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Séminaire BOURBAKI 
59e année, 2006-2007, n° 978, p. 393 à 414 

Juin 2007 

SEMI-CLASSICAL MEASURES AND ENTROPY 
[after Nalini Anantharaman and Stéphane Nonnenmacher] 

by Yves COLIN de VERDIÈRE 

INTRODUCTION 

This report is about récent progress on semi-classical localization of eigenfunctions 
for quantum Systems whose classical limit is hyperbolic (Anosov Systems); the main 
example is the Laplace operator on a compact Riemannian manifold with strictly 
négative curvature whose classical limit is the géodésie flow; the quantizations of 
hyperbolic cat maps, called "quantum cat maps", are other nice examples. Ail this is 
part of the field called "quantum chaos". The new resuit s are: 

— Examples of eigenfunctions for the cat maps with a strong localization ("scar-
ring") effect due to S. de Bièvre, F. Faure and S. Nonnenmacher [17, 16]. 

— Uniform distribution of Hecke eigenfunctions in the case of arithmetic Riemann 
surfaces by E. Lindenstrauss [26]. 

— General lower bounds on the entropy of semi-classical measures due to N. Anan­
tharaman [1] and improved by N. Anantharaman-S. Nonnenmacher [3] and 
N. Anantharaman-H. Koch-S. Nonnenmacher [2]. This lower bound is sharp 
with respect to the cat maps examples. 

We will mainly focus on this last resuit. 

1. THE 2 BASIC EXAMPLES 

1.1. Cat maps 

We start with a matrix A G 5X2(Z) which is assumed to be hyperbolic: the eigen-
values A± of A satisfy 0 < |À_| < 1 < |À+|. The action of A onto E2 defines a 
symplectic action U of A on the torus R2/Z2 by considering action on points mod Z2. 
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394 Y. COLIN de VERDIÈRE 

Such a map is a simple example of a chaotic map. It has been observed since a long 
time that such a map can be quantized: for each integer TV, we consider the Hilbert 
space 7ÏN of dimension N of Schwartz distributions / which are periodic of period one 
and of which Fourier coefficients are periodic of period N: if f(x) = J2kezake2ntkx ̂  
we have, for ail k G Z , cik+N = cik- Using the metaplectic représentation applied to A, 
we get a natural unitary action UN onto the space 7ïN • We are mainly interested in 
the eigenfunctions of UN- The semi-classical parameter is h — 1/N and the classical 
limit corresponds to large values of N. A good référence is [8]. 

1.2. The Laplace operators 

On a smooth compact connected Riemannian manifold (X, g) without boundary, 
we consider the Laplace operator A given in local coordinates by 

A = -\g\-1dig"\g\dj 

with \g\ = det(gij). The Laplace operator A is essentially self-adjoint on L2(X) with 
domain the smooth functions and has a compact résolvent. The spectrum is discrète 
and denoted by 

0 = Ai < A2 < • • • < Xk < • • • 
with an orthonormal basis of eigenfunctions <pk satisfying A(pk = ^k^k- It is useful 
to introduce an effective Planck constant (the semi-classical small parameter) h := 
Xk 2. We will rewrite the eigenfunction équation h2A(p — (p. The semi-classical limit 
h —> 0 corresponds to the high frequency limit for the periodic solutions u(x,t) = 
exp(iy/Xkt)(fk of the wave équation utt + Au = 0. Instead of the wave évolution, we 
will use the Schrôdinger évolution which is given by 

h 

i u1 
h2 
2 

Au 

and introduce the unitarv dynamics defined by the 1-parameter eroup 
Ûl = exp(-z*ftA/2), t e R. 

For the basic définitions, one can read [5]. 

1.3. The géodésie flow 

If (X, g) is a Riemannian manifold and v G TXX a tangent vector at the point 
x G X, we define, for t G M, Gt(x,v) = (y,w) as follows: if j(t) is the géodésie 
which satisfies 7(0) = x, 7(0) = v, we put y := 7(t) and w := 7(t). By using the 
identification of the tangent bundle with the cotangent bundle induced by the metric 
g (which is also the Legendre transform of the Lagrangian ^9ij(x)viVj), we get a flow 
(G*)* on T*X which préserves the unit cotangent bundle denoted by Z. We dénote 
by U* the restriction of (G*)* to Z. The Liouville measure dL on Z is the Riemannian 
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(978) EN TROP Y AND SEMI-CLASSICS 395 

measure normalized as a probability measure. The Liouville measure dL is invariant 
by the géodésie flow. 

2. CLASSICAL CHAOS 

Good textbooks on the classical chaos are [21, 28, 10] 

2.1. Classical Hamiltonian Systems 
We consider a closed phase space Z which is the torus R2/Z2 in the case of the cat 

map and the unit cotangent bundle in the case of the Laplace operator. On Z, we have 
the Liouville measure dL which is normalized as a probability measure. Moreover, 
we have a measure preserving smooth dynamics on Z which is the action of U in the 
cat map example and the géodésie flow in the Riemannian case. We will dénote this 
action by Ul where t belongs to Z or to M. 

2.2. Ergodicity 
DÉFINITION 2.1. — The dynamical System {Z,Ul,dL) is ergodic if every measurable 
set which is invariant by U1 is of measure 0 or 1. 

As a conséquence, we get the celebrated Birkhoff ergodic Theorem: 

THEOREM 2.2. — If(Z^U1, dL) is ergodic, for every f G LX(Z, dL) and almost every 
z G Z: 

lim 
T—>-oo 

1 
T 

T 
0 

f(Utz)dt 
z 

fdL . 

The cat map is ergodic and the géodésie flow of every closed Riemannian manifold 
with < 0 sectional curvature is ergodic too. 

2.3. Mixing 
A much stronger property is the mixing property which says that we have a corré­

lation decay: 

DÉFINITION 2.3. — The dynamical system Ul is mixing if for every /, g G L2(Z, dL) 
with fz fdL — 0, we have 

lim 
t—>oc Z 

f(Ut(z))g(z)dL = 0 . 

Cat maps as well as géodésie flows on manifolds with < 0 curvature are mixing. 
Mixing Systems are ergodic. 
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396 Y. COLIN de VERDIÈRE 

2.4. Liapounov exponent 

Chaotic Systems are often présentée! as (deterministic) dynamical Systems which 
are very sensitive to initial conditions. 

DÉFINITION 2.4. — The global Liapounov exponent A+ of the smooth dynamical Sys­
tem (Z,Ul) is defined as the lower bounds of the A 's for which the differential dUl of 
the dunamics satisfies 

11^(^)11=0(6^) , 

for t —> +oo, uniformly w.r. to z. 

For cat maps given by A, A+ = log |A+|. If X is a Riemannian manifold of sectional 
curvature —1, A+ = 1. 

2.5. K-S entropy 

Kolmogorov and Sinaï start from the work of Shannon in information theory in 
order to introduce an entropy /IKS(M) f°r a dynamical System with an invariant prob­
ability measure /z. The définition of the entropy uses partitions of the phase space 
and how they are refined by the dynamics: 

DÉFINITION 2.5. — IfV = = 1, • • • , N} is a finite measurable partition of Z, 
we define the entropy h{V) := — ^/ / ( f i j ) log/i(îlj). 

In terms of information theory, it is the average information you get by knowing 
in which of the f̂ -'s the point z lies. Let J>yN be the partition whose sets are 

z G Z so that, for l = l,---,N + l, Ul-l(z)eQjl] 

If we define V\\/V2 as the partition whose éléments are the intersections of one élément 
of the partition V\ and one élément of the partition V2, we get from the properties of 
the log function: 

h{V1\JV2)<h{Vi) + h(V2) • 

Let us define V\ = VVn and V2 = U~n(VVm). Using the invariance M of /z by U, 
we get h(V2) = h(VVm). From pv(™+™) = J>i V V2, we get the sub-additivity of the 
séquence N h(VyN). 

We define 
hK*(V) := lim h(VvN)/N , 

and hKS(/jL) = supP hKs[P). 
In the case of an hyperbolic dynamics, the entropy is reached by a partition whose 

ail sets have small enough diameters. 

t1) The invariance of \i is used in a crucial way here and, as we will see, it is one of the problem we 
have to solve when passing to the quantum case. 
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Useful remarks are: 

— In the case of an hyperbolic dynamics, the entropy is reached by a partition 
whose ail sets have small enough diameters. 

— The entropy /IKS is an affine function on the convex set of invariant probability 
measures. 

— The entropy is lower semi-continuous for the weak topology on the set of invari­
ant probability measures. 

A more intuitive définition was provided by the work of Brin and Katok. Let us 
îhoose some point z G Z and some e > 0. We define 

dt(z,z') sur 
0<l<t 

d(Ul{z),U\z')) 

THEOREM 2.6. — If \i is a probability measure on Z which is invariant by Ul, the 
Kolmogorov-Sinaï entropy /IKS(AO ^s given by 

^KS(M) = 
z 

hu(z)du 

with 

h..(z) = limlimsuD 
e–>o t–>8 

logM{z'\dt(z,z')<e})\ 

t 

2.6. Hyperbolicity 

Cat maps as well as géodésie flows on manifolds with < 0 curvature are hyperbolic 
Systems in the sensé of Anosov. They are the smooth dynamical Systems which have 
the strongest chaotic properties. Let us give the définitions for flows: 

DÉFINITION 2.7. — A smooth dynamical System {Z,Ul) generated by the vector 
field V is Anosov if there is a continuous splitting 

TZ = £+ e © RV 

so that, if dV1 is the differential of U1, the splitting is preserved by dUl, and, if dU\ 
(resp. dUt.) is the restriction of dUl to E+ (resp. E-), there exist C > 0 and k > 0 
so that: 

Vt > 0, \\dUi\\ < Ce~kK 

V*<0, \\dUl_\\ <Ceht. 

The bundle E+ (resp. E_) is called the stable (resp. unstablej bundle. 

Remark 2.8. — The stable and the unstable bundles are integrable. Each leaf is 
smooth: a stable leaf consists of points z which have asymptotic trajectories as t —> 
+oo. However, in gênerai, the stable bundle and the unstable bundle are not smooth, 
but only Hôlder continuous. 
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398 Y. COLIN de VERDIÈRE 

We define then the unstable Jacobian Ju(z) as the absolute value of the Jacobian 
déterminant of dll\{z) w.r. to some Riemannian metric on Z. We have the following 
nice resuit which is a combination of results by Ruelle, Pesin [28] and Ledrappier-
Young [25]: 

THEOREM 2.9. — If the dynamical System ( Z , U*) is Anosov and dL is an invariant 
absolutely continuous measure, for every invariant probability measure [i, we have: 

frics (AO < 
z 

\og(Ju(z))d/i . 

Moreover, with equality if and only iffi = dL ^ . 

3. TIME SCALES IN SEMI-CLASSICS 

Good introductions to semi-classical analysis are [13, 14]. 

3.1. Ehrenfest time 

Due to Heisenberg uncertainty principle, the wave packets in quantum mechanics 
cannot be localized into sets of "size" (3) less than h. 

The Ehrenfest time is the time it takes for a cell of size h to be expanded to the 
whole phase space, more precisely: 

DÉFINITION 3.1. — The Ehrenfest time TE is defined by 

TE 
logi 

A+ 

Many estimâtes in semi-classics, which are well known for fixed finite time, can be 
extended uniformly to times which are of the order of a suitable fraction of TE- For 
example Egorov Theorem [9] and the semi-classical trace formula [15]. 

(2) The Jacobian Ju(z) dépends on the choice of a metric on Z, but the previous intégral does not. 
(3) In fact Heisenberg principle would give a diameter of the order Vh, but it will only change the 
Ehrenfest time by a factor 2. 
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3.2. Heisenberg time 

The Heisenberg time is the time needed to résolve the spectrum from the observa­
tion of a wave at some point Xo € X: we have u(xo,t) = Y2 ajexp(—itEj/h) and we 
can get approximate values of the Ej's only by knowing U(XQ, t) on a window of time 
larger than the Heisenberg time. 

This time is of the order of h/ÔE where ÔE is the (mean) spacing of eigenvalues. 
Using Weyl's law, ÔE is of the order hd where d is the dimension of the configuration 
space. 

DÉFINITION 3.2. — The Heisenberg time is 

Th h 

ÔE 

This time is usually of the order oîh ^d ^ which is much larger than the Ehrenfest 
time. 

Asymptotic calculations of the eigenmodes need a knowledge of the quantum dy­
namics until the Heisenberg time. It is possible to do that (at the moment) only 
for integrable Systems for which the Ehrenfest time is +oo. Gutzwiller type trace 
formulae are valid up to Ehrenfest times and are not quantization rules except for 
integrable Systems for which they are équivalent, via the Bohr-Sommerfeld rules, to 
the Poisson summation formula. 

4. THE SCHNIRELMAN ERGODIC THEORE1V 

4.1. Quasi-modes 

DÉFINITION 4.1. — If f(h) is a function satisfying lim _̂̂ o f{h) = 0, a séquence of 
L2 normalized smooth functions is said to be an /—quasi-mode if \\h2 Aip^ — ipk H2 = 

0(hf(h)). 

If ipfç is an /-quasi-mode for the Laplace operator, exp(—it/h)(fk is a good approx­
imation to Ut(fik on a time interval of the order of f(h)~l. 

4.2. Wigner measures and semi-classical measures 

To any function a G (T*Md), we can associate a pseudo-differential operator 
which is given by: 

0pn(a)u(x) : 
1 

'27rfi d RdxRd 
el{x-y^)/ha{x,Ou{y)\dyd£\ 
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We call such a recipe a —> Oph(a) a quantization. Using partitions of unity, we can ge 
a similar quantization on any closed manifold. In particular, if a = a(x) is a functioi 
on X, Op^a) is the multiplication by a. 

For a family of functions fn of L2 norms = 1, we define the Wigner measures a: 
the Schwartz distributions defined on the manifold bv 

T* X 
adWh := <0Pfi(a)/fi| A) . 

They are also called the microlocal lifts of |/^|2|da:| because they project onto such 
measures by the canonical projection from T*X onto X. 

THEOREM 4.2. — If fn is & séquence of o(l) quasi-modes (see Définition 4.1), ail 
weak limits (as Schwartz distributions) of dW^ are probability measures on Z which 
are invariant by the géodésie flow. 

Remark 4-3. — It is possible to choose the quantization so that for any a > 0, Op^(a) 
is a positive symmetric operator. The Wigner measures dWh dépend on the chosen 
quantization, but the asymptotic behavior as h —•» 0 does not. 

DÉFINITION 4.4. — Any such limit measure is called a semi-classical measure. 

Such measures were also introduced as a gênerai tool in the study of partial différ­
ent ial équations by P. Gérard [18] and L. Tartar [35]. 

Remark 4-5. — If \i is the semi-classical measure of a séquence (fk3;, the measures 
\ipkj \ 2\dx\ on X converge to the projection of /i on X. 

4.3. Localized eigenfunctions and scars 

It has been well known since 40 years [4, 31], that it is possible to build /-quasi-
modes, with f(h) = hN, associated to any generic stable closed géodésie 7. The asso-
ciated semi-classical measure is the average on 7. Typical eigenfunctions of integrable 
Systems have semi-classical measures which are Lebesgue measures on Lagrangian 
tori. If V(x) is a double well potential with a local maximum at x = xo, the Dirac 
measure ô(xo,0) (the unstable equilibrium point) is also a semi-classical measure. 
An example, with a Laplace operator, of a séquence of eigenfunctions, for which the 
semi-classical measure is the average on an unstable closed géodésie, is described in 
[12]. 

Séquences of eigenfunctions can be very large at some places and can still have 
a uniform measure as a semi-classical measure: from the point of view of numeri-
cal calculations, it is impossible to see the différence. The numerical observations 
of such abnormally large eigenfunctions started with the work of S.W. McDonald & 
A.N. Kaufman [29, 30] in the case of the stadium billiard. They were called scars 

ASTÉRISQUE 317 

file:///ipkj


(978) ENTROPY AND SEMI-CLASSICS 401 

FIGURE 1. Sears for the stadium billiard: the intensity of some eigen­
functions is larger around some spécifie closed geodesics. 

by E. Heller [20] which gave the following "définition": a quantum eigenstate of a 
classically chaotic System has a scar of a periodic orbit if its density on the classi­
cal invariant manifolds near the periodic orbit differs significantly from the classical 
expected density, A typical problem related to scars is to get upper bounds of the 
L°° norms of the eigenfunctions. Some people called strong scarring the fact that the 
limit of the Wigner measures is not the Liouville measure. 

4.4. The (micro-)local Weyl law 

We consider some average of Wigner measures as follows: 

dm := {2Trh)-d 
h2Xk<l 

dWVk 

The micro-local version of Weyl law, of which the local Weyl law (and hence the usual 
Weyl law) is a conséquence if we integrate a function a = a(x), is: 

THEOREM 4.6. — As h —+ 0+, the measure dm converges weakly to the Liouville 
measure on the unit bail bundle B*X. 

This resuit is an easy conséquence of the functional calculus of pseudo-differential 
operators by looking at asymptotic of traces of $(/i2A). 
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4.5. The Schnirelman Theorem 

The beginning of this story is the celebrated Schnirelman Theorem [34, 36, 11] 
and, for the case of manifold with boundary (a billiard), [19, 37]: 

THEOREM 4.7. — Let X be a closed Riemannian manifold whose géodésie flow is 
ergodic. Let (<pk,\k) be an eigendecomposition of the Laplace operator. There exists 
a density one sub-sequence ) of the eigenvalues séquence^ so that the séquence 
dW(pk weakly converges to the Liouville measure on the unit cotangent bundle. 

Since more than twenty years, the existence of atypical sub-sequences has been con-
sidered as an important problem. In particular, Rudnick and Sarnak [32] formulated 
the so-called Quantum unique ergodicity conjecture (QUE): there are no exceptional 
sub-sequences at least for the case of < 0 curvature. 

4.6. Arithmetic case 

Recently, E. Lindenstrauss [26] proved the QUE for a Hecke eigenbasis of arithmetic 
Riemann surfaces with constant curvature. His proof uses sophisticated results in 
ergodic theory of M. Ratner. 

5. LOCALIZED STATES FOR THE CAT MAP 

The only counter-example to QUE is for linear cat maps (see [7, 17, 16]). The 
basic fact is that the quantum cat map UN is a unitary periodic operator (i.e. there 
exists a non zéro integer T(N) so that Û^N"> = e'lT^N^anId) in sharp contrast with the 
classical cat map which is chaotic! The smallest positive period TQ(N) is the period 
of the permutation induced by the linear map A on (Z/iVZ)2. The period Xb(iV) 
satisfies 

2 TE 
2|logfi| 

A+ 
T0(N) < 3N . 

We will choose a séquence so that the periods are close to 2TE- Let us dénote 
Tk := To(iVfc). For such séquences, we have TH ~ TE-

(4) The sub-sequence Â . of the séquence A& is of density 1 if 

lim 
A—> + oc 

7'|Afc, < A 
k\\k < A 

1 . 
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THEOREM 5.1. — Let cp eWNk be a cohérent state located at the origin of the torus. 
The state 

il. 
TFC/2-l 

l = -Tk/2 
e-ila"ÛlNk<p 

is an eigenstate ofÛNk with eigenvalue e%otN and the associated semi-classical measure 
is ii = |(#(0) H- dL). The entropy of n is log(À+)/2. 

The idea of the proof is as follows: we split the state ip into 2 parts: tp = VIOC+^EQUN 

where Î̂OC = J2\i\<Tk/4 e~lloiNUlNk(p while ÊQUI is the remaining part of that sum. 
The state ip\oc stays localized because ail components involve times less than TE/2, 
the part ÊQUI is equidistributed. 

6. LOWER BOUNDS ON THE ENTROPY: THE A-N THEOREM 

N. Anantharaman and S. Nonnenmacher in [3] and, with H. Koch, in [2] were 
improving a previous resuit of N. Anantharaman [1] as follows: 

THEOREM 6.1. — Let (X,g) be a smooth closed Riemannian manifold of dimension 
d with strictly négative sectional curvature. Let fi be any semi-classical measure (a 
weak limit of a séquence of Wigner measures) for an o(|log h]'1)-quasi-mode of the 
Laplace operator. We have the following lower bound for the entropy of \i: 

hKs(v) > 
z 

log Ju(z)dn 1 
2 v 

fd- DAx 

If the curvature is = — 1, it gives 

^ K S O ) '-. 
d- 1 

2 

If the curvature varies a lot, the lower bound can be négative. In [1], it was proved 
that 

THEOREM 6.2. — If X is a closed Riemannian manifold with strictly négative cur­
vature, then, for any semi-classical measure fi, the entropy /IKS(M) ^s strictly positive. 

In particular, convex combinations of averages on closed geodesics are not semi-
classical measures. 

This cannot be obtained by local considérations around the closed géodésie as 
shown in the paper [12]. 

The analog of Theorem 6.1 for linear cat maps on the 2-torus is the lower bound 

^KSO) '- 1 
2 
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which is a sharp bound w.r. to the example discussed in Section 5. 

It is interesting to compare the previous results to the following one [24]: 

THEOREM 6.3. — Let X be a closed 2D Riemannian manifold with < 0 curvature and 
Ijl a probability measure on the unit cotangent bundle Z invariant by the géodésie flow 
for which ^KS(AO > \ Jz\ogJu(z)dfi; then the projection of fi onto X is absolutely 
continuous w.r. to the Lebesgue measure. 

7. ABOUT THE PROOF OF THE A-N THEORE1V 

We will not give the mil proof, but only the key points avoiding the most technical 
parts for which we refer to the original papers [1, 3, 2]. Moreover, we will assume 
that (fa is an eigenfunction, not only a quasi-mode. 

7.1. Heuristics 

Let us start with a partition V — {Pi,-- - , Pm} of Z and a séquence (p^ of 
eigenfunctions with a semi-classical measure \i on Z. Let pj be the characteris-
tic function of Pj. In order to get an estimate of the exponential decay of Cn := 
f2 {Pjn ° Lf(n~l\ • • • .pj2 o U1.pj1) (and hence a lower bound of the entropy), we re­
place the partition of unity pj by a smooth one and try to evaluate the quantum 
analog Qn of Cn defined by 

Qr, := (^"(n-1)7r,„ Û™-1 o • • • o Û~17T^Û1 OTt,œh\wh) , 

where the 71̂ 's are pseudo-differential operators of symbol pj. Indeed, for fixed n, the 
expression Qn converges to Cn as h —» 0 due to the Egorov Theorem: U~j7ïjUj is a 
pseudo-differential operator of principal symbols pj o JJK N. Anantharaman already 
got a nice decay estimate for Qn in [1]. The problem is that the decay estimâtes 
involve the expected classical exponential decay with an extra négative power of h: 
the exponential decay of Qn starts only for n of the order of | log/Î|, more precisely 
the Ehrenfest time T#. But the Egorov Theorem is only valid for time of the order 
of TE/21 So we need to play with that: flrst, we introduce a quantum entropy and 
then, using the Egorov Theorem for a time TE/2, we get a subadditivity estimate for 
it which allows to recover a nice estimate for a fixed time. We can then take the limit 
h —> 0. The main 3 parts are: 

— The Quantum part: abstract quantum entropy estimâtes (Section 7.2) 
— The Classical part: decay estimâtes for Qn (Sections 7.4, 7.5) 
— The Semi-Classical part: subadditivity (Section 7.6). 
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7.2. Entropie uncertainty principle 

The way to get a lower bound for the entropy from upper estimâtes is by an 
adaptation of the entropie uncertainty principle conjectured by Kraus in [23] and 
proved by Maassen and Uffink [27]. This principle states that, if a unitary matrix 
has "small" entries, then any of its eigenvectors must have a "large" Shannon entropy. 

Let (7Y, ||.||) be a complex Hilbert space. 

DÉFINITION 7.1. — A quantum partition of unity is a family n = (7Tk)k=i,...,N °f 
linear operators tï& : 7ï —> TL which satisfies 

(i) 
IV 

k=l 
7rfc7r/e = la . 

In other words, for ail tb G H, we have 

m2 
N 

k = l 
ll^ll2 where we set ipk = TT/ĉ  for k = 1,..., N . 

DÉFINITION 7.2. — Let us give a family a = (&k)k=i,...,N of positive real numbers; 
if II^H = 1; we define the entropy of with respect to the partition tt by: 

cn>a>T>P( 
k 

IIV>/c||2l0g(||^||2) , 

and the pressure w.r. the séquence a by: 

cn>a>T>P( 

k 
\\iPk\\2\og(atUk\\2) • 

THEOREM 7.3. — Let O be a bounded operator and Û an isometry on 7ï and let us 
give 2 quantum partitions of unity n = (7Tk)i<k<N and r = (tj)i<j<n and2 séquences 
of positive numbers a — (o^), /3 = (/3j). Define A = max |a^| and B — max and 

cn>a>T>P(Û) maxJifc OLjPkWTjÛnkW . 

Then, for any normalized t\) G 7ï satisfying 

|(Id-0)7rfc^|| <e 

the pressures satisfy 

PtAÛ1>) +Pn,a(^) > -2log (c'-air'0(Û) + NABt) 

In particular, if tp is an eigenvector of U, we have 

P*,a {tp) + Pr,p (</>) > -2 log (c*'a(Û) + NABt) 
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Remark 7.4- — The resuit of [27] corresponds to the case where TC is an N-
dimensional Hilbert space, a3-, = /3k = 1, and the operators 7Tj — are the orthogonal 
projectors on an orthonormal basis of H. In this case, Theorem 7.3 reads 

Klp^ + KW) > -21ogc(L>), 

tvhere c(Û) is the supremum of ail matrix éléments of Û in the orthonormal basis 
associated to n. 

The proof of Theorem 7.3 uses quite standard arguments of interpolation close to 
bhe Riesz-Thorin Theorem. It is given in Section 6 of [3]. 

7.3. Pseudo-differential partitions of unity 

DÉFINITION 7.5. — A semi-classical partition of unity on the unit cotangent bundle 
Z = T^X, associated to a finite open covering (^/)2</<M of Z, is a family of pseudo-
differential operators 7Ti, • • • , 7T/, • • • , 7Tm which satisfies 7T/ = Op^(ç/) with 

— qi = 0 near Z and q\ = 1 outside a compact set; 
— for l > 1, qi G C^°(Qi) (in fact, the qi's are symbols, i.e. they have a full 

asymptotic expansion into powers of h), and 

M 

1 = 1 

TTiTTl = Id 

Remark 7.6. — The existence of such partitions of unity can be shown in two steps: 
first do it up to 0(^°°), then find an explicit formula removing the 0(^°°) part: if 

7f*7rz = Id -f T with T = 0(h°°), take ixx = 7rz(Id + T)_1//2. 

We plan to apply Theorem 7.3 to the following objects: 

- H = L2(X); 
— N — M71; 
- O = Xh(h2A - 1) with xn(E) = XiiE/h1'6) and Xi € C£°(R) equal to 1 near 

0; 
— the following partition with TV = Mn éléments: 

DÉFINITION 7.7. — For any séquence e= (ei, • • • , en) G {1, • • • , M}n, we de-
fine: 

• for any operator A, A(l) = U~lAUl ; 
• the pseudo-differential operators 

IIr := 7T€n (n - l)7ren_1 (n - 2) • • • 7rCl ; 

• the coarse-qrained unstable Jacobian 
Jeu n 

1=0 
sup Ju(z) 
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We will use the following quantum partitions of unity of H: 

= {IE I lêl = ni 

and 
Tv" = {Iïr | |ê1 = n} , 

and the weights: 
ae = be = (Jeu) 1/2 

7.4. Statement of the the main estimate 

We need the main estimate: 

THEOREM 7.8. — Let us assume that the pseudo-differential partition of unity 
(fti)i<i<M is given. Let us give some constant C > 0 and some S > 0 small enough. 
There exist a constant c > 0 independent of ô and a constant Cs > 0, so that, for 
any n = |e| < C\ log h\: 

— if X is a closed d—manifold with < 0 sectional curvature, 

Côh d-1 
2 

cô 
1 2 

— for an hyperbolic quantum map on a 2d—torus, the same estimate holds with 
(d-1)/2 replaced by d/2. 

The previous estimâtes will be useful, because H?UnH? = UnH^^ in order to 
apply Theorem 7.3. 

7.5. Proof of the main estimate 

The proof of Theorem 7.8 is highly technical using a lot of careful estimâtes (19 
pages in [3]!) and starts with the following identity: 

|Hdl = lk^7re_1(7- . .^1 | | 

Let us give some ideas which make that we "believe" that such an estimate holds! 

7.5.1. The linear hyperbolic map case. — In order to see the plausibility of such an 
estimate in the case of the linear cat map, I will show a similar one for the quite 
simple case where U is the quantization of the linear map U : T*M —> T*R given by 

U(x,£) = (X^xAe) with A > 1. 

Ûf(x) = \*f(\x) 

Let us assume that Supp(/) C [—1,+1] and Supp(^) C [—1,4-1] where g(Ç) = 
(2ttK)~1/2 fRex.p(—ixt;/h)g(x)dx. We want to get an estimate for 

BU,9) ~ 0nf\g) = \-n/2 i f(x)g(x/Xn)dx 
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in terms of the L2 norms of / and g. Now we have the trivial inequality H^Hl00 < 
Chr1!2 ||^||l2 and we can conclude 

\B(f,g)\ <C\-n'2h-l'2\\f\\L,\\g\\L, 

Note that in this rather trivial case the estimate holds without any restriction on n 
We see also that there is a bad négative power of h which cannot be removed! 

7.5.2. The case of (non-linear) hyperbolic map. — A more géométrie argument, i] 
the case of an hyperbolic map, is as follows: 

— décompose any semi-classical state of the form f\ = 7rei (/) as a superpositioi 
of Lagrangian (WKB) states associated to a smooth Lagrangian foliation c 
ft€l with leaves Lv transversal to the stable and the unstable foliations: 

/ i W 
1 

cn>a>T>P( Rd 
f(rj)eJx)dr] 

where / belongs to a bounded set of C£°(Rd) independently of h; 
- let us consider the part of Lu which satisfies, for k = 1, • • • , n — 1, Uh(L™) C 

f2€fc+1. Then, if is non empty for n —> oo, there exists a point ZQ G Qei so 
that Uh(zo) G £lk-i for ail k and ail such points are on the same stable leaf. As 
n —>• oo, the manifolds Un~1(Lr^) smoothly converge to the intersection of the 
unstable manifold of Un(zo) with ÇïEn, which is smooth; 

- we can then get that the state Il^e^) is close to a Lagrangian state associated 
to an unstable leaf and symbol ~ (Jïï(zo))~^'i 

- a nice estimate for K(rj,r}') = (Il^e^)^^/) is provided from the fact 
that both functions are WKB states associated to transversal Lagrangian 
manifolds. We can use the symbolic calculus which gives the estimâtes 
K(y,y')=O(h-d/2(J?(z0))-1i). 

7.5.3. The case of an Anosov flow. — The case of a Riemannian manifold présents 
new difficulties related to the localization near Z introduced with the operator O: 
in order to get (d — l)/2, we need a kind of semi-classical réduction. We take O — 
P[i_FTI-B5i+/II-B] where Pi is the spectral projector of h2A on the interval / . 

7.6. Large time Egorov Theorem and sub-additivity 

We have seen in Section 2.5 that the sub-additivity of h{VN) is a conséquence of 
the invariance of the measure ji. Here we have only an approximate invariance due 
to the Egorov Theorem. 

The usual Egorov Theorem is: 
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THEOREM 7.9. — Let us give a G C^°(T*X) and t fixed, then, if A — Oph(a) and 
A(t) = C7_t AU(t), the operator A(t) is a pseudo-differential operator of principal 
symbol a o U1. 

In particular 

\\A(t)-Oph(aoUz)\\L2^L2 =0(h) . 

In order to prove the sub-additivity of quantum entropy, we will need the following 
weak (and easy) version of the main resuit of [9]: 

THEOREM 7.10. — Let 7 satisfy 0 < 7 < 1 and a G C™(T*X). We have, for 

\t\ < (1 -7)7E/2 : 

WÛ-tQpJaW1 - Oph(a o U'Mlr^^ = 0(\t\h^^) 

and the: 

COROLLARY 7.11. — For any A = Oph(a), B = Oph(a) with a, b G C^(T*X), we 
have. for \t\ < (1 — /Y)T-F,/2: 

\\\A(t\B]\\=0(TP) . 

COROLLARY 7.12. — For any A = Op*(a) with a G C?°(T*X), we have, for \t\ < 

( 1 - 7 ) Î E : 
ll[A,^m]|i = o(ft^ 

This is because |p,^4(2*)]|| = \\[A(-t), A(t)}\\. 
For large times t, the function a o U1 becomes less and less smooth due to the 

exponential divergence of traiectories. More precisely, we have 

||cP(ao £/')!! = 0(eA+l°"l) . 

It implies that for \t\ < (1 — 7)TE/2, the function a o U1 is in some symbol class EE 
with e < | which is the limit for a niée pseudo-differential calculus. Here b G Se 
means \\d%b\\ = 0(h~e\a\). 

We will apply the results of Section 7.2 to the quantum partition 11̂  with ail e of 
length n. We have the following approximate sub-additivity: 

THEOREM 7.13. — Let us choose a family of normalized Laplace eigenfunctions 
Acpn = h~2(ffr. Let us dénote by pn the pressure of\pn associated to the partition J>Vn 
and the weights a? = (JJ)^ • We have, for any UQ fixed and UQ + m < (1 — ô')TE,: 

Pn0+m < Pn0 + Prn + OnQ (l) . 

The previous theorem will give nice lower bounds of the pressure for fixed no while 
the bound given in Theorem 7.8 is interesting only for n of the size of | log h\ due to 
the négative powers of h. 
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7.7. The scheme of the proof 

The proof of Theorem 6.1 involves the following steps: 

7.7.1. Applying the quantum uncertainty principle. — We apply the quantum uncer-
tainty principle (Theorem 7.3) to the following data: 

— H := L2(X), N = MN with n - (1 - Ô')TE\ 
— the partitions VVn and TVn defined in Section 7.4 and the associated weights 

o^; we will dénote by pn (resp. qn) the corresponding pressures; 
— the séquence of eigenfunctions ipn satisfies h2A(pn — ̂ >n and has the semi-

classical measure /i. 

Using Theorem 7.8 in order to estimate the coefficients c^n^an;TVn,an ̂  we gê  
followiner inequality: 

Pn + qn 
2 

'd - 1 
2 - cl |iogfi|-o5(i; 

It is not possible to use this inequality for fixed n because log h tends to — oo as h —• 0 
For n ~ (1 — Ô')TE, the previous inequality gives: 

(2) 
Pn + Qn 

2n 
d- 1 

2 
cô 

Ox(1) 
l-ô' 

Oô(l) . 

7.7.2. Using sub-additivity. — Before taking the semi-classical limit, we apply The­
orem 7.13, in order to get the inequality (2) modulo (^(n^1) for n = no fixed. 

7.7.3. Taking the semi-classical limit. — We take now the semi-classical limit in 
inequality (2) using Egorov Theorem. Let us define q? = q€l.qe2 o U • • • .<7eno ° (7n°-1 
and dénote by a the semi-classical measure of a séquence if*. We get 

nQl 
|e|=n0 

u(qï) log / i ( < ? F ) 

|e|=n0 
M((7?)log4 d-1 

2 
cô A+ 

l-ôf 
Os 

1 

n0/ 

The second sum in the lefthandside can be simplified using the multiplicative property 
of and the fact that jjl is invariant by U. We get 

n0l 
|e|=n0 

/^(qj) log fi(qj) 
M 

1 = 1 
/^(qj) d-1 

2 
cô 

1-6' 
Os 

i 
n0J 

7.7 A. Smoothing the initial partition. — If the qi's were the characteristic functions of 
a partition of Z, we would have finished the proof. We start with a générâting partition 
whose boundaries are of fi measure 0 and we can apply a smoothing argument. 
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8. EQUIPARTITION BY TIME EVOLUTIONS 

Here, I will describe a very nice related resuit by R. Schubert [33]. Similar 
results for cat maps were already proved in [8]. Let us consider again the case of a d-
dimensional closed Riemannian manifold X with < 0 curvature. Let us define ipo(x) = 
h-d/2 
X((x - x0)/h)ri(x) with X G C~(Rd \ {0}), n G C?(X), n = 1 near x0. 

THEOREM 8.1. — If' <p(t) is the solution of the wave équation <ptt + A(p — 0 on X at 
time t with Cauchy data <z?(0) = <po, ipt(0) = 0, we have 

JT*X 
exp(tA+)) 

JT*X 
adLJ (̂0)111= 0(/îexp(tA+)) H- ot-oo(i; 

This implies that for 0 t < TE, the weak limit of the Wigner measure of <p(t) is the 
Liouville measure times the square of the L2 norm ofcpo. 

The proof of this resuit uses the large time Egorov Theorem (see Section 7.6) and 
the mixing property (+ a little bit of hyperbolicity). 
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