwadwß -h (adwadz + (@dWßdz-\- hdzdz , where ̂ ^b c^^bb cwwmp^^ 

and ft <<nbbx 
<Pa0-

Let ^^$<< be coordinates on DxU, q as real coordinates. {ziw/ are local coordinates 

on M. We have rf xx dwß 
x 

. Let p be local potential for background metric Q, and 

<Z> = 0 + Ó. The disc family in W is holomorphic implies oo 0(F 
dv dwa 

= o, therefore 

wwcc 0 = 
9 eta 

dv dwa 
xww 

9 V 

dwadz 
+ 

d2y 

dwaüWß 
rf 

So CQ x d2v 
xxqq<^ùù FI' = z( ùùùp^^ ft — (Pzz)dzdz) ww<< dd ^w<^mmù + (ft - P** - (ßzz)dzdz) << 

O + ¿990 + z(ft — — ózz)dzdz. 

On the other hand, Q,' is a closed form. To see this: Let i : M+ —» M be the 

embedding of fibers, then i*dQ! = di <<ppo = 0. It suffices to show ixdQ,1 = 0 since the 

restriction of dVt' to the fiber is zero already. Now we show ixdQ,' Mx^^$<<[0,oo)xS1ww. 

Lxttf = 0. Notice that iif is determined by O k , and the condition ix^f = 0. 

If we can show 0|x,t and X are preserved by X-flow, then immediately we obtain 

LxQ' = 0 by uniqueness. The fact 0|x,t is preserved follows G*0 is constant along 

leaves and the fact X is preserved follows \X, X] = 0. So fi' is closed form on M, and 
ww (ft - Pzz - 4>zz. dzdz = — — iddcf) is closed. This implies ft - Pzz- <t>zz is just a 

function of z. Also, since VL' and f2 and 0 are globally defined, so Mx[0,oo)(j)Zz)<<dzdz< 

is defined globally and doesn't depend on the local representation. Therefore, the 

function ft - Pzz - fizz-is globally defined, since dzdz is defined on the whole disc. 

fNotice that the z stands for a coordinate in a local product chart, so in different 

product charts, 6ZZ is not the same though the function 0 is the same.) 

Now let H = ft - pzz - <j)zz. H is defined globally on ir o G{D x U , but solely 

depends on z G D. One can solve the following equation on disc: 

n,nn ùù^^iii = H 

with 0' = 00 - 0 on the dD. Now replace 0 by 0 + 0', then one get Ü' = n + iddcj) and 

0 = 0o on dD. (Note that in different local charts. (z,w] and v,x) in A4, where z, v 

project down to the same disc variable. dzzó' = dVy(j)' \ since 0' is constant fiber-wise.) 

This finishes the proof of finding potential 0 if U is sufficiently small. 
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Now for arbitrary £/, one can always decompose it into small open balls Ui which 

admit potential fa. Let p be a local potential for the 0 on M . Then on the leaf, we 

have 

Lemma 5.5. — We have :A(p + (j>i) = XX(p + 0 0 = 0 . 

Proof. — Let / = p +ift + w<< 

28) xxf = xtf)f* + ddf(x,x) 

= 0. • 

This implies AI [<t>i-<t>j = 0 on the leaf. Now with the extra condition 4>i = <t>j = 00 

on the dD, it implies 4>% = <i>3 on the intersection. The global potential is immediately 

obtained from this. • 

Remark 5.6. — The above correspondence is constructed only on simple test config­

urations. In these configurations, central fiber are smooth. However, we believe the 

techniques should work for some mild singularities in the central fiber. 

Another point is that the correspondence has nothing to do with the C* action. 

6. Openness of super regular solution 

In simple test configurations, we can study regularity of the solution <j> by the 

associated holomorphic disc family in W -> MS11^ Donaldson's definition [14] of 

super regular discs and the linearized model could be extended to our case as well. In 

detail, 

Definition 6.1. — In the moduli map G : D x U -* W, a disc G <<w;, is called super 

regular at z G D if d( 7ToGz[ x ' TU —» TM is isomorphism. A disc G(D,x) is called 

super regular if it is super regular at every z G D. 

Definition 6.2. — A geodesic ray induced from a simple test configuration is called 

super regular if the disc family in W is super regular. (12\ 

For a disc Gx = G( <<<^^ in the moduli map G : D x U -> W, one can consider 

the holomorphic perturbation of Gx that satisfies the totally real boundary condition 

the boundary is in the A<A, i.e., the lifting; of M+,t G dD by + iddcj)) ). Also, we 

normalize the perturbation such that it preserves the projection property. In another 
word, TTOG : DxU D is identity on D variable. Following Donaldson [14], the 
linearized problem is 

(n) However, the existence so far only requires smoothness of total space. 
(12) I.e.: the solution is smooth regular to the Monge-Ampère equation on the test configuration M. 
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Theorem 6.3. — In the moduli map G : D xU -> W corresponding to a smooth 

solution 6, the linearized perturbation equation for a disc G(;X is 

'291 v wwx Su H- Au on dD, 

30 du xxx 0, 

31 dv lùù 0, 

where S and A are maps from dD to complex symmetric matrices and positive her­

mitian matrices respectively; while u,v are Cn valued functions on D. 

Proof. — The idea is the same to Donaldson [14]: Trivialize the exact sequence 

0-> (TT O GX)*(T*M) - G*(TW) - (TT O GX)*(TM) - 0. • 

In [141, it is showed that the problem is Predholm and the index is 2n. Conse­

quently, if the disc is regular in Fredholm sense, then G : D x U W is indeed an 

open set in the universal moduli space. 

Regarding on the criterion of regularity for a disc, a mild modification of Donald­

son's argument leads to the following: 

Theorem 6.4. — If a disc is super regular at any point p G dD, then the disc is regular. 

Proof. — We look at the linearized model since the general case can be reduced to 

this simple model. 

First, define Ct\ xwww vc u\v2 c u\vx This is a symplectic form for s ̂ ^ ^^^xxw e C2n 

In particular, for Si,S2 £ kerds^, ^ si(r),s2(r is real and independent of r. To 

see this, just notice that ¿0(51,52) is holomorphic function and on dD, ift(si,S2) = 

i ww Mx[0,oo)xS1. w u\ Sui + Aui = i{ ww Au2 ^^ u\ Aui is real. 

The super regularity at p G dD means there are 2n elements Sj = {Uj,Vj G ker ds,A 

such that Uj (p) form a i2-basis for Cn. By continuity, it implies uj (r) form a i^-basis 

for Cn in a neighborhood r G Up. 

We claim 5^(r) are generically C-linearly independent. It is equivalent to claim 
detf Sj\l<j<2n has discrete zeros. Notice det is holomorphic, so the zeros are either 

discrete or the whole disc. Suppose it is the whole disc for contradiction. In the 

neighborhood Up, assume the maximal rank of Sj\l<j<2n for r G Up is achieved at p 

without loss of generality, and the rank is k < 2n. Assume 5i,52, ...,Sk form a basis 

for span{si) at p, then near w<pmmmm AiSf, 1 < i < k. Xi is holomorphic, since it 

satisfies \is\sj ^v<< Òk+V Sj,l hi k. In another word, it is obtained by solving the 

holomorphic matrix equation A [SÌSJ. ^^ sk-uàà)=^^ Now one finds holomorphic functions 

A i , A f e , Afc+i — —1, Afc-I_2 — 0, ...,A2n — 0 near p, such that IKsi = 0. On the 

boundary dD near » , 

f32 0 = ' (TT O GX)*(T*M) - G*(TW) - (TT O GX)*(TM) - 0w<<<<. 
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So Y XjUj = 0 and we also have 7^ XjUj = 0, so 

(33) E 9 ( A J ) « J = 0 = I:»(A;-)uJ-. 

Since Uj form i?-basis near p, one has Xj = 0 on dD near p, which contradicts the 
choice of A,-. Therefore, the det Sj\l<j<2n<< has discrete zero. 

Now suppose the ker ds a has dimension strictly greater than 2n. Then one can 
choose sn not in span] Si ,1 < i < 2n. Now in the 2n + 1 dimensional vector 
space Spanish, iCt as a skew form, must be singular. So there is a vector 5 G 
span [s0, ...,s2n) such that iQ,(s,span <<nn,;!^^^^ = 0. Notice we proved «1, S2n 
form a C-basis generically, this implies 5 = 0 generically on D. Thus it implies 5 = 0, 
contradiction. • 

In particular, since the holomorphic discs associated to smooth solution q> are 
automatically super regular, above theorem proves that they are all regular and the 
moduli space M m the map G ' . D x M ^ W w < < is a compact connected component of 
the universal moduli space. It readily implies the following theorem. 

Theorem 6.5. — Openness: If the equation [n + idd(t) Vn+l = 0, <j) = 0o on dM admits 
a smooth solution 6 with Q + idd6 > 0 on fibers, then for any small perturbation 
6<t>o G C°°(dM), the new boundary value problem still has smooth solution 6' which 
is close to 4> in C°°{M) and (il + iddtf] > 0 on fibers. 

Proof. — We refer the proof to [14], which essentially asserts that compact families 
of regular normalized discs are stable under small perturbations. • 

7. Geodesic ray from Toric degenerations 

7.1. Basics of Toric degeneration. — For toric varieties, there has been extensive 
literature in extremal metrics. Abreu [1] initiated to study complex geometry on 
toric variety by symplectic coordinates. Afterwards, there has been much work in 
extremal metrics on toric variety, c.f. Donaldson [15], Zhou-Zhu [37], Gabor [32]. 
For completeness, we describe Donaldson's construction of Toric degenerations [15] 
in the following: 

Let P C Rn be a polytope associated to a toric variety M. For simplicity, let us 
assume P is Delzant. Let f be a rational piecewise linear function on M. One can 
associate it with a polytope P = { (x ,y ) :xeP,0<<<y<K-w<f}<<c ÍT+1, K = max/ . 
By re-scaling P, we can assume P is integral. In other words, all vertices of P are 
integral points. 

It is a classical fact that P as above induces a toric variety M with a positive line 
bundle C. Each integral point p in P corresponds to a section sv of C —> M. The 
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correspondence is compatible with addition of integral points in M and multiplication 

of sections in C. In other words, if p\ + P2 = P3xxp^^^^then sPlsP2 = sP3sP4. 
One can view Ad as a sub-variety in PN by Kodaira embedding: x G M,x —• 

«i(aO : s2(a:) : ... : sAx)... i runs through the integral points of P. So M C PN is 

defined by homogeneous equations F(Xi) = 0. These equations are induced by the 

relations of Si, or equivalently, by the relations of the integral points in P. 

There is a map TT : M ^^$^^^P1, defined by (TT O GX)*(T*M) - G*(TW) - (TX<<<< 

t i , t n , tn+i), o — ( t i , £ n , tn+i + 1) G P. Also, there is a natural C* action on 

JM from the torus rpn-+ 1 << w<< x C*. It transforms section sp toift + Xn+!t is the height 

of p. i.e, p = (¿1 ,£n , ). So the C* action can be lifted to TT : A4 —> P1 by defining 

t o fx : 2/1 = [a; : £d on P1 < 
The toric degeneration is just 

construction in detail. 

M — 7T—1 (fl : 01) . The following example shows the 

Example. — Let P = [0,2] G R be the base polytope. / = max{0, x — 1) is the 

piece wise linear function on P. P = :[0,1] x [0,11) M{1 < x < 2,x + y < 2} . Denote 

the integral points X = fu, 0), Y = (1,0), Z = (2,0), U = (0,1), V = (1,1). Then the 

toric degenerations is the sub-variety in P4 defined by 

(34] XZ = Y2,XV = UY 

The C* action on M. is t : X : Y : Z : U : V] [X : F : Z : tU : tV] I. Notice that in 

order to get nontrivial test configuration, we only consider the part ww<<^^^^^^ [1:0]) . 

In another word, we consider the asvmototic direction when t —• oo on C*. 

The central fiber is defined by [Y:V] = [0: 1]. . It is the toric variety associated 

to the segment y=l,x€ [0,1 and x G [l,2],x + y = 2. Geometrically, the central 

fiber is the union of two P1 which intersect at one point. Notice that the ambient 

space M is smooth here, so the induced geodesic ray has ambient bounded geometry 

automatically. 

7.2. Explicit calculation of the C1,1 geodesic ray. — We calculate the induced 

geodesic ray of previous example. The idea is to first calculate the geodesic segment 

connecting the fiber at 1 : 1] to the fiber at [1 : e%t G Rx S1. Then, taking the 

limit of these segments when t —> oo, we obtain a geodesic ray. 

Equipped with the natural background metric of P4, the fiber at w = [1 : é) G P1 

has metric potential l 
2 logi XI2 + IYI2 + IZI2 + I!7I2 + IVI2Y . Pulling this metric to the 

fixed fiber M at w = [1 : 1] G P1 , the potential becomes 

35 
1 

2 
log (IXI2 + IFI2 + \Z\2 + e2t\U\2 + e2t\V\2). 
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Since the fiber M is at 

potential is 

[1 : 1], so Y = V,X = U. After proper normalization, the 

(36) 
1 

2 
log (Ixf + iyf + ^ + i)-1!^2). 

Now we calculate the geodesic segment connecting these two metrics. 

Choose \A, B] as standard P1 coordinate on M . Thus, , X — B2, Y = AB, Z = A2. 

Using C* = RxS1 coordinate of P1, A = ey.B = l,yeRxS1. The Kahler potential 

is 

;37) w<<<< 
l 

2 
log' (1 + e2y + e4y (e2t + 1) <bbn ww 

One can verify that the Legendre transform of fto,t maps R to (0,2) for each fixed t. 

Notice that in polytope representation, the geodesic is just a straight line of convex 

functions. Now by straightforward calculation, one just computes the two end points 

associated to the two metrics in polytope representation and then take the linear 

interpolation. Passing to limit, one gets the C1,1 ray in polytope representation 

(38) ut = UQ + £max(0, x — 1) , £ e [ 0 , oo). 

In the standard picture of M x [0, oo), we transform the ut by Legendre transform 

and get the potential 

[39 ht (y) w<< 

kk^$^^ when y loe2 
4 ' 

h0\ log 2 
4 + v-

LNO-9 
4 5 when log 2 

4 y 
log 2 

4 
w,,;^ùù 

HO1 [y-t ^xww when log 2 
4 + t <y-

One can verify that ht—ho,t is uniformly bounded. This confirms that the geometric 

ray is parallel to the algebraic ray. 

It is natural to extend this observation to general toric degenerations. 

Theorem 7.1. — Let M be a toric degeneration with extremal piece wise linear func­

tion f. Suppose the ambient polytope P is integral and the base P is delzant. Then 

the induced geodesic ray is u = UQ -\- tf in polytope representation. 

Proof. — Similar to the previous set up, we calculate the geodesic segment connecting 

the fiber at [1,1] to the fiber at [1, e*]. Then we pass the directions of these geodesic 

segments to the limit as t —• oo. 

Under the (C*)n coordinates of M = MM.II, the projective coordinates can be 

represented by ... : exp 1 
XiVi) . Let Xi,Xn, Xn_|_i) = p be coordinates of 

those integral points in P. Therefore, after proper normalization, the metric potential 

of the algebraic ray is: 

40 xww ookk 
1 
w<< log 

peP 

exp 21 —Kt + Xn+\t + 
n 

1 
XiVi) 
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K = m a x / , p = ( X i , . . . , X n + i ) G P are integral points. 

Let x = ( X i , x n e P. Assume the extremal function / = ckxk + d near x. 

i.e, we consider x in interior of a single definition domain of / . Under the Legendre 

transform of ho t ? the pre-image y of x satisfies 

(41) 
w<< <<j exp2( - i f t + Xn+!t + 1 

xww ww iVi] 
— Xj. 

oo^$<< exp 2 (TT O GX)*(T*M) 
ww ww I2/T 

In particular, we denote the pre-image of x at time t = 0 by 

By the Legendre transform, the potential ut in polytope representation is: 

(42) ut Xj = x y - ft0,t-

So, the limit direction is: 

(43) lim 
ut - u0 

t <<< lim 
£ — • 0 0 

]xk(Vk ~ Vk) ww 
1 
2 log ww exp 2 ift + Xn+!t oo^ù 

ivEP 
exp 2 p 

4\ ^xx^ 
t 

If we can prove lim Vk~Vk 

t 
= and lim 

ww 
1 
2 

log www E X P 2 - K T + X N X X + 1 H 
N 

/ 1 xw<< 
jpEP 

E X P 2i 
> N 

/ 1 <<xxx 
xx = d, 

then the theorem is proved. Now, we prove that the second is an implication of the 

first. Assuming lim Vk-Vk 

t 
= c*., i.e, yk - Vk = ckt + ekt where ek —> 0 as t —> 0 0 . We 

have the following 

<ccxx< - Kt + xn+1t + 
n 

1 

w<< << ift + X<<wn+!t 
n 

1 

ift + Xn+!t xw 

45) + - d + 

n 

1 

£{Xi t + 

n 

1 

wwlm^ù 
ift + Xn+ 

For integral points p in the area where / = ckxk + d, the xww<^ù = - K + X n + i + 

<< << <<c + d Xn+i - h (X < 0, where h( [X] = h X\,..., Xn is the height of P 

over the base point (Xi,..., Xn i.e, / i ( X ) = K - / ( X ) . For integral points p not 

in the area where / = ckxk + d, by definition of / = maxi ift + Xn+!t fi are linear 

functions), it is clear that L(p) < — S for a fixed J > 0 Therefore, 

(461 

peP 

exp 2 —Kt + Xn_|_i£ -f-

n 

1 

ww<< 

w<<< exp I - 2 d t 

\peA 

exp 2 —Jpt] exp 2 

n 

1 

<uyyy + 
peB 

exp 2 

n 

1 

yyy^^ 

B contains integral points p in P such that their projection X i , X n are in the 

area where / = ckxk + d and Xn+i = h(X). A contains the rest integral points in P 

but not in B. The condition P is integral guarantees that B is not empty. 
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Now we can calculate 

xww l 
2 

log xw expw 2 [ — Kt-\-Xn+\t-\-̂^^^ 
1 

^^j 

ww exp 2 n 
a 

xiVi: 
;48) lim 

t—>oo ww 

1 
2 

log A6XP2 '—5pt) exp (2 XiVi) + ^^ exp [2 1 xww 

(49) ^^ d 4- lim 
^<<^jj 

*^* exp2( 1 ww^^ 
^^ 

50) ^^^^ d. 

So it remains to prove lim^oo Vk-Vk 
t 

<<vcc 
Let y'k = yk - ckt, our purpose next is to prove y' is uniformly bounded for t 

sufficiently large. The equation 41 can be rewritten as: 

'51 Xk = ww 
vvn,, exp [2] www^^ + xxww exp (2 ww^mm exp I xxwaa 

^^ 9xp! 2 ^^^^^^ + A exp >(2 X ^ - ) exp(-Äpt) 

Define a map (f) : y' —> x by xk = ww Xkexp I 2 aaii^^ 
•. Let Pf C P be the polytope 

B exp 2 xxww 
where / = ckxk + d. We need the following lemma: 

Lemma 7.2. — (j) : Rn P' is a diffeomorphism from Rn to the interior of P' 

Proof. — The lemma is a special case of a more general fact: Let S = JPl,-,Pmj be 

a set of arbitrary points in Rn. Pi = XL kkm^^ ). If the convex hull P spanned by S 

has dimension n, then the map: 

(52; 6: yi,-,ysddn, dd \ X \ , d x n ) d \,xk = ,s 
ffdd exp 2 x<< 

/5 exp -(2: <oo^$$ 

is a diffeomorphism from Rn to the interior of P. 

Notice that B projects to be a grid G on P'. G contains all the vertices of Pf due 

to the integral condition of P. P' is convex since / is convex. So P' is the convex 

hull spanned by G. Therefore, the above fact applies exactly. • 

Now, using this lemma, we can prove limt_,oo Vk-Vk 
t 

= ck: Choose a small closed 

ball Bp C P' near p = X\,Xnddj . The pre-image è 1(BV) is bounded closed set in 

Rn. Now consider the family of maps <j>t : y' —* x defined by equation 51. Notice 

that each <j>t is a diffeomorphism since equation 51 is just another form of equation 

41, which defines the standard identification between Rn and P. 

Since (j)~1(Bp) is bounded, it is straightforward from the equation 51 that: For any 

e > 0, there exists T such that \Mv) - 4<<>{y) < e for y G ó - l Bp) and t > T. Thus 

the image </>t{ uu^^ùm <<< ) is a ball close to Bp and contains p for t sufficiently large. 

So above argument proves: For any Bp contains p and lies in interior of P', there 

exists T > 0 such that y' = <j> -1 
t 

dd eò-H Bp) for t > T. Since 6 - l [Bp) is bounded, 

53̂  lim 
£—•00 

Vk - yk 
t 

$ùùùù + lim 
£—•00 

Vk -Vk 

y 
= ck. • 
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These geodesic rays show some bad regularity. In general, they behave like the 
following: First, they break the manifold M into several pieces. As time evolves, they 
will tear these pieces apart, but keep metrics on each part. The space between the 
teared parts has degenerated metrics and zero volume. In particular, one can verify 
that the 2nd derivative of these rays are piece wise smooth function on fibers. At the 
broken points, these 2nd derivatives have jumps, so there is no global C3 bound for 
the relative geodesic rav potential. 
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