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Séminaire BOURBAKI 
59e année, 2006-2007, n° 967, p. 1 à 39 

Novembre 2006 

THE MANY FACES OF THE SUBSPACE THEOREM 
[after Adamczewski, Bugeaud, Corvaja, Zannier. . . ] 

by Yuri F. BILU* 

And we discovered subspace. It gave us our 
galaxy and it gave us the universe. And we 
saw other advanced life. And we subdued it 
or we crushed it...With subspace, our empire 
would surely know no boundaries. 

(From The Great War computer game 

1. INTRODUCTION 

This is not a typical Bourbaki talk. A generic exposé on this seminar is, normally, 
a report on a recent seminal achievement, usually involving new technique. The prin­
cipal character of this talk is the Subspace Theorem of Wolfgang Schmidt, known for 
almost forty years. All results I am going to talk about rely on this celebrated theo­
rem (more precisely, on the generalization due to Hans Peter Schlickewei). Moreover, 
in all cases it is by far the most significant ingredient of the proof. 

Of course, the last remark is not meant to belittle the work of the authors of the 
results I am going to speak about. Adapting the Subspace Theorem to a concrete 
problem is often a formidable task, requiring great imagination and ingenuity. 

During the last decade the Subspace Theorem found several quite unexpected appli­
cations, mainly in the Diophantine Analysis and in the Transcendence Theory. Among 
the great variety of spectacular results, I have chosen several which are technically 
simpler and which allow one to appreciate how miraculously does the Subspace Theo­
rem emerge in numerous situations, implying beautiful solutions to difficult problems 
hardly anybody hoped to solve so easily. 

The three main topics discussed in this article are: 

— the work of Adamczewski and Bugeaud on complexity of algebraic numbers; 
— the work of Corvaja and Zannier on Diophantine equations with power sums; 
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2 Y. F. BILU 

— the work of Corvaja and Zannier on integral points on curves and surfaces, and 
the subsequent development due to Levin and Autissier. 

In particular, we give a complete proof of the beautiful theorem of Levin and 
Autissier (see Theorem 5.8): an affine surface with 4 (or more) properly intersecting 
ample divisors at infinity cannot have a Zariski dense set of integral points. 

Originally, Schmidt proved his theorem for the needs of two important sub­
jects: norm form equations and exponential Diophantine equations (including the 
polynomial-exponential equations and linear recurrence sequences). These "tradi­
tional" applications of the Subspace Theorem form a vast subject, interesting on 
its own; we do not discuss it here (except for a few motivating remarks in Sec­
tion 4). Neither do we discuss the quantitative aspect of the Subspace Theorem. 
For this, the reader should consult the fundamental work of Evertse and Schlickewei 
(see [33, 34, 56, 52, 57] and the references therein). 

Some of the results stated here admit far-going generalizations, but I do not always 
mention them: the purpose of this talk is to exhibit ideas rather than to survey the 
best known results. 

In Section 2 we introduce the Subspace Theorem. Sections 3, 4 and 5 are totally 
independent and can be read in any order. 

2. THE SUBSPACE THEOREM 

In this section we give a statement of the Subspace Theorem. Before formulating it 
in full generality, we consider several particular cases, to make the general case more 
motivated. 

2.1. The Theorem of Roth 

In 1955, K. F. Roth [51] proved that algebraic numbers cannot be "well approxi­
mated" by rationale. 

THEOREM 2.1 (Roth). — Let α be an irrational algebraic number. Then for any 
ε > 0 the inequality 

α — y 
χ 

1 
\χ\2+ε 

has only hnitely many solutions in non-zero x,y G Ζ. 

This result is, in a sense, best possible, because, by the Dirichlet approximation 
theorem, the inequality la — y/x\ < \x\~2 has infinitely many solutions. 

The theorem of Roth has a glorious history. Already Liouville showed in 1844 the 
inequality \a — y/x\ > c(a)\x\~n, where η is the degree of the algebraic number a, 
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(967) THE MANY FACES OF THE SUBSPACE THEOREM 3 

and used this to give first examples of transcendental numbers. However, Liouville's 
theorem was too weak for serious applications in the Diophantine Analysis. In 1909 
A. Thue [64] made a breakthrough, proving that \a — y/x\ < |χ|_η/2_1-ε has finitely 
many solutions. A series of refinements (the most notable being due to Siegel [62]) 
followed, and Roth made the final (though very important and difficult) step. 

Kurt Mahler, who was a long proponent of p-adic Diophantine approximations, sug­
gested to his student D. Ridout [50] to extend Roth's theorem to the non-archimedean 
domain. To state Ridout's result, we need to introduce some notation. For every prime 
number p, including the "infinite prime" ρ = oo, we let | • \p be the usual p-adic norm 
on Q (so that \p\p = p_1 if ρ < oo and |2006|oo = 2006), somehow extended to the 
algebraic closure Q. For a rational number ξ — y/χ with gca(x,y) — 1 we define its 
height by 

(1) Η (ξ) = max{|x|,M}. 

One immediately verifies that 

(2) H(0 Π 
ρ 

max{l, \ξ\ρ} Π 
ρ 

min{l, \ξ\Ρ} 
-1 

where the products extend to all prime numbers, including the infinite prime. 
Now let S be a finite set of primes, including ρ — oo, and for every ρ G S we fix an 

algebraic number ap. Ridout proved that for any ε > 0 the inequality 

Π 
pes 

mm { i > P - £ l P } 
1 

Η (ξ)2+2 

has finitely many solutions in ξ € Q. 
While the theorem of Roth becomes interesting only when the degree of a is at 

least 3, the theorem of Ridout is quite non-trivial even when the "targets" ap are 
rational. Moreover, one can also allow "infinite" targets, with the standard convention 
oo — ζ = ζ~λ. The following particular case of Ridout's theorem is especially useful: 
given an algebraic number a, a set S of prime numbers, and ε > 0, the inequality 

|α-ξ| <Η(ξ) -1-ε 
has finitely many solutions in 5-integers ξ. To prove this, consider the theorem of 
Ridout with — a and with ap — oo for ρ φ oo, and apply (2). 

One consequence of this result is that the decimal expansion of an algebraic number 
cannot have "too long" blocks of zeros. More precisely, let 0.αι<22 . . . be the decimal 
expansion of an algebraic number, and for every η define £(ri) as the minimal ί > 0 

A rational number is called .S-integer if its denominator is divisible only by the prime numbers 
from S. 
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4 Y. F. BILU 

such that an+£ φ 0; then ί(η) — ο (η) as η —• oc. To show this, apply the above-
stated particular case of the theorem of Ridout with S = {2,5, oc}. More generally, 
the decimal expansion of an algebraic number cannot have "too long" periodic blocks. 

S. Lang extended the theorem of Roth-Ridout to approximation of algebraic num­
bers by the elements of a given number field. We invite the reader to consult Chapter 7 
of his book [41] or Part D of the more recent volume [40] for the statement and the 
proof of Lang's theorem. 

2.2. The Statement of the Subspace Theorem 

Now we have enough motivation to state the Subspace Theorem. We begin with 
the original theorem of Schmidt [58] (see also [59] for a very detailed proof). 

THEOREM 2.2 (W. M. Schmidt). — Let Li,...,Lm he linearly independent linear 
forms in m variables with (real) algebraic coefficients. Then for any ε > 0 the solutions 
Χ = (xi,. . . , Xm) G Zm of the inequality 

|Li(x)---L„,(x)| < | | x | R 

are contained in hnitely many proper linear subspaces of Qm. (Here 
||x|| = max,{|x,|}.) 

Putting rn = 2, Li(x,y) = χα — y and L^ix^y) = x, we recover the theorem of 
Roth. 

The theorem of Schmidt is not sufficient for many applications. One needs a 
non-archimedean generalization of it, analogous to Ridout's generalization of Roth's 
theorem. This result was obtained by Schlickewei [53, 54]. As in the previous section, 
let S be a finite set of prime numbers, including ρ = oc, and pick an extension of every 
p-adic valuation to Q. 

THEOREM 2.3 (H. P. Schlickewei). — For every ρ G S let L1>p,. . . , Lnup be linearly 
independent linear forms in m variables with algebraic coefficients. Then for any 
ε > 0 the solutions Χ G ZM of the inequality 

rn 
Π Π 
pesi=i 

IL.,p(x)Ip < iixir 

are contained in finitely many proper linear subspaces of Qrn. 

It is usually more convenient to allow the variables xi, . . . ,xm to be .S-integers 
rather than integers. To restate Schlickewei's theorem using the ^-integer variables, 
one needs an adequate measure of the "size"' of a vector with 5-integer (or, more 
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(967) THE MANY FACES OF THE SUBSPACE THEOREM 5 

generally, rational) coordinates; evidently, the sup-norm ||x|| cannot serve for this 
purpose. Thus, let χ be a non-zero vector from Q m ; we define its height by 

(3) tf(x) Π 
ρ 

Ι|χ||Ρ, 

where ||x|L = max{|;ciL,. . . , |#mL}, and the product extends to all rational primes, 
including ρ = oo. 

The height function, defined this way, is "projective": if a G Q * then H (ax.) = H(x) 
(this is an immediate consequence of the product formula). When the coordinates 
xi,. . . , xm are coprime integers, we have H(x) = ||x||. 

RKMARK 2.4. — One piece of warning: the height of a rational number ξ, defined in (1) is 
not equal to the height of the uone-dimensional vector" with the coordinate ξ; in fact, the 
height of a non-zero one-dimensional vector is 1, by the product formula, while Η (ξ) is the 
height of the 2-dimensional vector (1,£), according to (2). This abuse of notation is quite 
common and will not lead to any confusion. 

Denote by Ζ s the ring of ̂ -integers. Now Theorem 2.3 can be re-stated as follows. 

THEOREM 2.3'. — In the set-up of Theorem 2.3, the solutions χ G Zg7 of the in­
equality 

771 
Π Π 
p€Si=l 

LUv(x) ,, < HM'* 

are contained m finitely many proper linear subspaces or (ij) . 
It is very easy to deduce Theorem 2.3' from Theorem 2.3; we leave this as an 

exercise for the reader. (One should use the "product formula" y[ \a\p = 1, where 
α G Q * and the product extends to all rational primes, including ρ = oc.) 

Unfortunately, for many applications Theorem 2.3r is insufficient as well: one needs 
to extend it to the case when the variables a?!,..., xm. belong to an arbitrary number 
field. This was also done by Schlickewei [55]. Before stating the theorem, we need to 
make some conventions. Let Κ be a number field of degree d = [K : Q] and let Μ κ 
be the set of all absolute values on K. Recall that the set MK consists of infinitely 
many finite absolute values, corresponding to prime ideals of the field K, and finitely 
many infinite absolute values, corresponding to real embeddings of Κ (real absolute 
values) and pairs of complex conjugate embeddings (complex absolute values). 

We normalize the absolute values on Κ as follows. If ν G Μ κ is a p-adic absolute 
value, then we normalize it so that \p\v = p~dt,//f/, where ρ is the prime number below 
the prime ideal p and dv = [Kv : Q p ] is the local degree. If ν is an infinite absolute 
value, then we normalize it to have |2006|t, = 2006rf,,/rf, where dv is again the local 
degree (that is, dv = 1 if ν is real and dv = 2 if ν is complex). With this normalization 
we have the product formula in the form Π;-£ΜΚ Ι α Ι * ' = >̂ where α G Κ*. 
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6 Y. F. ΒILU 

We also need to define the height of a vector χ G Κ171. By analogy with (3) we 
put H(x) = Πν6Μκ- l l x I U > where ||x||v = max{|xi|v,. . . , |xm|v}. An easy verification 
shows that for χ G Qm this definition agrees with (3). 

Now we are ready to state the Subspace Theorem in its most general form. Let Κ 
be a number field, and let S be a finite set of absolute values of Κ (normalized 
as above), including all the infinite absolute values. We denote by Ο s the ring of 
5-integers ^ of the field K. 

THEOREM 2.5 (H. P. Schlickewei). — For every ν G S let Ζα,υ,. . . , Lm^v be linearly 
independent linear forms in m variables with algebraic coefficients. Then for any 
ε > 0 the solutions χ G Ο™ of the inequality 

m 
Π Π 
vesi=i 

Li,v (x) , < HM'* 

are contained in Bnitely many proper linear subspaces of Krn. 

A complete proof of this theorem can be found, for instance, in Chapter 7 of the 
recent book [9] by Bombieri and Gubler (who use a slightly different definition of 
height). 

3. COMPLEXITY OF ALGEBRAIC NUMBERS 

Quite recently Adamczewski and Bugeaud applied the Subspace Theorem to the 
long-standing problem of complexity of algebraic numbers. In particular, they proved 
transcendence of irrational automatic numbers. This will be the first topic of this 
talk. 

We need some definitions. Let A be a finite set. We call it an alphabet, and its 
elements will be referred to as letters. Let U = (u\, U2, ^3 , . · . ) be an infinite sequence 
of letters from A. For every positive integer n, we let p(n) — pjy(n) be the number of 
distinct n-words occurring as η successive elements of U: 

p{n) = {ukUk + l - - · Uk + n-l I k = 1, 2, 3,. . . 

Obviously, 1 < p(n) < \A\n. The function p(n), defined on the set of natural numbers, 
is called the complexity function, or simply complexity of the sequence U. 

Now let a G (0,1) be a real number. For every integer b > 2 we can write the 6-ary 
digital expansion of a: 

(4) a = uxb 1+u2b~2 + u3b 3 + ..., 

(2) An element α Ε Κ is called 5*-integer if \a\v < 1 for all ν £ S. 
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(967) THE MANY FACES OF THE SUBSPACE THEOREM 7 

ο 

X 
η 

Y ο ζ 1 

b 1 b a 

1 

FIGURE 1. A finite automaton with 3 states 

where ui, u3, · · · G {0,1,. . . , b — 1}. One may ask about the complexity of the 
digital sequence (1^1 ,1^2 ,^3 , · · · ) · For instance, if a is rational, then the expansion 
is (eventually) periodic, and the complexity function is bounded. Adamczewski and 
Bugeaud proved that the complexity function of the 6-ary expansion of an irrational 
algebraic number is strictly non-linear. 

THEOREM 3.1 (Adamczewski, Bugeaud). — Let a G (0,1) be an irrational algebraic 
number, and let b > 2 be an integer. Then the complexity function p(n) of the b-ary 
expansion of α satisfies lim pin) In = 00. 

n—f-oo 
Previously, it was only known that p(n) — η —• +oo, which follows from the results 

of [36]. 
It is widely believed since the work of Borel [10, 11] that irrational algebraic num­

bers are normal', that is, every η-word occurs in the 6-ary expansion with the correct 
frequency b~n. In particular, one should expect that p(n) = bn. This conjecture (let 
alone Borel normality) is far beyond the capabilities of the modern mathematics. 

An important consequence of this theorem is transcendence of irrational automatic 
numbers. Recall that a finite automaton consists of the following elements: 

• the input alphabet, which is usually the set of k > 2 digits {0 ,1 , . . . , k — 1}; 
• the set of states Q, usually a finite set of 2 or more elements, with one element 

(called the initial state) singled out; 
• the transition map Q χ { 0 , 1 , . . . , k — 1} —> Q, which associates to every state a 

new state depending on the current input; 
• the output alphabet A, together with the output map Q —>· A. 

On Figure 1 one can see an example of a finite automaton with inputs 0,1, states 
Χ, Υ, Ζ with X the initial state, and outputs a, b. The transition map is given by the 
arrows, and the output map is X \—> b, Y > b and Ζ π α . 

An input stream for a finite automaton is a word in the input alphabet. Let us 
take the word 00100. We start at the initial state X and the first input 0 moves us to 
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8 Y. F. ΒI LU 

the state Y. The next input 0 moves us further to Z, and the third input 1 tells us 
to stay in Z. With the fourth input 0 we return to X, and with the final fifth input 
we end up in Y. The output of Y is b. Thus, the word 00100 produces output b. 

If we input consecutively the binary expansion of natural numbers 0,1,2,3,... 
written from right to left (that is, 0,1,01,11,001,...), we obtain the sequence of 
outputs 6, a, 6, a, a,.. . called the automatic sequence generated by the automaton 
from Figure 1. 

More generally, given an automaton with Κ inputs 0,l,...,/c — 1, the sequence 
generated by this automaton is the result of consecutive inputs of /c-ary expansions 
of natural numbers written from right to left. 

Probably, the most famous non-periodic automatic sequence is the Thue-Morse 
sequence 0,1,1, 0,1, 0, 0,1,. . ., the n-th term being the parity of the sum of digits of 
the binary expansion of n; it is generated by a finite automaton with 2 inputs, 2 states 
and 2 outputs. 

A real number a G (0,1) is called automatic if the digits of its 6-ary expansion (for 
some b > 2) form an automatic sequence. 

For more information on automatic sequence, see the book of Allouche and Shal-
lit [5]. 

It is well-known (see, for instance, [17] or [5, Section 10.3]) that the complexity of 
an automatic sequence satisfies p(n) = 0(n). Hence Theorem 3.1 implies the following 
remarkable result. 

COROLLARY 3.2. — An irrational automatic number is transcendental. 

Probably, the first one to conjecture this was Cobham [16]. Sometimes this is 
referred to as the problem of Loxton and van der Poorten, who obtained [44, 45] 
several results in favor of this conjecture. 

Adamczewski and Bugeaud deduce Theorem 3.1 from a new transcendence criterion 
they obtained jointly with F. Luca. The proof of this criterion relies on the Subspace 
Theorem. We say that the infinite sequence (un) has long repetitions if there exist 
a real ε > 0, and infinitely many natural Ν such that the word u\U2 • • . UN has two 
disjoint equal subwords of length exceeding εΝ. 

In symbols, the phrase "the word U\U2 · . -u^ has two disjoint equal subwords of 
length V means the following: there exist k and η such that k-\-£<n<N-\-l—£ 
and 

ΊΙ ι. = II II , -ι — II... ι . . . , Uk + i-1 = Un+£-i. 
THEOREM 3.3 (Adamczewski, Bugeaud, Luca). — Assume that for some b > 2 the 
b-ary expansion of α G (0,1) has long repetitions. Then α is either rational or tran­
scendental. 
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(967) THE MANY FACES OF THE SUBSPACE THEOREM 9 

In the introduction we remarked that the decimal expansion of an irrational alge­
braic number cannot have too long blocks of zeros (or too long periodic blocks), which 
is a relatively easy consequence of the theorem of Ridout. Theorem 3.3 is a far-going 
generalization of this observation. 

Theorem 3.1 is a consequence of Theorem 3.3, due to the following simple lemma. 

LEMMA 3.4. — Assume that the complexity function of an infinite sequence (un) 
satisfies liminf p(n)/n < oo. Then (un) has long repetitions. 

η—>·οο 
PROOF. — By the assumption, there exists κ, > 0 such that p(n) < κη for infinitely 
many n. Fix such η and put TV = \(κ-\-1)η]. By the box principle, the word 
U1U2 · . .UN contains two equal subwords of length n. If they are disjoint, then we 
are done, because η > Ν/2(κ + 1). Now assume they are not. This means that 
u\U2 · · .UN contains a subword W = ABC, where the words A, Β and C are non­
empty and where AB and BC are equal words of length n. 

Since the words AB and BC are equal, we have W = A AB, which means that A A 
is a prefix (3) of W. If £(AA) < η (where we denote by £(X) the length of the word X) 
then A A is a prefix of AB, which means that AAA is a prefix of W. Continuing by 
induction, we see that W has a prefix A.^. A, where k = \ n/l(A)\ + 1 (in particular, 

k 
k > 2 and k£(A) > n). This implies that there are two disjoint words equal to A. ^. A. 

[k/2\ 
Since k > 2 we have [k/2\ > k/3, which implies that the length of these words is at 
least n/3. Hence the lemma is proved with ε — + 1). • 

PROOF OF THEOREM 3.3. — We assume that α is algebraic and show that it is 
rational. Write the 6-ary expansion of α as in (4). By the hypothesis, there exist 
ε > 0 and infinitely many natural TV such that the initial TV-segment WN = U\ . . .UN 
has two disjoint subwords of length at least εΝ. Fix one such TV. Then WN has 
a prefix ABCB, where £(B) > εΝ (the words A and C may be empty). Let ξ be 
the rational number with the eventually periodic 6-ary expansion ABCBCBC.... A 
straightforward calculation shows that 

ξ = 
M 

br(bs - 1 ) ' 

with M G Ζ, where τ — £(A) is the length of the non-periodic part, and s = i(BC) is 
the length of the period. Notice that s + r = l(ABC) < TV and that s > £(B) > εΝ. 

(3) A vrefix of the word ih ... Vm. is anv of the words ν λ . .. ν* with s < m. 
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10 Y. F. BILU 

The main point of the proof is that ξ is a good rational approximation for a. 
Indeed, the first i(ABCB) digits of the 6-ary expansions of a and ξ coincide. Since 
t(ABCB) = r + 5 + £(B) > r + s + εΝ, we obtain 

(5) \<x-£\< b~r~s-£N. 

This is not sufficient to get a contradiction with Roth's or Ridout's theorems, but, as 
we shall see, the Subspace Theorem will do the iob. 

Rewrite (5) as 

(6) \br+sa-bra- M\ < b~£N. 

Now it is the time to define the data for the Subspace Theorem: the set S of prime 
numbers and the linear forms LijP. Let S consist of the infinite prime and all the 
prime divisors of b. Further, for p G S we define the linear forms LijP, L2,p and L^}P 
in variables χ = (χι, x2, X3) as follows. For ρ = oo we put 

£l,oo(x) = Xl, ^2,oo(x) = #2, ^3,oc(x) olXi - ax2 - #3. 

And for ρ < oo we put L^p(x) = χι for i — 1,2, 3. 
We put χ = (6r+s, bs,M). Since ξ G (0,1), we have \M\ < 6r+s. Thus, 

(7) ||x|| < br+s < bN. 

Now we have 
3 

Π Π 
pesi=i 

L*,P(X)LP Π 
pes 

br ρ Π 
pes 

Ρ Π 
pes 

M Ρ br^°a -U a - M oo 

By our definition of S and the product formula we have flpeS Hp = 1· Further, since 
M G Ζ, we have |ML < 1 for each ρ ^ 00. It follows that 

(8) 
3 

Π Π W x ) L < W+Sa - bra - Ml < b~eN < ||χ|Γε. 

(We used (6) and (7).) 
We can repeat this argument for infinitely many and find vectors χ = x(iV) 

satisfying (8). Moreover, recall that s(N) > εΝ, whence s(N) —> 00 as —> oo, which 
means that among the vectors χ = x(AT) infinitely many are distinct. Theorem 2.3 
implies that these vectors x(iV) lie on finitely many planes of the space Q3. Hence 
infinitely many of them lie on the same plane; that is, there exist \,μ,ν G Q, not all 0 
such that for infinitelv manv TV we have 

(9) A6rW + M6-(iV)+s(/v) + „M(N) = 0. 
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(967) THE MANY FACES OF THE SUBSPACE THEOREM 11 

Moreover, ν ^ 0 because s(N) —> oo. Dividing (9) by br(N^ (bs(N^ — l ) , we obtain 

λ 
b'W) - 1 

hs{^ ) 
&«w - 1 

- v£(N) = 0. 

Sending TV to infinity, we conclude that μ + VOL = 0, whence a G Q. The theorem is 
proved. • 

As the reader could have noticed, it is quite irrelevant for the proof that the "digits" 
u\, u2,. . . belong to the set {0 ,1 , . . ., 6 — 1}. In fact, any finite set of rational, or even 
algebraic numbers, would do. Also, b is not obliged to be a rational integer; one can 
assume it to be any Pisot or Salem number ^ . Thus, the result of Adamczewski and 
Bugeaud in the most general form sounds as follows: let ui,u2l · · · be a sequence of 
algebraic numbers with finitely many distinct terms, and with long repetitions, and 
let β be a Pisot or Salem number; then either α = u\ß~x -f u2ß~2 + . . . belongs to 
the number field generated by β and by the "digits" u\, u2,.. ., or a is transcendental. 

In [1, 3] Adamczewski and Bugeaud exploit a different notion of complexity, based 
on continued fractions rather than 6-ary expansions, and obtain several results in the 
same spirit. 

The reader may consult Waldschmidt's survey [70] for more information on the 
Diophantine analysis of symbolic sequences. 

Remark in conclusion that Adamczewski and Bugeaud were not the first to apply 
the Subspace Theorem in the transcendence; in [48, 15, 65, 21] it was used to prove 
transcendence of certain infinite sums. The argument of Troi and Zannier [65] is 
quite similar to that of Adamczewski and Bugeaud. See also [30] for a more recent 
application. 

4. DIOPHANTINE EQUATIONS WITH POWER SUMS 

In 1984 M. Laurent [42] applied the Subspace Theorem to study the solutions 
χ = (χι,..., xr) G Zr of a polynomial-exponential equation 

(10) 
TV 

Σ 
ι=1 

Pi(x)a? = 0, 

where Ρλ,...,ΡΝ G Q[x], ai5..., G Qr and ax := a\x · · · axrr. (Using a special­
ization argument, one can replace Q by any field of characteristic 0.) His results 
imply, in particular, that, under certain natural condition, the following holds: with 

(4) A real algebraic number β > 1 is called Pisot number if all its conjugates (except β itself) lie 
inside the unit disk of the complex plane; it is called Salem number if they lie inside or on the 
boundary of the unit disk. 
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finitely many exceptions, every solution of (10) is also a solution of a "strictly shorter" 
equation ΣΪΕΙ ^UX)A? = 0> where J is a proper subset of {1,. . . ,TV}. The above 
mentioned condition is the following: the only χ G Zr satisfying af = a* for all i,j is 
x = (0, . . . ,0). 

While the theorem of Laurent does not (and cannot) imply ultimate finiteness in 
general, it allows one to establish it in many special cases, usually by induction in TV 
and/or elimination. 

However, there are interesting polynomial-exponential equations for which the 
theorem of Laurent does not yield anything non-trivial. One of the simplest is 
an + bn = P(x) in x,n G Ζ, where Ρ is a polynomial. (The equation an = P(x) can 
be analyzed, for instance, by Baker's method.) For this equation r = 2 and the vec­
tors Sii are (α, 1), (6,1) and (1,1). For any such a2 and for any χ = (0,x) we have 
af = (1,1), so that Laurent's condition is not satisfied. 

Corvaja and Zannier studied these and more general equations in the important 
and largely underestimated article [19], as well as in the later article [21]. Let us 
introduce some terminology. Call power sum an expression of the form 

( H ) u(n) = bxar[ Λ h 6ma^, 

where ai,.. . , am (the roots) and 6i,. . ., 6m (the coefficients) are complex numbers. 
Power sums can be viewed as a particular case of linear recurrence sequences 

u{n) = δι(η)αι H h & m ( r a ) < C 
where b\(η),. . . , 6m(n) are polynomials in n\ one may say that power sums are linear 
recurrences with simple roots. 

If the roots and the coefficients belong to a ring A, then we call (11) an A-power 
sum, or a power sum over A. 

Let P(x,y) G Q[x,y] be an irreducible polynomial with deg^ Ρ > 2. Corvaja and 
Zannier studied the equation P(u(n),y) = 0, where u is a power sum. They were 
motivated by a question of Yasumoto about universal Hilbert sets, that is, sets A of 
rational integers with the following property: 

(UHS) 
tor any irreducible (over Q) polynomial P(x, y) G \g[x, y\, the specialized 
polynomial P(a,y) G Q[y] is irreducible for all but finitely many a G A. 

Informally, a universal Hilbert set proves the Hilbert irreducibility theorem for every 
polynomial, and with finitely many exceptions. 

A well-known elementary Galois-theoretic argument (see, for instance, [8, Sec­
tion 2]) implies that A is a universal Hilbert set if and only if it has the following 
formally weaker property: 

for any absolutely irreducible P(x, y) G Q [ x , y] with degy Ρ > 2 the equa-
(UHS7) tion P(a,y) = 0 has only finitely many solutions (a,y) with a G A and 

yeQ. 
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Existence of universal Hilbert sets was shown by Gilmore and Robinson [37], and 
the first explicit example was suggested by Sprindzhuk [63] (see [8, 32, 71, 72] 
for further examples). Yasumoto [71] asked whether {2n + 3n} is a universal Hilbert 
set. Dèbes and Zannier [32] managed to prove, using the theorem of Ridout, that 
{2n + 5n} is a universal Hilbert set, but their argument fails for {2n + 3n}. In [19] 
this problem is solved, and even a much stronger result is obtained: values of any 
power sum bid™ + • • • + 6ma^ with multiplicatively independent αϊ,... , arn form a 
universal Hilbert set (with m > 2 and 6χ,.. . , bm Φ 0). 

Another motivation for [19] was the celebrated problem of Pisot. A power series 
fit) = Ση=ο u{n)tn is called the Hadamard q-th power of the series g(t) = Σ*η=ο v(n)tn 
if u(n) = v(n)q for η — 0,1,. . .; in this case the latter series is called an Hadamard 
q-th root of the former. 

Let f(t) be a rational power series (that is, a power series expansion of a rational 
function in t) with coefficients in Q, and let g be a positive integer. Assume that f(t) 
is the Hadamard q-th power of another series with coefficients in Q. Pisot conjectured 
that in this case f(t) is the Hadamard q-th power of another rational power series 
(with coefficients in Q). 

Since f(t) — ̂ ^L0 u(n)tn is a rational power series if and only if the coeffi­
cients u(n) form a linear recurrence sequence, Pisot's conjecture can be stated as 
follows: assume that {u(n)} is a linear recurrence sequence of rational numbers, 
such that every u(n) is a q-th power in Q; then u(n) = v(n)q for all n, where v(n) is 
another linear recurrence sequence of rational numbers. 

Zannier [73] proved Pisot's conjecture by a method independent of the Subspace 
Theorem. Now, let us ask a more difficult question: assume that 

(12) u(n) is a q-th power in Q for infinitely many n; 

what can one say about the linear recurrence u? Since the work of Corvaja and Zannier 
applies to the particular equation u(n) — yq = 0, it answers this question in the special 
case when u is a power sum (over Q). It turns out that, while u itself is not obliged 
to be a q-th power of another Q-power sum, this is true for the power sum obtained 
from u by letting η run through an arithmetical progression (see Corollary 4.2). 

Below, we give a complete proof of this particular case of the theorem of Corvaja 
and Zannier. We shall also state the general theorem and sketch its proof. 

4.1. Refined Pisot's Conjecture for Power Sums 

The main result of Corvaja and Zannier concerns Q-power sums with positive roots. 
For these power sums (12) implies that u is a q-th power of another power sum, but 
over Q. More precisely, we have the following. 
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14 Y. F. BILU 

THEOREM 4.1 (Corvaja, Zannier). — Let u be a Q-power sum with positive roots, 
and let q be a positive integer. Assume that u(n) is a q-th power for infinitely many 
η G Ζ. Then u(n) = an+rv(n)q for all η G Ζ, where α is a non-zero rational number, r 
is an integer and ν is a Q-power sum. In particular, u is a q-th power of Q-power 
sum. 

COROLLARY 4.2. — Let u be a Q-power sum, and let q be a positive integer. As­
sume that u(n) is a q-th power for infinitely many η G Ζ. Then there exist positive 
integers Q and R and a Q-power sum w such that u(Qn + R) = w{n)q for all η G Ζ. 

In other words, though u itself is not necessarily a q-th. power of a Q-power sum, 
the power sum obtained from u by letting η run through a certain arithmetical pro­
gression is. 

If u has positive roots then the corollary is immediate, with Q = q. In the general 
case one should consider the power sums u(2n) and u(2n + 1), both having positive 
roots, and the corollary follows with Q = 2q. 

PROOF OF THEOREM 4.1. — We may assume that u(ri) is a q-th power for infinitely 
many positive integers n, replacing u(n) by u(—n), if necessary. 

Write u(n) = fro^o + ' ' * + m̂̂ m? where the roots cto,..., am are positive rational 
numbers written in the decreasing order, so that a0 > Q>i > · · * > flm > 0. 

Assume first that απ = 1. Putting; b = bn and c*. = we write 

u(n) = b(l + z(n)) 

with z(n) = cid™ + · · · + cmaj .̂ Since the roots of the power sum Ζ are strictly smaller 
than 1, we have \z(n)\ <C θη for some θ G (0,1). Since u(n) is infinitely often a 
rational q-th. power, we have b > 0 when q is even. We may assume that b > 0 when q 
is odd as well, replacing u by — u, if necessary. Thus, for big positive η we have 
u(n) > 0, which implies that u(n) has exactly one positive q-th root; we denote it by 
y(n). For sufficiently large η we can express y(n) using the binomial power series: 

(13) y(n) 
Λ-1 
Σ 
£=0 

l/q 
£ 

z(n)£ 0(θηΑ), 

where the parameter Λ will be specified later. 
The sum in (13) can be expressed as βχοϋγ + · · · + βμα7μ]ι where α\,...,αμ are 

pairwise distinct. Since ci\,. . ., αμ are multiplicative combinations of α±,. . ., am, they 

(5) In this proof "<C", "̂ >" and O(-) imply constants depending on the power sum u and on the 
Darameter Λ defined below, but independent of n. 
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are positive rational numbers. Thus, we have 

y(n) - b1'« 
μ 

Σ 
k=l 

3kal < θηΑ. 

Now we are in a position to apply the Subspace Theorem. We let S to be a finite set 
of prime numbers, including the infinite prime, such that the numbers αχ,... , am are 
.S-units, and bo,... ,bm are 5-integers. Then u{n) is an .S-integer for every n, and so 
is y(n) = u{n)l/q (as soon as y(n) G Q). Also, the numbers ai,. .. , αμ are .S-units, 
being multiplicative combinations of αχ,.. ., am. 

Next, for every ρ G S we define μ + 1 independent linear forms in μ + 1 variables 
as follows. For ρ = oc we put 

L0,oo(x) =xo -b1'* Σ BuXu £fc,oc(x) = (fc = 1,... ,μ). 

And for a finite ρ £ S we put Lfc(x) = x/e for /c = 0,.. ., μ. 
Now let η be such that i/(n) G Q. Then χ = x(n) = (y(n), a™,..., a™) is a vector 

with /S-integer coordinates. We have 
(14) 

r 
Π Π 
pes fc=o 

LkAx)\P = y(n) - b1/q 
II 

Σ 
fc=l 

ekal Π yiv)\P 
r 

Π Π P « 0AnH(y(n)). 

Indeed, the product formula implies that flpes \ak\P — 1 (because the numbers a& 
are .S-units), which means that the double product is 1. Also, the first product is 
bounded by H(y(n)), because y{n) is an iS-integer. 

An obvious calculation shows that the height of the rational number u(n) is e°(n\ 
Since y(n)q = u(n), we have H(y(n)) = H^^n))1^ = e°^n\ It follows that the right-
hand side of (14) is bounded by ΟηθΑη, where the constant C depends only on the 
power sum u. 

Now specify the parameter Λ to have C6A < 1/2. We obtain 

Π Π 
P£S k=0 

Lfc,P(x) Ρ <C 2~n. 

A routine estimate gives H(x) < e°^. We finally obtain 

(15) 
r 

Π Π 
pes k=o 

\Lk.pM 
ρ 

< Η(χΓε 

with some ε > 0 (depending only on u). 
By the assumption, there exist infinitely many positive integers η such that 

y(n) G Q. Hence (15) has infinitely many solutions in S'-integer vectors χ = x(n). By 
Theorem 2.3', all these solutions belong to finitely many proper subspaces of Q/i+1. 
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16 Y. F. BILU 

It follows that infinitely many vectors x(n) belong to the same proper subspace. In 
other words, there exist rational numbers 70,. . . , 7μ, not all 0, such that 

7o2/(n) = bx'q 7ιαΓ + ··· + 7μαμ 

If 7o = 0 then 71 Η h 7μ«μ would vanish for infinitely many n, which is impos­
sible because cx\,. . . , αμ are pairwise distinct positive numbers. Thus, 70 7̂  0, and we 
may assume that 70 = 1. 

We have shown that for infinitely many η we have y{n) G Q and 

y(n) bi/i 7ιαϊ + ··· + 7 μ Ο 

Since 7ι«? + · · · + 7 Μ < ^ 0 for large n, we have 

b1'* = y(n) 
7lCV̂  H h 7μ«μ G Q. 

Thus, for infinitely many η we have y(n) = v(n), where ν is a Q-power sum with 
positive roots. Since u(n) — v(n)q is a power sum with positive roots as well, it can 
vanish infinitely often only if it vanishes identically. Thus, u(ri) = v{n)q. This proves 
the theorem in the special case clq = 1. 

The general case easily reduces to the special one. For some r there exist infinitely 
many positive integers n, congruent to — r modulo q such that u(n) is a q-th. power 
in Q. Replacing u(n) by a^n~ru(n), we reduce the general case to the case ao = 1, 
already treated. • 

4.2. The General Equation 

And here is the general theorem of Corvaja and Zannier. 

THEOREM 4.3 (Corvaja, Zannier [21]). — Let u be a Q-power sum with posi­
tive roots, let S be a unite set of primes including the infinite prime, and let 
P(x,y) EQ[x,y] be a polynomial non-constant in y. Assume that the equation 
P(u(n),y) = 0 has infinitely many solutions in integers η and S-integers y. Then 
there exists a Q-power sum v with positive real coefficients such that P(u(n), v(n)) — 0 
for all n G Ζ. 

PROOF (a sketch). — As above, we may assume that there are infinitely many solu­
tions with positive n. When η —> +oo we have u(n) —• b G Q U { — 00, +00}. Replacing 
u(n) by —u(n) we may exclude the —00, and upon replacing u(ri) by u(n) — b we may 
assume that in the finite case the limit is 0. Thus, lim u(n) G ί0, +oo). 

η —>• + oc 
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Assume that lim u(n) = 0. Trient u(n) <C θη with some θ G (0,1). By the 
η—»· + οο 

assumption, for infinitely many positive integers η there exists an .S-integer y (ή) such 
that P(u(n),y(n)) = 0. Let 
(16) Yi{x) = 

oo 
Σ ckixk/e i = l,..., cleg Ρ 

be the Puiseux expansion of the algebraic function y at 0, the coefficients Cki being 
algebraic numbers. Since u(n) —» 0, for large η all the series (16) converge at χ = u(n), 
and one of the sums Yi(u(n)) is y{n). We fix i for which Yi(u(n)) = y(n) infinitely 
often, and omit the index i in the sequel. Thus, for infinitely many positive integers η 
we have 

y(n) = 
oo 

Σ 
k = — K, 

cku(n)k'e. 

Truncating the series, we find 

y(n) = 
AE-L 

Σ 
k= — K 

cku(n)k/e + O(0An). 

Now write u(n) = ban(l + z(n)), where a is the biggest root of u. Redefining 0, we 
may assume that z(n) <C 0n for positive n. Replacing each u(n)k^e by 

b1/ean/e 
Λ-1 

Σ 
7=0 

k/e 
J 

z(n)j + 0(θΑη), 

we obtain y(n) = Μ + - + ^ + 0(οΛη), where αχ,... , αμ are positive real al­
gebraic numbers, and β\, . . . , βμ are algebraic numbers. 

Now applying the Subspace Theorem in the same way as we did in the proof oi 
Theorem 4.1, we find that y(n) = v(n) for infinitely many n, where ν is a Q-power 
sum with positive real roots. Then P(u(n), v{ri)) is a Q-power sum with positive reai 
roots, which vanishes at infinitely many n. Hence it vanishes identically. 

The case u(n) —+ +oo is treated similarly, the Puiseux expansions at zero being 
replaced by those at infinity. • 

Among other consequences of this theorem, we have the following result mentioned 
above. 

COROLLARY 4.4 (Corvaja, Zannier). — Let u(n) = bid™ + · · · + frmß™ be a (Q-power 
sum. Assume that m > 2 and that the roots αχ,... , am are multiplicatively indepen­
dent. Then {u(n)} is a universal Hilbert set. 

(6) Here implicit constants may depend on the power sum it, the polynomial P(x, y) and the param­
eter Λ defined below, but not on n. 
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18 Y. F. BILU 

To prove the corollary, we need a purely algebraic lemma. Let Κ be a field of 
characteristic 0 and let Γ be a multiplicatively written torsion-free abelian group. 
Then the group ring K[T] is an integral domain. 

LEMMA 4.5. — In the ring K[T] consider an element u = 6171 + · · · + frm7m? where 
6i,...,6m G if* and 7 1 , . . . , 7m are multiplicatively independent elements of Γ. As­
sume that m > 2. Then the ring K[u] is integrally closed in K[T]. 

Since this the lemma has nothing to do with our main subject, we prove it in the 
addendum to this section. 

PROOF OF COROLLARY 4.4. — We apply the lemma with Κ = C and with Γ con­
sisting of the functions Ζ —» R defined by η ι—» αη with a positive real a. Then C[r] 
is exactly the ring of power sums with complex coefficients and positive real roots. 

Now let u(ri) = b\oJ{ + · · · + &mûm be as in the corollary. We may assume that 
the roots αϊ,. . . , am are positive, considering separately u(2n) and u(2n + 1). By the 
lemma, the ring C[u] is integrally closed in C[r]. 

If {u(n)} is not a universal Hilbert set then there exists a Q-irreducible polynomial 
P(x,y) G Q[x,y] with degy Ρ > 2 such that P(u(n),y) = 0 has infinitely many solu­
tions in n G Ζ and y G Q. We may assume the polynomial Ρ absolutely irreducible (7) 
and monic (8) in y. Since Ρ is monic, there exists a finite set of primes S such that 
for all solutions (n, y) as above, the number y is an 5-integer. Applying Theorem 4.3, 
we find a power sum ν with positive real roots such that P(u(n), v(n)) = 0. Since the 
polynomial P(x,y) is absolutely irreducible, ;y-monic and of /̂-degree at least 2, the 
ring C[?i, is a non-trivial integral extension of G[u]. Hence C[u] is not integrally 
closed in C[r], a contradiction. • 

In fact, Corvaja and Zannier prove more. For instance, using Siegel's theorem (see 
Section 5), they show (9) the following: in the set-up of Theorem 4.3 assume that Ρ is 
Q-irreducible and degy Ρ > 2; then either u — f(v), where v is another power sum and 
f is a polynomial of degree at least 2, or the roots of u generate a cyclic multiplicative 
group (that is u(n) — b\aVxn + · · · + έ̂ α̂ 7"™ with some a G Q* and v\,..., um G Ζ). 
This implies further examples of universal Hilbert power sums, like 2n + 3n + 6n, etc. 

To conclude, we briefly discuss power sums over number fields. Theorems 4.1 
and 4.3 stay true, with almost the same proof, if the assumption the roots of u are 
positive is replaced by the roots of u generate a torsion-free multiplicative abelian 

(7) It is well-known and easy to show that if P(x, y) is Q-irreducible but C-reducible then the equation 
P(x, y) = 0 can have only finitely many solutions in x, y G Q. 
(8) Replace P(x,y) = aq(x)y^ H h ai(x)y + 1 by aq(x)q-1P (x, y/aq(x)). 
(9) In [19] they consider only power sums with integer roots, but the argument extends to rational 
roots without trouble. 

ASTÉRISQUE 317 



(967) THE MANY FACES OF THE SUBSPACE THEOREM 19 

group. One may attempt to extend Iheorems 4.1 and 4.3, with this more general 
assumption, to X-power sums, with an arbitrary number field K. Unfortunately, 
this is done only under a certain technical assumption about our power sum. We 
say that a if-power sum u has an upper (respectively, lower) dominant root if there 
exists a root a of u and an absolute value ν G Μ κ such that \a\v > \a'\v (respectively, 
\o\v < \a'\v) for any other root a'. 

Now let u be a i^-power sum satisfying the following two conditions: the roots 
of u generate a torsion-free multiplicative abelian group, and u has both an upper 
dominant root and a lower dominant root. Then u satisfies both the analogues of 
Theorems 4.1 and 4.3 with Q replaced by Κ (with very similar proofs). 

The existence of a "dominant root" is immediate (10) if the field Κ has at least one 
real embedding, but it may fail already for Κ = Q(i): the power sum 

u(n) = (8 + i)n + (8 - i)n + (2 + i)n + (2 - i)n 

has no upper dominant root. 
Suppressing the "dominant root" assumption looks a difficult problem. It seems 

that at least one cardinal new idea is needed to handle power sums without dominant 
roots. See, however, [201. 

Addendum: Proof of Lemma 4.5 

We may assume that Γ is a division group; moreover, since it is torsion-free, every 
7 G Γ has a well-defined "n-th root" η1/71 for any non-zero integer n. It suffices to prove 
that K[u] is integrally closed in the ring ΑΓ[Δ], for any finitely generated subgroup Δ 
of Γ, containing 7 1 , . . . , 7m. Replacing Δ by a bigger finitely generated subgroup, we 
may assume that it has a free Z-basis consisting of 71//n,.. . , 7m n (with some positive 
integer n) and, perhaps, several more elements of Γ. 

We have reduced the lemma to the following statement. 

PROPOSITION 4.6. — Let R = Κ[χχ,..., xr] be the polynomial ring over a field Κ (of 
characteristic 0) and let n be a positive integer. Consider u = bix™ + · · · + 6mxm G R, 
where 2 < m < r and bi,. .. , 6M G Κ*. Then K[u] is integrally closed in R. 

PROOF. — We may assume that Κ is algebraically closed and, by a linear change of 
variables we may assume that bi = · · · = bm = 1, so that u = x™ + · · · + xm- Let Ο 
be the integral closure of K[u] in R. We want to prove that Ο = K[u}. 

The quotient field of Ο is contained in the purely transcendental field Κ(χχ,.. ., xr). 
By the theorem of Luroth (see Remark 4.7) it itself must be purely transcendental. 
Thus, we may write this quotient field as K(v), and the generator ν may be chosen in 
the ring Ö. We have u = P(v), where, a priori, P(X) is a rational function over K. 

(io) Prodded the roots generate a torsion-free abelian group. 
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Since both u and ν are polynomials in xl5. .. ,xr, the rational function P(X) must 
be a polynomial. 

Specializing x\ = t, x2 = • • • = xr — 0, we obtain tn = P(Q(t)), where Q(t) is a 
polynomial over Κ. It follows that P(X) = aXu for some positive integer ν and some 
a G Κ*. Specializing χι = t, x2 = 1, £3 = · · · = xr = 0 (it is here where we use the 
assumption ra > 2), we conclude that tn + 1 is a z/-th power of yet another polynomial 
in £, which is possible only if 1/ = 1. Thus, u = av, which proves the proposition. • 

REMARK 4.7. — We use here a slightly non-traditional form of Luroth's theorem: if 
Κ C L C Ω is a tower of fields of characteristic 0, with Κ algebraically closed, Ω purely 
transcendental over Κ and L of transcendence degree 1 over K, then L is purely transcen­
dental. In standard textbooks one usually assumes that Ω is of transcendence degree 1 as 
well. 

However, our "more general" version of Luroth's theorem easily follows from the traditional 
one. Indeed, geometrically, the "traditional" version means the following: if an algebraic 
curve C admits a non-constant rational dominant map P1 —> C, then it is isomorphic to IP1. 
And in our version P1 should be replaced by Pr. But if a curve admits a non-constant 
dominant map from a projective space, then it also admits one from the projective line. 

5. INTEGRAL POINTS 

5.1. Integral Points on Curves 

It is well-known that a binary Diophantine equation P(x,y) = 0 of degree 1 or 2 has 
infinitely many solutions in integers unless it has an "obvious" reason (local obstruc­
tion) for having finitely many. Siegel proved [62], relying on the already mentioned 
work of A. Thue [64], that an equation of degree 3 or higher must have finitely many 
solutions, unless it has an "obvious" reason to have infinitely many (reduces to a linear 
or quadratic equation by a variable change). 

Precisely speaking, Siegel proved that an irreducible equation P(x, y) — 0 (where 
P(x,y) G Q[x.y\) has at most finitely many solutions x,y G Ζ if one of the following 
conditions is satisfied: 

— the genus of the plane curve P(x, y) = 0 is at least 1, or 
— this curve has at least 3 points at infinity. 

More generally, let C be an absolutely irreducible projective curve defined over a 
number field Κ and let C be an affine subset of C embedded into the affine space A^. 
Further, let S be a finite set of absolute values of Κ', including all archimedean absolute 
values, and let Os be the ring of S'-integers of Κ. Again, Siegel's theorem (in the 
more general form due to Mahler and Lang) asserts that C has at most finitely many 
points in Au(Os) if g(C) > 1 or if \C \ C\ > 3. 
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Of course, one should mention the celebrated result of Faltings, who proved that 
the set of rational points on a projective curve of genus 2 or higher is finite. We do 
not discuss Faltings' work here. 

The conventional proof of Siegel's theorem, as in [41, Chapter 8] or [40, Sec­
tion D.9], relies on the Theorem of Roth^11) and heavily depends on the existence of 
the Jacobian embedding C c—» J(C), because it exploits high degree étale coverings 
of C. 

Recently Corvaja and Zannier [22] suggested a beautiful new proof, based on the 
Subspace Theorem rather than the Theorem of Roth, and using projective rather 
than Jacobian embeddings. 

Corvaja and Zannier prove the following theorem. 

THEOREM 5.1. — In the above set-up assume that \C \C\ > 3. Then C has at most 
finitely many points in A"(Os)-

Siegel's theorem easily follows from Theorem 5.1. Indeed, if g(C) > 1 then there is 
an étale covering C' —» C of degree 3. It induces the covering of affine curves C —» C, 
and we have \C' \ C'\ > 3. 

By the Chevalley-Weil principle, the set C(K) is covered by C'(K'), where K' is a 
number field. Theorem 5.1 implies that the set of Osf-integral points on C is finite 
(where S' is the extension of S to K'). Hence so is the set of ̂ -integral points on C. 

Existence of the covering C —• C of degree 3 is the only point in the new proof of 
Siegel's theorem which appeals to the Jacobian embedding: as we shall see, the proof 
of Theorem 5.1 is free of Jacobians. 

PROOF OF THEOREM 5.1. — Write C\C = {Qi,. .., Qr}, where, by the assump­
tion, r > 3. Extending the field K, we may assume that each of the points Qi , . . . , Qr 
is defined over Κ. Further, let D = Q\ + · · · + Qr be the "divisor at infinity". 

Let η be a (big) positive integer, to be specified later. By the Riemann-Roch 
theorem, the dimension i = £(nD) of the vector space 

C = C{nD) = {y G K(C) : (y) + nD > 0} 

is given by t = nr — O(l). In particular, for big η we have ί ^ nr. 
Pick a basis y\,.. . , y^ of C. Every yj is integral over the ring K[x] = K[xi,. .., x„], 

where χ\,.. . , Χμ are the coordinate functions on the affine curve C C A^. Multiplying 
each by a suitable non-zero constant, we may assume that they are integral over the 
ring Ο s [x]. It follows that for every .S-integral point Ρ we have yj(P) G Os-

Now assume that there exist infinitely many distinct ^-integral points Ρχ, P2, P3,.... 
Since C is a projective curve, the set C(KV) is compact in the v-adic topology for 

(n) At the time of Siegel Roth's theorem was not available, and Siegel had to use a weaker statement. 
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every v. Hence, replacing the sequence (Pi) by a suitable subsequence, we may 
assume that it converges in t;-adic topology for every υ G 5, and we denote by Qv the 
corresponding limits. Now we partition our set 5 as S = Sf U 5", letting Sf consist 
of υ G S such that Qv G C \ C and S" of those υ for which Qv G C. 

We wish to estimate 1^(^)1^ for i = 1, 2,.. . and t> G 5. For ν G 5/; it is obvious 
that \yj(Pi)\v are bounded independently of k. For υ G .S7 fix a local parameter tv 
at Then \yj(Pi)\v |t^(P2)|t;n, where here and below implicit constants are 
independent of i. Thus, for y = (yi,. . . , yp) we obtain 

\\y{Pi)L « 
\tv{Pi)V, 
i, 

if υ e 5' 
if « e 5". 

Since the numbers yj(Pi) are 5-integers, we obtain 

(17) H(y(Pi)) = Π 
ves 

y(Pi)\\v Π 
ves' 

tv(Pi)\:n. 

All this was just a preparation, and now we are coming to the heart of the Corvaja-
Zannier argument. Fix ν G S'. If ζ G C vanishes at Qv, then \ζ(Ρι)\υ becomes "very 
small" as Pi approaches Qv, which gives rise to v-adically small linear form. Since the 
vector space C contains "many" such z, we have many independent v-adically small 
linear forms. This would allow us to use the Subspace Theorem. 

More specifically, elementary linear algebra shows that our space C has a basis 1̂2̂  
z\, . . . , zg satisfying 

ordQi;Zk > k — η — 1 (k = 1,. . . ,£). 

Of course, not all of the functions zk vanish at Qv (some of them even have a pole 
at Qv) but, "in average", they do. Indeed 

(18) 
t 

Σ 
k = l 

ovdQvzk > Σ 
fe=l 

(k-n-l) 1 
2 

ί(£-2η- 1) =: A. 

Since i ~ rn for large n, and r > 3 by the assumption, we may specify η to have 
A > 0. 

Express every z^ as a linear form in y: 

Zk = Lk.v(y). 

This defines independent linear forms Li,7;,.... LpA, for ν G S'. For υ G S" we simply 
put LkiV(y) = yk. 

We wish to estimate \Lk/u(y(Pl))\v for all k and v. For ν G S" we again have 

\Lk.v(y(Pi))\v = \yk(Pi)\v « 1, 

1̂2̂  It would be more correct to write z\,v, . . . , 2/ (,, but this would make the notation too heavy. 
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and for ν G S' we have 

\LkMPi))l = ΜΡύ\Ώ « MPi)\TQ"Zk · 
Putting this together, we obtain 

t 
Π Π 
vesk=i 

Lk,v(y(m\v Π 
veS' 

ί«(Ή)ΐ£*= l ordQv zk Π 
ves' 

\tv(Pi)\t, 

where A > 0 is defined in (18). Combining this with (17), we obtain 

Π Π 
ves k=i 

Lk,v(y(Pi))\v H(y(Pi))-£ 

with ε = A/n. 
Now apply the Subspace Theorem in the form of Theorem 2.5. We obtain that 

there exist finitely many non-zero functions u\,..., us from C such that every Pi is a 
zero of one of Uj. It follows that among the points Pi only finitely many are distinct, 
which contradicts the original assumption about the existence of an infinite sequence 
of distinct .S-integral points. The theorem is proved. • 

Since this argument does not use Jacobians, one may expect to extend to higher 
dimensions. This is discussed in Subsection 5.2. Another useful aspect of the new 
proof of Siegel's theorem is that it allows, in many cases, to obtain good quantitative 
bounds for the number of integral points. This direction is exploited, in particular, 
in [24]. 

5.2. Integral Points on Surfaces 

It is widely believed that an affine (respectively, projective) variety V of general 
type cannot have many integral (respectively, rational) points. Of course, one cannot 
have here ultimate finiteness, but it is expected that integral (or rational) points are 
not Zariski dense (13) on V. Faltings [35] did the case when V is a subvariety of an 
abelian variety, and Vojta extended his result to subvarieties of semiabelian varieties, 
but very little is known for general V. 

Since the argument of Corvaja and Zannier does not use Jacobians, it is very likely 
to extend to certain surfaces and varieties of higher dimension, the assumption there 
exists at least 3 points at infinity being replaced by something like the divisor at 
infinity is "sufficiently reducible". Vojta [66, 68] used the Subspace Theorem to show 
that integral points on an irreducible affine variety of dimension d are not Zariski 
dense if the divisor at infinity has at least d + ρ + 1 components, where ρ is the rank 
of the Néron-Severi group (see also [49]). 

(13) Recall that a subset of an algebraic variety is not Zariski dense if it lies on a proper closed 
subvariety. 
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In the article [26] Corvaja and Zannier applied their argument to integral points on 
surfaces. Let X be a non-singular projective surface and X C A" a non-empty affine 
subset of X. We let Ci,. . . , Cr be the irreducible components of Χ \ X and we may 
dehne the "divisor at infinity" D = C\ + · · · + Cr. Corvaja and Zannier, however, use 
the divisor 

D — a\C\ + · · · + arCr 

with some positive integers αχ,... , ar ("weights"). This approach is much more flexi­
ble, because the weights can be chosen in a certain "optimal" way. 

Recall that in the case of curves we could apply the Subspace Theorem because 
for every point at infinity Q and for a sufficiently large η we found a basis z\,..., zg 
of the space C{nD) such that 

t 
Σ 
3 = 1 

otuq(zj) > 0. 

Similarly, in the surface case, we must find, for every curve Ci and for a sufficiently 
large n, a basis zi,... , z# of the space H°(X, nD) such that 

ί 
Σ 
7 = 1 

ordc,(zj) > 0. 

We want to express this property in terms of the divisor D. In the subsequent para­
graph we write C for Ci and a for â . 

Consider the filtration of the space H°(X,nD) 

(19) H°(X, nD) D H°(X, nD - C) D H°(X, nD - 2C) D . .. , 

and let z\,. . . , zi be a basis of this filtration ̂ 14̂ . For this basis we have 

t 
Σ 
3 = 1 

ordc(zj) 
oc 

Σ 
k = 0 

(k- an)[hQ(nD - kC) - h°(nD - + 

= -anh°(nD) Λ 
oo 

- Σ 
k=0 

h°(nD - kC) 

(of course, the infinite sums have only finitely many non-zero terms). 
Thus, the basic condition to be satisfied is that the inequalities 

(2C 
yrnh°(nD - kd) 

nh°(nD) 
(i = l,...,r) 

hold for a certain n. 

(14) A basis of a filtration Wo D W\ D W2 ^ ... of vector spaces is, by definition, a basis of Wq which 
contains a basis of every Wi. 
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THEOREM 5.2 (Corvaja, Zannier). — Let X be a non-singular projective surface de­
fined over a number field Κ and let I c A " be a non-empty affine subset of X. Let 
Ci,. . ., Cr be effective divisors^1^ supported at Χ \ X. Assume that Ci,. .., Cr in­
tersect properly (that is, no 2 of them have a common component and no 3 of them 
have a common point). Further, assume that for some choice of positive integers 
αχ,.. ., ar the r inequalities (20) (with D = d\C\ + · · · + arCr) hold for certain n. 
Then for any finite set S C Μ κ the set Χ Π A" (Ο s) of S-integral points on X is not 
Zariski dense. 

PROOF. — It is quite analogous to the proof of Theorem 5.1. We may assume that 
every d is defined over K. Let η be such that the inequalities (20) hold. As we have 
seen above, this implies existence of a positive Β such that 

t 
Σ 
k=l 

ordczk > B, 

where C is any of C\,.. . , Cr and ζ\Ί. .., zg is a basis of the filtration (19). 
To prove the theorem, it suffices to show that every infinite sequence of 5-integral 

points has a subsequence contained on a curve defined over K. Indeed, since there are 
only count ably many Α-curves, a Zariski-dense set contains a sequence with finitely 
many elements on every A -̂curve. 

Thus, let Pi, P2, P3 · · · be a sequence of .S-integral points. Replacing it by a subse­
quence, we may assume that it v-adically converges for every ν Ε S, and denote the 
limit by Qv. Now we have 3 cases: either Qv G X or Qv belongs exactly to one of 
the Ci (call it Cv), or it belongs to exactly two of them (call them Cv and C'v). (By 
the assumption, Qv cannot belong to three or more C;.) Let So, Si and 62 be the 
corresponding subsets of S. 

Fix a basis yi,. . . ,ye of the space H°(X,nD). We may assume that yj(P) G Os 
for any ̂ -integral point P. 

Now, for each ν G S we shall define a new basis z\ = 21,υ,... , ζι = Z£,v of the same 
space, and we let Li)V,.. . , LijV be the linear forms such that z^ — L&)V(y). Then we 
shall apply the Subspace Theorem to these forms evaluated at y(P%)-

If ν G So then, as in the proof of Theorem 5.1, we define the z-basis just putting 
ζ, = Vi. We have plainly 

(21) l|y(^)IU « 1. 

(22) 
i 

Π 
fe=l 

Lk,v(y(Pi))\v < i-

(15) We do not assume the divisors Ci,. . . , Cr irreducible. 
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Next, assume that ν e Si and let z\,... ,zg be a basis of the filtration (19) with 
C — Cv. If tv is a local parameter of Cv near Qv then for any function u regular on X 
the function tv°TdCvUu is regular in a neighborhood of Qv. It follows 

HPi)\v « \ίν(ΡΔ\ο;ά^ (i = 1,2,...)-
Applying this with u = y\,..., ye and with u — z\,..., Z(, we find that 

(23) ||y(Pi)IU « |t„(Pi)lï,ini-i-i0rdc,','i < K(Pi)\ZAn, 

(24) 
t 

Π 
fc=l 

ife,«(y(^))l„ « M P ) I χ ordcv Zk < \tv{Pi)\t 

where A = max{ai,..., ar} and Β > 0 is defined in the beginning of the proof. 
Finally, assume that ν G S2. In this case Corvaja and Zannier use the following 

nice elementary lemma. 

LEMMA 5.3. — Let 

(25) W = Wo 2 W1 D W2 D . . . , W = Wq^W[^W2D ... 

be two nitrations of a ßnitely dimensional vector space W. Then there exists a 
common basis for the two nitrations (that is, there exists a basis of W containing 
bases for every Wi and for every W(.) 

(The proof is by induction in dim W. Without loss of generality we may assume that W\ 
is a hyperplane in W. Put W" = W\ Π W[. By induction, there exists a common basis 
im, . . . , wd-i for the nitrations Wi D W2 2 · · · and Wx = Wq D W[' D ^ i ' D . . . . Now let k 
be the smallest index for which W'k g W\ (the set of such indices is non-empty because it 
includes 0). Then W" is a hyperplane in W[ for i < k and W[ — W" for i > k. Now, picking 
a Wd G Wk \ W'k' , we obtain a basis wi, . . . ,Wd-i,Wd of both filtrations (25), which proves 
the lemma.) 

Using the lemma, we find a common basis z\,..., Z£ for both the filtrations (19) 
with C = Cv and C = C'v. 

Now let tv and t'v be local parameters near Qv at Cv and C'v, respectively. Then 
for any function u regular on X the function tv°T CvU(tv) OTa°vUu is regular in a 
neighborhood of Qv, whence 

\u(Pi)\v « MPi)\l*c"uK(Pi)\V C[U (i = 1,2,...). 

Applying this with u = y\,. . . ,yi and with u — z\,. . . , zg, we obtain 

(26) | |y(P ,)L « \tv{P^^mdc^K{Pi)Cni^e°^yj < \tv{P*)t'v{PÙ\vAn, 

(27) 
i 

Π 
k=l 

Lk,v(y(Pi))L « \*v(Pi) \v = 1 ordCi 2fc 
Î:,(P) = 1 ordc/ zk < \tv(PMPi)\v-
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Combining the inequalities (21, 23, 26) with (22, 24, 27), we find 

ι 
Π Π 
ves k=i 

Lk,v(y(Pi))\v « Η(χ(Ρ4))-β (i = 1,2,...) 

with ε = Β J An. Now we complete the proof using the Subspace Theorem in the same 
manner as we did in the proof of Theorem 5.1. • 

REMARK 5.4. — Using Vojta's refinement [67] of the Subspace Theorem, Levin [43] showi 
that, under the hypothesis of Theorem 5.2 there exists a (possibly, reducible) affine curv< 
on X, depending only on X, but independent on Κ and 5, such that all but finitely mam 
5-integral points from X belong to this curve. (The exceptional finite set may, however 
depend on Κ and S.) The same is true for the consequences of Theorem 5.2: Corollaries 5.( 
and 5.7 and Theorem 5.8. 

Imposing on our divisors Ci additional assumption (like ampleness), we can esti­
mate from below the quantity on the left of (20) asymptotically (as η —» oo), usin£ 
the Riemann-Roch theorem on surfaces. This would express our condition in term; 
of the intersection numbers of the divisors Ci , . . . , Cr and the weights αϊ,... , ar. Th( 
Riemann-Roch theorem applies through the following lemma, proved in the addendun 
to this section. 

LEMMA 5.5. — Let C be an ample divisor and D an effective divisor on a non-
singular projective surface, and let η and k be positive integers such that k < an, 
where a = (D · C)/C2. Then 

(28) h°(nD - kC) > 1 
2 

(nD - kCf - Ο In). 

Let us look closer at this lemma. We have 

(nD - kCf = D2n2 -2(D -C)nk + C2k2. 

The quadratic form 
ni Ρ Ά D2e - 2{D • 0)ξτ + C2t2 

is not positive definite by the Hodge index theorem. Hence the polynomial q(l,r) has 
two real roots, 7 and 7'. They are, obviously, positive, and we assume that 7 < 7'. 
In fact, 7 < a < 7' because a — (7 + 7r)/2. 

Thus, we have q(Ç,r) < 0 if 7^ < r < 7^, and q(Ç,r) > 0 otherwise. In particu­
lar, (28) remains true for k < η'η, but it is uninteresting for 7η < k < η'η and becomes 
interesting; onlv for k < 7Η. 
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Applying the lemma in our situation, we bound the numerator on the left of (20) 
as (we write C instead of Ci) 

(29) OO 
Σ 
k=0 

h°(nD - W) > Σ 
k<9n 

2 
q(n,k) - 0{n2) 

1 
2 

ΘΌ2 1 
2 

e2(D-C) + 1 
6 

e3c2 n3 -0(n2) , 

where θ is any real number satisfying 0 < θ < 7 . Also, the Riemann-Roch theorem 
gives for the denominator in (20) the asymptotics 

nh°(nD) 1 
2 

nsD2 + 0(n2). 

Hence the left-hand side of (20) is bounded from below by F(6) + 0( l /n) , where 

F ( 0 ) = θ 1 - θ DC 
D2 

1 
3 

Θ2 C2 
D2 

It remains to select the parameter θ in the optimal way. 
The estimate in (29) is best possible if the sum on the right of (29) contains all 

positive terms q(n, k) and no negative terms. It follows that the optimal choice is 
θ = 7· We obtain the following consequence. 

COROLLARY 5.6 (Corvaja, Zannier). — Let X be a non-singular projective surface 
defined over a number field Κ and let X C Au be a non-empty affine subset of X. 
Let Ci,. . . , Cr be properly intersecting effective ample divisors supported at Χ \ X. 
Further, assume that for some choice of positive integers ΑΧ, . . . , ar the r inequalities 

(30) 7i l - 7 t 
D-α 

D2 
1 
3 if 

c2 
D2 

(2 = 1,...r) 

hold, where D — a\C\ + · · · + arCr and where ηι is the smallest positive root of the 
polynomial D2 - 2(D · C%)T + C2T2. Then for any unite set S C MK the S-integral 
points are not Zariski dense on X. 

By choosing suitable weights, Corvaja and Zannier showed that integral points 
are not Zariski-dense if they satisfy some conditions, for instance if r > 4 and the 
intersection matrix of Ci,. . ., Cr is of rank 1. 

Autissier [7] suggested to take θ = β/2, where ß = D2/(D-C). (Notice that 
β/2 < 7 and 7 « β/2 when η' is very large.) Since 

F ß 
2 

ß 
2 

1 0 
2 

DC 
D2 

ß2 
12 

C2 
D2. 

1 
4 

D2 
D · C 

1 1 D2C2 
D - C v9. 

we obtain the following result. 
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COROLLARY 5.7 (Autissier). — In the set-up of Corollary 5.6, assume that for some 
choice of positive integers αχ,. . . , ar the r inequalities 

(31) 
D2 

D-α 
1 

1 

6 
D2C? 

(D-Ct)2. > 4a* (i = l , . . . , r) 

hold. Then for any unite set S C Μχ the S-integral points are not Zariski dense 
on X. 

This result is formally weaker, than Corollary 5.6, but it is more practical, because 
inequality (31) is much easier to handle, than (30). 

Levin [43] and, independently, Autissier [7] observed that a "nearly optimal" choice 
of the weights αχ,... , ar implies that 4 ample divisors at infinity would suffice. More 
precisely, they prove the following. 

THEOREM 5.8 (Levin, Autissier). — Let X be a non-singular projective surface de­
fined over a number field Κ and let l e A" be a non-empty affine subset of X. Let 
C\,. .., Cr be properly intersecting effective ample divisors supported at Χ \ X. As­
sume that r > 4. Then for any finite set S C Μ χ the S-integral points on X are not 
Zariski dense. 

REMARK 5.9. — In Theorem 5.8 one can relax the assumption that the divisors d are ample 
(see [43, Theorem 11.5A]), but one cannot just assume that d are effective and intersect 
properly. As an example take X = Ρ1 χ P1 and X = Gm x Gm, where Gm is obtained by 
removing the 0-point and the oo-point from P1. Then X\X consists of 4 curves. The 
map {x,y) —• (x, y, y~X) defines an affine embedding X —> A4, and the set of .S-integral 
points with respect to this embedding is Ο g x 0$, which is Zariski-dense in general. 

To prove Theorem 5.8 we need one more elementary lemma. 

LEMMA 5.10. — Let M = [Hij]1<i j<r be a symmetric r χ r-matrix with positive real 
entries. Consider the linear forms 

Li(x) = ßnXi H h ßirXr (i = 1,..., r) 

and the quadratic form Q(x) = x^Mx. Then for any ε > 0 there exist positive integers 
Α Ϊ , . . . , ar such that 

(32) (1 - e)Q(a) < raiLi(a) < (1 + e)Q(a) (t = l,... ,r), 

where a = (αχ,.. ., ar). 
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PROOF. — We follow the elegant argument of Autissier [7, Proposition 2.3]. Notice 
that 

Q(x) = xiLi(x) + · · · + xrLr(x). 
Hence we have to find a point a with positive integral coordinates such that the r 
numbers a^L^a) are approximately equal. We first find a point with positive real 
coordinates where these numbers are exactly equal. 

Let Δ be the simplex 

(33) x\ -+- · · · + xr = 1? 0 < Xi < 1 (i = 1,..., r). 

Consider the map Δ —• Δ defined by 

XH-> (L1(x)-1,...,LI.(x)-1) 
r 

Σ 
Λ=1 

LtU)-1 
-1 

The map is well-defined because the entries of our matrix M are positive numbers. 
Bv the Brower theorem, our map has a fixed point a G Δ. For this ooint we have 

aiLi(a) = · · · = arLr(a). 

bince none or the Li (a.) vanishes, none of the does; in other words, the real numbers 
αϊ,. . ., ar are strictly positive. Replacing each by a suitable rational approximation, 
we obtain positive rational numbers αχ,. . . ,ar satisfying (32). Multiplying them by 
the common denominator, we arrive to the desired integers αχ,. . . , ar. • 

PROOF OF THEOREM 5.8. — First of all, remark that the term 

(34) 1 
6 

D2C? 
D-d 2 ' 

occurring m (31), is bounded from below, uniformly in a, by a positive constant. 
Indeed, (34) defines a homogeneous positive real function on non-zero vectors 
a G (Z>o)r. But, since it is a quotient of quadratic forms with positive coefficients, it 
extends to a positive real continuous function on the non-zero vectors of (M>o)r. By 
homogeneity, it suffices to consider this function on the compact Δ defined by (33), 
where it is bounded away from 0. 

Thus, to ensure (31), we must find positive integers αχ,... ,ar such that for some 
ε > 0 the inequalities 

D2(l + e) >Aal(D'Cl) (i = l , . . . , r) 

hold. Applying Lemma 5.10 to the intersection matrix of (7χ,. . . , Cr, we find αχ,. .. , ar 
such that 

D2{l + e) > ral{D-Cl) (z = l , . . . , r ) . 

Since r > 4, we are done. 
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In his fundamental article [43], Levin extends Theorem 5.8 to varieties of arbitrary 
dimension, without assuming proper intersection. One difficulty he has to overcome 
is that Lemma 5.3 is no longer true for three or more filtrations. 

Levin gives a thorough analysis of the argument of Corvaja and Zannier and, prob­
ably, reaches its "natural limitations". In addition, he accompanies every Diophantine 
result with an analogous statement about holomorphic maps, in accordance with Vo-
jta's philosophy. 

For more Diophantine applications of the Subspace Theorem, see [25, 31]. 

Addendum: Proof of Lemma 5.5 

We deduce Lemma 5.5 from the Theorem of Riemann-Roch and the following 
proposition. 

PROPOSITION 5.11. — Let B, C and D be divisors on a non-singular projective sur­
face X. Assume that C is very ample, that D is effective and that C2 < C · D. Then 

h°(B -D + C)<BC + h°(B) + 1. 

PROOF. — By the Theorem of Bertini we may assume that C is an irreducible smooth 
curve. The exact sequence of sheaves 

0 Ox{B - D) — Ox{B -D + C)-> Ox(B — D + C)\c — 0, 

implies the exact sequence of cohomologies 
0 -> H°(X, Β - D) H°(X, Β - D + C) -+ H°{C, Δ) —> . . . , 

where Δ is the divisor (B — D + C)\c on C. It follows that 

Î35) h°(X, Β — D + C) < h°(X, Β -D) + h° (C, Δ ) . 

We have deg A = (B-D + C)-C<B-C because C2 < C · D. It remains to observe 
that h° (C, Δ) < deg Δ + 1 and that h°(X, Β - D) < h°(X, B), because D is effective. 

PROOF OF LEMMA 5.5. — By the theorem of Riemann-Roch, 

h°(nD - kC) 1 
2 

(nD - kC)2 1 
2 

(nD - kC) · Κ - h°(K - nD + kC) + 0 ( 1 ) , 

where Κ is the canonical divisor. Since (nD — kC) · Κ — Ο (η), we have to prove that 
h°(K -nD + kC) = O(n). 

We may assume k so large that kC is very ample. Applying Proposition 5.11 with 
Β = Κ and with kC, nD instead of C and D, the condition (kC)2 < kC · nD being 
assured by the assumption k < an, we find 
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h°(K -nD + kC) < k(K · C) + h°(K) + 1 = O(n), 

as wanted. 

I thank Ivan Cheltsov for explanations concerning this lemma. 

6. CONCLUSION 

As it was indicated in the introduction, the recent remarkable applications of the 
Subspace Theorem are not limited to the results discussed above. Without any claim 
for exhaustiveness, let me just quote several more works that I personally find attrac­
tive. 

Mahler [46] showed, using the theorem of Ridout, that if α is a positive ratio­
nal number, but not integer, and 0 < θ < 1 then the inequality \an — m\ < θη has 
finitely many solutions in positive integers η and m. He asked for which irrational 
algebraic numbers a similar statement is true, observing that it is false, for instance, 
if a = (l + y/E) /2, and, more generally, if α is a Pisot number (16K Corvaja and 
Zannier answered this question, showing that the corresponding statement is true for 
all irrational algebraic numbers except the roots of Pisot numbers (and for the latter 
it is obviously false). 

In the same article they answered a question of Mendès France [47] on the period 
length of the periodic continued fraction for an, where α is a quadratic irrationality. 
Corvaja and Zannier showed that the period tends to infinity with η unless α is a 
square root of a rational number or a unit. See also [14, 29, 61]. 

Corvaja and Zannier [20] gave a complete answer to Pisot's question on when the 
quotient u(n)/v(n) of two power sums (and, more generally, of two linear recurrences) 
is infinitely often an integer. By the way, this is one of the rare cases when the authors 
managed to overcome the difficulty stemming from the absence of the "dominant root" 
(see the end of Section 4). 

Corvaja and Zannier [23] and, independently, Hernandez and Luca [39] proved 
that (ab + l)(ac + l)(oc +1) cannot have only small prime divisors, confirming a con­
jecture of Györy, Sarközy and Stewart [38]. See [13] for a quantitative version of this 
result. 

Bugeaud, Corvaja and Zannier proved [12] that an — 1 and bn — 1 cannot have a 
large common divisor. This was extended by Corvaja and Zannier [23, 28]. 

(16) See footnote 4 on page 11. 
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Corvaja, Rudnick and Zannier [18] showed that (with obvious exceptions) the 
multiplicative order of an integral matrix mod Ν grows quicker than log TV as Ν —» oo. 
This result is essentially the best possible. 

And there are numerous contributions that I failed to mention, because of lack of 
space or time or because of my ignorance. 

Acknowledgments. — Mayeul Bacquelin explained me the work of Adamczewski and 
Bugeaud. Umberto Zannier was very helpful and patient when clarifying me various 
aspects of his work with Corvaja. I also had useful correspondence and/or discus­
sions with Pascal Autissier, Boris Adamczewski, Yann Bugeaud, Ivan Cheltsov, Pietro 
Corvaja, Aaron Levin and Hans Peter Schlickewei. Many colleagues, including Boris 
Adamczewski, Yann Bugeaud, Ivan Cheltsov, Pietro Corvaja, Marina Prokhorova and 
Umberto Zannier, read the manuscript and detected a number of inaccuracies. I am 
happy to thank them all. 

In preparation of this text, I benefited a lot from Zannier's excellent notes [74], and 
I strongly recommend them to anybody wishing to learn more on the Diophantine 
aspect of the Subspace Theorem. 

My deepest gratitude goes to Elina Wojciechowska, for her constant encouragement 
during my work on this article. 

This work profited a lot from the discussions I had with Italian colleagues during 
my several stays at the Centro di Ricerca Matematica Ennio De Giorgi at Pisa. I 
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