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SLOPE FILTRATIONS FOR R E L A T I V E FROBENIUS 

by 

Kiran S. Kedlaya 

Abstract. — The slope filtration theorem gives a partial analogue of the eigenspace 
decomposition of a linear transformation, for a Frobenius-semilinear endomorphism of 
a finite free module over the Robba ring (the ring of germs of rigid analytic functions 
on an unspecified open annulus of outer radius 1) over a discretely valued field. In 
this paper, we give a third-generation proof of this theorem, which both introduces 
some new simplifications (particularly the use of faithfully flat descent, to recover 
the theorem from a classification theorem of Dieudonné-Manin type) and extends the 
result to allow an arbitrary action on coefficients (previously the action on coefficients 
had to itself be a lift of an absolute Probenius). This extension is relevant to a study 
of (0, r)-modules associated to families of p-adic Galois representations, as initiated 
by Berger and Colmez. 

Résumé (Filtrations de pentes pour le Frobenius relatif). — Le théorème de filtration par 
les pentes donne un analogue partiel de la décomposition en espaces propres d'une 
transformation linéaire, pour un endomorphisme semilinéaire (pour Frobenius) d'un 
module libre de type fini sur l'anneau de Robba (l'anneau des germes de fonctions 
analytiques rigides sur une couronne ouverte non précisée de rayon externe 1) sur un 
corps à valuation discrète. Dans cet article, nous donnons une preuve de troisième 
génération de ce théorème, qui introduit quelques simplifications nouvelles (en par­
ticulier, l'emploi de la descente fidèlement plate, pour obtenir le théorème à partir 
d'un théorème de classification de type Dieudonné-Manin). Nous étendons aussi le 
résultat pour permettre une action arbitraire sur les coefficients (auparavant, cette 
action devait être un relèvement d'un Frobenius absolu). Cette extension est utile 
pour l'étude des (<f>, r)-modules associés à des familles de représentations galoisiennes 
p-adiques; Berger et Colmez ont commencé cette étude. 
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260 KIRAN S. KEDLAYA 

Introduction 

This paper describes a third-generation proof of the slope filtration theorem for 
Frobenius modules over the Robba ring (Theorem 1.7.1 herein). This proof is more 
expedient than what one finds in our original paper [21] or its sequel [22]. In addition, 
we generalize the slope filtration theorem by allowing for ring endomorphisms which 
do not act as Frobenius lifts on scalars, only on the series variable. This is intended 
as a prelude to a theory of Frobenius modules in families; we will not develop such 
a theory here, but see the next section for reasons one might want to do so, from 
the realm of p-adic Hodge theory. (Note that [22] itself generalizes [21] in a different 
direction, replacing the power series rings by somewhat more general objects; we do 
not treat that generalization here.) 

For an alternate perspective on this theorem and some related results in p-adic 
differential equations and p-adic Hodge theory, we also recommend Colmez's Bourbaki 
notes [11]. 

0.1. Context. — The slope filtration theorem [21, Theorem 6.10] (also exposed 
in [22]) gives a partial classification of Frobenius-semilinear transformations on finite 
free modules over the Robba ring (a certain ring of univariate formal Laurent series 
with p-adic coefficients). It is loosely analogous to the eigenspace decomposition of a 
linear transformation in ordinary linear algebra; it is also closely related to Manin's 
classification of rational Dieudonne modules. 

The slope filtration theorem was originally introduced in the context of Berthelot's 
rigid cohomology, a p-adic Weil cohomology for varieties in characteristic p. There, 
one obtains a analogue of the ^-adic local monodromy theorem, originally conjectured 
by Crew [14]; this analogue can be used to establish various structural results such 
as finiteness of cohomology [23] and purity in the sense of Deligne [24]. 

The effect of the slope filtration theorem on p-adic Hodge theory has perhaps been 
even more acute: it enables one to study p-adic Galois representations via their as­
sociated (</>, r)-modules over the Robba ring. This point of view has been put forth 
chiefly by Berger with striking consequences: he has proved Fontaine's conjecture that 
de Rham representations are potentially semistable [4], and given an alternate proof 
of the Colmez-Fontaine theorem on admissibility of filtered (0, iV)-modules [5]. (A 
useful variant of the latter argument has been given by Kisin [27].) More recently 
Colmez [13] used this viewpoint to define a class of trianguline representations of a 
p-adic Galois group; these play an important role in the p-adic local Langlands cor­
respondence for GL,2(QP) [12]. The trianguline representations are also important in 
the theory of p-adic modular forms, as most local Galois representations attached to 
overconvergent p-adic modular forms (namely, those of noncritical slope) are triangu­
line. The p-adic local Langlands correspondence in turn has touched off a flurry of 
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activity, which this introduction is not the right place to summarize; we merely note 
the resolution of Serre's conjecture by Khare-Wintenberger [25, 26], and progress on 
the Fontaine-Mazur conjecture by Kisin [28] and Emerton (in preparation). 

In both rigid cohomology and p-adic Hodge theory, one is led to study Frobenius 
modules in families, i.e., over the Robba ring with coefficients not in a p-adic field but 
in, say, an affinoid algebra. In either situation, the first step to studying Frobenius 
modules in families is to pass from a family to a generic point, which on rings amounts 
to replacing an integral affinoid algebra with a complete field containing it. In the 
rigid cohomology version of this argument, the resulting field is itself acted on by 
Frobenius, so the slope filtration theorem as presented in [21, 22] is immediately 
applicable; indeed, the key technique in [23] is to extend the application of the local 
monodromy theorem on the generic point to a large enough subspace of the base space. 
However, in the p-adic Hodge theory version, one might like to allow "Frobenius" to 
act in some fashion on the base of the family other than simply a lift of the p-power 
map; in fact, one natural situation is where the base is not moved at all. 

One goal of this paper, and in fact the principal reason for its existence, is to gen­
eralize the slope filtration theorem to modules over the Robba ring with an action of 
a "relative Frobenius", which may do whatever one wishes to coefficients as long as 
it acts like a Frobenius lift on the series parameter. We hope this will lead to some 
study of p-adic Hodge theory in families; some of the corresponding analysis in equal 
characteristics has been initiated by Hartl [17], using an equal-characteristic analogue 
of the slope filtration theorem based on the work of Hartl and Pink [18]. In mixed 
characteristics, Hartl [16] has set up part of a corresponding theory, which addresses a 
conjecture of Rapoport and Zink [40] from their work on period spaces for p-divisible 
groups; results are presently quite fragmentary, but a good theory of ((/>, r)-modules 
in families may help. Another potential application would be to analysis of the lo­
cal geometry of the Coleman-Mazur eigencurve [10], which parametrizes the Galois 
representations attached to certain p-adic modular forms, or of higher-dimensional 
"eigenvarieties" associated to automorphic representations on groups besides GL2. 
An initial step in this direction has already been taken by Bellai'che-Chenevier [3], 
who study deformations of trianguline representations; however, this involves only 
a zero-dimensional base, so they can already apply the usual slope filtration the­
ory after a restriction of scalars. For other questions, e.g., properness, one would 
want to consider positive-dimensional bases like a punctured disc. In this direction, 
Berger and Colmez have introduced a theory of etale ((/>, T)-modules associated to 
p-adic Galois representations in families [6], which relativizes some of the results of 
Cherbonnier-Colmez [9] and Berger [5] for a single p-adic Galois representation. 
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262 KIRAN S. KEDLAYA 

0.2. About the results. — For the sake of introduction, we give here a very brief 
description of what the original slope filtration theorem says, how the main result of 
this paper extends it, and what novelties in the argument are introduced in this paper. 
Start with a complete discretely valued field K of mixed characteristics (0,p). Let St 
be the ring of formal Laurent series Y^nezcnuTl convergent on some annulus with outer 
radius 1 (but whose inner radius may depend on which series is being considered). 
Let (j>K • K —* K be an endomorphism lifting the absolute g-power Probenius on the 
residue field of for some power q of p, and define a map <\>: St —> S by the formula 
(/>(52cnun) = ]C ^K"(c™)0(M)n» where (j)(u) — uq has all coefficients of norm less than 
1. Let M be a finite free ^-module equipped with a 0-semilinear map F : M —> M 
which takes any basis of M to another basis of M (it is enough to check for a single 
basis). Then [21, Theorem 6.10] asserts that M admits an exhaustive filtration whose 
successive quotients are each pure of some slope (i.e., some power of F times some 
scalar acts on some basis via an invertible matrix over the subring of St of series with 
integral coefficients), and the slopes increase as you go up the filtration; moreover, 
those requirements uniquely characterize the filtration. 

As noted earlier, the slope filtration should be thought of as analogous to what one 
might get from a linear transformation over K by grouping eigenspaces, interpreting 
the slope of an eigenspace as the valuation of its eigenvalue. One can in fact deduce 
an analogous such result for semilinear transformations over K, which also follows 
from the Dieudonne-Manin classification theorem. One might then expect that the 
slope filtration can be generalized so as to allow any isometric action on K, not just 
a Probenius lift; that is what is established in this paper (Theorem 1.7.1). 

As promised earlier in this introduction, one happy side effect of this generalization 
is the introduction of some technical simplifications. We give a development of the 
theory of slopes which does not depend on already having established the Dieudonne-
Manin-style classification; this follows up on a suggestion made in [22]. We give a 
much simplified version of the descent argument that deduces the filtration theorem 
from the DM classification, based on the idea of replacing the Galois descent used pre­
viously with faithfully flat descent; this avoids the use of comparison between generic 
and special Newton polygons, and of some intricate approximation arguments. (In 
particular, there is no longer any need to deal with finite extensions of the Robba ring, 
which allows for some notational and expository simplifications.) That substitution 
creates some flexibility in what we may take as the "extended Robba ring" for the DM 
classification; here we use a ring made from generalized power series, some of whose 
properties are a bit more transparent than for the corresponding "big rings" in [21] 
and [22]. 
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0.3. Structure of the paper. — The structure of this paper is a bit unusual, as we 
have attempted to make the paper more friendly to the novice reader by fronting some 
of the key assertions and pushing back more technical aspects. (This assertion applies 
both to the paper as a whole, and to Sections 2 and 3 individually.) The consequence 
is that the logical structure is a bit loopy: results are stated, and sometimes used, 
before having been proved. However, we hope that it is not too hard to see that there 
are indeed no vicious circles in the reasoning. 

In Section 1, we introduce the Robba ring, the category of 0-modules, the notions 
of degree and slope, the subcategories of pure ^-modules of various slopes, and the 
statement of the filtration theorem. 

In Section 2, we introduce an extended Robba ring (whose elements are modeled 
on Hahn-Mal'cev-Neumann generalized power series rather than ordinary power se­
ries), state a classification theorem for 0-modules over the extended Robba ring, then 
perform the calculations required to prove this theorem. 

In Section 3, we deduce the slope filtration theorem from the classification theorem 
over the extended Robba ring. The key tool here is an invocation of faithfully flat 
descent for modules. 

Acknowledgments. — Thanks to Laurent Berger for the original suggestion to con­
sider relative Frobenius and for subsequent discussions, to Lucia di Vizio for providing 
the reference to Praagman's work, and to Peter Schneider for additional comments. 

1. Statement of the filtration theorem 

1.1. The Robba ring 

Definition 1.1.1. — Let K be a field complete for a discrete valuation, with residue 
field k; let OK denote the valuation subring of K and let denote the maximal ideal 
of Ox. (We need not make any restriction on the characteristics of K, k.) Write | • | for 
some fixed norm corresponding to the valuation (the normalization does not matter). 
For r > 0, let &r be the ring of rigid analytic functions on the annulus e~r < \t\ < 1 
(these are just Laurent series in the variable t convergent on this region), and let & 
be the union of the &r. The ring S% is called the Robba ring over K. It follows from 
the work of Lazard [29] that & is a Bezout domain, that is, an integral domain in 
which every finitely generated ideal is principal. 

Remark 1.1.2. — Any Bezout domain R enjoys a number of nice properties gener­
alizing properties of principal ideal domains, including the following. Some of these 
are actually properties of Prüfer domains, in which every finitely generated ideal is 
projective; these generalize Dedekind domains to the non-noetherian setting. 
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- Any finite locally free i2-module is free [21, Proposition 2.5]. 

- Any torsion-free .R-module is flat; this holds for any Prufer domain [8, VII 

Proposition 4.2]. 

— Any finitely presented projective -R-module is free [14, Proposition 4.8]. 

— If M is a finite free i2-module and N is a submodule of M which is saturated, i.e., 

N = Mn(N<S>RFraci?), then N and M/N are both free [14, Proposition 4.8], 

[21, Lemma 2.4]. 

Definition 1.1.3. — Let ^int be the subring of & consisting of series with coefficients 

in OK; this ring is a discrete valuation ring with residue field &((£)), which is not 

complete but is henselian [21, Lemma 3.9]. Let &hd be the subring of g% consisting 

of series with bounded coefficients; it is the fraction field of ^mt . 

Remark 1.1.4. — Note that for i G ^ , one has x € ^int if and only if there exists an 

integer n such that the function tnx is bounded by 1 on some annulus e~r < \t\ < 1. 

Remark 1.1.5. — Lazard's work [29] includes a theory of Newton polygons for ele­

ments of using which one can read off numerous structural properties. One key 

example is that the units in & are precisely the nonzero elements of ^bd [21, Corol­

lary 3.23]. 

Remark 1.1.6. — One can also define the Robba ring even if the valuation on K is 

not discrete, but its properties are very different. For instance, ^bd is no longer the 

fraction field of ^mt . This makes even the formulation of a slope theory over such K, 

let alone any proofs, somewhat more delicate than the approach we take here. 

1.2. Frobenius lifts on the Robba ring 

Definition 1.2.1. — Fix an integer q > 1. (To see why we forbid q = 1, see Re­

mark 1.7.9.) A relative (q-power) Frobenius lift on the Robba ring is a homomor-

phism <j> : —> 3? of the form J2i cit1 i-* Y^i ^K^^U1, where (J>K is an isometric field 

endomorphism of K and u G ̂ int is such that u — tq is in the maximal ideal of Mint. 

If k has characteristic p > 0 and q is a power of p, we define an absolute (q-power) 

Frobenius lift as a relative Frobenius lift in which (f>K is itself a g-power Frobenius lift. 

Remark 1.2.2. — The treatments in [21, 22] only allow absolute Frobenius lifts, and 

the approaches do not carry over easily to the general case because of the use of Galois 

descent at some key moments. See the introduction for discussion of why one needs 

the relative case. 
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Definition 1.2.3. — For r > 0, let | • |r denote the supremum norm on the circle 

\t\ = e-r, as applied to elements of £%r\ one easily verifies that 

We extend the definition to vectors by taking the maximum over entries. 

Remark 1.2.4. — Note that for / analytic on the entire open unit disc (i.e., repre­

sented by an ordinary power series rather than a Laurent series), we have | / | r < | / |s 

whenever 0 < s < r; in other words, the supremum of / over the entire disc |£| < e~s 

occurs on the circle \t\ = e~s. In fancier language, the circle \t\ = e~s is the Shilov 

boundary of the disc \t\ < e~s, as in [7, Corollary 2.4.5]. 

Remark 1.2.5. — Let 0 be a relative Frobenius lift; then for some 7*0 > 0, we have 

\</>(t)/t? - l\ro/q < 1. It follows that for r G (0,r0) and / G </>(/) £ &r/q and 

| / | r = |0(/) |r/g- In geometric terms, 0 induces a surjective map from the annulus 

e~r/q < \t\ < 1 to the annulus e~r < \t\ < 1. (Compare [21, Lemma 3.7].) 

The following is both a typical example of how to make calculations on Robba 

rings and a crucial ingredient in what follows. 

Proposition 1.2.6. — Let <\> be a relative Frobenius lift, and let A be an n x n matrix 

over &mt. Then the map v \-+ v — A(j)(v) on column vectors induces a bisection on 

Proof. — The problem is unaffected if we replace v ,A by £mv, (£m/(/>(tm))j4, so by 

Remark 1.1.4, we may reduce to the case where the entries of A are bounded by 1 on 

some annulus with outer radius 1. Choose ro as in Remark 1.2.5. To check injectivity, 

we must argue that if w = v — A(j)(v) is bounded, then so is v. Choose r 6 (0, ro) such 

that A, w , 0 ( v ) have entries which are defined on the annulus e~r < \t\ < 1, and the 

entries of A are bounded by 1 there. Choose c > 0 such that |w|s < c for 0 < 5 < r, 
and such that |<^(v)|s < c for r/q<s<r. (The latter is possible because every 

analytic function on a closed annulus is bounded.) Then |v|s = |w + A<j)(v)\s < c for 

r/q < s < r, so \(j)(v)\s < c for r/q2 < s <r/q. Repeating the argument, we see that 

|v|s < c for 0 < s < r, proving the claim. (Compare [22, Lemma 3.3.3].) 

To check surjectivity, take w G £%n. Choose r G (0, r0) such that A, w have entries 

which are defined on the annulus e~r < \t\ < 1, and the entries of A are bounded 

by 1 there. Define the sequence {w /}g0 as follows. Start with w0 = w. Given 

w/, write = J2iezwi,itli Put w/+ = J2i>oWM** and wz~ = w/ ~ wz+> and Put 
wj+i = A(t>(wf). Since the entries of £_1w/~ are analytic on the entire open unit disc, 

^2citl =sup{|ci 
iez r 1 

\e~ri}. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



266 KIRAN S. KEDLAYA 

by Remark 1.2.4 we have 

|w+|P < e-r+r'*\w+\r/q < c - ^ l w , ! ^ , ; 

consequently, |wj+i|r/g < e~r+r/9|w/|r/q. Thus the sequence wz+ converges to zero 

under | • |r/g, and hence also under | • \s for s > r/q by Remark 1.2.4. On the other 

hand, for 0 < 5 < r/q, applying Remark 1.2.4 after substituting t i - ^ r 1 gives 

|w"|s < |wf |r/g < \wt\r/q. 

Now set v = X^owz+5 then v nas entries analytic on the closed disc of radius 

e~rlq, and w - v + A/>(v) = X)z=o wz~ is bounded on e~rlq < \t\ < 1. Since ^(v) is 

analytic on the closed disc of radius e~rlq , we can write v = w + A(f)(v) — X)/°̂ 0 wz~ 

and thus extend v across the annulus e~r/q < \t\ < e~rlq ; by induction, v extends 

to the entire open unit disc. This proves the desired surjectivity. • 

One can also prove the following, as in [22, Lemma 5.4.1]. 

Proposition 1.2.7. — Let £ denote the xriK-adic completion of &hd. Let <j> be a relative 

Frobenius lift on and let A be an n x n matrix over &int. IfveS"n is a column 

vector such that Av = 0 (v ) , then v G (Shd)n. 

Proof — This will follow later from Proposition 2.5.8; we will not use it in the interim. 

• 

Remark 1.2.8. — In the case where A is invertible, Proposition 1.2.7 was proved inde­
pendently by Cherbonnier (unpublished, but see [9, Theoreme III. 1.1]) and Tsuzuki 
[41, Proposition 4.1.1]. Tsuzuki's underlying argument can be used even when A is 
not invertible; see [41, Proposition 2.2.2]. 

Remark 1.2.9. — It should be possible to carry everything in this paper over to the 

case where one only assumes = ^ cit1 such that cq G o*K and G for i < q. 

(For instance, in the theory of (0, r)-modules, the composition of the usual 4> with any 

nontrivial 7 G T would have this property.) The proof of Proposition 1.2.6 extends 

to this setting, but the embedding of 2% into the extended Robba ring g% of Section 2 

must be modified, as accordingly must the projection construction of Section 3. 

1.3. ^-modules 

Definition 1.3.1. — Define a </>-(ring/field) to be a ring/field R equipped with an en-

domorphism 0; we say R is inversive if (j) is bijective. Define a (strict) (p-module over 

a </>-ring R to be a finite free i?-module M equipped with an isomorphism 0*M —• M, 

which we also think of as a semilinear 0-action on M; the semilinearity means that 

for r G R and m G M, (j)(rm) = 0(r)0(m). Note that the category of 0-modules 

admits tensor products, symmetric and exterior powers, and duals. 
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Remark 1.3.2. — The definition of ^-module used here is somewhat more restrictive 
than one sees in other contexts, hence the optional modifier "strict". For instance, 
in some cases one allows modules which are projective but not free, or worse. In 
other cases, one allows the 0-action to take kernel and cokernel in some ^-stable Serre 
category of i^-modules; we will do this ourselves shortly. 

Remark 1.3.3. — It will be convenient for us to describe 0-modules in terms of bases 
and matrices. If M is a 0-module and e i , . . . , en is a basis of M, we can completely 
describe the ^-action on M by specifying the invertible nxn matrix A which satisfies 
4>(ej) = ^2iAije{. Note that the semilinearity skews conjugation: if e i , . . . , e ^ is 
another basis and the change of basis matrix U is defined by = ]T\ t/^-ei, then the 
^-action on the new basis is via the matrix U~x A(/>(U). 

It is also useful to think of ^-modules as modules for a twisted polynomial ring. 

Definition 1.3.4. — For R a </>-ring, define the twisted polynomial ring R{T} to be the 
set of finite formal sums ai^% w^n ai ^ ^ equipped with the noncommutative 
ring structure in which Ta = <f)(a)T for a G R. If R is a field, then all left ideals of 
R{T} are principal, by the division algorithm [36, Theorem 6]. If R is inversive, one 
may similarly define a twisted Laurent polynomial ring R{T±}. 

Remark 1.3.5. — In general, a 0-module over R can be interpreted as a left R{T}-
module which is finite free over R, but one must remember the condition that (j) carries 
some basis to another basis. On the other hand, if R is inversive, then the data of a 
0-module over R is equivalent to the data of a left R{T± }-module which is finite free 
over R. If R is an inversive 0-field, then irreducible ^-modules over R all have the 
form i?{T±}/jR{T±}P for some irreducible twisted polynomial P. 

When talking about pure slopes, it will be helpful to switch from working with (j) 
to working with a power of $\ the following definition facilitates this switch. 

Definition 1.3.6. — View 0-modules as left modules for the twisted polynomial ring 
R{T}. For a a positive integer, define the a-pushforward functor [a]* from ^-modules 
to </>a-modules to be the restriction along the inclusion R{Ta} —• R{T}. Define the 
a-pullback functor [a]* from (/>a-modules to (^-modules to be the extension of scalars 
functor 

M ^ R{T} ®R{Ta} M. 

The following are easily verified (as in [22, §3.2]): 

— The functors [a]* and [a]* form an adjoint pair. 
— The functors [a]* and [a]* are exact and commute with duals; consequently, [a]* 

and [a]* also form an adjoint pair (i.e., in the other order). 
— The functor [a]* commutes with tensor products over R (but [a]* does not). 
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- If M is a 0-module and AT is a 0a-module, then M ® [a)*N = [a]*([a]*M <g) N). 

- If M is a 0-module, then rank([a]*M) = rank(M). 

- If N is a 0a-module, then rank([a]*AT) = arank(TV). 
- If N is a 0°-module, then [a]*[a]*AT = TV 0 0*(AT) 0 • • • 0 (0a_1)*(AT). 

Definition 1.3.7. — For M a </>-module, put 

jff°(M) = ker(</> — 1 : M —> M), if X(M) = coker(0 - 1 : M —> M). 

One easily checks that in the category of ^-modules over R, 

Hom(M, AT) 9* °(MV ® TV), Ext(M, N) =" if1(Mv ® iV). 

Moreover, for AT a </>a-module, there are natural bijections 

H\N)^ Wda^N) (¿ = 0,1). 

Remark 1.3.8. — Beware that although the pullback/pushforward terminology was 

inspired by a related construction in [18], the two do not agree in that context. 

1.4. Degrees, slopes, and stability. — For the rest of this section, we will put 
ourselves in the following situation. Note that Hypothesis 1.4.1 has a weak form and 
a strong form; we will assume only the weak form unless otherwise specified. (Thanks 
to Peter Schneider for suggesting this dichotomy.) 

Hypothesis 1.4.1. — Let Rint C Rbd C R be inclusions of Bezout domains such that 
R* C Rhd. Let (j) be an endomorphism of R acting also on Rbd and Rint. Let 
w : Rhd - > Z U {+00} be a 0-equivariant valuation such that w(R*) = Z and Rint = 
{r G Rhd : w(r) > 0}. Suppose in addition that for any nx n matrix A over Rmt, the 
map V H V - A(j)(v) on column vectors induces an injection (weak form) or bijection 
(strong form) on (R/Rhd)n. Note that the analogous hypothesis for (j)a also holds, 
since one can identify the kernel and cokernel of v i-> v — A(j)a(v) on (R/Rhd)n with 
the kernel and cokernel of 

( v 0 , v i , . . . , v a _ i ) *-* (v0 - j40(va_ i ) ,v i - 0 ( v o ) , . . . , v a _ i - 0 ( v a _ 2 ) ) 

on (R/Rhd)na. (Compare the last remark in Definition 1.3.7.) 

Example 1.4.2. — For our purposes, the principal example of strong Hypothesis 1.4.1 

is as follows. We take R, i?bd, Rint = M,3ghd,Mint to be the Robba ring and variants 

over K\ note that ^bd = ^ * U {0}. We take 0 to be a relative Frobenius lift, and 

w to be the valuation on S%hd for which < înt is the valuation subring. The last 

condition in strong Hypothesis 1.4.1 holds by virtue of Proposition 1.2.6. We will 

construct a variation of this example, the extended Robba ring in Section 2; using 

the axiomatic approach avoids some repetition. 
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Example 1.4.3. — Besides the Robba ring, additional examples of strong Hypothe­
sis 1.4.1 are also possible. Here is one from the work of Hartl and Pink [18]: take C 
to be the completed algebraic closure of a local field of equal characteristic p, R to be 
the Laurent series over C convergent on the punctured open unit disc, RHD to be the 
series which are meromorphic at zero, </> to be the map ]T C{tl i—• ^2 c\t% for q a power 
of p, and w to be the order of vanishing at 0. See Remark 1.7.6 and Question 1.7.7 
for further discussion around this example. 

Definition 1.4.4. — For M a 0-module over R of rank n, the top exterior power AnM 
has rank 1 over R\ let v be a generator, and write 0(v) = rv for some r G i?*. Define 
the degree of M by setting deg(M) = w(r); note that this does not depend on the 
choice of the generator by virtue of the (^-equivariance of w. If M is nonzero, define 
the slope of M by setting JJL(M) = deg(M)/rank(M). 

Remark 1.4.5. — Keeping in mind that degree is analogous to the valuation of the 
determinant (of a linear transformation on a finite dimensional vector space over a 
valued field), the following formal properties are easily verified (as in [22, §3.4]). 

- If 0 —• Mi —> M -» M2 —» 0 is exact, then deg(M) — deg(Mi) + deg(M2); hence 
//(M) is a weighted average of //(Mi) and //(M2). 

- We have /i(Mx ® M2) = /x(Mi) + /x(M2). 
- We have /z(A*M) = i/x(M). 
- We have deg(Mv) = -deg(M) and /x(Mv) = -/x(M). 
- If M is a (^-module, then /x([a]*M) = a/x(M). 
- If N is a 0a-module, then /JL([O]*N) = a " V ( ^ ) -

By analogy with the theory of vector bundles, we make the following definition. 

Definition 1.4.6. — We say a (^-module M is (module-)semistable if for any nontrivial 
0-submodule N, we have fJ,(N) > /x(M). We say M is (module-)stable if for any 
proper nontrivial 0-submodule N, we have fi(N) > /x(M). Note that both properties 
are preserved under twisting (tensoring with a rank 1 module). 

Remark 1.4.7. — In [22], the terms "stable" and "semistable" were used without the 
"module" modifier; here we will usually retain the modifier in statements and drop 
it in proofs. The modifier is meant to emphasize the difference between this notion 
of semistability and the concept of a "semistable (0, r)-module" in the sense of p-
adic Hodge theory, meaning one which appears to come from a semistable Galois 
representation. In the end, over the Robba ring the term "module-semistable" will be 
shown to be synonymous with "pure", so the terminological overload will cease to be 
a problem. 
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Remark 1.4.8. — Those familiar with stability of vector bundles (or with [18]) will 
notice that our definitions differ from the usual convention by an overall minus sign. 
The sign convention here (which is also the one used in [21, 22]) seems to be more 
consistent with usage in the theory of crystalline cohomology. 

Proposition 1.4.9. — Any 4>-module of rank 1 is module-stable. 

Proof. — This is a consequence of the assumptions built into weak Hypothesis 1.4.1. 
Namely, by twisting, it suffices to show that the trivial 0-module M = R is stable. 
If AT is a nonzero </>-submodule of M, we may write N = Rx for some x G M 
such that A = (j>{x)/x G P*, and by definition fi(N) = w(X). If /x(iV) < 0, then 
x — A_10(x) = 0 implies x G Rhd by weak Hypothesis 1.4.1; hence N = M and 
fj,(N) = w{(j){x)) — w(x) = 0. In other words, fJ<(N) > 0 unless N = M, as desired. • 

Corollary 1.4.10. — If N C M is an inclusion of ^-modules of the same rank, then 
V>(N) > fJ>(M), with equality if and only if N = M. 

Proof. — Put n = rankM and apply Proposition 1.4.9 to the inclusion AnN C 
AnM. • 

Lemma 1.4.11. — Let M be a (\>-module over R. Then the slopes of nonzero </>-
submodules of M are bounded below. 

Proof — We proceed by induction on rank(M). By Corollary 1.4.10, the slopes of 
0-submodules of M of full rank are bounded below by fi(M). If M has no nontrivial 
^-submodules of lower rank, then there is nothing more to check. Otherwise, let iV 
be a saturated 0-submodule of lower rank; then by hypothesis, the slopes of nonzero 
0-submodules of both N and M/N are bounded below. If now P is any nonzero 
0-submodule of M, then the sequence 

0 N HP ^ P ^ P/(N fl P) -> 0 

is exact. If both factors are nonzero, we have fi(NHP) > fJ>{N) and /JL(P/(Nfl P)) > 
H(M/N), and fjb(P) is a weighted average of //(JV fl P) and /x(P/(JV fl P)) , so it is 
bounded below. If one factor vanishes, then fi(P) simply equals the slope of the other 
factor, so the same conclusion holds. • 

Lemma 1.4.12. — Let M be a nonzero <\>-module over R. Then there is a largest 
(f)-submodule of M of least slope, which is module-semistable. 

Proof. — The fact that there is a least slope s holds by Lemma 1.4.11 and the fact 
that the denominators of slopes are bounded above by the rank of M; clearly any 
0-submodule of slope s must be semistable. If Ni and N2 are two such submodules, 
then the kernel of the surjection N± 0 N2 —> N1 + iV2 must have slope at least s, 
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so fjL(Nx + N2) < s. On the other hand, /z(iVi + N2) > s because Nx + N2 C M, 
so /i(iVi + N2) = 5. Hence the (/>-submodules of M of slope 5 are closed under sum, 
yielding the existence of a largest such submodule. • 

Corollary 1.4.13. — Let M be a <f)-module over R. Then for any positive integer a, 
M is module-semistable if and only if [a]*M is module-semistable. 

Proof — If [a]*M is semistable, evidently M is too. Conversely, if [a]*M is not 
semistable, then its largest 0a-submodule of least slope is a 0a-submodule Mi of 
lower rank. By the uniqueness in Lemma 1.4.12, Mi must in fact be preserved by </>, 
so M is not semistable either. • 

Definition 1.4.14. — Let M be a ^-module over R. A module-semistable filtration of 
M is a filtration 0 = Mo C Mi C • • • C Mi = M by saturated 0-submodules such that 
each quotient Mi/Mi-i is module-semistable. A Harder-Narasimhan (HN) filtration 
is a module-semistable filtration in which 

m ( M I / M 0 ) < - - . < M M z / M Z - I ) . 

Proposition 1.4.15. — Every ^-module over R admits a unique HN filtration, whose 
first step is the submodule defined in Lemma 1.4-12. 

Proof. — This is a formal consequence of Lemma 1.4.12; see [22, Proposition 4.2.5]. 
• 

Definition 1.4.16. — Define the slope multiset of a module-semistable filtration of a 
0-module of M as the multiset in which each slope of a successive quotient occurs 
with multiplicity equal to the rank of that quotient. These assemble into the lower 
boundary of a convex region in the xy-pl&ne as follows: start at (0,0), then take each 
slope s in increasing order and append to the polygon a segment with slope s and 
width equal to the multiplicity of s. The result is called the slope polygon of the 
filtration; for the HN filtration, we call the result the HN polygon. 

Proposition 1.4.17. — The HN polygon lies on or above the slope polygon of any 
module-semistable filtration, with the same endpoint. 

Proof. — This is a formal consequence of the definition of an HN filtration: see [22, 
Proposition 3.5.4]. • 

Proposition 1.4.18. — Let M\,M2 be (^-modules over R such that each slope of 
the HN polygon of M\ is less than each slope of the HN polygon of M2. Then 
Hom(Mi,M2) = 0. 
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Proof. — Choose / G Hom(Mi,M2). Let Ni be the first step in the HN filtration of 
Mi; then either f(Ni) = 0, or /x(/(iVi)) < fi(Ni). The latter is impossible because 
M / ( ^ i ) ) 1S no ^ess than the least slope of M2, whereas fi(Ni) is no greater than the 
greatest slope of Mi. Hence / factors through Mi/Ni \ repeating, we obtain / = 0. • 

1.5. Étale 0-modules 

Definition 1.5.1. — A 0-module M over R or Rhd is said to be étale (or unit-root) if 
it can be obtained by base extension from a (strict) (^-module over Rint; that is, M 
must admit an ilint-lattice N such that 0 induces an isomorphism </>*N —> N. We call 
such an N an étale lattice of M. Note that N is not in general unique; for instance, 
it may be rescaled. Note also that the dual of an étale ^-module is again étale. 

Remark 1.5.2. — The term "unit-root" is standard in applications to crystalline coho-
mology, where it refers to the process of extracting the unit roots (roots of valuation 
0) of a p-adic polynomial. By contrast, the term "étale" is standard in applications to 
p-adic Hodge theory. 

One of the basic results about étale </>-modules is that in a certain sense, they do 
not lose information when base-changed from Rhd to R. This can be deduced from a 
slightly more general result, which we already used once (to justify that the Robba ring 
satisfies Hypothesis 1.4.1) and will use again shortly (in the proof of Theorem 1.6.10). 

Definition 1.5.3. — Define an isogeny <p-module over Rint to be a finite free Rint-
module M equipped with an injection 0*M —> M whose cokernel is killed by some 
power of a uniformizer of Rint. Such an object becomes a strict </>-module upon 
tensoring with Rhd or R. 

Proposition 1.5.4. — Let M be an isogeny <\>-module over Rint. Then the natural maps 
iiP(M®.ftbd) —» Hl(M(g)R) fori = 0 (under weak Hypothesis 1.4-1) ori = 0,1 (under 
strong Hypothesis 1-4-1) are bijective. 

Proof. — This is an immediate consequence of the final clause of Hypothesis 1.4.1. • 

Proposition 1.5.5. — The base change functor from étale ^-modules over jRbd to étale 
(^-modules over R is an equivalence of categories. 

Proof. — The essential surjectivity holds by definition, so we need only check full 
faithfulness. That is, for any étale ^-modules Mi,M2 over Rhd, we must check that 
the natural map 

H°{M? 0 M2) - H°(M? ®M2®R) 

is a bijection; this follows from Proposition 1.5.4. • 
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Proposition 1.5.6. — Let 0 —• Mi —> M —• M2 —> 0 6e a s/ior£ ercac£ sequence of 

(j)-modules over R. If any two of'Mi,M2,M are etfaZe (except possibly Mi,M2 m £/ie 
case of weak Hypothesis 1.4-1), then so is the third. 

Proof. — First, suppose that M and M2 are étale. By Proposition 1.5.5, the <j>-

modules M, M2 and the morphism M —• M2 all descend to Ebd. By Lemma 1.5.7 
below, we can then produce an étale lattice in Mi by taking the kernel of the map 
from an étale lattice of M to M2. 

Next, suppose that M and Mi are étale. We then dualize to obtain a second exact 
sequence in which Mv and MiV are étale. By the previous paragraph, M^ is then 
étale, as then is M2. 

Finally, suppose that Mi and M2 are étale and that strong Hypothesis 1.4.1 holds. 
By applying Proposition 1.5.4, Mi, M2, and the exact sequence 0 —• Mi —» M —> 
M2 —» 0 all descend to jRbd; by rescaling appropriately, we can descend the sequence 
to Rint. We can then produce an étale lattice in M by lifting an étale lattice from 
M2, then adding an étale lattice from Mi. • 

Lemma 1.5.7. — Let M be an étale ^-module over Rhd. Then any finitely generated 

(^-stable Rint-submodule of M is a (^-module over Rmt. 

Proof — Let Mo be an étale lattice of M, and let N be a finitely generated ^-stable 
Rmt-submodule of M; by rescaling, we may assume N Ç Mo- Then N is already 
an isogeny 0-module, and it suffices to check that deg(iV) = 0; we may do this after 
replacing M by Arank^^M, i.e., we may assume rank(AT) = 1. Let e i , . . . ,en be a 
basis of MQ, let v = Yl7=i ciei be a generator of N, and put 0 (v) = Y17=i ^e*- Then 
deg(iV) = mmi{w(di)} — miiii{w(ci)}, but this difference is zero because Mo is an 
étale lattice. • 

We can also show that étale ^-modules are module-semistable, but it will be con­
venient to do that more generally for pure 0-modules in the next subsection. 

1.6. Pure 0-modules. — 

Definition 1.6.1. — Let M be a ^-module over Rhd or R of slope s = c/d, where 
c, d are coprime integers with d > 0. We say M is pure (or isoclinic, or sometimes 
isocline) of slope s if for some 0-module N of rank 1 and degree —c, ([d]*M) (8) N is 
étale (the same then holds for any such N). It will follow from Lemma 1.6.3 below 
that it is equivalent to impose this condition for any one pair c, d € Z with s = c/d 

and d > 0. Note that: 

— any ^-module of rank 1 is pure; 

— a (^-module is pure of slope 0 if and only if it is étale; 

— the dual of a pure ^-module of slope s is itself pure of slope —s. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



274 KIRAN S. KEDLAYA 

Remark 1.6.2. — This definition is not that of [22, Definition 6.3.1], but it is equiva­
lent to it by [22, Proposition 6.3.5]. It has the advantage that it can be stated without 
reference to any sort of Dieudonné-Manin classification; the downside is that one must 
expend a bit of effort to check some natural-looking properties, as we do below. 

Lemma 1.6.3. — Let M be a (j)-module over Rhd or R, and let a be a positive integer. 
Then M is pure of some slope s if and only if [a]*M is pure of slope as. 

Proof. — We first check the case where 5 = 0. If M is étale, then clearly [a]*M is too. 
Conversely, if [a]*M is étale, then 0 induces isomorphisms (</>î+1)*[a]*M —> (<f>l)*[a]*M 
over R; by Proposition 1.5.5, these isomorphisms descend to Rhd. That is, we may 
reduce to working over Rhd. In this case, let No be an étale lattice of [a]*M. Let N 
be the Pint-span of JV0, <l>(No),..., 0a-1(iVb); then N is an étale lattice of M. Hence 
M is étale. 

In the general case, write s = c/d in lowest terms, and put b = gcd(a, d); then in 
lowest terms, as = (ac/b)/(d/b). Let N be a, 0d-module of rank 1 and degree —c; 
then [a/6]*N has rank 1 and degree —ac/b. The following are equivalent: 

• M is pure of slope s; 
• ([d]*M) ® N is étale (definition); 
• [a/&].((M.Af) ® JV) * ([ad/b]*M) ® (\a/b]*N) * ([d/fc]*([a]*M)) ® ([a/6].JV) is 

étale (by above); 
• [a]*M is pure of slope as (definition). 

This yields the claim. • 

Corollary 1.6.4. — If Mi,M2 are pure 4>-modules of slopes si,s2, then Mi ® M2 is 
pure of slope si -\- s2. 

Proof. — By Lemma 1.6.3, we may reduce to the case where si, s2 G Z. By twisting, 
we may then reduce to the case where s± = s2 = 0. In this case the result follows 
from the fact that 0-modules over Rmt admit tensor products. • 

We can thus generalize Propositions 1.5.5 and 1.5.6 as follows. 

Theorem 1.6.5. — For any rational number s, the base change functor from pure </>-
modules of slope s over Rhd to pure <\>-modules of slope s over R is an equivalence of 
categories. 

Proof. — If Mi, M2 are pure of slope s, then M^ <S> M2 is étale. Hence the proof of 
Proposition 1.5.5 goes through unchanged. • 

Theorem 1.6.6. — Let 0 —> Mi —• M —• M2 —> 0 be a short exact sequence of <fi-
modules over R. If any two of Mi,M2, M are pure of slope s (except possibly Mi,M2 
in the case of weak Hypothesis H.l), then so is the third. 
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Proof. — By Lemma 1.6.3, we may apply [a]* to reduce to the case where s € Z; by 
twisting, we may force s = 0. The result now follows from Proposition 1.5.6. • 

Remark 1.6.7. — In a short exact sequence 0 —• Mi —> M —> M2 —• 0 over i2, the 

fact that M is pure of slope s does not by itself imply the same for Mi and M2, unless 

the sequence splits (see Corollary 1.6.11). For example, if M is pure of rank 2 and 

slope 0, it can happen that Mi is pure of rank 1 and slope 1, while M2 is pure of rank 

1 and slope —1. This sort of example arises naturally from p-adic Hodge theory, as 

in the theory of trianguline representations introduced by Colmez [13]. 

Lemma 1.6.8. — Let M be a pure (j)-module over R of positive slope. Then 

H°(M) = 0. 

Proof. — By replacing M with [a]*M for a = rank(M), we can reduce to the case 

where fi(M) G Z>o- By Theorem 1.6.5, there exists a pure ^-module Mo over Rhd 

with M = M0 ® R. By Proposition 1.5.4, we have H°(M0) = H°(M). 

Choose a basis e i , . . . , en of Mo such that the matrix A defined by 4>(ej) = Y2i ^-ijei 

has all entries of valuation at least £t(M). If v = ^ c * e * € H°(M) is nonzero, then 

d = J2j Aij4>(cj) implies that mini{w(ci)} > minj{w(cj)}, contradiction. Hence 

H°(M) = 0. • 

Corollary 1.6.9. — If M and N are pure <\>-modules over R with /i(M) < IJL(N), then 

Hom(M, N) = 0. 

Proof. — The conditions ensure that Mv <g> N is pure of positive slope; by 

Lemma 1.6.8, Hom(M, N) = H°(MV 0 N) = 0. • 

Theorem 1.6.10. — Let M be a pure (^-module over R of slope s. 

(a) M is module-semistable. 

(b) If N is a (\>-submodule of M with /JL(N) = s, then N is saturated, and both N 

and M/N are pure of slope s. 

Proof. — For (a), let N be a 0-submodule of M; we wish to show that fJ>(N) > s. 

By replacing M by ArankWM, we may assume that rank(iV) = 1. By Lemma 1.6.3, 

we may assume further that s G Z. By twisting, we may assume further that N is 

trivial, so that H°(M) ^ 0. To avoid contradicting Lemma 1.6.8, we must then have 

s < 0 = fi(N), yielding semistability. 

For (b), by applying [a]* and twisting, we may again reduce to the case s = 0. 

Let Mo be an etale lattice in M; by Lemma 1.5.7, the kernel of Mo —> M/N is a 

^-module over jRint, so the image is as well. Let P be the i?-span of this image; it is 

an etale 0-submodule of M/N of the same rank. Since jJ>(N) = /x(M) = 0, we also 
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have fj,(M/N) = 0, so M/N = P by Corollary 1.4.10. Hence M/N is étale; the same 
logic applied after dualizing implies that Nv is étale, as then is N. • 

Corollary 1.6.11. — / / Mi, M2 are (^-modules, then M = Mi 0 M2 is pure of slope s 
if and only if both Mi and M2 are pure of slope s. 

Proof. — If Mi and M2 are pure of the same slope, then visibly so is M. Conversely, if 
M is pure of slope s, then M is semistable by Theorem 1.6.10(a), so the 0-submodules 
Mi and M2 each have slope at least s. Since /i(M) is a weighted average of /x(Mi) 
and /i(M2), we must in fact have fi(Mi) — /JL(M2) = s; by Theorem 1.6.10(b), Mi and 
M2 are both pure of slope s. • 

Corollary 1.6.12. — Let M be a 4>a-module over R. Then M is pure of some slope s 
if and only if [a]*M is pure of slope s/a. 

Proof. — By Lemma 1.6.3, [a]*M is pure of slope s/a if and only if [a]* [a]*M is pure 
of slope s. If M is pure of slope s, then so are (0*)*M for i = 0 , . . . , a — 1; since 

(1.6.12.1) [a].[a]*M * 0^-o1(^)*M 

by Definition 1.3.6, [a]* [a]*M is pure of slope s. 
Conversely, if [a]* [a]*M is pure of slope s, then (1.6.12.1) shows that M is a direct 

summand of [a]*[a]*M, and hence is pure by Corollary 1.6.11. • 

1.7. The slope filtration theorem. — So far all of our work has been formal 
modulo the assumption of an appropriate analogue of Proposition 1.2.6. We now 
restrict attention from general rings R as in strong Hypothesis 1.4.1 to the Robba 
ring 3% (as in Example 1.4.2), where one can make the description of 0-modules much 
more precise. 

We have already described a natural filtration on 0-modules over namely the 
Harder-Narasimhan filtration. The trouble is that the construction is so formal that 
one cannot deduce any useful properties about the resulting filtration or its associated 
slopes; for instance, it is not clear that module-semistability is preserved by tensor 
product. (The fact that the analogous statement is true for vector bundles on smooth 
varieties in characteristic 0 is highly nontrivial: it reduces to the case of tensoring two 
semistable vector bundles of slope 0 on curves [33], in which case it follows from an 
analytic classification of stable bundles due to Narasimhan-Seshadri [34, 35].) The 
slope filtration theorem, which is the main result of this paper, asserts that in fact the 
steps of the Harder-Narasimhan filtration are much more structured than one might 
have otherwise predicted. 

Theorem 1.7.1 (Slope filtration theorem). — Every module-semistable (j)-module over 
the Robba ring 3& is pure. In particular, every <\>-module M over & admits a unique 
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filtration 0 = Mo C Mi C - - - C Mi = M by saturated ^-modules whose successive 

quotients are pure with /z(Mi/Mo) < • • • < / / ( M J / M J _ I ) . 

This theorem is stated as a forward reference, as its proof will occupy most of the 
rest of the paper; here we give only a top-level summary. 

Proof of Theorem 1.7.1. — The proof of Theorem 1.7.1 will be obtained by construct­
ing (in Subsection 2.2) an extended Robba ring & which also satisfies strong Hypoth­
esis 1.4.1, and then establishing the following facts. 

— If M is a semistable ^-module over then M 0 8£ is also semistable (Theo­
rem 3.1.2). 

— If M is a semistable 0-module over then M is pure (Theorem 2.1.8). 
— If M is a 0-module over 2& and M®<^ is pure, then M is pure (Theorem 3.1.3). 

These together yield the claim. • 

Remark 1.7.2. — Theorem 1.7.1 implies that the tensor product of module-semistable 
^-modules is pure (by Corollary 1.6.4) and hence module-semistable (by The­
orem 1.6.10). This formally implies that the slopes of 0-modules behave like 
valuations of eigenvalues, or like Deligne's weights in etale cohomology. That is, if M 
has slopes c i , . . . ,cm and M' has slopes c\,... ,c'n, both counted with multiplicity, 
then: 

— the slopes of M 0 M' are c i , . . . , cm, c[,..., c'n\ 

— the slopes of M 0 M' are CiCj for i = 1 , . . . , m and j = 1 , . . . , n; 
— the slopes of AdM are + h c*d for 1 < ii < • • • < id < m; 
— the slopes of [a]*M are a c i , . . . , acm; 
— the slopes of M(6) are ci + &,..., cm + 6; 
— the slopes of [a]*M are c i / a , . . . , cm/a, each repeated a times. 

In some sense, the slope filtration theorem is thus playing a role in this theory anal­
ogous to Deligne's analysis of determinantal weights in his second proof of the Weil 
conjectures [15]. 

Remark 1.7.3. — The uniqueness in Theorem 1.7.1 means that the slope filtration 
inherits any additional group action on the original </>-module. In particular, if M 
is a (0, r)-module, then the steps of the slope filtration are (0, r)-submodules of 
M. As shown by Berger [5, Theoreme V.2.1], this leads to a proof of the Colmez-
Fontaine theorem that (0, iV)-modules over a p-adic field which are weakly admissible, 

in the sense of satisfying a necessary numerical criterion, indeed arise from Galois 
representations via p-adic Hodge theory. (See also the variant of Berger's argument 
given by Kisin [27].) 
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Remark 1.7.4. — The étale (0, r)-modules attached to Galois representations of a p -
adic field were originally defined by Fontaine over the p-adic completion of &bd; the 
fact that they can be descended to S^°d is a theorem of Cherbonnier and Colmez [9, 
Corollaire 111.5.2]. The fact that the descent is unique follows from the fact that the 
base change from étale 0-modules over &hd to its completion is fully faithful, which 
in turn follows from Proposition 1.2.7. 

Remark 1.7.5. — In the context of p-adic differential equations and rigid cohomology, 
Theorem 1.7.1 arises with M carrying the extra structure of a connection V : M —» 
M ® Q\$IK compatible with the 0-action; that is, M is a (<f>, V)-module. One can see 
that the steps of the slope filtration are (</>, V)-submodules by using Corollary 1.6.9 as 
follows. The map V induces a homomorphism Mi —> (M/Mi) ® ®<\%/K of 0-modules. 
Since Çl\%jK is a rank 1 ^-module of nonnegative slope (the slope is actually positive, 
but we don't need this here), each slope of (M/Mi) (g> Q]%/K is strictly greater than 
/x(Mi). Repeated application of Corollary 1.6.9 yields the claim. 

Given that the slope filtration is a filtration by (0, V)-submodules, one may prove 
the local monodromy theorem for p-adic differential equations as in [21], by showing 
each successive quotient in the slope filtration becomes trivial as a V-module after 
tensoring with a suitable finite unramified extension of &mt. This reduces easily to 
the étale case, which is a theorem of Tsuzuki [42, Theorem 4.2.6]. Beware, however, 
that this last step only applies for <\>K absolute; in particular, this approach cannot 
be used to prove [6, Proposition 6.2.1]. 

Remark 1.7.6. — By [18, Theorem 11.1], the conclusion of Theorem 1.7.1 also holds 
in the situation of Example 1.4.3; indeed, what one obtains is an analogue of the clas­
sification of ^-modules over the extended Robba ring to be introduced in Section 2. 
That result is not covered by this paper, though (as [18] already points out) there are 
very strong parallels between the ensuing calculations. However, Theorem 1.7.1 itself 
does address a related situation: if we take K = k((z)) with k of characteristic p > 0, 
and (j>K to be a power of the absolute Probenius, then M consists of Laurent series 
in t over z which converge for \z\c < \t\ < 1 for some c > 0. Since the valuation on 
k is trivial, it is equivalent to require convergence when 0 < \z\ < |t|1//c; that is, we 
are considering series in z over k((t)) convergent on some punctured disc around the 
origin. In this case (assuming q is a power of p), Theorem 1.7.1 is a result of Hartl 
[17, Theorem 1.7.7]. 

It would be interesting to know about the following g-analogue of Remark 1.7.6; 
it may be related to the formal classification of linear difference operators [38], in 
much the same way that the construction of the canonical lattice of an irregular 
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meromorphic connection [31] reduces to the formal classification of linear differential 
operators [30]. 

Question 1,7.7. — Let K be a complete field, either archimedean or nonarchimedean. 
Take R to be the ring of germs of analytic functions over K on punctured discs around 
the origin, Rhd to be the germs meromorphic at zero, w to be the order of vanishing 
at zero, and <\> to be the map Ylci^ *-> J2ciQ1^ for some q G K* with \q\ < 1. Does 
the analogue of Theorem 1.7.1 hold in this setting? 

Remark 1.7.8. — The conclusion of Theorem 1.7.1 also holds for 0-modules over K 
itself; this is a straightforward consequence of Proposition 2.4.5. In addition, if (j> 
is bijective on K, then it is easy to check that Hl{M) = 0 for M pure of nonzero 
slope, so the slope filtration splits uniquely. This gives a semilinear analogue of the 
eigenspace decomposition of a vector space equipped with a linear transformation. If 
k is algebraically closed of characteristic p > 0 and <\> is an absolute Probenius lift, 
this recovers the Dieudonne-Manin classification of rational Dieudonne modules [32]. 

Remark 1.7.9. — The conclusion of Theorem 1.7.1 does not hold for <j) equal to the 
identity map on M. In fact, the conclusion is equivalent to the condition that the 
characteristic polynomial of <\> have all coefficients in ^bd, whereas the definition of a 
0-module only forces the determinant to belong to &hd. 

2. Classification over an extended Robba ring 

In this section and the next, we give a proof of Theorem 1.7.1. Although somewhat 
simplified in some technical aspects, the argument follows the same arc as in [21] and 
[22], with two basic stages. In the first stage, performed in this section, we show that 
^-modules over a suitable overring of 2% admit a very simple classification (analogous 
to the Dieudonne-Manin classification alluded to in Remark 1.7.8), and in particular 
admit a slope filtration. In the second stage, we show that the slope filtration descends 
back to 

On a first reading, we recommend reading only Subsection 2.1 for an overview, 
then returning later for the technical details in the rest of the section. 

2.1. Overview 

Hypothesis 2.1.1. — Throughout this section, assume that 0 is a relative Frobenius 
lift on M such that (f>K is an automorphism of K. Also assume that any etale 
module over K is trivial; this is equivalent to asking that any 0-module over the 
residue field k be trivial. It also implies that H1 vanishes for any etale 0-module over 
K or any 0-module over k. Using Definition 1.3.7, we deduce the same conclusions 
with <j) replaced by 0a for any positive integer a. 
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Remark 2.1.2. — In the absolute Probenius case, Hypothesis 2.1.1 can be satisfied 
by taking k to be algebraically closed. In general, one must work a bit harder; see 
Proposition 3.2.4. 

We will define (Definition 2.2.4) an extended Robba ring which has the following 
properties: 

• ^ is a Bezout domain containing and admits an automorphism (j) extending 
the given Probenius lift on Si (see Remark 2.2.5 and Proposition 2.2.6). 

• The units in are the nonzero elements of a subfield ^bd, which is the frac­
tion field of a discrete valuation ring <#nt for which <#nt fl $ = &int (see 
Remark 2.2.5). 

• The strong form of Hypothesis 1.4.1 holds for R = & (see Proposition 2.2.8). 

The classification of ^-modules over rests on a sequence of structural results, 
which we state in roughly increasing order of difficulty; their proofs occupy the re­
mainder of this section. 

Proposition 2.1.3. — Let M, N be pure (^-modules over obtained by base change 
from K, with /i(M) > fi{N). Then Hom(M, N) ^ 0. 

Proof. — See Subsection 2.2. • 

Notation 2.1.4. — Choose a uniformizer TT of K, and let <^(1) be the ^-module of 
rank 1 and degree 1 on which </> acts on some generator via multiplication by TT. We 
use as a twisting sheaf, writing M(n) = M (g) M(l)®n. 

Proposition 2.1.5. — Let M be a nonzero (^-module over Then for all sufficiently 
large integers n, H°(M(-n)) ^ 0 and Hl(M{—n)) = 0. 

Proof. — See Subsection 2.3. • 

Proposition 2.1.6. — For any rational number s, the base change functor from pure 
(j)-modules of slope s over K to pure ^-modules of slope s over is an equivalence of 
categories. 

Proof. — See Subsection 2.5. • 

Proposition 2.1.7. — Let n be a positive integer, let N' be a pure (j)n -module over & 
of rank 1 and degree 1, let P be a pure <\>-module over Sfi of rank 1 and degree —1, and 
suppose 

0-> [n]*W-* A f - > P - > 0 

is a short exact sequence of (j)-modules. Then H°(M) ^ 0. 

Proof. — See Subsection 2.6. • 
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These assemble to give the following classification theorem. 

Theorem 2.1.8. — Any module-semistable <f)-module over is pure. Consequently, 

the successive quotients of the HN filtration of a (p-module over S% are all pure. 

Remark 2.1.9. — Before proving Theorem 2.1.8, we make an observation which figures 

prominently in the argument. If one knows Theorem 2.1.8 for ^-modules of rank < n, 

it follows from Propositions 2.1.3 and 2.1.6 (and the assumption that etale ^-modules 

over K are trivial, as built into Hypothesis 2.1.1) that for M a pure 0-module over & 

and N an arbitrary 0-module over $ with rank(iV) < n and /i(M) > fi(N), we have 

Hom(M, N) ^ 0; in particular, if rank(M) = 1, we would have an injection of M into 

N. This is because the first step of the HN filtration of N always has slope < fJ>(N). 

Proof of Theorem 2.1.8. — We proceed by induction on rank, the case of rank 1 being 

evident. Assume that n > 1 and that for every positive integer a, every semistable 

</>a-module of rank < n is pure. Suppose that M is a semistable </>a-module of rank 

n + 1 over £%\ we wish to show that M is pure. We may reduce to the case where 

fi(M) € Z by applying [d]* and invoking Corollary 1.4.13 (to see that semistability 

is preserved) and Lemma 1.6.3 (to see that purity is reflected); we may then twist to 

ensure /x(M) = 0. For ease of notation, we will assume hereafter that M is a ^-module 

(at the expense of replacing <j> by a power, which does not disturb Hypothesis 2.1.1). 

Put M* = [n]*M; then M' is semistable by Corollary 1.4.13 again. By Propo­

sition 2.1.5, there exists a nonnegative integer c such that M' admits a pure (j)n-
submodule N' of rank 1 and slope c; choose c as small as possible. Suppose that 

c > 2; since n(M'/N') < 0 < c — 2, we may apply Remark 2.1.9 to produce a (j)n-
submodule of Mf/N' isomorphic to &{c — 2). Let Q' be the inverse image of that 

submodule in M'; applying Proposition 2.1.7 (in the case n = 1) to the exact sequence 

0 -> AT'(1 - c) Q'(l - c) & ( - ! ) -+ 0, 

we see that H°(Q'(1 - c)) ^ 0 and hence H°(M'(1 - c)) ^ 0, contradicting the 

minimality of c. 

Suppose that c = 1. Put N = [n]*^7; then N is pure of slope 1/n by Corol­

lary 1.6.12. The adjunction between [n]* and [n]* converts the inclusion Nf <-> M' into 

a nonzero map / : N —> M. Since N is semistable by Theorem 1.6.10, /x(/(AT)) < 1/n; 

moreover, the denominator of fi(f(N)) is at most rank(/(iV)) < n. Consequently, 

either fi{f(N)) < 0, in which case Remark 2.1.9 implies that H°(f(N)) ^ 0; or 

fj,(f(N)) — in which case / must be injective and we have an exact sequence 

0 —7V-»M^P-»0 

with P pure of rank 1 and slope —1, to which we apply Proposition 2.1.7 to deduce 

that H°(M) ^ 0. In either case, we contradict the minimality of c. 
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We deduce that c = 0, i.e., M ' admits a nontrivial etale 0-submodule iV7; the 
quotient M'/N' is also semistable, hence pure by the induction hypothesis. By The­
orem 1.6.6, M' is pure, as then is M by Lemma 1.6.3. This completes the proof. • 

Remark 2.1.10. — In the proof of Theorem 2.1.8, the passage from M to M' is made 
in order to simplify the statement of Proposition 2.1.7. One can do some extra work to 
prove a version of Proposition 2.1.7 in which [n]*N' is replaced by any pure 0-module 
of rank n and degree 1; however, the internal improvement is immaterial in the end, 
as even this stronger form of Proposition 2.1.7 is itself an immediate consequence of 
Theorem 2.1.8. 

2.2. The extended Robba ring. — We now go back and construct the extended 
Robba ring «5?. 

Definition 2.2.1. — Let R be a ring and let G be a totally ordered abelian group. The 
ring of Hahn series (or Mai'cev-Neumann series, or generalized power series) over 

R with value group G is the set of functions / : G —> R with well-ordered support, 
with pointwise addition and multiplication given by convolution; it is a standard 
calculation [37, Chapter 13] to verify that these operations give a well-defined ring, 
which is a field if R is. We typically represent elements of this ring as formal series 
YlgeG r9u9 m some dummy variable u with powers indexed by g G G, and the ring 
is correspondingly denoted R((uG)). For G C R, we view R((uG)) as being equipped 
with the u-adic valuation v sending Yg rgu9 to the smallest g for which rg ^ 0 (i.e., 
the least element of the support). 

Lemma 2.2.2. — Let 4> : R((u®)) —> R((u®)) be an automorphism of the form 

Y^i^iU1 I—• Yi(t)R(ai)uqi^th (j)R an automorphism of R. Then the map 1 — (j) is 
bijective on the set of series with zero constant term. 

Proof. — If x G R((u®)) and v(x) < 0, then v(x — (j)(x)) = qv(x), whereas if v(x) > 0, 

then v(x — <j)(x)) = v(x). This proves injectivity. 
Given x G i?((^Q)), write x = J2i xiu%-> and put 

i,/)}0-nj-n 
oo 

j=0i>0 

èUxi)uiqJ 

y- = 
KO $ùù* 

i,/)}0-nj-ni+nSo-^*$ù 
*$$ 

Since both sums give well-defined elements of R((u®)) (in the definition of y - , the 
sum over j is finite for each z), we may put y = y+ 4- which has zero constant 
term and satisfies y — (j){y) — x — x0. This proves surjectivity. • 
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Corollary 2.2.3. — With k as in Hypothesis 2.1.1, for any c G k*, the map 1 — c<fi on 

k((ifi)) is surjective. 

Proof. — By Hypothesis 2.1.1, there exists a e k* such that (j)(a) = ca, so we can 
always write 

(1 — có)(x) = a 1 (ax — ò(ax)). 

It thus suffices to check the case c = 1; this follows from Lemma 2.2.2 and the fact 
that 1 — 0 is surjective on k, which again is a consequence of Hypothesis 2.1.1. • 

Corresponding to the extension from power series to generalized power series, we 
define an enlargement of the Robba ring. We first construct the ring, then the em­
bedding of the original Robba ring into it. 

Definition 2.2.4. — For r > 0, let 3%r be the set of formal sums YieQ a^u% w ^ n ai € 

satisfying the following conditions. 

— For each c > 0, the set of i G Q such that |a*| > c is well-ordered. 
— We have |af|e~ r* —> 0 as i —• —oo. 
— For all s > 0, we have | a ; | e - S 2 —• 0 as i —• -foo. 

Then 3$r can be shown to form a ring. We call the union 3g = 3%K = U r<# r the 
extended Robba ring over K. Let ^ b d and <^ i n t be the subrings of 3$ consisting of 
series with bounded and integral coefficients, respectively. We equip & r with the 
norm 

!*ù 

OiU%\ : sup{|a;|e ™} 

and & with the automorphism 

ch 
i 

!ù*$ùù 

i 

<t>K(ai)uqi. 

Remark 2.2.5. — The ring £& can be viewed as an example of an "analytic ring" in 
the sense of [22, §2.4], by taking <j)K to be an absolute Frobenius lift on K. Thus the 
results of [22, Chapter 2] apply to show that M shares many of the nice properties of 

as follows. 

— The ring is a Bezout domain [22, Theorem 2.9.6]. 
— The ring & m t is a henselian discrete valuation ring, and its fraction field is ^ b d 

[22, Lemma 2.1.12]. 
— The units of S% are the nonzero elements of ̂ b d [22, Lemma 2.4.7]. 

Proposition 2.2.6. — There exists a <j)-equivariant embedding ip : S% ^ 3% such that 

for any ro as in Remark 1.2.5 and any r G (0, ro), 3#r maps to 3%r preserving \ • | r . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2008 



284 KIRAN S. KEDLAYA 

Proof. — We inductively construct homomorphisms ^ : «5? —• each of the form 

i/ji(Y^Citl) = Ylciul f°r some ui G Sfcint with \m\r = \t\r for r G (0,r0), satisfying 

M<Kx)) = </>0M*)) ( m o d !*ù$^m (* G ^ i n t ) , 

starting with = u. Given fy, we may repeatedly invoke Corollary 2.2.3 (if g ^ 0 in 

ft) or the fact that (j) is surjective on <#nt (if q = 0 in ft) to construct A G ^ i n t with 

(2.2.6.1) 0(TT'A/U) - q(7TLA/u) = (MHt)) ~ <t>(ut))/u*. 

For any r G (0,r0), 

\MHmr/qA<f>(ui)\r/q<\tq\r = \u«\r 

and so the right side of (2.2.6.1) has (r/g)-norm at most 1. From this plus either the 

proof of Lemma 2.2.2 (if q ^ 0 in ft) or direct inspection (if q = 0 in ft), we deduce 

that \7rLA/u\r < 1. We may thus set m+i = ui + 7rLA to construct ^z+il this has the 

desired effect because 

ibl+1(ò(t)) = ФАФИ)) + qn'Au"-1 (mod TTÍ+Í). 

The property |u/|r = \t\r implies that each ipi carries £%T to S&T preserving | • |r. By 

continuity, we obtain a map tp with the same property, as desired. • 

Lemma 2.2.7. — The fixed elements of Si under (j) all belong to K. 

Proof. — For x = Y^iaiu% e we nave 00*0 = Yji^K^i)^1. If </>(#) = x and 
ai ^ 0 for some i ^ 0, then | a ^ n | = |a^| for all n G Z; but this contradicts the fact 
that for any c > 0, the set of i G Q with |a^| > c is well-ordered. Hence a* = 0 for all 
i 7̂  0, proving the claim. • 

We now notice that strong Hypothesis 1.4.1 holds for 

Proposition 2.2.8. — Let A be annxn matrix overS$mt. Then the map v i—• v—A<j>{v) 
on column vectors induces a bisection on (S#/S$hd)n. 

Proof. — The proof proceeds as in Proposition 1.2.6, using the definition of | • |r given 

in Definition 2.2.4. • 

Remark 2.2.9. — As a reminder, here are some key properties of Si which we will use 

going forward. 

— Given a relative Frobenius lift </> on we can define an action of (j) on and 

an equivariant embedding ip : Si S# which preserves | • |r for r G (0, r0) 

(Proposition 2.2.6). 

— The map (j) is bijective on S%. 

— The map 1 — </> is bijective on S%int/OK (easy consequence of Lemma 2.2.2). 

— There is a natural direct limit topology, restricting to the direct limit of Frechet 

topologies on under which SS is complete. 
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In [21] and [22], the role of our & is played by the ring r*Jfcon, which is constructed 
to be minimal for the above properties; that ring coincides with the ring denoted B£n 
(as in [4, §11]) or more commonly B îg (as in [11]). We opt here for the ring instead 
in hopes that the construction using generalized power series makes the analogy to Si 
a bit more apparent. 

To conclude this section, we prove Proposition 2.1.3: if M,N are pure 0-modules 
over S& obtained by base change from K, with /x(M) > /i(AT), then Hom(M, N) ^ 0. 

Proof of Proposition 2.1.3. — It is equivalent to show that if M is pure with fi(M) < 
0, obtained by base change from K, then H°(M) ^ 0. Write M = M0 <S>K S% for M0 
a pure (^-module over K. Take any nonzero w G MQ and any i > 0; the sum 

v = X > V w ) 
nez 

will converge to a nonzero element of H°(M). (Compare [22, Proposition 3.3.4(c2)].) 

• 

2.3. Construction of fixed vectors. — We next treat Proposition 2.1.5: if M is 
a nonzero ^-module over then for all sufficiently large integers n, H°(M(—n)) ^ 0 
and ^(M^-ri)) = 0. (Also compare [18, Theorem 4.1].) 

Proof of Proposition 2.1.5. — We follow [22, Proposition 4.2.2]. View M as a space 
of column vectors with the action of 4> given by multiplication by the matrix A times 
the componentwise action. Choose r > 0 so that A and A~x have entries in S%qr. 

For d G Q>o to be specified below, define the "splitting functions" /J" as follows: 
given x = ^2 aiu1, put 

fd(x) = J2aiui> u (*) = Ylaiuii 
i>d i<d 

then extend to vectors componentwise. For w a vector, we write for /«f (w). 
Define the map g : M —> M by 

g(w) = 7r-nA0(w+) + ^ ( T T M ^ W - ) 

and note that 

(2 .3 .0 .1 ) |0(w)|r < maxllTrl^lAI.e-^-1), | 7 r | n V e " ^ " " ^ ^ . 

If we can choose d such that the two quantities in the maximum in (2 .3 .0 .1) are both 
strictly less than 1, then g will be contractive towards zero. This happens if 

( 2 3 0 2 ) del n(~lQgi7rD + lQgiAlr gftÇ-iogM) - g i o g | ^ ~ V \ . 
V r(q - 1) ' r(q - 1) / ' 

for n sufficiently large the interval is nonempty. (Note that consistently with Propo­

sition 2 .1 .3 , if M is étale over K we can take any n > 0.) 
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Fix n, d satisfying (2.3.0.2). Given w with entries in 3%T', we define the sequence 

w0 = w, wj+i = #(w/), then set 
OO 

(2.3.0.3) v = £ ( w + - ^ - ^ T r M - V r ) ) , 
z=o 

so that |v|r < |w|r and v — 7r_rM0(v) = w. We only know a priori that the sum 

defining v converges under | • |r, but using the equation v = K~nA(j)(v) 4- w, we may 

deduce that the sum converges under | • |r/9, | • |r/q2, and so on. Hence v has entries 

in yielding i71(M(-n)) = 0. 

To deduce H°(M(—n)) ^ 0, we modify the previous construction slightly. Put w = 
(ud, 0 , . . . , 0) and construct v as in (2.3.0.3). Then put w0 = w, wi = (j)'1^71 A'1^), 

and wj+1 = #(w[) for I > 1. (That is, at the first step, transfer the boundary term 

ud from the plus part to the minus part.) If we now define 
OO 

v' = - t f - V M - X ) + £ ( K ' ) + - r V ^ - V O " ) ) , 
1=1 

we obtain v' — ir~~nA4>{v') = w as before. However, |v|r = \ud\r whereas |v'|r < \ud\r, 

so v — v' is a nonzero element of H°(M(—n)), as desired. • 

2.4. Twisted polynomials and their Newton polygons. — Before continuing, 
we need to analogize, to the realm of twisted polynomials over k((u®)), some facts 
about polynomials over valued fields and their Newton polygons. With a bit of care, 
we can obtain at the same time some results over K which we will need later (see 
Proposition 3.2.4). 

Notation 2.4.1. — Throughout this subsection only, fix a real number s > 1, and let 
F be a field equipped with an automorphism </> = (ftp and a valuation vp with the 
properties that F is complete under vp and vf{<J>f{^)) = svp(x) for all x G F. Let Op 
and mp denote the valuation subring of F and the maximal ideal of Of, respectively. 

Definition 2.4.2. — For i G Z, write [i] = Y^%LS^ so that [°] = 0, [1] = 1, and 

[i + j] = [i] 4- s^j}. For r G R and P(T) G F{T±}, write P(T) = E i e z ^ T % and 

write 

vr(P) = mm{vF{ai) 4- r[i]}. 
i 

Define the homogeneous Newton polygon of P as the lower convex hull of the set 

{(-[i\,vF(ai)):ieZ}; 

we refer to the slopes of this polygon as the (Newton) slopes of P. 

Lemma 2.4.3. — For P(T) G F{T} and Q{T) G F{T~X} such that vr{Q) > 0, we 

have vr(PQ) > vr(P) 4- vr(Q). 
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Proof. — Write P(T) = Y,i>oaiTi and Q(T) = Y,j<ohJTJ' We have 

(PQ)(T) = E E « ^ ( * i ) r * > 
k i+j=k 

and 

(2 .4 .3 .1 ) VFFAPIBJ)) + [t + J > = VFfOi) + [»]r + s > f ( M + [j]r). 

The right side of ( 2 .4 .3 .1 ) is at least vr(P) 4- slvr(Q). Since i > 0 and s > 1, if 
vr(Q) > 0, then the right side of ( 2 .4 .3 .1 ) is at least vr(P) + vr(Q). This yields the 
claim. • 

Proposition 2.4.4. — Let ro £ R be a real number, and suppose that P(T) G F{T} 

and Q(T) G j F { T - 1 } are such that P has constant term 1 and all slopes < ro, and 

Q has constant term 1 and all slopes > r*o. Then the slopes of PQ are obtained by 

taking the union (with multiplicities) of the sets of slopes of P and Q. 

Proof — The conditions on the slopes of P and Q imply that 

r>r0 vr(P) = 0,vr(Q) < 0 

r <r0 => vr{P) < 0,vr(Q) = 0. 

It thus suffices to check that 

Vr(PQ) 

vr(Q) r > r0 

0 r = 7*0 

vr(P) r < r0. 

Retain notation as in Lemma 2 .4 .3 . If r > ro, take the smallest j that minimizes 
vp{bj) 4- [j]r; then ( 2 .4 .3 .1 ) equals vr(Q) for i = 0 but not for any other pair i,j with 
the same sum. If r < ro, take the largest i that minimizes vf{ch) 4- [i]r; then ( 2 .4 .3 .1 ) 

equals vr(P) for j = 0 but not for any other pair i,j with the same sum. This yields 
the desired result. • 

Proposition 2.4.5. — Let r G M be a real number, and suppose that R G Fl^} 

satisfies vr(R - 1 ) > 0. Then there exist c G F, P(T) G F{T}, Q(T) G F{T-1} 

such that vp(c — 1 ) > 0, P has constant term 1 and all slopes < r, Q has constant 

term 1 and all slopes > r, and cPQ = R. 
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Proof. — Put Co = Po = Qo — 1- Given P^, Qi, write R — C{P{Qi = Y^j rjTi, and 

put 

Ci+l = Ci + r0 

-Pt+l = -Ft + 

j>0 

*$ù* 

Qi+l = Qi + 
!*$ù* 

!*^mù* 

Suppose that min{?;(c — l),iv(Pi — l),t;r(Qi — 1)} > vr(R — 1). By Lemma 2.4.3, 

vr(R — CiPiQi) > vr(R— 1), and 

vr(R - Ci+iPi+1Qi+i) > vr(R - CiPiQi) + vr(R - 1). 

It follows that Ci,Pi, Qi converge to limits c, P, Q with the desired properties. • 

Corollary 2.4.6. — If R(T) G Fl^} is irreducible, then it has only one slope. 

2.5. Classification of pure 0-modules. — We next classify the 0-modules over 

k((ifi)), then classify the pure 0-modules over & (Proposition 2.1.6). 

Notation 2.5.1. — Throughout this subsection only, write F = k((u®)); note that this 
is consistent with Notation 2.4.1 if we put s = q, take VF to be the -M-adic valuation, 
and take of the form ^CiU1 i—• ^4>k{ci)uqi for some automorphism fa of k. 

Lemma 2.5.2. — Let P(T) G F{T} be a twisted polynomial over F with all Newton 

slopes equal to 0. Then there exists x E o*F such that P((j))(x) = 0. 

Proof. — We may assume that P has constant term 1. Since ^-modules over k are 

trivial (by Hypothesis 2.1.1), we can find z G o*F with P((j))(z) G m^. Since (P —1)(</>) 

is contractive towards 0 on m/?, we can find y G rap such that P(<j)){y) = P((f))(z). 

Put x = z - y\ then P(0)(x) = 0. • 

Lemma 2.5.3. — Let P(T) G F{T} be a monic twisted polynomial over F with all 

Newton slopes equal to 0. Then P(T) factors as a product Ylj(T — aj) for some 

aj G o*F. 

Proof — By Lemma 2.5.2, there exists x G o*F such that P((f))(x) = 0. By the division 

algorithm for twisted polynomials, P(T) is right divisible by T — a for a = (j){x)/x\ 

the claim then follows by induction. • 

Lemma 2.5.4. — Every irreducible <\>-module over F is trivial. 
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Proof. — Let V be an irreducible 0-module over F; we can then write V as 
F{T±}/F{T±}P for some monic irreducible twisted polynomial P(T). By Corol­
lary 2.4.6, P has only one slope, which we can force to be 0 by rescaling. By 
Lemma 2.5.3, P must equal T — a for some a € o*F. But the equation (j){x) = ax has 
a solution x £ o*F by Lemma 2.5.2, yielding the triviality of V. • 

Proposition 2.5.5. — Every <\>-module over F = k((ifi)) is trivial. 

Proof. — Any 0-module over F can be written as a successive extension of irre­
ducibles, which are all trivial by Lemma 2.5.4. By Corollary 2.2.3, the extensions 
between trivial ^-modules all split, yielding the claim. • 

Definition 2.5.6. — For P(T) = £ ¿ e nonzero and z £ F, define the 
inhomogeneous Newton polygon of the pair (P, z) as the lower convex hull of the set 

{(-q\vF(ai))'-ieZ}U{(0,vF(z))}; 

note that any slope of this polygon not involving the point (0, vp(z)) is equal to q — 1 
times a slope of the homogeneous Newton polygon. 

Proposition 2.5.7. — Given P(T) £ F j T ^ } nonzero and z £ F, for each r £ R 

occurring as a slope of the inhomogeneous Newton polygon of(P, z), there exists x £ F 

with vp(x) = r such that P((j))(x) = z. 

Proof. — By applying Proposition 2.4.5, we may reduce to the case where P has a 
single homogeneous Newton slope; by twisting, we may force that slope to be 0. By 
Lemma 2.5.3, we may reduce to the case P(T) = T — a for a £ o*F. By Lemma 2.5.2, 
we may assume that a = 1; in this case, the claim follows from Corollary 2.2.3. • 

Before proving Proposition 2.1.6, we need one more calculation, which includes 
Proposition 1.2.7 (see also Remark 1.2.8). 

Proposition 2.5.8. — Let £ denote the xtiK-adic completion ofáthá. Let A be annxn 

matrix over&int. Ifw £ S>N is a column vector such that Av = </>(v), thenv £ (&hd)n. 

Proof. — By rescaling by a factor of u (as in the proof of Proposition 1.2.6), we may 
reduce to the case where the entries of A are bounded by 1 under | • |r; we may also 
assume v has entries in the completion of ^int. Write v = Y^j=i ^2ieQ cijulej, where 
&i,..., en are the standard basis vectors; it suffices to show that \cijUl\r < 1 for all 

as then v will have entries in &s for any s £ (0,r). 
Suppose the contrary; note that |c¿¿| < 1 for all z,j by our normalization of v, so 

any pair i, j with |c¿¿iA*|r > 1 must have i < 0, and hence 

(2.5.8.1) l ^ f e i t Ó l r = hju'^lr < IcijuX. 
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Let h be the maximum of |c^ | over all pairs i, j with Iĉ -m*̂  > 1. Then there is a pair 

(¿0, jo) with | 

c*o,jol ~~• ̂  which maximizes |ci0,jo^2ol̂ - However, if we expand Av — 
Yl]=iJ2ieQ^j^^j, then for each pair i,j with |d^-| = h, we have (dijUl)\r < 
\ciojQu%0\r by (2.5.8.1). This contradicts the equality v = (f)~1(Av), proving the 
claim. • 

We now prove Proposition 2.1.6: the categories of pure 0-modules over K and over 

of a given slope s are equivalent. 

Proof of Proposition 2.1.6. — We first check full faithfulness. By Lemma 1.6.3 and 

twisting, it suffices to check this for s = 0; that is, we must check that given an étale 

</>-module M0 over K, we must have H°(M0) =I H°(M0 By Hypothesis 2.1.1, 

we may assume that MQ is trivial; then Lemma 2.2.7 yields the claim. 

We next check essential surjectivity; we may proceed as in the proof of Theo­

rem 1.6.5 to reduce to the case 5 = 0. Let M be an étale 0-module over «5?, and 

choose an étale lattice Mo of M. By repeated application of Proposition 2.5.5, after 

tensoring with the m^-adic completion of ^int, we can find a basis of Mo fixed by <j>. 
By Proposition 2.5.8, this basis is in fact contained in Mo itself, yielding the claim. • 

2.6. The local calculation. — We now perform the explicit calculation that proves 
Proposition 2.1.7, thus completing the proof of Theorem 2.1.8. To avoid notational 
overload, we elide a few routine calculations that can be found in [21]. (Also compare 
[18, §9,10].) 

Definition 2.6.1. — Let &tT (for "truncated") denote the set of elements of whose 

support is bounded below. This forms a subring of carrying a ix-adic valuation v. 

Note that a unit in ^ t r is precisely an element x = ^ aiu1 for which the support 

of x has a least element j , and for which |a^| < \a,j\ for all i G Q; in particular, such 

elements belong to ^bd, so we can apply the valuation w to them. 

Lemma 2.6.2. — Let P be a (f)-module over K of rank 1 and degree n > 0, and fix a 

generator v of P. 

(a) For any x G ̂ t r with support in [0, +oo) , the class ofxw in HX{P^^) vanishes. 

(b) Each class in H 1(P<8>&) has a representative of the form J]j=o ujv> where for 

each j , either Uj = 0, or Uj G (<^tr)*, W(UJ) = j , and V(UJ) < 0. 

Proof. — For (a), we first use Hypothesis 2.1.1 to eliminate constant terms, then 

note that if x has no constant term, the sum £]£o 4>%(xw) converges and its limit w 
satisfies w — 0(w) = xv. We deduce (b) from (a) plus a direct calculation; see also 

[21, Lemmas 4.13 and 4.14] or [22, Lemma 4.3.2]. • 
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We now prove Proposition 2.1.7: if Nf is a pure </>n-module over of rank 1 and 

degree 1, P is a pure 0-module over 8% of rank 1 and degree -1 , and 

(2.6.2.1) 0 -+ [n]*Nf -> M -> P -> 0 

is a short exact sequence of 0-modules, then H°(M) ^ 0. 

Proof of Proposition 2.1.7. — The snake lemma gives an exact sequence 

H°(M) -+ H°{P) -+ HWnYN'), 

where the second map is pairing with the class a G HX(PV ® [n]*N') corresponding 

to the extension (2.6.2.1); it suffices to show that this second map has nonzero kernel. 

Note that Pv <g> [n]*Nf ^ [n]*([n]*Pv <g> N') as in Definition 1.3.6, so we may view 

a as an element of Hl([n]*([n]*Pv <g> N')) = /f1([n].Pv <g> Nf). Similarly, we may 

view the pairing with a as the composition of the map H°(P) —> H°([n]*P) with the 

map H°([n]*P) -> H1^') given by pairing with the class in i71([n]*Pv <g> N'). If the 

class vanishes, there is nothing to check, so we may assume that it does not vanish. 

By Proposition 2.1.6, P and Nf are obtained by base change from certain </>- and 

</>n-modules Po and NQ, respectively, over K\ choose generators v and w of Po and 

TVQ, and define A,/x G K* by <£(v) = Av and 0n(w) = /xw. Put Q0 = [n]*P0v (g) iV£ 

and Q = [n]*Pv (g> Nf = Q0 <̂ 5 let x be the generator vv <g> w of Qo (where vv 
is the generator of Pv dual to v ) . By Lemma 2.6.2, we can then represent the class 

a G Hl(Q) by a nonzero element of Q of the form J2]=o wjx> where each Uj is either 

zero or a unit in ^ t r with W(UJ) = j and V(UJ) < 0. 

We now follow [21, Lemma 4.12]. For j G {0 , . . . , n} such that Uj ^ 0, I G Z, and 

m G (0, +oo) , define 

e(j,/,m) = (v(wj) + mq-l)q-n(J+l). 

For fixed j and m, e(j,l,m) approaches 0 from below as I —• +oo, and tends to 
-foo as / —• — oo. Hence the minimum h{m) = minj5/{e(j,/, m)} is well-defined; we 
observe that h is a continuous, piecewise linear, and increasing map from (0, +oo) to 
(—oo, 0), and that h{qm) = q~nh(m) because e(j, I + 1, qm) = q~ne(j, /, m). Another 
interpretation is that the lower convex hull of the set H of points 

(-g-">-(»+1)',g-^-"'t;(ui)) C? = 0 , . . . ,n ; I 6 Z ) 

has all slopes positive, and all segments finite. 

Pick r G (0, +oo) at which h changes slope; that is, r is a slope of the lower convex 

hull of H. Let S denote the set of ordered pairs for which e(j,l,r) < q~nh(r); 

this set is finite. Let T be the set of ordered pairs (j,/) for which e(j, Z,r) < 0; this 

set (which contains 5) is infinite, but the values of I for pairs (j, I) G T are bounded 

below. For each pair put s(j,l) = [logqn(h(r)/e(j,/, r))J. Then the following 

properties hold. 
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(a) For (j ,Z)GT, s ( j ,Z)>0. 
(b) For (j,Z) G T, eUMq™™ G [h(r), q~nh(r)). 

(c) We have (j, Z) G 5 if and only if (j, Z) G T and s(j, Z) = 0. 
(d) For any c > 0, there are only finitely many pairs (j, Z) G T with s(j, Z) < c. 

Define the twisted powers A^m^ and /i^m^ of A and ¡1 by the two-way recurrences 

A{0} = 1? A{m+1} =0(A{m})A 

i,/)}0-nj-ni+nSo-,o^.A{-O0-^^)i,/)}0-nj-n 

For c G R, let Uc be the set of z G <#tr fl <#nt with v(z) > c. Then the function 

R(z) = 

*$ù$$ 

^{-i-/+5(i,/)}0-nj-ni+nSo-,o^.A{-O0-^^)) 

carries Ur into t/^(r) by a direct calculation. Modulo 7r, we have 

(2.6.2.2) m:ùù^**$ 

ù*^ù*$^*$ 

i,/)}0-nj-ni+nSo-,o^.A{-O0-^^)ù*^^* 

note that the values —nj — (n + 1)Z are distinct for all (j, Z) G 5, since j only runs 
over {0 , . . . , n}. Write the reduction modulo TT of the right side of (2.6.2.2) as Q(<t>)(z) 
for some twisted Laurent polynomial Q(T) G F j T * } with F = k((uQ)). By Proposi­
tion 2.5.7 applied repeatedly, we can construct a nonzero z G Ur such that # ( 2 ) = 0. 

One now calculates using Lemma 2.6.2(a) (see [21, Lemma 4.12] for the full calcu­
lation) that the element 

lez 
J>-l(zv) = 

lez 
\^(j>-l{z)w G H°(P) 

pairs to zero with the class of a. This yields the desired result. 

3. Descending the slope filtration 

As noted at the beginning of the previous section, the proof of the slope filtration 
theorem (Theorem 1.7.1) consists of two stages, the first of which (classifying 0-
modules over the overring S$ of 3%) has been accomplished in the previous section. 
In this section, we explain how to descend the resulting slope filtration from Si back 
to Si. 

As was done in the previous section, we recommend on a first reading to read only 
the overview (Subsection 3.1), then return later for the technical details. 
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3.1. Overview 

Definition 3.1.1. — We now revert to allowing K to be an arbitrary field as in Defini­

tion 1.1.1. Choose a complete extension L of K with the same value group, admitting 

an extension <\> to an automorphism, such that every etale 0-module over L is triv­

ial. More precisely, form such an L by first taking the completed direct limit of 

K K • • • and then applying Proposition 3.2.4 below. Under these conditions, 

we can embed £%K into and then embed S%L into <#L as in Proposition 2.2.6. 

Recall that we are trying to prove Theorem 1.7.1, which states that every module-
semistable 0-module over Si is pure. As noted earlier, this result follows from The­
orem 2.1.8 (which asserts that module-semistable 0-modules over are pure) plus 
the following assertions. 

Theorem 3.1.2. — Let M be a module-semistable <\>-module over 2%. Then M <&&L is 

module-semistable. 

Theorem 3.1.3. — Let M be a <\>-module over Si such that M (g> S#L is pure. Then M 

is pure. 

The proofs of Theorems 3.1.2 and 3.1.3 amount to faithfully flat descent: Theo­
rem 3.1.2 relies on the fact that the first step of the HN filtration of M ® S $ L descends 
to while Theorem 3.1.3 depends on the fact that the pure ^-module over S%\d 
obtained by descending M <g) S$L itself descends to S%hd. The rest of this section will 
be occupied with setting up the descent formalism, then making the calculations that 
allow the use of faithfully flat descent. 

3.2. Splitting étale (^-modules. — We now construct the field L demanded by 
Definition 3.1.1. 

Definition 3.2.1. — Suppose that <\>K is bijective. By an admissible extension of K, 

we will mean a field L containing K, complete for a nonarchimedean absolute value 
extending the one on K with the same value group, and equipped with an isometric 
field automorphism extending 

Lemma 3.2.2. — For any z e K*, there exists an admissible extension L of K such 

that the equation (j)(x) — x — z has a solution x G L. 

Proof. — Let L be the completion of the rational function field K(x) for the Gauss 
norm with I a; I = \z\. Extend <\>K to an automorphism <J>L of L by setting (J>L(%) = 
x + z. • 
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Lemma 3.2.3. — Let P(T) = Tn + an_iTn_1 H h a0 6e a twisted polynomial over 

Ok with |ao| = 1. Tften ttere exists an admissible extension L of K such that the 

equation P((/>)(x) = 0 has a solution x e o*L. 

Proof. — Let L be the completion of the rational function field K(yo,..., yN-I) 

under the Gauss norm normalized with |yo| = ••• = |2/n-i| = 1- Extend <j>k 

to an automorphism cj>l of L by setting (j>L{yi) = yi+I for i = 0, . . . , n — 2 and 

<M2/n-i) = -AN-IVN-I «o2/o, then take x = y0. • 

Proposition 3.2.4. — There exists a complete extension L of K with the same value 

group, equipped with an extension of cj>k, such that any étale (f)-module over L is 

trivial. 

Proof. — It suffices to construct L trivializing a single irreducible étale ^-module M 

over K, as we can construct the desired field by transfinitely iterating this construction 

and completing at all limit stages. 

Since M is irreducible, we must have M =I X { r ± } / X { r ± } P ( r ) for some irre­

ducible monic twisted polynomial P(T). If we write P(T) = Tn + an_irn-1 + • • - + a0, 

then |ao| = 1 because deg(M) = 0. By Corollary 2.4.6 (in the case s = 1), P can only 

have one Newton slope, which must be 0; hence P(T) has coefficients in Ok- We can 

then apply Lemma 3.2.3 to construct L over which the equation P{<j>){x) = 0 has a 

solution x G o£; that solution gives rise to a nontrivial 0-submodule of M. 
Repeating the construction, we obtain a field over which M becomes a successive 

extension of trivial étale 0-modules of rank 1. By repeated use of Lemma 3.2.2, we 
can split this filtration by passing to a suitably large L. This yields the claim. • 

Remark 3.2.5. — Note that the field L constructed above is not a Picard-Vessiot 

extension of K in the sense of the Galois theory of difference fields; this Galois theory 

is a bit complicated because it cannot be carried out within the category of fields, as 

examples like the difference equation </>(x) = —x show. See [39, Chapter 1] for more 

discussion of this point, and a development of difference Galois theory in a restricted 

setting; see also [2] for a more general development. (Thanks to Michael Singer for 

pointing out this reference.) 

3.3. The use of faithfully flat descent. — In this subsection, we set up faithfully 

flat descent and illustrate how we will use it to prove Theorems 3.1.2 and 3.1.3. 

Definition 3.3.1. — Let R —• S be a faithfully flat morphism of rings equipped with 

compatible endomorphisms </>. Let M be a ^-module over R, put Ms = M <g># 5, 

and let Ns be a </>-submodule of Ms. We say that Ns descends to R if there exists a 

0-submodule N of M such that the image of N <S)R S in Ms coincides with Ns- We 

say a filtration descends to R if each term does so. 
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Proposition 3.3.2. — Let R —> S be a faithfully flat morphism of domains equipped 

with compatible endomorphisms (j). Put S2 = S <8>R S and define i\,ii : S —> S2 by 

ii(s) = s<g)l andi2{s) = 1 0 5 . Let M be a<j)-module over R, put Ms = M<S>RS, and let 

Ns be a (p-submodule of Ms- Then Ns descends to R if and only ifN®i1S2 = N<g>i2S2 

within M ®# S2; moreover, if this occurs, then there is a unique (j)-submodule N of 

M such that Ns = N <S>R S within Ms. 

Proof. — The equality N (g)^ S2 = N <S)i2 S2 implies that the effective descent datum 
obtained from M induces a descent datum on N (the cocycle condition can be checked 
on M). We may thus apply faithfully flat descent for modules [1, Expose VIII, 
Corollaire 1.3] to conclude. • 

We use faithfully flat descent as follows. 

Definition 3.3.3. — Define 

i,/)}0-nj-ni+nSo-,o^.A{ 

ybd = <%bd 0 ^ b d ^ b d 

yint = Jmt 0^lnt Jmt# 

We will show later that St -> étL, &hd -* <#£d are faithfully flat and that yhd -» y 
is injective (Remark 3.5 .3) . 

The following weak analogue of Proposition 1.2.6 will be proved in Subsection 3.5 . 

Proposition 3.3.4. — Let A be annxn matrix over ymt, and let v be a column vector 

over y such that v = A(/)(y). Then v has entries in yhd. 

We now demonstrate how Proposition 3.3.4 can be used to establish the theorems 
asserted at the start of this section. 

Proof of Theorem 3.1.2. — Suppose that M<g>&L is not semistable. Let 0 = MLJ0 C 

ML>i C • • • C MLj = ML denote the HN filtration of ML = M <g> &L. We will show 
that ML, I <S>Z2 £2 Q MLJ 0ix 52 for j = 1,1 — 1 , . . . , 1 by descending induction; the 
base case j = I is trivial. 

Given that ML,I <8>i2 ^2 C MLj (g)̂  S2 for some j > 1, we get a homomorphism 

i,/)}0-nj-ni+nSo-,o^.A{-O0-^^)i,/)}0-nj-ni+nSo-,o^. 

Since ML?i and MLJ/MLJ-I are pure and /X(ML,I) < ^(MLJ/MLJ-I), this homo­

morphism is forced to vanish: otherwise, by Proposition 3.3.4 the morphism would 
be defined over yhd, but in that case it would have to preserve slopes because ybd 
carries an m^-adic valuation. Hence ML,I <8>i2 S2 Q MLJ-I 0»! S2, completing the 
induction. 
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The induction shows that ML,\ satisfies the condition for faithfully flat descent 

(Proposition 3.3.2), so it descends to Si. Hence M cannot be semistable either. • 

Proof of Theorem 3.1.3. — By applying [a]* (invoking Lemma 1.6.3) and twisting, 

we may reduce to the case /i(M) = 0, so M (g) S$L is étale. Choose a basis v i , . . . , vn 

of an étale lattice of M (g) SO that the matrix A defined by </>(VJ) = A^v* is 

invertible over Sê1^. 

There exists an invertible change-of-basis matrix U over 5? such that 

Vj ®h 1 = 

i 

Uij(vi ®i2 1). 

Upon applying ф to both sides, we deduce that U(A ®ix 1) = (A ®ia 1)0(17). By 
Proposition 3.3.4, U has entries in УЪа, as does its inverse by the same argument 
with M replaced by Mv. Hence by Proposition 3.3.2, M descends to S#hd; let N be 
the resulting 0-module over Sihd. 

Choose any basis of N and let P be the ^int-span of the images of the basis 
elements under powers of ф. By computing in terms of v i , . . . , vn, we see that P 
is bounded, hence is a 0-stable ^int-lattice in M. By Lemma 1.5.7, P <g> Së™1 is a 
0-module, as then must be P. Thus M is étale, as desired. • 

It now remains to prove the faithful flatness results and to make the calculation to 
check Proposition 3.3.4; these occupy the remainder of the chapter. 

3.4. Interlude: tensoring over Bézout domains. — In order to use faithfully 
flat descent for our purposes, it will help to gather a few facts about tensoring over 
Bézout domains. 

Proposition 3.4.1. — Let IIe—> S be an inclusion of domains with R Bézout. Then S 
is faithfully flat over R if and only if S* П R = R*. 

Proof. — Recall that S is flat (resp. faithful) over R if and only if for each finitely 
generated proper ideal I of R, the multiplication map I <g) S —> S is injective (resp. 
not surjective). Since R is Bézout, I admits a single generator г ф Я*, and I ® S = 
rR (g) S = rS, so the map I 0 S —» S is injective, and it is surjective if and only if 
r e S*. This yields the claim. • 

Lemma 3.4.2. — Let M, N be modules over a Bézout domain R. Given a presentation 
Y2?=i Уг ® zi of x € M ®д N and elements ui,...,un G Я generating the unit ideal, 
there exists another presentation ^ j = i Vj ® zj of x with y[ = Y^7=i u%Vi-
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Proof. — By [21, Lemma 2.3], we can construct an invertible matrix U over R with 
Un = Ui for i = 1 , . . . , n. Then 

*$i 
i,/)}0-nj-ni 

ù*$ù 

]Uij(U ^jiVi^zi 

3 < г 
] UijVi 

I 

*$ù^$ù* 

so we may take y'ô = YA=I uijVi and z'ó = YA=I(u X)iizi-

Corollary 3.4.3. — Let M, N be modules over a Bezout domain R. If Yl?=i Vi ® z% 

is a presentation of some x G M (S)R N with n minimal, then y\,..., yn are linearly 

independent over R. 

Proof. — If on the contrary y\,..., yn are linearly dependent over R, then we can find 

ui,..., un G R such that uiyi + • • • + unyn = 0. By the Bezout property, ui,...,un 

generate a principal ideal, so we can divide through by a generator to reduce to the 

case where ui,...,un generate the unit ideal. Applying Lemma 3.4.2 now yields a 

contradiction to the minimality of n. • 

3.5. Projections. — The key to the descent argument is the construction of a cer­

tain projection from &L back to sectioning the inclusion going the other way that 

was constructed by Proposition 2.2.6. We now construct this projection, then use it to 

resolve all the outstanding statements needed to complete the proof of Theorem 1.7.1. 

Definition 3.5.1. — Let £ be the residue field of L, fix a basis B of £ over k containing 
1, lift B to a subset B of OL containing 1, and fix a uniformizer 7r of K. Then as in 
[20, Proposition 4.1], one sees that every element x G ̂ ^ / m ^ ^ ^ 1 1 can be written 
uniquely as a formal sum 

a£[0,l)nQbeB 

xaibUab (xaib G ^ i n t / m ^ i n t ) 

in which: 

— for each a G [0,1) П Q, there are only finitely many b for which ха^ Ф 0; 
- if we write Sc for the set of a G [0,1) П Q for which the t-adic valuation of any 

ха,ь (which is well-defined because xa^ is truncated modulo ттп) is less than c, 
then Sc is well-ordered for all с and empty for sufficiently small c. 

Given x thusly presented, write f(x) = x0,i; then again as in [20, Proposition 4.1], 
one checks that for ro as in Remark 1.2.5 and r G (0, Го), / induces a continuous map 
ârL -* @T with the property that for 

(3.5.1.1) |x|r — sup \ 
ote[0,l)nQ,aeL* 

{ | а Г ^ И Д ^ - а я ) | г } . 
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(Compare also [19, Proposition 8.1] and [22, Lemma 2.2.19].) 

Proposition 5.5.2. — The multiplication map ®^>BD & —• &L is injective. 

Proof. — Suppose the contrary; choose x ^ 0 in the kernel of the multiplication 
map, and choose a presentation x = Yl?=i V%^zi w^h n minimal. Then zi,...,zn are 
linearly independent over Mhd by Corollary 3.4.3. On the other hand, as a corollary of 
(3.5.1.1), we may choose a G [0,1) D Q and a G L* such that f(au~ayi) ^ 0; we then 
obtain the nontrivial dependence relation 0 = YA=I f(au~ayi)zi, contradiction. • 

Remark 3.5.3. — We now have a number of faithfully flat inclusions. For one, ^bd —* 
is faithfully flat by Proposition 3.4.1 and the fact that ^ * = (^bd)* (Remark 1.1.5). 

For another, g% —> £%L is faithfully flat by Proposition 3.4.1 and the fact that £%*L = 
(&ld)* (Remark 2.2.5); similarly, ^bd -»<#£d is faithfully flat. Putting these together 
and using Proposition 3.5.2 yields injections 

®&hd 3?LD ®&HD = (&td ®^BD SI) ®<% SL ^ ®<% 

that is, yhd y is injective. 

In order to calculate on , we use the following two-variable analogue of (3.5.1.1). 

Lemma 3.5.4. — For x G y, we have x G 5^HD if and only if for some r > 0, the 

quantities 

(3.5.4.1) lab^e-^-^Kf <g> f){{au~a <g> bu~fi)x)\a 

are bounded over all s G (0, r], all a, b G L*, and all a, /3 G [0,1) fl Q. 

Proof — If x G ^ b d , then we can bound the quantity (3.5.4.1) by bounding each 
term in a presentation of x. Conversely, suppose the quantity (3.5.4.1) is bounded. 
Choose a presentation x = Y2i=i Vi ® z% with y^zi G &L and n minimal. We proceed 
by induction on n; we may assume x ^ 0. Then yi / 0, so we can choose a, a with 
f(au-ayi)?Q. 

By (3.5.1.1), Y^A=i f(au~ayi)zi € ^Ld5 m particular, the ideal generated by the 
f(au~ayi) in 2% extends to the unit ideal in Since the ideal in St is finitely 
generated, it is principal, and since £%*L = ( S ^ d ) * , the generator in S must already 
be a unit. That is, the f(au~ayi) generate the unit ideal in S; by Lemma 3.4.2, we 
can choose another presentation x = YH=i v\^z'i w^n zi = Y^i=i f(au~ayi)zi € S\d. 
We must have z[ ^ 0 to avoid contradicting the minimality of n. 

Pick b, /3 so that f(bu~^z[) is nonzero and hence is a unit in S (since it must lie 
in ^bd) . Put a = fibu-PzD/fibu-Pz'i) for i = 2 , . . . ,n, then set 

„ _ \y'i +c2y'2 + ••• + Cny'n i = l \z\ i = l 

Wi < > 1 , * \z'i-CiZ[ 2 > 1 , 
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so that x = J2?=i Vi ® Then / ( f cu"^ ' ) = 0 for % = 2 , . . . , n, so \/{f{buT^z'{) = 
T,?=iy"f(°u-Pz?) G by (3.5.1.1). Since already f(bu-^z'{) G <^bd, we have 
Vi £ ^ L D - Applying the induction hypothesis to x — y" <g> z'{ = J2?=2 Vi ® ̂  yields 
the claim. • 

Proof of Proposition 3.3.4- — For each entry of v, choose a presentation Y^j Vij ® 

Zij with yij,Zij G C^L- As in the proof of Proposition 1.2.6, after possibly rescaling 

by a power of u, we may choose r G (0,ro) such that each term in a presentation of 

A has entries in <^£ and is bounded by 1 on the annulus e~r < \u\ < 1; we may also 

ensure that yij,Zij G for all i,j. Choose c > 0 such that for s G [r/q,r] and all 

h3i \Vij\s < c and |%|s < c (possible because we are picking s in a closed interval); 

then for all nonnegative integers ra, we have |0m(2/^)|s/qw < c and |0m(%)|s/g^ < c. 

Prom the equation 

v = A<t>{A)-.-<f>m-\A)<T{v), 

we deduce that for all a,/3 G [0,1) and all a, b G L*, 

la&r^-^-^K/ 0 /)((au"a 0 for'V)!, < c 
for all 5 G [r/gm+1, r/çm]; by varying m, we get the same conclusion for all s G (0,r]. 

By Lemma 3.5.4, v has entries in yhd, as desired. • 
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