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BERGMAN KERNELS AND
SYMPLECTIC REDUCTION

Xiaonan Ma, Weiping Zhang

Abstract. — We generalize several recent results concerning the asymptotic expan-
sions of Bergman kernels to the framework of geometric quantization and establish an
asymptotic symplectic identification property. More precisely, we study the asymp-
totic expansion of the G-invariant Bergman kernel of the spin® Dirac operator as-
sociated with high tensor powers of a positive line bundle on a symplectic manifold
admitting a Hamiltonian action of a compact connected Lie group GG. We also develop
a way to compute the coefficients of the expansion, and compute the first few of them,
especially, we obtain the scalar curvature of the reduction space from the G-invariant
Bergman kernel on the total space. These results generalize the corresponding results
in the non-equivariant setting, which have played a crucial role in the recent work of
Donaldson on stability of projective manifolds, to the geometric quantization setting.

As another kind of application, we establish some Toeplitz operator type properties
in semi-classical analysis in the framework of geometric quantization.

The method we use is inspired by Local Index Theory, especially by the analytic
localization techniques developed by Bismut and Lebeau.

© Astérisque 318, SMF 2008
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Résumé (Noyaux de Bergman et réduction symplectique). — Nous généralisons des ré-
sultats récents sur le développement asymptotique du noyau de Bergman au cadre de
quantification géométrique, et établissons une propriété d’identification asymptotique
symplectique. Plus précisement, nous étudions le développement asymptotique du
noyau de Bergman G-invariant de I'opérateur de Dirac spin® associé & une puissance
tendant vers 'infini d’un fibré en droites positif sur une variété symplectique com-
pacte munie d’'une action hamiltonienne d’un groupe de Lie compact connexe. Nous
développons aussi une fagon de calculer les coefficients du développement, et nous
calculons les premiers termes, en particulier, nous obtenons la courbure scalaire de la
réduction symplectique & partir du noyau de Bergman G-invariant sur I'espace total.
Ces résultats généralisent les résultats correspondants dans le cas non-équivariant,
qui ont joué un roéle crucial dans un travail récent de Donaldson sur la stabilité de
variétés projectives, au cadre de quantification géométrique.

Comme application de notre développement, nous établissons aussi des propriétés
de type opérateur de Toeplitz en limite semi-classique dans le cadre de quantification
géométrique.

Notre méthode est inspirée par la théorie de I'indice local, en particulier les tech-
niques de localisation analytique développées par Bismut-Lebeau.
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CHAPTER O

INTRODUCTION

The study of the Bergman kernel is a classical subject in the theory of several
complex variables, where usually it concerns the kernel function of the projection
operator to an infinite dimensional Hilbert space. The recent interest of the analogue
of this concept in complex geometry mainly started with the paper of Tian [43],
which was in turn inspired by a question of Yau [46]. Here, the projection concerned
is, however, onto a finite dimensional space.

Since [43], the Bergman kernel has been studied extensively in [38], [14], [47].
[25]. where the diagonal asymptotic expansion properties for high powers of an ample
line bundle were established. MNoreover, the coefficients in the asymptotic expansion
encode geometric information of the underlying complex projective manifolds. This
asymptotic expansion plays a crucial role in the recent work of Donaldson [18], where
the existence of Kihler metrics with constant scalar curvature is shown to be closely
related to the Chow-Mumford stability.

In [17], 28], [30]. Dai. Lin, Ma and Marinescu studied the full off-diagonal asymp-
totic expansion of the (generalized) Bergman kernel of the spin® Dirac operator and
the renormalized Bochner-Laplacian associated to a positive line bundle on a com-
pact symplectic manifold. As a by product, they gave a new proof of the results
mentioned in the previous paragraph. They found also various applications therein,
especially as was pointed out in [30], the full off-diagonal asymptotic expansion im-
plies Toeplitz operator type properties. This approach is inspired by the Local Index
Theory. especially by the analytic localization techniques of Bismut-Lebeau [7, §11].
We refer to the above papers as well as the recent book [31] for detail informations
of the Bergman kernel on compact symplectic manifolds.

In this paper. we generalize some of the results in [17], [28] and [30] to the frame-
work of geometric quantization. by studying the asymptotic expansion of the G-
invariant Bergman kernel for high powers of an ample line bundle on symplectic
manifolds admitting a Hamiltonian group action of a compact Lie group G.



2 CHAPTER 0. INTRODUCTION

To start with, let (X, w) be a compact symplectic manifold of real dimension 2n.
Assume that there exists a Hermitian line bundle L over X endowed with a Hermitian
connection V¥ with the property that
E RE =

27
where RV = (V)2 is the curvature of V.

Let (E,h*) be a Hermitian vector bundle on X equipped with a Hermitian con-

(0.1)

s

nection VF and let R” denote the associated curvature.
Let ¢7* be a Riemannian metric on X. Let J : TX — TX be the skew-adjoint
linear map which satisfies the relation

(0.2) wlu,v) = gt (Ju,v)

for u,v e TX.
Let J be an almost complex structure such that

(0.3) 9T (Ju, Jv) = g7 X (u,0).  w(Ju. Jv) = wlu,v)

and that w(-,J-) defines a metric on TX. Then J commutes with J and J =
J(=J2)"1/2 (cf. (2.8)).

Let VIX be the Levi-Civita connection on (TX, ¢7*) with curvature RT¥ and
scalar curvature 7. The connection V7 induces a natural connection V9t on
det(T19 X)) with curvature R4, and the Clifford connection VU on the Clifford
module A(T*9VX) with curvature R (¢f. Section 2.2).

The spin” Dirac operator D, acts on QU*(X.LP @ F) = @)_, Q"U(X, LV @ E),
the direct sum of spaces of (0, ¢)- forms with values in LP @ E. We denote by D;r the
restriction of D, on QU (X, L? @ F). The index of D;; is defined by

(0.4) Ind(D}) = Ker D} — Coker D).

Let G be a compact connected Lie group with Lie algebra g and dimg G = ny.
Suppose that GG acts on X and its action on X lifts on L and E. Moreover, we
assumne the G-action preserves the above connections and metrics on T'X, L, E and J.
Then Ind(D;) is a virtual representation of G. Denote by (Ker D)%, Ind(D;')(" the
G-trivial components of Ker D, In(l(D;') respectively.

The action of G on L induces naturally a moment map p : X — g* (cf. (2.16)).
We assume that 0 € g” is a regular value of .

Set P = p*(0). Then the Marsden-Weinstein symplectic reduction (X¢g =
P/G.wx,) is a symplectic orbifold (X¢ is smooth if G acts freely on P).

Moreover, (L. V1), (E,VF) descend to (L. V<), (Eq, VF¢) over X so that the
corresponding curvature condition =L RY¢ = wg holds (cf. [21]). The G-invariant

27
almost complex structure .J also descends to an almost complex structure Je on T' X,

and hf, h?, gTY descend to hlo, hP< g7 X< respectively.
One can construct the corresponding spin® Dirac operator D¢, on X¢.

ASTERISQUE 318



CHAPTER 0. INTRODUCTION 3

Assume for simplicity that G acts freely on P. The geometric quantization conjec-
ture of Guillemin-Sternberg [21] can be stated as follows: for any p > 0,

(0.5) dim (Ind(D;})¥) = dim (Ind(D¢, ),

holds when E is the trivial bundle C on X.

When G is abelian, this conjecture was proved by Meinrenken [34] and Vergne [45].
The remaining nonabelian case was proved by Meinrenken [35] using the symplectic
cut techniques of Lerman, and by Tian and Zhang [44] using analytic localization
techniques.

More generally, by a result of Tian and Zhang [44, Theorem 0.2], for any general
vector bundle E as above, there exists pp > 0 such that for any p > pg, (0.5) still
holds.

On the other hand, by [27, Theorem 2.5] (cf. (2.15)), which is a direct consequence
of the Lichnerowicz formula for D,,, for p large enough, both Coker D; and Coker ng »
are null (cf. also [10], [13]). Thus there exists py > 0 such that for any p > po,

dim(Ker D,,)¢ = dim(Ker D¢ ,,) = dim (Ind(Dap))

:/ Td(TX¢)ch(LY, @ Eq)
Xa

(0.6) B (p 1 (L(;))"*n”
= rk(E)' . —__(1’1 — o)l

rk(E)

+/Xv (cr(Be) + By (ry)) alle )

(n —mng —1)! +O(p"T?),

where ch(.),c1(.), Td(.) are the Chern character, the first Chern class and the Todd
class of the corresponding complex vector bundles (T'X¢g is a complex vector bundle
with complex structure Jg).

Set E, := A(T* "V X)Y® LP® E. Let (.,.) be the L?-scalar product on Q**(X, L?®
F) = € (X, E,) induced by g7~ At ¥ asin (1.19).

Let PS be the orthogonal projection from (Q%*(X,L? @ E),(.,.)) on (Ker D,)¢.
The G-invariant Bergman kernel is PPG (z,2") (x,2’ € X), the smooth kernel of PIf
with respect to the Riemannian volume form dvx (z’).

Let pry; and pry be the projections from X x X onto the first and the second factor
X respectively. Then P (z,2) is a smooth section of pri(E,) ® pr5(Ey) on X x X.
In particular, PPG({L', z) € End(E,), = End(A(T*OVX) @ E),.

The G-invariant Bergman kernel P,?(:z:, 2') is an analytic version of (Ker D,)¢. In
view of (0.6), it is natural to expect that the kernel PPG (x,x’) should be closely related
to the corresponding Bergman kernel on the symplectic reduction X¢. The purpose
of this paper is to study the asymptotic expansion of the G-invariant Bergman kernel
PPG (z,2') as p — oo, and we will relate it to the asymptotic expansion of the Bergman
kernel on the symplectic reduction X¢.

SOCIETE MATHEMATIQUE DE FRANCE 2008



4 CHAPTER 0. INTRODUCTION

Let dX(z,2') be the Riemannian distance between z, 2’ € X.

In Section 2.4, we prove the following result which allows us to reduce our problem
as a problem near P = p~1(0), it works without the assumption on the freeness of
the action of G on P.

Theorem 0.1. — For any open G-neighborhood U of P in X, eg > 0, [,m € N, there
exists Ci, > 0 (depending on U, €q) such that for p > 1, x,2’ € X, dX(Gx,2") >
orz,x’ € X \U,

(0.7) |PS (x,2")|m < Crmp ™,
where €™ is the €™ -norm induced by VY, VE, VTX_ bl hY and gTX.

Let U be an open G-neighborhood of 17(0) such that G acts freely on U.

For any G-equivariant vector bundle (F, V) on U, we denote by Fg the bundle
on U/G = B induced naturally by G-invariant sections of £ on U. The connection
vV induces canonically a connection V% on Fg. Let RF? be its curvature. Let

(0.8) pf(K) = Vix — Li € End(F)

for K € g and K% the corresponding vector field on U.

Note that PTE; € (€=U x U,priE, ® prEE;))GXG, thus we can view PpG(;n,:r’)
(x, 2" € U) as a smooth section of pri(Ey,)p @ pr3(Ey;)p on B x B.

Let g7® be the Riemannian metric on U/G = B induced by ¢7*. Let VT8 be
the Levi-Civita connection on (T'B, ¢7®) with curvature RT2. Let Ng be the normal
bundle to X in B. We identify N with the orthogonal complement of T X in
(TB|XG> gTB)'

Let g7X¢ | g™V¢ be the metrics on T X, Ng induced by g7 7 respectively.

Let PTXc  pPNc be the orthogonal projections from T B|x,. on T X¢, Ng respec-
tively. Set

vN(; — PN(; (VTB|X(,)PNG, VT)((;; _ pTX(; (vTB| Xe )PTX(; .

O ogts _grxe g gve. 4 Z B ogTh

Then VN6 | 0w are Euclidean connections on N¢, TB|x,. respectively, VIX¢ is the
Levi-Civita connection on (7' X, g7 %), and A is the associated second fundamental
form.

Denote by vol(Gz) (x € U) the volume of the orbit Gz equipped with the metric
induced by g7 . Following [44, (3.10)], let h(z) be the function on U defined by

(0.10) h(z) = (V()I(G;z:))lﬂ.

Then h reduces to a function on B.

Denote by Ice g the projection from A(T*(D X )% E onto C & E under the decom-
position A(T* OV X Yo F = Co EG A (T* OV X )% E, and Icg g, the corresponding
projection on B.

ASTERISQUE 318



CHAPTER 0. INTRODUCTION 5

In the whole paper, for any ¢ € X, Z € T,, B, we write Z = Z° + Z+, with
Z° € TpXa, Z+ € Ng oy -

4L
Let 7502+ € NG.expff" (20

connection VV¢ along the geodesic in X¢, [0,1] 2 ¢ — expﬁf"(tZO).

) be the parallel transport of Z+ with respect to the

For £¢ > 0 small enough, we identify Z € T, B, |Z| < o with exp? pr(ZO)(TZo Z+) e
expry
B. Then for g € X, Z, 2" € Ty, B, |Z|,|Z'| < €9, the map ¥ : TB|x, x TB|x, —

B x B,

W(Z,7') = (exp? « (r70 2 1))

1 B
) Tzod ), €x
exp_,,(f'(ZU)( z" ) Pe

xpy(Z2'0)
is well defined.

We identify (E,)5.z to (E,)p.., by using parallel transport with respect to V(£r)z
along [0,1] 3 v — uZ.

Let 7p : TB|x. X TB|x, — Xc¢ be the natural projection from the fiberwise
product of TB|x, on X onto X¢.

From Theorem 0.1, we only need to understand PPGO\I’, and under our identification,
P oW (Z,Z') is a smooth section of

m5(End(E,)p) = mh (End(A(T* VX)) @ E)p)

on TB|x., x TB|x,-

Let | |gm (x,) be the ¢ -norm on € (Xq, End(A(T*®VX) ® F)p) induced
by VClifte Es pE and ¢TX. The norm | l%"”’(Xo) induces naturally a ¢ -norm
along X on €*(TB|x, x TB|xe, 75 (End(AT*OVX) ® E)p)), we still denote it
by [ fgm (xa):

Let dvg, dvx,,. dun, be the Riemannian volume forms on (B, g7 %), (X¢a, g7 ¥e),
(Ng, gNe) respectively. Let k € €°°(T'B|x,,R), with k = 1 on X¢, be defined by
that for Z € T,,B. 2o € Xqa,

(0.11) dvp(vo. Z) = w(xo, Z)dvr, 5(Z) = rk(xo, Z)dvx, (vo)dvn, ,, -

The following result is one of the main results of this paper.

Theorem 0.2. — Assume that G acts freely on = '(0) and J = J on u='(0). Then
there exist Q.(Z,7') € End(A(T*OVX) @ E)p.., (v0 € Xg,r € N), polynomials
in Z.Z' with the same parity as v, whose coefficients are polynomials in A, RTB,
RCUEs  REs - E Ol (resp. X, R RE: resp. h, RV, RV®; resp. 1) and their
derivatives at xg to order r — 1 (resp. r — 2; resp. r; resp. v+ 1), such that if we
denote by

(0.12) PNz, 2" = Q. (Z, ZVP(2,2"), Qu(Z,Z") = Icor,

Zo

SOCIETE MATHEMATIQUE DE FRANCE 2008



6 CHAPTER 0. INTRODUCTION

with
(0.13) P(Z.2') =exp ( - g|zo — 2 — /=T (e 20, Z’0>)
x 272 exp ( —n(|ZH* + |Z'J‘|2)),

then there exists C"" > 0 such that for any k,m,m/,m"” € N, there exists C > 0 such
that for xo € Xq, Z,Z' € Ty, B, | Z|,|2'| < gq, V

glal+la’]

0.14) (1+ plZ5 |+ vBlZH)™" s —
010 (Rt VR e |

o] +]a’|<m

no 1 1 v k T
(P % (b)) (3 )2V P 0 W(2,2') = 3 P (P2, V2w F)

r=0
< Cp—(kJrl—m)/‘Z(1+\/E|ZO|+\/Z—)|Z/0[)2("+k+m +2)+m exp (_‘ /C”\/I_?|Z-Z/[)+ﬁ(p‘°°).
Furthermore, the expansion is wuniform in the following sense: for any fixed

k,m,m’.m"” € N, assume that the derivatives of g7X, h', VI, h¥, VE and J

with order < 2n+k+m+m’ +5 run over a set bounded in the €™ -norm taken with

cg)'m,/ (XG‘)

respect to the parameters and, moreover, gTX runs over a set bounded below, then
the constant C is independent of g7X; and the €™ -norm in (0.14) includes also the
derivatives on the parameters.

In (0.14), the term &'(p~>) means that for any [,1, € N, there exists C;;, > 0 such
that its ¢'*-norm is dominated by Cy;,p~".

It is interesting to see that the kernel P(Z, Z’) is the product of two kernels : along
T,,Xg, it is the classical Bergman kernel on T, X with complex structure .J,,, while

along Ng, it is the kernel of a harmonic oscillator on N¢ 4, -

Remark 0.3. — 1) Theorem 0.2 is a special case of Theorem 2.23 where we do not
assume J = J on P = ;~1(0). In Theorem 3.2, we get explicit informations on P(")
when J verifies (3.2).

ii) If G does not act freely on P, then X¢ is an orbifold. In Section 4.1, we
explain how to modify our arguments to get the asymptotic expansion, Theorem 4.1.
Analogous to the usual orbifold case [17, (5.27)], ]’5(7,1)(1 € P) does not have a
uniform asymptotic expansion if the singular set of X¢ is not empty.

iii) Let V be an irreducible representation of G, let P,Y be the orthogonal projection
from Q°%*(X, L? ® E) on Homg(V,Ker D)) © V C Ker D,,. In Section 4.2, we get the
asymptotic expansion of the kernel Pf(r 2’) from Theorems 0.1, 0.2.

iv) When G = {1}, Theorem 0.2 is [17, Theorem 4.18'].

v) If we take Z = Z/ = 0 in (0.14), then we get for z¢ € X¢,

(0.15) PO0,0) =27 Ieg .

X

(M1In the exponential factor of [32, (7)], we missed m’ as in the last line of (0.14) here.

ASTERISQUE 318



CHAPTER 0. INTRODUCTION 7

and

k
0.16 R B2(20) P (0, 20) — Y PE(0,0)p" < Cp~Fh-1,
©016)  |p ()P zora) = 3 PEVO.007 <O
In Section 4.3, we show that (0.15) and (0.16) are direct consequences of the full off-
diagonal asymptotic expansion of the Bergman kernel {17, Theorem 4.18']. In fact,
one possible way to get Theorem 0.2 is to average the full off-diagonal asymptotic
expansion of the Bergman kernel on X [17, Theorem 4.18'] with respect to a Haar
measure on G. However, we do not know how to get the full off-diagonal expansion,
especially the fast decay along N¢ in (0.14) in this way.

In this paper we will apply the analytic localization techniques to prove Theorem
0.2, and this method also gives us an effective way to compute the coefficients in
the asymptotic expansion (cf. §3.2). The key observation is that the G-invariant
Bergman kernel is exactly the kernel of the orthogonal projection to the zero space
of a deformation of Df) by the Casimir operator (i.e., to consider Df) — pCas). This
plays an essential role in proving Theorems 0.1, 0.2.

Let .7, be a section of End(A(T**YX) & E)p on X defined by

(0.17)  F,(x0) :/ W (2o, Z)PS 0 W (w0, Z), (w0. Z))K(20. Z)doNn, (Z).
ZeNG,|Z|<e0
By Theorem 0.1, modulo &(p~°°), .#,(x¢) does not depend on &g, and

dim(Ker D,)¢ = / TI‘[P,?(Z%?/)](]UX(Z/)
Jx

= [ wipS . pldox ) + o)
(0.18) ;

= / h?(y) Tr[PpG(y, y)]dvg(y) + €(p™>)
JB

= / Tr[ 7 (xo)]dvx,, (x0) + O(p~ ™).
J Xa

A direct consequence of Theorem 0.2 is the following corollary.

Corollary 0.4. — Taking Z = Z' € NgG »,, m =0 in (0.14), we get

k
(0.19) |p™ " F (2R 2)PE(Z.2) = > PO (/pZ.pZ)p

com/ .
r=0 e (Xe)

< Cp~ N2 4 Jplz) T 4 o).

In particular, there exist ®, € End(A(T*VX) @ E)p., (r € N) which are poly-
nomials in A, RTB, ROs REs P Ol - (pogp X RISt RE. resp. h, R'5B,

R resp. i), and their derivatives at xo up to order 2r — 1 (resp. 2r — 2; resp. 2r;

SOCIETE MATHEMATIQUE DE FRANCE 2008



8 CHAPTER 0. INTRODUCTION
resp. 2r + 1), and ®g = Icyr,, such that for any k.m’ € N, there exists Ci e > 0
such that for any ro € Xg, p € N,

(0.20) p 7 (2) Z@ (x0)p —ke1

Cgm, < Ck,m’p

In the rest of Introduction, we will specify our results in the Kéhler case.

We suppose now that (X,w,J) is a compact Kihler manifold and J = J on X.
Assume also that (L, h*, VL), (E, h¥ V) are holomorphic Hermitian vector bundles
with holomorphic Hermitian connections, and the action of G on X, L, E is holomor-
phic.

Let H/(X,LP ® E) (0 < j < n) be the Dolbeault cohomology of the Dolbeault
complex (QV*(X, LP® E), 0 Hrek ) of X with values in LP @ E. Espeically, H°(X, LP
E) is the space of the holomorphic sections of LP ® FE on X.

Let 97 2% be the formal adjoint of the Dolbeault operator 51/’@15, then
(0.21) D, = \/5(5”@%? + (,—,)L”LX'E,*)’
and
(0.22) D2 =2 (EU’@EEL”@E,* N sL’)QZ;E,*ng@E)

preserves the Z-grading of Q"* (X, LP @ E).
By the Kodaira vanishing theorem, for p large enough,

(0.23) (Ker D,)% = HY(X, L @ E)“.

Thus for p large enough, P (r,2') € (LP @ B), @ (L? ® E)%, and so Pf(:l;,:x:) €
End(E.), Zp(x0) € End( I“). In particular, in (0.15),

(0.24) PO0,0) =272 Idg,

Lo

Remark 0.5. — In the special case of I = C, .I:)IS;(.’I,‘Q,.’I?()) is a non-negative function
on X¢, and (0.16) has been proved in [36, Theorem 1] (without obtaining the infor-
mations on P2"(0.0)), while in [37, Theorem 1], it was claimed that P{0’(0,0) = 1.
In [36, Prop. 1], Paoletti showed that for any I € N, there is C' > 0 such that for
any p, |PPG(J), x)] < Cp~! uniformly on any compact subset of X \ (z~1(0)U R), with
R the subset of unstable points of the action of G. In [37], some Toeplitz opera-
tor type properties on X were also claimed to follow from the analysis of Toeplitz
structures of Boutet de Monvel-Guillemin [11], Boutet de Monvel-Sjostrand [12] and
Shiffman-Zelditch [40]. If we suppose moreover that G is a torus, Charles [15] has
also a different version on the Toeplitz operator type properties on X¢.

In Section 4.5, we will show that Theorem 0.2 implies properties of Toeplitz oper-
ators on X (which also hold in the symplectic case). In particular, we recover the
results on Toeplitz operators from [15], [37].

ASTERISQUE 318



CHAPTER 0. INTRODUCTION 9

Let i denote the restriction to X of the function h defined in (0.10).

The second main result of this paper is that we can in fact obtain the scalar
curvature 7~X¢ on the symplectic reduction X¢ from .

We will use the following notation: when a subscript index appears two times in a
formula, we sum up with this index.

Theorem 0.6. — If (X ,w) is a compact Kdhler manifold and L. FE are holomorphic
vector bundles with holomorphic Hermitian connections V. VF, J = J, and G acts
freely on u='(0), then for p large enough, Zy(xo) € End(E¢)s,, and in (0.20).
®,(x9) € End(Eg),, are polynomials in A, RTB, REz y® RF (resp. h, RL5;
resp. ) and their derivatives at xo to order 2r — 1 (resp. 2r; resp. 2r + 1), and
dy = Idp,. Moreover

1 3
(0.25) 1 (w0) = o G +4—Ax(, 1ogh+—f?5;( 0. @Y).

Here rX¢ is the Riemannian scalar curvature of (X (,-,gTX""), Ax, 1is the Bochner-
Laplacian on X¢ (¢f. (1.21)). and {w?} is an orthonormal basis of T X¢.

Since the non-equivariant version of this result has already played a crucial role in
the work of Donaldson mentioned before, we have reason to believe that Theorem 0.6
might also play a role in the study of stability properties of projective manifolds.
Indeed, as Donaldson usually interprets his results in the framework of geometric
quantization. this seems likely to be so.

We recover (0.6) from (0.25) after taking the trace, and then the integration
on X¢. Thus (0.25) is a local version of (0.6) in the spirit of the Local Index Theory.
The appearance of the term _{%;AX(, log I is unexpected.

. . . TX .
Let T be the torsion of the connection *V in (1.2) on U. The curvature © of
the principal bundle U — B relates to the torsion 7' by (1.6).
Following (3.6) and (5.21). we choose {(f'} to be an orthonormal basis of Ng ., and

1.0) y- . L. :
{ } € T,(U )X to be the holomorphic basis of the normal coordinate on X, and

(1(‘1‘1110 Tieton s TJ;,; as in (5.14). In particular, by Remark 5.3. T;,[ = 0 if GG is abelian.
The G-invariant section ¥ of TY @ End(E) on U is defined by (1.13) and (1.14).
If there is no other specific notification in the next formula (0.26), when we meet

2, we will first do this operation. then take the sum of the indices.

the operation |
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Theorem 0.7. — Under the assumption of Theorem 0.6, for p > 0 large enough,
PpG(:U,:c) € End(E,) and PX)(O, 0) € End(FE,,). Moreover,

g 1
(0.26) P20, 0):27{ a4 — REG(TT 25) + = AXG log I

bl
8 7

3 2
3G V. tosh - 2VEIV 4 5 logh — —}v 5 logh,\
T 920

8 k ok ™ ]T(()., d_—T)') ‘(/:1

5

2
V ! log h‘ + ‘—|T(Pk ) ()—“)|2 + _’T(m“ o*”>|

2 1 . 1 =~ ~ ~
’ Z (() ” ()7“ l + :Er-l];ﬁm + EIZ—UA(_/];\Jl + 3,]:/I*)

s

1 .~ 1
+ 2— <'“’£J’NJE‘;J>Q'1'Y + = < & I(()~” <)7“ >

(;\/—— <~1L‘ ](J >v n 1()() ]) _}_\{1__— <](} vz’;'ﬁE>} ‘

s

Remark 0.8. — Certainly, if we only assume that J = .J on a ncighborhood U of
P = p~1(0), then we still have ®,(x¢) € End(Eq).,. as we work on the kernel of the
Dirac operator D). Set ., 0 = Icgp.-#plce k.. the component of .7, on C @ Fg.
As the computation is local, we still have Theorem 0.6 with %, replaced by .7, ¢
and .7, — 9, ¢ = O(p~>) (cf. (5.19)). If we only work on the d-operator, i.e.. the
holomorphic sections, in Section 5.5, we explain how to reduce the case of general J

to the case J = .J. Same remark holds for PPC (ro.x0).

Let 7 : P — X be the natural injection.

Let g : €% (P, LY @ E)Y — ¢>(X¢, LY, 0 E¢) be the natural identification.

By a result of Zhang [48, Theorem 1.1 and Proposition 1.2], one sees that for p
large enough, the map

TGoit 1 €(X. LM @ )Y — ¢€>(Xq. LY. @ Eq)
induces a natural isomorphism
(0.27) o, =mgoit: H'(X. LV = E)Y — H(X¢. LY, © Eq).
(When E = C, this result was first proved in [21, Theorem 3.8].)

The following result is a symplectic version of the above isomorphism which is
proved in Corollary 4.13, as a simple application of the Toeplitz operator type prop-
erties proved in that subsection. It might be regarded as an “asymptotic symplectic
quantization identification”, generalizing the corresponding holomorphic identifica-

tion (0.27).

Theorem 0.9. — If X is a compact symplectic manifold and J = J, then the natural
map o, : (Ker D,)¢ — Ker D¢, defined in (4.88) is an isomorphism for p large
enough.
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Now we go back to the holomorphic situation.

Let (,)rr@m, be the metric on L?, @ E¢ induced by h%¢ and h¥e.

In view of [44, (3.54)], the natural Hermitian product on ¢ (X¢. LY, © E¢) is the
following weighted Hermitian product (,);:

(028) <31 s 5’2>1~L = /X <81 . .SQ)LI&’;@EG (.T())?LQ (."L'()) d’UXG, (.’L’(}).
(€]

In fact, me; @ (€ (P.LP @ E)9,(.)) — (€™ (X¢. LY, @ Eg). (,)5) is an isometry.
We still denote by (,) the scalar product on H°(X, L? @ E)“ induced by (0.23).

_ o
E

Theorem 0.10. — The isomorphism (2p)
(HY(X, LP 2 E)Y,(,)) onto (HY(Xq., LY, ®
mal basis of (HO(X.LP @ E).(.)). then

op 15 an (Isqmptofi( isometry from
Eq).(.);), i-e.. if {: ‘”} », is an orthonor-

ng

. P
(0.29) (2p) " F (ops?, apst); = 6y + /}({)

1

From the explicit formula (0.26), one can also get the coefficient of p~" in the

expansion (0.29) (cf. [31, Problem 7.2]). We leave it to the interested readers.

Remark 0.11. - Theorem 0.10 also admits a natural symplectic extension correspond-
ing to the asymptotic identification result in Theorem 0.9 (cf. Chapter 7).

Let f’l;‘{(" denote the orthogonal projection from (€ (Xq, Ly, ® Eg).(.);) onto
HY(X,L!,®E¢). Let P G (xg.x() (xo. 25 € Xg) be the smooth kernel of the operator
ﬁpx(" with respect to h2 () dvx,, (x]).

The following result is an casy consequence of [17, Theorem 1.3].

Theorem 0.12. Under the assumption of Theorem 0.6, there exist smooth coeffi-
cients ®,(vo) € End(£¢ ), which are polynomials in RTX¢ | RFC (resp. h). and
their derivatives at xqg to order 2r — 1 (resp. 2r), and 50 = Idg,,, such that for any
k.l € N, there exists Cy; > 0 such that for any rog € Xa, p € N,

< Crap™*1

(0.30) PR () PN (g ) 72@ (xo)p™"

r=0

Moreover, the following identity holds,

(0.31) Oy (20) = —ra¢ + —A o logh + ——Rl’( (w), wY).

1
87T () €T

Remark 0.13. —— From (0.25) and (0.31), one sees that in general ®; # @y, if A is not
constant on X¢. This reflects a subtle defect between the Bergman kernel and the
geometric quantization.

From the works [17], [28] and the present paper, we see clearly that the asymptotic
expansion of Bergman kernel is parallel to the small time asymptotic expansion of the
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heat kernel. To localize the problem, the spectral gap property (2.15) and the finite
propagation speed of solutions of hyperbolic equations play essential roles.

Let U be a G-neighborhood of z~*(0) as in Theorem 0.2. in this paper, we will
then work on U/G.

Indeed. after doing suitable rescaling on the coordinates, we get the limit operator
Z9 (cf. (3.13)) which is the sum of two terms, one along T, X¢. whose kernel is
infinite dimensional and gives us the classical Bergman kernel as in C"~"¢, the other
along N¢g. which is a harmonic oscillator and its kernel is one dimensional. This
explains well why we can expect to get the fast decay estimate along N¢g in (0.14).

This paper is organized as follows. In Chapter 1. we study connections and Lapla-
cians associated to a principal bundle. In Chapter 2, we localize the problem by using
the spectral gap property and finite propagation speed, then we use the rescaling
technique in local index theory to prove Theorem 2.23 which is a version of Theo-
rem 0.2 without assumption on J. We assume G acts freely on P = p~1(0) in Sections
2.5-2.8, and in Section 4.1 we explain Theorem 4.1. the version of Theorem 0.2 where
we only assume that g is regular at 0. In Chapter 3, we get explicit informations
on the coefficients P when J verifies (3.2). thus we get an effective way to com-
pute its first coefficients of the asymptotic expansion (0.14). Especially, we establish
(0.12) and (0.13). In Chapter 4, we explain various applications of our Theorem 0.2,
including Toeplitz operator properties, ete. In Chapter 5. we compute the coefficient
®; in Theorem 0.6 and in the general case: J # J. In Chapter 6, we compute the
coefficient Pl(,f)((), 0) in Theorem 0.7. In Chapter 7. we prove Theorems 0.10, 0.12.

Some results of this paper have been announced in [32], [33].

Notations. — We denote by C, N, Q, R, Z the complex, natural, rational, real, inte-
ger numbers, and C* = C\ {0}. N* = N\ {0}. R* = R\ {0}. Ry = [0.>[. R} =]0.[.
For u € R, we denote by |[u] the integer part of u.

Fora =(aq,....q,,) € N B = (B;..... B,,) € C™, we denote by

m

lal = Z(l’j. al = H(ufj!). B = H B
J

J=1 J

We denote by dim or dimg the complex dimension of a complex (vector) space.
We denote also by dimg the real dimension of a space.

For a complex vector bundle E on a manifold X, rank(FE) denotes its rank, and
Idg the identity endomorphism. Also. det(E) := A™"&(E)(E) is the determinant line
bundle of E/, E* is the dual bundle of E and End(F) := E® E*. The spacc of smooth
sections of F over X is denoted by > (X. E).

If Q is an operator, we denote by Ker(Q) its kernel, Im(Q) its image set.

If V' is a representation of the group G. then we denote its G-invariant sub-space
by V&.
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In the whole paper, if there is no other specific notification, when an index variable
apperas twice in a single term, it implies that we are summing over all its possible
values.
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CHAPTER 1

CONNECTIONS AND LAPLACIANS
ASSOCIATED TO A PRINCIPAL BUNDLE

In this Chapter, for a G-principal bundle 7 : X — B = X/G, we will study the
associated connections and Bochner-Laplacians. The results in this chapter extend
the corresponding ones in [2, §1d)] and [1, §5.1, 5.2] where the metric along the fiber
is parallel along the horizontal direction. These results will be used in Proposition 2.7
and in Sections 3.3, 5.

If G acts only infinitesimal freely on X, then B = X/G is an orbifold. The results in
this chapter can be extended easily to this situation, as will be explained in Section 4.1.

This Chapter is organized as follows. In Section 1.1, we study the Levi-Civita
connection for a principal bundle which extends the results of [2, §1d)]. In Section 1.2,
we study the relation of the Laplacians on the total and base manifolds.

1.1. Connections associated to a principal bundle

Let a compact connected Lie group G act smoothly on the left on a smooth mani-
fold X and dimg G = ng. We suppose temporary that G acts freely on X. Then

m: X —-B=X/G

is a G-principal bundle. We denote by T'Y the relative tangent bundle for the fibration
m: X — B.

Let ¢7X be a G-invariant metric on TX. Let VI be the Levi-Civita connection
on TX. By the explicit equation for (VI ) in [1. (1.18)]. for W, Z, Z’ vector fields
on X,

(1.1) 2{VIr2.2)Y =W (2. 2+ Z(W. 2"y~ Z' (W.Z)
~ (W.Z, 2"y = (Z, [W. Z')) + (Z'.[W. Z]) .
Let 7 X be the orthogonal complement of 7Y in TX .

For U € TB, let U" € T X be the lift of U such that 7.U” = U. Let L;n be
the corresponding Lie derivative.
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Let g7, ¢g7"X be G-invariant metrics on TY. T X induced by ¢g7X. Let PTY,
PT"X be the orthogonal projections from TX onto TY, TH X.

Let ¢7B be the metric on TB induced by g7 ~. Let VIB be the Levi-Civita
connection on (T B, gT?) with curvature RT5. Set

(1.2) VTN —pgTB Ty o pTYQTY pTY - 0gT Y 9Ty g g7 X

Then VT"X 09T define Euclidean connections on THX, TX. and V™Y is the
connection on 7Y induced by VT (cf. [2, Def. 1.6]).

Let T be the torsion of °V' ™ and let S € T* X@End(TX). ¢TY € T* B&End(TY)
be defined by

(1.3) §=vTx oyt Gl = (T ) W Lyng™Y) for U e TB.

Then S is a 1-form on X taking values in skew-adjoint endomorphisms of T X.

By [6. Theorem 1.2] (c¢f. [5, Theorems 1.1 and 1.2}) the proof of which can also be
found in [1, Prop. 10.2] where one applies directly (1.1), we know that V7Y is the
Levi-Civita connection on TY along the fiber Y. and for U € T'B,

1 . , 1 .

(1.4) v /H = Lyn + 5(9” )71 (LU“.(JTY) = Lyun + 59'(?
Let g be the Lie algebra of GG. For K € g, we denote by K = d)tc“”‘ Z|t—p the
corresponding vector field on X, then gK ¥ = (Ad, (K ))X Thus we can identify the

trivial bundle X x g with Ad-action of G on g to the G-equivariant bundle TY by the
map K — KX

Let 6 : TX — g be the connection form of the principal bundle 7 : X — B such
that TH X = Ker#, and O its curvature.

For Ki.Ks € g. U.V € TB. as U is G-invariant. we have

(1.5) Lyn K = —[K;¥. U] =0.
By (1.4), (1.5), we get T € A*(T*X) @ TY and

T vty =ew vty = - pTY Ut v, T(A’;’(,Kf) = 0.
(1.6) vrrTH X Lory 1 TY N\ 1 X L. ry
TU", Ky = 5(9 ) (Lyng' KT = (/l Kt
And by (1.1), (1.4). (1.5) and (1.6), for W € TX, we have (cf. also [2., (1.28)]. [1,
Prop. 10.6]),

S(WYTY)c THX. S(U”)V” eTy.
(1.7) 2(S(UMKYX VY = 2(S(KMHUT VY = (T(Uu" vy KX .

(S(K UM K >:—<5 ]\Q VK. UM

= U”{A 3R = (TWM K. K3
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Let {e;} be an orthonormal basis of TB. By (1.3) and (1.7). for Y a section of TY,

- 1
(1.8) vgiﬁy:V@LY+§<T(UH,65),Y>651.
Proposition 1.1. — Let {f;}'°, be a G-invariant orthonormal frame of TY , then
o
(1.9) S virn=o.
=1
Proof. — (1.9) is analogous to the fact that any left invariant volume form on G is

also right invariant. We only need to work on a fiber Y;, b € B.
Let dvy be the Riemannian volume form on Y.
By using Ly, fi = Vﬁg fi — V};Y fi and dvy is preserved by VY on Y;, we get

()

(1.10) Lydvy => (V7Y fi, fi) doy.
=1

Now from Ly, =iy, d¥ + dY/i,fk and <V}F1Yfk, fl> is G-invariant and (1.10), we get

o

(1.11) 0= / L/A_dvy — Z <V}1Yfk,fl>/ d?)y.

Yo =1 Yo
From (1.11), we get (1.9). O
Remark 1.2. - 1f g7 is induced by a family of Adg-invariant metric on g under the

isomorphism from X x g to TY defined by K — KX, then (1.9) is trivial. In this
case, as in [19, Theorem 11.3], for Y}, Y5 two G-invariant sections of TY, by (1.1), we

have

(1.12) Vi Y, = [¥1, Y]

[N

1.2. Curvatures and Laplacians associated to a principal bundle

Let (F,h%) be a G-equivariant Hermitian vector bundle on X with a G-invariant
Hermitian connection V¥ on X. For any K € g, denote by Lx the infinitesimal
action induced by K on the corresponding vector bundles.

Let uf" be the section of g* ® End(F) on X defined by,

(1.13) p(K) =V« — Lk for K €g.

By using the identification X x g — TY, uf defines a G-invariant section g’ of
TY @ End(F') on X such that

(1.14) (u" K~y = p"(K).
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The curvature R} of the Hermitian connection V¥ — 1F(0) on F is G-invariant.
Moreover as VI is G-invariant, by (1.13),

(1.15) RE (KX v) = [Lic. VI = 5P (0))(v) = 0
for K € g,veTX, and
(1.16) Rl = R" =V (u"(0)) + 1 (0) A " (9).

The Hermitian vector bundle (F, k") induces a Hermitian vector bundle (Fp, hf?)
on B by identifying G-invariant sections of F on X.
For s € €><(B, Fp) ~ ¢>(X, F)¢, we define

(1.17) Vits=Vhus.

Then V5 is a Hermitian connection on Fg with curvature R¥E.
Observe that V7 is the restriction of the connection V" — p#(0) to €< (X, F)¢
and Rf? is the section induced by Rf: From (1.16), for U,,Us € T B, we get

(1.18) RY5 (U, Uy) = RE(UH U - uF(0)(U,, Us).

Let dvyx be the Riemannian volume form on (X, g7¥). We define a scalar product
on €°°(X, F) by

(1.19) (51, 82) / (s1,82)p(2) dux ().

As in (1.19), h¥2 gTP induce a natural scalar product ( ) on €>(B, Fi).
Denote by vol(Gz) (x € X) the volume of the orbit Ga equipped with the metric
induced by ¢7¥. The function

h{x) = \/vol(Gzx), z€ X,

as in (0.10) is G-invariant and defines a function on B.
Denote by 7g @ €°°(X, F)Y — ¥°(B, Fp) the natural identification. Then the
map

(1.20) ® = hng : (€(X,F)°. () = (€>(B.Fg).{.))

is an isometry.
Let {eq}]", be an orthonormal frame of T'X .
Let (E,h*) be a Hermitian vector bundle on X and let V¥ be a Hermitian con-
nection on E. The usual Bochner Laplacians A®, Ay are defined by
m
(1.21) AP = 3 ((VE) = VEk,, ). Ax=AC
a=1
Let {fi};2°, be a G-invariant orthonormal frame of TY, and {f'} its dual frame,
and let {e;} be an orthonormal frame of T B, then {e/!, fi} is an orthonormal frame
of TX.
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To simplify the notation, for o1,0, € TY @ End(F), we denote by (01, 02),rv €
End(F') the contraction of o1 @ o2 on the part of TY by ¢TY . In particular,

0o

(1.22) (@ gy = Y (A" fi)? € End(F).

=1
The following result extends [1, Prop. 5.6, 5.10] where F' = X xg V for a G-
representation V', and where g7 is induced by a fixed Adg-invariant metric on g
under the isomorphism from X x g to TY defined by K — KX (Thus h is constant
on B).

Theorem 1.3. — As an operator on €°°(B. Fg), we have
~F ~ 1

(1.23) AP = AP — (nF gy oy — ]—ABh.
L

Proof. — At first by (1.6) and (1.7),
(1.24) l—(cih,) = §(L€udl)y)/d’1)y = —<L )Hf = —§<L€Hfl,fl>
N ; i

= %(Le,HQ N fr) = —<T TR = "%<S(fl)fl>ezH>'

As it is G-invariant, then (%, f1) is also a G-invariant section of End(F).
By (1.13), V§ = (a", fi) on €™ (X, F)“, and by (1.3), Vi fi = V¥ fi+S(fi) fis
thus by (1.20), we get for 1 < [ < ny,

(1.25) D[(VT)? VVI xp @7 = (@A) = VY ) = WV SR R
From (1.7), (1.9), (1.21), (1.22), (1.24) and (1.25), we have

(1.26)
SAFDP = icb[(vF P = Vi, H]qu _ icb[(vf;) - Vi ,}clrl
1=1 f =1

= hAFPRTE NG ) = 2(eh) VPR = AP (5F ) gy — —ABh

=1

SOCIETE MATHEMATIQUE DE FRANCE 2008






CHAPTER 2

G-INVARIANT BERGMAN KERNELS

In this Chapter, we study the uniform estimate with its derivatives on t = # of

the G-invariant Bergman kernel PPG(:I,‘, a') of D}Q, as p — oC.

The first main difficulty is to localize the problem to arbitrary small neighborhoods
of P = pu1(0), so that one can study the G-invariant Bergman kernel in the spirit
of [17]. Our observation here is that the G-invariant Bergman kernel is exactly the
kernel of the orthogonal projection on the zero space of an operator £,, which is a
deformation of Df} by the Casimir operator. Moreover, £, has a spectral gap property
(cf. (2.24), (2.25)). In the spirit of [17, §4], this allows us to localize the problem to a
problem near a G-neighborhood of Gz. By combining with the Lichnerowicz formula,
we get Theorem 0.1 in Section 2.4.

After localizing the problem to a problem near P, we first replace X by G xR?"~ "o,
then we reduce it to a problem on R2"~"0. On R?" "0 the problem in Section 2.7 is
similar to a problem on R?" considered in [17, §4.3].

Comparing with the operator in [17, §4.3], we have an extra quadratic term along
the normal direction of X¢. This allows us to improve the estimate in the normal
direction. After suitable rescaling, we will introduce a family of Sobolev norms defined
by the rescaled connection on LP and the rescaled moment map in this situation, then
we can extend the functional analysis techniques developed in [17, §4.3] and [7, §11].

This Chapter is organized as follows. In Section 2.1, we recall a basic property on
the Casimir operator of a compact connected Lie group. In Section 2.2, we recall the
definition of spin® Dirac operators for an almost complex manifold. In Section 2.3,
we introduce the operator £, to study the G-invariant Bergman kernel Ppc’ of DZ' In
Section 2.4, we explain that the asymptotic expansion of PPG(.’I?, z') is localized on a G-
neighborhood of Gx, and we establish Theorem 0.1. In Section 2.5, we show that our
problem near P is equivalent to a problem on U/G for any open G-neighborhood U
of P. In Section 2.6, we derive an asymptotic expansion of ®£,®~! in coordinates
of U/G. In Section 2.7, we study the uniform estimate, with its derivatives on ¢,
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of the Bergman kernel associated to the rescaled operator 2 from ®£,® !, using
the heat kernel. In Theorem 2.21, we estimate uniformly the remaining term of the
Taylor expansion of e~ 4“2 for u > up > 0, 0 < t < to < 1. In Section 2.8. we identify
Jru, the coefficient of the Taylor expansion of e‘“‘fz', with the Volterra expansion of
the heat kernel, thus giving a way to compute the coefficient Pl(;:) in Theorem 0.2.
In Section 2.9, we prove Theorem 0.2 except (0.12) and (0.13).

We use the notation in Chapter 1. In Sections 2.5-2.9, we assume G acts freely
on P = 10).

2.1. Casimir operator

Let G be a compact connected Lie group with Lie algebra g and dimg G = ng. We
choose an Adg-invariant metric on g such that it is the minus Killing form on the
semi-simple part of g.

Let {#;}72, be an orthogonal basis of g and { K7} be its dual basis of g*.

The Casimir operator Cas of g is defined as the following element of the universal
enveloping algebra U(g) of g,

no
(2.1) Cas := le'jKj.
J=1
Then Cas is independent of the choice of {K;} and belongs to the center of U(g).

Let t be the Lie algebra of a maximum torus T of G, and t* its dual. Let | | denote
the norm on t* induced by the Adg-invariant metric on g.

Let W C t* be the fundamental Weyl chamber associated to the set of positive
roots AT of G, and its closure W C t*.

Let I = {K € tiexp(2nK) = 1 € T} be the integer lattice such that 7' = t/2x1,
and P = {« € t*; () C Z} the lattice of integral forms.

Let og be the half sum of the positive roots of G.

By the Weyl character formula [19, Theorem 8.21], the irreducible representations
of G correspond one to one to ¥ € W N P, the highest weight of the representation.

Moreover, for any irreducible representation p : G — End(V) with highest weight
¥ € W N P, classically, the action of Cas on V is given by (cf. [19, Theorem 10.6]),

(2.2) p(Cas) = —(|J + oc|® = |oc|?) Idy .
Set
(2.3) vy = inf (|0 + ocl* — |oc]?) > 0.
0£VEWNP

By (2.2), for any representation p : G — End(V), if the G-invariant subspace V¢
of V' is zero, then

(2.4) —p(Cas) = vy Idy .
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2.2. Spin® Dirac operator

Let (X,w) be a compact symplectic manifold of real dimension 2n. Assume that
there exists a Hermitian line bundle L over X endowed with a Hermitian connection
V! with the property that

v—1

2.5 —R'=w,
(2:5) 27 '
where RY = (V)2 is the curvature of (L, VE).

Let (E,h") be a Hermitian vector bundle on X with Hermitian connection V*
and its curvature RE.

Let g7 be a Riemannian metric on X.

Let J: TX — TX be the skew-adjoint linear map which satisfies the relation
(2.6) w(u,v) = gt* (Ju,v)
for u,v e TX.

Let J be an almost complex structure such that
(2.7) gT X (Ju. Jv) = gT¥ (u, v), w(Ju, Jv) = w(u,v),
and that w(.,J.) defines a metric on T'X. Then J commutes with J and

—{(JJ.. ) =w(.,J)
is positive by our assumption. Thus —JJ € End(7°X) is symmetric and positive, and
one verifies easily that
(2.8) —JI = (=IHV2 T =3(=3%" V2
The almost complex structure J induces a splitting
TX 9g C=TVOX 7OV X,
where T9 X and TV X are the eigenbundles of J corresponding to the eigenvalues
v—1 and —/~1 respectively. Let T*(1.0 X and T*-D X be the corresponding dual
bundles.

For any v € TX @g C with decomposition v = vy g+ vo1 € THOX @ TODX | let
v} o € T*OD X be the metric dual of vy g. Then

(29) C('U) = \/5(—(—'1(() A _i'”ﬂ.l)

defines the Clifford action of v on A(T*(%1 X)), where A and 7 denote the exterior and
interior multiplications respectively.
Set
(2.10) vy = inf RE(u,q)/Juf?rx > 0.
weT MY X ze X g

Let VTX be the Levi-Civita connection of the metric ¢7¥ with curvature RT.
We denote by PT"""'X the projection from TX @z C to T X
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Let V7"X — pTiUX gTX pT™ X Lo the Hermitian connection on 710X
induced by VTX with curvature BT "X Let V9t be the connection on det(7(10) X)
induced by V7" X,

Formally,

(211) AT OVX) = S(TX) @ (det(TH0 X)),

here S(TX) is the possible (non-existent) spinors bundle associated to (X, g7¥),
and (det(7(? X))1/2 is the possible (non-existent) square root of det(71:9X). By
(24, pp.397-398], [31, §1.3], VIX induces canonically a Clifford connection V¢
on A(T*(OVX) and its curvature RO (cf. also [27. §2]).

Let {e4}q be an orthonormal basis of TX. Then

i 1 1 1.0
(2.12) R = 1 > (R"eq ep)cleq)cles) + 5 Tr [RTX].
ab

For p € N, we denote by L? := L®P. Let VF» be the connection on
(2.13) E, =ANT""YX)a LP 2 E

induced by VCiff L and VF.

Let (.,.)g, be the metric on E, induced by ¢, h% and h”.

The L2-scalar product (...) on Q%*(X,LP @ E), the space of smooth sections of
E,, is given by (1.19). We denote the corresponding norm by ||.||zz.

Definition 2.1. The spin® Dirac operator D), is defined by

2n
(2.14) Dy =) clea)VE 1 Q" (X LP @ E) — Q" (X, LP @ E).

a=1

Clearly, D, is a formally self-adjoint, first order elliptic differential operator on
Q0%+(X, LP ® E), which interchanges Q%" (X, LP @ E) and Q%°d4(X P @ F).

If A is any operator, we denote by Spec(A) the spectrum of A.

The following result was proved in [27. Theorems 1.1, 2.5] by applying directly the
Lichnerowicz formula (cf. also [8, Theorem 1] in the holomorphic case).

Theorem 2.2. — There exists Cp, > 0 such that for any p € N and any s €
QX LP @ E) =@, QX LP @ E).

(2.15) ||Dp3||%g > (2pro — CL)HsHiz .

Moreover Spec(D?) C {0} U [2prg — CpL. +<.
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2.3. G-invariant Bergman kernel

Suppose that the compact connected Lie group G acts on the left of X, and the
action of G lifts on L, ¥ and preserves the metrics and connections, w and the almost
complex structure J.

Let p1: X — g* be defined by

(2.16) 2V —1p(K) == p*(K) = Vi« — Lx, K €g.
Then p is the corresponding moment map (cf. [1, Example 7.9]), i.e., for any K € g,
(2.17) dpu(K) = ipxw.

For V' a subspace of Q%*(X, LP® E), we denote by V1 the orthogonal complement
of Vin (QU*(X, LP @ E),{ )).

Let Q0*(X, LP 2 E)Y, (Ker D)% be the G-invariant subspaces of Q%*(X, LP @ E),
Ker D,,. Let PPG be the orthogonal projection from Q%*(X, L?  E) on (Ker D,)¢

Definition 2.3. — The G-invariant Bergman kernel PPG(J:, ') (x.2" € X) of D, is the
smooth kernel of Pf with respect to the Riemannian volume form dvx (a').

Let {Sf}fgl d, = dim(Ker D,)“) be any orthonormal basis of (Ker D,)¢ with
respect to the norm || .||z, then
(2.18) P (x,a") ZS" 2')) € (Ep)a @ (E))ar.

Especially, P (x,z) € End(E,), ~ End(A(T*"VX) © E),.
We use the notation u! in (1.13) now.
Observe that the Lie derivative Lx on T'X is given by

(2.19) LV = VIAV = VIXKY,
Thus
(2.20) pX(K) = VI KX € End(TX).

By (2.11), the action on A(T**V X) induced by u7X(K) is given by

2n

i 1 < 1 1.0 el -

(2.21) (R = 3 S elea)e(VINEY) + 5 Te[PT XY X

a=1
Thus the action L of K on smooth sections of A(T*(*V X) is given by (cf. also [44,
(1.24)])
(2.22) Ly = VA — Ol (g,

By (2.16) and (2.22), the action Lx of K on Q%*(X, LP ® E) is VKY — uPr(K)

with

(2.23) Ev(K)y =27V =1pu(K) + pf (K) + p"(K).
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Definition 2.4. - The (formally) self-adjoint operator £, acting on (QY*(X,LP ®
E), (,)) is defined by,

no

(2.24) =D} - pZ Ly, L,

The following result will play a crucial role in the whole paper.

Theorem 2.5. — The projection PPG is the orthogonal projection from Q% (X, LP ® E)
onto Ker(L,). Moreover, there exist v, Cr, > 0 such that for any p € N,

Ker(L,) = (Ker D,,)“

(2.25)
Spec(L,)C{0}U [2pr — O, +o<|.

Proof. — By (2.24), for any s € Q"* (X, L? @ E),

(2.26) (Lps,s) = ||Dpslie +p Y 1Lk, sl
i=1

Thus £,s = 0 is equivalent to
(2.27) D,s =Lg,s=0.
This means s is fixed by the G-action. Thus we get the first equation of (2.25).

For s € (KerL,):, there exist s; € QU*(X,LP @ E)Y N (KerDy)*, s2 €
(QU*(X, LP @ E)Y)L, such that s = s1 + s2. Clearly.

Dpsy € QU(X, LV @ E)Y, Dpsy € (Q"*(X,LP @ E)9)*t.

By Theorem 2.2 and (2.4),

(2.28) (Lps.s) = —p(p(Cas)sz. s2) + || Dpsz2lli> + [ Dpsi|7e
> puilsellfe + 2pvo — CL)llsilZe,

=

from which we get (2.25). O

We assume that 0 € g* is a regular value of p. Then X¢ = p'(0)/G is an
orbifold (X¢ is smooth if G acts freely on P = p~'(0)). Furthermore, w descends
to a symplectic form wg on X¢g. Thus one gets the Marsden-Weinstein symplectic
reduction (X¢g,wa).

Morecover, (L, VF), (E,VF) descend to (Lg, VF6), (Eg. VES) over X so that the
corresponding curvature condition holds [21] :

Na
(2.29) —— R = wq.
27

The G-invariant almost complex structure J also descends to an almost complex

structure Je on T'X¢;. and h*, hE, g7 descend to hto, hPe gTXa,

We can construct the corresponding spin® Dirac operator D¢ , on X¢.
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Let Pg,, be the orthogonal projection from QY (X, LY, @ E¢) on Ker D¢ p, and
let Pop(x.2") be the smooth kernel of P, with respect to the Riemannian volume
form dvx, (z').

The purpose of this paper is to study the asymptotic expansion of PPG (x,x") when
p — oo, and we will relate it to the asymptotic expansion of the Bergman kernel Pg ,
on Xg.

2.4. Localization of the problem and proof of Theorem 0.1

Let a® be the injectivity radius of (X, ¢7¥), and ¢ € ]0,a¥/4[. Ifx € X, Z €
T.X, lot R>u — x, = expy(uZ) € X be the geodesic in (X, g7Y), such that
Ty = T, du Lm0 = Z.

For x € X, we denote by BX(z,¢) and B+X(0,¢) the open balls in X and 7, X
with center x and radius e, respectively. The map 7T, X > Z — expy(Z) € X is a
diffeomorphism from B7**(0.2) on B¥(x,¢) for ¢ < a™

From now on, we identify BT+X(0,¢) with BX (z,¢) for ¢ < a™ /4.

Let f : R — [0, 1] be a smooth even function such that

1 for |l <e/2,
2.30 )) = ’
( ) ) { 0 for [|v|=e.
Set
~+oc —1 +oo
(2.31) Fla) = (/ f(v)dr) / U F(0)d.
—oc — 00
Then F(a) is an even function and lies in the Schwartz - space S(R) and F/(0) =
Let £ be the holomorphic function on C such that F( 2) = F(a). The restriction
of F to R lies in the Schwartz space S(R).
Let F( p»)(x,2") be the smooth kernel of F(,C ) with respect to the volume form

dvx (2').
Proposition 2.6. — For any l,m € N, there exists Cj ,,, > 0 such that for p > Cp /v,
(2.32) |F(£p)(~'1 ') — P( (2,2 )| gm(xxx) < Cromp™!

Here the €™ norm is induced by Ve vE, V(’l‘”. ht hE and gTX.

Proof. For a € R, set

(2.33) Op(a) = Lipy 4 acf(@) F(a).
Then by Theorem 2.5, for p > C}, /v,
(2.34) F(L,) — P = ¢p(Ly).
By (2.31), for any m € N there exists C,, > 0 such that
(2.35) sup |al™ |ﬁ(a){ < Oy

a€R
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As X is compact, there exist {x;}7_;, C X such that {U; = BX(z;,¢)}/_, is a
covering of X. We identify BT+ X (0.¢) with B~ (z;.2) by geodesics as above.

We identify (E,)z for Z € BT+:X(0.¢) to (E,)., by parallel transport with respect
to the connection V#» along the curve vz : [0.1] 3 u — exp (uZ).

Let {e,}2™, be an orthonormal basis of T,, X. Let €,(Z) be the parallel transport
of e, with respect to VX along the above curve.

Let TP, Tt Y be the corresponding connection forms of VE, VE and VI with
respect to any fixed frame for E, L, A(T*(©DX) which is parallel along the curve ~z
under the trivialization on U;. Then I'* is a usual 1-form.

Denote by Vi the ordinary differentiation operator on 7,,X in the direction U.
Then

(2.36) VE =V plP 4+ T L DF Dy = o(2,)VE".

Let {¢;} be a partition of unity subordinate to {U;}.
For | € N, we define a Sobolev norm on the [-th Sobolev space H' (X, E,) by

2n
(2.37) ZZ Z Ve, Ve, (2is)]7s
i k=017,...,1p=1

Then by (2.36), there exist C,C’,C” > 0 such that for p > 1, s € H*(X, E,),
(238)  C'ID2slie — C"pllsle < sl < CUID2slle + p?lls]] ).
Observe that D, commutes with the G-action, thus
(2.39) [Dp. Lic,] = 0.
By (2.24), (2.39), and the facts that D, is self-adjoint and Ly, is skew-adjoint, we

know

(2.40) |Lysl|32 = 1D2s)132 + p?1 > Lic, Lic,sili. — 2pRe> (D2s. L, Ly, s)
J J

= |D2s)|3> +p*| > Lic, Lk, slli2 +2p > | Lic, Dpslli:.
J J
From (2.38) and (2.40), there exists C' > 0 such that

(2.41) Isllaz < CUILpslicz + p?lls]lz2)-

Let @ be a differential operator of order m € N with scalar principal symbol and
with compact support in U;, then

(2.42) (£, Q) = [D}, Q) = pY Lk, Lk,. Q]

J
is a differential operator of order m + 1. Moreover, by (2.23), (2.36), the leading term
of order m — 1 differential operator in [Lg, L. Q] is p*[(I'" — 27/ —=1p)(K;))%. Q).
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Thus by (2.41) and (2.42).
(2.43) 1Qsllaz < C(1£,Qsl L2 + p*[|QsllL2)
< CUIQLpsI L2 + pllsl s + PP[Isllzry + 0l g 1)-

This means
m—+1

(2.44) sl grzmee < Conp™™+2 >~ || Ll 2
§=0

Moreover, from
(L} dp(Lyp)Qs,8") = (5,Q"dp(Lp) L7 8",

(2.33) and (2.35), we know that for any [.m’ € N, there exists ) ,,,» > 0 such that for

(245) H‘Cm ¢P P)CQSHL2 < VI,m’piH_m”S”LQ'

We deduce from (2.44) and (2.45) that if @1, Q2 are differential operators of order
m,m’ with compact support in U;, U; respectively, then for any I > 0, there exists
C7 > 0 such that for p > 1,

(2.46) 1Q10p(Lp)QasliLz < Cip™"|s]| 2.
On U; x Uj, by using Sobolev inequality and (2.34), we get Proposition 2.6. O

Observe that KJX are vector fields along the orbits of the G-action, thus the contri-
bution of pLy, Lk, in the wave operator cos(t/L,,) will propagate along the G-orbits,
and the principal symbol of £, is given by

L)) =€ +pdY (KX.&* for e T X,
j

By the finite propagation speed for solutions of hyperbolic equations [16, §7.8],
(41, §4.4], [42, 1. §2.6, §2.8], [31, Append. D.2], F(L£,)(x,x') only depends on the
restriction of £, to G- BY (x,¢) and

(2.47) F(L)(w,2') =0, ifd™(Ga.2') > e.

(When we apply the proof of [42, §2.6, §2.8], [31, Append. D. 2] we need to suppose
that 3,3 therein are G-space-like surfaces for the operator 5’,2 + DI%)
Combining with Proposition 2.6, we know that the asymptotic of ]:’,,G(;r,x’ ) as

p — o0 is localized on a neighborhood of Gux.

Proof of Theorem 0.1. — From Proposition 2.6 and (2.47), we get (0.7) for any
.2’ € X, d¥(Gr.2') = 9. Now we will establish (0.7) for z,2’ € X \ U.

Recall that U is a G-open neighborhood of P = p=1(0).

As 0 is a regular value of p, there exists ¢g > 0 such that u : Xa,
/L_I(BE‘* (0,2¢9)) — B¢ (0,2€q) is a submersion, Xo, is a G-open subset of X.
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Fix e, ¢y > 0 small enough such that X,., € U, and d¥ (z,y) > 4 for any r € X,
y€ X\U. Then V,, = X \ X, is a smooth G-manifold with boundary 9V, .

Consider the operator £, on V,, with the Dirichlet boundary condition. We denote
it by £, p. Note that £, p is self-adjoint.

Still from [42, §2.6, §2.8], [31, Append. D.2]. the wave operator cos(t\/L, p)
is well defined and cos(t\/L, p)(x,2’) only depends on the restriction of £, to
G - BX(x,t)NV,,, and is zero if d¥ (Gz,2') > t. Thus, by (2.31),

(2.48) F(L)(x.2') = F(Lyp)(x.a'), ifxa’ e X\U.

Now for s € 65°(Ve,, Ep), after taking an integration over G, we can get the
decomposition s = s1 + so with s; € QU*(X,LP @ E)Y, 55 € (Q"*(X,LP @ E)¥)*
and supp(s;) C Vi, \ 9V, .

Since Z;“:";GLKLLK, commutes with the G-action, £,s1 € QU (X, LP @ B)Y,
Lys2 € (QU(X, LP @ E)Y)* and, by (2.24), (2.28),

(2.49) (Lps,s) = (Lps1,s1) + (Lps2, 52)
= [|Dpsall72 — p(p(Cas)sz, s2) + (Dysi, 51)
> puy||s2|3: + <D;2,81,S1>‘

To estimate the term (Dgsl. s1), we will use the Lichnerowicz formula.

Recall that the Bochner-Laplacian A®» on E,, is defined by (1.21).

Let r¥ be the Riemannian scalar curvature of (T°X, g7¥).

Let {w,} be an orthonormal frame of (T X, ¢gTX). Set

wWqg = — E RL(’wa,'U_)b)Tf‘b A tw,

a,b

(2.50) r(x) = > R(wew.),  RE=Y RE(w,w.),

c(R) = Z (RE + % TI‘[RT“.“,X]) (casen) cleq) cles) .

a<b

The Lichnerowicz formula [1. Theorem 3.52] (cf. [27, Theorem 2.2]) for D2 is
(2.51) D;Z) = AFr —2pwg — pr + i—TX + c(R).
Especially, as supp(s;) C Vi, \ 9V, from (2.51), we get
(2.52) (Dgsl.,s]) = |[VErsy |2, — p((2wq + T)s1.81) + ((%’I'X +c(R))s1,81).
Since 51 € QV*(X,LP ® E)“, from (1.13), for any K € g,

(2.53) Vinest = (L + pFr(K))s1 = p®r (K)sy.
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From (2.23) and (2.53), there exist C,C’ > 0 such that
(2.54) V55172 > C Y llvi’}51lli2 =CY P (K)s 7
J J

= Cp?|lulsil|ie = C'lisilize = Cegp®llsills — C'llsill7e
From (2.49)-(2.54), for p large enough,
(2.55) (Lps.s) = pralsalliz + Cp°llst]l7-.
Thus there are C, C’ > 0 such that for p > 1,
(2.56) Spec(Ly p) C [Cp — C', <.

Now as KJX lov. , € TOV,, for any j. thus Ly, preserves the Dirichlet boundary
condition. We get for [ € N,

(257) L](J d)p([:p,D) - (/)I,(L:[,’D)Lh'j, (‘c[J.D)lqj)[)(‘CP,D) = (/)[)([:p,D)(EIhD)l'
Thus from (2.24), (2.39) and (2.57),
(2.58) D: p < Ly p.

and for I € N| (D[%‘D)I commutes with the operator ¢, (L, p).

Let ¢p(Lp.p)(x. ") be the smooth kernel of ¢,(L, p) with respect to dvx (z’).
Vedp(Ly p)(x, 2") verifies
the Dirichlet boundary condition for x, 2’ respectively for any I, k € N.

Then from the above argument we get that (D‘[Z)’;E)[ (wa,

By (2.36) and the elliptic estimate for Laplacian with Dirichlet boundary condition
[42, Theorem 5.1.3]. there exists C' > 0 such that for s € H*" (X, E,)NH}(X, E,),
p € N,we have

(2.59) Isllgrzerea < CUD2 sl zzzn + 215 ] gzm).

Thus if Q1, Q2 are differential operators of order 2m, 2/m’ with compact support in
Ui, Uj respectively, by (2.59) and (2.58), as in (2.44), we get for s € €5 (V.. Ep),

(2.60)  [|Q1p(Ly.p)Q2s 12 < Cptmim Z Z 1(Dp ) ¢p(Lp,0) (D ) 5] 12
J1=0j2=0
m m’
< Cp S S (L) by (L) L) 5] 1
J1=07j2=0
From (2.56), (2.60), as in (2.46), we get
(2.61) 1Q16p(Lp.p)Qasll L2 < Crp™' sl L2
By using Sobolev inequality as in the proof of Proposition 2.6, from (2.32), (2.48)
and (2.61), we get Theorem 0.1. O
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2.5. Induced operator on U/G

Let U be a G-neighborhood of P = ;= '(0) in X such that G acts freely on U, the
closure of U. We will use the notation as in Introduction and Sections 1.1, 1.2 with
X therein replaced by U, especially B = U/G.

Let m: U — B be the natural projection with fiber Y. Let TY be the sub-bundle
of TU generated by the G-action, let g7, ¢7" be the metrics on TY, TP induced
by g7¥.

Let THU, T" P be the orthogonal complements of TY in TU, (TP, g""). Let
7"V be the metric on THU induced by ¢7% ., and it induces naturally a Riemannian
metric g7? on B.

Let dvg be the Riemannian volume form on (B. g7 %).

Recall that in (1.20), we defined the isometry

¢ = hrg (€U Ep)°, () — (€7(B, Epp). (., ).

By (1.14), u®» defines a G-invariant section » of TY @ End(E,) on U.

Remark that wg, 7, ¢(R) in (2.50) are G-invariant. We still denote by wg, 7, ¢(R)
the induced sections on B.

As a direct corollary of Theorem 1.3 and (2.51), we get the following result,

Proposition 2.7. — As an operator on € (B, E, p),
(2.62) OL,P ' =dDIP!

~ ~E 1
= AFvn _ (/LEP. /LL”’>g‘1‘Y — ZAB}I — 2pwqg — pT + %T'X + c(R).

From Theorem 0.1, Prop. 2.6 and (2.47), modulo &(p~>), sz(r x") depends only
the restriction of £, on U.

To get a complete picture on PPG (z,2"), we explain now that modulo &(p~>),
PPG(.T,,I’ ) depends only on the restriction of ®£,® ! on any neighborhood of X¢
in B.

As in the proof of Theorem 0.1, we will fix e¢g > 0 small enough such that Xz, =
(B9 (0,2¢))C U, and the constant ¢ > 0 verifying that d* (z.y) > 4e for any
€ Xe,,y€e X\U. Set B, = m(X,,).

Let F(®L,d ')(x,2') (z.2/ € B.,) be the smooth kernel of F(®L,d ') with
respect to dvg(z’). We will also view f(@ﬁpé_l) as a G x G-invariant section of
prifk, @ proky on X X X

Theorem 2.8. — For any l,m € N, there exists Ci,, > 0 such that for p > 1,
z, 2" € X,

9 ; = —] , L
(2.63)  |W(x)h(2")PS (x,2') — F(PL,D 1)(7r(.1:).w(.r’))|%.,,,,,(xwX_\,m) < Crmp .
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Proof. — Let Q : €>®(X,E,) — €>(X,E,)" be the orthogonal projection and
Q' =1d—Q. Then D,. £, commute with Q,Q~. thus
(2.64) F(L,) = F(£,)Q + F(£,)Q"
Let (N( L,)Q)(x. x"). (I;( L£,)QF)(x,2") be the Schwartz kernel of the operators
F(L ) Q. F(ﬁp)QL with respect to dvx(2’).
Now, by (2.4), (2.24), on Im(Q1). Spec(L,) C [pv1,+oc[. As £, commutes
with Q. by the same argument as in (2.32), (2.46), we get for any [,m € N, there
exists C,, > 0 such that for p > 1,

(2.65) (F(L) Q) (.2 )m (x,,

Let d?(.,.) be the Riemannian distance on B.

By (2.62) and the finite propagation speeq for solutions of hyperbolic equations
(16, §7.8], [41, §4.4] (cf. [31, Append. DJ), F(®L,® ')(x.2") only depends on the
restriction of ®£,$~! to BZ(z,=) and
(2.66) ﬁ’(@[,ptl)*l)(r,:r’) =0, if dP(xa’) > e

Now by (2.47), (2.66) and the isometry ® in (1.20), we get
(2.67) O(F(L,)Q)P ' = F(PL,P ).

From (2.67), for z,2' € X,,, we have

(2.68) h(J?)h(;L")(]?’(Ep)Q)(;17, ') = ﬁ(@ﬁpfbgl)(ﬂ'(a:), m(x")).

In fact, by (0.10) and (2.67), for any s € 65°(B.,. Ep.c),
(F(RL,D")s)(m(x)) = (D(F(L,)Q) " s)(m(x))

= h(x) / (F(L L)Q)(x, 2 Yo (a")s(a )dvx ()

—1
Xeo) < Crmp

(‘l

(2.69)
)/ EP)Q x,y Yh(y)s(y )dvg ().

From (2.32), (2.64), (2.65) and 2 ()8) we get (2.63). O

Theorem 2.8 and (2.66) help us to understand that the asymptotic behavior
of P]f;(;zr, 2') is local near X¢. In the rest, we will not use directly Theorem 2.8.

2.6. Rescaling and a Taylor expansion of the operator ®L£,d !

Recall that N¢ is the normal bundle of X¢ in B, and we identify Ng as the
orthogonal complement of TX¢ in (T B|x.,,g9"?).

Let PTXe¢  pNe be the orthogonal pr ()_](,‘,(,tl()ll from T'B|x, on T X¢, N¢.

Recall that VNG| 0T are connections on Ng, TB on X¢, and A is the associated
second fundamental form defined in (0.9).

We fix 29 € X
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UWeT,Xg. let R>t — 2y =exppr¢(tW) € X¢g be the geodesic in X¢ such
that It’t:O = o, %h:o =W.
Itw e T, Xag, Wl <&, V € Ngg, let wV €N

GLexpr& (W)
parallel transport of V' with respect to the connection V¢ along the curve [0, 1] 3
t — expaG (tW).

If 2 € T,,B, Z = Z°+ 7+, Z° € T.. X¢, Z+ € NGy, |Z°,124] < e, we
identify Z with exp])3

be the natural

x(,(Z”)<Tzr)ZJ‘). This identification is a diffeomorphism from
pr’
BIXc(0,e) x BN¢(0,¢) into an open neighborhood % (x¢) of x¢ in B. We denote

T o

it by W, and % (x0) N X¢ = BIX¢(0,e) x {0}.

&

From now on, we use indif‘for(()ently the notation B X4 (0,2) x BNG(0,¢) or % (xg).
xg or 0, ....

We identify (Lp)z, (Fp)z and (E, )z to (Lp)s,. (EB)s, and (E, )., by using
parallel transport with respect to V4%, VEs and VFr-5 along the curve v, : [0,1]
U — uz.

Recall that 77U < TX is the horizontal bundle for m : U — B defined in Sec-
tion 2.5.

Let PT"U be the orthogonal projection from T'X onto THU.

For W € TB, let W € THU be the horizontal lift of .

For yo € 7 1 (xp), we define the curve %, : [0.1] — X to be the lift of the curve ~,
with 7y = yo and %?T € THU. Then on 771 (BT5(0.¢)), we use the parallel transport
with respect to V.V and VEr along the curve 7, to trivialize the corresponding
bundles. By (1.17), the previous trivialization is naturally induced by this one.

This also gives a trivialization of 7 =1 (BT2(0,2)) as Gx BT2(0, ¢), and the G-action
on G x BTB(0,¢) induced from its action on 7~ 1 (BT5(0,¢)) is

(2.70) 9(1,2) = (9. 2).

Let {e!}, {(Il} be orthonormal basis of T, X¢. Na.a,. then {e;} = {(i?,(’j‘} is

an orthonormal basis of T,

()

B. Let {e'} be its dual basis. We will also denote

W, (e)), \Il*((sji) by €?, (zf‘. Thus in our coordinates,

o _ 0 9 _ L
(2.71) gz =G gzr =

In what follows, for ¢ > 0 small enough, we will extend the geometric objects
on BTB(zg.e) to R?"~" ~ T, B (here we identify (Z1,..., Z2y—n,) € R to
>, Zie; € T, B) such that D, will become the restriction of a spin® Dirac operator
on G x R?"~"0 associated to a Hermitian line bundle with positive curvature. In this
way, we can replace X by G x R27=mo,

First of all, we denote by Lo, Fy the trivial bundles Ligy,. Elay,. lifted on Xg =
G x R?" 0 and we still denote by VI, V¥, hl etc. the connections and metrics
on Ly, Ey on 7~ (BT (0, 4¢)) induced by the above identification. Then i, h¥ is

identified with the constant metrics ht0 = hfvo hFo = pFuw
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Set
(2.72) RY=> Zley =2z RU=>Z00=2° R=R'+R'=2Z
j i
Then R is the radial vector field on R*"~ "0,
Let € > 0 with £ < £¢/2. Let ¢ : R — [0, 1] be a smooth even function such that

(2.73) plv)=1if |Jv] <2; @)=0 if |v| > 4.

Let ¢ : X9 — Xo be the map defined by ¢.(g.2) = (9,9(/Z]/2)Z) for (g, 7Z) €
G x R2n=no,

Let g7X0(g, Z) = g7 % (p-(g9, Z)), Jo(g, Z) = J(p-(g, Z)) be the metric and almost-
complex structure on Xj.

Let VEo = 0*VFE then V0 is the extension of V¥ on 71 (BT B(0,¢)).

Let V% be the Hermitian connection on (Lg, h'0) on G x R2"~" defined by that
for Z € R#m—mo,

(2.74)
vL() — (p:vL + (1 - @(‘Zl))RL (RH PTY )

Yo Yo

l(1—(,9 (2 ))R’ (RH . pT” U).

2 € Yo Yo

We calculate directly that its curvature R0 = (VE0)? ig

(2.75)

Yo Yo

. L TY TY L TH U.

=R U (P'/o Pyn ) + R'JU(PUU > )
-H ~H

+ ¥ (JZ')(RH) (z) — Réu)( JI() U. PUIU UQ)

H
+ () (R )~ By)(P Py

Yo Yo Yo
7*
¢<M>TZIA[35,<Z PIYy — RL (2. PIY )
p 7% H
= (e S ARG (2P = R (2P

Here Z* € T} B is the dual of Z € T, B with respect to the metric g7«0?

From (2.70), one deduces that RL0 is positive in the sense of (2.10) f()r € small
enough, and the corresponding constant vy for R0 is bigger than %V() uniformly for
yo € P.

From now on, we fix € as above.

Now G acts naturally on Xy by (2.70), and under our identification, the G-action
on L, E on G x BT B(0,¢) is exactly the G-action on L|ay,, E|cy,-

We define a G-action on Lo, Fy by its G-action on Gy, then it extends the G-action
on L, E on G x BTB(0,¢) to X,.
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By (2.17), for any K € g, W € TP on P = = 1(0). we have

RM W, KY) = —2nV/—1w(W. K) = 2nV/—1W (u(K)) = 0,
(2'76) L H 7-X L 1\H X
RG.z0y(RT. K%)= R z0)(R7)7.K™7).

Observe that for (1,7) € G x R?>"~ "™ _ by (2.70). K();OZ) KU“ for K € g, by

(2.16), the moment map px, : Xg — g~ of the G-a(,t.lon on Xj is given by

2.77)  2mV=lpx, (K) .2y = (1= p(E)RE (RT KXY + 20/ =1p(K) . (1. 2).-
Now from the choice of our coordinate, we know that px, = 0 on G x R?" 7270 x {0}.
Moreover,

(278) 20V Iu(K) g 1.2) = B2 ((ZDRHT KX) + 0(o(2h)| 211 24).
From our construction, (2.77) and (2.78), we know that
(2.79) ;L;{‘l’(()) =G x R*"72™ x {0},

By (2.76) and (2.77), for Z € T, B, |Z] = 4=,

(2.80) 2mV/ =1y, (K) 1.2y = Ry (RT)TK ).

Yo

Let D;’“ be the Dirac operator on X associated to the above data by the construc-
tion in Section 2.2. By the argument in [27, p. 656-657] and the proof of Theorem
2.5, we know the analogue of Theorems 2.2, 2.5 still holds for D‘f“. Let Eif" be the
operator on Xy defined as in (2.24). Then there exists C' > 0 such that for p > 1,

(2.81) Spec (L£,0) € {0} U [pr — C. +x].
Set
(2.82) Fop= ATV X,) @ LE @ Ep.
Let ¢7P0 be the metric on By = R?"~ " induced by ¢7*°, and let dvpg, be the

Riemannian volume form on (Bg, g7 P0).

The operator <I>£1))‘V“<I)_ is also well-defined on T, B ~ R?" ",

Let P,, , be the orthogonal projection from L?(R*"~ "0 (Ey,)p,) onto Ker(@LX0d 1)
on R?"=". Let P, ,(Z,2") (Z,Z' € R*" ") be the smooth kernel of P, , with
rospc‘('t to dvg,(Z'). As before, we view P, , as a G x G-invariant section of

17 (Ey.p) @ pry(Eo,p)" on Xo x Xo.

Let P§ ’, be the orthogonal projection from OV (Xy. LE® Ey) onto (Ker D;f‘"’)(;. and
let P(,_P( x') be the smooth kernel of P§ , with respect to the volume form dvx,(a).

Note that‘ ® in (1.20) defines an isometry from (Ker DI':‘"’)(" = K(zrﬁf“ onto
K(?r(q)ﬁl)f”q)_l), as in (2.68), we get

(2.83) h(z)h(x' )P (x.2") = Py, p(m(z).w(x")).
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Proposition 2.9. — For any I,m € N, there exists Cy,, > 0 such that for x.x' €
G x BT:0B(0,¢),

(2.84) (P, — P (. 2) o S Clomp .

Proof. — By the analogue of Theorems 2.2, 2.5, we know that for z,2/ € G x

BT« B(0,¢), P(fp — ﬁ(ﬁff”) verifies also (2.32). and for x,2' € G x BT+ B(0, ),
F(LY0)(2.2") = F(L,)(x.x")
by finite propagation speed. Thus we get (2.84). O

Let T*(®D X, be the anti-holomorphic cotangent bundle of (Xo,Jo). Since
0.1 . . o . 0.1
Jo(g, Z) :'.]~(<,95 (9.72)), T;f']“ )XU is naturally identified with T;i(g,)z),./XO'
Let V¢!fe be the Clifford connection on A(T*(%V X4) induced by the Levi-Civita
connection VYo on (Xg, g7 ¥0). Let RFo, RTXo RCIfo he the corresponding curva-
tures on Ey. T Xy and A(T*OD X)) (cf. (2.12)).

We identify A (7 l)Xo)(g‘z) with A(T(tl(’(())')l)X) by identifying first A(T*(()‘“XO)(Q‘Z)

with A(T;i(();;?z).JXO)* which in turn is identified with A(T;_,ff,)‘l)X) by using parallel
transport along u — up.(g. Z) with respect to Vo We also trivialize A(T*(01 X))
in this way.

Let Sz, be a G-invariant unit section of L|¢g,,. Using Sp and the above discussion.

we get an isometry
A(T*(U'l)XO) ® L‘g @ Fy ~ (A(T*(O,I)X) ® E)‘n"l(.m,) =: E|7r“(17(,)'

For any 1 < @ < 2n — nop, let ¢;,(Z) be the parallel transport of e¢; with respect
to the connection VT8 along [0.1] > u — uZ, and with respect to the connection
VT8 along [1.2] 2 u — Z" + (u — 1) Z+.

Recall that A, R+ have been defined in (0.9), (2.72).

The following Lemma extends [1, Prop. 1.28] (c¢f. also (17, Lemma 4.5)).

Lemma 2.10. The Taylor expansion of ¢;(Z) with respect to the basis {e;} to order
r is a polynomial of the Taylor expansion of the curvature coefficients of RTP to order
r—2 and A to order v — 1.
Proof. - Let 0; = V,, be the partial derivatives along e;.

Let I'T5 be the connection form of V'8 with respect to the frame {¢&;} of TB. By
the definition of our fixed frame, we have i ITT8 = 0. As in [1, (1.12)],

(2.85) L T8 = [ig  dTTP =i (dUTB 4 TTB ANTTB) = i, RTE,
R

Let ©(Z) = (6:(Z))?"_" be the (2n — ng) x (2n — ng)-matrix such that

J t,y=1

(2.86) ;= Z 01(2)e;(2), e(Z) = (0(Z) " )kep.
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Set #7(Z) =3,0/(Z)e’ and

(2.87) 0= ewe;=> /e, e T"BaTB.
J J

As VT8 is torsion free, VB = 0. Thus the R?" "0 -valued one-form 6 = (67(Z))
satisfies the structure equation,

(2.88) dg +TTB A = 0.
By the same proof of [1, Prop. 1.27], we have

(2.89) RE=>_Zjej(2Z), in 0= Zie;=2"
J J

Here under our trivialization by {¢;}, we consider Z+ = (0, Zi", ..., ZnLU) as a R27—no.
valued function.

Substituting (2.89) and (L. —1)Z* = 0 into the identity ig . (df +TTE A0) = 0,
we obtain
(2.90)

(Lt — 1)L 0= (Lrg. —1)(dZ+ +TTBZ4) = (L T8 Z4 = (i . RTPYZ*.

Here we consider RT? as a matrix of 2-forms, so that RTPZ' is a vector of 2-forms,

and 6 is a R*" " _valued 1-form.
By (2.89) and (2.90), we get

(2.91) ie,(Lre — 1)Lge0(Z) = (RTP (R, ¢;,)R*,¢;) (2).

We will denote by 9+, 9V the partial derivatives along N, T X¢; respectively. Then
we have the following Taylor expansions of (2.91): for j € {2(n—ng)+1....,2n—no},
i.e., e; € Ng, by LRLGJ = ¢, we have

) L (Zj_)ui- .
(2.92) > (lat P+ ot Do) 05)(2°) ——F— = (RTP (R e))R ) (2).
Pl ot
and for j € {1,....2(n —ng)}. l.e., ej € TXq, by Lra el = 0, we have
€L
- 12 1 alyat gi 70 (ZL)” — (RTB(RL e VRY eN(Z
(2.03) > (ot~ latD(@F)T 0)(Z°) = = (RTP(RY )R 6) (Z).

la~|>1

From (2.92), (2.93), we still need to obtain the Taylor expansions for 93(20),
(1 <i,j <2n—ng) and (9565)(2°), (1 <j < 2(n —no)).
By our construction, we know that for i or j € {2(n —ng) +1,...,2n — ng},

(2.94) (2% =ep(2°). 05(Z2°) =6,
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By [1. (1.21)] (cf. [17, (4.35)]), we know that on R?" 270 x {0}, for i,j €
{1...., .2(n —no)},
01(0) = b,
Do (0 + 12 ((0°)" ;) (0)
0|21

while by (0.9), (2.86), and [¢}", e;] = 0 (cf. (2.71)), we get

(2.95) (20)e"

= (RTXO(RY, )R, 7)(2),

(2.96) (9L 0))(2°) = e (5. 80)(2°) = (VIE.20)(2°)
= (VIPef @)(2°) = ~(VIF&.et)(2°) = —(A). ) (2°).

Let RTXe | RNe be the curvatures of VI¥e Ve By (0.9),
(2.97) RTXe L RNe 4 A2 1 OVTP A = RTB | € AX(TX) ® End(TB).

For1 < j<2(n—np),2(n—ng)+1<i<2n—ng, i’ =i—2(n—nyg), by [(A , ‘J’} =0,
as in (2.96), we get

(298)  (9p05)(2°) = ex (e i) (27) = (Vi er @) (2°) = (Ve e )(27).

]° 2

By [1, Prop. 1.18] (cf. (2.103)) and (2.98), the Taylor expansion of (8,}6;)(2“) at 0
to order r only determines by those of RN¢ to order » — 1.

Now by (2.86), (2.92)-(2.98) determine the Taylor expansion of 0’( /) to order m
in terms of the Taylor expansion of the curvature coeflicients of RTB to order m — 2
and A to order m — 1.

By (2.86), we get Lemma 2.10. O

Let dorp be the Riemannian volume form on (1., B, g7 ?).

Let w(Z) (Z € R?" ") be the smooth positive function defined by the equation
(2.99) dvp,(Z) = k(Z)dvrp(Z),

with £(0) = 1.
For s € €>(R?" " E,,) and Z € R*"~"0 for t = = set

VP
(5i8)(Z2) :==s(Z/t), V= S,_]th:%VE"’””H_%St,

(2.100) s 1
Ly = S M RIOD PR T2 S,

As in (1.18), we denote by REs RFs RCMs the curvatures on Ly, Ep,
AT*ODX) 5 induced by VF VF VO on X

Asin (1.14), g € TY, g¥ € TY @ End(E). g € TY © End(A(T*OV X)) are
sections induced by g, pf, M in (2.17), (2.23).

Denote by Vy the ordinary differentiation operator on T,,, B in the direction V.

Denote by (0“R%),, the tensor (9 RV%), (ei.e;) == 0% (REP (i, ¢7))u,-
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Theorem 2.11. — There exist A; j, (resp. Bi,. C.) (r € Nyi.j € {1,...,2n — ng})
polynomials in Z, and A; ;, is a homogencous polynomial in Z with degree r, the
degree on Z of B;, is < v+ 1 (resp. C, is < r + 2), and has the same parity with
r —1 (resp. 1), with the following properties:

~ the coefficients of A, ;.. are polynomials in RTP (resp. A) and their derivatives
at xo to order v — 2 (resp. r —1);

~ the coefficients of Bi., are polynomials in RT?, RCe  REs (resp. A, RLB)
and their derivatives at xo to order r —2 (resp. v — 1, 1);

~ the coefficients of C, are polynomials in RTB, RCfs  REs pX Tr[RT(m)X],
RE (resp. A, nf, p®%; resp. h, RY, R'5: resp. p) and their derivatives at xo to
order r — 2 (resp. r — 1; resp. r; resp. r+ 1).

- if we denote by

O, =Aij+Ve, Ve, + BV, +C,,

(2101) 2n—ng 1 2 ‘ .
f“ = Z <ve.f + ER;;B (R C.j)> - 2"{](1«1‘(1 = Tay t+ 47[.2}P7Y JJ"URP’
Jj=1
then
(2.102) Ly =L+ 1O, + o).
r=1

Moreover, there exists m’ € N such that for any k € N, t < 1, [tZ| < e, the derivatives
of order < k of the coefficients of the operator O(t™*') are dominated by Ct™ (1 +
|Z| )m’ )

Proof. — Let 'z T'ls and I'“Mf5 be the connection forms of VB, Vs and V¢!iffs
with respect to any fixed frames for E. L and A(T*% X) 5 which are parallel along
the curve 7, : [0,1] 3 u — uZ under our trivialization on BT-05(0,¢). Then I'P# is
a End(CY™ #)_valued 1-form on R?"~"0 and T'’# is a 1-form on R~ "0,

Now for I'* = T'Fs TLo or TN and R®* = RFs, REs or REME respectively, by
the definition of our fixed frame and [1, Proposition 1.18] (cf. also [31, Prop. 1.2.4]),
the Taylor coefficients of I'*(e;)(Z) at xy to order r only determines by those of R*®
to order » — 1, and

(2.103) |(_”Z:,‘<0f‘*r');,:()<<e.f>—fy—, - 3 @ ® e
Especially,
(2.104) Py(es) = 5 RS, (Roe;) + 0(22).
By (2.100), for t = 1//p, if |Z| < \/p=, then
(2.105) v, = H%(fZ)(v + (z‘FC“”” L rEe 4 %FI’B)(tZ))Hf%(tZ).
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Moreover, set
(2.106) (VEPe N (Z2) =Ti(Z)ex. gi3(Z) = g"P(er.e))(Z) = 07605(2),
then Fi‘J is the connection form of VI'# with respect to the frame {e;}.
Let (g%) be the inverse matrix of (g;;). then
(2.107) AP = =3 gt (VE T Er rhvErs),
]
and by (1.1), (2.99),

w(Z) = (det gij)/2(Z),
(2.108) o1, ( )
I =359 (Digjt + O59u — Aigij ).

By (2.62), (2.100) and (2.107),
(2109) Z4(Z) = g7 (UZ) (V10 Vi, — 1T (E2)V10,) — (50 4550 v (12)
o1l 1
— Qwg(tZ) — T(tZ) + 12 (Zf\ +c(R) — EABU/L) (t2).
By (2.23),

(2.110)
<tﬁEP’fﬁEl,> o _47T2|_,U2r) F (/T + 2Ty By, et +ﬁE>gT)
By (2.6), (2.17), and ji,, = 0, for yo € P, 7(yp) = xo, we get for K € g,
(2.111) —(Jell Ky, = w(KY ell) = Vo (u(K)) = (Vi i, K%y,
thus
(2.112) il (Z) = VR ilaey + O(ZP) = [PTY 3 RIP+ 0(12)°).

By Lemma 2.10, (2.103), (2.105), (2.109) and (2.112), we know that .2 has the
expansion (2.102). in particular, we get the formula .£% in (2.101).

By (2.97), (2.103) and (2.109), we get the properties on A; ;. Bjr.

By (2.97), (2.109) and (2.110), we get the properties on C,.

The proof of Theorem 2.11 is complete. O

2.7. Uniform estimate on the G-invariant Bergman kernel

Recall that the operators .4 . V, were defined in (2.100), and Eq = A(T*©VD X)) &
Ey. We have trivialized the bundle Eq g, to Ep ,, in Section 2.6. We still denote by
h®o-2o the metric on the trivial bundle Ep ., on R?"~" induced by the correspond-
ing metric on Eq p,. By our trivialization, (Eg, g, hE0-50) is identified to the trivial
Hermitian vector bundle (Ep . hEB. ).

We also denote by (. ), ;2 and || [|o. .2 the scalar product and the L? norm on
¢> (T, B.Ep..,) induced by gTeoB hPobo asin (1.19).
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Let fix,, 20 be the G-invariant sections of TY, TY @ End(Ey ;) on Xq induced
by fix,, pF0r as in (1.14).

Let {f;} be a G-invariant orthonormal frame of TY on 7~ !'(BP(z,¢)), then
(fou)z = (f1)p.(z) is a G-invariant orthonormal frame of T'Yy on Xp.

Definition 2.12. — Sct
1
(2113) D,, = {V[,V(fl,l < ) < 27) — Ny. ?<ZZ,\’“, f()’l>(fZ), 1 g l g ’II,()}.

For k € N*, let DF be the family of operators acting on ¢ (7T, B, Ep ,,) which can
be written in the form Q = Q- -- Qg, Q; € D;.

For s € €>(T.

T

B‘,EB,J?(|)7 k = 1, set

1510 = 1s(Z)les ., dvr., B(Z),
JR2n—ng h

k
slfs = lsliFo +D> > 1QslFo.

(=1 QeDj

(2.114)

We denote by (s, s), o the inner product on ¢>(7,,B,Ep .,) corresponding to
I 120

Let H" be the Sobolev space of order m with norm || ||;,. Let H; ' be the
Sobolev space of order —1 and let || ||;._; be the norm on H; ' defined by ||s|l; | =
supozgrem) | (80870 l/l1s e

If A e LH" H) (m.m’ € Z), we denote by HAH;"""'/ the norm of A4 with
respect to the norms || ||;,, and || |

ton’-
Then .24 is a formally self-adjoint elliptic operator with respect to || [|7,. and is
a smooth family of operators with respect to the parameter xy € Xg.

Theorem 2.13. - There exist constants Cy, Cy, C3 > 0 such that for t €]0,1] and any
5,8 € C(R*"0 Ep_,,),
. 2 v 2
<9ijfs 5>,‘0 = Chslliy — C2ls]lfo-

|<%SSI> <C3||3HLIHSIHLI~

t.0 |

Proof. By (2.80) and our construction for Lg. Fy on Xg, we know for Z € 1,3,
|Z] > 4e,

(2.116) /1,E"-"(K)(]‘Z) =pRE

Yo

(RO K5,
Thus from (2.109) and (2.114),
(2.117)  (Ls.s), o = VislFo — 2 ((EPor iBor) oy (12)s.5),
. . 1
+ <( — 28wy — S 287 (4 e(R) - ZA,;‘,JI))S. .q>

t.0
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From (2.77), (2.110), (2.116), and our construction on Vo,
(2.118)

) _ _ o 1 _ 2
2 (FE P g (2)s,5), o 2200 Sl o) 2)s|| = CtlslZ.
=1 '

From (2.117) and (2.118), we get (2.115). O

Recall that v is the constant in (2.25).

Let § be the counterclockwise oriented circle in C of center 0 and radius v/4, and
let A be the oriented path in C which goes parallel to the real axis from +oc + ¢
to v/2 + i then parallel to the imaginary axis to /2 — i and the parallel to the real
axis to +oo — 1.

5
L/\D /4 2

Theorems 2.14 2.16 are the analogues of [17, Theorems 4.8 4.10] (cf. also [31,
Theorems 4.1.10-4.1.12}). Especially, the proofs of Theorems 2.14, 2.16 are exactly
the same as the proof of [17, Theorems 4.8, 4.10], we include the proofs for the sake
of completeness.

Theorem 2.14. — There exist to > 0, C' > 0 such that for t €]0,t0], A € 6 UA and
x0 € Xa, (A — _%21,)—1 exists and

1A =2 I <

(2.119) 1 )
A =Z5) 7l < O+ [AF).

Proof. — By (2.25), (2.62) for fo“, and (2.100), there exists tg > 0 such that for
t e ]0, to],

(2.120) Spec (Z5) € {0} U [v, +o0f.

Thus (A — Z4) 71 exists for A € § U A.

The first inequality of (2.119) is from (2.120).

By (2.115), for A\g € R, A\g < —2C%, (Ao — .Z4)7! exists, and we have |[(Ag —
LhH= N < % Now,

(2021) (A =25 = (o — L) = (A M)A L) (o —Z)
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Thus for A € § U A, from (2.121), we get

1 4

2.122 A—ZH N7 < S (1 == Nol).
(2.122) I =277 < (1 2= al)

Now we change the last two factors in (2.121), and apply (2.122), we get

- LA = A 4
2.123 A=y (1S - A
(2.123) 10 =2 T < e (1 = )
< C(1+ AP,
The proof of our Theorem is complete. O

Proposition 2.15. — Take m € N*. There exists C,,, > 0 such that for t € ]0,1],
Qi s Qu €Dy U{Z20T™ and s, 5" € € (R . Eg .,).

(2.124) ‘([Ql, [Qoe e [Quur Zh] . YJs s, ()‘ < Conllslleallsller-
Proof. —— Note that [V,.,.Z;] = 6;;. By (2.109). we know that [Z;. %] verifies
(2.124).
Recall that by (2.77) and (2.80), (V., {(jix,. fo.))(tZ) is uniformly bounded with
its derivatives for t € [0. 1] and
(2125) Ve, <ﬁX(n f()‘l> = (e <ﬁ/\'()’ fO.l>);1r” = w(fou, e'i)il’()
for [Z| = 4. Thus [ (fix,. fou)(tZ). 24 also verifies (2.124).
Note that by (2.100),
(2.126) Vi, Vie, | = (RFP0(t2Z) + 2 RE0 50 (2)) (e, ¢j).

Thus from (2.109). (2.125) and (2.126). we know that [V, ., ..24] has the same struc-
ture as .24 for t €]0,1], i.e.. [Vi, .. 23] has the type as

(2.127) > ai;(t.1Z)V,0, Vi, +Z (t.tZ2)V,.,

ij
+ Z [(, t I‘Z /L\“ So)(tZ) +(1| /q“ (tZ)} +c(t, t2),

whered € C; ay;(t, Z), ci(t, Z), ¢ (t, Z), c(t. Z) and their derivatives on Z are uniformly
bounded for Z € R?" o 1‘ € [() 1]; moreover, they are polynomials in ¢. In fact, for
(Vie, 24, d=0in (2.127).

Let (Vi.;)* be the adjoint of V; ., with respect to (. ), ;. then by (2.114).
(2.128) (Vie ) ==V =tk 'V k) (tZ),
the last term of (2.128) and its derivatives in Z are uniformly bounded in Z €
R# =m0t € [0.1].

By (2.127) and (2.128). (2.124) is verified for m = 1.

By iteration. we know that [Q1.[Qa..... Q. L4 .. ]] has the same structure
(2.127) as .Z4. By (2.128), we get Proposition 2.15. O
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Theorem 2.16. — For anyt €]0,19], A € §UA, m € N, the resolvent (A\—.24)~! maps
H into H"'. Moreover for any a € N2"=" _ there exist N € N. Cy,, > 0 such
that for t €]0.to], A€ JUA, s € 65°(R*" ™ . Ep 4,).

(2129) 1270 — 25 sllemat < Com (L4 DY ST 12 sl

o' <o
. N 2 —n .
Proof. For Qi.....Qum € D¢, Qugr---- Qo] € {Zi};21 ", we can express
Q1 Quigjal(A— 2871 as a linear combination of ()I)Crdt()l"b ()f the type

(2.130) [Q1.[Qzv - - [Quar- N = L) N Qurt - Qg - m <m+ o,
Let #; be the family of operators
e = 1@, [ Q- 1@y 23] ).

Clearly. any commutator [Q1.[Qa, ... [Q,. . (A—Z4)"1]...]] is a linear combination
of operators of the formn

(2.131) A= Z8) BRI~ L) Ry Ry (A Z)

with Ry..... R, € Ay

By Proposition 2.15, the norm || |}

of the operators R; € %, is uniformly
bound by C.

By Theorem 2.14, we find that there exist € > 0. N € N such that the norm
| 119" of operators (2.131) is dominated by C(1 + [A[*)V. O

Let wp : TB x 3 TB — B be the natural projection from the fiberwise product of
TDB on B.

Lot e %3 (Z.2'). (Lhe %) (Z. Z') be the smooth kernels of the operators e ULz
Lie ~uZs with respect to dur, B(Z’)

Note that .%% are families of dlﬁel ential operators with coefficients in End(Epg ;) =
End(A(T*OVX) @ E)p.,,. Thus we can view e ““2(Z. 2'), (Lle ") (2, Z') as
smooth sections of 75 (End(A(T**VX) @ E)p) on TB x5 TB.

Let VEM(ES) he the connection on End(A(T*%Y X) @ E) 5 induced by Vs and
VEs. And VEMER)  RE and ¢TY induce naturally a ¢"-norm for the paramcter
2o € X

As in Introduction, for Z € T,
Z+ e ]\/(;“,,-”.

In the following result, we adapt [17, Theorem 4.11] to the present situation. The

B. we will write Z = Z° + Z+, with Z2° € T, X¢,

€To

new point is that the kernels here have the fast decay estimate along the normal
direction N¢g -
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Theorem 2.17. — There exists C” > O such that for any m,m’,m"”,r € N, ug > 0,
there exists C' > 0 such that for t €]0,t0], w > ug, Z, 2" € Ty, B,
" 8|cy\+\u/| o7

sup (1 4 |ZJ_| + |ZI_L|)7n €_u$£ (Z, Z/)

lal+la’lsm

dZo7 Otr Em' (Xa)

1"

N , 1 2C
< C(l + |ZO\ + }Z/O|)2(n+r+m +1)+m exp (51/“ .

a]al+|n'| or
02702 Ot

1z - 2'12).
(2.132)
sup (1 +]2+] + |z )™

lal+|a’|<m

("(Zte—uﬂ? (Z Z/)

¢ (Xa)
20"

y / 1
<0<1+|Z0|+|ZIO|)2(n+r+m +1)+mexp(_ ZV“_ !Z A |2)

-
where € (X¢q) is the 6 M norm for the parameter xo € Xc.

Proof. -~ By (2.120). for any k € N*,

ot —1) Nk —1)!
et = S [ oo gy han,
SUA

2miuk—1

—1)kF 1k —1)!
$;6~u,£2 — ( ) ( )

2miuk—1

From Theorem 2.16, we deduce that if Q € U™ Df, there are N € N, (,,, > 0 such
that for any A € s U A,

(2134) ”Q()\ _ zzfr)—'ln/n(l),() < C/,,L(l + |A‘2)N

Recall that Z7? is sclf-adjoint with respect to || ||;.0. After taking the adjoint of
(2.134), we get

(2.135) (A —-23) " QUY" < Cr(1+ [AP)N.
From (2.133). (2.134) and (2.135), we get if Q, Q' € U™, DL,

IQe QP < Ce

QL e “2)Q' |0 < Crpe™ 37,

Let | |, be the usual Sobolev norm on > (RQ”_"’“,EB,,,,(,) induced by hFsw0 =
ATV X)®E) B2y and the volume form dvr, B(Z) as in (2.114).

Observe that by (2.105), (2. 114) there exists ¢ > 0 such that for s €
6> (Twy B,Ep 2, ), supp(s) C BT+ B(0,q), m > 0,

(2.133)

/ e uA [A()\ — LHTF (A — ff;)_k“]d)\.
JA

(2.136)

1 —r m
6(1 +q) " Isllean < 18l < CA+ @)™ |Is]lt.m-

Now (2.136), (2.137) together with Sobolev’s incqualitios imply that if Q,Q’ €
m DL, for K, (L) = T TVUeT s op e3VY Lle ~uZ;  we have

(2.138) sup  |QzQY Ku(LINZ. Z)| < C(1+ q)*"+2.
|Z|,1Z"|<q

(2.137)
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By (2.77), (2.78) and (2.80),

no

(2.139) > E(ﬁxo, o) = l%ﬁxni;w(tz) > C1ZH2

Thus by (2.105), (2.138), (2.139), we derive (2.132) with the exponentials e,
e~ 3% for the case when r = m/ = 0 and C” = 0, i.e.,

olal+la’l

(2.140) sup (L4 |2+ + |2+ )™ Ku( L2 (2,2

al+la/[<m YAV
< C(l + \Z()| + |Zl()|)2n+m+2.

To obtain (2.132) in general, we proceed as in the proof of [4, Theorem 11.14].
Note that the function f is defined in (2.30). For ¢ > 1, put

e V2 1 dv
2.141 K, ,(a) = exp(ivv2ua) exp(—— (1 — f(—=V2uv ) .
(2.141) ooy = [ exptiov/Zua) exp(= ) (1 - 7 VER)) 2

Then there exist C’. C'; > 0 such that for any ¢ > 0, m,m’ € N, there is C' > 0 such
that for u > up, a € C, [Im(a)|] < ¢, o > 1, we have

/ ; Ch .
(2.142) la|™| K" (a)] < Cexp (C'czu - ——]—QZ).
U

u,0

For any ¢ > 0. let V. be the image of {A € C.[Im(\)| < ¢} by the map A — A2,
Then

1 . .
V. ={\c C.Re(\) = ﬁlm(/\)“) — 2,
c
and 0 UA C V. for ¢ large enough.

Let I:ug be the holomorphic function such that 1:',u<g(a,2) = Ky o(a). By (2.142),
for A € V.

w.o

~ ‘ Cy .
L1438 KT < Cexp|C'¢®u— —p° ).
(2.143) AR (V] < Cexp (C'ctu = =2p?)
u

Using finite propagation speed of solutions of hyperbolic equations (cf. [41, §4.4],
31, Append. DJ]) and (2.141). we find that there exists a fixed constant (which
depends on ¢) ¢/ > 0 such that

(2.144) Koo (L2 2') = e " %2(2,2") if

Z-7'|= .

By (2.143), we see that given & € N, there is a unique holomorphic function
Ky p.:(A) defined on a neighborhood of V.. such that it verifies the same estimates
as K, , in (2.143) and K, ,1(A) — 0 as A — +00; moreover

(2.145) KN/ (k= 1) = Ky (A).

w, 0,k
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Thus as in (2.133),
1

273 SUA

~ 1 i —k o
LR = 5 /A Kwk(x)[x(x — SR (= 2 L,+1}d)\.

[A{YU»Q("%&;) = K‘Il,,g,k()\)(/\ - ggt)‘kd/\,

(2.146)

By (2.134), (2.135) and by proceeding as in (2.136)-(2.138), we find that for
K, (a) = K, ,(a) or aK, ,(a), for |Z],|Z'| <q.

o " Hlal+lal
uT) sup (U |z sz K (2.7
|| +]a’ | <m s Aats V/dn
o . Ci .
< C(14q)?" 2 exp(C'u — —igz).
u

Setting 0 € N7, |p — %IZ — Z'|] < 1 in (2.147), we get for «,a’ verifying
lo| + || < m,
, (‘)|nH~|(w,\
C(l + IZ(J| + |Z/(J()2n+m+‘2 (‘XI)(C’ 2.

(2.148) (14 |2+ |z K. (Z5)(Z.2)

).

Take 6; = (—,C;—] from (2.140)%t x (2.148)'7° and (2.144), we get (2.132) for
Cleri

r=m'=0.
To get (2.132) for r > 1, note that from (2.133), for k > 1

81‘ ot (‘ )krl(k_ 1)' : —u\ ()7
2.149 — ¢ w.Ly — ,—u AN— &
( ) ot € 2miuk—1 ./o‘uA ¢ ot” o ¢ 2)
We have the similar equation for %( Lotz
Set

(2.150) Ik,,:{( = (ki |ZA — k4. Zz,—r ,rleN*}

i=0

Then there exist aX € R such that

ary ot I'J{Z:‘, '
AN = (A —zg)h —dafz (A =)™ aaﬂ (A —g)h,
(2.151) : ' '
gf, A=ZH) M= > arAr(\b).
(k.r)cly .

We claim that AX(\,¢) is well defined and for any m € N, & > 2(m +r + 1),
Q.Q € U}llDﬁ. there exist C' > 0. N € N such that for A € 6 U A,

(2.152) QAR Q' slleo < C(1+ADY DT 12%]e0.

3]<2r
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In fact, by (2.109), g—t—fg is a combination of

S (g2)) <5f—V> Oz, S fou12))),

where ¢ runs over the functions 7%, etc., appearing in (2.109). Now 2 YT (q(t2)) (resp.

%(( Eow fo.)(tZ)), MV“ ) (r1 = 1) are functions of the type as ¢'(t2)Z”°,

|8] < r1 (resp. 71 + 1) (where ¢', as ¢, runs over the functions r¥, etc., appearing in

(2.109)), with ¢’(Z) and its derivatives on Z being bounded smooth functlons on Z.
Let #; be the family of operators of the type

%; = {[-fle.jl’ [fiszzv ce [fjl Qu*gg] <. H}

with f;, smooth bounded (with its derivatives) functions and Q;, € D U {Z; 2."_"”.

Now for the operator AX(\, #)Q’, we will move first all the term Z” in ¢ (tZ)ZH as
above to the right hand side of this operator, to do so, we always use the commutator
trick. i.e., each time, we consider only the commutation for Z;, not for Z% with |3| > 1.

Then AX(A. £)Q' is as the form 2is1<2r Lf;QgZﬁ, and Q7 is obtained from Q" and
its commutation with Z9.

Now we move all the terms V, .. (37 fo.)(tZ) in a;)t -
the operator LY.

Then as in the proof of Theorem 2.16, we get finally that QAX(\. £)Q’ is as the
form 3", &fliZ” where fé is a linear combination of operators of the form

2 to the right hand side of

(2.153) QA — ZH M RN — L) FRy - Ry (A= LD TR QT Q.

with Ry..... Ry € 2, Q" € U DL, Q" e U DL 3] < 2r, and Q" is obtained
from ' and its commutation with Z7.

By the argument as in (2.134) and (2.135), as k& > 2(m + r + 1), we can split the
above operator to two parts

QN — L RN = L) M Ry - Ri(N — .24
()\ - (,Z);)_(k?_k:/) .. RI’(/\ _ 'Zzt)—k;’QmQ//,

|7%-norm of each part is bounded by C(1 + [AJ*)V

and the ||

Thus the proof of (2.152) is complete.

By (2.149), (2.151) and (2.152), we get the similar estimates (2.140), (2.148) for
%c’“g‘;, %(Ffjc_“ﬂ) with the exponential 2n +m + 27 + 2 instead of 2n +m + 2
therein.

Thus we get (2.132) for m’ = 0.

Finally, for U € T X a vector on X¢,

¥ Enc ot —DF (k= 1)! . * En
(2.154) v, ErdBs)-ugy (=" (w ) ey T EndBr) (\  goty—k gy
U 2miuk—1 SUA v 2
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Now, by using the similar formula (2.151) for V;}* End(Bs)(\ _ @t)~k by replacing
aalt:g by Vi, End(EB).iﬂt and remark that V,
on T, B with the same structure as .Z%.

Then by the above argument, we get (2.132) for m’ > 1. O

7" End( EB)gt is a differential operator

Let Py, be the orthogonal projection from ¢ > (T,,B,Ep ,,) to the kernel of £}
with respect to (, ), 4. Set

1 ;
(2.155) F (L) = —/ e NN - LA
271 A
By (2.120),
t .+% cpot
(2.156) F (L) =e"%2 — Py, = Lhe 72 duy

u
Let Py (Z.Z"), F,(%5)(Z,Z’) be the smooth kernels of Py, F,,(-£4) with respect
to d’UT,I,“B(ZI).

Corollary 2.18. — With the notation in Theorem 2.17,

., (‘)[(x]JrIa/‘ or
2.157 su L+ |Z5 + |12 )™ | ——— == F.(£) (2, Z
( : |a\+|o<I’)|<m( | I+ D VAT VA (£:)(2.27) ™' (P)

b 2 21 1
C(l 4 lZOI + ‘Z/()l)Qner,Jer +2r+2 exp(—gl/u o /CNV|Z _ Z/|)

Proof. — Note that fru + ———[Z Z'? = VC"v|Z — Z'], thus

+oo N
(2.158) / e

,r|2 %l/ul

duy e duq

+oC
< €~\/W\Z~Z'|/
_ 8 tvu Tz

By (2.132), (2.156) and (2.158), we get (2.157). O

For k large enough, set

(=) Yk — 1) / o K ik
Frw= e v E apg A (A, 0)dA,
JA ( )

2mi rluk—1
(k.r)ely
1 -1
(2.159) g = 2) '( )! / e ST kAL, 0)d,
T T.IL SUA (Kr)E Ly,
Lo Lo
Fr' u,t — . 7 u s ']r' u,t — 7u,£2 - ]
JuLt !Ot, ( 2) st rl ()?U
Certainly, as ¢t — 0, the limit of || ||, exists, and we denote it by || {lo, -

Theorems 2.19, 2.20 are the analogues of [17, Theorems 4.14, 4.15], we include the
proofs for the sake of completeness.
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Theorem 2.19. — For any r > 0, k > 0, there exist C > 0, N € N such that for
te 0.t AedUA,

(2.160)
a 2 0
— - S é Cf HZaS”O’l,
87, — «
H(W.(A—z;) ey a}fA}‘(A,O))sHOOgCt(lﬁ-(AP)N 3 120
i (k,r)ET} ’ o] <4r+3

Proof. — Note that by (2.105), (2.114), for t € [0, 1], k > 1

(2.161) Islo < Islor <€ 2 1270
laf<k

An application of Taylor expansion for (2.109) leads to the following inequality. if s, s’
have compact support,

(2.162) ‘<(3d;26’ ~ 6;;?

5.5 < Ctl|s’ z° .
i:O) %8 >o,o' < Ctllsllen Z 12%sllo.

|| <r 43

Thus we get the first inequality of (2.160).
Note that

(2163) A—Z) T - — ) = (-2 (L - LN -2

Now from (2.119), (2.162) and (2.163),

(2.164) (A =2D)7 = (A=2) ) sllp < CHL+ DY D7 1200
| <3

After taking the limit, we know that Theorems 2.14-2.16 still hold for ¢ = 0.
Note that Vo, = Ve, + 5 RLL’(R e;) by (2.105).

Lo

If we denote by .\ = A — %4, then

J ar O
oLy oL
2.1 k K — ko ... 2 - 2
(2.165) Af(A\t) — AZ(N.0) Z ( Otri otri

co—ki . ok
/:O>j/\ 0 *ZA.()

T cpt
() +1L32

J
—k —k; — ki —k;
+ E :'Zx.t b (“(f)\.t - ff)\,() )( Ottt ,:0) o "Z)A.()J‘
1=0

Now from the first inequality of (2.160). (2.119), (2.151), (2.164) and (2.165), we
get (2.160). O

Theorem 2.20. There exist C > 0, N € N such that for t €]0,to], u = ug, ¢ € N,
YAVANS T,,B, {ZL |Z/ <q

(2166) |Fr,u,t(Z7 Z/)‘ < Cfﬁﬁ(l -+‘(])N(',7%Vu’
"]'l',‘lL,f,(Z‘, Z/){ < Ct‘zrv frl:.()H (1 + q)z\/e%uu.
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Proof. — Let JSU 4 be the vector space of square integrable sections of Ep ,, over

(Z €T, B.|Z| <q+1}.

If s e.J) . put Isli?,) = Jiz1<q1 |SI}21EBJ;(, dvrp(Z). Let ||All(,) be the operator
norm of A € £(J2 4) With respect to || ().

By (2.149), (2.159) and (2.160), we get: there exist C' > 0, N € N such that for
t e ]O,to],u > ug,

(2.167) | Frtll(g) < CH(L+ g)Ve 374,
HJ, uf”(q) < f(] )NG’EU".
Let ¢ : R?"="0 — [0, 1] be a smooth function with compact support, equal 1 near 0,
such that [, o @(Z)dvr, 5(Z) =1.
w0
Take ¢ € 10, 1].

By the proof of Theorem 2.17, F,, verifies the similar inequality as in (2.157).
Thus by (2.157), there exists C' > 0 such that if |Z].|Z/| < q. U,U’" € Ep_,,,

(2.168) ‘ (Frowi (2. ZVUU"Y — / (Frowi(Z —W. 2" — WU, U")
T,yBxT,,B
1 )
x T d(W/s)p(W' [S)dvr, s(W)dvr, B(W')| < Cs(1 + Q) Ne U U

On the other hand, by (2.167),

(2.169) ‘ / (Frt(Z - W, 2 —WHU, U’) ﬁd)(w Op(W' /)
Ty BxT,, B ‘ 0

0 ()

dvr,, s(W)dvr, (W) < Ct (14 ¢)Ne 2w |U||U|.

an_”‘
By taking ¢ = t!/(2n=m0+ D) we get (2.166).
In the same way, we get (2.166) for J, , ;. O
Theorem 2.21. There exists C” > 0 such that for any k,m,m’.m"” € N, there

erist N € N, C' > 0 such that if t € [0.to),u = wy, Z,7" € Tf,({U, a o € 72T
lo] + [&| < m,

ITIN (‘)1(1|+|Q/| k »
(1+ |25 +]2")) ‘7 FAZH =S Fout")(2.2")
02007 ( Z:(:) )

n4-k4+m' 4 m 1
< Ot"H (1 +12°% + 1Z’0|)2( IR ( - g VC'"v|Z — Z/|),

¢'m’ ()(G )

2.170
( ) Hlel+la’|

(1+[ZH+|Z’¢|)"'/N‘W<‘ ug Z} Nz 2

r=0

Em(Xa)

2(n+k Vo m 1
< Ctk—kl(l_'_ |Z()| + |Z/(JD2( +h+m +2)+ LGXI) <§
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Proof. — By (2.159) and (2.166).

1 9" . 10" —ut

E%FU(XQ)It:O:FT,Uﬁ '81Lr6

Now by Theorem 2.17 and (2.159), J,. ., F}-,, have the same estimates as (%‘,.e‘“g 2,
F. () in (2.132), (2.157).

Again from (2.132), (2 157), (2.159), (2.166). and the Taylor expansion

(2.171) li=0 = Jrou-

(?t’

e

t Ak+1

1
(t —to)" sy

(2172) G(f (fo)(lf()

k!,o

ﬁ

we get (2.170). O

2.8. Evaluation of J,,

For u > 0, we will write uA; for the rescaled simplex {(uy...., u;)| 0 < uy <ug <
<y < ul

Let c’“‘g}‘?(Z, Z') be the smooth kernel of e %Y with respect to dvr, 5(Z").

Recall that the O,’s have been defined in (2.101).

Theorem 2.22. — Forr > 0, we have

(2173) «]r.u = Z (_1)J/ e (= “’)32(9 (o =y~ l)j“

i uA L cp0
Sl = Oy e M2 duy - duj,
T‘,’?l o

where the product in the integrand is the convolution product. Moreover,
(2.174) T 2.2 = (=1)" Jp(—Z,=2Z").

Proof. — We introduce an even extra-variable o such that o” ! = 0.

Set [ ]I') the coefficient of 0", &, = £ + Z;Zl Oj07.

From (2.159), (2.171), we know
(2.175) h2.2) = 2 Lotz )| ez, 7).

rl ot t=0

Now from (2.175) and the Volterra expansion of e~“%= (cf. [1, §2.4]), we get
(2.173).

We prove (2.174) by iteration.

By (1.18), for 29 € X¢. Uy, Uz € T,y B, RE5(Uy,Uz) = RE(U, UH). From (2.6),
(2.101), we get

(2.176)
2n—nop
9(520 — Z (Ve, )2 o 7-r2<((PT”UJPTHU)2 + 4PTHUJPTYJPTHU);L.“R, R>
Jj=1

+ 27V — 1Vp'rH vyprTHur — 2Wd,<n, - Tap-
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Here the matrix (PT UVIPT"U)2 L 4pT"UpTY 3pT"Uy need not commute with
PT"UIPT"U Thus [3, (6.37), (6.38)] does not apply directly here, and we could not
get a precise formula for e —uZy a5 in [17, (4.106)].

By the uniqueness of the solution of heat equations and (2.176), we know

(2.177) e (7,7 = e L (— 2.~ 7).
By (2.173),
(2.178) JoulZ,2') = e (2. 2').

Thus we get (2.174) for r = 0.
If (2.174) holds for r < k, then by (2.173), (2.178),

k+1

2.179 A (=)L O i1, duy.
Jiua

By the iteration, Theorem 2.11 and (2.178), and note that V., in O; will change
the parity of the polynomials we obtained, we get (2.174) for r = k + 1. O

2.9. Proof of Theorem 0.2

By (2.156) and (2.170), for any u > 0 fixed, there exists C, > 0 such that for

t = #, 2,7 € TyB, 0 € Xio, v, € Z°" ™ |a| + || < m, we have
(12 412 | (B = 32 1 s — o)) (2.2
(2.180) YA YA — ¢ (Xa)
L CW th (1L + 20| + | 27020t ktm s Dk m ox (N Crp| 2 — 7).
Set
(2.181) P = J., = F.,.

Then P does not depend on u > 0 by (2.180), as Py, does not depend on w.
Moreover, by taking the limit of (2.157) as ¢t — 0,

TYL

(2182) (L4 |2+ + 2" |Fu(2.2")

Em'(Xea)

C(l + |Z(]l + 'Zl()|>2n+2r+2m'+2 exp ( . —Z/U \/—CT}Z A l)
Thus
(2.183) T 2.2y = PYNZ. 2"+ Fr(2.2') = PUN(Z.2") + O(e™ 57",

uniformly on any compact set of 17, B x T, B.
Especially, from (2.174), (2.183), we get

(2.184) P27y = (=1 P"(—Z. -Z").
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By (2.100), for Z, 2" € T, B,
(2.185) Poyp(Z.2') = p"~ F 1 3(Z) P (Z/t. Z' )Y~ 3 (Z').

We note in passing that, as a consequence of (2.180) and (2.185), we obtain the
following estimate.

Theorem 2.23. — For any k,m,m’,m"” € N, there exists C > 0 such that for Z, 7’ €
T B, |Z].|Z'| <, 20 € Xa.
(2 ]86) (1 + \/—‘ZJ_| 4 \/_IZ”-|)""” (()1(Y|+|(y"
s sup P P P ——
lal+|a’|<m SV ATVAM

(,)*"+JPM (2.2 ZP(’ (VBZ. B2k E(2) ,kf%(Z’)p“T/Q)

r=0 €' (Xa)
< Op—(l\%lfm)/Z(l + \/5|ZU| + \/I—)|Z/0|)2(17+k+m,’+2)+m exp ( ‘ m\/f_)lz o Z/|)

From (2.83), (2.84), (2.108) and (2.186), we get Theorem 0.2 without knowing the
properties (0.12), (0.13) for P,

To prove the uniformity part of Theorem 0.2, we notice that in the proof of Theo-
rem 2.17. we only use the derivatives of the coefficients of .% with order < 2n + m +
m’ + r + 2. Thus the constants in Theorems 2.17 and 2.20, (resp. Theorem 2.21) are
uniformly bounded. if with respect to a fixed metric gI X, the @2 tm+m' +r+4 (pegp,
@2ntmtm’+h+5) - horms on X of the data (¢7X, hE, VL, hE, V¥, J) are bounded
(as by (2.109). the coefficients of .2 are functions of g7* (resp. V¥, V) and their
derivatives with order < 2 (resp. 1)), and g7~ is bounded below.

Moreover, taking derivatives with respect to the parameters we obtain a similar
equation as (2.154), where g € X plays now a role of a parameter. Thus the ™'
norm in (2.186) can also include the parameters if the %™ - norms (with respect to
the parameter xg € X¢) of the derivatives of above data with order < 2n+k+m+5

are bounded.

Thus we can take Cy, ; in (0.10) independent of g7 under our condition.

This achieves the proof of Theorem 0.2 except (0.12) and (0.13) which will be
proved in Theorem 3.2 under the condition in Theorem 0.2.
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CHAPTER 3

EVALUATION OF P

In this Chapter, inspired by the method in [28, §1.4, 1.5], we develop a direct and
effective method to compute P("). In particular, we get (0.12) and (0.13) under the
condition in Theorem 0.2.

This section is organized as follows. In Section 3.1, we study the spectrum of
the limiting operator .25 . In Section 3.2, we get a direct method to evaluate P
in (0.12), especially, we prove (0.12) and (0.13). In Section 3.3, we compute explicitly
O in (2.102). and get a general formula for P(?) by using the operators O;, Os.
In Section 3.4, we compute explicitly an interesting example: the line bundle O(2) on
(CP'.2wprg). We verify that Theorem 0.2 coincides with our computation here if 0
is a regular value of the moment map g, but it does not hold if 0 is a singular value.

We use the notations in Section 2.6. and we suppose that (3.2) is verified.

3.1. Spectrum of .¢%

Recall that TH P is the orthogonal complement of TY in (T'P.¢g""). Note that
by (2.6) and (2.17), we have the following orthogonal splitting of vector bundles on
P = 1(0),

(3.1) TP=THPaTY, TX=THPOTY ©JTY.
In the rest of this Chapter, we suppose that on P
(3.2) J*TY =TY.

(2.8) and (3.2) imply that —JJ preserves TY and JTY. Especially if J = J on P,
then (3.2) holds.
By (2.8) , (2.17) and (3.1) , the condition (3.2) implies

(3.3) JTy =JTY. JTHP=THP=JT"P
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Thus (JTY)p|x. is the orthogonal complement of 7' X in T'B, and J induces nat-
urally Jo € End(TX¢g). We will identify (JTY)p|x,. to the normal bundle of X4
in B.

For U,V € T, B, xop € X¢, by (3.2), we have

(3.4) w(UH VHY = we(PTXey, PTXeY),

From the above discussion, for zg € X, we can choose {uzo}’? 7o {ejl};“_’l or-

thonormal basis of Td,(;(l, 0 xq, (JTY )z, C T'B such that

v —1
J|T(1 0 X, = diag(al PR a/,,,ﬁr,,,“) S End(Til 0 )
(3.5) 2 '

-1
yp 2(11&3(@%’2, covay®) € End((ITY ) Buay ),

with a;,af > 0, and let {w7}7 21" {e+7}1" ) be their dual basis, then

JQI(JTY)L; -

1 —
0 : 0, =0 0 0 _ —0
ey, | = —=(w; +w;) and e, = —(w; —W;),
25—1 \/§ J g) 2j \/5 J J
j=1,...,n—ng, form an orthonormal basis of T, ) X¢.
From now on, we use the coordinate in Section 2.6 induced by the above basis.
Denote by Z" = (Z9.....29, ,,). Z+ = (Z{...., Zz ), then Z = (Z2°, Z+).

In what follows we will use the complex coordinates z¥ = (29,...,z0_ ), thus
79 =20 420 and w = \/5%, w) = \/582.,, and
0 — a
(3.6) 1= gt ogere €=V -1(gh

We will also identify 2% to >, 2052 and z° to >,z %T when we consider z? and z°
as vector fields. Remark that

2
(')’

(3.7) 2

1 . 1
=, sothat [2°)7 = 29?2 = 2| 2"2.
2 2

az9
i

It is very useful to rewrite .23 by using the creation and annihilation operators.
Set

1 1
(3 8) 1 2 ()() + 2(12/45 I [ 2()(3)() + za’/‘o ) b = (b].7 RN} bn—n()) ;
bf_ = 044 +(1J'ZJ_ bjl+ - ()ZL +QLZJ_ bt = (biL‘b#o)

Then for any polynomial g(Z% Z+) on Z" and Z+,

(b4, b;’] = bl-/b;r — b;-rbi = —2a;0; ;. i, bl =t 1+v fjj =0,
a0 9.6 = 2559, 9:5/) = =255,
(3.9) b b1 = —Qif(sm‘-, , (b br] = [le” bi-t) =0,
l9.:b5] = =[9.6;"] = 559
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Set

(3.10) Z bibl, L= "bibiT, Vo =V 43 Rff(R,-).
From (0.1), (1.18) and (3.4), for U,V € T, B, we get
(3.11) REo(U V) = —2nV/=1(IPT¥cU, PTXV)
By (2.50), (3.5), (3.8), (3.10) and (3.11), we have
bi=-2V o . b =2V 5, Voer = Ver,

ey 0. 530
,

(3.12) =3 a,+ Y at
j J

From (2.101), (3.10) and (3.12), we get

2n—2ng no
('513) lgﬂ = = Z (VO.G_(]’)2 - Z ((ch)Q - |(L%Z;L|2) - 2wd..r0 - Txy
fr =1

= Y+ L+ - 2wWd 20 -

By [42, §8.6], [28, Theorem 1.15] (cf. [31, Theorems 4.1.20, E.1.1]), we know

Theorem 3.1. The spectrum of the restriction of & on L?*(R*"=20) is given by
n-1y

(3.14)  Spec (&L|p2mzn-200)) = {2 Z da; o’ =(af,....a)_, )€ N”"“’},
i—1

. g . d T . .
and an orthogonal basis of the eigenspace of 2% """ ala; is given by

( p 1 ’
(3.15) b ((Zo)d CXp (_Z Z(I,LOIZ)) . with f e N'7"
i
The spectrum of the restriction of £+ on L*(R™) is given by

ng

- - . 1 _ . - L ()
(3.16) Spec (L [ L2rm0)) = { E atal ot =(af, ..., ,M) €N }
i=1
and the eigenspace of 23", atait is one dimensional and an orthonormal basis is

given by

71(;

(317) ﬂ_—L 2(1 )>_1/2([)J_)ni exp (_% Z(]%tZLJ‘IZ) .
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Especially, the orthonormal basis of Ker(.Z|2(g2n -210)): Ker(Z" | 2(gnoy) are

(g T 220 (e (155 wt)), s
(3.18) =l . . =
Gzt = (Hl ) e (- %;a,ﬂzﬂ?)

Let Py (2°,2'9), Py (Z1.2'), P(Z,Z') be the kernels of the orthogonal projec-
tions Py, Py, P from L?(R*"-2n0) L2(R"0), L?(R?" ") onto Ker(.%), Ker(£1),
Ker(Z +.£1) respectively.

From (3.18), we get

n—no

a; 1 n—ngy ‘
pfi(Z{)’Z/O) :( H %) exp ( ~ 1 (1/71(1z?|2 + |z;0|2 _ 2292’?)),

1=

1=1
(3.19) N an SN L= i /
B ; ; 12
Py (2*.2") ;(E ) exp (- g o (1251 + 12 )
P(Z,2") =Py (Z°, Z'"°YPy (Z+, 2'1).

Let PV be the orthogonal projection from L2(R?"~ " (A(T*"VX)® E),,) onto
N = Ker(.£y). Let PN(Z,Z") be the associated kernel.

Recall that the projection Icg g, from (A(T*OVX)® E)p onto C @ Ep is defined

in Introduction.
By (2.8), (2.10), (2.50) and (3.5),

(3.20) ~Wdizy = o on AT X))
thus
(3.21) PN(z,2"y = P(Z,Z)IcsE,.
If J = J on P, then by (3.19) and (3.21),
Pz 2 =exp (= DS (20F + 10F - 2:050))
(3.22) i—1

x 27" exp ( —n(|ZH) + |Z’l12))f@®5m

PN((0.21).(0. 24)) = 2% exp ( - 27T|Zl|2)1@®1,;,?.

3.2. Evaluation of P("): a proof of (0.12) and (0.13)

Recall that 4 is the counterclockwise oriented circle in C of center 0 and radius v/4.
By (2.120),

1
(3.23) Pyt = — /(A —ZH A,
271 s
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Let f(\ 1) be a formal power series with values in End(L?(R?"~ "0 (A(T**DX) ®
E)B.Io))

(3.24)  f(At) = Z 7 F(A). fr(N) € End(L2(R* ™ (AT OV X) @ E)p.ay)).
By (2.102), consider the equation of formal power series for A € 4,

(325) )\ ‘_‘Z)U Z f O )j )\ f IdL‘)(RQn—n(,’(A(’]'r‘(().I)X)®H)UJ_“) .
r=1
Let N+ be the orthogonal space of N in L2(R?"~ ™ (A(T*"YX)® F)p..,), and
PN be the orthogonal projection from L2(R2" "0 (A(T*VX)® E)p.,,) onto N
We decompose f (. t) according to the splitting L2(R? 0 (A(T*OV X)) @ E)p..,) =
N & N+t

(3.26) gr(N) = PN, FEO) = PN (O,

Using Theorem 3.1, (3.13), (3.20), (3.26) and identifying the powers of ¢ in (3.25),
we find that
1 -
g\ = PN fo () = (=) TP

T

(3.27) FE) = A=) 3PN O (),

Recall that P (r € N) is defined in (2.181) and (2.186).

Theorem 3.2. There exist J.(Z,Z') polynomials in Z,7’ with the same parity as
"., and deg J, (Z Z')y < 3r, whose (()(’fﬁ(l( nts are polynomials in RTE, ROTs  REs,

, Tr [Rl(l ” X1, RE (resp. A, p, pC%; resp. h, RE, RE5; resp. p) and their
dervﬁvativcs at xo up to order r — 2 (resp. r — 1; resp. r; resp. v+ 1), and in the
mwverses of the linear combination of the eigenvalues of J at xqg, such that

(3.28) PYNZ. 72" = J.(Z,Z"VP(Z.Z").
Moreover,
(3.29) POz zy=PNZ.7Z')=P(Z Z)IcpE,-

Proof. — By (3.23), for ¢ > 0, by combining Theorems 2.13-2.16 and the argument
as in [28, §1.3], we get another proof of the existence of the asymptotic expansion of
Pos(Z.2") for | Z], |Z’| o when t — 0.
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By (2.83). (2.84) and (2.185), this gives another proof of Theorems 0.2, 2.23
for |Z|,1Z'| < o/\/p. Moreover, by (2.149), (2.159) and (3.26),

1
. P = —/ +(A)dA -—/
(3.30) 5 5g + fi(

From (3.27), (3.30), we get (3.29).
Generally, from Theorems 2.11, 3.1, (3.9), (3.27), (3.30) and the residue formula,
we conclude Theorem 3.2. O

Proof of (0.12) and (0.13). As J = J on p~1(0), the condition (3.2) is verified.
From Theorem 3.2, (3.22), we get (0.12) and (0.13). O

From Theorem 3.1, (3.27), (3.30), and the residue formula, we can get P by
using the operators (£3)~ !, PN, PNY O (k<)

This gives us a direct method to compute P in view of Theorem 3.1. In partic-
ular,

(3.31) PY = pNO PN (g0 TIpNT L pNT (g0 -1pNT o, pN |
and
(3.32)
1 1
p® :2—7”-/5 [(/\ L9)TIPNT (O f1 + Oafo)(A) + XPN(OI.)CI + ngo)(A)}dA

/{()\ ju)fle {01((/\_fo> LpN*t 0, +/\PN(91)+(92]

27T/
+ XPN [ol ((,\ PN o) Xp“’ol) + 02] }(/\ YN
=L PN 0y L)) PN o Py - PN () 2o PN O PY

+ ( ())MIPN (’)1PN(’)1 (“(£2())-II)Nl o (Q(KSJ)fl[)NJ OzPN

+ PNO(L) T PN O ()T PN = PN O (29) A PN 0PN

— PNOPNO(L) 2PN - PNOL(£)) PN

In the next Section we will prove PN O, PV = 0. thus the second and seventh terms

in (3.32) are zero.

3.3. A formula for O,

We will use the notation in Chapter 1. All tensors in this Section will be evaluated
at the base point 2y € X¢.
For v a tensor on X, we denote by VX4 its covariant derivative induced by VX,
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If ¢ is a G-equivariant tensor, then we can consider it as a tensor on B = U/G
with the covariant derivative VB, we will denote by

(VBVBL/)I)(CJ ej.cher) T Cjc;g(vg] vg 1//’1)300’
etc.
We denote by {e,} an orthonormal basis of (T'X, g7¥).
To simplify the notation, we often denote by U the lift U” € TH X of U € TB.

Recall that g € TY is defined by (1.14) and the moment map u (2.16), and that A
is the second fundamental form of X¢ defined by (0.10).

Lemma 3.3. — The following identities hold,
(VR )y = —IR,
(3.33) (VTYV.TYﬁ)(R,R) = (VZ}?'VZJ'ﬁ)J:()ZjZi

= —PTY ((VRoD)(RY + 2R*) + (V. J)RT)
1
~ JAR")RY — §T(R0,JRO) +T(R+,IRY).

Proof. — Recall that PTY PT"X are the orthogonal projections from T X onto
TY,TH X defined in Section 1.1. Note that on P, by (3.3),

(3.34) Jer ey, IO = (Jae) e TP,
By (1.14) and (2.17), for K € g,
(3.35) = (e KY) = VoK) = (VI i KY) + (0, VI KY).
From (1.4), (1.5), (1.6) and (3.35),
. . 1 ; ~
(3.36) Vel = —PTY 3l = Sgi = =PI Jel! = T(e]’ o).

From (3.36) and the fact that g = 0 on P, one gets the first equation in (3.33).
Now for W (resp. Y) a smooth section of TX (resp. TY), by (1.8),

(3.37) (Vi PTYWY) = eff (WY) = (PTYW, VIIY)
> 1 3 H
= (Via W.Y) + S (T(ef', PTXW), Y.
By (3.37),
- - 1
(3.38) VIYPTYW = PTYVIXW 4 STl PT"X W),
By (3.36) and (3.38),
(339) VIV = PP (V5 d)ell - PTYIVIKe]!
1 H 1 . . 1 oy .
A 5T(ef{,pT XJeHy - g(vfj,,yg}}/)u - §g2}} (VIY ).
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By (1.3) and (1.7), for Uy, Us sections of TB on B,
) 1
(3.40) v U1 = (V{iPu)" - 5T(U{’,UlH).
By the definition of our basis {e?, ej'} in Section 2.6,
(VIPeD)ny = Aled)el,
(VTUB(J_)I‘U = (VZLBG(L'))IU = A(e?)ejiﬂ (VZ%—BG'L):BO = 0.

?

(3.41)

Thus by (1.6), (3.2), (3.36). (3.39), (3.40), (3.41) and the facts that A exchanges N¢
and T X on X¢, and that g = 0 on P, we get

(3.42)
(VTYVTY f)em) = —PTY (VADR — JARY)R — %T(R, IRY) + T(R.IRS).

We use the closeness of w to complete the proof of (3.33).
From (0.2), for U,V,W € TX,

(3.43) (VEDV,W) = (Vi) (V. W),
thus
(3.44) (VEDHV.W) + (Ve D)W, U) + ((Viy U V) = dw(U,V,W) =

By (1.3), (1.7), (3.34) and (3.44) for Y a smooth section of TY, at xzg,
(IVIXe 0, ef) = (V?ﬁ“ﬂe?,.]c%) = —<T(e(j),.]cil),Y>

and
(T(ei,Je5).Y) = =2(Vi¥ (Jel) i)
(3.45) = 2((V§I)e o) + 2(T(ef. Je ), Y)
=2((V ,»1}?'])6127 Y) = 2((VE 3)el, V) + 2(T(ef, Jei ). Y).
From (3.42), (3.45), we get the second equation of (3.33). O

The following formula extends [29, Theorem 2.2] to the group action case.
Theorem 3.4. — The following identity holds,

1
- 5(011%’*”),“, (R, e:)

— 2 (A(e}) (%Q RL>VO'U?VO¢0 T — <(V7§J)6a ey) ceq) clep)
+ 472 (Vo) (R? 4+ 2R*) + (V{  J)RT = T(RT.IR'),IRY)

2
(3.46) O, =— g(c‘)J-HL“),W(R, ¢)ZiVo.,

, 1
+ 47 (JAR)R" + 5:r(R“, JRY),IR)
+Ar/ =1 (T gE IR
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Proof. — For ¢ € (T*X @ End(A(T*OVX)))p ~ (T*X @ (C(TX) @x C))p, where
C(T X) is the Clifford algebra bundle of T X, we denote by V¥ the covariant deriva-
tive of 1 induced by V.

From [VGET c(en)] = o(VEXe,) (cf. also [31, Prop. 1.3.1]), we observe that for
W e TB,

(347)  Viy(¥(ea)clea)) = (vigd))(() Je(ea) + W(VH ea)c(e a) +Y(ea)c (Va)g €a)
= (V{,‘{,z/))(ea)(:(eu).
Thus by (2.50) and (3.47), for k > 2

(3.48) — Quwa+7)(tZ) = % (RL(CG, ep) cleq) cley)) (t2)
k r r
%Z (;fT [(R"(eq. ep) c(eq) clen))(tZ)] ’t:(]i_! 4 ot

1 .
=3 (Ri‘” - I‘,(V%R")m() (ea-ep) cleq) cley) + O(t?).
By Lemma 3.3 and (2.110), we have

3 .
0B, ok a1, .
(3.49) (B G\ (tZ) = An? Z Eﬁ(wff” (tZ)) Lko k=2
— kot _
+ 47T /“‘1t <ﬁcliﬂ + ,UE JRL> + ﬁ(f2)

The following two formulas are clear,

Lo - (it )

5 5y gy (12) = |V& Al

(RR)| 4o
YVl 2 (2 )
(VYIS (D) .

(VYY) rR) VR ).

From Lemma 3.3, (3.49) and (3.50), we see that the contribution from —2(pr, p¥r)(t2)
forms the last three terms of (3.46).
By (2.103), (2.105) and (3.10), we have

t=0

3.50 1 9% _
(3:50) 30 Whtlin'(fz)

D= O] =

=0

—~

t t 1 .
(351) vt,(’, = V()Aﬂr + g(ajlzLB):L‘qu(Rv ei) - 5(;V(‘K)(ILZ) + (/’(7‘2)
By ¢i;(Z) = ()f“(Z)F)‘f’(Z) and (2.94)-(2.96), we know

(2) - 8ij — 2(A(e))e) . RY) + O(|1Z]%) for 1 <i,j < 2(n —no),
(3.52) i1 | 6+ O(|Z1)  otherwise;
k(Z) =det(gi;(Z))? =1 — (A()ed, RY) + 6(12]%).

From (3.41), (3.51) and (3.52), the first three terms of the right hand side of (3.46)
is the coefficient t' of the Taylor expansion of —g"(tZ)(Vie, Vie, =tV vrse,i2)).
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By (2.109), (3.43), (3.48) and the above argument, the proof of Theorem 3.4 is

complete. ]
Theorem 3.5. — We have the relation
(3.53) PNO PN = 0.

Proof. — By (3.8) and (3.19),
(3.54) biPYN =b-tPN =0, (bFPY)2,2) =24} 2PN (2,2,
' (b; PN Z.Z') = a;(Z) — 20\ PN (2. 2").

We learn from (3.54) that for any polynomial g(Z+) in Z+, we can write
g(ZHYPN(Z,Z') as sums of gﬂl(b'L)/j‘LPN(Z, Z'") with constants gz.. By Theorem
3.1,

(3.55) Py (b5)* g(ZzHPN =0, for lat| > 0.

Let {w,} be an orthonormal basis of (T X, gT X)),

Note that if f. g are two C-linear forms, then
flea)g(ea) = flwa)g(Wa) + f(Wa)g(wa).
Thus by Theorem 3.1, (2.9), (3.21) and (3.54).
(3.56) PN< (Vad)ea,ev) cleq) cley) PN = —2PN (VT w,, W, ) PY
—2PN (VoD we, @, ) PN = V/—1PY Tr|TX[ (Vo) P
By (3.8), (3.12), (3.21), (3.46), (3.54) (3.56), we get

(3.57) PNo, PN = PN{ (OrR"")p) (R, 52 )b w%(O,ORLB)J.,,(R,e;?)

—(BRRL”)TU(R ey )by — —(0 R*7), (RO, ef)
+ 1 Tr lrx [J(VE0T)] + 872 (VET)REIRY) }PN.
By (3.9), (3.54) and (3.55).

1 N 1 v
(3.58) PNZ 2y PN = — PN Z o PN = —6,.PY.
2a; 2a;

For v a tensor on X¢, let VX&) be the covariant derivative of ¥ induced by the
Levi-Civita connection VI ¥X¢ .
For U, VW € T, X¢, by (3.2), (3.3) and (3.11), we have

(3.59) (O RE#),, (V.W) = —21y/—1 < SOV = —2mVET((VEDV. ).
From (2.8), (3.2), (3.5), we know that

) Jet = Y get.
(3.60) €] 27 e
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By Theorem 3.1, (1.18), (2.8), (3.9), (3.44) and (3.54)-(3.60), we get
47T\/

(3.61) PNO PN = PN{ - [ <(VRUJ)£§,5%;> + <(V%J)RO,5%T>

i

- <(VX§ IHRO, 5%>] Tl [J(VRed)] + 27 (Ve d)e ), Jet) }pN

= '/TPN I: 4 V — <(VR(]J ()ZU O(E)O >
T | [TV d)] = 2(J(VET)e kel ] PN =0,

J
The proof of Theorem 3.5 is complete. O
From (3.32) and Theorem 3.5, we get the following general formula which will be
used in Chapter 5,
P2 (jo) IPN'LOI((ZZ(J)fle*Ole - (L’g)z())—leLO2PN
(3.62) + PNOL(LY) PN O (2)) T PN - PN Oy (20) Y
(PN o PNON (L)) PN — PNO())y 2PN 0PN,

3.4. Example (CP'.2wryg)

Let wrg be the Kédhler form associated to the Fubini-Study metric g;:gpl on CP'.
We will use the metric ‘(/T“CP =2 qTCP on CP! in this Section.

Let L be the holomorphic line bundle O(2) on CP!. Recall that O(—1) is the
tautological line bundle of CP!.

We will use the homogenecous coordinate (zg, z;) € C? for CP! ~ (C? \ {0})/C*.

Denote by U; = {[z0.21] € CP';2z; # 0}, (i = 0,1), the open subsets of CP!, and
the two coordinate charts are defined by ¢; : U; ~ C, ¢;([z0, 21]) = i—’ J# .

For any ig. i1 € N, z{’z!' is naturally identified to a holomorphic section of
O(—ip —i1)* on CP!. For any k € N, we have

(3.63) HY(CP', O(k)) = Cspi, := 25°2}", io + i1 = k, and ig, i, € N}.

On Uj;, the trivialization of the line bundle L is defined by L 3 s — 5/312 here :,‘)
is considered as a holomorphic section of O(2).
In the following, we will work on C by using ¢q : Uy — C. Then for z € C,

vV—1= o1 v—1 dzANdz
3.64 wres(z) = ) log((1 2 = —
( ) F.S( ) 27T a( Ob(( + | . ) ) 271' (1 + |Z|2)2

Let h” be the smooth Hermitian metric on L on CP' defined by for » € C,
(3.65) s2.0e (2) = (14 [2[*) 2

Let VI be the holomorphic Hermitian connection of (L, h™) with its curvature RE.
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By (3.64) and (3.65), under our trivialization on C
(3.66) VE =09+ 0+ 0log(|s2.0l7)-
\/_— \/_
o

Let K be the canonical basis of Lie S' = R, i.e., for t € R exp(tK) = e*™V "1t ¢ §1.
‘e define an S'-action on CP! by ¢ - [20,21] = [20, g21] for g € St

8610g|32 0|hL = QuJFS =l W.

On our local coordinate Uy, g - z = gz, and the vector field KC€P" on CP! induced
by K is

(3.67) K& (z) = L exp(—tK) - z|j—y = —Zﬂ\/—<z— - E)—)E)

Oz
Set o2
(K ([0, 1)) = —220b

|z0|% + |21]?
Then, on C,

(3.68) (K =222 (1 + [z[) ! — 1.

By (3.64), (3.67) and (3.68), we verify easily that p is a moment map associated
to the St-action on (CP!, w) in the sense of (2.17).

The Lie S'-action on the sections of L defined by (2.16) induces a holomorphical
Sl.action on L. In particular, from (3.66)-(3.68),

(369) % (‘Xp(t[() . 527]‘“:0 = L]\"SQJ = 27T\/ —].(1 — j) 52,5+
By (3.69), the S'-invariant sub-space of H°(CP!. L?) and ;1 '(0) are
(3.70) HO(CP' L)% = Csgpp 71 (0) = {2 € C.J2[ =1},

and St acts freely on = 1(0), thus (CP*)g1 = {pt}.
Under our trivialization of L, so,; € H'(CP'.LP) is the function z7, and from
(3.65).

‘ |z|% /°C 2t dt 241 (2p — )
3.71 Sopill?e = | ————Qwpg = = A
(3.71) lls2p.5172 / (1+ [z WFS Joo (1 +t)2et2 (2p+ 1)!
Thus (%)1/252,, » is an orthonormal basis of HY(CP!, LP)

Let () N be the formal adjoint of the Dolbeault operator () . For p > 1, the spin®
Dirac operator D), in (2.14) and its kernel are given by

(372) Dp = \/5 (51,‘“ n 5L1’*> .’ Ker Dp _ HO((ijl, Lp).
Finally, by Def. 2.3, for p > 1, we get
, _ 2p + 1)} ) "
]D];G(Zt Z/v) = ( I 2) "521).1)(3) @ 52,).],(2/) .
(3.73) 2
’ (2p + 1)! (2p+ 1) |z?P

“(z,z = ooz F2pplpLrlz) =
B = S el G = S e
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Note that our trivialization by s2 ¢ is not unitary, thus we do not see directly the
off-diagonal decay (0.14) from (3.73).

Here we will only verify that (3.73) is compatible with (0.13), (0.15) and (0.16).

Recall that Stirling’s formula [42, Chap. 3, (A.40)] tells us that as p — 4oc,

(3.74) pl = (27Tp)1/2pp€7”(1 + ﬁ(%}))

By (3.74),
a1 G = (i) (o) = R (o))

Now, C* is an open neighborhood of = 1(0) and B = C*/S' ~ R* by mapping
z€C tor=|z| € RT.

By (3.64). the metrics on {|z| = 7} = {re?V 1.9 € R/Z}, B ~ R* induced by
W = 2(,«.)[.‘5 is

(3.76) 872 (14 1r?)"2df @ dob, g'B = %(1 +r3) "2 dr @ dr.
From (3.76). the fiberwise volume function h?(r) in (0.10) on R* is
(3.77) 2 (r) = V8rr (142"
From (3.73), (3.75) and (3.77), we get for |z| = r,
(3.78)
e - () () e o ().

When |z| = 1, from (3.78). we re-find (0.15) and (0.16).
From (3.76), v/ 271'% is an orthonormal basis of (B, g7?) at r = 1, thus the normal
coordinate Z+ has the form r» — 1 = 2n(Z+ + ©(|Z+|?). Thus

(3.79) (20 (14 r2)~1)2P+1 = @piDlos(L-m(ZTH 021 1%) — o-2mnp(Z7) 4
This means that (3.78), (3.79) are compatible with (0.13) and (3.22).

If we consider the sub-space HY(CP!, L?), of H°(CP!, LP) with the weight p of
S'-action, then by (2.16) as in (3.69). and (3.71). \/p+ 3 s2p.0 is an orthonormal
basis of HO(CP'. L?),.

Thus the smooth kernel PP(z, 2’) of the orthogonal projection from € (CP, LP)
onto HY(CP, LP), is

Pﬁ)(z: 2') = (P + é) 59p.0(2) @ 82,),0(2/)*,
N 2\ —2p
PP(z.z) = (p+3)(1+1217) "

Note that g~'(—1) = {0}, i.e., —1 is a singular value of p.

Let 41 be the moment map defined by p(K) = p(K) + 1, then H°(CP', L?),
is the corresponding S'-invariant holomorphic sections of LP with respect to the

(3.80)

corresponding S'-action.
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Thus 0 is a singular value of p1 and this explains why we have a factor p in (3.80)
instead of p!/? in (3.78).
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CHAPTER 4

APPLICATIONS

This Chapter is organized as follows. In Section 4.1, we explain Theorem 4.1, the
version of Theorem 0.2 when we only assume that p is regular at 0. In Section 4.2, we
explain how to handle the ¥-weight Bergman kernel. In Section 4.3, we deduce (0.15),
and (0.16) from [17, Theorem 4.18]. In Section 4.4, we review the characterization
of the Toeplitz operators established in [30], and only Lemma 4.6 is new. In Sec-
tion 4.5. we explain Theorem 0.2 implies Toeplitz operator type propertics on X¢. In
Section 4.6, we extend our results for non-compact manifolds and for covering spaces.
In Section 4.7, we explain that the relation on the G-invariant Bergman kernel on X
and the Bergman kernel on X¢.

We use the notation in Introduction.

4.1. Orbifold case

We will use the notation for the orbifold as in [26, §1], [17. §4.2], [31, §5.4] and we
recall briefly here.

Let M be an orbifold, by definition, there exist a connected open covering {U} of M
and a ramified covering 7 : U — U which is Hyr-equivariant and induces a homeo-
morphism U ~ l}/HU, here Hy is a finite group acting effectively on the connected
smooth manifold U , moreover, these ramified coverings are compatible. Espccially, for
any © € M, there exist a small neighborhood U, C M, a finite group H, acting lincarly
and effectively on R and 17_,, C R™ an Hg -open set such that (7,,; SN (7;,./H;,/. =U,
and {0} = 7,1 (2) € U,.

Any additional structurc on M is induced by a corresponding H,-invariant struc-
ture on U,. In this way, we can define an oriented, Riemannian, almost-complex or
complex structure on M.

An orbifold vector bundle € over M is an orbifold defined by an Hf-equivariant
(here HE is a finite group) vector bundle &, on U, such that H, = HE/KE, here
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K& = {g € HE g acts on U, as Id}, and (HE. &) — gU_L_/H:f defines the orbifold
structure on €. If K = {e} for any x € X, then we call £ a proper orbifold
vector bundle. Let Egi be the maximal Kf—invariant sub-bundle of gUm on [7;,3, then

(GU,,gE) defines a proper orbifold vector bundle on X, denote it by EP'.

Now we go back to the hypotheses in the Introduction. In this Section, we only
suppose that 0 € g* is a regular value of p, then G acts only infinitesimal freely on
P = 10), thus X = P/G is a compact symplectic orbifold.

Let G = {g € G,g-x = x for anyr € P}, then G is a finite normal sub-group
of G and the group G/Gq acts effectively on P.

Let U be a G-neighborhood of P = = '(0) in X such that G acts infinitesimal
freely on U, the closure of U. From the construction in Section 1.2, any G-equivariant
vector bundle F’ on U induces an orbifold vector bundle Fg on the orbifold B = U/G.

The function A in (0.10) is only 4 on the regular part of the orbifold B, and we
extend continuously h to U/G from its regular part, which is 4> and we dcnote it
by 71, then & is also € on U.

As we work on P in Sections 2.4, 2.5, we need not to modify this part. Especially,
Theorem 0.1 still holds.

We need to modify Section 2.6 as follows.

Observe first that the construction in Section 1.1 works well if we only assume
that G acts locally freely on X therein.

We identify the normal bundle IV of P in U. to the orthogonal complement of T'P.
Denote by V"V the connection on THU as in Section 1.1, and on P, let V¥, vrr
be the connections on N. TH P in Section 2.5 as in (0.9). and let oyt gN TP
be the connection on THU = N & THP.

For yo € P, W € THU (resp. THP). we define R 3 t — 1y = exp;{;:I['/(tl’V') ceU
(resp. expgnnp(tVV) € P) the curve such that x¢|;—0 = o, ‘(i]—ﬂt:() =W, ‘(ll—lt c THU,
V;H(“(ll—{ =0 (resp. :li_; ceTHPp, VQ:P% =0).

By proceeding as in Section 2.6, we identify BT”U(yU.E) to a subsct of U as fol-
lowing, for Z € BT”(‘/(,{/O,S), Z=7"+2z+ 7" ¢ TJ{{P, Z+ € Ny,
with ()X[)TX};%{:, ,,(Z”)(TZU zZ4).

Set Gy, = {9 € G.gyo = yo}. then G- BV (yo.2) = G xq, BT"V(yo.2) is a
G-neighborhood of Gy, and (G.,,. BV (yo.€)) is a local coordinate of B.

we identify Z

As the construction in Section 2.6 is Gy, -equivariant, we extend the geometric
objects on G x¢, BT”U(,IJ(),€) to G X Gy R2r—m0 = X,

Thus we get the corresponding geometric objects on G x R?"~"0 by using the
covering G x R?"—n0 — @G Xy, R27—"m0 especially, E}z(“ (where we use the ~ notation
to indicate the modification) is defined similarly on G x R?*~" and Theorem 2.5
holds for EA]}"
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Let g : G x R?n 10— R2"="0 he the natural projection and as in (1.20), (2.82),
we define

D = hAig : €(G x RP Fy )¢ —= GF(R¥ (Ey ) )pen—ro ),

then the operator EI;E;("ZIS_ is well-defined on T})'U ~ R?"~ "0,

Let gTHX” be the metric on R?"~" induced by g7, and let dvyu x, be the
Riemannian volume form on (RZ”"‘O,(}THX”).

Let P, , be the orthogonal projection from L*(R*"~"0 (A(T*OVX)® LP @ E),,)
onto Kcr(@fg"“@"l) on R*"~mo. Let Py, ,(Z,2") (Z,Z' € R?"~") be the smooth
kernel of Py() » with respect to dvpw x, (Z').

Let P ,» be the orthogonal projection fl()lll Q% (Xo, L5 @ Ep) on (Ker D;}'“ )¢, and
let P§ P(I 2’) be the smooth kernel of P’
form dux, (x').

Let P’\"'/G(l/ y') (y- 1/ € XO/C) be the smooth kernel associated to the operator
on Xo/G induced by (I)L’X“(I) Vas Py, in (2.83).

H . . a
Note that our trivialization of the restriction of L on BT (0, £) as in Section 2.6

y;» with respect to the Riemannian volume

is not Gy, -invariant, except that G, acts trivially on L, .
For x. 2’ € Xy, with their representatives z, " € R?"~ "0 we have
? )7 ? b

(4.1) h(@)h@)BS, (r.a') = BXVO (r(a) m(a') = |(;| 5" (9.1) - Py 77,

gEGy,

Here |G| is the cardinal of GY. The second equation of (4.1) is from direct compu-
tation (cf. [17, (5.19)], [31, (5.4.17)]).

As we work on G x R2"~ "0 for the operator 62}}'”@*‘, Proposition 2.9 and Sec-
tions 2.7-2.9 still hold.

From Theorem 2.23 for P, , and (4.1), we get

Theorem 4.1. Theorem 0.1 still hold.
Under the same notation in Theorems 0.2, 2.23, for o, o’ € N2 |a|+|a/| < m,
we have

(4.2)

m'’ (.)‘(YH_‘(‘/‘ ~
O+MTHﬁWWI

—n—{—% AN N G /
g (T (b 2) (2P 0 w(2.2)

(' -1 -5
B R I

r=0geG,,
< Cp=UHI=m/2(1 1 f5 20| 4 \fp| 20| 20 Rt m +24m

xexp(—/C"vp inf |¢g7'Z— Z')+ O(p~™).

geGy,
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If Z =2 = Z° then for g € Gy,, such that g7° = 7Y, we use Theorem 2.23
for Z = Z' = 0 with the base point Z°, and for the rest element in G
Theorem 2.23 for Z = Z' = ZY with the base point yg, then we get

yos WE use

(1.3) ip*“%”(ﬁ%)(ZO)P,? o W(Z", 2%

|G"| Z Z (9. 1) Pé%, (0,0)p™"

r=0geG,,,gZ0=29

I\,I‘

|C0] Z Z (g:1)- P, ,/” BV YARN AN

1=0 gEG 92" # 20

< C'p*(zkﬂ)/lz(] + (1 + \/ﬁ|ZO\)2("+2k'+2) exp(—\/C”’I/p\ZO])).

Note that if g € G, acts as the multiplication by ¢ on L,,, then (g,1) - PIS('J)
(g,1) - Pﬁ(,) in (4.3) have a factor €7 which depends on p.

Of course, after replacing L by some power of L, we can assume that G, acts as
identity on L for any yy € P, in this case, (g,1) - P,E':')(g’lZ(), Z%), (g,1) - P;,)(0,0)
do not depend on p.

From Theorem 3.2 and (4.3), if the singular set of X is not empty, analogous

n
—n+4

to the usual orbifold case [17, (5.27)], p PT,G(y(). yo). {yo € P) does not have a

uniform asymptotic expansion in the form Z;’C:O cr(yo)p™ "

4.2. Y-weight Bergman kernel on X

In this section, we assume that G acts on P = ;= 1(0) freely.

Let V be a finite dimensional irreducible representation of G, we denote it by
pY G — End(V). Let ¥ be the highest weight of the representation V. Let V* be
the trivial vector bundle on X with G-action p¥  induced by p¥

Let PI}) be the orthogonal projection from Q¢ (X, L” @ E) on Homg(V, Ker D,,) @
YV C Ker D,. Let P[})(.’I?,;I:I), (r,2’ € X), be the smooth kernel of P[}’ with respect
to dvx ().

We call P[Y (x,2") the ¥-weight Bergman kernel of D,,.

We explain now the asymptotic expansion of PI}}(;I'. ') as p — oc.

We will consider the corresponding objects in Chapters 1-3 by replacing E by
F ® V*. Especially, we denote by DQ))* the corresponding spin© Dirac operator asso-
ciated to the bundle LP & E @ V*.

Certainly, all results in Chapters 1- 3 still hold for the bundle E & V*.

Let P;)} be the orthogonal projection from > (X, E,, @ V*) onto (I\er DX*)G, and
PI?(:I:, '), (x. 2’ € X) the smooth kernel of P[j) with respect to dvx (2').
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As V is an irreducible representation of G, we get
(4.4) Ker D:* = (KerD,) @ V*, (Ker D;j* )¢ = Homg (V. Ker D).

Let {v;} be an orthonormal basis of V with respect to a G-invariant metric on V
and {v} the corresponding dual basis.
Let dg be a Haar measure on G. By Schur Lemma,

1

/ g-(v; @] )dg = —=0;; Idy.

(4.5) dime V

Thus if W is a finite dimensional representation of G with the highest weight ¢, then

for any s € W, we have

(4.6) s =Y (dimeV) ( / g (5@ v;)dg) 2 v; € Homg(V. W) @V = W.
i JG

From (4.6) and the ¢ x G-invariance of the kernel Pl‘f(fl,‘, '), we get

PY(x.a') = (dime V) Y (P (e’ )of v,),
(4.7) i
Pl}j(gr,a') = (dim¢ V) Try- P;(:r,a‘,) e End(A(T* VX)) 2 E),.

In fact. let {+);} be an orthonormal basis of (Ker D;f* )&, then Plﬁ)(l ') = Z/ Vi(r)®
j(x")*, and for any j fixed. in view of the second equality in (4.4). one sees that

(4.8) viv; € Endg(V) and  Try[y]y;] = i3 = 1.

Thus by Schur Lemma,

1

R P, = —-=1
(4.9) Yati dimg¢ V ‘

and {(dim¢ V)2 ;v;} is an orthonormal basis of Homeg (V. Ker D) ® V C Ker D,,.
Let U be a G-neighborhood of P = p~1(0) as in Theorem 0.2, P,")9 is viewed as a
smooth section of pri(E, @ V*)p @ prs(FE, @ V*)j; on B x B, or as a G x G-invariant
smooth section of pri(E, @ V*) @ pri(E, @ V*)* on U x U.
Moreover, v;, vy are smooth (not G-invariant) sections of U x V, U x V* on U.

1

Thus from (4.7), P[} is not a G' x G-invariant section of pri(E),) @ pry(£)) on U x U.

Now (2.83), (2.84), (2.108) and (2.186) (cf. also Theorem 0.2) apply well to the
bundle E © V*, thus we get the asymptotic expansion of P‘)(z ') as p — 400, and
the leading term in the expansion of

—n+24 L L Y /
P () () (Y B . 2) 5 PABZ, VB2 e eav)n.

vy (4.7). the leading term of the asymptotic expansion of

(4.10)  p "t F (hkz)(x)(he? )(;1:')}"[})(:17,:17’) is (dime V)2 P(/pZ, /pZ )V cs i, -
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Let © be the curvature of P — X¢ as in Section 1.1. Let pY~ denote the differential
of p¥". By (1.18),

(4.11) RE=VIe — pEe . )V (@),

In the same way, we can define .#) a section of End(A(T*("“VX) ® F)p on X¢
by (0.17) for PY. From (0.25) (which will be proved in Chapter 5). (4.7). (4.10) and
(4.11), we get

Theorem 4.2. — Under the condition of Theorem 0.6, the first coefficients of the
asymptotic exrpansion of .ﬂl}; € End(E¢) in (0.20) is

(4.12) dy = (dime V)2,
1 . .
P, = 8_7r((hm(c V)? ( G+ 6Ax,, logh +4Rb< (w w; ))

iﬂ_(dimc V) Try- [ (())( wj)] .

4.3. Averaging the Bergman kernel: a direct proof of (0.15) and (0.16)

We use the same assumption and notation as in Theorem 0.2.

Let P,(x.z') be the smooth kernel of the orthogonal projection P, from
QO(X.L? @ E) onto KerD, with respect to dvy(z’). Then P,(x,2’) is the
usual Bergman kernel associated to D,,.

Let dg be a Haar measure on . By Schur Lemma.

(4.13) Py a’) = /((g.])~P,))(;17.:1,")(lg: /,(!/-1)~Pp(g’1-7'-m’)d9-
JG JG

One possible way to get Theorem 0.2 is to apply the full off-diagonal expansion
17, Theorem 4.18’] to (4.13).

Unfortunately, we do not know how to get the full off-diagonal expansion, especially
the fast decay along N¢ in (0.14) in this way.

However, it is easy to get (0.15) and (0.16) as direct consequences of [17, Theorem
4.18] and (4.13).

As in Section 2.5, we denote by TY the sub-bundle of TX on a neighborhood of
P = p~1(0) generated by the G-action and by TH P the orthogonal complement of
TY |pin (TP g™").

Take yo € P. Let {e,',}'f)("“””) {f1}7"0, be orthonormal basis of TP, T, Y. Then

Yo

{e }I,r;_”’“) U{fi. Jy, i}, is an orthonormal basis of T),, X. We use this orthonormal

basis to get a local coordinate of X by using the exponential map oxpw

We identify BTwX (0, ) to BX(yo, ) by the exponential map Z — expyn(uZ).
Let VEIT2E he the connection on A(T*(0'V X)) = E induced by VO and VZ.
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For Z € BTwX(0,2). we identify Lz, (A(T*OVX) @ E)z, (E,)z to Ly,
(MT*ODX) 2 E)y,, (F,),, by parallel transport with respect to the connections
VE, VOISR 7 Ep along the curve vz : [0,1] 2 u — uZ.

Under this identification, for Z, Z’ € BTwX(0,¢), one has

Py(2,2") € End(MT* "V X) @ E),,.

Let #1(Z) be the function on BTwX(0, &) defined by

(4.14) dvx (Z) = ki (Z)dvr, x.

By [17, Theorem 4.18'] (i.e.. Theorem 0.2 for G = {1}). there exist J.(Z') €
End(A(T*"VX) @ E),,, polynomials in Z’ with the same parity as r, such that for
any k,m’ € N, there exist C', Ml > 0 such that for Z’

Yo
k.

1 .
4.15 —P,(Z',0) AT TR VA R L
(4.15) |2 Py > (2R Z e

=0 € m’ (P)
< Cp~*H02(1 4 /plZ' WM exp(—/C"vo /DI Z']) + O(p~ ),
and
(4.16) Jo(Z) = IcsE.

For K € g, | K| small, e maps (A(T*OVX) @ E)o-nyy, Le-ny, to (A(T*ODX) @
E)y,. Ly,, and under our identification, we denote these maps by

(4.17) fE(K) € EndA(T* VX)) 2 B),,, fHYK)¢€End(L,,)~C
As the G-action preserves ht and V| we know |fF(K)| = 1 and fF(K) is also an
isometry.

For K € g, let ad K be the adjoint representation defined by (ad K)K’' = [K, K]
for K’ € g. By [1, Prop. 5.1], if we denote by

. 1 — e—ad K
(418) _]g(fi) = (16t9<—W)
for K € g, then in exponential coordinates of G,
(4.19) d(e™) = ja(K)dK.

As the G-action prescrves all metrics and connections, thus for any smooth kernel
W, = 0(p ™), we have (g, 1) - ¥, (¢ 'a.a') = O(p~>) for any g € G.

By [17, Prop. 4.1] (i.e., Theorem 0.1 for G = {1}), (4.13), as G acts freely on P,
we know

(4.20) PS (yo.yo) = A o FEE) fEED)) PPy (e Ko, yo)ja(K)AEK + O(p~>).
€g, || <€

Let S” be the section of L on BTw (0, ¢) obtained by parallel transport of a unit
vector of Ly, with respect to the connection VE along the curve vz. Let I'F be the
connection form of L with respect to this trivialization.
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Recall that for K € g, the corresponding vector field K¥ on X is defined in
Section 1.1. Recall that {K;} is a basis of g.
By (2.104), for K € g,

(e® - 51)(0) = ' - ST (e Fyo) = fH(K)S"(0). with f5(0) =1,
IL(KX) = —RL (Z.KX)+0(12%)

Yo

(4.21)

By (2.16), (2.17), (4.21) and 4 =0 on P. we get
(4.22)  (Lk, (L, S")0) = (Vigx (Viex 8% = 2m/=1p(K;)S5))(0)
—[?5()([&“ K*)SH(0) = v/ —1{du(K;). K]X>S"(0) =0.

By (2.16), (4.21), (4.22), g =0on P and K~* € TY on P, we get

aft ]
T 0)5H(0) = (L, 5)(0) = (T 57)(0) = 0,
(4.23) I sty — P Kk, oL
aKion(O)S 0= Fiom ¢ 570 =tz=0

= (Lk,(Lk,S*) + Lk, (Lk,S"))(0) = 0.
Thus from (4.23),
(4.24) (FEE)? = (1 + O(K[*)".
Moreover, from (2.95), (2.106), (2.108) (for G = {1}),
(4.25) FEK) = a0 xyor,, +O(K),
ki(Z) =1+ 0(Z).

Let dvy be the Riemannian volume form on (TY,g7Y). Observe also that if we
denote by iy, : G — Gyo the map defined by i,,(g) = gyo. then

(4.26) }121(/ )de(z/) (iy, H*dg,

which gives us a factor m when we take the integral on g instead on the normal
coordinates on X.

By (4.13), (4.15), (4.20), (4.24)-(4.26) and the Taylor expansion for xy, f¥, f&, as
in [1, Theorems 5.8, 5.9], we know that there exist J;(Z) polynomials in Z with same
parity on r, and J) = Ice e, such that

- 1 ' s 2 > w5
4.27 P%(yo,y0) ~ p" / e FPIKI J(VPK)p~ K.
(4.27) » (vo:30) h2(yo) Jxceq. k<= ; VPR

Recall that
(4.28) / e TP g — Q%p'%.
Keg

After taking the integral on g, from (4.27) and (4.28), we get (0.15) and (0.16).
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By (4.7), (4.27) and (4.28), we get also the asymptotic expansion for P;’(yo,yo),
yo € P.

4.4. Berezin-Toeplitz quantization

Let (X.w) be a compact symplectic manifold of real dimension 2n. Let (L, kL) be
a Hermitian line bundle over X endowed with a Hermitian connection V% such that
(0.1) holds.

Let (E,h*) be a Hermitian vector bundle on X with Hermitian connection V.

Let g7¥ be a Riemannian metric on X and let J be an almost complex structure
such that (0.3) holds and that w(-, J-) defines a metric on T'X.

Let P,(x,2') be the smooth kernel of the orthogonal projection F, from
QY (X, LP @ F) onto Ker D, with respect to the Riemannian volume form duvy (z').
Then P,(x.z") is the usual Bergman kernel associated to D,,.

Definition 4.3. — A family of operators T}, : Ker D, — Ker D,, is a Toeplitz operator
if there exists a sequence of smooth sections g; € (X, End(FE)) with an asymptotic
expansion g(..p) of the form Y =, p~'g/(x) such that for any & > 0, there exists
C' > 0 such that for any p € N,

k
(—129) ”Tp _ Pp Zpulgl(ilj)PpHO'O < C])_k_l-
1=0
Here || ||°° is the operator norm with respect to the norm || ||z 2. We call go(z) the

principal symbol of T,,. If T}, is self-adjoint, then we call T}, is a self-adjoint Toeplitz
operator.

We express (4.29) symbolically by

k
(4.30) T, =P (X pla) P+ O ),
(=0

If (4.29) holds for any k£ € N, then we write
oC

(4.31) T, = P,,(Z[)"gl>Pp +O(p>).
1=0

The map which associates to a section f € €°°(X, End(F£)) the bounded operator
(4.32) Ty, = P,fP,: L*(X.E,) — L*(X.E,), withE, := A(T*"VX)® LP @ E,

is called the Berezin-Toeplitz quantization.
Recall that a¥ is the injectivity radius of (X, ¢7%). In what follows, we fix ¢ €
10, @ /4]. For x € X. we identify BT+X (0, 4¢) with B~ (x. 4¢) by using the exponential
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map. Let dvrx be the Riemannian volume form on (7;,X, g Teo ) for xop € X. Let
Kz, be a smooth positive function on T,, X with s,,(0) = 1 defined by

(4.33) de(Z) = H;I;O(Z)dUTx(Z).

We denote by detc for the determinant function on the complex bundle 719 X | Set
J € €°°(X.End(TX)) as in (0.2), and |J,,| = (=J2 )2 Set 2(Z,2), (Z2.Z' €
T.,X) be the analogue of Py in (3.19),

(4.34)

P(7.2") = dete(|day |) exp ( - g NI (Z = ZY.(Z — 2")) — o/ 1y, 2. 2" )

We trivialize L, £ and E, over BT=X(0.42) by using the parallel transport with
respect to VI, VF and VE» along the curves vz (u) = uZ.

Let m: TX xx TX — X be the natural projection from the fiberwise product of
TX on X.

Let {Z,}pen be a sequence of linear operators =,, : L?( X, E,)) — L*(X,E ») with
smooth kernel Z,(x, y) with respect to dvx (y). Then under the above trivialization,
Z,(z,y) induces a smooth section =, ., (Z,Z') of 7*(End(A(T**VX) ® E)) over
TX xx TX with Z, 72" € T, , X, |Z|,|Z’| < 4¢ which depends smoothly on xy.

L)
We will denote
k
(4.35) P Zpng (2. 2') 2N (Qrwy Py (PZANBZ ) + O 5 ),
r=0

if

{(%21 xro € End(A(T*(O‘])X) (2 IC).IIU[Z‘ Z/]}Oi'rﬁk..'ruex
is a smooth family of polynomials on Z.Z’ with respect to the parameter xyp € X,
such that there exist constants ¢’ €1]0.4¢] and Cy > 0 with the following property:
for every | € N, there exist Cy ; > 0, Al > 0 such that for g € X, 2,2’ € T,, X,
|Z|,1Z'| < <" and p € N the following estimate holds:(1)

k

P Z o (Z 2V (2N Z) = S (Qraa P (B2 2D
(4.36) " Z:(:, ¢ ©(X)

< C/\,,lp_%(l + 12l + V| Z )M exp(—/Cop|Z — Z')) + O(p™).

(1)By Theorems 0.1, 0.2 for G = {1} (or [31, Theorem 4.2.1]) , if , = P,EpPp, then (4.36) is
equivalent to: for any I,m € N, there exist C' > 0, M > 0 such that for zo € X, |Z|,|Z'] < &,
la] + |a’] < m and p € N, the following estimate holds :

(‘)‘uH-lc\,I e 1/2 1/2 ., k .

sgengi P S22 (2P (2] ;)@, w0 Pa) P2 APZE )|
k4+1—m / - _ S

< Cp~ 7T (L4 plZI+ vp|Z' DM exp(—/Cop|Z = Z')) + 6(p~ ).

Even (4.36) holds for any [ € N, in the proof of Theorem 4.4 (i.e., [30, Theorem 4.9]), we only use
[ =0.
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In [30, Theorem 4.9] (cf. also [31, Theorem 7.3.1]), Ma and Marinescu established
a useful criterion which ensures that a given family is a Toeplitz operator.

Theorem 4.4. — Let {T, : L*(X.E,) — L*(X,Ep)} be a family of bounded linear
operators which satisfies the following three conditions:
(i) Foranype N, P,T,P, =T,.
(ii) For any o > 0 and any !l € N, there exists C; > 0 such that for allp > 1 and
all (z,2") € X x X with d(x,2") > &g,

(4.37) Ty (2, 2")| < Cip~".

(iii) There exist a family of polynomials {Q, ., € End(A(T* OV X)RE), [Z, Z'}spe x
such that:
(a) each Q, », has the same parity as r,
(b) the family is smooth in xo € X and
(c) there exists O < & < & such that for any vo € X and Z,7" € T,,X,
|Z|,|Z'l < &', in the sense of (4.35) and (4.36), we have
k
(4.38) P Ty (Z.2') 2> (Qr, Pe ) (VDZ./DZ )P % + O~ ).

=0

Then {T,} is a Toeplitz operator.

By the asymptotic expansion of P, as p — oo (Theorems 0.1, 0.2 for G = {1}), for
any f € €>°(X,End(F)), the Toeplitz operator T, verifies the conditions in Theorem
4.4.

Moreover, from the proof of Theorem 4.4, in fact

(4.39) Q.+, (Z.7") = Qo +,(0,0), for uxp € X,
and we set

(4.40) go(r0) = Q0.4,(0,0) cor € End(E,,) .
then

(4.41) Ty = Ty p)en(Z2,2") = O™ ).,

which implies

(4.42) T,=Pygo Py +O(p ).

And by recurrence as in (4.40), we find g; € €°°(X, End(E)) such that (4.29) holds.
The Poisson bracket {., } on (X.27w) is defined by: for g1, g2 € €>(X), if &, is

the Hamiltonian vector field generated by g> which is defined by 27i¢  w = dgz. then

(4.43) {91.92} = —&g.(dg1).
As a corollary of Theorem 4.4, we get the following result [30, Theorem 1.1] (cf.
also [31, Theorems 7.4.1 and 8.1.10]),

SOCIETE MATHEMATIQUE DE FRANCE 2008



82 CHAPTER 4. APPLICATIONS

Theorem 4.5. — Let f,g € €°°(X,End(FE)). Then the product of the Toeplitz oper-
ators Ty, and Ty ,, is a Toeplitz operator, more precisely, it admits an asymptotic
expansion in the sense of (4.31):

oo
(444) Tf,p Tg’p = ZP_TTC,.(f,g),p + O(p_x),
r=0

where C,. are bidifferential operators such that C.(f.q) € €>*(X,End(F)) and
Co(f.9) = fg.

If f,g € €°°(X), we have
(445) Cl(fm{])—cl(g’f): V—l{fg}IdEa

and therefore
, v—1 .
(4-46) [wap ’ T!J»P] = TT{f,g}.p + O(p 2)'

In conclusion, the set of Toeplitz operators forms an algebra. In particular, when
(X,.J,w) is a compact Kahler manifold and £ = C. ¢g7% = w(-, J-), Theorem 4.5
recovers the result in [9] (cf. also [39, 23], [20]) where the theory of Toeplitz structures
by Boutet de Monvel and Guillemin [11] is used. Some related results were also
announced in [10].

Lemma 4.6. — Let

o0
T, = Z Ppgl]flpp +0(p ™) : Ker D, — Ker D,
=0
be a Toeplitz operator with principal symbol go € €~ (X.End(E)). Then
1) If go is invertible, then Tp_1 is a Toeplitz operator with principal symbol go‘l.
i) If go = glde with g € €>(X). g > 0. and T, is self-adjoint, then for any
q € N*, TI}/‘I is a self-adjoint Toeplitz operator with principal symbol g"/?1dg.

Proof. - We only prove ii), the proof of i) is similar and simpler.
As g > 0. there exist Cg. C1 > 0 such that Cy < g < C,. Thus for any s € Ker D,,.

/1 ‘ 1 :
(447) <Tp57S> — <go$./5'> + (O (;) HS”i‘Z Z ( 70 + (j (;)) HS

2
L2

Thus for p large enough, T,,l/ ?: Ker D, — Ker D,, is well defined. (In the case i), we
get TT;1 : Ker D), — Ker D), is well defined for p large enough.)

Let 6; be a smooth bounded closed counterclockwise oriented contour on
{A € C,Re(A) > 0} such that [§Cp.2C] is in the interior domain got by d;.

As in the proof of Theorem 4.4, by recurrence, we will find f; € > (X, End(E))
such that

A.
(4.48) p " (Ty — (Thp)?) = O([)_k’_l) with Ty, = Z ppfl])klpxr
=0
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Then for p large enough,

1
(4.49) TY9— Ty, = — AN =Tp) = (A = (Thep)?) ] dA
271 A€

1
2— Al/q(/\ - Tp)_l(Tp - (Tk‘p)q)()‘ - (Tksp)q)_ld/\'
T Jaes,

If (4.48) holds, then by (4.49) we know that in the sense of the operator norm,
(4.50) TV — Ty =0 ).

To complete the proof of Lemma 4.6, it remains to establish (4.48).
As explained after Theorem 4.4, there exist Qg € End(A(T**VX) ® F),, such
that in the sense of (4.35),

o0

(4.51) p M T(Z2.2') 2 (QurP) (VB2 NBZ TP+ O(p).

r=0
We will prove by recurrence that there exist f; € €°°(X, End(FE)) self-adjoint such
that for any k € N,

(452) |p (T, — (Tep) ) (VBZ. V32|
_(ok M .
< p~ 2R+ /2(1 +PIZ| 4+ p|Z'|)" exp (= /C'vo/plZ — Z'|) + O(p~™).
Set fo = ¢"/?1dg. Then

o0

(4.53) p " (Tp — (TO.:D)Q)(Z7 Z/) o Z((Q(]’ — 0 , \/I_)Z \/pZ ~r/2'
r=0

Now as Q.0 = @8.() = gldg, by (4.41), we know

(4.54) Qo1 — Qb4 = 0.

Thus (4.48) is verified for k& = 0.
Assume that for k£ < m. we have found f; such that (4.48) holds. If we denote the
expansion of (T}, ,)? in the sense of (4.35),

(4.55) PN T ) (2.2') 2 Y (QF, P)DZ /B2 )™+ O™ ),
r=0
By (4.48)
(4.56)  p (T — (T ) NZZ) = > (Qor — QU P)DZPZ )P~
r=2m-+42
By (4.39), (4.40), we set
1 —a-t ~m
(457) .f'm,+1('1“0) = a(] 9 (Q(),‘Zm#r? - Q(LZ'HH—Q)(O?O)'
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Then by (4.56) and (4.57),

(4.58) p Ty — (Tmirp)NZ.Z2) 2 > ((Qor — Q) P)DZ, /D2 D2,
r=2m-+3
By (4.40), (4.41) and (4.58), we know
(459) (Q(),27n+3 - Q(T)Y,LQm—!-S)(O% O) =0.
Thus (4.48) holds for &k =m + 1.
By the above argument, we have established (4.48), thus Lemma 4.6. d

Assume now that (X,w) is a compact symplectic orbifold and L, E are proper
orbifold vector bundles verifying the conditions of the beginning of this section. Oth-
erwise, as explained in [31, Remark 5.4.5]), we arc working on the proper orbifold
sub-bundle EP" of F.

We can still define the spin® Dirac operator D, : Q"*(X, LFoFE) — QV*(X, LPRQE).
The orthogonal projection P, : L?(X, E,) — Ker D, with E,, := A(T* "V X ) LPo E
is called the Bergman projection. A Toeplitz operator is a family of linear operator
T, : Ker D, — Ker D,, verifying (4.29).

We need to introduce the correct analogue of (4.35) in the orbifold case, in order
to take into account the group action associated to an orbifold chart. Let {Z,},en
be a sequence of linear operators =, : L*(X, E,) — L?*(X, E,) with smooth kernel
Zp(x, y) with respect to dvx (y).

Let £ € N, we write

&
(4.60) P " Epn(Z.2') =D (Qrrg Pa)(VPZAPZ )P 2 + Op
r=0
if for every open set U € U and every orbifold chart (Hy, (7) T2, U, there exists a
sequence of kernels {ép_U(:T;, Z')}pen and a family

{Q Jf<>}()§"<kr. roeXx € End(A(T*(U'”X) ® E)z, [Z Z/]

smooth with respect to the parameter xg € X such that for every fixed ¢” > 0 and
every I, 1" € U the following hold

(9. )Zp0(g 3.7 = (L.g HE,0(T.g3") forany g€ Hy

(4.61) Sou(@E)y=0(p =) ford(xx') >¢e",

Sy = 3 (g )Z,0(gT BT+ Op),

geEHy

and moreover, for every relatively compact open subset V' C U, the relation

(4.62)
k

P S sl (Z2,2) 2 (Qrz0 D) (VBZAPZ )pE + O(p~ T ) for €V,

r=0
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holds in the sense of (4.35).

Note that although the notation (4.60) and (4.35) are formally similar, they have
different meaning.

Then in [30, §6]. we find the following analogue of Theorem 4.4.

Theorem 4.7. — Let {T, : L*(X,E,) — L*(X.E,)} be a family of bounded linear
operators which satisfies i), ii) of Theorem 4.4 and (4.60). Then {1T,} is a Toeplitz
operator.

From Theorem 4.7, we extend also Theorem 4.5 to the orbifold case, for more
details, see [30, §6].

4.5. Toeplitz operators on X¢

In this Section, we suppose that (X, w) is a K&hler manifold, J = J, and L, E are
holomorphic vector bundles with holomorphic Hermitian connections VZ, V. Let G
be a compact connected Lie group acting holomorphically on X, L. E which preserves
Rt and hE.

We suppose that G acts freely on P = p~1(0). Then (Xg,we) is Kihler and
L, E¢ are holomorphic on X¢;.

In this case, there exists a natural isomorphism from (Ker D,)¢ onto Ker D¢ .

At the end of this Section, we will explain the corresponding result in the symplectic
case, especially, for p > 1, we construct a natural isomorphism from (Ker D,)“ onto
Ker D¢ p.

In the current situation, the spin® Dirac operator D, was given by (0.21) and ij
preserves the Z-grading of Q% (X, LP @ E). Similar properties hold for D¢ .

As in Section 2.3, let Py, be the orthogonal projection from Q0 (X, Ll ® Eq)
onto Ker D¢ ,,, and let Py ,(x,2") be the corresponding smooth kernel.

By the Kodaira vanishing theorem, for p large enough,

(4.63) (Ker D,)Y = HY(X,L? ® E)°, KerDg, = H* (X, LY, ® Eq).
As Dg, Dép preserve the Z-gradings of QV*(X, L? @ E), Q"*(X¢, LY, ® E¢) re-

spectively, we only need to take care of their restrictions on (X, LP ® F) and
¢ (Xqg. LY, © Eg). In this way,
(4.64) Pf(;z;,:z:’) € (X x X.pri(LP @ F) @ pry(LP @ E)*),

' Pgp(x0.20) € €7 (X x Xa.pri(LY, @ Eq) @ pry(LY, @ Eg)*).

Recall that the morphism o, : HY(X, L? @ E)Y — HY(Xg, LY. @ E¢) was defined
in (0.27). Set

(4.65) o) =0,0 Py € (X, LP® E) — H'(X¢. LY. @ Eg).
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Let alcf* be the adjoint of 0']? with respect to the natural inner products (cf. (1.19))
on € (X.LP @ E), €°(Xg. LY, ® E¢). Set

(4.66) P;(G = p_L?OUS o crpG*.

Let {Sp,i}f£1 be an orthonormal basis of H*(X, LP @ E)“. Foryy € Xg. =. 2’ € X,
one verifies
dp

PPG(.’L‘, ') = Z spalx) @ spa(x’)”,

i=1
oy (yo.x) = P (yo.x). o (.y0) = Pyl (2. 0).

(4.67)

where by PS(yo.z) (resp. PS(z.yo)) we mean PS(y.r) (resp. P (x,y)) for any
y € 75" (yo), which is well-defined by the G-invariance of P[f
From (0.27), we know that 77;(“ commutes with the operator Pg , and

(4.68) Py = P pPe Po .
Let PpG]p be the restriction of the smooth kernel PpG(’J,', z’) on P x P. Then
G
Py

plz, 2"y € €(P x P,pri(L?  E) @ pra(LP @ E)*)
is G x G-invariant. By composing with m¢g,
e Pflp)(ﬁowa)) € ¢ (Xe x Xe.pri(Lg @ Eg) @pry(Le; @ Eg)”).
;0P| p)(wo, )

and the Riemannlan volume fOIm dUXC (x(). Thcn from (4. 67)7 we Ver1fy that

‘e denote by mgo

o

(4.69) 'Pf“(a:o,xf)) =p 7 P (w0, ) =p~ 2 WG o P;;(;IF’(ianIf))~

Recall that A is the fiberwise volume function defined by (0.10).
Let dg be a Haar measure on G.
The main result of this Section is the following result.

Theorem 4.8. Let f be a smooth section of End(E) on X. Let f¢ € (/x(X(,,
End(Eg)) be the G-invariant part of f on P defined by f¢(x) = Jo9- f( La)dg
Then Ty, =p~ 2o ja(’* is a Toeplitz operator with p7mupa/ symbol 2% f—( ). In
particular Plf{G 18 a Toeplitz operator with principal symbol 277 /hz()

Proof. We need to find a family of sections g; € > (X¢.End(FEq)) such that for
any m > 1,
m

(4.70) Tsp = Z Popgip ' Pap+ O~ ™).
1=0

By Theorem 0.1, (4.65), (4.67), we know for ¢ > 0, and any [ € N, there exists
C; > 0 such that for all p > 1 and all (z,2') € X x Xg with d(x,2") > e,

(4.71) 1T (. a)| < Cip.
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We still need to verify the condition iii) of Theorem 4.4.

Let U be a G-neighborhood of P = ;= !(0) as in Theorem 0.2.

Let 1 be a G-invariant function on X such that v» = 1 on an open neighborhood
of P and supp(y) C {y € X, d(y,P) <eo/2}NU.

Write

Gy G Gy p G G e
(472) Up fo-p = UP wap + O-p (1 - Q/’)f()'p
For zp,2{, € X¢, let 2,2’ € P such that n(x) = 2o, n(2") = 2. By (4.67),
(4.73) (o (1 =) f)oy™ ) (wo, xp) = /A By, y) (1= ) )(y) Py (y, 2 )dox (y).

From Theorem 0.1, (4.73) and supp((1 — ¢)f) N P = @, we know that for any
I.m € N, there exists C},, > 0 such that for any p € N, zg. 2 € X¢.

(4.74) }(”,?((1 —¥)f)o S M@0, 7)) gm (xox xa) < Clomp ™

We define fp € € (B,End(Eg)) by
(4.75) fuleo) = [ g+ (@) 0y
G

for 29 € B.x € U such that w(x) = . Clearly, if xg € P, as ¢|p = 1, one gets

(4.76) fB(x0) = fC(x0).

From (4.75), for xp. af, € B, x, ' € U such that n(z) = xg, w(2’) = x{, one gets

(4.77) UIC)"LL:f(y;J* (ro,1() = /l Ppc(;v, y)(z/)f)(y)P’f(y’ " dvx (y)
/ (20, ¥0) f5(Y0) PS (Yo, 24)h* (yo)dvs (yo)-

For x9 € X¢, we will work on the normal coordinates of X with center xg as in
Theorem 0.2.

Recall that Py (2%, Z'°) was defined by (3.19) with a; = aj = 27 therein.

By (4.72), (4.74) and (4.77), for |Z°|,|Z"°| < £0/2.

(4.78)  T;,(2°, 7/0) — p~o/? /m,gm_ PO(Z°. W) (feh®)(W)PE(W, Z"0)dvp (W)

Jwert,,

=0(p~™).

By Theorem 0.2, (4.78) and the Taylor expansion of fp, there exist Qq, €
End(E¢g.,,) polynomials on Z°, 7% with same parity on r such that the following
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formula, obtained through compositions, holds,
(4.79)

k
pin‘lhno,]-f‘p(ZO,Z,O)Fp%(fL'O,ZO)I{%(SC(),Z’O z Qo,Pg \/—ZO \/ﬁZ/O)p_%

< Cp~ D21 4 plZ0 + ol Z0 )M exp(—VC"u /P Z° — Z7°) + O(p~ ).
Moreover, by (0.13), (4.75) and (4.78),

%m,(XG)

1

(4.80) (QooPx)(2",2") = P2(2°, 2"°) 5 (x

( ,0)2"0/ exp(—2x|WL2)dw+
R0
-G
- h2
By Theorem 4.4, (4.71) and (4.79), there exist g; € € (X, End(E¢)) such that
(4.70) holds, and by (4.40) and (4.42),

(20)2"2 Py (2°.2").

(4.81) Trp =2""%Pg, f 5 Pa,+ 0@ ).

The proof of Theorem 4.8 is complete. O
Corollary 4.9. For fy, f2 € € (X), we have

2re \/——1P { I f2
P h?’ h?
Here {, } is the Poisson bracket on (X¢g.271wg).

(4.82) Tho Troa) = fPep+ 02,

Proof. — By Theorems 4.5, 4.8, we get immediately (4.82). O

Since the isomorphism o, : H)(X, LP@ E)¢ — H(X¢, LY, @ E¢) is not an isometry.
we define the associated unitary operator,
(4.83) ¥, =0 (05 00 ) V2 HY (X LY, @ Eq) — HY(X. LP @ E)“
Theorem 4.10. — Let f be a €°° section of End(E) on X. Then
(4.84) Tfp =X fE: HY(X¢, LY, @ Eg) — H° (X6, LY ® Eq)
is a Toeplitz operator on X¢. Its principal symbol is f& € €>(X¢, End(Eg)).

Proof. — By (4.68) and (4.83),

(4.85) Tf, = (P¢) "+ 1T}, mx ) s
By Theorem 4.8, (4.66), 73;(“ = p”%afj‘ oo P *. Ty.p are Toeplitz operators on Xg

with principal symbols 270/2 /h?(x), 2”‘”“2—1(:1:) respectively.
By Lemma 4.6, we know that (773{0 )_% is a Toeplitz operator on X with principal
symbol 2770 /4h(x).
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By Theorem 4.5, we then know that chfp is a Toeplitz operator and its principal
symbol is f(x). O
Remark 4.11. — 1) When F = C, and f = 1, from Theorem 4.8, 731‘;(‘3 is an elliptic
(i.e., its principal symbol is invertible) Toeplitz operator. This is the analytic core
result claimed in [37, §8].

iil) When £ = C and G is the torus T"°, Theorem 4.10 is one of the main results
of Charles [15, Theorem 1.2], and in [15, §5.6], he knew also that P,f" ¢ is an elliptic
Toeplitz operator. Moreover, he established the corresponding version when X¢ is an
orbifold.

If X is only symplectic and J = J, then as the argument in [44, §3e)], J induces

an almost complex structure Jo on (TX)g, and Jg preserves Ng.j = Ng @ JoNa
(1.0)

and T X¢. Thus one can construct canonically the Hermitian vector bundles N, ’;
etc, which further give the canonical identification of Hermitian vector bundles
(4.86) AT* OV X) gy = ANGGNSATOD X ).

Let ¢ be the canonical orthogonal projection
(4.87)  q: AWNLGNEAT OV Xg) ® LY, © Bq — AT*VXg)® LY, © Eg
which acts as identity on A(T*"V X ) @ LY, @ Eg and maps each

NN NYEANTOVXG) @ LY @ Eq, i > 1, to zero.

We define

(4.88) op 1= pG.quG"L'*PpG : (Ker D) — Ker D¢ .

Certainly in the Kéhler case, o, coincides with (0.27).

By using Theorems 0.1, 0.2 as in the proof of Theorem 4.8, we get
Theorem 4.12. Let f be a smooth section of End(E) on X, then Ty, =
pfnu/Q
2m0/2 L7 () € End(Eq).

O'pf(T; : KerDg,p — KerDg ) is a Toeplitz operator with principal symbol

Corollary 4.13. For p large enough, o, in (4.88) is an isomorphism. Thus o, de-
fines a natural identification for ‘quantization commutes with reduction’ in the (asymp-
totic) symplectic case.

Proof. ~— From Theorem 4.12 for f = 1, we get

. Ve . 1
(4.89) ])_”“/201,0; = Q'L(]/ZPG.;;}szG.;) + O(;)
Thus for p large enough, 0,0, is an isomorphism. Thus o, is surjective.
In view of (0.6), o, in (4.88) is an isomorphism. O
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Remark 4.14. — 1If we replace the condition J = J by (3.2), then the canonical map
op in (4.88) is still well defined. From the argument here, we still know that o, is an
isomorphism for p large enough.

Now, we relax further our condition. As in Section 4.1, we only suppose that 0 € g*
is a regular value of u, then the symplectic reduction X¢ is a compact symplectic
orbifold. Then (4.86)-(4.88) are still well defined.

As explained in Theorem 4.1, Theorem 0.1 still holds.

From Theorem 4.7, (4.1) and the proof of Theorem 4.8, we get

Theorem 4.15. — If f € ¢>(X,End(E)), then Ty, = p_"”/20'pfa; : KerDgp, —
Ker D¢, ts a Toeplitz operator with principal symbol 2"’”/2%(:1:) € End(Eq).
For p large enough, o, in (4.88) is an isomorphism.

4.6. Generalization to non-compact manifolds

In this Section, let (X, w) be a symplectic manifold, and (L, V%) (resp. (E, VE)) be
Hermitian line (vector) bundle, with Hermitian connections, on X, and the compact
connected Lie group G acts on X as in Introduction, especially, w = %RL. But we
only suppose that (X, g7 ~) is a complete Riemannian manifold.

If G = 1, these kind results were studied in [28, §3.5].

By the argument in Section 2.3, if the square of the spin® Dirac operator D?, has
a spectral gap as in (2.15), then we can localize our problem and get a version of
Theorems 0.1, 0.2 from Section 2.6. In particular, if the geometric data on X verify
the bounded geometry. then Df) verify the spectral gap (2.15).

We explain in more details now.

We suppose

i) The tensors RE rX, Tr[RT(m)X] are uniformly bounded with respect on

(X.g"%).
ii) There exists ¢ > 0 such that
(4.90) VEIRE(T) = egT¥(L ).
Remark 4.16. — For the operator D, = \/5(5“8]5 + 5L”®E’*) in the holomorphic

case, the above condition i) can be replaced by [28. (3.39)]:
(4.91) V=L(RY + RF) > —~COIdp, [00],rx < C.

Here R is the curvature of the holomorphic Hermitian connection on det (710 X)),
O = ¢gTX(J...). For two (1,1)-forms ©Q and €' we write Q2 > Q" if (Q —Q')(..J.) = 0.

Then by the argument in [27, p. 656] (cf. [28. §3.5]). we know that Theorem 2.2
still holds. Thus Theorem 2.5 still holds.
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Let PpG be the orthogonal projection from L?(X, E,) onto (Ker D,,)%, and PPG (z,2")
(z,2' € X) be its kernel as in Def. 2.3.

Note that Ker D, and (Ker D,)% need not be finite dimensional.

By the proof of Prop. 2.6, we know that for any compact subset K C X, [,m € N,
there exists Cj ,,, (K) > 0 such that for p > Cp /v,

(4.92) IF(E,,)(;I:,:L") — P{(x, ') < O (K)p~!

‘&f’“(}(x K)

By the proof of Theorem 0.1, we get

Theorem 4.17. — For any compact subset K C X, 0 < eg < do, I,m € N, there exists
Cim > 0 (depending on K, ) such that for p > 1, v.2' € K,dX(Gx,2') = o or
2 € (X \ Xog,) N K,

(4.93) | P (e a)] e < Cromp ™!

From Section 2.6, we get Theorem 0.2, but now the norm %‘"”"((X(;) in (0.14)
should be replaced by (o"'”’/(K) for the compact subset K C X¢.

One interesting case of the above discussion is when P = ;= 1(0) is compact, by
the same argument as in Theorems 4.8, 4.12, we can prove a version of Section 4.5.
Especially, the map o, : (Ker D,,)G — Ker Dg ,, in (0.27), (4.88) is still well defined.
Thus we get the following extension of Theorems 4.8, 4.12, 4.15:

Theorem 4.18. — Under the assumption i), ii), if P = u='(0) is compact and 0 € g*
is a regular value of p, then for f € €55, ., (X,End(E)), the algebra of smooth
sections of X which are a constant map (i.e. Cldg) outside a compact set, then
Trp = p"”‘/zﬂ,,frf; : Ker D¢, — Ker D¢ ), is a Toeplitz operator with principal
symbol 2“"’/2}’;—2(:@ € End(F¢).

In fact, when X = C", G = T", the torus, L is the trivial line bundle with
the metric |1|,.(Z) = (f‘ME, the Toeplitz operator type properties was studied by
Charles [15].

Another interesting case is a version of Theorem 0.2 for covering manifolds.

Let X be a para-compact smoot h manifold, such that there is a discrete group I
acting fru‘ly on X with a compact quotient X = X/F

Let 7p : X — X be the projection. Assume that all the above geometric data
on X can be lift on X. We denote by J, g’ X o, L. E the pull-back of the
corresponding objects in Introduction by the projection 7 : X — X, moreover, we
assume that the G-action and the I'-action on them commute.

By the above arguments (cf. [27, Theorems 4.4 and 4.6]), there exists a spectral
gap for the square of the spin® Dirac operator f)p on X.

By the finite propagation speed of solutions of hyperbolic equations (2.66), we get
an extension of [28, Theorem 3.14] where G = 1.
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Theorem 4.19. — We fix 0 < =¢ < inf,e x{injectivity radius of x}. For any k,l € N,
there exists Cy, ¢ > 0 such that for x,2" € X, p € N,

|ﬁG x.2') — PS(np (), 70 (: |<g, < Crap b it d‘?('x,x') < <o,

(4.94) g
\PGIT) < Crap” "'"1, if d¥(z.2') = eo.

Especia,lly, (1 x) has the same asymptotic expansion as P( (mr(x), 7r(x)) in Corol-
lary 0.4 on X

4.7. Relation on the Bergman kernel on X

From (2.62), if the operator ®£,® ! has the form DZ p AN + 4| pl?p? — 2mnop
under the splitting (4.86), then we will find the full asymptotic expansion of the
Bergman kernel on X¢ from P[f( x, ).

In this Section, we suppose that X is compact and G is a torus T"0 = R"™0 /Z"0,

Let € : TP — g be a connection form for the G-principal bundle 7 : P = p=1(0) —
X with curvature ©. Let THP = Kerd c TP.

Set M = P x g*, q: M — g* be the natural projection and
(4.95) WM =mtwa +d(q,0) = 7w + (4. 0) + (dq. ).

By the normal crossing formula [22, Prop. 40.1], we know there exists a symplectic
diffeomorphism such that on a neighborhood U of P,

(4.96) Woym @ (X.w) (]\[.,wM).

and under this identification, the moment map g (cf. (2.16)) is defined by —q

From now on, we use this neighborhood of P and we will choose metrics and
connections.

Let g% be the metric on g induced by the canonical flat metric on R™, and { K}
be the canonical unitary basis of R0,

Now we choose J an almost -complex structure on 7T°X compatible with w such
that on 77 P on U, J is induced by an almost-complex structure on T X which is
compatible with wg, and on g @ g*, for K € g, JK € g* is defined by (JK, K') =
(K,K')y for K' € g.

We also suppose O is J-invariant.

Let g7 be a J-invariant metric on 7T X such that

(4.97) "X =7 gTXe &g 2 ¢¥  on U.

As ¢9 is a constant metric on TY = g, VTV is the trivial connection on TY. By (1.3),
on U,

(4.98) Vi = ,’,,*,'( + Vi s,
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Let VAVEY ™) be the trivial connection on the trivial bundle A(N *(0 1)) (cf. (4.86))
on U, and VU#xs be the Clifford connection on A(T*(0D X ).
By (1.7), (4.98), under the identification (4.86), on U, we have

Clifix,, ANGTTY

(4.99) vf};ff =V Celd+Ida V" + 2<S(e?)e§’,Kl>c(eﬁ)c(K,)
iy A *m 1) 1 i
= VU X6 o ld+1d eV oH ) + 1(@(6’;‘,ej).R[>C(€H)(,’(K[).
However, the last term does not preserve A(T*(“ D Xg) and A(N, (0,1))

From (2.62) and (4.99). in general, ®£,®~! will not preserve A(T*(%1 X ) and
AWy if © s not null.

Now. we suppose that @ = 0 on X¢.

In this situation, on B = U/G C X x g*, by (2.62), we have

‘ AN 5 1o .
(4.100) OL,O ! = Dé’p - Z(VA(] )2 + 472 |q)*p? — 2nomp.
1
By Theorem 0.2, Section 3.2 and (3.19), we know that the asymptotic expansion of
the Bergman kernel has the following relation for (z, Z+) € Ng .., (2. Z'*F) € Ng .,

(4.101) PE((x.Z+).(a'. Z'F)) = Pa (a2 )p"/* Py (VpZ*. pZ") + O(p™™).
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CHAPTER 5

COMPUTING THE COEFFICIENT &,

In this Chapter, (X,w,.J) is a compact Kihler manifold, 7% is a G-invariant
Riemannian metric on TX which is compatible with J. (FE.,hF), (L,h") are holo-
morphic Hermitian vector bundles on X, and V¥,V are the holomorphic Hermitian
connections on (E,h¥), (L, h"). Moreover,

—#lRL =w

2m

The action of G is holomorphic and G acts freely on P = p1(0). Thus
(Xg.wa. Jo) is a compact Kédhler manifold.

In Sections 5.1-5.4, we suppose that in (0.2), J = J on a G-neighborhood U of
P =y 10).

The main purpose here is to compute the coefficient ®; in (0.20).

By (0.19) (cf. also Theorem 2.23),

(5.1) Dy (20) = / P3PNZ, Z)don, (Z).
ZENG .2,

We will first compute explicitly the terms O; and Oy involved in P?) in (3.32),
(3.62), and then compute the integration of P®) along the normal spaces to X¢.

Sometimes the computations seem to be long and tedious, involving many subtle
relations between metrics, connections and curvatures near X¢, but fortunatcly the
final result on @, is still of a simple form, as expected.

Throughout the computations below, a key idea is to rewrite all operators by using
the creation and annihilation operators b;, bf, bj- bj‘*+, then under the help of (3.9)
and Theorem 3.1, we can do the operations and obtain the crucial Lemmas 5.9, 5.11.

To get the final simple formula (0.25), we still need to prove a highly non-trivial
identity (5.131).

In the usual case, i.e., G = {1}, Ma-Marinescu have used the similar formula (3.62)
to compute the coefficients in varies generalities. In the Kihler case (cf. [31, §4.1.8]),
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the computation is quite easy as O; = 0. In the symplectic case [28, §2], O; # 0.
but the contribution from O; is zero at (0.0) and in the spin® Dirac operator case
[29, §2], Oy # 0, and the contribution from O; is non zero at (0,0).

This Chapter is organized as follows. In Section 5.1, we explain various relations
of the curvature of the fibration P — X4 and the second fundamental form of P. In
Section 5.2, we obtain the explicit formulas for the operators O;. O,. In Section 5.3,
we apply the formulas in Section 5.2 and (5.1) to (3.62), and we get a formula for the
coefficient ®;. In Section 5.4, we compute finally ®;. thus proving Theorem 0.6. In
Section 5.5, we explain how to reduce the general case to the case J = J which has
been worked out in Sections 5.1-5.4.

In the whole Chapter, if there is no other specific notification, when we meet the
2

operation | |, we will first do this operation. then take the sum of the indices.

5.1. The second fundamental form of P

We use the notations in Sections 2.2, 2.3. Then the normal bundle Ng of X in
U/Gis (JTY ).

Let ¢ : X¢ — U/G be the natural embedding.

We will apply the notation in Section 1.1 to B = U/G.

Let VTXc¢  ¥NG¢ be connections on TX¢. N induced by projections of the
Levi-Civita connection VT2 on T'B. Then VTX¢ ig the Levi-Civita connection on
(TXq, g"¥e).

Let

B

(52) ()v — vT"\’G 3} VAYG

be the connection on T'B on X¢ induced by VTXe vNe with curvature "RT5.

Set,
(5.3) A=VTB|y, -0V,

Then A is a l-form on X taking values in the skew-adjoint endomorphisms of
(T'B)|x. which exchange T' X and Ng.

We recall the following properties of RT 5, the curvature of VI B: for U, V. W, W, €
TB,

(RTB(U V)W, W) = (RTB(W, W)U, V),
RTB(WU. VYW + RTB(v. W)U + RT"B(W,U)V = 0.

On Xg, let {€Y} be an orthonormal frame of T'X¢, let {ej‘} be an orthonormal
frame of N¢, then {e;} = {e?, cj‘} is an orthonormal frame of T'B.

The following result gives detail informations on the torsion T of the fibration, as
well as the second fundamental form A.
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Theorem 5.1. — On P, the restriction of the tensor (JT(-,J-).-) on (Ng)®?3 is sym-
metric, and

(5.54) (AT = ZIT(H Jed ),
(5.5b) T(e?‘H,e? HY (T ,(JGE*?)H)-,
(5:5¢) (e e ) = 2T ((Tae) ! Tey M),
(5.5d) (T ™oy ) dep ™) = (T ™) e 1),
(5.5€) Z (T(e, ejl'”), Jer ™y = 0.
k
Proof. — Observe first that we have
(5.6a) viti=o0
(5.6b) (JaeH® =g on P

Let Z be a smooth section of TY, then by (3.1), JZ € JTY < THX on P, by
(1.3), (1.7). (3.1) and (5.6a), on P, we have

(5.7)  (J(A(D)eNH 7)) = v oo (OH,J =—(V “He“H,JZ
J

= (VoS (Je5 ™). Z> = (ST Z) = (T 97, 2).

i J i

Thus we get (5.5a), as A(e?)e? € Nog = (JTY)e on X¢.
Note that [Z,elf] € TY, by (1.3), (1.7) and (5.6a),

(5.8)  (T(efl.ell).Z) = 2<v Z.efty =2V Nel el = 2(V N (Jell). Jell).
From (5.6b) and (5.8), we get (5.5b).
From (1.3), (1.7), (5.8) and JeL H ](th €TY on P, we get

(5.9)  (T(e)" o). Z) =2(S(Z)(Jed ™). Je; Ty = 2(T(Te) ! Je ). Z).

J
Thus we get (5.5¢). By (1.6), (5.9), we get
(5.10)

<T(09‘H. (’J‘H) Jra,i“”> =2 <T(Je?’H, J(fj"”). J(:fj’H> = <T(C,(-)’”, (zt’H), J(i-L'H> .

i 7 ¢ J

Thus we get (5.5d). By (1.3), (1.7), (5.6a) and J(—)Jf‘H €eTY on P,

(5'11) <T((%j“H,JC}L'H) J_ H> — <VT l ”(J_ H ] J_ H>

= —<V:;5.H (J(:,-L'H e H> = <VT “(L H, (%f‘”> = <T((?j“H, J(i-l‘H), JPL‘H>.

Je, 2 9 1 ‘k

By (1.7) and (5.11), <JT(-, J-),) is symmetric on the horizontal lift of N *.
Note that {Jey "} is a G-invariant orthonormal frame of TY on P, by (5.8),

(5.12) (T(e; M e ™) Jep ) = 2(v7Y L a(Je ) Je .

E J
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By (1.9) and (5.12), we get (5.5¢). The proof of Theorem 5.1 is complete. O

Remark 5.2. — From (1.6) and (5.5b), O|x, is a (1,1)-form on X¢. Especially, for
any complex representation F of GG, P x¢ F' is a holomorphic vector bundle on X.;.
Moreover, by (5.5a), for U € T X5,V € Ng, we have at x,

(5.13) AWV = (AW)V.e)) ) = — (V. AU)S) e = o (T(U, ), V) ).

For zg € X¢g, if {ejl} is a fixed orthonormal basis of Ng ., as above, then for U €
T, X, we will denote by

7;.716 = <JT(614_7’]P']'L)761%>5 ilk = <JT(€£",6JJ-'),€;1T>,

5.14
( ) ZR(U) = <']T(U’ (jjl)’()k%> :

By Theorem 5.1, 7;;;, is symmetric on ¢, j, k and 7 € Ty X¢ is symmetric on j, k,
Tijr is anti-symmetric on 7, j. Moreover, as functions along the fiber Guo, Zijk, Tk,

Tk are constant.

Remark 5.3. —— From Remark 1.2 and (5.12), we know that (JT'(.,.),.) is anti-
symmetric on (Ng)®? if g7V is induced by a family of Ad-invariant metric on g. If
G is abelian, then by (1.12), (5.12), T'(.,.) = 0 on (N¢g)®?, thus 7;;; = 0.

5.2. The operators Oy, Oy in (2.102)

We use the notations in Sections 2.6, 3.1, and all tensors will be evaluated at
ry € X

Recall that (X,w) is Kihler and J = J on a G-neighborhood U of P = p~1(0),
then in (3.5)

(5.15) a; = (Lj_ = 27.

Clearly, on U, the Levi-Civita connection VIX preserves 719X and TV X,

(1.0) (1,0) - (1,0) . . .. .

and VT X = pT U XGTX pT" X g the holomorphic Hermitian connection on
. . . 1i6F . *(0.1)

T X | while the Clifford connection Vit on A(T*(0DX) js VAT™ 7 X) | the nat-
. . (1.0)

ural connection induced by VI X,

=LPRE, x . . e SHLPQE

Let 3° ©%* be the canonical formal adjoint of the Dolbeault operator 0 % on

QUV* (U, L? @ E). Then the operator D, in (2.14) is
—LP¢ —L? Lk

(5.16) D, =2 (aL S ) .

Note that D2 preserves the Z-grading of Q*(U, L? @ E).

Set
(5.17) D}, = Do w.LreE)-
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Let AL"®F be the Laplacian on LP ® E associated to V"8 Then by (2.51) (cf.
also [31, (1.4.31)]) , as J = J on U, we have

(5.18) D2, = AL"®E _RE _9mnp on U.

Since VI preserves the Z-grading of A(T*(*YX), the operator .£% in (2.100)
also preserves the Z-grading on A(T*VX,). Moreover, £} is invertible on
n_1Q%9(Xo, L @ Ep) for t small enough (cf. Theorem 2.2 or [31, Theorem 1.5.5]).

From Section 3.2, for PU") in (0.12),
(519) P(7) = IC®E’(;P(T)IC®EG'

Thus we only need to do the computation for Dz,O‘
In what follows, we compute everything on (U, LP ® F).
Take zg € X¢.
If Z e Ty,B, Z=2+2+ Z° € T,.Xc, Z+ € Ng.u,, |Z°.|24] < e, as

in Section 2.6, we identify Z with expipxc(zo) 770(Z+). This identification is a
XPag

diffeomorphism from B?OXG (0,e) x Bf{) G (0, ¢) into an open neighborhood % (xp) of xg
in B, we denote it by W. Then % (x9) N X = BIX¢(0,¢) x {0}.

In what follows, we use indifferently the notation B X< (0,e) x BY¢(0,¢) or % (o),
zoor0,....

From now on, we replace U/G by R?"~ " ~ T, B as in Section 2.6, and we use

the notation therein. Especially,
(5.20) V, =t Lp/AvL®E) s ~1/2g,

and O, in (2.102) takes value in End(Ep).
Let {ef}, {e;} be orthonormal basis of T, X, N ., respectively. We will also
denote W, (ef), V. (ej) by e, e .
Let {e;} denote the basis {ef, e}"}. Thus in our coordinates,

o _ 0 o _ L
(5.21) 920 — % Gzr T -

We denote by (¢ (Z)) the inverse of the matrix (g;;(Z)) = (ngJB(Z)) (cf. (2.106)).

Recall that I‘,li]- is the connection form of VT8 with respect to the frame {e;},
defined in (2.106). Also recall that R, R® and R* are defined in (2.72).

As in (1.14), the moment map p induces a G-invariant €°° section it of TY on U.

Note also that by (2.50), RE € End(FE) defines a section of End(Eg) on B = U/G.
Recall that h(x) = y/vol(Gx) is defined in (0.10).

Set

(622) LD = g7 (t2)(Vie Ve, — U5 (12)V00,)

o1l . . .
+ 12 (ﬁgv(vciv% h—TEV,, h)) (tZ) — *RE(tZ) - 2mn.
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By (2.62), (2.100) and (5.22), we can reformulate (2.101). (2.109), in using the
notations in (3.10), as follows,

Vo.=V.+ = Rff(R,-) =V. -7V —1(J,Z2°.)

(5.23) &= Z bibl + > bibi T == (Vo) +4x” 25 = 2mn,

J

To *

1.2 - G F o~
LUZ) = LUZ) + 4An? ’—u’ T,»(tZ) — </17r\/—1;1/+tzp,h./LF’>g,.Y (tZ).
g

If there is no other specification, we will evaluate our tensors at xg, and most of

time, we will omit the subscript z.
Set hg = hy, := h(xg), and for U € T, B, set

1 o ze
B(Z.U) =5 D> (9°R"");, =(R.U),

jal=2
1
[1 - _B(27 ei)v(),e,,; - §V(1L(B(Z7€'i))t
1 TXc 0O 0 O TXa 0 L 0
I, - (<§R (RO, eNRY + VEXC (AR ),ej>
5.24
(5-24) {0 VERS(ADRY)) — BLACDRE . AR )

-+ <RTB RL. E’O)RL E,’Q> )VO (’“VO F()
+ ((RY (RO OREet) + 3 <RTB<RL ENRE et ) Voo Voo

1,
+3 (R™P(RT, e )R e/ ) Vo 1 Vo

Recall that the operator .2 has been defined in (3.10).

Set also
I‘“(R) 2333;)(( (RO (,U)() + V (‘ ( ())()0) + RI B(RJ_ ) (:,J
+ A() AR + VX (A(eD)RY) — A(RY)A(ey)ey.
(5.25) Ka(R) :l <RTXG(R°, )R, 4 (RTB(R*.e))R* . ?)

4= <RTB RE eHRL, ¢>+2(Z<A 0) RJ_>)

~ AR + 2 <v£3‘( (A(L)RY). e,,;> .
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Lemma 5.4. — There exist second order differential operators O!. as in Theorem 2.11
such that for |t| <1

m

(5.26) L= L)+ 0L+ o),
r=1
with
(5.27)
LY~y - Z(v )2 = 2mng = L0 — ax?| 212,
=1

2 1
O/l - - g(ajRLB)I“(R,(%j)ZjVO,p, - g(aiRLB)JTU(R* PY)
- 2 <A(6’(i,))()/‘(;* RJ_> v().{:‘l’vo.e[j’

{2:[1+]2+EA’AR)—%(Z(A(W (,,RL>) }
i

2, 1,
-2 <A<(J?)(J§) RL> (g(()/»’RLB)JI‘O (R e.(j))ZkV().e‘i' + §(()JQRLB):E“(R~ P?))

1
+ <Fn(73)a ej) Vo, — 3 (A(e))ef , RT) Vaeyyes +2 (A(ed)ef] LR Va(e9)e
+ = <RTB R ef)ef.e;) Voo, — REP(R,e,)Vo., — RED,
1 2 1
- 5 [Z(aJRLB )J'U(R‘ ()i)ZJ} + E (v“;) v"j h — v‘—/\(cl(,])e‘l’ h) .
i J e

Proof. By (2.103) and (5.20),

1
(528) vf.c, = ’{'I/Q(tz) (VG’ + (21?%()3 +3 (d R" )ln//\’

2 Ha pL Za E 7433 e 1/2
- HZ.)(o RY®)0 =+ RJ(?)( e + o))k (12).

To get (5.27), we could use (2.92)-(2.96), while here we will get it directly from the
local computation.

By [1, Prop. 1.28] (cf. [28. (1. 31)]) and (2.103),

ro

0 TX 01 70
(7€) 0 = 0ij +3 <R (RO, V) RO’C%I“ +o(2°P),
(5.29)
Naw—wNa N
(v(z‘;,( v(:‘,’( € )il‘n - R . ("U (»(‘))(*J'_-

To J
Moreover, for W,V € Ng .. vs(t ) = (Z" (W + sV)) is a family of geodesics from
(Z0.0) in B. Set ¥ = 2ou(t), X(,(1) = 24(t) = 1V

Since VIPY = 0. VIPX — VEPY = [Y. X] = 7.[&, £] = 0, we get

(5.30) 0=VLVEPY =vIBvIPX — RTB(Y. X)Y.
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TakeV:eﬁ-,weget at s =t =0,
. 1 1
(5.31) (VEPVEEet) 40 = gv53v53v55’x = gRTB(W, e )W,
Under our coordinates, we have

TB TXa Na
ch ezJ_)Tn (V © Q)IU = (v >QG€’7J,_)-TU = 07 (VZ:)BGO)LU() = Aﬂ?o (6?)62,
VTYLBE’(I,J)TU (VI—“’B()J—)EO = A ( )e]L’

(5.32)

Moreover, by (5.4), (5.29), (5.31) and (5.32) (comparing with [28, (1.31)]), as [e;, ¢;] =
0 by (5.21), we have at xg that

1 g
VTBVTB L= -RTB(efl el)ef + RTB(GR ,e»l)ejl,

3
v VTB =0,

vTBvTB () vTBvT[',BejL RTB( 6’0)E’L,

vTB O v vTB j_
(5.33) =VN~°V’Y»°PL+A<(JA>A@“>~ VIXe(A(ed)e;)
= RN( (ep. el)ei + A(e) Aled ey VTXC(A(“?)B_,-L),
VTBVI;)B(JO RTB (et e9)e? VTBVTIB()()
VTBVTU 0 = yTXe V7 el 4 V (A( 0)e)
_ gRT‘X(; (627 ()?)(’? + gRTXG((jg, e?)e? + V{(L)B(A(((/))(?)

In the following, for a tensor v and the covariant derivative V? acting on ¢ induced

by VT8 we denote by
Bw B,
(V Y ) (cjej,clen) — CJCA(V V )lu
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From (5.33), we get at g the following formula which will be used in (5.38), (5.39),
(5.56), (5.57) and (6.26),

(5.34)
(VIBVTEe)) (ro R0y = 3RTXG (R%, e )R + VL8 (A(e))e) 29

AR
VTBVTBeg)(R()'RJ_) = 51’?,]\'("(720,e?)RL + ARHAER: + V%;“ (A(eD)R™),

(
(
(VTBVIB L)(RO 20) — A(RO)A(RU) V%{( (A(eR)e) 2y,
(

(VTBvTB J_)(RJ- RL) = _RTB(RJ_’ ej_)RJ_7
(VTBVFB )(RL ROy = (VTBV] Be )(R“ RL) RTB(RL, RO)(fj.

Note that by (5.32), VEB (A, (e)e?) = A(R?) AL, (e?)e?. From (5.32). (5.33), we
get
2
(VTPG-L)Z = gRTB(Rl,e%)cJ‘ + 0(17)?),
(ViPed)z = Aug(e)e] + VR (VL el — AI()( Ded) + 0(Z)
(5.35) = A () VE (A (0)6l) + 2R (RO e)el
+ VRl (A(e])e]) + A(ed) A(e] )Rl
+ Vi (A)RY) + RTP(RE ed)ef + 0(12]7)
= ‘410(6?)6? + Fii(R) + ﬁ(IZI“)),

Thus by (5.32), (5.33) and (5.34), at xq,

(5.36) VroVge (ef,ed) = (V%? S VREE)) + (e VEEVLEe?

3 <RN("(R0, eNR*, (f> .

On the other hand, we have the following expansion for (¢;,¢;) ,,

(eisej); = (eirej) zo + (Vro(eiej))zo + 5 (VV (e ) (re m) 2o + O(Z))
=(eisej) g0 + (Vri (€ie5))zy + (VR”V’RJ- (eis€j))ao + <VRL(MVTL€J>

Zo

1 . .
-+ —2- <(VFBVTB61')(RL‘RJ_),GJ'> + 5 <(-ii7 (VTBVTB(‘%J‘)(RJ_’RJ.)> + ﬁ(lZP)
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Thus by (5.4), (5.29). (5.32), (5.34) and (5.36)-(5.37).
(5.38)  (ef.€9), =06 — 2(Az,(e))e). RY) + ! {RTXG(RO‘ eN)RY.€9)
+ (VRN (ADIRY). ) + < VRS (AR
+ (AR A())RT) + (RTP(REDRE ) + 0(1Z)%).

and
5.39) (ef.e5), = % (RY(RY. e)R-.e5) + % (RTB(RY R .e5) + O(|Z]%),
T bty = 0+ HRTERE Y )+ 00127

Note that det(d;; + a,J) =1+ 3 ai+ >, (aua;; —agaz) +---. From (5.25),
(5.38) and (5.39), we get
(5.40)

det gy (Z) =1 = 2( Ay (¢)e. RY) + Ka(R) + 6(1Z]%),
KE(tZ) = (det gij)M Nt Z)

2 2
=1 % (A(eD)el, RE) — %(ZK (e))el . RE) )2 + %A’Z(R) o,

KTEI(tZ) =1+ % (A(e))el . RY) + (Z (A(e) ,Ri>)2 - gKQ(R) + O(t).
Moreover, as a 2(n — ng) x 2(n — ng)-matrix. we have
(541) (01 = 2 (Ap, (e))e). RE)) ) = (60, + 2 (A, (eD)el. RYY)
+ 4 (Aug (RE A ()RY) ) + 0(12)).
Note that from (3.9), (5.23),
(5.42) [(A(e])e] RY) . 20] = 2(A(e])el. e )V e

Thus from (5.25), (5.28), (5.35), (5.38)-(5.40), the coefficients of ¢, t? in the expansion
of (]'l fZ)ILFf (tZ)Vt“_ = f!]ij (I‘/Z)v,,_(v'TBGJ)(LZ) are

(5.43) (A(e})e] e,f‘> Voers
2 <A(€?)(7Fj)7 RJ_> VA((??)(?‘].} + <F“(R) € 1> VU €5 + R,I B(,lz'L ‘L ,J_. (,‘Tj> v().(i‘,
1 .
- b (A(e)e], R) vVA(e‘,’)eE’} + S(OA:RLR)J-UZk(R- Aed)ed).

By (5.22), (5.28) and (5.38)-(5.43), the coefficient of ¢ in the expansion of .2} is O
in (5.27).
We denote by [A, B]y = AB + BA.
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By (5.22). (5.28). (5.35) and (5.38)-(5.41), the coefficient of t? in the expansion
of £ — (g"jtffj)(tZ)Vt‘ek is

1
(5.44) Ip - 2 <A(e9)eO.RL> [—vole?(akRme(R, %) Zy
1
(ak R") . (R.€) 21NV 0 — —[<A(€O)€?‘Rl> «Vo,eyvo.ey]]

+ I + [5 (A(el)e) . RT) [ 0 R"?), (R.ei)Zy. v(’f""]*}
+ [Lram) - g(z (At r) ) 2]
l

1 i
- 1[<A(e;’)e?.RL> LA RY) — REP(R.€)Vo.e,
1 Pa Lp 2 E
- = i . . e e f AleM) e )z -
S5 [ @R (Ree)Z| - RE, 4 (T Ve - V)

@ J

Here I is from the coefficient of ¢? in the expansion of ¢/, the second term is the
product of the coefficients of ¢! in the expansion of g% and V., Vie,: Iy is from the
coefficient of t? in the expansion of R%#. the fourth term is from the product of the
coefficients of 1 in x1/2 k12 and in k V2V, ., V., &Y% (cf. (5.28)). the fifth and
sixth terms are from the coefficients of t2 in the expansions of x!'/2 k=12 and the

1/2 and x~1/2; the seventh term

product of the coefficients of ¢! in the expansions of x
is from RF7, and the eighth term is from the product of the coefficients of ¢! in the
expansion of RF5.

Certainly,

{<A 0 RJ_> [(ak‘,RLB):m)(R'/()"')Zk'VO‘H’]+}

—
U
e
ot
N
D=

- *g-'(f?m“—fx,-(,(n A(ef)ed) Z.

By (5.42)(5.45) and by the fact that A(e?)e? is symmetric on ¢, j, we see that the
coefficient of t? in the expansion of .2 is O} in (5.27). O

To simplify the notation, we will often denote by e; the lift e/ of ;.
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Lemma 5.5. — The following identities hold,

(5.46a) (O; R"%),, (R, e,)zi = —3V-1n (JT(R.e;) — JT(R®, PT¥c¢)), R),

(5.46b) —VB( <RT"G RO, IRU)RO. ef)) — 2 <JR¢,V£Y(T(ei,e?))Zi>

1
+ 2< v;f,“ (A(eD)eh)ZE + RTB(RE, e))RE + RTP(RE RO)e! JRO>
1

-3 < VNG (A())e) 202+ + 2RTB(RE, RO)RY, Je?>

1
-3 (RTB(RE,RHRY, Jep)
1 1
+ 5 <JRL,T(72° - 7R eg’)> (JR*.T(c. Jeb))
+ = <T (RY. R).T(c), JR) >+ <T (RY.JR®), T(R*.€f))

(T(R, JR®).T(R.e})) + 3 <T(Ri, JRY), T(R.e}))

OOI»—‘OOI»—\

(JT (e} . JR®), e5) (JRE . T(R.e))).

Proof. -—— By (1.6), (1.14), (1.18) and (2.16),

5 V-l

(5.47) S X REE(eh, ) —<]€k G,H>+u())((k,€1)

= (Jeg ef") + (i. T(cp.er)) .

Thus by (3.33), (5.5a), (5.6a) and J = J. we get at x( the following formulas which
will be used in (5.62),

(548) Zlfﬂn = 0’ (vyléyﬁ)»b() = *JRLv (VTY VT} )('R R) — (RJ—v JRJ_)
By (3.36) and u =0 on P, we have at x,
(5.49) (Yo, (i T(ense0))ey = (VI T(ex.en)) + (VI (Tleren))
= (JT (ek,er), €;) .

By (3.40), (5.6a) and (5.32), we have
(5.50) (Voo (Jel el )y = <]V Xell ”>” + <Je. vT,%({1> ‘

1
<]T(()1 ek),er) — 5 (Jek, T(eier))
+ (JAPT Xc e))PNGey + JA(PTXc e, )PNGe,, PTXG¢)
+ (JPTXG e, A(PTXG e ) PNGep + A(PTXoe) PNee;) .
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By (5.5a), (5.47), (5.49) and (5.50), for U € T,,B,
v—1

27
(5.51) + (JPTXey, A(PTXe Uy pNee, + A(PTXS¢)) PNeU )

3
(OuRY?),, (U, e)) = 5 (JT(U, &), Uy = 2(A(PTXeU)PNoU, JPT X6 e))

= g (JT(U,e) — JT(PTXoU, PTX%¢)),U) .

Note that (JTY)e = Ng on X¢, by (5.51), we get (5.46a).
By (5.24) and (5.47), one gets at xo,
v—1

™

(5.52) B(Z.e)) = %(vv (Jex, et} + VY (i T(er. ) )

(R.R)
From (5.6a) we have
(5.53) (vv (Jef, e]H>) 2= (IR, (VIXOTXHY o o)
<J(vT‘<vT‘f YrR) €1 ) 2+ 2(IV RN e VRN el Zk.
From (1.2), (5.32), one finds at xg that
JR* eTY, JReTXc,
(5.54) VEBeY = A(V)R, VEBel = A(RO)ei,
(VI Xelyz2,2; = (VTPe) Z,2; = 2A(R")R + A(R%)RC.
Now by (3.40),
(5.55)
R H - 1 H
(VIAVIN el )y = VITXTIIN el = STl TN ell) = SO (Tl eff ).
By (5.34), we get
(5.56) (VTEVTBer)im ) Ze = VEE (A(e9)e) 2020 + BA(RY) AR R
+3VR0 (A(e))RT) Z) + 2RTP (R RORE + RTP(RE, RORC.
From (5.34), (5.54), (5.55), (5.56), the anti-symmetric property of the torsion ten-
sor 1" and the fact that A exchanges T X and N¢g, we get
(5.57)
(JR(VTXVTXe) )z ry) = <§RTX"’(R° e} )RY + Vb (A(ef)e]) Z], JR°>
+ (2VR (AlD)e) 2] + RTPRY e )R + RTH(RS RO)ef, JR)
1 1 .
- <JRL,T(R,A(«°)R ) =5 (JR, VRN (T(ei e Z;),
(J(VTXVT Y el ) ). e 2 = (2 JRT”(RL RORT 4+ JRTP(RT, R™)R, )
n </VR0 A((DO) O)Z“ZU +3]V7[2:,“ (A(e ())()J_)Z()Z_I_ 0>.
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Note that from (1.8), (5.3), (5.5a), (5.54) and A exchanges T X and Ng,
(5.58) (JR.VEN (T(ei.ef)Z:) = (JR. VR (T(ei. e))Z:)
+ % (T(R.JR®),T(R.€})),
(IVES(A(eeh 29 Z?. ,> — (AR ARNHRY. Je)
- = <T RO.JRO).T(RO.e?)>,
(VRS (A(e])el), JRY) = = (A(ef)ei. AR)IR") =
By (3.40), (5.6a), (5.13), (5.54) and the fact that A exchanges T' X and Ng, at xg,
(5.59) <Jv£Xe,{.ﬂ v%‘(e?*”> Zp = <Jv3;3e,‘., AR — %T(R, e?)>Zk.
= (JAROR, —lT(R, e0)) + 2 (JARYR®, A(ef)R*)

1
=3 (T(RY, JR"). T(R,e})) + = <J72i T(R®.€))) (JR.T(ef, Je)) .
By (5.53), (5.57)-(5.59), at xo,

1, .
(5.60) (vv< el e §”’>)(RR) b= 5 (RTYGRO. )RV JR)
+ (2N (Aled)e

= <2RT’?(R{RO)RL + RTB(R+ ROR + 3v3;,¥6 (A(e)e) 202 Jef )

)Zl RTB(RL ))RJ. RTB(RL RO) ]R(J>

(JRE.T(R, A(e])R) + VR (T(ei.e})Z;) + 1 <T(R°, JRY), T(R*.e}))

l\.’>|>—a

1
- (T(RT,JR°), T(R,ef)) + (JR-.T(R".e))) (JRT.T(e}, Je})) .

Observe that A(e”)RY € Ng, A(e”)R+ € TX¢. By (5.5a), (5.5b), (5.5d) and
(5.13),

(5.61) (JRY.T(R,A(e))R)) = (JR.T(R. A(e])R")) + (JR'.T(R. A(e})R*))
:—<1T IR e ) (JRET(R e ) + (JRY.T(R, A(e] )R™))
=—5<T(c?,.]7€°)<T(R”,RL)>+§<.]T ). JR").e5) (JRE.T(R . e5))

+ % (JRET(R.€0)) (JR . T(e). JeY)) .
From (5.48), at o,

(5.62) (VV (. T(er.e1)))(r.R)
= ((VIYYTY [i)rry Tlen e1)) + 2 (VR L VR (T(ex, 1))
= (T(RT.JR*). T(ex.e)) — 2(VE (T(ex.e1)). JR").
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Finally, by (5.4), (5.52), (5.60), (5.61) and (5.62), we get (5.46Db). O

We now examine the coefficients in the expansion of terms involving the moment

map .
Set

1 B 1
(5.63) 0’2':—§<(v“ g )(R_R)JR{JRLHg<v3;Y(T(cj,]me? ). JRY) 2,2
1 ]
+3 <v;§s; (A(e9)e9) 2929 + RTB(RY, RO)RY, Ri>
1 2 1 L L 0 1 0 0
_1_92<T(R,fi1),JR ) +Z<'IR TR e)) (JRY.T(R, ¢)))
=

1
+ 1—72lT(Rl. TR + 5 (TR JRE). TR IRY))

Lemma 5.6. — For |t| < 1. we have

(5.64) 41/1 v (tZ) = |22 =t (T(RT.JRS), JRY) + 204 + O(t?).

(5.7 07) = =1 (TR )

+t2<% (T(RT. JR*).ak ) — <J7z¢.,v3;”ﬁ’3>m) + O(17).

Proof. — By (3.36), (3.38), (3.39), (5.6a), (5.54), J = J and g = 0 on P, we get, at
To,
e 1
(5.65) (VIYVIYVIY i), = —PTYIVINOIX el — -Q-T(c{? pTeX IVIielh)
1 .
— VIV @) PTT N gelh) —<vf g (VIR

1y N
(VT’ 9 NV 1) = 5g0r (Vo Vi o).

From (3.40), (5.48). (5.54), (5.55), (5.56) and (5.65), we have

(5.66) (VI'VIVVIY i) rrR) = (V V” Vin 22122
= —JVRS (A(eD)e) 20 2! —3.JA(R°)A(720)72l —2PTY JRTB(R+ RY)R*
~ PTYJRTB(R* ROHRY — T(R.JA(R")R™Y)

1 e H v, . 1 X .
=S VRNT () PTN T 2,204 (VG ) IR = SaRT (T(RE.IRY).
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Now by (3.50), (5.48), and t = 0 on P, we have

1 1 ok
(5.67) | 5hlZry (t2) = 3 o (1l2ey (42) ) imo 172 4+ O(F%)
k=2

= VR RE, + (V9T )y VRV ),

2 _ o ‘ _— .
o (8 (VIYVEVTY D) (e rm), VR 1), + 6|(VTYV.7YN)(R,R)|?M) +O(t?).

By (5.5¢),

. 1
(5.68) T(R®, JR*T) = §T(Rl, JR?).
From (1.6), (5.13), (5.48), (5.66), (5.67) and (5.68), we get the coefficients of t, ¢!
in the expansion of |%ﬁ|;ﬂ (tZ) in (5.64), and the coefficient of t? is

(5

1
69) 5 <ngg(A(eg?)e;))Z;)Z;’ +3JA(R)A(RO)RY + JRTB(RY, RORO, Jvzl>
1
+3 (2JRTB(RT RORT + T(R.JARY)R™), JR:)
1 s 1 H
5 (V70T ) IR IRE) + o (VR (T(efl PT" X Jel) 2,2, TR* )
1 1 2
+ 3 (T(RIRM).T(REIRY)) + Z‘T(RL, JRL)’

1 oy 1)y ,
= 5 (V7™ )y SR TR ) + <v;g (T(eH, PT"X Jel)) 2, 7, JRL>

«

1
+3 <V%5"(A(e}’)e?)Z?Z? + RTB(RL,RO)RU,RJ»>

1 2 1
~ S AR €9), JRY) + G (T(R.€)). JRT) (T(R, ), JR™)
J
2 1
n %‘T(RL,JRL)‘ + 5 (T(RO.JRE), (R, JRY)).
To get (5.64) from (5.69), we need to compute VZ,}/(T((),;{, pTiX Jel)).
.k
For W a section of TX, U a section of T B, we have by (1.7),
H H v . o H | .
(5.70) <vT X pT Xy, UH> = el (WU — <P" X, VZ{,\UH>
= (PTIXTIX WU 1 (PTY W VIEUT)
“h Tk
From (1.7), (5.70), we get at xq,
H H H 3 1 -
YPTTXW = PTUXVIXW — 5 (T(etl el ). PTYW)el

(5.71) s

1o

Remark that .](:f"H €TY, Je?Y € TH X only hold on P.
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From (3.40), (5.5b). (5.6a), (5.13). (5.32) and (5.71),

(5.72)
1 1
(vT XpTiX je bty = JA(PTXeep)el — §JT(ek,eil) -3 (T(ex,er), Jei) e

1 ,
= _§JT(ek,e,+) -5 (T(eg,er) — T(PTXG ey, PTX¢)), Jei) e,
: 1
(V;F:I‘X PTHXJ(z?);L.” = PTHXJVpTﬁ(e?’H = JA(Y)PNGey, — §JT(ek,e?)
1 1 ,
— —§.JT(€,A,,6? + = (JPNGek,T(eO,eU»c;’,
(VDB Jo0ed)ay = ATyl )er = ——JT(P’Xf ek, el <JPNf ex. T(ed ef)) el
From (5.72), we get at xp that
(5.73) <V7T2Y(T(ef,PTHXJe,{{))Z.,-Z,;,JRL> — (VLY (T(e;, Juye?N 2,20, JR*)
_ <T(el V;I%HXPTHXJ()ZU o v;[z*”X(']ﬂ:()Pr[vX(;ei)H)ZjZi’ JRL>

1
— <T (R ~%JT(R, R — 5 (T(R.e)) — T(R°, PTXc¢)), JR™) e,) ,JRL>
+ <T< €j _"‘]T(‘k )+ 5 ]T(PTX( ek, e )) ZAZ7'Z?7JRL>
1 -
=75 <T (R; <T (R,e) — T(RO,PF’\GQ[ ,JRL> el) , JRL>

:"“Z<TR61 RL>+ (T(R.e}). JR*Y(T(R".ef). JR*) .

From (5.69) and (5.73), OF is the coefficient of ¢? in the expansion of |+ ,u|2m (tZ).
By (5.48), we get also the second equation of (5.64).
The proof of Lemma 5.6 is complete.

O

The following is the main result of this Section.

Theorem 5.7. — The following tdentities hold,
O1 =21V =1 {JT(R",e)). RT) Vg 0 +2mV—1(JT(R.e;"). R*) V.1

+ V=1 {(JT(R" e}"),ef) — <JT eo,,Je_‘;),Rﬂvm,?vOﬁ(;
+ 472 (JT(R*, JRS), RL> +4rV/ =1 (IR i),
O, =0} + 470} — 47r\/—1(% (T(R-.JRY). al ) — (JR-. VL ¥ )

(5.74)

Proof. — By (5.5e), at xg
(5.75) (JT(R,e;),e;) = (JT(R’ e} ), e;").
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v (5.46a), (5.51) and (5.75),

2 L
- g(aRR B)Io(Rv ei)vU,el
(5.76) =2r ((JT (RY.e0).RY) Voo + (JT(R.ef Ri>Vo,e¢),
— %(&;RLB),TO(R, e)) =mV—1(JT(R. e ).ef).

From (5.5a), (5.23), (5.27), (5.64) and (5.76), we get (5.74). O

5.3. Computation of the coefficient @,

Recall that the operator .£%) is defined in (5.23). Py . is the orthogonal projection
from L2?(R™) onto Ker.#t and Py is the orthogonal projection from L2(R27—2m0)
onto Ker.Z as in (3.19).

For Z+ € R"™, set

W, (Z21) = ((j“) 1PNLOI($§J)‘1PNLOIPN) ((0.24). (0. 24)) |
U o(Z7) = — ((forleLoQPN) ((0.25).(0.24)) .
W 4(24) = ( (LI PN O, PNO, (£9) " IPN*) ((0,24). (0. 24))
(5.77) Wia(Z5) = ( PNOL(LD) 2P‘V‘01P"V> ((0.2%). (0, 2%))
(/0)*117“’ Py O (L) PN‘OlPN) ((0.2%).(0. 24)) .
\pl_Q(ZL) —((£2)7 P Py 02PN ) ((0.24).(0.27))

Oy = / U (ZH)don, (ZF). for i =1.2.3.4.
R0
Proposition 5.8. The following two identities hold for ¢ = 1,2,
(578) / ‘Flvflnlj(Zi)(Z'l":\'G(ZJ‘) = (I)l‘,;.
R0

Proof. — In fact, in our case. by (3.21). PV = Py @ Py @ Idg.
By (3.18) and (3.19).

(5.79)  (£)'PN 0,PN)(Z,(0,2'))
= (L)' PN 02P2(-.0)G-)(2)G=(2').
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From Theorem 3.1 and (5.79).
(5.80) P2 ={(— (L) PN 02 Py (- 0)GH) (0, 21). GH(Z ) )) 1 2 (R"0)
= ((~ (L)' PN Py 03P (. 0)GH) (0. 24),GH(Z1))

N / W o(Z ) dong (2.
R0
In the same way, we get (5.78) for i = 1. O

Note that the restriction of ||.||;¢ in (2.114) on € (R?" "9, E¢ ., ) does not depend
on t and we denote it by [|.{o.

Since .4 in (5.23) is a self-adjoint elliptic operator with respect to || - ||o as we
conjugated the operator with x'/2, #9 and O, are also formally self-adjoint with
respect to ||.[[o. Thus in the right hand side of (3.62), the third and fourth terms are
the adjoints of the first two terms.

From (3.62). (5.1) and (5.77). we get

(5.81) Q) =01 + P2+ (P +Pr2) + P13 — Py

From (5.77), (5.78). (5.81). we learn that in order to compute ®,, we only need to
evaluate Wy 1. Wy o, Py 3 and &y 4.

Lemma 5.9. The following identity holds,

- 2
(5.82) U, (Z24) = _8— (s ;&)\ Py (Z+.27Y).
w ”J
Proof. — Recall that the operators b;, b}, bjL and bf* have been defined in (3.8). In
particular, by (5.15), one has for f € T;‘”X(
AnZi =bi +b;7. Vo= ,,;ﬁ =3(b;T = b))

(5.83)
F(e)) Ve = ‘f(()—u )bi + f(52

By (3.8), (3.9) and (5.83), set

By = (4m)2Z Zir = by ot by T+ b by T 4 by by + A,

(5.84)
By, = bi b bic +3bi by byt 4 3b b b b bt

If a;ji is symmetric on 4, j. k, then by (3.8), (3.9), (5.83) and (5.84), one verifies

(5.85) aiji(4m) ZLZLZA —(ILJ,gB 1+ 127ai;; (b + b ).
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By (3.9), (5.5e), (5.14), (5.83), (5.84) and the fact that T'(, ) is anti-symmetric,
we get

1 ~
(5.86) 2w (JT(R*,ef), R )Vy, 1 = E;T}ikBjk(b# —b})
1

= m’fﬂk (b bt + bbb — (b hr ™ + bpby ™ + bbby

1 ~
- _S_ﬂzjk:(bjj'_bi'_ﬁL + b5 )by

By Theorem 5.1, Remark 5.2, (3.9), (3.12), (5.14), (5.74), (5.84)-(5.86), we can
reformulate O, as follows by using the creation and annlhlldmon operators introduced
in (3.8),

(5.87) O = —% (T b ) et ) Bibt +biv— <JT o2 et) el ) Bl
+ g (JT(R" el) ef ) (b "oy —blby) — \Q_Tz/k(bible + b by )b
LT Gy e ) (4 + b @007+ Amo) + VT (e E) (0 + b))
o (T (b, Jed) e ) (B, + 1200 (b + b))
g (2B + %T (o e+ YT RO B b))
+ V=1 (Jey i) (b +by) = \/_<]T(a~"*azﬂ) >(bk++bk)(2bjb?—+4ﬂ'5ij)

1278 (b + b))

v —1
- Uk(b“#* + b b )b+ I—ZJk[BLJA

87

From Theorem 3.1, (3.54), (5.84), (5.87) and a; = a;” = 2w, we get

bi-
(588 ((L9)'0PY) (2. 2) = VI e Tl ) + (et i) 2
— <.]T B ( R ()z“ /,_1_> — bl (Z + ZIO)
2 banbl arl N '
167 lzrklrn l: 127 + '3bk (Sl»m,:l }P (Zq 7z )
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By Theorem 3.1, (3.55), (5.84) and (5.87),

+ <]eJ ’“ro> bL+ 4rx <]T(dzo’ 3—0)7 3’ >bl+( bibf + 4mdy;)
1 b b;
+ 1 (T (RO = T ()35 + Ty ()5 )b H o

v=1
167 ——Ti;y[b L+bL+bJ—+ + 127"&]’1) }

In the following equation, by (3.9), (3.54), (3.55), we only need to pair the terms
in (5.88) and (5.89) which have the same length on bjl and b , and the total degree
on b;, b}, 29, 2% should not be zero. Thus by (3.9), (3.54), (5. 88) and (5.89),

(5.90)
(PN Pyr Oy (£0) 10, PN (2, (0, 2'1)) = {PNL[— ———(Zb, i 6_0))

1 b;
* To8n (737”(730) T o i (%))b]“bf : bfbifTA:z(z”)] PN}(Z, (0, 2'H)).

From (3.9), (3.54), (5.5d), (5.14), (5.90) and a; = a;" = 27, one gets

(5.91)
(PN Py Oy (L) 10, PY) (2.0, 21)) = {PNL[-W(Zb o’ r(,)

+ é<27T]T(R ) + b; JT(d ()7€l ) ]T( >J PN}(Z. (O.Z’LD

Set P = Id 2 gen—2n9) — Pe.
Let h;(Z°) (vesp. F'(Z°)) be polynomials in Z° with degree 1 (resp. 2) and a,; € C.

By Theorem 3.1, (3.9) and (3.54).

(5.92) (F(Z2°)Pg) (Z°,0)
1 d‘ F 0.0 aQF 0 b] 1 82F bibj 0
L A I & ) )
(2 02902 OZ‘ ;T dzo()_o ' 2 07007} a,;aj> #(27,0)
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By Theorem 3.1, (3.8), (3.9), (3.19), (3.54), (5.92) and a; = 27, we have
1 O0°F

T 200z)"

(f_lpjgaijbibng) (0,0) = (gﬁlpfg?}hpf) (00) =0,

(P4FPy)(0.0) =

1 Oh;,
(L7 'P2hibiPy) (0.0) = (L ' PpbihiPy) (0.0) = 550
' T Oz;
1 O*F
LIPLFPy) (0,0) = ————
(5.93) ( 2P Pe) (0.0 = =13 e
—1pL —“1pL 1 O*F
: : 21 0202}
3 0°F
—1pl
(L 1P Fbib;Py) (0.0) = 27 9000
1 s0h; Oh; Ohi\2
-1 ( J i
( Pf<zbh) )OO) <8_zj96)z?_<zi:8;§’) )
Finally by (5.78), (5.91), (5.93) and .¢0 = & + £+ | we get (5.82). O
Lemma 5.10. The folloutng identity holds,
(594) (1)1’3 = @1{4.
Proof. — Let Fa € T; X with values in real polynomials on Z+ with even degree,

Fr € N& ., @End(Eq 4,), F3(Z+) a polynomial on Z+ with odd degree, be defined by

. 3
.7:1((%/%,): V- <J(°,\ ,u,”>— - <]T( d%,)7(i,f>+:1-77m,
= L N l b bk N /
(5.95) Fal 29 PN(2.2") = (T )PV ) (2. 2).
1 bbb
- L N V= — (7. " “m7l Uk PN A A
Fol 25PN (2.2') = o= (Tum 22PN ) (2. 2),

Then from (3.54), (5.88) and (5.93),

=

(5.96) (L) 0PN)(2.2) = (YT (3" = 7%) = V1R +2°. 21
n (}'1 v ﬁ;)(ZL))pN(Z. z").
Observe that F;(Z+)* = Fi(Z+) for i = 1. 3. thus from (5.96),
(5.97) (PNOWZ) ) (2. 2) = (L) o PY) (2.2)))

_ ( v 4‘17kk(z<) 20 4 VTR0 + 20 2 ) + (]—'1 + .7:3) (ZL)) PN(Z'. 7).
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For hy(2%), h2(z%) two linear functions on 2%, 2%, by Theorem 3.1, (3.9) and (3.54),
0,0h2 b 1 0hy Ohs
(5.98)  (Pzhi(:*)ha(z°)Py)(0.0) = (Pghlu Vs 9n P2 ) 0.0 = S5 T
From (3.19), (5.77) and (5.96)-(5.98),
(5.99)
i 2 A 2 L pLy2
U, 3(Z+) = [((7:1 + F3)(Z ) ZTM ) + Fol 52 )‘ ]G (Z+)=.

By Theorem 3.1, (3.18), (5.95), F;G*+ (j = 1.3), fg(%’ )G+ are eigenfunctions
of £+ with eigenvalues 47, 87, thus they are orthogonal to each other.
From (5.77). (5.96)-(5.98), we have

(5.100) \111,4(ZL) =G+ (Z+)? /

{(UﬂGL)(Z’H)Q + ((FGH (7))

|Zm(d_o GL\Q(Z/L ]B (,ZU,-)GLI (Z/L)}dzw(,(Z/l).

From (3.18), (5.77), (5.99), (5.100) and the above discussion, we get (5.94). O

Now we need to compute the contribution from —(XZO)’leLOQPN.
Recall that we denote by { ) the C-bilinear form on T'B @g C induced by g7

Lemma 5.11. — The following identity holds,

(5.101) ‘I'”(ZL):{QW <RTX((0’° 0(‘(’) 7 82 >+487T <R[B( W)"’“ 8g9>

1 o o M —1 1 1 I3} 0 13 L 0 2
+agn TG o8| = g (T T Tl o) ) + g5z Tek - o)
=1 , . p
o (VTS (Te 5%0) +4VT (Tler. 52)) + TV (T (5%, 5%0)) Jex
967 520 l 8’0 .l vzj o 0%
2 )
- ;—V o Vv ol l()gh"r Rb”( (()s l())}RZ’¢(ZL»Zl)'
3T B0 B0 2 9%
Proof. — By (3.9), (3.12). (3.54), (5.24) and (5.83),
(5.102)
1 . , , , N
1PN = { S0 B(Z. 50r) + b, B(Z. ) + ,—’(B(Z)T))) - %(3(2,7{3}5))}1&

By (3.55) and (5.102),
(5.103) Py I, PN —PZL{b B(Z, (ﬂ(.) )O(B(Z (;1,)) ():U (B(Z )()))}PN

By (5.46b), and observe that from Theorem 3.1, only the monomials which have
even degree on Z+ and V_., and which have also strictly positive degree on Z° and

J
. . . N+
V.0, have contributions in PN~ Py [} PN,
J
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By Remark 5.2, (3.55) and (5.46b),

(5.104) PV Py (2 (BZ o) = 52 (B(Z. 20)) ) PY = —nd/=1PY P
o { oy (TR R0 TROR, )~ o
5. R

_ Nt TXa(,0 =0y 8 TX é)
__gp <R o2 gl + BTN (L,

RTX6 (RO, JROYRO, 2. o2 > }PN

)Z +RTXC(820a_O)RO7ﬁ>PN-

By (5.23), (5.93) and (5.104),

(5.105)
_ L 8 P
— () PN P (3% (B2, 3)) — 3% (B2 320) ) PY) (00,24, (0, 2%))
1 , , .
= — o (BT (2, g2 gy + BT (2, ) o2y, o ) P (24,27,

Observe that if ) is an odd degree monomial on b;. b;—r, z;-’ ,E?, then
(5.106) (@P") ((0,2%),(0.2"%)) = 0.

By using this observation, (5.4) and (5.46b), we get

(5.107) — ((,%0) LpN . B(Z, 890)PN) (0, 24, (0, Z'))
| {(ffgo)lPNLbj [é <RTXG(RU, JRO)RO, 8—95>

5 .
— 2 {VRY (@i, 32)) 2 + VRLUT (. 20 28, TR )

< RTB(RJ_ JRO R_L + \/_RTB RL R())RJ_ 9 >

50
——\/_<J72L R(’1)><1Rl T(ed, 320))

<T(RL, JRO).T(R*, 52) > +3 <T(RL, JRY), T(R, 8—?ﬁ)>

1
8

%<I (3 JRO). ><J7eL (R%@)}]P“’}((o,Zi),(o,Z’L)).

From (3.6), (3.54), (5.5b) and (5.84), we have

. . ) 2
(5.108a) (T(Gr ). T(e0, 320)) = —2{T (. 5%)
)
(5.108b) Pyl Z}tZt Py, = ﬂp‘gk.
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5.3. COMPUTATION OF THE COEFFICIENT &, 119

By (3.54), (5.5¢), (5.93), (5.107). (5.108a) and (5.108Db),

(5.100) — ((,2”20)_1PNLP3J)J~B( , 520 )PN) ((0, Z4), (0. Z24))
{(fz)flPNi [ <RTX<~ 0 0RO, a]>

_5\{?< Vi (T(er 527)) + Ve (T (?,%))Z?,Je@

+= <\/—1RT”(«,¢, JRO)e,% —2RTB (e}, RO)efr, 520
~a

For G1(Z) (resp. G2(Z)) polynomials on Z with degree 1 (resp. 2) and F €
T} Xo @ Ty Xc, by Theorem 3.1, (3.9), (3.12), (3.19), (3.54) and (3.55), for any k.,

o

kLU,

Vo, PN = —2nz PN,

PN Py (GL(Z)b) + Ga(Z)bbf + Z5by) PN =0,
(5.110) % (RTP(RE e )R ej) Vo o1 Vo oo PY

= —27” (R™P(R*.e; )R, e ) PV,

L0 0 N _ & O \pp 2 o N
F((’i5(‘j)v()}e§’v(),(3_‘]’P = {F(az(lwﬁf)btbj - 477F(57a d—gg)} P
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120 CHAPTER 5. COMPUTING THE COEFFICIENT &

By (5.24) and (5.110), we get

(5.111)
N _ 1 rxe 0 TB /5L i TX6(4(2
1PN = {((GRT (R )R + RTP(RY. )R-+ Vi (AGGZR ).
-3 <A(8%7)RL,A(£G)R*> + (3 VRS (AGGZIRY) ) Jbibs
1 . ;
—4m(GRTYC (RO, 2R + RTP(RE. S R + v%ﬁf%(aﬁ;;m%,%ﬁ

AR [P=dm (5. VIN (AGZRY) > T (BPRE e RY o) LPY.

Observe that as A(e?)e? € N, we have at g,
(5.112) (VEB(A(2)el), ). e) = (A(R®)A(e?)e! LY.

Thus by (3.12), (3.54), (3.55). (5.25). (5.108b), (5.110)-(5.112), a; = a = 2, and
the arguments above (5.104),

2

(5.113a) PN Py, (Ti(R).e)) Vo, PN = —§PN* <RTX (RO, %) d—_5>b PV,

(5.113b) PN Py, L,PN = PNJ'{(<%RTXG<RO )R, r’>

< RTB (e o)t (%> - % <A((.)go)eﬁ,A(()(_)U)( >)b7b]
A e g )}

By (3.6), (5.4), (5.93), (5.113a), (5.113b) and the fact that RTX<(, ) is a (1,1)-
form, we get

(RTX5(R". 5

’ ()*”

(5.114) — ((.,%20)*1P‘”LP3L(12 + <ri.i(7z),el>vo.c,)PN> ((0, 24, (0, Z2-))

1 p . :
_ TXe( O 6] TXc i O o o o
- _{3 <R (W 9z7 >()z“ +R (20 az”)()m’ )z';>

6m J
TXG( O 0\.0 TXg( 0 9.\ 9 9 1 ol
2 (RTYC (g e0)el + R C’(o%mm)a%mﬁgﬂpfi(z ' Z7)
J t J t J

2
37r

1 J

(5115 2(20) PN Py [Ka(R), £5)PY =

7

= TEPNJ (RTXe (R e))R". ef) PV.
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5.3. COMPUTATION OF THE COEFFICIENT &, 121

By (5.13), (5.47), (5.49) and (5.50). as T'(...) € TY ., we get
V=1
27
Thus by (3.9), (5.27), (5.46a), (5.115) and (5.116), we get

1
(5.116) (NIR"5),,(R.€?) = -3 (JRM.T(e).e))) + (JA()R".e]) = 0.
(5117) — PN P, 0PN = PN Py, { — 11 — (I + (T::(R).e1) Vo.o,)
Lo o) ¢
LK (R). ]~ RPH(R. )by — T [T(RO. )|} P,

Note that RTXc (., .) is a (1,1)-form, by (3.54), (5.4), (5.93), (5.103), (5.105),
(5.109), (5.114) and (5.117),

(5.118) — ((zg’)—lPN ‘ Pwogpfv) (0, Z4). (0. Z+Y)

— (27 PV Py (I 4 I+ (Da(R).e1) Vo )PN) (0. 24).(0.271)

9 - . . 1 -
= { R (. o) + 5 (BT (2, eD)el 20 ) + 5| eb)| JPon (2, 2%)

27‘(‘ 4 0z
= (o (Rl ) e ) + o (R ek )
J i @ J J J
3 2 /=1 , . 7 PENP
+ 37 T(() 07 ())0) - 1677' <T(()7‘L t](?]%)aT(aZ(‘)v ();(ll)> + EZT—‘T(F%’ ()—)O)
5v/—1 : ; y A
+ 357 <V;‘31<T< vae)) + Ve, (T(;)%aﬁ%f))«JPf>

az" -

o RE (R 2Py (25,20

(3.54), (5.63), (5.84), (5.108b), (5.110) and the arguments above (5.104),
(5.119) 42PN Py, 0ypPY = 47#131\”*}?%{ -3 (VT¢I go oy JRETRY)
+ = <VR” ( ot ]ln L))7LZU vgi(T( v'«w 1>)ZOZ?7JR_L>

1 rBiml 10 (JJ___l__ 0 12 N
+ 3 (RTP(RERORRY) 122{:<T(7€,(,l),J7€ ) e

= TPV LR T (e T )20+ VY (T, e ))Z”ZO Jet)
. <(va ,T} )(’R” RO)e ](’A ](A > + <RTB RO L> - RO 6’[)” }PV

Let {f;} be an orthonormal frame of TY on X.
As VTY preserves the metric g7%, by (1.4), (1.24),

(51200 (TGRS = Vg (3 ) = 19V log
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122 CHAPTER 5. COMPUTING THE COEFFICIENT &,

Now {Jej} is an orthonormal basis of TY along the fiber Y,, and {e;} = {e?} U
{ex

By (3.54), (5.93), (5.108a), (5.119) and (5.120),
(5.121)  — 472 (L) PN Py Oy PN)((0,21).(0, Z21))
AV

— VY (et 3%0) + VY (Dot 5%)) = 2V (T 520)). et )

- E 6 87“ 0—0 Ck dzfi) 9z
1 2 2
_ ——V )0 \v )Q logh — ﬂ (0(29‘ 8‘;},) - —‘T(ei‘, iﬁ(})’
2
— S (R (e Foer ) P (272,

By (5.74), (5.77), (5.118) and (5.121), we get (5.101). The proof of Lemma 5.11 is
complete. O

5.4. Final computations: the proof of Theorem 0.6
By (3.40), (5.3), (5.5a), (5.6a) and (5.32), as Jej € TY on P, we get at xo,
VI Jep = PTYVIN Jef = PTY IV X e = 0,

(5.122) TB TX )
Vi e =V N0 Te] + Ale]) Te] :——]T( eis€f) = Vil (Juye}).

o~y
By (1.6), (1.24), (5.5¢) and (5.122), as in (5.120), at g,
(5.123) (VL' (T(er,e))), Jeib), = —2(Vi (T(Je). Jer)). Jex )
= —{( v?,Yg?’f, ) ei Jei) = —4VaV,, ologh.

By (1.21) and (5.123), we get

Vo1 < Y (T(e k,OTU)),.Jef> — 4V 5 V 5 logh = Ax, logh,
0 0 J F)—ZY ﬁ?
(5.124) ( ~
\/—1<VT(_§/(T((afj, 5%;)), Jef.> = —Ax, logh.
BH ’

Note that T'(e;, e;) = —[ef . ef], as [e;, e;] = 0. By (1.4), (1.6) and the Jacobi identity

(5.125) V Y (T (e} O H (;) H)) = —[e,f’H, [a?‘H 0 H]] + T( T(G?‘H, (;z(;’H))
= LE(I).H (T((JJ,_’H. (,’(J-)'H)) L 0.H (T((f‘ H 0 H)) + T( 1.H T(e?’H, ﬁ(j)}]))

i J

= VI (T (e €] )) — v LY (T (e, °~H)) — T (e " e2)

4T Tt ) 4 T, T(H, ),

ASTERISQUE 318
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Thus by Theorem 5.1, (5.124) and (5.125),
(5.126) /1 <VTY(T(620 2)). Je,§>
— V1 { <VTY (T(et

029

.

= 2Ax, logh+|T(ek )|+ V1 <T (e Jei ) T 50

By T'(e;,e;) = —[ell, ef], (3.40), (5.6a) and (5.55), we have

T ]
(5.127)  RTN(efl ef)el vTXv”‘ i v VIFel - v[Tef,EH,eH
1
= RTB(ey, e5)e ——T(fk,v”f )+2T( ,VIBe;)
1_+
mgvzgf(:r(ej,ei) +§vg§i<(T(ek,ei))+vT((H el

)
TX SOH H L.H TX, L.H 0H\ 0H _LH
<R ( € )(Jx(,e?) cJzp€s > = <R (e, e e e >

J
By (5.5a), (5.6a), (5.13), (5.32), (5.122) and T'(ej,€?) € TY, at g, (Jy,e:) = Jel!

on P, we get

B 1
VZ(J; (Jap€)) =0, VTB(JEU()J) =3 (T(e9,€]). Jeg ) ey,

(VH o) e ) = (VhEg el o).

We apply now the first equation of (5.127) into the second equation of (5.127), by
and (5.128) and T'(, ) is a (1, 1)-form, we get at xg,

(5.128)

~

using (1.8

1 1
(5:120) TN + (=5 VT (T Tel)) + 5V (Tlek ) Jei )

N

= (R"P (e}, (’O 0 ety + = <V (T (eﬁ,‘,e?)),(i,‘i‘>
= <RTB €k s j > |T((Jl%7€?)|2
Finally, from (3.6), (5.124), (5.126) and (5.129) and T'(, ) is a (1, 1)-form, we get

(5.130) 4 (R™B(ef, ) g et ) = 2v/=1 (VI (T )‘z 520)); Jei )

)

<y

. 2
~ 2y <v Tlers 520)). Jei >+ T (e, 520 |2+2’T (52 0—2,,)]
r)~
2
= 2Ax logh +3|T (e, 320 + 2| T2, 320)|

+2¢—1<T<ek,<fek>, (327, 520) ) -

,.\
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124 CHAPTER 5. COMPUTING THE COEFFICIENT &,

From (5.124)~(5.130),

(5.131)
VT (T(et, 520) + 4V (Tleir, 52)) + TV (T (5. 520)), et )
5;(7 / 82‘} J k J J
1 \ V=1
o (BT ek et ) = Yo (Tt I 7138 )
5 11 2 1 2
= San 5-Axg logh + Toon T(er. 0%») ~ 96 (()(—z)o, 8%)) .
By (3.19), (5.77), (5.82), (5.101) and (5.131),
: 1 TXc( 0 0y 9 _d
(5.132) P11+ Do = e <R e (823'" "F“)az?’ 03‘}>

+—Ax( 10g3h—|——REB(,' )4(,)

1 . _
——167T7'§f’ + S_WAXG log h + —RFU( (wo w(l))

From Lemma 5.10, (5.81) and (5.132), we get (0.25).

Recall that we compute Lverv‘rhing on € (X, LP® F).

From (5.18), (5.19), (5.22), (5.23), comparing to (2.109), we know that in (0.20),
®,(x0) € End(Eg).,, and the term ¥, R9°* will not appear here, and 7 = 27n, thus
we get the remainder part of Theorem 0.6 from Corollary 0.4.

The proof of Theorem 0.6 is complete.

5.5. Coefficient ®,: general case

We use the general assumption at the beginning of this Chapter, but we do not
suppose that J = J in (0.2).
=LP@E,* . =L'QE

Let O be the formal adjoint of the Dolbeault operator 9 on the Dol-
beault complex Q¥*(X, L? @ E) with the scalar product ( ) induced by g7~ bt h¥

as in Section 2.2. Set

(5.133) D, =V2(@" TP 4"
Then

. —LPRE—=LPRE —LP@QE*=LPRE
(5.134) D2 =g PrP e Lt e

preserves the Z-grading of QV* (X, LP @ E).
For p large enough,

(5.135) Ker D), = Ker D2 = H(X. L ® E).

Here D, need not be a spin® Dirac operator on OV (X, LP 2 F).
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5.5. COEFFICIENT ¢,: GENERAL CASE 125

Let PpG (z,2") (z,2" € X) be the smooth kernel of the orthogonal projection PpG
from (¢>°(X,L? @ E).()) onto (Ker DS)G with respect to the Riemannian volume
form dvyx (2") for p large enough.

We explain now how to reduce the study of the asymptotic expansion of PpG (z,2")
to the J = J case.

Let ¢g2X(..,.) := w(.,J.) be the metric on TX induced by w, J. We will use a sub-
script w to indicate the objects corresponding to g2 X | especially X is the scalar cur-
vature of (T'X,gZ~), and Ay, . is the Bochner-Laplace operator on X¢ as in (1.21)
e

w

associated to g

Let dete denote the determinant function on the complex bundle 7h® X, and
I = (=J%)7/2

Let hY := (detc|J|)~'h¥ define a metric on E. Let RE be the curvature associated
to the holomorphic Hermitian connection on (£, h%).

Let () be the Hermitian product on (X, L? @ E) induced by gZ~* h% hE as
in (1.19), then

(5.136) (¢(X.LP @ E).(),) = (€(X.LP 2 E).()). dux. = (detc|d|)dvx.

Observe that H°(X.LP © E) does not depend on g7~ hL h¥.

Let Pf,’:p(.r, ') (x,2" € X) be the smooth kernel of the orthogonal projection Pf’:p
from (¢°(X,LP @ E),{()_) onto H(X, L? @ E)% with respect to dvy ().

By (5.136),
(5.137) P;;(;I?..’L‘/) = (dethl)(m’)Pf’:p(x,17').

We will use the trivialization in Introduction corresponding to gZ¥.

Since gZ¥(.,.) = w(..J.) is a Kihler metric on TX, D, , is a Dirac operator (cf.
Def. 2.1). Thus Theorems 0.1. 0.2 hold for PEP(;E, ).

Let dvp be the volume form on B induced by g7% as in Introduction.

As in (0.11), let < € €>°(T B|x,,,R) be defined by for Z € T, B, x¢ € X¢,
(5.138) dvp(wo, Z) = K(ro, Z)dvx, w(xo)dong ., -
As in (0.17), we introduce .#,(x¢) a section of End(Fg) on X¢g,
(5.139)  A,(x0) = / h? (o, Z)Plf oW, ((20.2), (w0, Z))R(x0. Z)dvN ., -

JZeENG.o
[Z]<e0
Then the analogue of (0.18) is
dim(Ker D,)¢ = / [ Iy (x0)|dvx,,  (x0) + O(p~ ™).
X
Summarizing, we have the following result.

Theorem 5.12. The smooth kernel Plf"'(.rr,;xr’ ) has a full off-diagonal asymptotic ex-
pansion analogous to (0.14) with Qp = (detc|J|)Idg, as p — oc. There exist
®,.(r9) € End(Eg),, polynomials in A,, RLB, RFr. uf RE (resp. h,, R*5;
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126 CHAPTER 5. COMPUTING THE COEFFICIENT &;

resp. ) and their derivatives at xo to order 2r — 1 (resp. 2r, resp. 2r + 1), and
by = Idg, such that (0.25) holds for #,. Moreover

(5.140)

1
1 (x0) = o= P3¢ +68x¢.wl0g (hulxe) — 28x. (og(dete|3))) +4RE (S . w0 ).

Here {w,, ;} is an orthogonal basis of (T 29 X, g7 X<).

Proof. — By (5.136), detc |J|h?dvp = dvp ,h?. Thus by (5.139),

(5.141) Fp(xg) = /Z hi(l‘o, Z)Pf:p o \I'w((azo, Z), (o, Z))nw(xo, Z)dvng w(Z).
ENG.w
|Z|<eon

From the above discussion, only (5.140) reminds to be proved. But

(5.142) REs = RFe — 90log (detc|J]),

Thus

(5.143) 2REC (wl, ;. W, ;) = 2RPG(wd . W0, ) — Ax, o log(detc|J]),

and (5.140) is from (0.7) and (5.141). O
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CHAPTER 6

THE COEFFICIENT P®(0,0)

The main purpose in this Chapter is to compute P(Q)(O7 0) in (0.16). The formula
for P(?)(0,0) in Theorem 0.7 is quite complicate, it involves h, the volume function
of the orbit and the curvature for the principal bundle P — Xg.

This Chapter is organized as follows. In Section 6.1, we compute the contribution
of Wy 1, W, 3, W4 in (5.77) for P)(0,0). In Section 6.2, we compute the contribution
of ¥, 2 in (5.77) for P2)(0.0). In Section 6.3, we prove Theorem 0.7.

In this Chapter. we use the same notations and assumption as in Sections 5.1
and 5.2.

6.1. The terms \Iflyl,\Ifl’;;,lI’L_/;

As in (5.81), we have

(6.1) P@(0,0) = (W11 + W1,2)(0) + (W11 4+ ¥12)°(0) + (15 — ¥y 4)(0).
For k € N, let Hy(z) be the Hermite polynomial,
k/2] k—24
kU (2z)F =
6.2 Hi(z) = -1 ——
(6.2) w(@) ;( T

Here |k/2]| is the integer part of k/2.
By [42, §8.6] (cf. [31, Append. E]), (3.8) and aj* = 27, we have

(6.3) b )re ™20 = (22 (Ver Zit e T Z 1
Especially, for [ fixed, i € N,
(b )+ e ™70 (0) = 0,
(6.4) ()2 ™% 1)(0) = —am,  ((bf) e ™40 7)(0) = 3+ (4m)?,
((b)Se= ™12 7Y (0) = 15 - (—4n)®.
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Recall that when we meet the operation | |2, we will first do this operation, then
take the sum of the indices. Thus |75, |* means >°, ., |7/, ete
By (3.22), (5.95) and (6.4).

1
(6.5) Fol-,0) = =g Tews PY(0.0) = 2%

By (5.99), (6.4) and (6.5), we know

277()/2 2n0/2

S
k

(6.6) v, 3(0) = ‘427—10: 30 ‘+‘-7'—2(0—0 0)|

From (3.17), (3.18), (3.54), (5.100) and a;- = 27,

3
(1) a0 = {4 Zfl("”)2 (6 (2 ))l’fkhnIQ

A 2- 2

+E‘;ﬂk(gg?) — ((3273) ‘ kl(%) }

2nn/2

{Zﬂm imzmm? + 1| Zm@;@f + 1[%(8%?)

Lemma 6.1. — The following identity holds,
19 5 1
(68) \1’1,1(0) = { _— WIIT]] (8"())' 3 7;[7” ﬂkmﬁlvn
o ¢ O
— 57 T () The () — é? ;fl(ek) - —f-l(ck VZou } P (0,0).

Proof. — Recall that Fy € N¢& . © End(Eq +,) was defined in (5.95). Set

(6.9)
1 Y
7, — _\/_( —(blb P )+ T (2 O)bfbﬁ) blTkk(azﬂ)
BL — ) —
To = V=1( Ty ()b _8& + Tu )0y Tyt = b)) 5 T (=i
V-lz Ly l+ Lplyp L+ L bkL’ 7bLbLbTL"
I3 = __—877;'”/(6) bj, + bj bj/)b,,; (.7:1((% )E + Thim 19272 )
Observe that by (o 93), when we evaluate ¥y ; in (5.77), in each monomial, if the
total degree of by, Z¥ is not as same as the total degree of b]L7 =, then the contribution

of this term is 0. Thus by (3.9), (3.54), (5.77), (5.84), (5.87), (5.88), (5.95) and (6.9),

(610) wii(z4) = {(2) PV [T+ L+ T

B b bbbk
(PO )+ T ) (e 2+ T S P 2 2
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By (3.8), (3.19) and (6.4),

(6.11) (b;2f PN)(0.0) = —26;;PN(0,0), (bibb;20 PNV)(0,0) = 878,60, PN (0,0).

From Theorem 3.1, (3.9), (3.54), (6.4), (6.9) and (6.11),

(6.12) ((£2)~'PY T,.PY)(0,0)
= g7 LD P T ) (VT Gl o)+ b0 T () PV 0,0)

bbb bbbt
_ 8 23 Y 7% 0 N
~ 32n ’“"(02"){< S N TS )P H0.0)
1 N
=55 (p)ﬂk(ﬁ)P (0,0).

By (3.9), (3.54), (5.5d), (5.14), (5.84) and (6.9),

L 1 ,
(6.13) (PY' T,PY)(Z.(0,2') = g { PV T ()

[bmd( OB + (b bt — b%b%mﬂ(zo)bi]b;blipf"}(z (0, 2"
28772 T (52 { PN [T (002, b5+ + 2610k + 4m6,50)
= 2T (52 ) (b7 b5 - bLbL)}bklbllPN}(Z, (0, 2'%)
1
= 5e=5 T (320) {0 (6472 T, (2°) + 167 T (=)0 b + Amdp Toa ()b b1
- 2%,(%)@@5,&#13@(2, (0, Z"4Y).

If a0, B € C for j, 5", k1 € {1,...,n0} and By is symmetric on k, [, then by (3.22)
and (6.4),

(6.14)  (cvyy Brib; by bz b= PN (0,0)

=~ { [Z (2008 + Ok:k/311> (b )2 (bf)? + a”ﬁ”(b,l)‘*} P¥10,0)

k+#l

= (4m)? ( > " QawiB + areBu) + 3(1411/311) PY(0,0)
[y

= (471')2(2(.Yk-lﬁkl + (Jfkkﬁ”)PN(O, 0)
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130 CHAPTER 6. THE COEFFICIENT P(?)(0,0)

Thus by Theorem 3.1, (3.8), (6.4), (6.11), (6.13) and (6.14), we get

L 1
(6:15) (L) PN TPY)(0.0) = 55T (5%) [(mwbzrjj,(z%
4 1 1
+§bﬁkj, (z%)b) by + g(sjj,bi:nd( Nbibit — —Tkl( )bLbLb,fbl )PN] (0,0)
1 64 8
— 5 |~ T (PP + T () i)
—2m (2T () + T, (320) Tn (32) ) | PN (0.0)
1
= S5 |61 (20 + 2T, (520 T (520) | P (0,0),
By (3.9), (3.54) and (6.9), we get
V-1 bibL
(616) LN = T, [bLbLﬂ( ) 4 Taby by T,J b bl]
By (5.5e), (5.14), (6.4), (6.14) and (6.16), we get
B I V=1
(6.17) ((28) ' PN 1PN ) (0,0) = =Ty Ty PV(0,0) = 0,

as ijj/ is anti-symmetric on ¢, j and 7;;;/ is symmetric on 1, j.
By Theorem 3.1, (3.9), (3.54) and (6.4),

6.18)  ((Z) 7PV Fi(er)(b) T + bl Fale )%PN)(O 0)
_ gzér_Q(fl(ej)Q(bj)QPN) 0,0) — ——Zfl 12PN (0,0).

Recall that 7., is symmetric on k, I, m.
By Theorem 3.1, (3.9), (3.54), (5.84) and (6.4),

(6.19)
{0 PV (RO + 08 T B 7 Bt g ) P 0,00

19272 41" G2

n bbby, bi-bk ;
_ 0\—1 pN oL L k m ] l N
- {("?2 ) P Fl(('j )(b7 77€lrn 4872 + Zlm 47Tm)P }(0, 0)

b-lbLlLbL
{fl( )(ﬂlnt—gz‘)l——m +7_—7l7nb b )PN}(O’O)
bt bt
- 3272{ (}:TJ” ) 7(r s + Tjj5 (2213( +7}u(bf)2)PN}(O,O)
I#7

1
T 3272

= ———fl( ) Tu P (0,0).
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As Ty is symmetric on k, [, m, we know that

k<l<m k#m
IZ—kkrnﬁlm - Z 7—kk'm7;lm + Z (277ck7nznm77z + ,I;fkyn) + ZTQLan'
k#l#m+#£k k#m

From (6.4) and (6.20), we get

(6:21) Ty Tuambi o} bAbEbEOEPY ) (0,0) = {(36 37 T3, (01)2(bF )2 (b7)?
kE<l<m
+9 Z ﬂkallm(bl\%)‘z(blj—)Q(bfn,)Q +6 Z ﬂ'kﬁmq;mnm(bi)Q(b#)‘l
k#l#£m#Ak k#m
+ 9 Z Zrlnzk%nnzk(bt)Q(byJﬁ)él + 7;721771nz(’)1J1_1)6)PN}(03 O)
k#m

= (—47T)3 (3() Z 7;\37,1 +9 Z %k‘m%l’m
k<l<m k#l#£m+#£k

+ 3 Z (6779k7rL7;rlnw,7n + 97:n'nzk7;nmk) + 157;3nl771)PN(0a O)
k#m
= (—4m)* - 3(2T3,n + 3Tnkem Tum ) PN (0,0).
By (3.9), (3.54) and (5.84), we have also
(6:22) PN Ty B Tt b b, PV = (T Trambi b} b0 b s

+ 367 T, Tt b bbb + 367 - 87T Tt bt bk%) PN,

Thus from Theorem 3.1, (6.14), (6.21) and (6.22),

11 biplpt
O\=1pN—= _~= 7 —L, kYl Ym N
(623) {((,.%2 ) P 1677'7;]] B”] 77#,," ————-1927r2 )P }(070)
L 1 Lplpiptyi,1 9 Lplslel
— 2]_0 . 371-3 {(2471'7:]‘7/711"le bj bj/bk bl bm, + Z,];j*/n,’];ghnbi b] bk‘ bl
+367r7;l7rL77s7l771,b§J'b;~L)PN} (0,0)
_1 “

= 210 . 31 {_8(277@'21”1, + 3Tkkm Tiim) + 36(27;21,” + Trekm Tiim) — 144']2,2lm} pN (0,0)

1 5 N
= 28 .31 (_227;1771 + 3’Tkkm7;lrn) P (O, O)
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132 CHAPTER 6. THE COEFFICIENT P (0,0)

From (6.10), (6.12), (6.15), (6.17), (6.18). (6.19) and (6.23). we get

(6.24)
lI]l 1 {28 |: 76|7;] (8_0 )|2 + QZJ( )71}»( + 37;€kn172lm]
1 . 1 ,
s T T ) — 5= S A ) - Eﬂ(jm}w (0.0).
J
From (6.24) we get (6.8). O

6.2. The term V¥, o
Recall that B(Z,e;") was defined in (5.24).

Lemma 6.2. — The following identity holds,

(6.25) QB(Z, ef) =

(RTB(R,R%)ei, JR?)

N =

— (VR (T(en. i), JRY) Z

1
-+ <§R”3(RL. eiF)RE + VENS (Aled)ef ) ZY, JR0>

1
2
- % (T(R°,€9). Jej ) (T(R+ — R°. Je), JR™)
+ }1 (T(R*,€9). Jej ) (T(R°, JeY), JR™)
+ % (T(R°, JR), T(R*.ei")) — % (T(R.ej"), T(R",JRY))
- é (T(RY,JT(RY, JRY)), Jej-) + % (T(R*,JR*),T(R,ef")) .

Proof. — By (5.34), (5.55) and A(R®)A(R%)ej* € N¢, as A exchanges T X and N,
we get

(6.26)
(JR, (VITXVTX e My my) = —= <]R T(R,VEBeir) + VEX (T (el ei))2)

1 Ty
+ <JR0, SRTP(RE e )RE + RTP(RE R )ef + VI (AleR)ei) 20).

By (1.8), (5.13),

~

(5.54), we have at xo,

(6.27) (JRT,T(R, VR el) ) =13 <Jef,T(RO M) (IR T (R, JeY)) .

»—ll\.’)lp—-t

— S (JRC, VEX(T (e 1)) 2,y = —3<T(R,cf),T(R, JR)).

(]
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By (5.5a), (5.5d), (5.13), (5.54), (5.55) and VEX(T(ef  eH))Z,Z; = 0, we have

<J<VTXVTXe£’ Yoy 2k = 5 (TR VEPex). Jei) 2
= - <T (R.2A(RO) R + A(R0 RY), Jei)
o2 =3 <T(R, e). Jej ) (T(R°, Jef). JR")
— % (T(R", ), T(R", JR")) + % (T(R*.JT(R®, JR)), Jei").

From (3.40), (5.5a). (5.13), (5.54) and the fact that A exchanges T' X and N¢, we
get

(6.29) <Jv;fz‘xf{;?,v£’%f”> Zy = <,Iv£Bek,A<7z“)ef — %T(R,eﬁ)> Z
1
- <JA(R“)RO, —5T(R, e,i)> + 2 (JA(R®)R*, A(R")e; ).
1
=1 (T(R°.JR").T(R.e})) — = <Je T(RY.€9)) (JR-.T(R. Je))) .
From (5.52), (5.53). (5.62), (6.26)-(6.29), we get
_ V=1 1
(6:30) ~—B(Z, ef) = 3 (Jei (R, 9)) (JRH.T(R, Je%))

1 . 1
= 7 RV (T(eiei)) Zi) = 5 (T(R, ), T(R, JR))

1 -

2<m“ SRTB(RY )R + RTP(RE,R)ei + VLS (A(ef)el) Z >

+ - <T(R ). Jei ) (T(R°, Jel). JR*) — <T(R“.¢),T(R0,JR“))
1

+ g (TR JT(R®JR). Jef ) + 5 <T<R“, JR), T(R,ef))
1
=5 (Jel . TR, ) (JRT.T(R®. JeY))
1 :
+3 (T(R*.JR).T(R.ej")) — (ViR (T(er, ef)), JRT) Zy.

From (6.30) we get (6.25). O

Now we need to compute the contribution from ~(,,€/§))_1PNL(92PN. Recall that
I was defined in (5.24).
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134 CHAPTER 6. THE COEFFICIENT P(2)(0,0)

Lemma 6.3. — We have the following identity,

(631)  — () PN PN (0,0) = { - S (RN, 520 o )
7r5vV—1
+5l

—(Jeb VT (T ) + V7Y (Tet 520))

25 Oz] ? Oz
3 TB(, L o 1 a9 2
b (BT ek, o)ek, 2 ) + o= IT (2 520
1 . v—1 . .
- 56—1T(61\La 20> — —1—6—7:<T(€’i’ Jeljc_)7T(3%}a ;;;;))} }PN(()’O)«

Proof. — From Theorem 3.1, (5.15), (5.84) and (6.4),

Ort
327

bLbl

oXe 5PN (0,0).

(6.32) ((.i@")‘leLZklZfPN) (0,0):( P )(0,0):

Set,

6.33)  Ti=— {(zzo)*lpw( (B(Z )_U)) - 5% (B(Z, 2 0)))PN} (0, 0).

At first, if ) is a monomial on b;, b;r, bjL, bj-l+. Z; and the total degree of b;, b;r, Z? or
bjl., bj‘+, Z]L is odd, then by Theorem 3.1,

(6.34) ((ﬂf)‘lPN ' QPN) (0,0) = 0.

By (6.34), only the monomials of B(Z, ¢}) with odd degree on Z° have contributions
for Z,.

If we denote by Bz(e?) the odd degree component on Z° of the difference of
B(Z,e)) and of the sum of the first two and the last terms of B(Z, (’0) in (5.46b).
then by (5.46b) we know that Bz(e?) is a linear function on Z° and ) 25 (Bz(d, ))
and — (BZ( 50 )) are equal.

Mor(\ovor by T(d_” ]()‘3 ) = T(w” J - ‘10) (or by (5.5e), (6.32)), we know the

contribution of the L—tst torm of B(Z, ¢} ) in (o 46b) is zero in Zy.

ASTERISQUE 318



6.2. THE TERM W, ;

135
Thus by Remark 5.2, (5.4), (5.46b) and (6.33),
|1
(6.35) Ty = mv/—1 {( 0)=1pN [682 <RTXG(R° JROYRO, ?—"26>
1 TX 0 0 el
— s - (RTXe(RY, JRO)R? d>
5 , ,
— (IR 2VRUT (Gl 520) + VI (et ) 2 = V1Y (et ) 21
/ ()z (')Z. J

3y
+3V=T(RTP (R 52 R 5 ) = =

’8z
- g(T(R%;Z JT(RY, 2)) + (TR JR), T3, 520))] PV} (0,0).

<.17zi, (5. 1)><JRL T(f ,—_’G)>

"

By (5.93), (5.108a), (6.32) and (6.35), comparing with (5.104) and (5.105), we get

1 TXc(_O 9 o TX a o o a
(6 36) I4 — {—a <R ()((()z? 63?)(929 + R G (f”;” 82(1’)020’ 8~;<)>
5v—1
+ 2771_ <‘]elJc_7 QVZ}Y(T(()(Z(]' ’ ()g(j )) + Vj;z)/() (T((ii, ()7(‘) )) - V’I’;}i) (T(()I%7 ()—2(’7))>
0z; 0z ’
4 3 RTB(()L o )e¢ o + 3 |T( a9 o )|2
o \ 0 ke e ) g e o
1 \/—1

By (3.9), (3.54) and (5.84),

i b
(20z9PN)(Z.0) = (zg)ipf\’)(z,())

Zi Zi- PN =

217T((b]z +28;;)PN)(Z,0),
(6.37)

1
o3 (birbi- + 4mdy ) PN,

(Am)M(ZE) PN = ((bg)* + 247(bp)? + 3 - (4m)?) PN,
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From Theorem 3.1, (3.9), (3.54), (5.93), (6.4), (6.11) and (6.37),

(PN* zE 2PN (0,0) = (blbl PNY(0,0) = i’“’ PN(0.0),

1672
(6:38) (L) PN 6,202 2 PY) (0.0)
1
- 167r2{(127rblbl bj= +5’“’b72?)PN}(0’0) “1on 25za5kzP (0.0).

. 1 b,
ON=1p L > 1 050 pN _ 1,10 % o -\ pnN .
((of2 ) b 2y 2, zZ, P ) (0,0) = ) {bl bz, (_127rz" + —8776”)}) } (0,0)

- 24 2(SLJ(SAIP (0,0),
(2 )_1PN Zi 2207 PN) (0.0)

= {32 —LpNT bzt +5,\1)JJZOPN} 0.0) = —5,,6 P~ (0, 0).

~ 9673

By (5.5¢), (5.107), (5.108a), (6.38) and comparing with (5.109), we get

(6.39) — ((zg’)*le' b B(Z, %)pN) (0,0)
)

1 TXcq o] 2]
={ - (e

From (6.25) and (6.34),

(6.40)  ((-£8) "o B(Z.e;)PN) (0, ()):-—m/T{ L) b
[§ (RTB(RERO)e JRY) = 2 (VRY (T (et e ). TR ) 2
2 (VRN (T (e ) RJ'>Zk <T(R L€9), Jef Y (T(RY, J0), JRY)
+ % (T(R°.JR), D)) - < <T(R°,ef),T(Rl., JRY))

+ % (T(R*.JT(R°, JR")), Jei") +§ (T(R.JR*).T(R".ej")) } P’V} (0,0).
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As T is anti-symmetric, from (3.9), (3.54), we get

b (VI (T (e ). JRYY Z-PY
= (52 (VEU(T(et e} ). TR ) 2 P,
b (TR JRY).T(R*.ef")) PN
— (T(R",Je}") + T(ef, JRY). T(R*, ef)) PV,

(6.41)

From (5.5¢), (5.124), (6.32), (6.38), (6.40), (6.41) and the anti-symmetric property
of T', we get

(6.42)  — = (L))" 'bB(Z, ¢ )PY) (0,0)

— g{ 27(<VTY(7(6A i), e >+ <V€TII(T(€"~%"”L))"]€‘+>)

+%<VF} ( ()C_)liy(l ))+VTY( (()‘Z?,GZL)),J(?[J'>

N | =

9z0 z
~J J

+¥ (T(ej.Jei") +T(ej . Jei). T(e}. (ZL)>} PN(0,0) = 0.

By (5.102), (5.124). (6.33), (6.36), (6.39), (6.42) and since RTX<¢(.,.) is a (1,1)-
form, comparing with (5.105) and (5.109), we get (6.31). O

We compute ¥y 5(0) now.

Lemma 6.4. — The following identity holds,

1 - 1 p 1
(6.43) wl,g(())z{m—r;vw Rb((d‘)(,,(ﬁ(,) + 5= Axg logh

o 271
29 \/ )
- g T g2+ <T ek Tk ). T (5. 520) )
1 R
+E’T(J_)T§ 327 lz 0" }
1~ ~ = 7
+ 2—77;771k(77»17 + Z;k) + = 2 (27k m + 7Tjj’lrl,77\?kl7l)

1 - .
- 5ox <(V,TY 97)/)(@‘%,('_#)']“/\" + (VY gTY Vet et e, Jefﬁ>

_%((p( L ]p ). ] "‘>—2<J0 VTL i >)}PN(O~0)'
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138 CHAPTER 6. THE COEFFICIENT P(?) (0,0)

Proof. — Recall that from (3.6), (5.5a), (5.5b) and (5.13),

|A(e)er [ = 4| A(GZn)ei |? = [T (3% Jef)|? =2IT(@%7£—9)I27
(6.44) (AWl A = 4| ST (G 520

. 1 . P
AN = LT (0, T = [T (5, D)2 = 2|T (2, 520

Dz 0’87

From (5.93), (5.111), (6.32). (6.44) and since RTX<¢ (., .)isa (1, 1)-form (comparing
with (5.113b), (5.114)) (note that in each monomial, if the total degree of b;, 20 is not
as same as the total degree of b, 29, then the contribution of this term is 0 at (0,0)),
we get

(6.45) — ((XQO)APNLIQPN) (0,0) = {:%

1
<RTB( LL’ 820)ek ’ 69“> B :1—8——7'; <RTB(C/»%>€'L)CI&%7 €j>

2r H,ﬁaF}PN(o,m.

TXqG a o el
<R “(o0: 520) 50 azg>

1
87

By (3.6), (3.54), (5.25), (5.83), (5.93), (5.112), (6.32), (6.44) and since RTX< (., .)
is a (1, 1)-form (comparing with (5.113a)), we get

(6.46) — ((,2020)—1PN* (T3 (R), &) vo’e,,pN) (0,0)
= {0 PV (5 (RTXC(RO, D). 20 ),
<RTB RL,e0)e? + A(e )A(G?)Rl,e,f>bk+>PN}(070)

_ i TXa(_ 0 0,0 _98 ___1__ TB, 1 () l N
_{_3W<R (e, o) = 1o (RTP (b et ) + TomlAlDet ) PY(0.0)

2 ‘ : 1 , ,
={< SR (G o) 2 + - R P (en g )er s o > —<T<W a;’;>|2}PN<oﬁo>.
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By £ PN =0, (5.25), (5.93), (6.38), (6.44) and since RTX<¢(.,.) is a (1,1)-form
(comparing with (5.115)), we get

Gar) {29 P [ram) - %(Z (A 7)) 28] PN Y 0.0)
:{pNLLl—1 —-—(Z<Ae, e,,Ri>)] Vo, 0)

2 -
+ % (RTB(RL e )RE o) + %(Z <A(e;’)e9,7zl>) - |A(e9)7zi|2} PN}(U,O)

i

1 ,

= (= <R’X°(%;,e?)(?,(—i)a>——<RTB(6A d)ei. )

™ J J
1 TB, 1 1 ‘ 0 U, 1 oy L2\ pN

— _— (RTB(el e Ale 1 A(9)e! )P 0.0),
pry (R™P (e e ei. e ) — Ty Z +167rf (ei)ei | (0,0)

1 SR , 1 )

= (57 (B Gl %) d*')‘> — 3 (BT Pt e o)

1 . 1
{ZT(OZ[,,M ' +§|T(929,£9)|2—487 (RTB(ejr et e ei>)pN 0,0).

By (3.12), (3.54), (5.83), (5.93). (6.32) and (6.44),

(6.48)
— {(‘,(fé))_IPJVJ-( <A 0 RL>VA((())(U +2<A(()0 0 RJ_>VA((())((I

+—<RIB RE,ei) :f‘7€j>voc,>Pl\r}(U7U)

_ 1671'( 'ZA (?‘ + 2] A9 + = <RFB Loebyed ’()J>) ¥ (0,0)
1 . o 12
( (ZT Oz 0 (?z ' B E‘T(O(:)'l" (")(E)()')!
+247T<R7B( IL(L’ 1>> (0,0),
- {(ffzo)ﬂp‘vi (—-RE5 (R, (37'))v(),e,PN}(O,O) = ZREB(O’)“, 0_“)pN<0 0).
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For Fj;..u € C, from Theorem 3.1, (5.15), (6.4), (6.37) and comparing with (6.14),
we get

(6.49) {(,%20)_1PNL FywmZtztztzt PN} (0.0)

= {( )P [Z( Sikk + iy + Fajjr)(Z5)2(Z50) + Fkk:kk(ZkL)Al]PN}(oaO)
J#k
€ bi I) 2
= 2817r,4{PN [Z(Fjj:kk + Frjkg + Fk‘j:jk)(% %((bL)Z + (by, )2)>

7k
L)4

b
+ Fhkikk <(

o 4 3(b)? )]PN}((,),())

-3 .
= 553 (Fig + Fiejors + Frjiji) P (0, 0).
By (5.46a),
1
(6.50) 52 [(ORR""),,(R,e)] = — = ZUT (R, D) RLY?

i — Z JT(R, e} ), R
By (3.6), (5.14). (6.49) and Ty, (e}) is symmetric on k. [, we get
(651) -7 ((.,2”20)‘1PN CIT(R ), REY PN) (0,0)
= =2 (L) PN Ty ()T (e 2 2 2 2 PV ) (0,0)
= 5= (2T (ed)” + T (e ?)m(«?))PN(o,.m

¥
:2;'3 (27 |2+’ZT;1 2% ‘)PN(O.O).

In the same way, by (5.5¢), (5.14), (6.49), we get
(652) -7 <($;))*1PN CITR: ), RYY PN) (0,0)
J

3~ - ~ r
= 5ay Jise (Tiji + T1.;:) PN (0.0).

By (5.14) and (6.38),
(6.53) — Z( (L) PN (JT(RY. ). RE)? P”) (0.0)

7
T 487

1 7 5 L
JEPY(0.0) = 2= [T(et 522 PY (0,0).

1| Tin (52

()—U
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By (5.46a) and (5.116). the total degree of Z° V, o in the fourth term of
O, in (5.27) is 1, thus the contribution of the fourth term of O, in (5.27)
for —((Z0)~1PN"OLPN)(0,0) is zero. By (5.27), (6.31), (6.45)-(6.48) and (6.50)
(6.53), comparing with (5.118), we get

‘ I 1 b oo
(654) = (L)' PN 0sPY) (0.0) = { = (RT¥ (. o20) 2. 52 )
[ L TY s} TY 1 0
e[ (Teh VI (T 200) + V7Y (Tl 2)))

Oz 70 7

3 TB/ L 9\, L 0 3 8 o \2
+ 167T<R ((k’c‘) “)‘k7a—‘z“;> 397 T(()z“" t)(zn)l

1 . 5 12 V-1 F -
— g Tt 320" = X <T (e,\l.,,l<zﬁ).T(0—Z)(/,, %)”
3 TR o\, L o
* (3277 * 187r>{T( ’0‘“)| <R (ek 0:‘,-’)‘""0??>
o
+ 17 Tl VZTH )|
3 ~ SR
+ ﬂﬁjk(ﬁjk + 77»:]'1’) + %HE(’(OJ_;” 02{})) N(()O)
By (5.63) and (6.34),
(6.55) — 4n? ((xg’)*‘lPN' O;’PN) (0,0) = —4x? {(320)—11)“
[— 3 (VI T (o oy JRE + (VIV g1? Jrt o) IR IR
1,y
+6<V3??)( ( _L ]Ju ‘7 )ZJ_Z()+V ( ( [1)7'110 1))Z(JZU “ Rl>
1 2
+ 3 (RTP(R*RORY.RY) — E Z (T(R" ¢;), JRY)
1
b T 1 1 1 } .
5 Z( (R, er). JREY? + IT(RY, JR)|? (0.0)

Now {e;} = {eV} U {ef}.
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By Theorem 5.1, (5.108a), (5.120), (5.124), (6.38), (6.49), (6.51), (6.52), (6.55) and
comparing with (5.121),
(6.56) — 4#2(($0)_1PNLO"PN)(O,O) = {L [ — §V oV 5 logh
2 2 247 3 3.0 50

J J

) = VI (TG 52)). et )

Ve et

<.

3 ()
\TQ)_Z“’WT l G‘T(Ct’aﬁ‘f <RTB %r‘r)ﬁf,(%j>}
1 /"
- 267 <(V'TY-.~TY)(PL enylen +2(VIV g o ) Jej ,Jckl-,>
1 s N
_ 2—87}— (8|T(()k > 82“ )|2 =+ 4’ Z jj d—o ‘ ij (7:;]-1‘,: + 7-/»]1))

+ 2% (2Tjkm + 7}]~mTkk,m) }PN(U: 0).

By (5.74), (5.77), (6.32), (6.54) and (6.56), comparing with (5.101), we have

(6.57) Wy 9(0) = —((L) ' PN (O + 4720%)PN)(0,0)

5

(T(es, Jey),n") —2(Je; vT* i) PN (0,0)

167
1 v - Ps (‘ .
- {E <RTXG(F)(Z_”7 Bg")()?()y C)EO> + —RF( (83“’ 5%)

! = 2
+6[ Axclogh+ <RTB( )e,\,—q>+96_7r j(%,b%)‘
_—<T€k»' A)T(—m—,6>+ oo~ ’T((k 0_47)’

96 < T} Pl‘ 0“’))+VTY(T(0070—0)) ]GA >}
e 3 3 . 9
TB/ L O L Fars
" Tor o (k’(’z())‘ 7r<R ((‘kw)(z“)‘k (M>+ 167 T(a(zf"o(fy)l

1 ~ o~ 7
—| Z 73] ((7)%(17)’ + ﬂzljk(ﬁjk + 7—1‘/:) 981 (27;},,,, —+ 7_-7']'1717—/«1;7”)

1 . .
2—67—T<(VTY€/T}v ) et ,4).]6;\% + Q(V,Ty g‘FY)((,JJ _(?#),](3]4, J(’]\L>

\/—(<( Jer). 1%y = 2(Jet vT“L))}pN(o,o).

e, .
167 J

By (5.124), (5.131), the term Z[- -] in (6.57) is ¢ (& Ax, logh+ 3= (). 0_(,)|‘2).

By (5.130) and (6.57), we get (6.43).
The proof of Lemma 6.4 is complete.

O
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Lemma 6.5. — The following identity holds,
<(VJ_gJ_)Jel7J€l> 4V J_V Llogh

(6.58) <(VTLYQTLY)J61J-’ Jeé-> =4V, .V 1 logh + 2‘ 27}1(5%‘)
!

s 1~ o~ =
— 2T (ej;, 52 )I = 5 (Tini + Tiji) Tiji-

Proof. — By using the same argument as in (5.120), we get the first equation of
(6.58).
Recall that PT" X, PTY are the projections from TX = THX @TY onto THX . TY .
By (1.3), (1.7), (3.1), (3.40) and (3.41) (cf. also (5.32)),

H
(6.59a) (PT X Je ™)) =0, (Jef ), €TY,
1
(6.59b) (ViSwerM)ay = —5T(ex e,

(VI Moy = (A(Del ) = ST( e,

(6.59¢) (VT L wef )z, = %(T(q,q) ](ZL>( + (T(ex, Jei) Jej‘> Jej‘

From (6.59a), we get

(6.60) VIXPTI X Je = V?;i,HPTHXJell‘H = 0.

By (3.40), (5.14), (5.72) and (6.59b), we get at g,

(6.61) v, PTX JoH = VTLH?,‘PT”X JeH
= —= ]T(()i',(’J_) + - <]T(€’k, i).ei ) e;
:75(’]}@ ﬂ]l)(, + = <]T ek, j >(0

By (5.6a), (6.59b), (6.60) and (6.61), at xq,

V g ,,PT’ JeiH = Jv%’i,ef” = JA(D)e} — —JT( i),
(6.62)  VIX P Je !t = gV e - VT, PT”XJe,L’H
k €k

1 1~ 1
=3 (JT (e e5),ef ) ej = -?Z}Cﬂej -5 (JT(ex.Y). e ) €.
Thus by (6.62), at xq,

(6.63) VI PTY Je ! = PTYVIX, PTY Jei M — 0.
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By (1.3), (1.6), (1.7) and (6.63), at .
(6.64) <(vang)Jel Jek> = e} <g Y PTY jeit, PTYJek>
= 2¢;t <VPTY Je Lel PTY Jeit >
= 2¢p <VPT\, ]eLel Jei > — 2e; <Vpﬂ Jer € 7PT X et >
By (5.5¢e), (5.14), (6.59a), (6.59¢) and (6.61). at x(, we have
(6.65) —2¢} <VP”J(Lel PN gel) = —2 <v,m Jop e VIXPTIX gty
=3 <T(‘f ;). Jei )y (JT(eg.e;).ep) = 5%1(@3‘-’)ﬂ¢:(6?)-
Now by (5.6a),
(6.66) e <VPT, Jei € it Jeit > = —e¢j, <me Je; Jef,ef;>
= et (VEN PTY Jet + VN, PT N gt o)
Observe that for any Y € €=(X.TY). [ Y] € TY. Thus
(6.67) e, PTY Je " e TY.
From (6.59a) and (6.67), at g,
(6.68) VIS prv g H]P”'”)".Jef —0.

And by (5.5d), (6.59a)-(6.59¢), (6.60) and (6.61), as ﬁ;lj, Tr1(€) are constant func-
tions along the fiber Guxg, at xg,

(6.69) — 2ef (VI iPT"X.ch,«A%>

TX X y L.H 1
- <(vl)[) ]€Jv _'_v LH prY ](J_H )P ']e[ 7€k>

]
=—<T<“§(7~1-1, Tij)e; + 5 <]T cio€)) el ) el e )-,J‘le>
= —5(%191.1 — Tij)) Tjkt — %|T((k eDI?.
Finally, by (1.4), (1.7). (1.24) and (6.63), as in (5.120),
(6.70)  — 2¢} <v,m Jer PTY Jell,eki.> = 2e (T(ef. PTY Jeib), PTY Jeib)

<(v” gy ) Jel Jef > =4V, V.. logh.
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Thus by (6.64)-(6.70).

1
(6.71) <(VTLYQT¢Y)J61{ J€i> =4V .V, i logh + 5771(69)71ck(€?)
1 1~ o~ -
= 5IT(eic eNl® = 5Ty = Te) Ty

From (3.6), (5.14) and (6.71), we get (6.58).

6.3. Proof of Theorem 0.7
By (5.14), (5.95),

g 3 )
<E ,/——_T(pl,Je,)+27(07(,,,0‘20)>

Z Fi (PI\ <lu’lu7 MT()>
3v—1/_. ¢ &
5 <7(c,ilcll)T(d?5:f—?)>

97' 7,
+ 1_6 llm £kkm —

(6.72) + ‘ ZT o 0_0

fl(ﬁ;})ﬂ” = TV -1 <T(e[ 7]€l )*, +T((),0ﬂ ()_0

3
)> + leil'm ﬂ:knzn

By (5.14), (6.6), (6.7), (6.8) and (6.72), we have

1 1
(6 73) (\Iﬁ 1+ \IITJ + Wy 3 — @'1‘4)(()) = { - % ;fl(et)Q - gfl((’l{'_),]—/\'”

11 o 2 13 1 1 o |2
- 48—77’7;‘1(%)' - W,Z;flm + ﬂﬂkmﬁl‘m - 8_7;‘ ZIZ—I‘L(();;'Y)‘ }PN((),O)
k
1 ~F ~F 1 ~E 7 o d
= ‘2—F</ zo Fay ) gry + = < V- 1T (e, Jep) + T3 ngr)>
1 . 7V—1 0 47
- 27‘[" ZI(%)— ()a:u) 8—7'(' < (([ 7J(l ), (3;3.(’): %)> - ﬁﬂkvu%lm
J
11 5 |2 13 . 1 PNE
- —IT(f’;f» %) - mﬁfzm - 8_7r| Zﬂ%(é%)‘ }PN((LU)-
’ k
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By (6.43) and (6.58), we get

1 1
(6.74) W1 2(0) + ¥y 2(0)" = { e 4+ REG(a—%., 525) + ~Axg logh

8 250 9%
3 35 2, V! 1 1 o 9
- 87rv LVerlogh + —— 187 |T(€k7@z )"+ R <T(€l s Je )aT(szycﬁj»

2

oy ) - | St
’ k

1

-~ ~ ~ -~ 7
5o [Tijk(m + o) + 20T + T T ] + 57= (2T + Tijm Tk )

v—1 Loy ly ~E 1 oTY ~FE N
—V(Cr(el el ) i) =2 (et VI i >)} PN (0,0).
Thus by (6.1), (6.73) and (6.74), as ﬁjk is anti-symmetric on 4, j, we get

-+

1
(6.75) PP(0,0) = {8_71' No4 = Rb( (02(,, d_o) + AX( log h — —v 4V i logh
+—|T<ek,azo>|2+—1T<dza,; ~2—7;\ZT<0’%9,£3>
=1 N 1 5
+ = <T(6l S 8207 azn)> ’Z ek azo + 5 Zhim
5 T 1 B
- Eﬂ:knz llm 2 Uk‘( 77€Jz + 37;,]k </,Lx0 I()>g'l‘Y

| . p v —1 —E
+ = <;1,E’ é,/—1T(el{Jef) + T(52 5_)—)> 4 <.Je;g,vauL>} PN(0,0).
s 4 9% 4m Gk
By Theorem 5.1, (1.4), (1.24), (5.5¢) and (5.14), as same as in (5.120), we get for
U 6 T’E()XG7
771711:_<T € ]f)l ) J€f>_—2V_L10gh
(6.76) T(ej, Jej) = 2(V,: log h)Jej,
T (U) = —2(T(JU. Jey ). Jeg ) = — (950 Jex , Jex ) = —4V ju log h.
By (6.5), (6.75) and (6.76), we get Theorem 0.7.
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CHAPTER 7

BERGMAN KERNEL AND
GEOMETRIC QUANTIZATION

In this Chapter. we prove Theorems 0.10, 0.12.

Proof of Theorem 0.10. — We use the notations in Section 4.5.

By Lemma 4.6 and Theorem 4.8, we know that p~ Es (UPO(T;)% is a Toeplitz operator
with principal symbol (2‘4“)/2(10)) Idg, in the sense of Definition 4.3, and its kernel
has an expansion analogous to (4.79) and Qg ¢ therein is 221"/};(;170).

We claim that

)

(7.1) Tp:pf_ZL((Tpoa;)%’fl?(o'poo';)%

is a Toeplitz operator with principal symbol 273 Idg,,.

Indeed, when E = C, this is a consequence of [9] on the composition of the Toeplitz
operators.

To get the above claim for general F, we need just keep in mind that the kernel
Tp(xo, z() of T, with respect dvx, (z() has the expansion analogous to (4.79) and
Q0.0 therein is 2% Idg,,.

By Theorem 4.4, our claim then follows from the composition of the expansion of
the kernel of p_T)(O’], o 0;‘;)%. as well as the Taylor expansion of h2 (cf. also [31,
Chap. 7]).

Now we still denote by (.) the L?-scalar product on ¢>°(X¢, LY, ® Eg) induced
by hlc, hFo ¢TXe asin (1.19).

Let {s”} be an orthonormal basis of (H%(X, LP @ E)“, (,)), then

p

v *\— & §?
;] = (0po0,) 20,8

is an orthonormal basis of (H"(X¢, LY. ® E¢), (,)).
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From Definition 4.3, (0.28), (1.19) and (7.1), we get

(72) (2p <0P Z,O'pS >~ — 2p) <<J])Oap)%99§j,(07)00 )%kp]>

—no

1
= (Tpe? o) = 0ij + ﬁ(;)
The proof of Theorem 0.10 is complete. d

In the symplectic case, we use (4.88) to define o, : (ker D,)“ — ker D¢, which
is an isomorphism for p large enough. Now by Theorems 4.4, 4.12, Corollary 4.13
as the above argument, we know (2p)~"0/ 4(7p is an asymptotic isometry is the sense
of (0.29).

Proof of Theorem 0.12. — Set
R = e,
Then IB;I;YG is the orthogonal projection from € (X ¢, LY.© E¢g) onto HY(X, LY@ FEq),
associated to the Hermitian product on > (X, L‘(); © E¢) induced by the metrics
hle, hEG, gT¥¢ asin (1.19).
Let prf(zo, x{,) be the smooth kernel of PAC with respect to dvx,, (x(). Then

(7.3) 131;‘_(5(3707170) = N2 (.’I?O)Pp G (20, 2()-

Let VFS be the Hermitian holomorphic connection on (E¢, hF¢) with curvature
RF<. Then

(7.4) VEe = VP 4 dlog(h?). RPC = RPS + 2001og h.
Thus from (7.4),
(7.5) RE (w9, w@0) = 2R (d,(,, {ﬂ,) = RS (9. 7)) + Ax,, logh.
By (5.19), (7.3) and (7.5), Theorem 0.12 is a direct consequence of [17. Theorem
1.3] (or Theorem 0.6 with G = {1}) for P[;Yi (zg.20). O
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I, 63 Dirac operator, 24
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