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F O U R D I M E N S I O N A L G A L O I S R E P R E S E N T A T I O N S 

by 

Rainer Weissauer 

Abstract. — We construct four dimensional irreducible mixed L-adic representations 
of the absolute Galois group of Q, which are attached to irreducible cuspidal au-
tomorphic representations IÎ of the symplectic group of similitudes GSp(4), whose 
archimedean component iToo belongs to the discrete series, and discuss some of the 
properties of these Z-adic representations. 
Résumé (Représentations galoisiennes de dimension quatre). — Nous construisons et étu­
dions certaines représentations Z-adiques mixtes irréductibles de dimension quatre du 
groupe de Galois absolu de Q, attachées à des representations automorphes cuspidales 
irréductibles II du groupe de similitudes symplectiques GSp(4), dont la composante 
archimédienne IIoo appartient à la série discrète. Nous présentons également quelques 
propriétés de ces représentations Z-adiques. 

Introduction 

It is well known how to associate two dimensional A-adic representations to irre­
ducible cuspidal automorphic representations of the group Gl(2, A), whose archime-
dian component is a discrete series representation, for the ring A of rational adeles. 
In the case Gl(2) the condition at the archimedian place leads to the study of clas­
sical holomorphic cuspforms of weight k ^ 2. Already for the symplectic group of 
similitudes GSp(4, A) the corresponding situation is not understood as well. In this 
paper we derive analogous results for the group GSp(4) by constructing corresponding 
four dimensional Galois representations. Furthermore we discuss various properties 
of these representations. Proofs are based on certain fundamental assertions, in par­
ticular from spectral theory, which itself will not be discussed in this paper. Some of 
them are available only in preprint form. For the convenience of the reader they will 
here be formulated as hypotheses, in order to make the paper self contained. 
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68 R. WEISSAUER 

That for an irreducible cuspidal automorphic representation II of GSp(4, A) the 
representation IIoo at the archimedian place belongs to the discrete series, does not 
necessarily lead to the study of holomorphic cuspforms. The reason is, that the 
discrete series representations of GSp(4,R) are parameterized by L-packets. Each L-
packet contains two classes of irreducible representations. One of them is a member 
of the holomorphic discrete series and does not have a Whittaker model, whereas the 
other is nonholomorphic but has a Whittaker model. The packets itself are parame­
terized, up to a character twist, by what we call their weight. The weight is described 
by a pair of integers (ki,k2) such that k\ ^ k2 ^ 3. An irreducible, cuspidal auto­
morphic representation of GSp(4, A), whose archimedian component is holomorphic 
of weight (k\: k2), corresponds to classical vector valued holomorphic Siegel modular 
forms f(Q) on the Siegel upper half space H of genus two / : H —• Vp with the 
transformation property 

Lp(p-3) = Lp(np, s = p{CQ + D).f(n), M = [A B\ 
\C DJ 

for the representation p = Symmfcl_fc2 & det^2 of G1(2,C) on Vp, where M is in a 
congruence subgroup of the Siegel modular group. In the case k = k\ = k2 we obtain 
classical Siegel modular forms of weight k. The lowest i ^ - t y p e of the holomorphic 
discrete series representation is characterized by its highest weight vector, which is 
defined by the weight k2). In the Whittaker case the corresponding i ^ - t y p e has 
highest weight (/ci, 2 — k2). 

Let A = R x A/ be the ring of rational adeles. In the following let II = IIoo 11/ 
be an irreducible cuspidal automorphic representation of the group GSp(4, A), whose 
component IIoo belongs to the discrete series lying in a L-packet of weight (k\,k2). 
We abbreviate this by saying, that II has weight (k\,k2). The ramified places of II 
are the archimedian place and the finite places, where II is not spherical. The first 
result is 

Theorem I. — Suppose II is a unitary cuspidal irreducible automorphic representation 
of GSp(4,A) for which IIoo belongs to the discrete series of weight (k\,k2). Let S 
denote the set of ramified places of the representation II. Put w = k\ + k2 — 3. Then 
there exists a number field E, such that for primes p & S the local L-factor 

Lp(p-3) = Lp(np, s - w/2), Lp(X)-1 e E[X] 

of the degree 4 spinor L-series (for the 'algebraic7 normalization involving the shift by 
—w/2 as above) has coefficients in E, and such that for any prime number I and any 
extension X of I to E there exists a four dimensional semisimple Galois representation 

pn À : GalfQ : Q) •G1(4,£A), 

which is unramified outside S U {I}, so that for p £ S U {/} the following holds 

Lp(np, s - w/2) det(l-pn.A(Frobp)p-s)-1. 
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FOUR DIMENSIONAL GALOIS REPRESENTATIONS 69 

The eigenvalues of pn,A(Frobp) for p ^ l,p £ S are algebraic integers. The represen­
tation pn,A arises from a X-adic representation, if E is chosen large enough. The so 
defined X-adic representation pn,A is mixed. IfU is not a CAP representation (for this 
notation see [S]) the representation pn,A is pure of weight w, i.e. for all isomorphisms 
Ql = C the image of the eigenvalues of pn,A(Frobp) has absolute value pwl2 for p 7^ I 
and p $L S. 

I. Remark. — Frobp is the geometric Frobenius. The chosen normalization of the A-
adic representation pn,A is of cohomological nature. In the most relevant cases the 
formulas above first arise from a right action of the Galois group on certain cohomology 
groups. In order to obtain a representation in the usual sense one has to consider the 
transposed, which then defines a representation in the usual sense. Since characteristic 
polynomials do not change under transposition this does not matter. Nevertheless it is 
the dual of the representation so obtained, which corresponds to what usually appears 
in the literature on elliptic modular forms. The dual representation pj^ A is 

Pn.x - Pn,A ®X \ Lp(p-3) = Lp( 

where p/ is the cyclotomic character p/(Frobp) = p~1 and cJn(Frobp) = UJU{P), where 
LOU is the central character of II. This is a consequence of the Tchebotarev density 
theorem, since the formulas Lp(Up,s — w/2) = det(l — pn,A(Frobp)p~s)-1 and II = 
IIV (g) uu imply that the two semisimple representations pj^ A an<̂  Pn,A ® X-1 (with 
X — • Pi~w) have the same character. Similarly, the class of the representation 
pn,A only depends on the weak equivalence class of II. Two irreducible automorphic 
representations n i , n 2 are called weakly equivalent, if they are isomorphic locally 
IlijV — 1*2,v at almost all places v. 

Theorem II. — The representations pn,A constructed in theorem I are never reducible 
of the form pn,A — Po © Po7 for a two-dimensional X-adic representations po of 
Gal(Q/Q). They contain a one dimensional invariant subspace if and only ifH is 
a CAP-representation (of Saito-Kurokawa type \P\). 

Suppose E is chosen large enough, so that the representation pn,A is defined over 
E\. Then pn,A can be viewed as representations of dimension 4 • [E\ : Qi] over Q/. 
But in fact, by the way they will be constructed, these Q/-vector spaces then turn 
out to be Hodge-Tate modules of Gal(Qz/Q/) using [CF] theorem 6.2. Moreover if we 
exclude certain exceptional cases — for the notion of a weak endoscopic lift see the 
definition further below — we have 

Theorem III. — Suppose the cuspidal representation U is neither CAP nor a weak 
endoscopic lift and weakly equivalent to a multiplicity one representation. Then the 
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70 R. WEISSAUER 

representations pu,x define Hodge-Tate modules over Q/ with four different Hodge 
types 

(fci+fc2-3,0), ( f c i - l , f c2 -2 ) , (k2-2,k1 - 1), (0,fci + k2 - 3 ) 

each of which occurs with the same Qi-dimension [E\ : Q/]. 

Theorem III is deduced from proposition 1.5. 

2. Remark. — A weaker version of theorem I was obtained in [T]. As in [T], p. 291ff 
we use the fact, that the representation II contributes to the (interior) cohomology of 
a suitably defined projective limit M of Siegel modular threefolds with respect to a co­
efficient system VM(Q/), which only depends on the weight k2) of II. Our result is 
also deduced from the study of the etale cohomology groups. That the etale cohomol­
ogy of M defines mixed Galois representations of the absolute Galois group Gal(Q/Q), 
is seen by discussing three cases separately: the case of CAP-representations, the case 
of weak endoscopic lifts and the remaining case. In the last case the representations 
Pn,\ defined above do naturally occur in the third cohomology of M. This fails to 
hold in the case, where II is a CAP-representation of Saito-Kurokawa type. It also 
fails to hold in the case, where II is a weak endoscopic lift considered below. Both 
these exceptional cases are interesting for various reasons. 

Definition. — A unitary irreducible cuspidal representation II of GSp(4, A) is called a 
weak endoscopic lift, if there exist two unitary irreducible cuspidal automorphic forms 
7Ti,7T2 of Gl(2, A) with central characters UJ7VI — coV2, such that 

Lv(U,s) Lv(7Ti,s)Lv(7T2, s) 

holds for almost all places. Here Lv(H,s) denotes the local L-factor of the degree 4 
spinor L-series. 

Let II be a weak endoscopic lift attached to 7Vi,7r2. Then under the hypothesis 
A formulated in the next paragraph we get cu7Vi = oun> Furthermore, if we consider 
representations II for which IIoo belongs to the discrete series, TTQOJ belong to 
the discrete series of weight such that r1 > r2 ^ 2 holds for a suitable ordering. 
Conversely for 7TI,7T2 with archimedian components as above a — (7TI,7T2) lifts to a 
global nontrivial L-packet, defined as the weak equivalence class of unitary cuspidal 
irreducible automorphic representations II of GSp(4, A), whose components at infinity 
belong to the discrete series of weight (ki,k2) such that the L-identities (1) from 
above hold at almost all places. The integers ki and ri are related by the formulas 
N = k\ + k2 — 2 and r2 — k\ — k2 + 2. 

Hypothesis A. — Let F be a totally real number field. Let a = (TTI,^) be a pair of 
irreducible cuspidal representations of Gl(2,Ai?) with a common central character 
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LU7VI = un2. Let II be a unitary cuspidal automorphic representation of GSp(4, A^?), 
which is supposed to be a weak endoscopic lift attached to a = (7Ti, 712). Then 

(1) n is not CAP. 
(2) The central character of II is UJH — LO7TI = UJ7T2 . 
(3) If 11^ belongs to the discrete series of weight k\, k^ for an archimedian place v 

of F , then there exist integers r\,r2 such that r\ > r2 ^ 2 (given by r\ = k\ + k<2 — 2, 
^2 = ki — &2 + 2), so that (ni)v belongs to the holomorphic discrete series of weight vi. 
The converse also holds. 

(4) For the finitely many places v of F , for which 11^ belongs to the discrete series, 
Uv is contained in a local L-packet Uv G {II+(crv), II~ (<JV)} consisting of two classes 
of irreducible admissible representations Uvz(av) of GSp(4, Fv), which only depend on 
o~v = (^i,v^2,v)' At the remaining places v of F, where Uv does not belong to the 
discrete series, TLV = 11+ (av) is uniquely determined by av. 

(5) The representations Hv~(av) have Whittaker models. The representations 
H~(av) do not have Whittaker models. For discrete series representations av at the 
archimedian places as in (3) the representation U~(av) is in the holomorphic discrete 
series and U+(crv) is in the nonholomorphic discrete series. 

(6) For any representation IT7 = ®VUV of GSp(4, AF) with local components IT^ = 
Uvz(av) as in (4) the multiplicity ra(lT) of IT7 in the cuspidal (or the discrete) spectrum 
is one or zero, depending on whether the number of places of F, where 11^ is in the 
discrete series without admitting a Whittaker model, is even or odd. 

(7) For F = Q and 11^ in the discrete series the Gal(Q/Q)-module 

WUf = HomGSP(4,A/ (l + C(^)) + 2-^x(^) = 0. 

defined as in section 2, is a two dimensional Qrrepresentation of the absolute Ga­
lois group Gal(Q/Q). It is isomorphic to either the two dimensional Galois Q r 
representations p7Tl or pn2 ®Q pf^2 k2>) (attached to the cuspidal representations 7Ti 
resp. 7T2) depending on whether LToo is holomorphic or not. 

A proof of this hypothesis is contained in the preprints [W] and [Wl], where 
these statements are deduced from the global trace formula and where also a further 
description of the local L-packets is given. A completely different proof of A(6) was 
also obtained by Roberts. 

The Abel-Jacobi map. — The particular interesting case k\ = ks = 3 is relevant 
for the description of the 'interior' part (image of the cohomology with compact 
supports) or equivalently the cuspidal part Hp(M,Qi) of the etale cohomology 
groups H?t(M,Qi). The corresponding coefficient system VM(Q/) is the constant 
sheaf Qt. Instead of M we now consider a single Siegel threefold for some fixed level, 
also denoted M in this subsection. We choose a projective smooth model M obtained 
by a toroidal compactification of M. Then the cuspidal cohomology Hp(M, C) embeds 
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as a subspace into the third cohomology H3(M,C) of this projective model. For the 
projective smooth model M consider the Griffiths intermediate Jacobian 

T2(M) = F3(M)\tf3(M,C)/#3(M,Z) ^ (H^2\M, C)0#(o'3)(M, C))/ im(#3(M, Z)). 

Its abelian variety part A2(M) C T2(M) ([G],p. 18) is defined as the image of Xc in 
T2(M), where Xc = X <g>Q C for X = ( ^ ^ ( M , C) 0 #^2 ) (M, C)) n #3(M, Q). It 
contains as an abelian subvariety the image I2 (M) of the cycles classes in ^42(M) under 
the Abel-Jacobi map. The Chow group C2(M) of cycles of codimension two modulo ra­
tional equivalence contains subgroups C2(M) D H2 (M) D *A2(M) D Z2(M) Z> /C2(M), 
where 7Y2(M) the subgroup of cycles homologically equivalent to zero, i.e. the kernel 
of the natural map C2(M) -» #4(M,C) or i/|t(M,Qz). *42(M) is the subgroup of cy­
cles, which are algebraically equivalent to zero, X2(M) is the subgroup of cycles, which 
are incident equivalent to zero, and /C2(M) is the kernel of the Abel-Jacobi map. The 
Abel-Jacobi map A J : H2(M) —• T2(M) is a naturally defined homomorphism. The 
image I$(M) = AJ(A2(M)) C T2(M) defines an abelian subvariety of A2(M). By [G] 
prop. 3.5 the kernel /C2(M) has finite index in X2(M). 

Let II be a cuspidal automorphic representation, which is not CAP. Assume II is 
a weak endoscopic lift of a pair of classical holomorphic cuspidal new forms of weight 
ri = 4 and r2 = 2 respectively. Let a — (7Ti,7r2) be the corresponding automorphic 
representations. 7r2 is holomorphic of weight 2. Hence there is an abelian variety A[7r2] 
in the Jacobi variety of a modular curve, which is attached to the orbit (7r2)r,r E 
Aut(C/Q) (and will be considered only up to isogeny in the following). In the weak 
equivalence class of n there exists a representation, whose archimedian component 
has a Whittaker model. See hyp. A(6). So assume n itself has this property. If the 
level is chosen suitably small, n contributes to the cohomology of M. In other words 
the cuspidal nrisotypic subspace Hp(M,C)(Uf) of H^(M,C) 0 H^(M,C)) is 
nontrivial. Then let Hp(M,C)[U] denote the subspace, which is generated by the 
Hp (M, C)(II^) for all weak endoscopic lifts n ' , that are weak lifts attached to some 
crr = (TT[, 7r2), r G Aut(C/Q) and whose archimedian component has a Whittaker 
model. By cuspidality there exists a natural projection map 

Pu:H3(M,C) Hp(MX) • tf3(M,C)[n], 

which is compatible with the action of the Hecke correspondences. Again by cus­
pidality of n we can identify Hp(M)[U) with a subspace of i73(M, C), which as 
a subspace is mapped isomorphically to Hp(M1C). Consider the exact sequence 
H2(dM,C) H3(M,C) -+ #3(M,C). For the standard toroidal compactifications 
M of M, defined by Igusa, the boundary dM is a union of elliptic surfaces fibered 
over modular curves. This structure of the boundary implies, that the image of the 
cohomology of H2(dM,C) in #3(M,C) is of Eisenstein type. Since n is not CAP, 
the natural map from the n^-isotypic component of #3(M, C) to H3(M, C) therefore 
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is injective. We get the following commutative diagram 

H3(M,£) H3(M,£) 

tf3(M,C)[n] H3(M,C) 

So Hp(M,C)[U] can be naturally viewed as a direct summand of i/3(M,C). We 
claim, that furthermore the subspace H^(M, C)[IL] of if | ,(M, C) is defined over Q — 
with respect to the Q-structure defined by the Betti cohomology. Hence Hp(M, C)[II] 
contributes to Xc and naturally maps to the abelian variety A2CM.) 

tf3(M,C)[n] A2(M) c T3(M,C). 

Since the Betti Q-structure defines an action of Aut(C/Q) on Hp(M, C), which 
commutes with the action of GSp(4,A/), for the proof it is enough to show that 
the subspace Hp(M,C)[U] is stable under the action of r G Aut(C/Q). Since 
t G Aut(C/Q) permutes the GSp(4, A/)-isotypic components, this amounts to show 
that contributes to Hp{M, C)[II], if Uf contributes. Since 11/ = rL/OO n ^ we 
get (n / ) r = nV^OO(n^)r f°r certain irreducible admissible complex representations of 
GSp(4,Qv). An inspection at the unramified places immediately implies, that UT is 
again a weak endoscopic lift, now attached to the automorphic representation (7r[, 7rJ). 
It only remains to control (nR)OO. By the multiplicity formula (6) of hypothesis A a 
weak endoscopic lift (nr)00 is determined by (n r ) / , more precisely by the number of 
its nonarchimedian local representations which do not have a local Whittaker model. 
Let T be a finite set of nonarchimedian places and At — YlveT Then the follow­
ing statements are equivalent: (1) The restriction of of 11/ to GSp(4, At) admits a 
nontrivial Whittaker functional. (2) = II^eT admits a nontrivial Whittaker 
functional for GSp(4, AT)- (3) All Uv,v G T have a local Whittaker model. Further­
more the restriction of 11/ to GSp(4, A ^ ) admits a nontrivial Whittaker functional I 
iff the restriction of (Ht)t to GSp(4, AT) admits a nontrivial Whittaker functional I. 
Simply put l(v) = l(r(v)). So this implies, that (HT)V has a Whittaker model iff Uv 
has a Whittaker model for all nonarchimedian places v, hence also for the archime­
dian place. Therefore U-(av)T 9* n_(o-J) and H%>(M,C)[IL] is defined over Q. This 
implies, that weak endoscopic lifts n gives rise to certain nontrivial abelian varieties 

A[U] c A2(M), 

which appear in the middle intermediate Jacobian T2(M) as image of Hp(M1C)[U}. 
By hyp. A(7) the A-adic Galois representations of Gal(Q/Q) on H1(A[U], Q/ ) ( - l ) can 
be expressed completely in terms of the A-adic representations SO that 
A[U] is isogenous by the Tate conjecture to a product of the abelian variety A[7^] 
attached to the orbit (7T2)t,T G Aut(C/Q). So the weak endoscopic lift n considered 
above relates A[712] to the abelian variety ^ ( M ) attached to the Siegel modular 
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threefold M. A[ir2] is a factor of A2(M), up to isogeny. By varying 7T4 we can embed 
A[7r2] in different ways (up to isogeny). 

It is now tempting to ask for an analog of Heegner points. These generalized 
Heegner points could arise as images of suitable linear combinations of curves on 
M under the Abel-Jacobi homomorphism and the projections defined above (up to 
isogeny) 

A2(M) —> A2(M) — A[U] A[TT2}. 

Particular interesting are curves contained in Hilbert-Blumenthal subvarieties (Hum­
bert surfaces). One might ask, whether this construction is able to produce a new 
class of points in A[7r2], especially when A[TT2] is an elliptic curve defined over Q. 

CAP-representations. — If the representation n of GSp(4, A) considered in theorem I 
is not a weak endoscopic lift but a CAP-representation, then - again for primes outside 
some finite set S including the ramified places - LS(U, s) = LS(TTI, S)LS{IT2, S) holds 
for a pair of automorphic representations 7Ti,7r2 of G1(2,A). TTI is still cuspidal and 
at the archimedian place still belongs to the discrete series. However ir2 now is of 
Eisenstein type of weight k2 = 2. Then, up to a character twist, the central character 
of n can assumed to be trivial, and 

LS(U, s) = LS(X, s - l/2)Ls(7rllS)Ls(x, s + 1/2) 

holds for a quadratic character x, i.e. x2 = 1 (PM^])- Since the central character of n 
is a square, k\ + k2 is even because o;n00(—1) = ( —l)fcl+/c2. Therefore the semisimple 
representation pn,\ comes with a monodromy filtration whose graded pieces are of 
weight w + 1, w, w — 1 

_ (2-kl-k2)/2 
Pn,x - XPi 

Ls(7rllS)Ls(x, s + 

This can also be understood in terms of pairings (as in appendix D). 
Therefore in both these special cases the statement of the main theorem immedi­

ately reduces to the corresponding statement for Gl(2, A). If pni,\ are the correspond­
ing two-dimensional A-adic Galois representations (for the 'algebraic' normalization), 
the representation pn,A of theorem I in these cases is just formally defined as the 
direct sum 

PN,A = PTTUX € (^2,A % Pi )• 
However, and this should be emphasized, by hyp. A(7) the so defined representation is 
not the one, that naturally occurs in the cohomology of Siegel modular threefolds. For 
instance, if n is a weak endoscopic lift, only the two dimensional representation 
occurs in the -isotypic component of the third cohomology of the Siegel threefold if 
Uoo is in the holomorphic discrete series; respectively only the other two dimensional 
summand pn2,\ PI occurs, if has a Whittaker model. 

3. Remark. — Existence of a number field E, as stated in theorem I, is clear for the 
CAP-cases and the cases of weak endoscopic lifts. Otherwise, its existence follows 
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from the finite dimensionality of the Betti-cohomology of Siegel modular threefolds 
for fixed levels. 

This being said we may assume for the proof of theorem I, that II is not a lift 
of CAP-type or a weak endoscopic lift. Under this additional assumption - which 
will be maintained for simplicity starting from section 4 - the Galois representation 
constructed in theorem I appear in the cohomology of M as such, and they will be 
shown to be pure A-adic representations of weight i.e. the Ramanujan conjecture 
holds for all unramified places of II as explained in section 1. 

The Zariski closure G. — Let G denote the Zariski closure of the image pn,A(Gal(Q/Q)) 
of the absolute Galois group in Gl(4, k), which is an algebraic group defined over the 
algebraic closure k of E\. Let G° be its connected component, and TTO(G) the group 
of components of G for the Zariski topology. Then by the analysis of [T] the possible 
cases for G and TTO(G) are included in a list of eleven cases. What makes the first 
three cases look interesting is, that here the group no(G) of connected components 
can be more complicated. Using also results of appendix B, they are 

- (later case la or lb) G° is a &-torus of dimension 2, and no(G) contains as 
subgroup of index at most 2 a finite subgroup of PG1(2, k), or 

- (later case la) G° is a fc-torus of dimension 1, and 7TQ(G) contains a cyclic normal 
subgroup, whose quotient A is a finite subgroup of PG1(2, k), or 

- (case 2) G is a subgroup of the normalizer N(T) in GSp(4, k) of a maximal torus 
T c GSp(4, k) and 7To(G) is contained in the Weyl group Dg of GSp(4, k), or 

- (later case 3) ITQ(G) is a finite subgroup of PG1(2, k) and G° = Gl(2, k). 

In the cases 1 and 2 there exists a subgroup of index two in Gal(Q/Q), such that the 
restriction of pu,x to this subgroup becomes reducible. This follows from appendix B 
and C, the case 1 being obvious. In the situation of Theorem IV the same also holds 
for case 3, since then the representation s = p x t considered in lemma B.2 is odd. 
Therefore appendix D, remark 2 implies that p : N —» Gl(2, k) is even, since the 
standard representation t is odd. This rules out the case 7TQ(G) = A4, #4,^.5 (see 
appendix A for further details). 

In the remaining eight cases of [T], that were not listed above, the group 7TQ(G) 
is a subgroup of the group O of [T]. Hence 7TQ(G) is either trivial or of order two. 
Furthermore G° is either a subgroup of GSp(4, k), or it is G° = GO(4, k)° (case 10 
of [T]). In the situation of Theorem IV below, G° = GO(4, k) cannot occur, so 
that: Either pn,A is irreducible with closure G = GSp(4, k) where pn,A induces the 
four dimensional standard representation of G, or G — Gl(2, k) where pn,A induces 
the third symmetric power of the two dimensional standard representation, or G° is 
a proper subgroup of GSp(4, k) such that the restriction of the representation pn,A 
becomes reducible on a subgroup of Gal(Q/Q) of index at most two. 
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Theorem IV. — Suppose U (as in theorem I) is weakly equivalent to a multiplicity one 
representation. Then the representation pn,A preserves a nondegenerate symplectic 
Qrbilinear form (.,such that the Galois group acts with the multiplier UJUP7w 

(Pu,x(g)v,pu,x(g)w) = cju(g)Pi w(g) • (v,w), g e Gal(Q/Q) 

where /1/ is the cyclotomic character. 

Concerning the conditions of theorem III and IV on the existence of a multiplicity 1 
representation in the weak equivalence class let me remark, that a globally generic 
irreducible representation H of GSp(4, A) has multiplicity one ([V] p. 506 and [Sha], 
[S2]). Of course one expects the following: If II is a cuspidal irreducible automor­
phic representation of GSp(4,A), which is not CAP and for which IIoo belongs to 
the discrete series, then II is weakly equivalent to a globally generic representation 
Ilgen, whose archimedian component is the nonholomorphic discrete series represen­
tation of the local L-packet of IIoo. In fact we are able to deduce this from recent 
results of U.Weselmann on the twisted topological formula, but this will be considered 
elsewhere. 

To outline the organization of this paper, we first remark that the theorems I-IV are 
derived from hypothesis A above and hypothesis B (see section 1). The first sections 1 
and 2 give some overview on facts, that follow from the study of the cohomology 
of Siegel threefolds. In section 1 we review results on cohomology, which can be 
obtained from the stabilization of the topological trace formula, and give a proof of 
theorem III. Section 2 gives an overview of results of Taylor. The results of these 
two sections allow to deduce theorem I except for some special cases. In fact these 
— so called critical — cases are first defined in a group theoretic way in terms of 
G as the cases 1 and 3 specified above. As shown in appendix B these cases can 
be understood in terms of the underlying automorphic representation II: II is D-
critical. This notion is discussed in section 3. It is of relevance for the cases 1, 2 
and 3. The reformulation from group theory is obtained in appendix B. In fact, in 
these cases the structure of the finite group TTQ{G) is of great influence, and D-critical 
representations arise naturally in this context. Some exceptional cases where D is 
large, which a priori could arise from the classification of balanced representations 
(appendix A) can later be excluded. In section 4 and in appendix C it is shown, that 
all relevant D-critical representations II contain — after restriction from GSp(4, A) 
to Sp(4, A) — a theta lift from an automorphic representation n of Gl(2, A/r) where 
K is a quadratic algebra over Q with involution a. In sections 5-8 properties of such 
theta lifts are studied. In section 9 a pole number nx(II) is defined. Using nx(II) it 
is shown in section 10 and appendix C, that CT(TC) = n <S> X holds for some character 
X if D is large. The remaining sections 11 and 12 provide proofs for the theorems I 
and II. It is easy to see that Theorem I holds except for some exceptional D-critical 
cases where D is large. In section 11 these are excluded by analyzing the property 
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a{n) = 7T 0 X °f the associated representation 7r at the archimedian place. The idea 
for the proof of theorem II given in section 12 is similar, and amounts to exclude 1-
critical representations. Appendix D is concerned with pairings and contains a proof 
of theorem IV. I am grateful to E. Urban for a discussion, which made me aware of 
an error in an earlier version of section D. 

1. Multiplicity Results and Cohomology 

In the following we fix an irreducible cuspidal admissible representation II — U^Uf 
of GSp(4,A), whose infinite component LT^ belongs to the discrete series of weight 

k2). We do not assume II to be unitary in this section. Instead we use a different 
normalization, where 

n ^ n o ® ll-ir*, c = k\ + k2 — Ç> — w — 3 

and LTo is unitary. See also [T] section 1. Character twisting is understood with 
respect to the similitude character of the group GSp(4). The central characters satisfy 
c<;n — ^0 • ||"||~c- This normalization will be used in this section, the next section and 
in the appendices B and D. It arises naturally in the study of pairings between certain 
cohomology groups. In the remaining sections we deal with L-series, where we consider 
the unitary representation LTo (and where LTo is then often called II for simplicity of 
notation). 

Let II = IIo® ||-||-c/2 be as above for unitary LTq. Let ra(II) denote its cuspidal mul­
tiplicity. In [T], section 1 Taylor defines a finite dimensional Qrrepresentation of 
the absolute Galois group of Q, such that arises from an A-adic representation of 
Gal(Q/Q) by extension of scalars. It is obtained from the representation of Gal(Q/Q) 
on the Ily-isotypic component in the interior cohomology of Siegel modular threefolds 
(image of the cohomology of compact supports in the cohomology) 

^(M,VM(Q,)) Ls(7rllS)Ls(x, s 

for a coefficient system VM depending on the weight {k\,k2). We tacitly assume the 
choice of an isomorphism Q/ = C, which allows to identify the complex representation 
II/ with a representation over the field Qt. See also [T] p. 296. 

The Shimura variety M for GSp(4), that we consider, can be identified with the 
projective limit of the moduli spaces of principal polarized abelian varieties of genus 
g = 2 with symplectic level structures. It is defined over Q. Its complex analytic points 
are the cosets M = GSp(4, Q)\(X x GSp(4, A/)) where X = H U -H is the union of 
the upper and lower Siegel halfspace of genus two; in fact X — GSp(4, M)/Stab(z£') 
for iE e H. Complex conjugation acts on H3(M, VM(C)) = H%{M,V^) ®Q C on 
the coefficients by sending 77 = rjo ® z to rj = TJQ 0 z for 770 G H%{M, VM) and 
z G C. Frobenius Foo G Gal(Q/Q) at infinity {i.e. complex conjugation) acts on 
the C-valued points of M and induces an antiholomorphic automorphism such that 
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i?oo(GSp(4,Q) • [Z,gf]) = GSp(4,Q) • [Z,gf] for representatives Z G X and gf e 
GSp(4, A/) ([MS], p. 309). Here Z is the complex conjugate of the period matrix 
z e HU-H. 

The coefficient systems VM are defined as follows. Up to Tate twists they are 
obtained from the decomposition of tensor products of the direct image sheaf JR1p*Qz, 
where p : A —> M is the universal principally polarized abelian variety of genus 
two over M. Notice that the level can be assumed to be larger than 3. The index 
p indicates the choice of a rational finite dimension irreducible representation p of 
GSp(4,Q) (warning: our p is dual to the one used in [T]). The coefficient system 
admits a natural pairing 

VUf = Wg 0c n,.VUf = Wg 0c n 

where c — {k\ — 3) + (k2 — 3). To define it we use the Lieberman trick. This reduces 
to consider the following three cases. 

(a) For k\— 3 = 1, k2 — 3 = 0 we put Vp = Rp*(Qi). This is a smooth Q r sheaf which 
is pure of weight c = 1. The pairing A^ is the odd Weil pairing. The corresponding 
rational representation ¡i of GSp(4, Q) is the dual of the four dimensional standard 
representation of GSp(4,Q). (This convention is reasonable, since we consider direct 
images in cohomology and not in 'homology'). 

(b) For ki - 3 = 1, k2 - 3 = 1 we put VM = R2p*(Qi)prim (primitive part). Again 
this is a smooth Qrsheaf, which is now pure of weight c — 2. It carries a natural 
pairing Xp defined via the polarization, and this pairing is even. 

(c) For pi — v~l the inverse of the character v of similitudes of GSp(4,Q) the 
sheaf VM is the Q¿(—1) and has weight 2. The corresponding Galois action is given 
by /iz_1(Frobp) = p, where pti is the cyclotomic character. 

All other irreducible representations VM are obtained as constituents p 
(^p^Qi)^1 ® (z/-1)®-? by decomposing the tensor product copying the way in which 
p is obtained from the decomposition of the corresponding rational representations 
of GSp(4, Q). This easily gives c = c(p) = i + 2j in general, and the induced pairings 
AM on VJJ, are always of parity (ki — 3) + {k2 — 3) = k\ + k2 mod 2. The trivial 
representation p corresponds to the constant etale Qrsheaf Vp = Q¿. 

H3(M, VM(C)) contains the cuspidal cohomology Hp(M, VM(C)), which has a pure 
Hodge structure and decomposes into Hodge types Hpq(M,VhL(C)). These are per­
muted by the C-antilinear map rj i—• rj and the C-linear map F ¿ . They are preserved 
by the C-antilinear map r¡ i—> F^(rj) = ^(77), whose square is the identity. There is 
a decomposition into GSp(4, AfVisotypic components 

Hl(M,VJC)) = ®vUf VUf = Wg 0 c n , . 

The GSp(4, A/)-action is completely decomposable on the cuspidal part of the co­
homology. By the comparison isomorphism with etale cohomology we obtain corre­
sponding spaces Wuf over Qt as Gal(Q/Q)-modules. The spaces W£ = © Wg'9 
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decompose into Hodge types, such that : W^,q —> . Similar for complex 
conjugation, which sends to Wg'p. Put V£'fq = <8>c 11/. 

On the cuspidal part Hp{M, VM) of the third cohomology group the cup product 
defines a map 

#|>(M,VM) x tff>(M,VM) (M,VM) x tff>(M,VM) 

The map AM : VM 0 ^ VM Qi(—c) therefore induces a pairing 

H%(M,VJ x #f>(M,VM) #c6(M,Q(-c)) X q ( - 3 - c ) = Q / ( - H 

with c = (fci - 3) + (fc2 - 3), which is written tr(r? U rjf) for 77, 77' G HP(M, VM). The 
Galois representation on the cuspidal cohomology group iJ|>(M, VM) is pure of weight 
it; = /ci + k2 — 3. This follows from the general Weil conjectures and the fact, that the 
cuspidal cohomology in degree coincides with the interior cohomology. Milne p. 172, 
remark 1.18 determines the parity of the cup product pairing as 

tr(/7 U r/) - -(-l)fci+FC2 . trO/ U 77). 

The groups Gal(Q/Q) and GSp(4, A/) act on Hj>(M, VM). The cup product pairing 
is equivariant in the sense, that 

tr((<7 X g) • 77 U (cr X g) • 7/) (M,VM) x tff>(M,VM)(M,V 

holds for a e Gal(Q/Q) and g e GSp(4, A/). See [T], page 295-296. 
Therefore the restriction of the cup product pairing to (Wuf 0qz II/) x (Wn' II/) 

is zero unless (WUf^3) ®^ (Uf\\-\\c) 9* (WWf % Wfy. Equivalently (WUf)v = 

Wn> <g> /^+3 and IT} 9* (n/)v <g> ||.||-c must hold. This is equivalent to IL'f = 

Uf <S> CU-,̂ 1 II• II—c by the next lemma 1.1. Hence Wu' = Wn ~ -iM „_c = 
/ Uf II II J i-i-f ^f^Q^Uf INI 

Wnf 0 uj^l1f/jJl~c. So it follows (Wn/)v — Wjif ® fJ'f^u]- In particular the one 

dimensional representation pfu;^ has weight — 2w: since Wuf is pure of weight 

w = c + 3. Hence co^ = pfcoQ1 holds for a Dirichlet character UJQ of finite order. 

Furthermore Wn' = Wnf 0WO_1 and 
H'/ 9* Uf 

Since pi corresponds to ||-|| (idele class norm of the similitude character) we therefore 
write n = n0 <g> | |- |RC/2 and 

= INI W 

Ho is a unitary representation with unitary central character UJQ. We have Uf ^>UJQ = 
Uf and n } = Uf, where complex conjugation acts by the chosen isomorphism QL = C. 
Notice Uf = n0,/ <g> |H|_c/2 = Ulf <g> |H|-c/2 ^ HO,/ ^ ^ H ' ^ 2 = n / by the next 
lemma. (One might prefer to normalize the coefficient systems VM by a Tate twist, 
so that c = 0 and w = 3 always holds. But this is possible only for even c. So the 
normalization chosen above is the most natural one). 
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1.1. Lemma. — Any irreducible automorphic representation II o/GSp(4, A) is isomor­
phic to its dual, twisted by the central character: II = IIV (g) cjn • 

Proof. — In fact this is a local statement. Consider the trace XNV (g) = XN(#-1)-
Since g is a symplectic similitude with similitude factor A(g), we have g^1 = A(g)-1 • 
J~1afJ with 

J = 0 -E 
E О 

Hence it is enough to show Xu(g) = Xn{g') for the transposed matrix g' of g. We 
may assume g G GSp(4, Qv). It is then enough to prove the trace identity for regular 
semisimple elements g by a density argument, using well known properties of the trace 
distribution. Obviously, g and gf are stably conjugate, since g can be diagonalized 
g = 7 * 2 7 " a ' = a for some similitudes a, 7 defined over the algebraic closure of Qv. 
The analysis of instability for the two types of unstable tori in GSp(4, Qv), given in 
[W], then implies, that g' and g are conjugate already over Qv. We leave this easy 
verification as an exercise for the reader. • 

The cup product pairing is nondegenerate. For 77, rjf e Wuf 0 % we have TJ'ULJQ 1 £ 
Wuf <8>Qf n'y, where LOQ1 denotes a section of the one dimensional cj^-eigenspace of 
H°(M, Qi). With this notation 77, 7/ 1—> tr^Ur/Uu;^1) defines a nondegenerate pairing 
on the space Wnf ®Q Ft/, which is equivariant with respect to the Gal(Q/Q) and the 
GSp(4, A/)-action 

(WUf ® ^ Uf) (8>qz (WUf <8>qz Uf) —-> a;0^"3_c ^QZ ^0 | | - |RC = ^n/iz"3 <8>q£ ^n-

T/ze map OOQ. — The map a00 (v) — rjUuJo is C-antilinear on de Rham cohomology, so 
that TFOO(V£'9) = V£p. The map is C-linear so that F^(V^fq) = V£f. Therefore 

:F^(r]) :F^(r])Uiü0 = aoooF^ 

is C-antilinear and preserves V™. Furthermore O2^ = UJO(—l)^^ = u>o( — l) • id, 
since F^ o o-oo = cjo(-I) • CTQO 0 i ^ . For this notice F^(UJO) = cj0(-1) • cj0 and 
^o,OO(-l) = ^noc(-l) = (-l)fcl+fc2 - ( - l )c (see appendix D). For the GSp(4,A/) 
action we get 0^ o Uf(gf) = uJo{gf)~lIif{gf) o 6>oo. 

Dimension formulas. — In the following hypothesis B we collect all facts needed from 
spectral theory, which allow us to express the action of the Frobenius on cohomology 
in terms of Hecke operators. 

Hypothesis B. — Let K — Y[p Kp be a compact open subgroup of GSp(4, A/), where 
all Kp are principal congruence subgroups of GSp(4,Zp). Then, for a finite set S 
of places, including the archimedian place, Kp = GSp(4, Zp) holds for all primes 
p ^ S. Let n = ®VTLV be an irreducible, cuspidal automorphic representation of 
GSp(4,A), which is not CAP. Suppose S contains the set of places, for which n 
is not unramified. Assume the archimedian component belongs to the discrete 
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series. For the corresponding coefficient system VM on M let Hl(M,V^)(Uf) denote 
the generalized II/-eigenspace with respect to the natural action of GSp(4, A/) on 
H*(M,Vu). Then 

(1) W(M, V^)(Uf) = Hp{M,V^)(Tlf) for all L 
(2) Hl(M, VM)(II/) = 0 for i / 3 both for the complex and the etale cohomology. 
For p £ S the Shimura variety Mk = M/K has a model over Spec(Zp) with good 

reduction modulo p, the moduli space of principal polarized abelian varieties with level 
X-structure. Its special fiber M^(FP) over a Fp-valued geometric point of Spec(Zp) al­
lows to define corresponding generalized eigenspaces i7p^t(M^(Fp), V^)(Uf) of T~L(K) 
for the etale Z-adic cohomology groups for any prime / different from p. The subspaces 
in Hl(M, Vfj.)(II/) = 0 of the K-invariant vectors can be identified with the general­
ized (II/)K-isotypic submodules Hl{MKl VM)(II/) C F(M/^,VM) with respect to the 
action of the Hecke algebra H(K) = C™{K\ GSp(4, AF)/K), so that 

(3) There exists an isomorphism HP(MK(Fp), VM)(n/) ^ HP(MK, VM)(n/), which 
respects the action of the Frobenius Frobp. 

For / = Uv^oofv in C~(AR\GSp(4,A/)/ l iO and a prime p not in S where 
/ — fpfp and fp — 1kp consider the supertraces on HP(Mk, Vm)(II/) respectively 
HP 6t(MK(Fp), VM)(n/) and let T(nJp,Uf,/i) denote the difference 

4 • Trace fp ' Frob£; H*(MK(WP), VM)(H/ - Trace fp-hp^;HP(MK^)(Uf 

for nonnegative integers n. Here hpn^ G C£°(Kp\ GSp(4, Qp)/Kp) is a certain spherical 
Hecke operator (see Kottwitz [K], th. 2.1.3). Then the following holds: 

(4) There exists a suitable function fM = Hv f^f on M (A) ^ G1(2,A) x 
Gl(2, A)/A*, where and for v ^ p depend on fp,K,p and /pM also depends 
on n, such that for n sufficiently large T(n, fp, Hf, /1) is equal to the stable elliptic 
trace ST;(h™hMfM) 

T(n,r>,iLf,rì = ST;{h%h?fy) 

(using notation of [K2],p. 189) and T(n, fp, Uf, ¡1) vanishes unless II is a weak endo­
scopic lift. 

A proof of the statements (1), (2), (3) of hypothesis B is given in [W]. (2) this 
should be a general phenomenon for Shimura varieties. Statement (4) is deduced in 
[W] from [K2] and the topological trace of Goresky-MacPherson [GMP], [GMP2]. 
[Lau] gives a formula for T(n, fp, Uf, //), which holds without the assumption, that 
n is not CAP. Nevertheless it seems not completely obvious how to pass from [Lau], 
th. 23.3 and prop. 20.2 to statement (4). (For a comparison we remark that our fM 
differs by a sign from the one in [Lau], since normalization of the transfer factor Aoo 
in loc. ext. differs from the one used in [KS] or [W]). 
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We now apply hyp. B(2) to obtain dimension formulas. Assume that II is not 
CAP nor a weak endoscopic lift. By the assumptions then Wjlf — 0 vanishes except 
for the middle cohomology degree i = 3. We therefore write Wuf — Wjjf. An 
irreducible cuspidal representation II contributes nontrivially Wuf 7^ 0 iff IIoo belongs 
to the discrete series of weight {k\,k2). Let I I a n d II^ denote the discrete series 
representations of weight (fci, k2) of Whittaker type respectively of holomorphic type. 
Abbreviate m+(II/) = 772(11+, II/) and m~(Hf) — ra(II^II/). Then the dimension of 
WUf is 

dimg (Wn/) = 2 • m+(ILf) + 2 • m-(Uf). 

The factor 2 is due to the two Hodge types (k\ + k2 — 3, 0) and (0, k\ + k2 — 3) 
resp. (ki — l,k2 — 2) and (k2 — 2, k\ — 1), to which contributes. In particular 
dim^iWiif) is even. 

Ramanujan's conjecture. — Still assume, that n is neither CAP nor a weak endo­
scopic lift. Fix a nonarchimedian place v different from /, where Uv is unramified. 
Then by hyp. B(4) the trace identity T(n, fp ,Uf, ¡1) = 0 holds for all sufficiently 
large integers n. Since by definition T(n, /p , Uf, ¡1) is a finite sum X^C^Z™ with 
cv E Z, zv G C for all n, T(n, fp,Uf, ¡1) — 0 follows for all n. Summing over n ^ 0 
then implies, that the local L-factors at v satisfy the identity 

(*) n det(l - Frob„\Wn; -Pvs)~4 n 
n' 

Lv(n'v,s-3/2)2m(u'\ 

The products are over all isomorphism classes of irreducible cuspidal automorphic 
representations of GSp(4, A/) respectively n ; of GSp(4, A), which are unramified 
at v and for which Uf is isomorphic to n at all places different from v and 00. 

By the Weil conjectures and the cuspidality assumption the Euler factors on the 
left side of the formula above all have weight 3 + c. Hence the unitary representation 
nv 0 |H|S^2 satisfies Ramanujan's conjecture at the unramified place v. By varying v 
(and by varying / if necessary) Ramanujan's conjecture therefore holds for all unrami­
fied nonarchimedian places of n . A refinement: In general it is expected, that weakly 
equivalent cuspidal irreducible representations n and n ' of (7(A) for a reductive con­
nected group G over Q are locally isomorphic at all nonarchimedian places v, where 
n and n ' are unramified. This in fact would follow from a good theory of L-series 
for such representations. For the group GSp(4) a good theory for the spinor L-series 
exists ([PS]). This implies 

1.2. Lemma. — Suppose U and U' are weakly equivalent irreducible cuspidal automor­
phic representations o/GSp(4,A). Assume 11^ = 11^ or assume that 11^, 11^ are 
discrete series representations of the same weight (ki,k2). Then Uv and U'v are iso­
morphic for all places v, where both U and U' are both unramified, and the Ramanujan 
conjecture holds for these places. 
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Proof. — That Ramanujan's conjecture holds here more precisely means, that it holds 
at the unramified places of the unitary representations 11(g) ||-||c/2 and IT7 ® ||-||c/2. For 
simplicity of notation assume c = 0 for the proof. From the global functional equation 
of the L-series of II and IT ([P],[PS]) we obtain ]JV 7(11, s) = Uv 7(n'> s)- This is a 
finite product over all places v, where the representations are not isomorphic. From 
our assumption IIoo = 1 1 ^ at the archimedian place we obtain 7oo(II, s) = 700(IT7, s); 
for the slightly more general case considered here this also holds, at least up to a 
constant, by the remark below. Therefore, being rational functions in p~s, we get 
7v(II, s) = cv • 7v(lT,s) for certain constants cv for all v. For unramified HV,T1'V the 
s-factors are well known and easy to compute. This immediately implies 

LV(U\ 1 - s)/Lv{U, s) - L.(n/V, 1 - s)/Lv(W, s). 

By comparing both sides Lv(Ii, s) = LV{W, s) follows. A cancellation of Euler factors 
is not possible, since Ramanujan's conjecture holds. The equality of L-factors for the 
unramified representations in turn implies Iiv = H'V. 

Concerning the archimedian place: Suppose IIoo and 1 1 ^ are in the same discrete 
series L-packet. Then by hyp. A(6) one finds two auxiliary weakly isomorphic repre­
sentations constructed as weak endoscopic lifts, with the same central character and 
these given representations at infinite in the discrete series L-packet 11+,, 1 1 ^ of fixed 
weight (fci,^). Then a similar argument as above, applied for these auxiliary rep­
resentations, gives 7oo(n+>, s) = Coo • 700(11^, s) for some nonvanishing constant Coo. 
This completes the proof. • 

If we insert the information from lemma 1.2 into the formula (*), we obtain an 
improved formula, since now we know that to the product on the left side of formula (*) 
only the single representation II/ = 1 1 / can contribute. On the right side of formula (*) 
only the archimedian component of IT7 = Il^IIy- may vary in 1 1 ^ € {n^(croo)}. We 
thus obtain 

1.3. Corollary. — Suppose that II is an irreducible cuspidal automorphic representa­
tion o/GSp(4, A). Suppose II is neither CAP nor a weak endoscopic lift. If Uoo is in 
the archimedian local discrete series L-packet 11+,, 1 1 ^ of weight (fci,/^), and if v is 
some unramified place of U different from I, then the following holds 

L,(ni;,5-3/2)2-m+(n/)+2-rn"№) d e t ( l - F r o b v | ^ n / -P~s)~4-

Some additional remark. — The Tchebotarev density theorem for Gal(Q/Q)-
representations implies that the semisimplification of Galois representations Wuf 
attached to weakly isomorphic irreducible cuspidal representations are isomorphic. 
In other words, the semisimplification Wf[f of the Galois representation only depends 
on the weak equivalence class of II. Let us draw some consequences from theorem I 
and corollary 1.3. Together they imply that Wf[ = n • pu,x has to be an isotypic 
multiple of the four dimensional representation pn,\ defined in theorem I. In fact by 
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corollary 1.3 it has to be an isotypic multiple of some A-adic representation p. If p 
where different from pn,A, then pn,A were a multiple of p. On the other hand the 
dimension of pn,A is four and pn,A is not reducible of form pn,A — 2 • po for some two 
dimensional representation po by theorem II. Therefore p = pn,A holds. Therefore 
the dimension formula of cor. 1.3 implies 

Lv(UVi s - 3/2)(-+(%H--(n/)) /2 de t ( l -pn ,A(Frob , ) -p -5RN-

If we replace II by its unitary character twist LTo = II 0 ||-||c/2, the left side becomes 
a power of the L-factor Lp((IIo)p, s — w/2) defined in theorem I. A comparison with 
theorem I gives 

1.4. Lemma. — Suppose II is an irreducible cuspidal automorphic representation, 
which is neither a CAP-representation nor a weak endoscopic lift such that I i ^ 
belongs to the discrete series. Then m+(II/) + m~(Uf) — 2n is an even integer. 

We remark that the corresponding assertion becomes false, if II is CAP or a weak 
endoscopic lift. In the second case m+(II/) + m_(II/) = 1 holds by hypothesis A. For 
the first case see [P]. 

7.5. Proposition (Stability). — Suppose IT is an irreducible cuspidal automorphic rep­
resentation, so that IIoo belongs to the discrete series. Suppose II is neither a CAP-
representation nor a weak endoscopic lift. Suppose II is weakly equivalent to a multi­
plicity one representation IT (for instance a globally generic representation). Then 

m+(Il'f) = m-{Uff) 
holds for all Uf, which are weakly equivalent to II. 

Proof. — Replace IT by II. By multiplicity 1 for II either m+(II/) or m~(Ilf) = 1. 
Therefore m±l(Iif) > 0 by the last lemma 1.4. The Galois representation on the 
underlying Qz-vector space is Hodge-Tate by [CF] theorem 6.2(h). The theorem of 
Sen therefore implies the existence of four different eigenvalues each with multiplicity 
m+(n / ) , m+(nj ) , m~(II/), m~(Uf) respectively, as in [T] at the end of section 1, 
p. 296, Theorem I and corollary 1.3 relate the Galois representation with the L-series 
and Tchebotarev implies, that Galois substitutions with four different eigenvalues have 
eigenspaces of equal dimension 2m+(Hj) + 2ra~(II/). But since the multiplicities are 
equal, we obtain from the theorem of Sen m+(Uf) = m+(H/) = m~(Uf) = m~(Uf). 
This proves m+(Hy) = m~(II/) . Since the Galois representation depends only on 
the weak isomorphism class of n , this arguments extends to any Uf in the weak 
equivalence class of n . • 

2. A review of Taylor's Results 

We introduce some notation following [T], section 1 and 2. Fix an irreducible rep­
resentation n such that belongs to the discrete series of weight (&i, k2). Assume 
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the central characters of II normalized to be nonunitary as in the last section. As­
sume II is neither CAP nor a weak endoscopic lift. Let S be a finite set of places 
of Q containing all archimedian places, and all places where the representations IT 
is ramified. Consider the semisimplification Wjff of the Galois representation Wnf-
This notation is consistent with [T], top of p. 297, since IIV = II (g)^1 by lemma 1.1. 

The representation W attached to II. — Put k = Qj. Define W to be the finite 
dimensional k-vector space W — Wjf © Wff © Wf[ 0 I^f, The absolute Galois group 
acts on W. Let G denote the Zariski closure of the image of the Galois group. This is a 
reductive group G defined over k. The obvious embedding defines a faithful algebraic 
representation s : G ^ G1(W). For ease of notation we also write G for its group of 
k-valued points. Then we have a homomorphism 

r : Gal(Q/Q) G. 

Let G° be the connected component of G in the Zariski topology. Let T be a maximal 
split torus in G°. Let R G X*(T) denote the roots of T of the representation s. 

Properties ofU ([T], lemma 1 and corollary 1 ) 
(a) There exists an algebraic homomorphism n : G —> k*, n\G° / 1, which is 

nontrivial on G°. 
(b) For all g G G the matrix s(g) G G1(W) has at most 4 eigenvalues, which come 

in at most two pairs a,n(g)/a. 
(c) Root condition: For all roots A G R we have A2 ^ n as characters on T. 
As explained in the last section we have from the stabilization of the trace formula: 
(d) The irreducible unitary cuspidal automorphic representation IIo = II 0 ||-||c/2 

satisfies the Ramanujan conjecture for all unramified nonarchimedian places (II is not 
CAP by assumption). 

(e) By cor. 1.3 the /c-dimension of W is 4m and 

Lv(U,s-3/2)m = det(l - ^ ( F r o b ^ ^ r 1 

for all unramified nonarchimedian places v. (II is not CAP nor a weak endoscopic 
lift). We may furthermore assume nor — cuup^3• 

A list of possible cases ([T], p. 298). — We list the different possibilities for (G,s). 
This list was proven in [T] under the hypotheses (a), (b), (c) together with a weaker 
version of (e). There are 11 possible cases for the group G° and the representations 
s\G°. In the cases 4-11 of this list the index G/G° is at most 2, since the quotient 
group G/G° embeds into the group O in these cases 4-11 ([T], page 299 bottom). 
The group O is tabulated in the right column of the list, and is either trivial or cyclic 
of order two in these cases. (See also the discussion on the bottom of page 301 of [T] 
and the lemma below. The critical cases occur in Proposition 1, part 5 and 6 of [T]). 

The cases 1 and 3 of Taylor's list will be called the critical cases. 
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First critical case (case 1). — 0° = for r = 1, 2 and s\G° = (x ® nX l)2rn and 
O = Z/2Z. The center Z(G°) = 0 ° is connected. 

Second critical case (case 3). — G° = Gl(2) and s\G° = (st)2rn and O = {1}, where 
st denotes the 2-dimensional standard representation. The center Z(G°) = Gm is 
connected. 

The additional conditions (d) and (e) simplify Taylor's list. The proof of the main 
theorem reduces to the two critical cases 

2.1. Lemma. — In all the cases of Taylor's list except in the critical cases W is a 
isotypic multiple of a 4-dimensional representation pu and the main theorem holds. 

Proof. — It is enough to show, that except in the critical cases W is an isotypical copy 
of a 4-dimensional representation of the Galois group Gal(Q/Q). We prove slightly 
more: Property (e) further simplifies Taylor's list, since each eigenvalue of s(g), g G G° 
occurs with multiplicity divisible by m where dim(W) = 4m. In particular, the 
coefficient e, / which appear in the second column of this list of [T] must satisfy: 
e = f = m in case 2, 4, 5 and 9 and / = 0 in case 8. Here it is supposed that e, / > 0 
in case 2, / > 0 in case 4 and 5, e , / > 0 in case 9. This implies, that in all the 
cases 4-11 of this list, the representation s of G° on W is a m-fold direct sum of a 
four dimensional representation s : G —• Gl(4, k). The image s(0°) is contained in 
GSp(4, k) in the cases 2, 4, 5, 6, 7, 8, 9, 11 and in GO(4, k) in case 10. Since the group 
O is independent from e, and TV C G° in cases 4-11 and contained in the scalars for 
case 2 — see [T], p. 299 — we conclude that also W decomposes as a representation 
of the full group G into a m-fold isotypic direct sum of a 4-dimensional representation 
pu with similar restrictions of the image. This completes the proof of the lemma. • 

Notations. — We need further information on the group 7To(G) of connected compo­
nents in these cases. Let G C G be the kernel of the natural map G —> 0 , where 
0 = {ge Out(0°) | s o g\G° ^ s\G0}. Then 

GIG 0 . 

Let N be the centralizer of 0 ° in 0 . Then NnG° = Z(G°) and 0 = (N x 0° ) /Z(0° ) 
and we have exact sequences 

(G°)ad 

GC N/Z(G°) 

Z(G°) •TV 
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for the normal subgroups G° and TV respectively. Since G/G° imbeds into the finite 
group 7To(G) of connected components, the group N/Z(G°) is a finite group. In 
particular Z(G°) = TV0, if the center of G° is connected. 

For the proof of theorem I it remains to understand, what happens in the critical 
cases 1 and 3 of the table in [T], p. 298. From now on consider the cases one and three 
of Taylor's list. In the two critical cases the group Z(G°) is connected and therefore 
Z(G°) — TV0, which is a torus over k of rank r for r = 1 or r = 2. Hence 

7T0(G)^N/Z(G0)^7r0(N), 
which is a subgroup of TTO(G) of index at most 2 in the two critical cases 

0 - ^ 7 r o ( A 0 •TTO(G) GIG —• 0. 

The group G/G may be nontrivial only in the first critical case. We later distinguish 
the two subcases la and lb, where G/G is trivial or nontrivial G/G = Z/2Z. 

The finite group TV. — TV and G can be obtained as pushouts. Choose an integer n 
which annihilates H2(TTO(N), A:*), e.g. which annihilates the order of 7To(TV). (n should 
not be confused with the character n introduced earlier.) There exists a finite group 
TV and a central extension 

0 —* (/in)r —• TV —• TTO(JV) —- 0, 

such that TV = (TV x №)/(pn)r and G = (N x G°)/(pn)r, where (pn)r is the group 
of n-torsion points in the torus TV0 = Z(G°). The restriction of the representation s 
of G to the finite subgroup TV defines a faithful representation 

p : TV —> G\{W). 

A detailed analysis of the representation p in the critical cases is given in appendix B. 
It shows, that either p or its restriction to a subgroup of index two is a balanced 
representation, and these balanced representations are classified in appendix A. This 
leads to the proposition 3.1 of the next section. 

3. D-critical automorphic representations 

In the following sections we analyze the analytic behaviour of certain L-series. For 
this it is most convenient to assume the underlying cuspidal irreducible automorphic 
representation n of GSp(4, A) to be unitary. As explained already, this unitary nor­
malization differs from the algebraic normalization used in the last sections by the 
twist naig = nunit||-||~c/2 for c = w — 3. From now on we assume, that n is unitary 
(except for appendix B and D where the unitary representation will be called Ho). 

Let X denote a Dirichlet character of finite order. The L-series £(n, X, s) studied 
below does not change, if we replace n by a character twist. Therefore we often switch 
between unitary representations n and 11', which only differ by a twist with an idele 
character. Sometimes the character twist II' of n need not even be automorphic. 
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Outside a finite set S of bad places including the archimedian place, the repre­
sentation II = <8>VUV has unramified local representations Uv and is completely char­
acterized by its Satake parameters {yv, vv, \iVl Jiv). These four complex parameters 
uniquely determined by 11^ up to a reparameterization under the Weyl group, such 
that vv\iv — uvJlv. There are two L-series attached to II. One of them is the degree 
four spinor L-series 

(M,VM) x tff> 
n Lv(II(g)x,s), 

which appeared in theorem I. The other one is the degree 5 standard L-series 

Cs(n ,x ,s ) n Cv(n,x,s). 

The local L-factors Yij (1 —cv,jXv(Pv)PyS)~1 m the first case are obtained from the con­
stants cvj7j = 1 , . . . , 4, which are the Satake parameters VV,VV,IAV, Jiv of Tlv. The sec­
ond degree 5 L-series is obtained from choosing the constants cvj in {1, |p , ^ } . 

In section 2 the proof of theorem I has been reduced to the study of two critical 
cases. In these critical cases, the properties (a)-(e) of the automorphic representation 
II (listed in the last section) have to be reformulated in terms of the Satake param­
eters of IT. By elementary group theory this is done in the appendices A and B. To 
summarize the result we introduce further notation: 

In appendix B we define a cyclic normal subgroup 7TL(G) C 7TQ(G) of 7To(G), which 
is trivial except in case la. Let A be the quotient group 

0 —> TTT(G) — • 7Tn(G) —> A —> 0 

and let L be the finite extension of Q with Galois group A defined by the surjective 
homomorphism r : Gal(Q : Q) -> TTQ(G) = G/G° -> A. Let L be the field attached 
to the quadratic character with values in G/G. Hence L = Q if G = G, or L is a 
quadratic extension of Q contained in L. Let A denote the Galois group Gal(L/L). 
This gives field extensions 

L° 

_ L 

~\ A 
G/G\/ 

There exists a finite set of roots of unity £v and a set T of places of Dirichlet density 
zero containing 5, such that the Satake parameters of IYV for v £ T have the shape 

VvCy1•> Vv, PvCv) with UJN,v{Pv) = VvPv Furthermore Qv = 1 holds if and only if v 
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splits in L. The logarithmic local zeta factor for v £ T has the following asymptotic 
expansion 

logCv(nV,X„,s) u>v 'X(Pv)Pvs + 0(pv zs) 

with real weights wv = £v + Q + Adv and real numbers — 1 ^ Adv ^ 3 denned by 

*Adt Pv Cv ^v 
Pv Cv ^v 

In fact, should theorem I not hold for II, lemma B.2 and lemma B.3 of the ap­
pendix B imply: The roots of unity are £v = ±1 and the Galois group Gal(L/Q) is 
either an elementary abelian 2-group of order D ^ 4, or it is dihedral with normal 
elementary abelian subgroup Gal(L/L) of order D ^ 4. More precisely 

3.1. Proposition. — / / under the assumptions of theorem I the assertion of theorem 
would not hold for li, then U is D-critical either of CM type with D ^ 8 or nonde­
generate of two-abelian type with D ^ 4 in the following sense 

3.2. Definition. — A unitary irreducible cuspidal representation II of GSp(4,A) is 
called D-critical, if it is neither CAP nor a weak endoscopic lift and if the follow­
ing holds: 

(i) There exists a Galois extension L/Q with Galois group of degree D = [L : Q], a 
finite set S of Q-places containing the ramified and archimedian places of II and L, a 
set T of Q-places containing S of Dirichlet density zero, such that the following holds: 
For all v é T the representation 11^ has Satake parameters 

£v^v 1 pv •> 

with ev = d=l and ev — 1, if and only if v splits in L/Q. 
(ii) For v £ T we have uou(Pv) — VV/JV for the central character cuu of n . 
(hi) The Ramanujan conjecture holds for all v £ S, hence \i/v\ = \fiv\ = 1 holds for 

all v <fc T. 

A L>-critical representation II will be called nondegenerate, if (vv/pv)2D 7^ 1 for 
all v ^ T. It is said to be of abelian resp. two-abelian type, if the Galois group 
A = Gal(L/Q) is an abelian group resp. an elementary abelian 2-group. It is said to 
be of CM type, if A contains an elementary abelian 2-group A as normal subgroup 
of index 2 and order D ^ 4, whose fixed field is a distinguished quadratic extension 
field L of Q in L such that for v T the Satake parameters are determined by a pair 
of Grossencharacters as in Lemma B.5 and B.6 of appendix B. 

3.3. Remark. — For a D-critical representation II define Adv = 1 + ^ + ^-. Condition 
(iii) and the discussion preceding prop 3.1 imply 

(iv) The numbers Adv,v £ T are real and satisfy — 1 ^ Adv ^ 3 and the weights 
of the asymptotic expansion of the logarithmic zeta function log (v (Uv, \v, s) are 

wv = 1 + £v • (Adv +!)• 
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Therefore property (iii) implies for s —» 1+ the asymptotic behaviour 

logCS(n,X,5) ~logLs(Xls) ^ e , , • (Ad„+1) -x(PV)pvs, 
V 

for all unitary characters x of A * / Q * . 

4. Theta lifts 

From now on assume II is D-critical as in proposition 3.1 of the last section. We 
claim that this implies 

4.1. Proposition. — Suppose U is D-critical of aabelian or of CM type. Then the re­
striction ofU to Sp(4, A) contains a theta lift in the sense of theorem 

This proposition is the quintessence of the following theorem 4.2 and the next three 
lemmas, which summarize results from appendix A and B. 

Let T G Symm2(Q2), det(T) ^ 0 belong to a nondegenerate non vanishing Fourier 
coefficient of II as in [KRS], p. 531. Such T always exists, and T defines a bi­
nary quadratic space VT over Q with character XT = (.,A(Vr)), where A(V) — 
(—i)dim<y)/2 det("\/) is the discriminant of the quadratic space V of even dimension 
over Q. Its value in Q*/(Q*)2 only depends on the isomorphism class of the quadratic 
space. Note A(V © V) = A(V)A(V). 

4.2. Theorem ([S], [KRS], th. 7.1). — Suppose II is unitary and cuspidal. J/£S(II, xo, s) 
has a pole at s — 1 (for some sufficiently large finite set S and some unitary charac­
ter xo) then 

(1) C5(II,xo,s) has a simple pole at s = 1. 
(2) The restriction of IT to Sp(4, A) contains a theta lift from some automor­

phic representation of the orthogonal group 0(V, A ) , where V is a four dimensional 
quadratic space VT © VT' . VT is as above, and VT> is the binary quadratic space with 
quadratic character XoXt-

Let K be the rank two commutative algebra over Q, which is attached to the 
quadratic character XK = Xo by class field theory. Note, that XK is the quadratic 
character attached to the discriminant A(V) of V — VT 0 VT> • K is a quadratic field 
extension of Q unless XK is the trivial character. Then K — k2. 

4.3. Remark ([Wl], section 3). — In [S] the important assertion 4.2.1 is formulated 
only for xo = XT- In general it can be deduced from [S], th. 2.4. This also implies, 
that a unitary character xo, for which (5(II,xo,s) has a pole at s — 1, must be 
quadratic Xo = 1 (see a^so the introduction of [KRS]). 
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4.4. Lemma. — Suppose li is D-critical of abelian type. Then for s —> 1+ we have the 
asymptotic behaviour 

loS (nx6sC(n ,x ,a ) ) •D- J2 (Ad„+2 ) -p-s , 
v L-svlit 

where the product is over all D characters x °f the Galois group A of L/Q. Hence 
Xo>s) has a P°le at s = 1 for at least one of the characters xo £ A, whereas 

YlX£A C(n, Xi s) has a P°le at s = 1 of order at most 5. 

Proof. — The first statement is an immediate consequence of the asymptotic for­
mula for the logarithmic zeta function, stated at the end of the last section. The 
primes pv,v G T which are completely split in L, are called L-split. They have 
Dirichlet density 1/D. Since 1 ^ Adv +2 ^ 5 for these primes, we get log£(s) -< 
log(n% C(n, X? s)) -< 5 • logC(s), where -< means < up to some function growing like 
o(log£(s)) in the limit s —> 1+. Hence £(II, x-> s) nas a P°le f°r at least one character \ 
of A. • 

4.5. Lemma. — Let U be D-critical of CM type. Then D = 8 and Gal(L/Q) is either 
the dihedral group D$ or elementary abelian of order eight. 

Proof. — Consider the quadratic extension field L defined by the nontrivial quadratic 
character XQ — XL/Q> related to the nontrivial quadratic character Gal(Q/Q) —• G/G. 
Then Gal(L/L) has order D ^ 4 with D — 2D ^ 8. 

Then similar to lemma 4.4 in the limit s —> 1+ we have 

log(C(n,XQ,5)C(n,l,s)) ~ 2 
; L-split 

1 +ev . (Ad„+1)) -p~s. 

By lemma B.5 and B.6 of appendix B we can replace the terms (1 + ev • (Adv +1)) 
in the sum by the weights wv = 3 in the case A where v is L-split, and by wv — — 1 
in the case B where v is L-split but not L-split. These cases have Dirichlet density 
1/2L> and Dirichlet density (D — 1)/2L> respectively. This asymptotically gives 

V 2D 2D' 
•logC(a)= (¿-l) •logC(a)= ( ¿ - l ) - l o g C ( a ) 

on the right side. However, as the logarithm of a meromorphic function, the number 
(4/D) — 1 has to be an integer. Since D ^ 4 this forces D = 4, hence implies D = 8 
and Gal(L/Q) = Z/4Z 0 Z/2Z or (Z/2Z)3 or L>8. See the example in appendix B 
after lemma B.3. Finally, the first group (N,S | N4 = S2 = 1, NS = 57V) is easily 
excluded. The character x of this group defined by x(S) — 1 and x(N) = i takes 
imaginary values except on the subgroup with elements 1, N2, 5, SN2. This is the 
elementary abelian 2-group Gal(L/L) contained in Gal(L/Q). These elements belong 
to the cases A, L?, B, B with statistical weights w\ = 3,wN2 = ws — WSN2 = — 1 and 
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Dirichlet densities 1/8 in the sense of lemma B.5 of appendix B. Therefore the real 
part of log C(n, Xi s) behaves as 

(3/8 - l/8Xiv(^2) - 1/SXN(S) - 1/8XN(SN2)) logC(s) = - • log COO 

for s —• 1 + . This is impossible, since C^fll, %, s) is meromorphic at s — 1. 

4.6. Lemma. — Suppose U is D-critical of CM type with group Gal(L/Q) = Dg or 
(Z/2Z)3. Then there exists an abelian character x of Gal(L/Q), such that £(II, x, s) 
has a pole at s = 1. 

Proof. — If the Galois group is abelian, this is covered by lemma 4.4. We can therefore 
assume Gal(L/Q) = Dg. The group A = Dg has four different abelian characters 
1> XQi XP, XR- Their common kernel in Dg is the group commutator group {1,7V2} 
of order two. The notation is as in the remark after lemma B.3 of appendix B. 
The nontrivial element TV2 in the commutator group belongs to case B, whereas the 
element 1 belongs to case A, in the sense of lemma B.5. The corresponding statistical 
weights are w^2 = — 1 and w\ = 3. They occur with Dirichlet density 1/8, hence 

i o g ( n x 6 s C ( n , x , * ) ; ' 4 ' ( 3 / 8 - 1/8)- log C(s). 

Therefore the function ("(II, x, s) has a pole at s = 1 at least for one character \ £ A . • 

Further information on the analytic behaviour of these zeta functions will be needed 
later. This information can not entirely be obtained by the method used above. But 
as shown above II contains a theta lift. On the other hand the primes of Q have a 
certain decomposition behaviour in the field extension L/Q. The two facts together 
impose strong conditions on the possible behaviour of ((Ft, x> s) at the point s — 1 in 
the /^-critical cases of CM type. For details we refer to appendix C. 

5. The orthogonal group of similitudes GSO(V) 

For a nondegenerate quadratic space of dimension four over a local or global 
field k of characteristic zero let GO(V) be the orthogonal group of similitudes and let 
GSO(l/) be its subgroup of proper similitudes. GSO(V) is geometrically connected 
in the Zariski topology and of index two in GO(V). The kernel of the similitude char­
acter is the special orthogonal group SO(V). SO(V) is of index two in the orthogonal 
group O(V) and GO(V) is generated by GSO(V) and 0(V). 

0 —• SO(V)(Jfe) —•> GSO(V)(k) —> M{k) 0, (/C*)2 C M(k) C F . 

Let K is a field extension of k of degree two, or K = k ® k. Let a be the canonical 
nontrivial involution of the algebra K/k. The norm form defines a nondegenerate 
binary quadratic form over k with discriminant AK, such that K — k[T]/(T2 — A^) . 
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Consider a central simple algebra D K of rank four over K , such that D K = D ^ S ^ R 
holds for some central simple algebra D of rank four over k. Then the involution a of 
K D K extends to a cr-linear involution d I—> d* of such that (^1^2)* — ^2^1 
and (di 4- c/2)* = d\ + ̂ 2 holds? such that it commutes with a fixed i^-linear standard 
involution z ^ ~z oi D K - The symmetric elements V = {d G .DK | d = d*} define a 
four dimensional k subspace of D K - The restriction of the reduced norm N(z) = zz 
to V has values in k and defines a nondegenerate four dimensional quadratic space 
over k with discriminant A(V) = A ^ mod (k*)2. The group D K acts on V by 
d 1—> as proper orthogonal similitudes with similitude factor Norm#/k(7V(<7)). 
The induced homomorphism of algebraic /c-groups ~ResK/k(DK) —• GSO(V) is surjec-
tive. Its kernel is the subgroup A of all elements in the center Kx = ResK/k(K*) of 
R e s i z e w h o s e K/k-norm is trivial. GO(V) is the group generated by GSO(F) 
and the reflection e defined by e(d) = (d)* = a(d). Conjugation by e acts on GSO(V) 
via g H-> <j(g). 

5.7. Lemma. — Suppose k is a local or global field of characteristic zero. Suppose 
V is a nondegenerate quadratic space over k of dimension four and discriminant 
A(V). Let K be the algebra k[T]/(T2 — A(V)). There exists a central simple algebra 
D K = D <S>k K of rank 4 over K extended from a central simple algebra D of rank 
4 over k, such that GSO(V) is isomorphic to the quotient group defined by the exact 
sequence 

l ^ A — + ResK/fc(D^) —• GSO(V) 1, 

where A is the norm 1 subgroup of the center Kx of ResK/k(DK). GO(V) is iso­
morphic to the semidirect product GSO(Vr).(Z/2Z), with the action on the normal 
subgroup GSO(V) defined by a. 

Fix a &-group GSO(y) isomorphic to ResK/k(DK)/A for some choice of K and 
D K - For algebraic extension fields F of k the natural map DK{F) —» GSO(V)(F) 
need not be surjective. However 

0 —> A(F) —> D*K(F) GSO(V)(F) —> H \ F , A ) —> 0 

is exact. Moreover Kx/A = Gm for Kx — ResK/ki^m) under the K/k-norm, hence 

0 —> A(F) —> KX(F) —> F* —> H \ F , A) —> 0 

is exact. Since Kx embeds into the center of DK, we obtain as in [HST], p. 380 

5.2. Lemma. — For GSO(V) = ResK/k(D*K) / A as above there exists an isomorphism 

GSO(V0(F) = (D*K(F) x F*)/KX{F) 

of the groups of F-valued points, where the quotients are with respect to the inverse of 
the natural central inclusion K*(F) —• D*K(F) respectively the norm map Norm^/fc : 
KX(F) -> F*. Furthermore the projection p : GSO(V)(F) -> F*/KX(F) is surjective 
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with kernel D^(F)/A(F). The similitude morphism v is induced by D*K(F) x F* 3 
(g,t) i—• NormK/k(N(g)) • t2. In the local field case one has an exact sequence 

0 —> D°K(F)/A(F) . SO(V)(F) F*/KX{F) —• 0, 

where D°K(F) C D*K{F) is the subgroup of all elements g for which Norm^/^{N(g)) = 1. 
(Of course elements of F*/KX(F) usually cannot be lifted to elements that centralize 
D%(F)/A(F)). 

Proof — The first statements are clear. Notice (F*)2 C NormK/k(N(D^(F))) in 
the local field case. This is obvious for F = C. For F = R this holds, since every 
positive real number is a norm. It is true in the nonarchimedian case, since then N is 
surjective by Eichler's theorem. Hence for t £ F* there exists g E D^(F), such that 
NovmK/k(N(g))t2 = 1. Hence (g,t) G SO(V,F) is a preimage of the class of t G F* 
under the projection map p(g,t) — t. The kernel of this map is D®K(F) / A(F). • 

5.3. Corollary. — For a local field k of characteristic zero irreducible admissible rep­
resentations of GSO(V)(fc) correspond to pairs (TT^^UJ), where nv is an irreducible 
admissible representation of D*K{k) with central character u^v and UJ is a character 
of k*, such that co^v = a;oNorm^/fc ofirv. There exist at most two nonisomorphic ex­
tensions to an irreducible representation (TTV,UJ,5) of GO(V, k). This extension (7rv)+ 
is unique (S = +) iff <r(7rv,UJ) = (O-(TTV),UJ) is not isomorphic to (TTvor equivalently 
iff the induced representation is irreducible or equivalently iff (TTV)+ is isomorphic to 
its twist by the nontrivial character of GO (V)(k)/ GSO(V, k). Otherwise there are two 
extensions (7rv)+, {TTv)~ (hence 6 = ±). This case occurs if and only if the restric­
tion of the irreducible representation (7rv)+ to GSO(V)(k) remains irreducible. Each 
of the extensions in this case is obtained from the other as twist with the nontrivial 
character of GO(V)(k)/GSO{V, k). 

As in the last corollary assume k to be local. Then admissible representations 7rv of 
D*K(k) can be related to irreducible admissible representations IT of G\{2,K) via the 
Jaquet-Langlands correspondence. Therefore irreducible admissible representations 
of GSO(V)(fc) as described in corollary 5.3 may be uniquely characterized by the 
corresponding admissible irreducible representation (TT,LU) of the group Gl(2, K) x k*. 
Notice that ujn = UJ o Nornix/fc holds since uo^ — UJ^V . 

To twist a representation of GSO(V)(k) by a one dimensional character x 
composed with the similitude homomorphism amounts to replace (7rv,c<;) by 
(TTV,UJ) ® x — ® (x ° NormK/fc),UJX2) respectively to replace (n,uj) by 
(n,uj) <8) X — (n ® (X ° Norm^y*.), ̂ X2)- Since o-(n,uj) = (cr(7r),cj) and since 
X o Norm^/fc is invariant under <r, the notion of twist makes also sense for irreducible 
admissible representations of the group GO(V)(fc). 
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5.4. Corollary. — For local fields k any irreducible component of the restriction of an 
irreducible admissible representation (7TV,CJ) q/GSO(V)(fc) to its subgroup SO(V)(k) 
determines the representation of GSO(V)(k) up to a twist as defined above. 

Proof. — By lemma 5.2 the group GSO(V)(k) is generated by the subgroups 
SO{V)(k) and D*K(k) and there is an isomorphism GSO{V){k)/SO(V)/k) ^ 
DK(k)/DK(k). The composed norms Norm^/fc oJV define an injection DK(k)/DK(k) 
into A:* with an image of finite index in k*. Any character on the image can be 
extended to a character x on If H is a normal subgroup of G with abelian 
quotient, then two irreducible representations of G with a common constituent for H 
differ by a twist with a character of the quotient group G/H ([V], p. 480). Suppose 
(n^LOi) are irreducible representations of GSO(V)(fc), such that the restrictions to 
SO(V)(k) have a common constituent. This implies 7Ti\DK(k) and 7r% hence 

= 7Ti 0 x f°r a character x of DK(k)/DK(k) and moreover (ix\ 0 x , ^ i ) — (^2 5^2) 
as representations of D*K(k) x k*. The first assertion implies x = X°^OVMK/k f°r some 
character x of k*. The first and the second assertion combined imply the existence 
of an automorphism A such that ni(g)x(NormK/k(N(g)))uj2(t) — An\(g)uji(t)A~l 
holds for all g G D*K(k) and all t G k*. By Schur's lemma A is a scalar, hence can be 
omitted. For t G k* there exists g G SO(V)(k) with N o r m ^ / ^ A ^ ) ) = t2. This gives 
X2(^)^2(0 = wi(t) and proves the corollary. • 

We remark that restrictions of representations of D*K{k) to DK{k) are multiplicity 
free. Suppose DK is split. Then 7rv = n. Hence by [LL], p. 737, an irreducible 
constituent 7T of the restriction of an admissible representation (nv, a;) of GSO(V)(k) 
to SO(y)(/c) uniquely determines (7TV,CJ) up to a twist (TV,UJ) (8) X? where x2 = 1- If 

is not split, then K — k2. Again an irreducible constituent 7r of the restriction of 
an admissible representation (7TV,CJ) of GSO(V)(fc) to SO(V)(A;) uniquely determines 
(7TV,CJ) up to a twist (7T,CJ) <g> x, where x2 = 1- Now this follows from [HPS], lemma 
7.2 and page 92 in the nonarchimedian case. For the archimedian case this follows 
from [HPS], page 95. 

5.5. The theta correspondence. — The generalized theta correspondence is 
a correspondence between irreducible automorphic representations (7rv,a;,(5) of 
GO(V, A) and irreducible automorphic representation n; = #(7rv,o;,Ô) of GSp(4, A). 
It is defined for local and for global representations and we refer to n; as a 'theta 
lift'. Our conventions will be those of [V]. In particular, and (7rv,cj, ô) have the 
same central character in the sense that 

GSO(V)(fc), 

To avoid confusion for later references we notice a slight difference to the conventions 
of [HST], p. 387. If n; and (7rv,c<;,J) are in correspondence in our sense, is in 
correspondence with the contragredient of (TTV,LU,5) in [HST]. For a comparison 
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with [KRS], where the Howe theta correspondence is considered in its proper sense 
— on the level of the groups Sp(4, A) and 0(V, A) — we have 

5.6. Lemma ([V], p. 480). — Suppose k is a nonarchimedian local field as above. For 
irreducible admissible representations II and (TT^^LU^S) of GSp(4, k) and GO(V)(A;), 
which correspond under the generalized theta correspondence, also their twists by a 
character are in correspondence the generalized theta correspondence. The restrictions 
of these representations to Sp(4, k) respectively 0(V,fc) contain constituents, which 
are in correspondence for the (Sp(4), 0(V))-i7ou>e correspondence. Conversely, if an 
irreducible Sp(4, k)-constituent U of JJ and an irreducible 0(V)(k)-constituent TT of 
(7rv,(x;, S) are in correspondence for the Howe theta correspondence, then there exists 
a quadratic character x? such that II (g) x and (7rV?u;? are ^n correspondence for the 
generalized theta correspondence. 

Our interest in these correspondences is the following: For an irreducible automor­
phic representation n of GSp(4, A) as in proposition 4.1 or theorem 4.2, the restriction 
of n to Sp(4, A) contains an irreducible constituent n for which there exists an ir­
reducible automorphic representation TT of 0(V, A) which is in correspondence with 
n under the Howe theta correspondence, TT can be extended to an irreducible auto­
morphic representation (7rv,u;,^) of GO(y, A), such that cu = cu^ holds. By lemma 
5.2 the group GO(V, A) is obtained from 0(V)(A) as a pushout from the subgroup 
D°K(A)/A(A) via the inclusion D°K(A)/A(A) <-+ D*K(A)/A(A). So we have to extend 
the automorphic representation TTv of D(j<(A) to an automorphic representation 7rv 
of DK(A), such that 7rv is a constituent under D^(A). For this first extend 7rv to 
(DK(A) • if*(A))/A(A), so that 7rv acts by uo^ o Norm^/fc on the center. For the re­
maining extension use induction and choose an irreducible constituent 7rv. Moreover 
7r̂  should be chosen unramified, whenever this is possible. By the ambiguities of the 
choices in the last step TTv is uniquely determined only up to a character twist. More 
precisely, (TYV,UJ,5) is in fact unique up to a character twist which replaces (7rv,c^,^) 
by (7rv, UJ, 5) (g>X by corollary 5.4. Since we insisted on fixing uo moreover x2 = 1- Then 
by lemma 5.6 an irreducible representation of GSp(4, A) exists, such that all 
and (7rv,a;, 5)v are in correspondence for the global generalized theta correspondence. 
Therefore, again by lemma 5.6 

n ' = n 0 x 
holds for some quadratic character x of A* (a priori not necessarily automorphic). HF 
need not be automorphic, since the character x need not be automorphic. For our 
purposes we may ignore this, since we only use the fact that this implies, that 

Cs(n,x ' ,s) = Cs(n' jX',s) 

holds for all idele class characters x' °f A*/Q*. Here S is a sufficiently large finite 
set S of exceptional places outside which Xv,x'v№v are au unramified. That Xv is 
unramified at almost all places may be achieved from the construction above. 

ASTÉRISQUE 302 



FOUR DIMENSIONAL GALOIS REPRESENTATIONS 97 

6. T h e spherical lift IT(71-, a;) 

Let IT be an irreducible cuspidal automorphic representation of GSp(4,A) with 

central character con- Let 5 be a finite set of places, such that 1 1 ^ is unramified and 

nonarchimedian for v ^ S. Let Us = 0v^s^-v be the restricted tensor product over 

constituents v tfz S. 

6 .1 . R e s t r i c t i o n t o Sp(4). — The restriction of LT to Sp(4, A) may not be irre­

ducible. Let II be an irreducible constituent. Similarly let IIs be a spherical irre­

ducible constituent of the restriction of Us. If II is suitably chosen these choices are 

compatible. With this notation consider now a pair of irreducible cuspidal repre­

sentations Hi,i = 1,2 of GSp(4,A), both unramified outside S. Then the following 

statements are easily seen to be equivalent: 

(1) n f 9i n f 

(2) ("5(IIi, r , s) = £s(n.2i 7", s) holds for some unramified character rs. 

(3) n f ^ n f (8) xS holds for some unramified character xS of (A*5)* (which not be 

assumed to be automorphic). 

This implies tha t the assignment Us 1—» (II5, CJ^) now determines Hs up to an 

unramified quadratic character xS (as m (3)), since the central character is fixed. 

6.2. T h e unramif ied t h e t a correspondence . — Choose K and DK, SO tha t 

GSO(V) is described as in the last section. Let S be a finite set of places containing 

the archimedian place, so tha t K/Q and DK are unramified outside S. For v £ S 

the generalized the ta correspondence matches unramified representations (7T^,CJV, 6V) 

of GO(V,Qv) with unramified representations WV of GSp(4,Qv) ([V],p. 482). Notice, 

for (TT^, UJV, Sv) = (^,UJV)+ unramified (TT^UJVi —Sv) = (n^ujv)~ is never unramified 

(if it exists), and the restriction to GSO(y, Qv) contains an unramified constituent. 

So, by abuse of notation, the irreducible unramified admissible representations of 

GO(Vr)(Qv) are determined by the unramified irreducible representations (TT^UJV) of 

(DK(QV) x (AV)*))/A(QV). Since DK splits for v £ S furthermore (TT^UJV) = (TTVILUV). 

6.3 . Satake p a r a m e t e r s . — Hence the irreducible unramified admissible repre­

sentations of GO(V)(As) are uniquely characterized by the corresponding pairs of 

unramified admissible representations (TTS\CJS), where 7is is an irreducible represen­

tat ion of Gl(2, Af^) with central character ujn,v — cuv o N o r m ^ and cus is a character 

of (A5)*. So the generalized the ta correspondence in the unramified case relates the 

unramified representations 

(M,VM) x tff>(M,VM)(M,VM) x tff> 

of the groups Gl(2, KV) x KV* and GSp(4, Qv). In terms of Satake parameters, the re­

lationship between the spherical local representation nv, uov of Gl(2, KV) x KV* and the 

spherical local representation n ^ = T\!(ITV,UJV) of GSp(4,Qv) is described as follows. 
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6.4. Lemma (nonarchimedian unramified place). — Suppose v £ S. Let H'v = 
Ufv(7Tv,OJv) be a theta lift of some unramified admissible irreducible representa­
tion (TTV1LJv). Then Ufv is an unramified admissible irreducible representation of 
GSp(4,Q„). 

Suppose v is if-split: Let w,w' be the two extensions of v. 
- If 7TV = TTW x TTw> has Satake parameters av^j3v and a'v,/3'v with avf3v = cxfvj3'v — 

UJ(PV), then Ii'v has Satake parameters av, a'v, (5V, f5rv with cxvf3v = afvf3'v = uj(pv). 
Suppose v is K-inert: 
- If 7TV is given by the Satake parameters avif3v with av(3v = cj(p2)? then Ii'v has 

Satake parameters al^2, a^2XK(Pv), Pv^2, Pl^2XK(Pv) with o^J2'f3^2 = cu(pv). 

Proof — See [HST], lemma 10 and 11 or [V], p. 494ff. • 

6.5. Corollary. — The spinor L-series of the irreducible representation (IT7)5 = 
n'(7r5,UJs), matching with the irreducible unramified representation TTS O / G 1 ( 2 , A ^ ) 
under the generalized theta correspondence as above, satisfies 

Ls(Il',s) = LS(TT,S). 

The typical lift. — Let K and K' be two different quadratic extension fields of Q 
with composite field L = K • K' and quadratic idele class character XL/K — XK'/Q ° 
Norm^/Q of K. Let a be the involution of K/Q and TT be some irreducible cuspidal 
(generic) unitary automorphic representation of Gl(2,Ax), so that TTS satisfies the 
Ramanujan conjecture at almost all places. 

L 

К1 К,тт 

Q 
Suppose 

G[TT)^TT but (J{TT) ^ TT&XL/K-

Then for a unitary character cu of A*/Q* the theta lift IT = H'{TT,UJ) is nontrivial 
and cuspidal ([V], p. 507). Such IT cannot be C A P . Either IT is a weak endoscopic 
lift. Or IT is D-critical of two-abelian type with D = 4, as an immediate consequence 
from the last lemma and definition 3.2. A partial converse for this is proposition 10.3. 

6.6. Character twists. — Suppose II is an irreducible automorphic cuspidal rep­
resentation of GSp(4,A) with central character UJ = UJU- Let S be a finite set of 
places chosen as in 6.2 so that IIs is unramified outside S. Suppose an irreducible 
spherical automorphic constituents II of the restriction of II to Sp(4, A) is a theta lift 
in the sense of [KRS]. Then by the construction at the end of section 5, there ex­
ists an irreducible automorphic representation n of Gl(2, A#) with central character 
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ion = u o Norm^/Q and an irreducible representation IT of GSp(4, A) with central 
character a;, such that 

(W)s^us®xs, (xs)2 = 1. 
Xs is unramified but need not be automorphic. 

So temporarily consider unramified irreducible representations Hs of GSp(4, As) 
etc., which are not necessarily automorphic! Then we have canonical bijections be­
tween the following sets: 

- Equivalence classes of unramified irreducible representations Us of GSp(4, A5), 
where Ilf ~ Ilf iff nf = ILf 0 \S f°r some unramified character xS of (A5)* (not 
necessarily automorphic). 

- Equivalence classes of unramified irreducible representations ns, uos of Gl(2, A^-) x 
(A5)* with central character uo^s — UJS o Norm^/Q, with equivalence (7rf , cjf) ~ 
(nf , wf ) iff 7rf = nf 0 (xS o Norm^/Q) and uof = uof (x5)2 holds for some unramified 
character x5" of (A5)* (not necessarily automorphic). 

- Equivalence classes of unramified irreducible representations ns of Gl(2,Af^) 
with trivial central character ojns, where nf ~ nf iff nf = nf ®XS f°r some unramified 
quadratic character xS = XS ° Norm^/Q, where xS is a character of (A5)* (not 
necessarily automorphic). 

- Isomorphism classes of unramified irreducible representations ns of 

Gl(2,Ai)°M(As) 

with trivial central character. Here Gl(2,Afc)° denotes the subgroup of elements 
g e Gl(2, Af.) with NormK/Q(det(#)) = 1. 

- Isomorphism classes of spherical irreducible representations ns of 

Gl(2,Af.)%4(As). 

The first bijection is induced by the generalized theta correspondence (lemma 6.4, 
corollary 6.5). Since every unramified character UJ is a square of an unramified char­
acter, uj can be normalized to be trivial. Hence the second bijection follows. For 
the third bijection notice that character twists by the x disappear under restriction 
from Gl(2, AK) to G1(2,A|:)0. Since A^ • Gl(2, AK)° is normal in G1(2,A5) with 
two abelian quotient, conversely the restriction to Gl(2, Af^)° determines ns up to a 
character twist. Since ns has trivial central character by assumption, this character 
twist must be of the form n 0 x f°r a character x — X ° Norm^/Q- This is shown 
as in the proof of corollary 5.4. The next bijection follows by definition. For the last 
bijection notice, that the center of Gl(2, AK)°/A(AS) is finite. Hence an unramified 
representation is trivial on the center. 

Let n5 be spherical with central character OJS = UJUS . Let Us be a spherical 
constituent of the restriction of Hs from GSp(4,A) to Sp(4, A). Us is associated 
to an unramified representation ns of 0(V, As) by the Howe correspondence. The 
restriction ofns to S0(Vr)(A5) contains an unramified constituent. It is unique up to 
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the automorphism a. By lemma 5.4 it can be extended to the representation (TTV,UJ)S 

of the group GS0(V)(A5). This produces a representation TTS of Gl(2, A5), unique 
up to a twist by a character of the form x$ — {xf)S ° Nornix/fc and up to replacing 
7TS by CJ{TTS). (TTS\LU) determines an associated generalized theta lift (IT)5, hence 
determines Hs up to quadratic character twist as explained at the end of section 5. 

We remark that the partial L-series 

C5(n ,x ,*) , L| (TT x TT* x x,s) , LSK(O-(TT) x TT* x x,s) 

only depend on II . They do not change, if we replace TTS by O-(TTS) or by 7TS <g>((x') ° 
NovmK/k). 

6.7. Corollary. — For v ^ S in the situation above the following statement are equiv­
alent: 

(1) Uv is unitary, and the Ramanujan conjecture holds for Hv 
(2) 11^ is unitary, and the Ramanujan conjecture holds for U'v 
(3) TTv and ujv are unitary, and the Ramanujan conjecture holds for TTV . 

We remark that in particular this conditions exclude one dimensional representa­
tions. The next proposition is concerned with the L-series attached to the automor­
phic representation TTS of Gl(2, A^) . Observe that a replacement 

TTS I—> TTS 0 {(x)S ° Noraix) 

coming from the equivalence relations defined above, has no effect on both the L-series 
L^{TT x 7r* (g) (x ° Norm^), s) and L^(er(7r) x TT* (g) (x 0 Norm/^), s). Hence they are 
uniquely determined by the representation Hs. 

6.8. Proposition. — Suppose II is an unitary irreducible cuspidal automorphic repre­
sentation 0/GSp(4, A). Suppose Ramanujan's conjecture holds outside a finite set of 
places S. Assume S is chosen large enough to contain the ramified places of K and TT. 
Also assume, that the restriction of n to Sp(4, A) contains a theta lift. Then there 
exists an algebra K/Q of degree two with corresponding idele class character XK of 
A*/Q* and an irreducible automorphic representation TT O/G1(2, AK) as in 6.4, such 
that the order at s — 1 of the followinq meromorphic functions coincides 

(1) C 5 ( n , x , s ) ' C 5 ( n , x x x , s ) 
(2) L | ( X o N o r m e s ) - LSK((J(TT) X TT* <g> (x o NormK), s). 

Proof. — We may replace C5(n, X? s) by ("^(H7, x> s)- Suppose v £ S. By assumption 
Ramanujan's conjecture holds for v ^ S. To compute the order at s = 1 we can 
ignore all places v ^ S where v is K-inert. Since they have Dirichlet K-density zero 
we can ignore them in (2). Similarly the influence of the X-inert places v ^ S on the 
asymptotic at s = 1 is eliminated by character XK- SO we can restrict ourselves to 
the K-split places outside S. Suppose the Satake parameters of Uv are av,a'v,(3v, f3'v 
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(notation of lemma 6 .4) . Then ^ ( 1 1 ' , x?5) and Cv(R',XXK,S) are equal, and each of 
them is a product of five Euler factors attached to the parameters 

r < f% 
1 Xvi Xv 7 Xv a 1 Xv 5 Xv r> ( 
I av pv av pv J avi /3v,a'v, f3'v are the Satake parameters of TTV — TTW X TTW> by lemma 6.4. Replacing 

av,(3v with OL'V,(¥V and vice versa switches between o(nv) and TTV. The local Euler-
factor of the L-series of 6.8(2) are attached to ten parameters 

r < û£ ^ \ 
\Xv-iXv 5 Xv n iXv 1 Xv n f 
I av fJv av pv J 

r fa ay_ f3y_ av -i 
^ l Xt>? Xv n, •> Xv ni i Xv . -, Xv , ( I f3'v /3' a' ot'i 

The two subsets correspond to the two extensions w and w' of v. The identity av(3v -
UJV — a'vf5'v implies, that the two sets are equal. This completes the proof. C 

7. The adjoint L-series of TT 

Let II be an irreducible cuspidal automorphic representation of GSp(4, A), for 
which some constituent of the restriction to Sp(4,A) is a theta lift. To II, or more 
precisely to some character twist IT of II, we associated an irreducible automorphic 
representation TT of Gl(2, A^). Its partial adjoint L-series 

C&(Ad(7r),x,s) 

is uniquely determined by the unramified twist equivalence class of II5. Here S is 
assumed to be sufficiently large in particular containing the ramified places of K/Q. 
This adjoint L-series has the following property 

7.1. Proposition. — For an irreducible automorphic representation TT o/G1(2, AK) and 
an idele class character x of AK/ K* and a finite set S of places, such that TT and x 
are unramified outside S the following holds 

LSK(TT* X ( T T ® * ) , * ) :C£(Ad(^) ,x , s)-L5(x , s) . 

For irreducible unitary automorphic representations TT\ and TI2 o /G1(2, AK) let S be a 
set of places, such that TT\,TT2 are unramified outside S. Suppose each representation 
7rf,7rf is either cuspidal or fully induced from a pair of unitary characters (such 
induced representations are irreducible) or in case K = Q2 a combination of both 
(tempered). Then 

L|(TTI X TT2,S) 

does not vanish at s — 1. Furthermore (K(Ad(Tr), 1 , 1 ) ^ 0. Assume K is a number 
field. Further suppose one of the representations TTI is cuspidal or the central char­
acters cjni = UJ7T2 coincide. Then LK(TTI <S> TT2,s) has a pole at s = 1 if and only if 
7Ti = TT2. This pole is simple if and only if TT\ = 1x2 is cuspidal. Otherwise it is of 
order 2 or 4-
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Proof. — These statements are well known. It is due to Jaquet-Shalika in the case, 
where either TT\ or 1x2 is cuspidal. On the other hand suppose both TTI = Ind(x^,xO 
are induced for characters xu Xi °f AJ^/if * (Eisenstein case). If the characters Xz, Xi 
are unitary outside S they are unitary characters, since the kernel of the idele norm 
is a compact subgroup of A^/X*. A pole of L^(7r* X 7T2, S) at s = 1 forces xi = X2 
(up to permutations of XiiXi)- Then UJ7Ti = un2 implies x i — X2 or ni — nz- The 
converse is obvious. • 

7.2. Remark. — Proposition 7.1 will later be applied for an irreducible automorphic 
representation TT of G1(2,A^-) constructed from some L>-critical II. This represen­
tation TT need not be cuspidal. If it is cuspidal it is also unitary, since its central 
character is obtained from the central character cuu or UJ^ °y pullback with the norm. 
The central character cjn is unitary by our temporary assumptions. If TT is Eisenstein, 
it is a constituent of some Ind(x, x')- Here x-> x' are idele class characters for K. We 
later apply 7.1 in the situation of corollary 6.7 where TTS satisfies the Ramanujan con­
jecture. Hence xSiXfS and also XiX' must be unitary. This implies TT = Ind(x,x')-
Therefore TT is unitary, since this induced representations are irreducible and unitary. 
Hence the assumption of proposition 7.1, TT has to be unitary, is satisfied. 

7.3. Corollary. — In the situation of proposition 6.8 the following holds 
(1) C5(II, 1, s) does not vanish at s = 1. 
(2) C5(n, l,<s) has a pole at s = 1 if and only if CF{TT) = TT, when K is a number 

field. 

Proof. — ÇS(U,XK, s) has a simple poles at s = 1 (prop. 4.1 and th. 4.2). 
LK(O~(TT) x 7r*,s) does not vanish at s = 1 (prop. 7.1 and remark 7.2). L^ ( l , s ) 
has a pole at s — 1. So prop. 6.8 implies assertion (1). Suppose C5(n, l ,s) has a 
pole at s — 1. Then the first L-series of prop. 6.8 has a pole of order ^ 2 at s = 1, 
since C5(n, XK,S) has a pole at s = 1 (th. 4.2). Then proposition 6.8 implies, that 
Lx( l , s) •L^r(cr(7r) x 7T*, «s) has a pole of order two at s = 1. Therefore L^(o-(7r) X7r*, S) 
has a simple pole at s — 1, since K is a number field. Prop. 7.1 and remark 7.2 then 
imply CF{TT) = 7T, since TT and cr(7r) have the same central character. The converse is 
similar. • 

8. Theta lifts in the L>-critical cases 

Let n be a L>-critical representation of GSp(4,A). Let K be a rank two algebra 
over Q, and let TT be an irreducible automorphic representation of G1(2,A). Let 
n ' = II'(7r, UJ) be an irreducible automorphic representation on GSp(4, A) related to TT 
via a theta lift as in the last sections. Let S be a finite set of places containing the 
archimedian places and the places where K, n, n; and TT are ramified. Let T be a set 
of density zero containing 5, for which the Satake parameters of UV have the form 
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fi) 1 & V 5 Ц'У 1 £ V í^v of Uv for v <£ T. Suppose U,s 9É n5 0 xS, for some unramified 
character \ S °f ^S (n°t necessarily automorphic). Under these assumptions the 
relation between TT and II can be specified in terms of the 

8.1. Satake Parameters. — Definition 3.2(i) and (ii) and lemma 6.4 determine 
the Satake parameters of TT as follows. For K-split places v £ T the Satake parameters 
of TTy — TT w x TTyjf are 

(a) (t yVy, tv/i^) for TTW and {tv vv, tyjiy) for TTW>, if v splits completely in K • L. 
(b) {tvUy^tviiy) for TTW and {—tvvv, —tvfiv) for nwf, if v splits in K but not in L. 
For K-inert cases places v ^ T the Satake parameters of 7rv are 
(c) (tyis^ty/j2), if v does not split in K. 

The adjoint L-series (Ad(7r), x> s) does not change under character twists of TT. 
Hence it is uniquely determined by n . To simplify the formulas it is of no harm 
to assume x^ — 1- Under this simplifying assumption n = n ' the parameters tv 
becomes 1. 

8.2. Lemma. — Let TT be an automorphic representation of G\{2, AK) attached to the 
D-critical automorphic representation n as above. Then for v ^ T the local L-factor 
o/C&(Ad(7r),l,s) is 

C™(Ad(7r™),l,s) 1 ( i - ^ r ) 
\ ¡ly J 

\ ISy / 

if v splits in K and both extensions w,w' of the place v we have the same local factor. 
If v is inert in K/Q the local L-factor is 

(Ad(7rv), 1, s) —1 (i-p„-2') ( i - p „ - 2 ' ) ( i - ^ 2 ' ) -

Proof. — Obvious. 

8.3. Corollary. — For K, Ii and TT as in the last lemma let IP be an idele class character 
of AIV if*. Then asymptotically for s —» 1+ 

logCS(Ad(7r),^,s) E 
y K-split 

kdyii¡;y+iljv).pvs, 

where the sum is over all places v £ T of Q which are split in K. IPV,TPV denote the 
values IPw(TTw) for the two extensions w of the split place v to K. For T¡J — x°Normx 
this is IPY + I¡j'v = 2 • Xy(Pv)-

9. The pole order n^(II) 

Let II be a D-critical, unitary cuspidal representation of GSp(4, A) with notations 
as in the last section. In particular let if be a quadratic Q-algebra, let TT be the 
irreducible automorphic representation of Gl(2, A ^ ) attached to n . Let L/Q be the 
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Galois extension with Galois group A of order D attached to II. If K is a field let 
KL denote the field generated by K and L. Otherwise KL denotes L. 

9.1. Lemma. — For D-critical representations II and characters x of A , the orders at 
s = 1 of the meromorphic functions 

/1(3) = C5(n, x, s) • C5(n, xxx , s) • C£(Ad(7r), x o Normx, s) 

/2(5) = LK(TT x (TT* (g)x°Normx),s) • L^(O-(TT) X (TT* ®x ° N o r m K ) , s ) 

coincide. This common order is an integer 71^(11), which does not depend on the 
choice of the character \ of A and satisfies 1 ^ n^(II) ^ 16/[KL : Q]. In particular 
[KL : Q] < 16 and nx (n ) = 1 for 8 < [KL : Q]. Furthermore the asymptotic 
behaviour at s —->• 1+ ¿5 

log/*(s) E 
v K-split, L-split 

4 - fAd„+ lb -a . 

Proof. — The first assertion concerning the orders of /1(5), /2(5) follows from Propo­
sition 6.8 and the first part of 7.1. That the pole order is independent of x £ A 
follows once we have shown the last assertion of lemma 9.1, since the right side of the 
asymptotic formula is obviously independent of x- The asymptotic formula is shown 
as follows: For XIXXK with \ G A we use the asymptotic formula log C5(n, Xi s) ~ 
Ylv wV ' x(Pv)PvS obtained in remark 3.3. The weights were wv — 1 + ev • (Adv +1) 
with ev = ±1 , where e — 1 if and only if v splits in L. Hence the asymptotic behaviour 
of log(CS(n,X,s)(s(n,XXK,s)) is 

E 

v /C-split, not L-split 

(-2 • Adv) • Xv(Pv)p~s + 2 E 

v X-split, L-split 

(Ad„ +2)p~s. 

On the other hand corollary 8.3 implies 

logC£(Ad(7r), x o NormK, s) y 
vX-split 

2 • Adv -Xv(Pv)pvs 

for -0 = x 0 Norm^ and x £ A. In both cases the sum is over a subset of the places 
of Q omitting a set of Q-density zero. Both formulas combined give the asymptotic 
of log/i(s). It remains to estimate nic(n). The right side of the asymptotic formula 
is a sum over set of Q-primes of Dirichlet-density [KL : Q]_1. By property (iv) of 
remark 3.3 of a D-critical representation we have 0 ^ Adv + 1 ^ 4 . Hence 

4(Ad„+l) 
[KL : <Q>] 

16 

[KL : Q] ' 

This gives the upper estimate for nx(Ii) . On the other hand put x = 1- Then 
there is at least one pole of /1(5) coming from C5(n, XK, S), since CK(Ad(rr)11,1) ^ 0 
(prop. 7.1 and remark 7.2) and since C5(n, 1,1) ^ 0 by cor. 7.3.1. Hence the pole 
order 71^(11) is strictly positive. • 
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9.2. Corollary. — In the situation of 9.1 assume A to be an abelian group. Then 
ords=i NXGA LK(7VX (7r*®x°Normx), s)-LSK(CT(TT) x (TT* ®x°Normx), s) = D-nK(U). 

9.3. Corollary. — In the situation of 9.1 assume KL = L and assume to A be abelian. 
Then 

(1) ords=1 NXGA C£(Ad(7r), x o Norria, s) = f • nK{Ii) - 2. 
(2) ords==1 NXGA C5(n, X, ^)C5(n, XXAT, 5) = f - nK(U) + 2. 

So the order of ords=i IIXGA C5(n, X, s) at 5 = 1 is ^ 7 1 ^ ( 1 1 ) + 1 and there exist at 
least (II) + 1 characters x of A for which C5(H, x? s) nas a P°le at 5 = 1. 

Proof. — By lemma 9.1 and cor. 9.2 the sum of (1) and (2) is D - n ^ I I ) . So it suffices 
to show formula (2). Since KL = L implies \K £ A lemma 4.4 gives 

Í O G N (l + C(^)) + 2-^x(^) = 0. 2D E 
; L-split 

(Ad„ +2 ) -p-s~:«- logCS(s) . 

Lemma 9.1 and cor. 9.2 imply D • X^L-spHt 4 • (Ad„ +l)p~s ~ D • nK(n) • logCs(s). 
Elimination of the Ad^-terms in these two equations gives 

(2 • K - D • nK(U)) logC6(s)-(8£»-4Z?) E 
v L-split 

(l + C(^)) + 2-^x(^) 

This implies the second claim K — y 77^(11) + 2. The assertion on the minimal number 
of poles is an immediate consequence, since poles of (^(II, x?s) at s — 1 are at most 
simple poles (theorem 4.2). • 

9.4. Corollary. — In the situation of 9.1 for D ^ 4 and abelian A one can always 
choose K as a field. 

Proof — For K = Q2 the assumptions of corollary 9.3 hold. Since | n x ( n ) + 1 ^ 2 , 
there exists a nontrivial character XK' of A for which (II, XK' , s) has a pole at 
s = 1. So replace If by AT'. • 

9.5. Corollary. — In the situation of 9.1 for D ^ 4, A abelian and K a field the pole 
order riK(n) 25 1,2 or 4. 

Proof. — n^(7r) is the order of by lemma 9.1. Choose x = l> then C5(n, 1,1)^0 
(cor. 7.3.1) and C5(n, XK, S) has a simple pole at s = 1. Hence UK(^) — 1 is the order 
of £x(Ad(7r),s) at 5 = 1. This order is 0,1 or 3 depending on the CM-type of TT 
(cuspidal or Eisenstein). This follows from remark 7.2 and proposition 7.1. • 

9.6. Remark. — If x € A is not a quadratic character, then in particular x 7^ 1,XK-
Therefore remark 4.3 and lemma 9.1 imply nx(II) = ords=i (K(AC\(TT), ^oNormx, s). 
By assumption x ° Norm^ is a nontrivial torsion character of / K * . So if K is a 
field and n is D-critical and nondegenerate, then TT cannot be of CM-type and one 
can easily show that ords=i C|-(Ad(7r), x o Norm^, s) = 0 (see lemma 8.2). Therefore 
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(II) = 0 in contradiction to lemma 9.1. This argument shows, that A must be an 
elementary abelian 2-group if if is a field and II is D-critical and nondegenerate. 

10. Nondegenerate D-critical representations of abelian type 

10.1. Proposition. — Suppose H is a D-critical irreducible automorphic representation, 
which is nondegenerate of abelian type. Let if the corresponding Q-algebra if of 
degree two with involution a. Let TT be the irreducible automorphic representation of 
Gl(2, AK) attached to U. Then TT cannot be of CM-type 

(1) TT = TT 0 X for a character x of A*K/K* implies x — 1, and for D ^ 4 the 
following holds 

(2) a(n) ¥ TT. 

(3) Suppose D ^ 8, or D = 4 and if is a field not contained in L, or suppose 
[LK : if] ^ 3, then O~{TT) ^ TT®X holds for all characters x of A*K/K* of finite order. 

(4) If D — 4 and K is a field contained in L, then CT(TT) = TT <S> (X ° Norm^) holds 
for the two characters x / 1, XK of the abelian group A = Gal(L/Q). 

We remind the reader, that TT was constructed in the sections 4 an 5. For D ^ 4 
we also recall, that if could be chosen to be a field for abelian A (cor. 9.4). 

Proof 

(1) TT = TT 0 X implies x2 = 1- It is enough to show \w = 1 outside a set of 
if-density zero. Hence discard places w which are if-inert or lie above places v in 
the exceptional set T of definition 3.2. Then TT = TT (g) x either implies \w = 1 or 
Xw = Hv/vv = vvl\iv by 8.1. Hence Xw — 1? since n is nondegenerate by assumption 
which means {JJLV/^V)2 ^ 1 for v £ T (def. 3.2). 

(2) For D ^ 4 the set of Q-places v ^ T, split in if but not in L, has positive 
Dirichlet density. For such a place v choose an extension w to if. By 8.1 the rep­
resentation TTW has Satake parameters tvvv,tv\±v and O-(TT)W has Satake parameters 
—tvvv, —tv\iv. Hence TT = CF{TT) is impossible, since n is nondegenerate. 

(3) Consider the same if-places w as in the proof of (2). By assumption this set 
now has if-density ^ 3/4 (or ^ 2/3). For w and wr = a(w) extending the Q-place v 
the assumption CF(TT) = 7r0x and 8.1 together imply either ( — vv, —^v) = (vvXw, l^vXw) 
or {-iiv,-vv) = (vvXw,HvXw)- Hence Xw - 1 or Xw = -f^v/^v = -Vv/^v = Xw1-
Thus xw — I- This holds for a set of if-density > 1/2, hence x is quadratic x2 = 1. 
Since n is nondegenerate Xw = — 1 holds for a set of if-density > 1/2, which is 
impossible for a quadratic character. 

(4) By assumption Q C if C L and [L : if ] = 2 and [if : Q] = 2. The quadratic 
idele class character XL/K °f A*^/if * has the form XL/K — X ° Norm^/Q, where x is 
one of the two quadratic characters of Gal(L/Q) different from x 7^ 1, XK, independent 
from whether L/Q is cyclic of order four or an abelian 2-group. For all if-places w 
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over if-split places v £ T we get a(n)w = TTW 0 (xv ° Norm^) by formula 8.1 (a) and 
(b). Since this holds for a set of if-places of if-density 1, and since TTS is unitary 
and satisfies the Ramanujan conjecture (see def. 3.2 and cor. 6.7), this implies that 
-̂ /ir(7r* x °~(7r)®(x~1 oNormx), s) has a pole at s — 1. The central characters coincide, 
since x ° Normx = XL/K 1S a quadratic character. Therefore <J(TT) = TT 0 x ° Norm^ 
holds by proposition 7.1 and remark 7.2. 

10.2. Corollary. — Suppose li is D-critical, nondegenerate of abelian type and D ^ 4. 
Then C^(n, 1, s) does not have a pole at s = 1. In particular if must be a field. 

Proof. — We can assume if to be a field by 9.4. Then existence of a pole of £5(n, x, s) 
at s = 1 for x — 1 is equivalent to CF(TT) = TT by 7.3.2. This contradicts 10.1.2, since 
D ^ 4. • 

70.3. Proposition. — Suppose II zs D-critical, nondegenerate of abelian type with 
D^4. Then if is a quadratic extension field of Q and a subfield of L. L is a abelian 
noncyclic extension of Q of degree D — [L : Q] = 4 

L = KK' 

K' if, TT 

Q 

Furthermore 

(1) crin) TT 

(2' Cr(7r) = TT&XL/K-

Qs(n.,Xis) has a P°le at s = 1 for nx(II) + 1 characters x £ A. T/ie po/e number 
7iK"(n) zs i /or cuspidal TT, or n x ( n ) zs 1 or 2 for Eisenstein TT. For X — 1 there is 
no pole at s = 1. The four L-series C5(n, X-> s)-> X £ A are nonzero at s — 1. 

Proof. — By cor. 10.2 if must be a field. By remark 9.6 A must be a elementary 
abelian 2-group. For the first assertion we have to exclude case (3) of prop. 10.1. For 
D ^ 4 there exists a character x of A, such that — x ° Norm^ is nontrivial and 
quadratic. For this use that A is an elementary abelian 2-group. Notice x°Normx is 
a quadratic character of AK/K*, hence TT and TT 0 x ° Norm^ we have the same central 
characters. This we need for prop. 7.1, if TT is not cuspidal. By cor. 10.2 if is a number 
field. Therefore prop. 7.1 can be applied. By prop 7.1 and remark 7.2 and prop. 10.1.1 
and prop. 10.1.3 the order of Ls (IT X 7r* 0 (xoNorm^)) • Ls (O-(TT) x 7r* 0 (x°Normx)) 
at s = 1 is zero. This order is 71^(11) and this contradicts the lower bound n ^ I I ) ^ 1 
of prop. 9.1. Hence case (3) of prop. 10.1 is now excluded. Therefore [Lif : if] ^ 2. 
Since D ^ 4, this implies D = 4 and if must be a subfield of L. 
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Lemma 9.3 for D = 4 implies that the number of characters X G A, for which 
X, s) has a pole at s — 1, is nx (n ) + 1. The trivial character does not give a pole 

(cor. 10.2). Hence n x ( n ) ^ 3 since D = 4. The order of LSK( 7T X 7T* , s)-L^ (o"(7r) X 7T* , s) 
at s = 1 is n x ( n ) by definition (lemma 9.1). The order of L^-{G{TT) X 7r*,s) at 
s = 1 is trivial (prop 7.1, remark 7.2 and prop 10.1.2). Therefore n^(Il) is the 
order of L^{ix x TT* , s) at s = 1. This number is 1 for cuspidal 7r, or 2 or 4 in the 
case where TT is an Eisenstein representation (prop 7.1). The order of (^(II, X?s) at 
s = 1 is at most 1 (th. 4.2) and C5 (II, 1,1) ^ 0, oo (cor. 7.3.1 and cor. 10.2). Since 
orcUi UxeA X, s) = f • nK(n) + 1 > 2 (by cor. 9.3 and £> = 4, nK(II) = 1, 2) 
the number of X € A for which C5(n> X? s) has a pole at s = 1 is therefore equal to 
nx(Il) + 1. Furthermore e5(n> X> 1) 7̂  0 holds for all four characters X £ A. • 

11. Proof of Theorem I 

Let II be a cuspidal irreducible unitary automorphic representation of GSp(4, A) 
whose archimedian component belongs to the discrete series of weight (k\, A^). For 
the proof of theorem I it can be assumed that n is neither a CAP-representation nor 
a weak endoscopic lift, since both cases were already considered. Then Ramanujan's 
conjecture holds for all unramified as shown in section 1. By lemma 2.2 theorem I 
holds except in two critical cases. These are studied in appendix B. By the results of 
appendix B either theorem I holds or the representation n is .D-critical (prop. 3.1 and 
def. 3.2). More precisely, n is either D-critical and nondegenerate of two-abelian type 
with D > 4 OR D-CRITICAL of CM-type with D > 8. By proposition 4.1 this implies, 
that the restriction of n to Sp(4, A) contains an irreducible constituent II, which is a 
theta lift attached to some irreducible representation (TT)+ of 0(V, A), where V is a 
nondegenerate four dimensional quadratic space over Q. Attached to V is a quadratic 
Q-algebra K, a simple central algebra D over Q and the if-algebra DK — D (g>Q K. 

As explained in section 5 we can find a finite set of places S, an irreducible un­
ramified representation Tl,s of GSp(4,A5'), a quadratic character xS °f (A5)* such 
that U/S ^ I I s ® x S so that U,s is a theta lift of (TTS,UJS, 5s). Although n ' need not 
be automorphic, this allows to compute the L-series ^ ( I I , r, s). The L-series do not 
depend on character twists of n . So it is enough to know the Satake parameters of 

at the unramified places, in order to compute ^ ( n , r, s). In fact H,s = Yivgs^v 
is described in lemma 6.4 up to some twist. This describes ^ (11 , r, s) in terms of 
the automorphic representation (TTS)V = TTS. Ramanujan's conjecture also holds for 
TTS (cor. 6.7). This allows to study the analytic properties of the degree five L-series 
C5(n, r, s) attached to n in terms of TT. The behaviour at s = 1 depends only on a set 
of places of density one. That n is D-critical, implies strong restrictions. See prop. 6.8, 
cor. 7.3, cor. 8.3 and the complete section 9, in particular lemma 9.1. By these results 
it was shown in proposition 10.3, that for the nondegenerate _D-critical representation 
n of two-abelian type the algebra if is a quadratic field extension if of Q which is 
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contained in the number filed L (see def. 3.2) of absolute degree D = [L : Q] = 4, such 
that conjugation by the nontrivial substitution a £ Gal(if /Q) satisfies the properties 

СГ(ТГ) 9É 7Г, СГ(7Г) ^ 7Г (g) XL/K-

A corresponding statement holds in the D-critical cases of CM-type by appendix C. 
The proof in this case is similar but more involved. Again if is a subfield of L. Now 
Gal(L/Q) is either dihedral or elementary abelian of order D = 8. (lemma 4.5 and 
appendix C). Again 

a{7T) ¥ TT, a(7T) ^ TT <g> XF/K 

for some character XF/K attached to a quadratic extension K C F in L. Hence in all 
the relevant D-critical cases we obtain O-(TT) = TT (g) x for some character x of A*K/K*. 

Now consider the archimedian place. Then TTQO is associated to 7r^, which occurs 
in a nontrivial theta correspondence <-> (71^, CJQO, ¿00). Since <x(7r) = TT0X implies 
<J(7TV) = 7rv (g) x? therefore 

Cr(7TV) ^ 7TV (g)X-

Since nj^ = Hoc 0 Xoo belongs to the discrete series, we can ask whether the theta lift 
allows to match discrete series U'^ on GSp(4, R) with representations (71^, CJOO, ¿00 )> 
for which 

a{7T) ¥ TT, a(7T) ^ TT 

holds. Ihe crucial tact is, that this is impossible by the following lemmas 11.1 and 
11.2. For if^ = R2 the theta correspondence is sufficiently known, at least on the 
level of the dual pair Sp(4,R), 0(V, R). This suffices for our purposes, since discrete 
series on GSp(4, R) correspond to discrete series on Sp(4, R) except for some splitting 
into subrepresentations under restrictions. So the case ifoo = R2 is excluded by 

11.1. Lemma. — Suppose — R2. Let li^ be an irreducible representation of 
Sp(4,R) in the discrete series, which is the local theta lift of an irreducible represen­
tation (7Too,̂ cx)) o/0(V ,R), where iioo is an irreducible representation o/SO(V, R). 
Then TToo is in the discrete series o/SO(V,R) and O-^(TT00) ^ TT^ (g) Xoo holds for all 
twist by characters Xoo • 

Proof. — Since KQQ splits, the connected component SO(V, R)° of S0(V, R) in the 
analytic topology is either SO(2,2) ^ Sl(2,R)2/± or S0(4) ^ (H1)2/±, where H1 

is the group of Hamilton quaternions of norm one. In these cases, the statement of 
the lemma can be found in [Pr] and [KV]. In fact checking these cases is tedious. 
Therefore we at least include some detailed references: 

For the first case see [Pr], theorem 3.6.1 and 3.3.1, where it is shown, that TTOO has to 
be in the discrete series and is not cr^ = invariant. The e^-invariant discrete series 
are listed in [Pr], (2.5.35-2.5.38). See also [Pr] 2.5.3. Since V is split the orthogonal 
group 0(V) is isomorphic to 0(2,2) in the sense of [Pr], (2.1.4). By [Pr] th. 3.6.1 
(case 3.3.1) a discrete series representation of Sp(4,R) ([Pr] (2.4.42)) corresponds to 
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discrete series representations of Sl(2,M)2/± (the connected component of 0(2, 2)(R) 
of index 4) after restriction. Only those discrete series representations appear in the 
image, which are not conjugation invariant under the twisted action of the nontrivial 
element e 0(2, 2)(R)/SO(2, 2)(R). Note that diag(l, 1,1, -1 ) is a representative 
in 0(2, 2)(R) for £00, and that conjugation by this representative is easily studied on 
Koo types for SO(2,R) x S0(2,R) embedded into 0(2,2)(R) as in [Pr], (2.1.4). It 
replaces the type (m, n) by (ra, — n). This easily allows to determine the ^-invariant 
discrete series representations of SO(2,2). In the notation of [Pr], (2.5.3) the EOQ-
conjugation invariant discrete series representations of SO(2, 2)(R) are 7rm+i,o, 7To,n-i, 
which extend to the irreducible representations 7r^+1 0,7r^+1 0 (p = 0,1) of 0(2, 2)(R). 
Exactly these representations are not in the image of a discrete series representation of 
Sp(4, R), under the Howe lift. We like to understand this in terms of the representation 
7r on Gl(2, R) x Gl(2, R). It defines a representation of the quotient group 0502 ,2 (R)-
Its restriction to S02,2(^) has to be described in the notations of [Pr]. We can identify 
SO(2, 2) and 502,2 using notation of [Pr]. Then SO(2, 2)(R) corresponds to the group 
S02,2(M) defined by all pairs (01,02) G G1(2,R) with det(gr) = det(g2) = ±1 modulo 
(91,92) ~ (-9u -92) embedded in G1(4,R) by 

(01,02)'—•diag(0i,det(£i)(0i) l) 

<a 0 Ob" 
0 a -b 0 
0 - c d 0 

KC 0 0 d. 

92 = 
(a b^ 
\C d; 

Using this isomorphism our representative for in 0(2, 2)(R) corresponds to the 
matrix 

e = 

a 0 0 o\ 
0 0 0 1 
0 0 1 0 

1 0 oy 

in 0 2 , 2 O b v i o u s l y conjugation by e of the image of (01,02) flips the variables 
0i?02 > 02,01- Thus the representation n = TX\ X TX2 of 502,2(^) with TX\ = TT2 <£> Xoo 
is invariant under conjugation by e up to isomorphism. This gives a contradiction to 
what was explained above. The case, where the space V splits is therefore understood. 

The definite case was studied in [KV]. For the convenience of the reader, we again 
give a sketch of what happens: If comes from a pair TTI oo x ^ 00 °f representations 
TT̂ qq of H1 of dimension dim(7riv00) = di, then 7Tii00 X7T2,oo belongs to the discrete series 
of S1(2,R)2 of weight = di -f 1 for 71̂ ,00 respectively (analog of Jaquet-Langlands 
lift). Therefore we may assume T\ ^ r2 ^ 2 and furthermore r\ = ^ (2 ) , since 
the central characters coincide on the diagonal embedded subgroup {±1} C S1(2,R)2. 
The theta lift Hoc of 71-^ is a holomorphic/antiholomorphic discrete series or a limit of 
the holomorphic/antiholomorphic discrete series representations of Sp(4, R) of weight 
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ki ^ ko, where 

ki = i ( n + r2), k2 = ^(r i - r 2 ) + 2. 

Notice k\ ^ k2 ^ 2. IIoo belongs to the discrete series, if and only if &2 ^ 3 respectively 
ri > r~2. In fact this amounts to or at least implies the condition Coo^oo) ^ ôo ®Xoo, 
since (Too permutes the weights r\,r2. For these statements see [KV], p. 26 and 
p. 28(8.2). However notation in [KV] is different, since these authors use a different 
way to parameterize representations of SO(4, R). • 

For the proof of theorem I the case Koo = C remains. Although the theta corre­
spondence seems not been worked out completely for the pair (GSp(4,R), GO(3,1)), 
enough information is provided by [HST]. It allows to complete the proof of theo­
rem I by the next lemma. Again 0-00(71-00) = 7Too <8> Xoo contradicts the fact, that a 
restriction of TToo lifts to a constituent Ho© of the discrete series representation IIoo. 
Hoo can be extended to a theta lift n j^ . Since IIoo belongs to the discrete series, also 

belongs to the discrete series. So the proof of theorem I is completed by the next 
lemma. 

77.2. Lemma. — Suppose K00 = C. Let 1 1 ^ be an irreducible representation of 
GSp(4, R) contained in the discrete series. Assume that IV'^ is a nontrivial theta 
lift of an irreducible representation (7Too, 0̂0, <$oo) o/GO(3,1) orGO(l ,3) . Then the 
irreducible representation TT^ O/G1(2,C) can not satisfy a^c(7Too) — TToo ® Xoo for a 
character Xoo • 

Proof — Suppose o"oo(ttoo) — 7Too ® Xoo holds for a character Xoo- Note Ljnoo — 
^0-00(^00)» smce TToo and 0-00(̂ 00) have the same central character ĉo© 0 Normc/^. 
Therefore xlo = 1, since ^ ( 7 ^ ) = = OJ^XIC- But xlo = 1 implies 
Xoo = 1, since the character Xoo(̂ ) is of the form U|s(-rr)n for some n E Z. Therefore 

CooÎTToo) — TToo-
By a character twist with a character Too 0 Normc/K we may reduce to the case, 
where the central character of 7roo is trivial. Then [JL], lemma 6.1 implies 7Too — 
Ind(/Xoo, A^1)? where O-oo(Moo) = M"1 

Ui0o(z) = (z/\z\)n, neZ 

or O-oo(Moo) = Moo where 
Uoo(z) = \z\s, séZ. 

The first case - with n ^ 0 - was considered in [HST] lemma 12. According to loc. cit. 
must then have a = U(2)-type of highest weight (n -f 1,1) or (n + 1,0) or 

(ra -h 1,2) and infinitesimal Harish-Chandra parameter (n, 0;*). According to [Pr] 
2.4.42 this can be no discrete series representation, since the infinitesimal Harish-
Chandra parameter (n, 0) of the restriction of to Sp(4, R) is not regular. The 
infinitesimal character 7 ^ 0 (see [Pr] page 30) is excluded in [Pr] 2.4.42. This shows, 
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that in the first case we do not obtain in the discrete series. For n — 0 in the 
first case or also in the second case /J^oo (z) = Iz|s, the irreducible representation 7Гоо is 
an induced representation, which contains the trivial representation of the connected 
maximal compact subgroup SO(3) = U(2)/U(l) of Gl(2, C) /U( l ) . There are four 
possibilities to extend this to a representation of the maximal compact subgroup 
0(3) x O(l) of GO(3,1). These are denoted (0, +, +), (0, + , - ) , (0, - , +), (0, - , - ) 
in [HST], page 395. Therefore the computation of [HST], page 395 implies, that 

has a U(2)-type of weight (1,1), (1,0), 0, 0 (in the last two cases, the theta 
correspondence is trivial). These are Howe minimal — U(2)-types arising from 
the theta correspondence for the pair (0(V)(R), Sp(4, R). We show, that they can 
not occur in a discrete series representation of Sp(4, R) С GSp(4,R). A discrete 
series representation is tempered and has real infinitesimal character. Therefore [Pr] 
2.3.20 and 2.3.23 can be applied with 7 = A, with the notations of loc. cit. For the 
two ifoo-types (1,1), (1, 0) considered we have Цтг^ ||д = m — 1 = 0 according to [Pr] 
(2.1.22). Therefore the infinitesimal character has norm ||A|| = Ц7Ц = ll^m^JU = 0 
by [Pr] (2.3.21). Thus this Кoo-type must be a lowest ifoo-type of in the sense 
of Vogan. But discrete series representation of Sp(4, R) have a unique lowest 
Koo-type. According to [Pr] (2.4.44-47) the types тт[^,тг[ 0 do not occur. • 

12. Proof of theorem II 

Suppose n is unitary and satisfies the conditions of theorem I. Suppose the rep­
resentation pn,\ constructed in theorem I is reducible of the form pn,A = 2 • po- Let 
V — VPo be the representation space of the two dimensional representation po- Then 
po is an ^-rational A-adic representation. Therefore det(po) is automorphic [He], 
hence attached to an automorphic character LJO of A*/Q*. Furthermore the group G 
defined in section 1 satisfies G C Gl(VPo) = Gl(2, k). 

Since G C Gl(2), only the cases 1, 2, 3, 5, 8 of Taylor's list [T], p. 298 are possible. 
We leave it for the reader to check that this reduces us to the cases 1 or 3, since in 
case 2,5,8 the representation pn,A can not be of the form 2 • po- See also section 2 and 
appendix B for the following notations. 

Case 1. — In this case G C G has index at most two. G = G° • N, where is the 
centralizer of G° in G. We can compute inside Gl(VPo). G° is a torus. Since G° is 
a torus and acts on Vpo by the characters xi 7̂  NX\L m the notation of [T], p. 298, 

and G° are contained in a common maximal torus of Gl(Vp0). In particular G is 
abelian. Hence the restriction of p0 to the subgroup Gal(Q/L) of Gal(Q/Q) (of index 
at most two) is abelian. So the representation po,A is either abelian, a sum of two 
characters, or induced from a character X3 of Gal(Q/L) 

Po = Xi 0 X2 01 P° - IndGal(Q,L) ^ 
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Again [He] shows, tha t Xi?X2 are attached to characters on A*/Q* respectively \s 

is at tached to a Grossencharacter of A | - /L . Hence in both cases po is at tached to 

an irreducible automorphic representation TT on Gl(2, A). We normalize TT by a twist 

with the idele norm character so tha t 

LV(TT, S - w/2) = Lv(p0, s) 

holds for almost all unramified v. Then n is a weak lift, which is impossible by looking 

at the archimedian place. But we can give a direct argument as follows: 

Suppose n satisfies Ramanujan's conjecture for all unramified places. (If n does not 

satisfy Ramanujan's conjecture, then n is a CAP representation. For CAP represen­

tations see the discussion at the end of this section). Since LS(U,s) — LS[TT,S)2 

the representation IT also satisfies the Ramanujan conjecture for v £ S. Hence 

by remark 7.2 and prop. 7.1 the L-series £5(Ad(7r), 1, s) does not vanish at s = 1. 

LS(H, s) — Ls(ir, s)2 for a suitably finite set S implies 

Ls{un^ \ s)C5(n,)2LS(7T®7TV\ s) = (S(S)2LS(7T®7TV,S) = C5(5)3C5(Ad(7r),l,S). 

This gives a pole for C5(n, ^n^^ 1, s) of order ^ 3 for UJU / UJ^ at s — 1, and at least 

a pole of order 2 if uu = UJ^. This contradicts theorem 4.2. Hence case 1 is excluded. 

Case 3. — In this case G — Gl(2, k) and TTQ{G) = 1. By the assumption pn,A = 2 • po 

the Satake parameters of Iiv,v ^ S are highly restricted. Suppose aVl f3v,av(3v = 

^n(Pv) are the eigenvalues of Frob^ for po, up a twist by the factor py w^2. Then the Sa­

take parameters of UV are either (av, av, (3V, (3V) ~ (aVJ (3V, f3v, av) or (aVl /3V, av, (3V). 

Since G = Gl(2, k) we can assume av ^ ±/3v for all v in a set of primes of Dirichlet 

density 1. This excludes (av, f3v, av, (3V) for v in this set of density 1, since otherwise 

&v = ^uiPv) = P2 and therefore av = ±0V. Hence we are in the first case and 

otvfiv = un,v(Pv)- In fact we have found a set T of places of density zero, outside of 

which UV satisfies condition (i) and (ii) and (iii) of definition 3.2. Suppose n is neither 

CAP nor a weak endoscopic lift. Then Ramanujan's conjecture holds for n at almost 

all places. We claim n is D-critical with D = 1 respectively L — Q. Pu t L — Q 

and vv = av, \iv — j3v and (v = 1. Tha t (av, av, /3V, (3V) are the Satake parameters 

for Hv for v T is assertion (i) of def. 3.2. Assertion (ii) of def. 3.2 is the identity 

otvPv — ^nv(Pv) for v £ T shown above. 

Lemma 4.4 applied for this 1-critical representation implies tha t C5(LI, has a 

pole at s = 1. More precisely l og ( s ( I I , l , s ) - J2v(Adv +2) • p~s at s -> 1+. So the 

restriction of n to Sp(4, A) contains a the ta lift, with associated algebra K = Q2. 

Hence there is a unitary representation TT of Gl(2, A ^ ) = Gl(2, A)2 associated to n as 

in section 4. In fact, n must be a weak lift by lemma 6.4. Alternatively, since a pole of 

C5(n, 1, s) is simple (theorem 4.2) we get J2v(Adv +1) • Psv ~ 0 at s 1+. Therefore 

n ic (n ) = 0 by the asymptotic formula of lemma 9.1. But this also contradicts the 

assertion n x ( I l ) ^ 1 of lemma 9.1. 
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So it remains to discuss, whether II can be CAP or a weak endoscopic lift. If it were, 
then pu,x — Pi © P2, where pi are attached to irreducible automorphic representations 
TTi of Gl(2, A). If II is a weak endoscopic lift, then TT^^ belong to the discrete series 
of weight ri with r\ > r2. By a theorem of Ribet pi,P2 are irreducible. Hence 
px = p0 = p2. This contradicts r\ ^ r2. So II must be a CAP representation. 

The CAP representation case. — Then p — p\ © p2 and one of the representation 
pi,P2 is reducible. Then pn,A = 2 • po implies that po is reducible, p0 = Xi © X2 for 
Dirichlet characters Xi,X2 of A*/Q*, not necessarily unitary. 

This implies that II is a CAP representation associated to the Borel subgroup B 
of GSp(4). These were classified in [P] and [S]. The description given in [S] of such 
CAP representations in terms of binary theta lifts implies, that can be a limit of 
discrete series at the archimedian place but cannot belong to the discrete series itself. 
We have now shown that pn = 2 • po cannot occur. • 

Finally we consider what it means, that pn,A contains a one dimensional subrepre-
sentation p\. Still n is unitary satisfying the assumptions of theorem I. To prove the 
last assertion of theorem II we must show, that n is a CAP representation. It can not 
be a weak endoscopic lift pn,A = pirl ©P-K2, since the two dimensional representations 
p7Vi for the classical elliptic holomorphic cusp forms are known to be irreducible as 
shown by Ribet. So if n is not CAP the Galois representations pn,A is a subrepre-
sentation of the Galois-representation Wux constructed from the third cohomology of 
the Shimura variety. So we are in the situation of section 2. Put UJ = UJUP^W • Then 
by duality p^ A eg) UJ = pn,A another one dimensional character p2 = p\ 0 UJ occurs 
in pn,A- As pn,A is a subrepresentation of Wux we have p2 / pi, since otherwise 
(pi)2 = UJ. This would imply A2 = n, since UJ is induced by n, and would thus contra­
dict the root condition property (c) of n formulated in section 2 ([T], lemma 1 and 
cor. 1). Hence there exists a decomposition pn,A = Pi © P2 © P3 with one dimensional 
subrepresentations dim^ (pi) = dim^ (p2) — 1. Now apply theorem III. So pn,A can 
be viewed as a Q/-representation of dimension 4 • [E\ : Q/] and this representation is 
of Hodge-Tate type. Hence the characters pi,p2 are locally algebraic and have the 
form pi = XiP^1 f°r some characters Xi °f A*/Q* of finite order (¿ = 1,2). If n is not 
CAP the representation pn,A is pure of weight w (the Ramanujan conjecture holds). 
Therefore n\ — n2 — —w/2 and w must be even. Then n = uju^fw for some character 
UJJJ of finite order. Hence for a suitable power p\v — p2v = nv (for an integer v > 0). 
This is a contradiction to the root condition property (c) already mentioned (it is 
\2 n and explained in section 2). The proof of theorem II is complete. • 
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Appendix A 

Balanced representations 

In this section TV is a finite group, and k is an algebraically closed field of charac­
teristic zero. A group of type (Z/2Z)r for some r is called elementary two-abelian. 

Definition. — A representation 

p : N —> G\(V) 

on a finite dimensional k vector space V is said to have only two eigenvalues if for 
al\ g e N the matrix p(g) has at most two different eigenvalues Çi(g), £2(9)- Let their 
multiplicities be a\(g), a2(g) with the convention Ci(<?) = (2(9), if only one eigenvalue 
occurs. Also put ((g) = Ci(g)/C,2(g) (well defined in k* up to inverse). 

Let p be a representation with only two eigenvalues. For the kernel Z(p) of the 
associated projective representation 

p : N —> PG1(V) 

we have p\Z(p) = \ • id, for some character of x of Z(p). Let D(p) be the cardinality 
of Q(p) = N/Z(p). Consider 

0 —• Z(p) —> N —> Q(p) —• 0 

D(p) = #Q(p), 

For fixed p we write Z,Q,D instead of Q(p), D(p). Then g € Z(p) iff g) — 1 
and the order of root of unity ((p,g) is the order of the image of g in Q(p). 

Decompose p = ® . pj into irreducible representations pj. If p has only two eigen­
values, then also the representations pj. The possible irreducible representations pj 
with only two eigenvalues were classified in [T2], lemma 9 and corollary 1. There are 
four possible types of irreducible representations pj 

( 1 ) dim(Pi) = 1. 
(2) d\m.(pj) — 2 and either pj is dihedral (including Z)4, i.e. induced from a char­

acter of a subgroup of index two) or the image Qj = Q(pj) of N in the associated 
two dimensional projective group PG1(2, k) is A4 or S4 or A$. 

(3) dim(pj) = dj ^ 4. In this case there is a subgroup Nj of N of index ^ 16. 
The quotient Qj = N/Nj is an elementary abelian two group, Nj acts by scalars 
under pj, and the elements of N \ Nj have trace zero and eigenvalues of the form 
Ci(n) = —(2(n). Thus ((pj,n) = 1 resp. ((pj,n) = - 1 if n £ Nj resp. n £ Nj. 

Definition. — A representation p with only two eigenvalues is called balanced if d = 
dim(p) is even and a\(g) = a2(g) — d/2 holds for all g ^ 1 in Q(p). Formally put 
ai(g) = 0-2(9) for g = 1 in Q(p). 

Example. — Any two dimensional representation with at most two eigenvalues is 
balanced. 
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A. I. Lemma. — Suppose p is balanced. If p is not isotypic multiple of a two dimen­
sional representation, then the associated group Q(p) is elementary two-abelian of or­
der D(p) ^ 4. For D = 4 the representation p is a multiple of x® (1 © X I © X2 ©X1X2) 
for characters X,XI,X2 with xi = X2 = 1-

Proof. — A consequence of claim 7 and 8 below. • 

Claim 1. — Let p : N —> G1(V) be balanced of dimension d. Let Z be the kernel of 
p, then p\Z = x ' id for some character of x °f Fix (Z,x) for the moment. Let 
p' be a finite dimensional irreducible representation of N of dimension d! such that 
p'\Z = X • id. Then there exists an integer l/c(Q) depending only on Q — N / Z , so 
that the multiplicity m(p, pf) for p' in p is either zero or 

m(p, pf) = c(Q)ddf. 

For a decomposition p = 0m(p, pi)pi into irreducible, nonisomorphic representations 
Pi of dimensions di 

£ ^ 2 = l/c(Q). 

Proof. — Put D = D(p). The multiplicity m{p,pf) = D 1 J2G£Q XP(g)xP> (9) is zero 
unless p' appears in p. Then p' satisfies XP'{Q) = ai(#)Ci(#) + A2(#)C2(g), ^[(g) + 
aUa) = d!. The integer m(p, pf) can be expressed in the form 

D-1 E 
9)a'i(5) (ai(5)+a2(3))(ai(5)'+«2(5))+«i(5)«2(5)(C(9)-l)+a2(9)a'i(5)(C(3)"1-l))-

In this formula replace C = C(#) or C"1 by the Q-projection [Q(C) : Q]_1fraceQ(^)//Q(C)-
This Q-projection only depends on the order m = ord(g) of g and defines a weakly 
multiplicative function s(m) on N. For prime powers pn 

s(pn) = 1, - l / ( p - 1), 0 for n = 0, 1, n > 2. 

In particular, the numbers oti — (1 — s(i))/2 satisfy OL\ — 0, a2 = 1 and 0 ̂  ^ 3/4 < 1 
for i > 3. With these notations ai(p) = «2(0) = d/2 and ai(p) + a'2(g) = d! implies 
m(p,p') = dd! • c(Q), where c(Q) := 1 - d(Q) and d(Q) := ^ E ^ q I 1 ~ s(ord(^))). 
Obviously c(Q) > 0, since not all m(p,p') are zero. 

Let rii(Q) denote the numbers of elements in Q of order i. Then 

D • d(Q) ^ r i i ( Q ) a i = n2 + -n3 + -n4 H 

Decompose p =9)a'i(5)^(p, into irreducible non isomorphic constituents pi. Then 
ra(p, pi)c(Q)-1 = and ]T\ m(P> = d imply £*=1 d2 = l/c(Q). Hence c(Q)_1 
is an integer. Claim 1 is proved. • 

Claim 2. — Let Q be a finite group of order D. Define c(Q) and d{Q) as above. Let 

rii(Q) denote the numbers of elements in Q of order i. Then 

(a) D/2 ^ ra2(Q) implies c(Q) > 1/8. 
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(b) 3D/4 ^ n2(Q) > D/2 implies c(Q) > 1/16 and c(Q) > 1/8, if Q is a 2-Sylow 
group. 

(c) ra2(Q) > 3£>/4 implies Q ^ (Z/2Z) r and c(Q) = ±. 

Proof of (a)-(c). — The first statement of (c) is Q =" (Z/2Z) r . It follows from ele­
mentary group theory and the knowledge n2(Q) > 3D/2 of the elements of order two. 
Fix g G Q,g2 = 1. Any h G Q, for which /i 2 = (#/i)2 = 1 holds, is in the centralizer 
Zq(q) of g. By the assumption on n2(Q) the number of such elements h is > D/2. 
Therefore Zq(g) — Q. Thus g G Z(Q). The centre has more than 3D/4 elements and 
Q = z(Q). 

For the statements (a), (b) and (c) concerning the value c(Q) use c(Q) = 1 — d(Q) 
and D • d(Q) = Y)ni(Q)ai with oti ^ 3/4 for i ^ 3. Hence 

d(Q) < D " 1 (n2(Q) + -(D-1- n2(Q))) 
a{7T) ¥ TT, a(7T) ^ TT 
a{7T) ¥ TT, a(7T) ^ TT 

If n2(Q) ^ D/2, therefore d(Q) < 7/8 and c(Q) > 1/8. If n2(Q) ^ 3D/'4, therefore 
d(Q) ^ 3/16 + 3/4 - 3/4D < 15/16 and c(Q) > 1/16. If n2(Q) > D/2 and Q is a 
2-Sylow group, then nAQ) / 0 unless i is a power of 2. Hence 

d(Q) = D " 1 

[n2{Q) + Y,2ni{Q)) 
K i>2 

= {2D)~1(n2(Q) + D-l) , n 2(Q) 1 
^ 2D 2' 

For n 2 (Q) < 3D/4 this implies < 7/8 and c(Q) > 1/8. Then Q is elementary 
two-abelian, if n2{Q) > 3D/4. Hence n^Q) = 0 for i > 2 and d(Q) = (D - 1)/D 
resp. c(Q) = 1/D. Claim 2 follows. • 

Claim 3. — Suppose p is balanced. Suppose xi © X2 © X3 c_> P contains three non-
isomorphic one dimensional representations pi — Xi> i — 1>2,3. TTien a// quotients 
Xi/Xj a r e quadratic characters. 

Proof. — By a twist assume xi = 1- Suppose %2 were a character of order N ^ 2 
and X3 °f order M ^ 2. Since p has only two eigenvalues, X2Q?) 7^ 1 and X3(s0 1 
implies X2Q7) = X2>{g)- For simplicity reduce to Q = (Z/A^MZ)2; then Xs/X2 is trivial 
on at least 1 + (AT — 1)(M — 1) elements, hence on > NM/3 elements of this group 
of order NM resp. > NM/2 elements if N ^ 2. For N ^ 2 this forces X2(#) = X3(#) 
for all g contradicting the assumption X2 7̂  Xs- Hence N — 2, and still this forces 
X3/X2 to be quadratic. But then X2 is quadratic (N = 2) and also X3 is quadratic. 
This completes the proof. • 

Claim 4. — Suppose p is balanced. Suppose p\ 0 p2 p, where p\ irreducible of 
dimension 2 and p2 is a one dimensional character. Then Q = Q(p\) is an elementary 
two-abelian group. 
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Proof. — Assume p2 = 1 by a twist. Then one eigenvalue is always (i(g) — 1-
The representation pi is automatically balanced. Put Q — Q(pi) and Z = Z(pi) — 
KernQ^). Suppose p\\Z — \. By assumption E ^ i V ^ i W vanishes. Furthermore 
XPl (g) = 2x{g) for g G Z and xPi (g) = 1 + C($0 for 9 i since 1 is always an 
eigenvalue. Hence 

4±Z 

g # 1 E Q 

(l + C(^)) + 2 - ^ x ( ^ ) = 0. 
g^Z 

For x — 1 the left side would be > 0. Hence x 7^ 1- Therefore the sum of the 1 + ((g) 
extended over all g G Q including # = 1 is 2. Hence 

(l + C(^)) + 2-^x 
(^) = 0. 

In other words c(Q) = 1/D. The claim now follows from 

Claim 5. — Let Q be a finite group Q of order D. Then c(Q) — 1/D iff Q is elemen­
tary two-abelian. 

We have c(D) = 1 - (D)~l(n2 + E ^ a ^ i ) with 0 < a{ < 1. Thus 1/D = c(Q) 
is equivalent to £ i>3 c^n* = J2i>3 ni or = 0,2 ^ 3. This is equivalent to the fact, 
that Q is elementary two-abelian. 

Claim 6. — Suppose p is balanced and Q = Q(p). If Q is elementary two-abelian, 
then ((g) = — 1 if g ^ 1 in Q(p) and Q(g) = 1 if g = 1 in Q. 

Claim 7. — Suppose p is balanced with Q = Q(p). Suppose c(Q) > 1/8. Then p is 
an isotypic multiple p = a • pi of a two dimensional representation pi, or Q is an 
elementary abelian two-group of order D = D(p) = 4 . In the second case p is an 
isotypic multiple of x ® (1 © Xi © X2 © X1X2). 

Proof. — Decompose p = ©m(p, pi)pi into irreducible representations pi of dimen­
sion d2. Then c(Q) > 1/8 or c(Q)~l ^ 7 implies £V d2 ^ 7 by claim 1. Hence there 
is at most one i with di = 2, all others satisfy d̂  = 1, j 7^ i. 

Hence either p is an isotypic multiple of an irreducible two dimensional representa­
tion. Otherwise there are two alternatives: Either p is a direct sum of characters (all 
di — 1 involving at least three, but at most seven different characters), each with the 
same multiplicity. Then all characters are quadratic and Q is elementary two-abelian 
(claim 3). Then D = c(Q)~x < 8 is one of the two-powers £ • df = D = 1, 2, 4. 
Hence D = 4 and the character p has to be of the form indicated. On the other hand 
there is the case, where there is one irreducible two dimensional constituent pi with 
multiplicity 2a, and there are (up two 3 distinct, at least one) characters Xi each with 
multiplicity a (claim 1) p = 2a • pi 0 ©*=1 a • x% (with 1 ^ t ^ 3). By a character 
twist we may assume Xi = 1- Let us show that this second case cannot occur. 
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Consider the group Q\ = Q(pi) of the balanced two dimensional representation 
pi. By claim 4 the group Qi is elementary two-abelian. 

Let Q(p) —» Q(pi) be the natural surjection and U its kernel. We claim that U is 
trivial. Therefore Q(p) = Q(pi), which is elementary two-abelian. Hence c(Q) = 1/D 
is a 2-power (by claim 5) and the assumption c(Q) > 1/8 implies D ^ 4. Since 
D — ̂ Zd2 > 4 this is a contradiction, which excludes this case. Triviality of U: Fix 
g G U and choose a representative g G N. It remains to show g = 1. We obtain 
4a times the eigenvalue x(#) on 2a • pi, and at most 3a eigenvalues on the sum of 
character spaces including 1. Therefore x{d) — Xi(d) — 1 f°r all * — 1, - - -, since p 
is balanced. But this implies p(g) = 1, hence g = 1 in Q(p). So £7 is trivial. • 

Claim 8. — Suppose p is balanced with Q = Q(p). Suppose c(Q) ^ 1/8. Then Q is 
elementary two-abelian and D — Dtp) ^ 8 . 

Proof. — n2(Q) > D/2 holds by our assumption c(Q) < 1/8 (claim 2a). If n2(Q) > 
3D/4, then Q is elementary two-abelian (claim 2c) of order D ^ 8 (claim 5) and we 
are done. In the remaining case c(Q) > 1/16 (claim 2b). Furthermore Q cannot be a 
2-Sylow group (claim 2b). In fact, this leads to a contradiction: 

On one hand ]T\ d2 < 16 (claim 1), hence in particular di < 4. This implies di — 2 
or di = 1. All irreducible constituents of p = ^imiPi therefore have dimension 
di ^ 2. Since Q is not a 2-Sylow group, at least one representation pi has dimension 
* = 2. 

The natural map Q(p) —> Yli Q(Pi) nas an abelian kernel K. K is contained in the 
center of Q(p). 

Suppose first, that one of the pi is one dimensional. Then all Q(pi) are elementary 
two-abelian (claim 4). Thus Q(p) is a central extension of a two-abelian group by an 
abelian group K. Therefore Q = Q' x K', where Q' is a 2-Sylow group and K' is 
odd abelian. Then n2(Q) > D/2 implies K' = 0 and Q = Q'. A contradiction, since 
Q was shown not to be a 2-Sylow group. Therefore all pi must be 2-dimensional. At 
most three of them occur, each with equal multiplicity, which we can assume to be 
one. Then claim 1 gives m(p,pi)c(Q)~l = ddi, hence c(Q)~1 = ddi = 2d — 2 • 2£, 
where t — 2, 3. t — 1 is excluded by the assumption c(Q) ^ 1 / 8 . 

Each of the maps Q(p) Q(pi) is surjective. Therefore n2(Q(p)) > D(p)/2 implies 
n2(Q(pi)) > D(pi)/2. The list in [T2] therefore excludes the case Q(pi) — A4, S4, A$. 
There only remain two dimensional irreducible representations p^. In particular, iV 
is not abelian. Therefore the Q(pi) are dihedral groups D2rii = (S,N\S2 — Nni = 
1,SNS — A^-1), since Q(pi) is not cyclic (otherwise A' is a central extension of an 
cyclic group by a cyclic group, hence abelian.) Hence p is the sum of two (or three) 
irreducible 2-dimensional representation of dihedral type. 

Let Ui C Q be the normal subgroup of index two belonging to the subgroup of 
index 2 in the group Q(pi) attached to pi. Then the restriction of p to U is still 
balanced, and contains two different one dimensional characters. By claim 4 the 
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groups Ui are therefore elementary two-abelian. Ui is the extension of an elementary 
two-abelian group by a central abelian group Z{. Furthermore Q is an extension of a 
2-group by the central abelian group Z{. As above this implies, that Q = Q' x K'. 
Here Q' is a 2-Sylow group of Q and K' is abelian of odd order. Then, as above, we 
show K' — 0 and Q — Q' is a 2-Sylow group. This again gives a contradiction. • 

Appendix B 

The Cases 1 and 3 

We freely use notations from [T] reviewed in section 2. In particular we use the 
definitions of the groups G, G°, G, the centralizer TV of G° and the finite group 
TV attached to Galois representation of n. G is the Zariski closure of the image of 
the Galois group and the character n. G contains a subgroup of finite index G. In 
this appendix we discuss the cases 1 and 3. So G can be written in terms of the 
connected component G° as a pushout G = (TV x G°) / (p,n)r. We want to understand 
the underlying representation of G in terms of G° and TV. The set X of semisimple 
conjugacy classes PG1(2, k)ss/ ~ can be identified with the set of elements x in /c*, up 
to replacing elements x by their inverse x~l. Let 0, be the subset of X represented 
by roots of unity x of order diving 2|7To(TV)|. 

The third case of [T]. — Here the situation is G = G and G° = Gl(2,fc). The 
representation s of G, when restricted to G° — Gl(2, k), becomes an 2m-fold copy of 
the two dimensional standard representation t of Gl(2, k) ([T], p. 301 bottom) and s is 
a tensor product of t with a finite dimensional representation p of the finite group TV 

s = p <s> t, p(zg) z 1p(g) for z 
(o ° ) 6 

Since G° = Gl(2, k) the relation between the L-functions of n and the Galois repre­
sentation (property (e) of section 2) imply by Tchebotarev, that for any g E TV the 
matrix p(g) can have at most two different eigenvalues Ci(#), (2(g)•> with multiplici­
ties ai(#), (12(g), such that a\(g) + 0,2(9) — If there is only one eigenvalue put 
(i(q) — £2(9)' Then the ratio 

C(ff) = Ci(ff)/C2(ff)en 

is well defined up to inverse and depends only on the image of g in the quotient 
group 7T0(TV) = N/Z(G°) = TV/pbn. Therefore C can be extended via G -> N/pJn to 
a function on the pushout G — G with values in Q C X. We now define a second 
map G —> X. Any g in G = (TV x Gl(2, fc))//xn is conjugate to some element with 
representative 

n(g) x 
^u(g) * ^ 

V 0 v(g)j 
G TV x Gl(2,/c). 
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The ratio u(g)/v(g) is well defined in X and only depends on the conjugacy class of 
g G G. In fact it is the image class in G/N = PG1(2, k). Let Q C X be the finite set 
defined above. Let GQ C G be the subset of all elements g in G, whose image under 
this map G —• X is in Q. The set T = of primes v with the Frobenius elements 
Frob^ in GQ has Dirichlet density zero ([T], lemma 2). Enlarge T by a finite set of 
places so that it in particular contains the archimedian and ramified places of II. 

B.l. Lemma. — Suppose the representation H satisfies the assumptions (a) - (e) for­
mulated in section 2 and suppose we are in case three of Taylor's list. Then there 
exists a set T of places v of Dirichlet Q-density 0 for which the Satake parameters of 
Uv are of the form 

IIV ~ (yvi vv(v 11[lv, ¡JLVCV), VV\Iv = vv\iv = n(Frobv) 

so that (v is in it and so that vv/pv is not in \ L (both viewed in the set X = k* modulo 
inverse). 

Proof. — For v E T — TQ as above property (e) implies that the set of Satake 
parameters of ILV is {v(g)d(g),v(g)(2(g),u(g)d(g),u(g)(2(g)}. By abuse of nota­
tion g = r(Fvobv) or also g = Frobv is the Frobenius class. &(g) are roots of 
unity as defined above. For u(g),v(g) suitably chosen we can assume (i(g) = 1-
Then ((g) = (2(g)~l. Since the Weyl group acts transitively on the Satake pa­
rameters the first can be chosen to be vv — v(g). The set of Satake parameters 
{v(g),v(g)(~l(g)Ju(g),u(g)(~1(g)} usually does not determine the Weyl group or­
bit of the tuple (vVl Vv, pvi fxv) of Satake parameters. In our special case it does, 
since v ^ T and \xv = n(Fiobv)/i/v implies \iv ^ v(g)(~1(g). Notice that otherwise 
(~1(g)v(g)2 = n(Frobv) = (~l(g)u(g)2 — following from i/vp,v = vvfiv = n(Frob„) — 
contradicts u(g)/v(g) ^ Q. Since the Weyl group contains an element fixing vv,iiv, 
which permutes the other Satake parameters vv and ftVl we can therefore assume 
vv = v(g)(~1(g). This proves the lemma. • 

B.l. Lemma. — Suppose IT were a counterexample for theorem I as in lemma B.l. 
Then II is a nondegenerate D-critical representation of two-abelian type with D ^ 4 
and the Galois group Gal(L : Q) = TTQ(G). 

Proof. — For T = TQ the Frobenii classes 'generate' the finite group TTO(N) = TTO(G). 

From lemma B.l we get (\ivlvv)2D ^ 1 and (pv/i'v)2D ^ 1 for v £ T. Here 
D = \TTO(G)\. For v £ T all Satake parameters are different from each other, unless 
C(Frobi;) = 1 or equivalently r(Frobi;) G G°. Furthermore C(Frob^) G Q is charac­
terized as the unique quotient of Satake parameters contained in ft. The relation 
between Galois representations and L-series therefore implies, that the representation 
s = p<S)t defines a balanced representation p of the finite subgroup N of N with only 
two eigenvalues. The kernel Z(p) of the associated projective representation p of N 
(see appendix A) is characterized by g G Z(p) iff ((g) = 1 iff g G Z(G°) D N = pn. 
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By the classification of balanced representations obtained in lemma A of appendix A, 
p is either a multiple of a 2-dimensional representation or Q(p) = N/Z(p) is an ele­
mentary two-abelian group of order D ^ 4. In the first case the representations s is 
a multiple of a 4-dimensional representation and the main theorem holds for II, and 
TTQ(G) = Q(p) must be a finite subgroup of PG1(2, k). In the second case the represen­
tation II is D-critical. This follows from lemma B.l since N/Z(p) = TV//in — TTO(G) 

is elementary two-abelian. Hence £(Frobv) = ±1 for v £ T. Notice, the order of ((g) 
is the order of the image of g G TV in the quotient group Q(p), which is elementary 
two-abelian. In particular £(Frobv) = 1 holds iff Frobv G G°. The corresponding 
number field L has therefore as its Galois group Gal(L/Q) the group 7TQ(G) = G/G°. 
Lemma B.2 is proven. Of course lemma B.2 holds in case 1 whenever TTO(G) is a 
elementary abelian 2-group. 

The first case of [T]. — In this case we have distinguish the two cases G — G and 
[G : G] = 2 also called cases la and lb. Now the connected component is a torus 
G° = GJ^ of rank r = 1,2 over k, and is contained in TV. Hence TV = G, and G is 
obtained from the finite subgroup TV and the torus G° by the pushout 

G = (Nx G ° ) / / C 

G° -eigenspaces. — The restriction s of the representation s of G to G decomposes 

s = p e p ' . 

Here p and p' are representations of G, whose restriction to G° are characters \ 
resp. x' °f tne torus G°, such that xx' — n- This is clear for the subtorus G° and this 
extends to G, since G = N is the centralizer of this subtorus (see Taylor's list and 
[T], p. 302). So p is the representation of G on the x_eigensPace of G° and p' is the 
representation of G on the x'-eigenspace of G°. The root condition A2 / b (property 
(c) in section 2) implies xj (x'Y f°r au powers j ^ 1, since otherwise x2j — nj 
in contradicts this root property of the Galois representation of n . In particular the 
character x!Ix is n°t of finite order. 

In the present case the finite subgroup TV of TV = G is a normal subgroup with 
quotient N/N ^ G°/G°{n}. The characters xn,X,n of the torus G° define a faithful 
embedding of G° = G°/G°[n) into G^. The two projection maps define composite 
maps G = TV —> TV/TV —* Gm, which give the two characters xniX,n °f G- The two 
characters xniXfn of the torus G° therefore extend to characters of TV = G and are 
called 

(l + C(^)) + 2-^x(^) = 0. 

In particular, r(#) = '(g)/'x(g))n extends to a character of G = TV, which is not of 
finite order. 

Claim. — The representations p and p' of N are balanced with at most two eigenvalues. 
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Proof. — With the notations above put n = |7ro(G)| and let Q C X be the subset 
represented by roots of unity of order 2n. The set of places for which either r(r(Frob^)) 
or n(r(Frobv)) is in Q has Dirichlet density zero. Let T be a suitable set of Dirichlet 
density zero containing these places. 

Elements in TTO(N) have a lift g in G, so that g = r(Frob^) for some v ^ T. 
For g = r(Frobv) let d — d(g) denote the eigenvalues for the representation p, 
and similarly let (j denote the eigenvalues for p'. The order of TTQ(N) is n, hence 
£2n — £|n — . . . — \ anc[ _ ^/2n _ . . . _ Y for some A 7^ A' G fc*. Notice, that 
g2n is contained in the torus G° so that x(g2n) and x'(92n) are defined. Now r(#) ^ f2 
or r(#2n) ^ 1, hence x\g2n)n ^ x\g2n)n a^d therefore also An ^ A/n if # is suitably 
chosen. 

The set of eigenvalues {£1 , . . . , £{ , . . . } has cardinality at most 4 and in fact is the set 
of Satake parameters {Ci, • • •, Ci> • • •} — {vv,vv, /JLV,J1V} with uvp,v — vvJiv = n(Frobi;). 
This follows from section 2 property (e), which relates the Galois representation and 
the L-series of II. Without restriction of generality we can assume uv = (\. We claim, 
that among the Satake parameters there exists at most two different eigenvalues ([ 
(with prime index). Otherwise the Satake parameters would be £i, £{, ('2, C3? and the 
Satake parameter relations C1C2 = C1C3 raised to the 2n-th power would contradict 
the root condition A 7^ A'. But this implies that p' has at most two eigenvalues. The 
same holds now for p, by reversing the roles of p and p'. 

Next we claim that the Satake parameters must be of the form (Q, (j, (fal (fb) with 
dCL ~ CjCbi since otherwise there are relations of the form d(j = CkCi- Raising to the 
n-th resp. 2n-th power would contradict the root condition A ^ V; notice (d(j)n = ^-
This being said, put ((g) = (i(g)/(2(g) °r ((g) = 1 if there is only one eigenvalue; 
this number is an n-th root of unity uniquely defined up to inverse and the Satake 
parameters of Uv are 

(yv, vv, p,v, p,v ) (yv^v((^ohv) 1,pv,p^C(Frobv)), iyvpJV = LÜUÍPV)-

Here of course we used the freedom to normalize the Satake parameter subject to a 
reparameterization under the Weyl group. Furthermore ((g) defined for the eigenval­
ues of the representation p, and C(g) defined for the eigenvalues of the representation 
of coincide 

C(Frobv) = ^ (FrobJ 

up to inverse. Hence section 2, property (e) implies that the representations p and p' 
are balanced. Either ((g) — ('(g) — 1 holds or all four Satake parameters are pairwise 
different and each of them occurs with multiplicity m. This proves the last claim. • 

Remark. — For g G G the values ((g), (f(g) (up to inverse) depend only on the image 
of g in the finite quotient group G/G° = TTQ(N). By a density argument the above 
information for Frobenius elements therefore implies 

C(i?) = C'(g) for all g G AT. 
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Let p, ~p' be the projective representations of N associated to p, p' with the kernels Z(p) 
and Z(p'). Put Q(p) = N/Z(p) and similar for p'. Then ((g) — 1 is equivalent with 
g E ^(p) or g G Z(p'). We have an injective homomorphism N/Z(p) —> Q(p) x Q(p') 
and the composition with each projection is injective and surjective. Therefore Q(p) = 
Q(p'). Let TTL(G) be the image of Z(p) in TTO(N) = 7ro(C). In fact this group is a 
normal subgroup of 7TQ(G). If the torus G° is two-dimensional, then TTL(G) is trivial. 
If G° is the one dimensional torus, then TTL(G) is a finite (hence cyclic) subgroup of 
this /c-torus. We get an exact sequence 

0 —•* TTL(G) — 7T0(G) — • A —> 0. 

Let L be the field attached to the kernel of the surjective group homomorphism 

Gal(Q/Q) —> A. 

If p and p' are both m-fold multiples of a two dimensional representation, then s 
and r is an m-fold multiple of a four dimensional induced representation. This follows 
from [G : G] ^ 2. Hence theorem I holds for n , so that A is a finite subgroup of 
PG1(2, k). If p and p' are not m-fold multiples of two dimensional representations, the 
main result on balanced representations implies, that the isomorphic groups Q(p) = 
Q(p') are elementary two-abelian of order D(p) ^ 4. In particular ((g) G {±1} and 
we claim that the representation II is a D-critical automorphic representation with 
D = [L : Qj. Obviously D ^ D(p) ^ 4. From the assertions already made this claim 
follows in the case la, when G = G. For G ^ G this follows from the next 

B.3. Lemma. — Suppose H were a counterexample to theorem I and suppose n belongs 
to case one of Taylor's list. Then II is a D-critical automorphic representation whose 
underlying Galois group Gal(L/Q) 

MO) —» A = Gal(L/Q) 
is a 2-group of order D ^ 4, which is isomorphic to TT$(G) divided by a normal cyclic 
subgroup. For G — G in case la the group Gal(L/Q) is elementary two-abelian and n 
is nondegenerate. In case lb the group Gal(L/Q) is a metabelian group isomorphic to 
TTQ(G) with an elementary two-abelian normal subgroup isomorphic to TTO(G) of order 
D ^ 4 and quotient group HQ(G)/TTQ(G) = Z/2Z. 

Example. — The case where TTQ(G) has 8 elements, hence TTQ(G) = (Z/2Z)2, turns 
out to be most relevant (lemma 4.5). Hence we further specify the structure of TTQ(G) 
in this case. Since the group is of order 8, it is either abelian of type (Z/2Z)3 or 
Z/4Z x Z/2Z or isomorphic to the dihedral group of order eight generated by TV, S 
with S2 = 1,7V4 = 1,NS = N~x. (since the quaternion group does not contain 
a normal subgroup isomorphic to (Z/2Z)2, Huppert th. 14.10). The case (Z/2Z)3 
arises iff g2 — 1 for all g G TTQ(G). Furthermore: The dihedral group D% of or­
der eight has the following normal subgroups: The center (TV2) of order two, the 
subgroup R = (N) = Z/4Z, and the two subgroups P = {1, TV2, 57V, SN3} and 
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Q = {1, TV2, 5, 57V2}, which are both isomorphic to (Z/2Z)2. Using the isomorphism 
induced by S »-» 57V, which changes the presentation, we can assume without re­
striction of generality that the subgroup Q C D& defined above can be identified 
with the given group Q = 7TO(G) C TTO(G). There are four additional subgroups of 
order two generated by 5, 57V2, 57V and 57V3, which are not normal in A. The 
conjugacy classes are {1}, {TV2}, {TV, TV3}, {5, SN2} and {57V, 57V3}. The commuta­
tor group [DQ , D&] is cyclic of order two and generated by TV2. Hence D$ has four 
different abelian characters 1, XP , XQ and XR — XPXQ, where XP and XQ have kernels 
P and Q. 

Proof of lemma B.3. — The lemma has already been shown in case la. Therefore 
assume G ^ G. Then G — (G, a) with a2 G G where a acts nontrivially on G°, which 
is a k- tor us of dimension one or two. In fact the dimension of T — G° has to be 
two, since otherwise a acts by the inversion on T. Since a also interchanges the two 
characters x an°l x' this would imply n = xx! ~ 1 contrary to the assumption (a) of 
section 2: n\G° ^ 1. 

Since then the dimension of the torus G is two and since x © X is faithful on 
G°, the morphism (x?x') : — G° —> G2^ is an isomorphism. So we can identify 
G° = G^ in such a way, that x (^ i^2 ) = i\,x' (^1^2) = ¿2 for ( ¿ 1 ^ 2 ) £ (A:*)2 are the 
two projection maps. Since x' X (dim(G°) = 2) and x / X " 1 (the assumption 
n ^ 1), a similar argument implies that a interchanges the two characters. Therefore 
a(txM)°-x = (*2,*i). _ 

Recall that the restriction s = p 0 p' of s to G decomposes. The restrictions of p 
resp. p' to G° are the characters x resp. x' of G°. Put ~sa(g) — s(crgcr~1), then sa = s 
by assumption. This implies pa = p', p'a = p, since x° — x'^x'*7 = X- But a acts 
nontrivially on G°. Therefore s = p® pa. The representation p of G on was shown 
to be balanced. Therefore and without restriction of generality we may assume for 
the proof of lemma B.3 from now on 

Assumption. — p not to be an isotypic multiple of a 2-dimensional representation. 
The group Q(p) attached to the balanced representation p of the group TV̂  is elemen­
tary two-abelian of order D = D(p) ^ 4. 

Consider the Zariski closure Gp of G in G\(VP). Then (Gp)° ^ Gm and Gp ^ 
(Gm x Np)lpn and the group Q(p) is isomorphic to 7r0(Gp). Namely p(g) — 1 implies 
p(g) E k* • idyp, hence g G (Gm D Np)(k) = pn. Now n can be chosen to be n = 2, 
since Q(p) is elementary two-abelian. Thus 

Gp = (Gm X Np)/H2 

0 —> P2 —• TVp — • Q ( P ) —> 0. 

The central extension Np defines a cohomology class in H2(Q, p2) for the group Q — 
Q(p). Let a(gi,g2) be a representing 2-cocycle (for the inhomogeneous bar resolution), 
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normalized such that a(0,0) = 1. Then q(g) = a(g,g) G p,2 is a function q : Q —> /¿2 
independent of the choice of cocycle. 0(0) = 1 holds iff ^ = 1 for a (any) lift g G 7Vp of 

g € Q- Notice <?i<?2 = 0(01,02X0102). Furthermore g(0102) = 0(01)0(02X01» 02] defines 
a quadratic form q on Q with associated bimultiplicative form [01,02] = 0^020102"1'• 
It is bimultiplicative since it has values in the central subgroup /in of TV. We have 
a similar situation for p' = pa. We identify Q(p) and Q' = Q(p') via cr. The 
corresponding function q' on Q attached to the extension class of Np> in H2(Q,p,2) is 
q'(9) = Qfagv-1). _ 

Recall Q(p) = Q{p') = TTO(G). Using the cocycles defining Np and 7Vp/ we find a 
finite cr-stable subgroup iV, such that 

G^(G2mx N)/p2 

0 —> uo x uo —> N —> G —> 0. 

The group Q = Q(p) was shown to elementary two-abelian and Q(p') is identified 
with Q(p) by the action of cr. We also view q, q' as functions on G, which factorize 
over the quotient 7TQ(G). 

The previous decomposition of G can be extended to G. We find a subgroup if, 
such that 

G = P i x fi)/u2 

0 —> N —> H —> Z/2Z —> 0. 

For this find a representative a G G v G, such that cr2 £ N and put if = (iV, ¿7). For 
any choice of cr we have cr2 = t-g with £ G G°, g G TV. By definition atga~x = tg, hence 
t°/t = gig*7)'1 G G° H TV = p\. If £ = (a, 6) G (/c*)2, then tf7/* = (6/a,a/b), hence 
6 = dta. So we can replace cr by a = a(a~l, 1) G a • G° in such a way, that a2 = (1,1) 
or (1 , -1) is contained in N. p2 is a normal subgroup of H and i i / / i | — Tro(G')- The 
proof of lemma B.3 is now completed by the following two lemmas. • 

B.4. Lemma. — Assume a ^ G. Then s(a) has either two different eigenvalues t,—t 
or four different eigenvalues £, —£,Z£, —it depending on whether a2 G G° holds or not. 
Each eigenvalue occurs with equal multiplicity. 

Proof. — For any choice of cr G G, a £ G we have 

(1) (cr • (ti,t2))2 = cr2 • (t,t) for £ = ¿1*2 G A;* and the element (£, £) G G° acts on 
W by the scalar t • idvt/ 

(2) cr4 always acts on VP by a scalar. Namely cr4 G (G0)0" = {(t,£) I t G &*}. Hence 
the eigenvalues of s(cr) are of the form ±£, =BZ£ for some £ G /C*. 

On the other hand cr2 G G° implies cr G (G°)a. Therefore s(cr2) acts by a scalar 
on W iff cr2 G G°. Let a,b,c,d G N denote the multiplicities of the four possible 
eigenvalues of s(a). s(a) permutes Vp and Vp>. Therefore Trw(s(a)) — a — b-\- i - c — 
i • d = 0. This implies a — b and c — d. Hence s(cr2) acts by a scalar on W, either 
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if a = b = 0 or c = d = 0; and this is the case where a2 G G°. Hence s(a) has two 
different eigenvalues t,—t with equal multiplicity. 

In the remaining case a2 ^ G° both a = b,c — d are nonnegative. So there are four 
different eigenvalues of type =B£, ±.it. In this case s(o~2) has the eigenvalues t2 and — t2 
with the multiplicities 2a and 2c. It remains to show a = c. The image of a2 G G in 
7ro(G) = £/(7° is nonzero. In terms of the function ((g) = ('(g),g G G introduced 
earlier, this means ((cr2) ^ 1. Therefore a2 has two different eigenvalues on both 
subrepresentations Vp and Vp>. The representations p, p' are balanced representations 
of G. Hence each of the two different eigenvalues of a2 on Vp has equal multiplicities 
dim(Vp)/2 and similar for p'. We already know, that there are only two eigenvalues 
t2, —t2 of a2. Hence a — c follows from dim(Vp) = dim(V^/). Lemma B.4 is proved. • 

The Satake parameters for Frobv £ G. — It remains to determine the Satake param­
eters of in the case lb to complete the proof lemma B.3. 

B.5. Lemma. — Suppose the assumptions are those of lemma B.2 and suppose we are 
in case lb. Then n is D-critical, where Gal(L/Q) = TTO(G) is a metabelian extension 
of a Z/2Z by an elementary two-abelian group Q(p) — TTQ(G) of order ^ 4. There 
exists a set T of Dirichlet density 0, such that for v £ T the local representation Iiv 
has Satake parameters 

(yvi^VviUv^vVv), VvPv = n(Frobv), 

with (v = C(Frobv) = ±1 and (v = 1 Z#Frob„ G G°. 

Proof. — First the cases C,D and L, where Frob^ £ G. 
There is the case C, where Frob2, £ G°. By lemma B.4 and property (e) of n 

H17 r>*J (ty i ty , tty , tty) ' (tvi ^ity , ^Hy , ty) 

up to replacement of i by —i. Thus vv/pLv — ±2. The case (tv, ±itv,—tv, =pitv) is 
impossible, since it contradicts vvpv — vvpv. Furthermore (V(UV,1, s) is attached 
to the L-parameters (1, —1, —l/Z, —Z, —1) and therefore log (^(nv, 1, s) = — p~s + 

o{P-2s). 
In the next case D Frob2 G G° and by lemma B.4 and property (e) of n 

-Hi; ^ (ty 5 ty, ty,ty) ^ (ty , ty , ty , ty) '"N"' ( ty , ty,ty,ty). 

Hence vvj'pv = —1 and (v(TlVl 1, s) is attached to the L-parameters (1,1,—1,—1,1). 
Thus logC„(n„, l,s) = p-s + 0{p-2s). 

Now the case E, where Frob2 G G° and 

IIi; ^ (tyi tV)tVj ty) 

Then Vylpv — 1 and (V{Y\V, 1, s) is attached to the L-parameters (1,-1,—1,-1,—1), 
hence logC.(II„, 1, s) = -3p~s + 0(p~2s). 
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Finally the cases case A and B, where Frobv G G and either Frobv G G° or 

Frobv ^ G°. Then according to the discussion of case la , the representation Uv has 

Satake parameters 

( VV, VV (V , \IV, FLY (V ) , 

where (v = £(Frobv) G { i l } and = 1 iff Frobv G G°. This proves lemma B.5. 

The above arguments show, tha t II is D-critical, but not nondegenerate degenerate, 

in case l b . A substi tute for the previous arguments will be necessary and finally is 

provided by a further analysis of the cases A and B where Frobv G G. In fact we 

use G = ( G ^ x N)/p2 to write r(Frobt;) in the form (tv,t'v) x gv mod /i?> with 

(tv,t'v) G (/c*)2 and gv G N. Let avXv&v resp. av,(vav be the eigenvalues of p(gv) 
resp. p'(gv) under the balanced representations p and p' of G. Since Â  is a finite 

group, and every element has order dividing 4 , these eigenvalues are contained in 

± 1 , ±i. Obviously a2 = q(Frobv) and a'v2 — (/(Frob^), where 

q,q : TT0(G) • p2 

are the quadratic forms on 7TQ(G) extended to G, tha t were defined earlier related to 

the extension 0 —> /i2 —* N —• TCQ(G) —• 0. In particular 

p(Frob^) ~ tv 
(ocyE * \ 

V 0 oiy(yE) 

pf(FroK,) ~ t ' 
* N 

. 0 a'ÇvEj 

Without restriction of generality, by changing a'v to afv(vi the Satake parameters of 

I F therefore are 

(tv CYY , tv OIY Qv , tv CYY , ty QIV Çv ) 

with n(Frob^) = vvpv = ( ^ Q ^ ^ A ' J . Hence 

tvav/t'va'v = (tvav)2/n(Fvobv) t2vq(Frobv)/n(Fvoby) 
ty 

q — (Frob^) 
n 

tvav/tfva'v = rc(Frobv)(^a4) 2 = ç / (Frob.)n(Frob,) c / ¥ ( F r o b . ) , 

Hence c/g = c//c/ is the quadratic character (q'/q)(Fvobv) = (tv)2(t'v)2/n2(Frobv) 

qq = ^ $ / n 2 

of G, where 

: G — • fc* 

are the characters (£, £') x g mod / i | • £2 resp. (t')2 of G defined earlier. Recall tha t 

N is a central extension of /i2 in our present situation. Also define : G —• k* by 

= n 2 / ^ . Then 

' = c/a<I>. 
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The quadratic character qrq is trivial on G° and may be viewed as a character of 
TTQ(G). Let L be the fixed field of the inverse image of G° in Gal(Q : Q) and let L be 
the fixed field of the inverse image of G in Gal(Q : Q). 

Asymptotics. — We now determine the weights wv in the asymptotic formula 

logC^LL^x^s) Wv • Xv(Pv)p„8 + Oí» 2s), 

where (V(UV, Xv, s) denotes the local factor of the degree 5 standard L-series of the 
automorphic representation IT at a nonarchimedian unramified place v £ TQ and 
wv = 1 +ev(Adv+l) , Adv = ^ + ^ + 1, where (i/v, evvv, p,v, evpJV) with e G {±1} 
are the Satake parameters of LT̂ . 

The weights wv. — For the five possible cases A,B,C,D,E we get 

A,B: HereFrob^ G G and wv = (1 + 2ev) + ev • g(Frob„) • ( f (Frob^) + ^(Frob„)). 
C,D,E: Here Frobv ^ G with vvj'pv — =bz, —1, 1 respectively. The weights are 

— 1,1,-3 respectively. 

That the weights are wv — — 1, 1, —3 in the cases C,D,E follows from the proof of 
lemma 7. In case A resp. case B (v splits in L or not) we find 

Adv 
^ ^ tyCXy ^ tvOiv 

t„.0¿„. tyCYy 

or with the notations above 

Ad^ = 1 + o(Frobv) - (F rob , ) 
V n 

— (Frob.) 
n 

In the next lemma ^ and \£' are shown to be nontrivial Grossencharacters of the 
quadratic extension field L of Q. For this reason — 'in a statistical sense' — the 
weight factors in the cases A and B will behave for the further analysis of C5(n, X? s) 
in appendix C exactly as if they were the constant weight factors wv = 3 , - 1 for any 
additional character x of finite order, since ^/n and ^'/n themselves are characters 
which are not of finite order and since both q and e - viewed in their dependence on 
Frobv - are constant functions on the cosets Gal(Q : L)/ Gal(Q : L) = 7T0(G). Namely 

B.6. Lemma. — ^/n and ^'/n are inverse algebraic Grossencharacters of the 
quadratic extension field L of Q. Both ^/n and ^'/n are characters, which are not 
of finite order. 

Proof. — Let E be some number field. Then a A-adic representation p is 
called ^-rational, if the representation is unramified at almost all places so that 
trace p(Frobvy G E holds for all z G N. The following properties are obvious: If p is 
^-rational, then its restriction to a subgroup of finite index is again ^-rational. If p 
and p' are ^-rational so is p (g) p'. If p = x ® Po is ^-rational and if x is a character 
and po a representation with finite image of order N, then x is E((N)-rational if p is 
^-rational and vice versa. 
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The representation r of G a l ( Q / Q ) on W (see section 2) arises from a semisimple 
A-adic representation, which is ^-rational. For a number field E = En as in [T], 
p. 297 the characteristic polynomial Pv(X)rn of r(Frobv) is a polynomial in i?[A]. 
This follows from Lv(IYv1s) = Pv(p~s)~1 (property (e)). 

The restriction p 0 p ' of s to the subgroup Gal(Q/L) decomposes and is ^-rational. 
p' is of the form n(g) po- Since G = (GM x Af)/p?,, the representation po has finite 

image and n is the character defined by II (see section 2, property (a) or (e)). By our 
assumptions on II the character n is ^-rational. Hence, if E is suitably enlarged by 
a root of unity, p (g) p' is ^-rational. 

The restriction p 0 p ' of s to the subgroup Gal(Q/L) decomposes and is ^-rational, 
as well as the tensor square of this restriction. It contains two copies of the represen­
tation p® p' as direct summands. Hence (p®p) 0 (p' ® p') defines a A-adic semisimple 
abelian ^-rational representation of the absolute Galois group of L. By [He], p. 113 
this representation must be locally algebraic. Since p (g) p = \J> <g) (0^x0 for finitely 
many quadratic characters of the elementary two-abelian finite group N / pL2, ty is 
locally algebraic and then also ty/n. This proves the first part of the claim. 

Assumption (a) together with assumption (c) of section 2 for n show, when applied 
for the characters x and x' °f the torus G° C G, that the Grossencharacters ty/n and 
ty'/n are of infinite order. This proves lemma B.6. • 

Appendix C 

Poles at s — 1 in the CM case 

Suppose n is D-critical of C M type. By appendix B and lemma 4.5 and 4.6 the 
corresponding field extension L/Q is a Galois extension of degree D = 8 with Galois 
group either Dg or (Z/2Z)3 with a distinguished subfield L, and II is a theta lift 
associated to some TT = TTK for G1(2,AK), where K/Q is an algebra of degree 2 
over Q . The main result of this appendix is the 

Proposition. — Suppose U is D-critical of CM type. Then any choice of K, for which 
n is a theta lift from Gl(2, AK), is a field and this field is contained in L and is differ­
ent from L. These fields Ki correspond to the unitary characters x — XKIF for which 
Cs(n, x> s) has a pole at s = 1. For any such K has three quadratic extension fields 
LK,F,Fr in L. The automorphic representation IT = TTK on Gl(2,Ax) associated to 
n satisfies 

(1) TT = 7T®XKL/K ¥ °"(7R) 

(2) O-(TT) = TT (8) x for x = XF/K and x = XF'/K-

Proof. — This is a summary of lemma C.3-C.5 and C.3 ' -C .5 \ 
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Let A be the Galois group of L/Q, a group of order D. Let X\,... be the conjugacy 
classes of this group. Fix an abelian character x °f A- Then x% ~ x{d) f°r 9 £ Xi is 
well defined. 

C.l. Lemma. — There are real numbers w(Xi), such that for s —> 1+ 

logC5(n,X,s) 
(l + C(^)) + 2-^x(^) = 0. 

•logC(s). 

Proof. — Simply put 

w(Xi) = lim D#(Xi)-' 
S—+ 1 + v6T,Frob̂ GX¿ 

(l + e J A d ^ + n ^ - V i o g C W . 

Let us show, that these limits exist. It was already shown in appendix B that "statis­
tical" weights exist for the images of Frobenius elements g = Frobv G A (depending 
on whether Frob^ belongs to the cases A,B,C,D,E and they were 3, —1, —1,1, —3 re­
spectively) . If all Frobv, v G T for g = Frobv G Xi belong to one and the same case 
A-E, this implies existence of weights w(Xi) attached to the conjugacy class Xi in 
the sense above. Whether Frob^ belongs to case A-C can be completely characterized 
in terms of group theoretical properties of the image of ¥iobv in A. Hence only the 
cases D and E might cause trouble. 

For abelian A the existence of w(Xi) in this case is an immediate consequence of 
the Tchebotarev density theorem, although there are several classes which might be 
a mixture of case D and E. Simply vary x £ A- Since the conjugacy classes of an 
abelian group are separated by abelian characters we get w(Xi) = 1L,x x(Xi) -n(x), 
where 

logC(II,X,s) ~ n(x) • logC(s), n(x) G Z, 

and n(x) is the order of the meromorphic functions £(II, x?s) at s = 1. In the 
dihedral case A = Dg, although the group is nonabelian, fortunately there is only one 
conjugacy class, which contains Frobenius elements with mixed cases D or E. Using 
the notations of the remark after lemma B.3 in appendix B, this conjugacy class is 
the class of the two elements SN and SN2. All other classes have a well defined 
weight. Therefore the existence of the weight w = w({SN, SN^}) for the remaining 
class follows as in the abelian case. • 

For the conjugacy classes of type A,B,C the weights are w(Xi) — 3, —1, —1 respec­
tively. For a class which is a mixture of case E and D, we only know that the weight 
w — w(Xi) satisfies — 3 ^ w ^ 1. 
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The CM case A = D%. — For notations see the example in appendix B. 

Classes X% 1 {TV2} {S,SN2} {TV, TV3} {SN,SN3} 

Cases A B B C D + E 

Weights w(Xi) 3 - 1 - 1 - 1 w 

Cardinality # № ) 1 1 2 2 2 

X - 1 1 1 1 1 l_ 

X = XQ 1 1 1 ^ 1 - 1 

X = XP i i - i zl L _ 
X = XR 1 1 - 1 1 - 1 

C.2. Lemma. — The order n(x) of £5(II, x, s) at s = 1 for the characters x — 
1, XQi XPI XR is 0? 0> 1? 0 respectively. Up to a set of density zero the class {SN, SN3} 
has type D and w = 1. 

Proof. — For characters x of A we have 8 • n(x) = 3 - x(^2) - 2 • x(S) - 2 • x(TV) + 
2 • w - x(^TV), by definition. This implies — n(l) = TI(XQ) = ^ ( X P ) = \iX ~ w) and 
n(xp) = \{w + S). Since —3 ̂  w ^ 1 and since the n(x) are integers, it follows w = 1 
or w — —3. Suppose w = — 3. Then C5(n, 1, s) would have a zero at s = 1, which is 
impossible by cor. 7.3.1. Hence w = 1. • 

By the last lemma xp5s) has a pole at s = 1 and n is associated to some 
automorphic representation 7r = TTK of Gl(2, A ^ ) . K is the quadratic extension field 
of Q defined by the character XK = Xp (theorem 4.2), hence a subfield of L. 

C.3. Lemma. — Suppose x is a unitary character. If (s(U,x, s) has a pole at s = 1 
then x — XP-

Proof. — By remark 4.3 we know x2 = 1- Let Lx be the corresponding quadratic 
extension field of Q. By lemma C.2 we may suppose x 7^ 15 Xp? Xq> XpXq- Then L 
and Lx are linear disjoint fields and Gal(LLx/Q) = Gal(L/Q) x Gal(Lx/Q). Since 
Hs satisfies the Ramanujan conjecture, lemma C.3 is an immediate consequence of 
the Tchebotarev density theorem and the fact, that up to a set of primes of density 
zero the Frobenius elements mapping to the conjugacy classes of Gal(L/Q) = D% in 
the table above belong to the cases A, B, B, C, D respectively (lemma C.2). • 

C.4. Corollary. — K and TT are unique XK — XP-
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Let a be the nontrivial automorphism of K/Q. Consider the field extensions 

L 

KL 

L = Lo LR 

Q 

F F' 

К = Lp 

where K = LP is the fixed field of the subgroup P = {1, TV2, SN, SN3}, and where LQ 
is the field L attached to the subgroup Q. The composite KL is the fixed field of TV2. 
Let F be the fixed field of the group element SN £ Dg, which is a quadratic extension 
of K. Conjugation by a fixes K, hence induces a permutation of the quadratic 
extension fields KL, F, F' of K in L . It fixes KL and permutes the other two F and 
a(F) = F'. Since SN and SN3 are conjugate, F' is the fixed field of the element 
SN3 G Dg. We obtain thus quadratic characters XF/K,XF'/KIXKL/K °^ A*K/K* 

where XKL/K = XQ ° Normx/Q. 

C.5. Lemma. — The representation TT of G\(2, AK) associated to IT has the following 
CM-properties: 

(1) TT = TT®XKL/K-

(2) O-(TT)¥K®XKL/K' 

(3) CT(TT) = TT <g) x /or x = XF/K and x = XF'/K-

Proof. — (1) follows from (3). Prop. 6.8 for x = XQ with XXK — XQXP — XR gives 
bv lemma C.2 

ords=i LSK(XQ ° NormK)L^(cr(7r) x TT* 0 (XQ O NormK), s) = 0. 

Hence L^-(O-(TT) X (7r* (g) (XQ ° Norm^),5) has no pole at s = 1. By prop. 7.1 this 
implies O-(TT) ^ 7r 0 (XQ ° Norm^)- This proves (2). Since the Ramanujan conjecture 
holds for TT for the proof of (3) it suffices to show, that for a set of places w of K-
density 1 the representations TTW and TTW (g) XF/K,W are locally isomorphic. The local 
isomorphisms imply LS(TT* X (TT (g) XF/K),S) ~ (K(s)(S(Ad(n), 1, s) at 5 = 1. CK(5) 

has a pole at 5 = 1 and £5(Ad(7r), 171) ^ 0. Hence the left side has a pole at s — 1, 
which implies (3) by prop 7.1. So it remains to show the local isomorphisms. The 
set of places w of K, which lie over K = Lp-split primes pv of Q with v ^ T, has 
^-density one. For such v there are two extension w,w' to K. By 8.1 we have 
TTW X TTwi ~ (tvvv,tviiv) x (tvuv,tvfiv) for certain £„, if nv ~ (vv,vv, fiv,\iv). We get 
the following list 
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Frob v 1 N 2 SN S N 3 

Cases A В D D 

( v v , v v , fly , fly ) (Уvi v̂> jly, /Л-г>) * * * ( l̂V 1 5 •) l̂V ) 

X F / K 1 - 1 1 - 1 

X F ' / K 1 - 1 - 1 1 

The corresponding representations <t(itw X nwf) = ttw> X ttw of Gl(2, Kv) = Gl(2, Qv) x 
Gl(2,Qu) have Satake parameters 

^VÛT̂ VÛ' ty [Vy 5 l̂ v) 1 ty 5 Pv ) 5 ty(y,y,fly),ty{vv , fly)',ty{Vy,Vy ) , ty ( " -Vy.Vy) 
T̂W' 1 T̂W ty {yy , fly ) , ty {Vy , fly ) , ty {Vy , fly ) , ty (yy , yi-j; ) , ty ( Z/y , Vy ) , tv (ï̂ v 5 Vy ) 

In these lists the entry for IIv and ttv — ttw X -kw> for the two conjugate elements 
S N and *SW3 are the same. Hence there is only one entry. By inspection in the four 
possible cases we see o-(7rv) = ttv ® X f /k ,V ^ 

T/ie degenerate abelian C M case A = ( Z / 2 Z ) 3 . — Let Q = A be the subgroup of 
A = Gal(L/Q), whose fixed field is the distinguished field L. Suppose Q is generated 
by TV, S with N 2 = S 2 = 1 and suppose A = ( Q , M ) with M 2 = 1. Let XQ be 
the nontrivial quadratic character of A, which is trivial on the subgroup Q. Let 
XJV, XS be the characters defined by X N { N ) = — 1, X N { M ) = X N ( S ) = 1 and xs(S) = 
- l , X s ( N ) = Xs{M) 1. The weights for Frob, = 1, N , S, N S , M , M N , M S , M N S 
are 3, — 1, — 1, — 1, wi, w2, ws, W4 with the corresponding cases A, B, B, B, D + E , 
D + E , D + E , D + E . As in the proof of lemma C.5 one then shows for m(l) = 0, 
ra(xiv) = 1, m(xs) = 1, rn(xNXs) = 1 for 

m{x) = ords=i C5(n, x, 5)C5(n, XXQ, 5). 

Let m = ords=i ^ ( I I , 1, s) and x,y,z be the orders of ords=i CS(n, x-> s) f°r X — 
XA^,X5,XivX5- Then {w\ + w2 +w3 + w4)/8 — m and (u>i - w2 + w3 - 7i;4)/8 + 1 / 2 = x 
and (i^i + 1̂ 2 — ws — w^)/S + 1/2 = y and (wi — w2 — W3 + ^ 4 ) / 8 + 1/2 = 2. Then 
—3 ̂  < 1 implies m G { — 1 , 0} and x,y,z G { 0 , 1 } . Suppose m — — 1 . Proposition 
6.8 gives ords=i C5(n, l,s)C5(II, X K , S ) ^ 1. The order of C S ( U , X K , S ) is at most 1. 

This is a contradiction. Hence m = 0. Solving the inequalities for the W{ above, gives 
0 ^ x + y + z ^ 2 and - 2 ^ - x + y - z ^ 0 and - 2 ^ x - y + z ^ 0 and - 2 ^ 
—x — y + z ^ 0. Therefore either x = l ,y = 1, 2: = 0 (without restriction of generality) 
or x = y = z = 0. In the first case w\ — l,w2 = l,W3 — 1,W4 — —3 and in the second 
we get w\ = — 3, w2 = 1, W3 = 1, W4 — 1. Then for all Q-places outside a set of density 
zero the possible types are A, B, B, B, D, D, D, E resp. A, B, B, B, E , D, D, D. This 
proves 
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C.3Lemma. — There are exactly three characters \ — Xi?X2,X3 of A for which 
C5(n, x, «5) has a pole at s = 1. For all other characters \ (of A) the order of 
Cs(Tl, v, s) at s = 1 is zero. Furthermore 

À = {1, XQ, Xi, XiXQ, X2, X2XQ, X3, XSXQ}-

Since K is a subfield of L and the group A is abelian, cor. 9.3 and lemma C.3' 
imply 6 = 2- ords=i ]1xGA C5(n, X, s) = nK(U) - D/2 + 2 = 4 • nK(II) + 2. Hence the 
number n^fn) defined in lemma 9.1 is n^fn) = 1. Cor.9.3 thus implies 

ords=i n C^(Ad(7r), x o Normx, s) = nx (n ) • D/2 - 2 = 2. 

By prop. 7.1 therefore there are two cases two cases where there are poles of 
C5(Ad(7r),x ° Normx,s), and they are of the form x £ { X 4 , X 4 X ^ } for some 
X4 G A. Lemma 9.1 and nx(Il) = 1 and the nonvanishing result of lemma 
C.3' imply for all x £ A, that precisely one of the three functions x?s) 
or (S(TT,XXK, S) or C5(Ad(7rx),x ° NorniK,s) has a pole at s = 1. This implies 
te, XiXx} H {X4, X4Xx} = 0 for z = 1, 2, 3. Thus for z = 1 , . . . 4 are coset rep­
resentatives with respect to {1,XK}- Furthermore this implies X%XK £ {xi ,X2 ,X3}-

Since XK can be any of the characters Xi, X2, X3> these properties imply 

CA\ Lemma. — X4 = X1X2X3 = XQ-

Proof. — For 1 ^ i,j < 3 we can not have \iXj = XQ, since otherwise Xi — XjXQ 
CONTRADICTS lemma C.3'. The product is not in {xi ,X2 ,X3} either, as stated above. 
Therefore X1X2 = X3XQ by lemma C.3'. More symmetrically X1X2X3 = XQ- Now 
fix any i G {1,2,3}. Then A = {xi, X2, Xs, X4, XiXu X2Xz, XsXz, X4Xi}- Since XkXi = 
XjXQ °r 1? lemma C.3' implies XQ £ {X4>X4X«}- Since this holds for every choice of 
i — 1, 2, 3, this forces X4 = XQ- ^ 

Prop. 7.1 and lemma C.4' imply, that TT has complex multiplication TT = TT 0 (x 0 
Norrn^) for x ^ A iff x is in the subgroup {1, XK, XQ? XQXK} of A. Since n^(II) = 1 
lemma 9.1 implies, that CT(TTK) — TTK ® (x 0 Normx) holds precisely for the x m the 
complementary coset in A. Since XQ = XT therefore 

C.5\ Lemma. — For any choice K = K\, K2, K3 let a denote the nontrivial involution 
of K/Q. The automorphic representation TT = TTK O/G1(2, A # ) associated to Ii by the 
theta lift has the following CM-properties 

(1) TT — TT ® (x 0 Norm^) for the characters x in (xr, XK) = {1, Xr> XK, XLXK}-
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(2) a(rr) ^ TT 0 (x o Norrnx) ¥ TT for X e A - (xr, XK) • 

L 

KiKj 

Кг 
K' mI L 

Q 

There are six quadratic subfields Ki, K2y K3, K[, K2, K'3 with {ijk} = {1,2,3} plus 
the distinguished quadratic subfield L. 

Appendix D 
Pairings 

Let G be a group, let TT be an irreducible representation of G on the vector space 
Vn over a field k of characteristic zero. Let UJ : G —> k* be a one dimensional character 
of G. Let (V, p) be an isotypic multiple of In fact, we want that 

(1) Schur's lemma holds, and 
(2) that there is a natural notion of dual representation (V, p)v, so that there exists 

a canonical isomorphism (V, p) —• ((V, p)v)v of representations. 
For instance: G is a compact group, and the representations are continuous and 

finite dimensional; or G is the group of F-valued points of a reductive group over F, 
where F is a local nonarchimedian field, and the representations are finitely gen­
erated and admissible. Also consider (Q, i^)-modules for real Lie groups, or finite 
dimensional algebraic representations of reductive groups over an algebraically closed 
field of characteristic zero. So assume that we are in one of these situations. 

The Parity. — Suppose, there exists an isomorphism ip : p = pv 0 UJ with underlying 
map i\) : V —> Vv such that ip(p(g)v) = cu(g)pv(g)(xp(y)). Then we get another 
isomorphism by dualizing ?/;v : (Vv)v —• Vv. By our assumption we can identify 
(Vv)v and V, so we view ipv as a map from V to Vv by abuse of notation. Obviously, 
tpv again satisfies ipv(p(g)v) = oo(g)pv(g)(^(v)). ip is called ^-symmetric, if 

ipv = £ • ip 

holds for some constant e — e(G, p, UJ, ip) in k. Since (ipv)v = ip the number e(G, p, UJ) 
is either 1 or -1 . It is called the parity of (G,p,uj). 

In the special case, where (V, p) is an irreducible representation with p = pv 0 UJ, 
the isomorphism xj) is unique up to a constant (Schur's lemma). In particular, ip is 
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^-symmetric for a unique parity e. This parity does not depend on the choice of xjj, 
but only depends on G,p,uj. This defines e(G,p,UJ)) = e(G,V,UJ). TO determine 
e(G, P,UJ) amounts to decide, whether there exists a /c-bilinear nontrivial ^-symmetric 
pairing 

(.,.): V x V —>k, (v,v')=e- (v',v) 

such that (gv,gvf) = 00(g) • (v,vf) holds for all g £ G, and all v,v' in V. Of course, 
(v,v')=^(v)(v'). 

Remark 1. — e(G,p,UJ) does not change under twisting by a one dimensional char­
acter x °f G, e(G,p,UJ) — e(G, p(g) XI^x2)- If G is compact and k = C, (V, p) is an 
irreducible continuous finite dimensional representation of G with character xp- Let 
dg be a Haar measure of volume one, then fG UJ-1 (g)xp(g2)dg is a real number. It is 
zero, unless p = pv 0 UJ. If p = pv 0 UJ, this number is e(G, p, CJ). 

Remark2. — Suppose G = Gi x G2 and (V,p) = (^i,Pi) ®fc (^2,P2), with a given 
^-symmetric isomorphism ip : p = pv <g) a;. A character of G can be viewed as a 
character of Gi, G2 in the obvious way. We assume that p2 is irreducible and that pi 
is a finite isotypic multiple of an irreducible representation. Then the E\-symmetric 
Gi-equivariant homomorphisms ^ 1 in HomG1;£l (pi, p\ ®OJ) can be identified with the 
e = £1 ̂ -symmetric G-equivariant homomorphisms ip in Hom^)£(p, pv (g) UJ) by the 
isomorphism I/ji ^ ^ = ^ 0 ^ 2 , where ^2 : P2 — P2 ®^ is the (up to a scalar) unique 
isomorphism for G2. This follows from Schur's lemma by a dimension count. Hence 

E(G,p,uj,tp) = e(G1,p1,UJ,^I) • e(G2,P2,^). 

Suppose (V -̂,7r) is an irreducible representation of G and suppose ip is an e-
symmetric isomorphism as above. Suppose K is a subgroup of G, such that TT = 
®7r/m(7r/)7r/ as a representation of K with finite multiplicities m(TTF) > 0 and irre­
ducible representations TT' of K. Suppose TT' is such that (TT')V ® UJ = TT'. Then 
e(G,TT,UJ,IP) = e(K, p,uj,ip) for p = TYI(TT')TT' , where 2p,uj are obtained by restriction 
from G to K. In particular for m(TTF) = 1 

e(G,7r,u;) =e(Ky,u). 

The reducible case. — If on the other hand (TT')V (g) UJ = TT" such that TT' ^ 7r/;, then 
Vnf 0 V^" can be endowed both with a nondegenerate symplectic (or alternatively 
symmetric) nondegenerate pairing, which is iT-equivariant with multiplier UJ. Hence 
in this case no information on e(G,TT,UJ) is obtained. This also made us restrict to 
the case of isotypic representations (V, p) at the beginning. 

Remark 3 (Schur multiplier). — Suppose k/ko is a Galois extension with Galois group 
T and G, V, TT, UJ, k are given as above so that (V,TT) is irreducible over k. We say TT 

has no CM, if TT 0 r] = TT for a character 77 implies r\ — \. Choose a basis of V. This 
defines a /co-vector space structure and defines TT1 ,7 £ T by TT7(g)(v) — 7(^(^)7"x(v)). 
Suppose A1 : TT = 7r70c<;7 holds for endomorphisms A1 :V -+V and certain characters 
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CJ7,7 G T, i.e. A1Tr(g)A~1 = uj1(g)ir1'(g). For simplicity assume the cocycle condition 
UJT1 = (c<;7)Ta;r (which is automatic if TT has no CM). Then r(A1)Ar = AT1 • Ar?7 for 
certain Ar?7 G A:*. Changing the basis amounts to AT i—> r(5)ylT^_1. The Ar are 
uniquely defined up to constants. Therefore the coboundary Ar?7 defines a cohomology 
class in the Brauer group H2(T, k*). This class is trivial iff the AT can be chosen to 
define a 1-cocycle with values in Gl(V). Then AT = r(B)B'1 for some B G G\(V) 
by Hilbert 90 (this is true if V is finite dimensional, but the argument carries over to 
the case of admissible representations). Then uj1(g)ir1 (g) = ir(g) for all 7 G T, for the 
choice of basis determined by B. In other words, as for the usual Schur multiplier, 
TT can be defined over the fixed field ko but only in a 'twisted sense'. The converse 
is also true. Now suppose, that in addition an isomorphism ip : Vv (g) UJ = V of the 
underlying representation is given, and assume the coboundary condition UJ~2 = UJ1 /UJ 
for all 7 G r . If 7r has no CM, this is a consequence of (TTV)J = (TTJ)V and TTV (g>cj = TT 
and TT1 <g) UJ1 = TT. Under the assumptions above the class of AT?7 is an element 
of the two-torsion subgroup of the Brauer group Br(k/ko). Notice, if ijj is defined 
over &o, then ^7 = ip implies that uj(g)Tr(g)* = ir(g), where X9 = t/j~1(Xv)~1il;. 
Note (XY)m = X*Y* and 7» = «7 and c* = c~x for constants c G k*. We get 
A*7r(g) = (UJI'uJ1uj1)(g)TT1'(g)A* from A7Tr(g) = uJ1(g)TT1 (g)A1. Hence by Schur's 
lemma A* — c7 • A1 for some constants c7 G /c*. Applying (.)* to the defining 
equation for the cocycle Ar?7 we conclude cIfcTr(A7)AT = AT1 • A~7cr7. Therefore 
c^cr = A~7cr7. Hence A2, is a coboundary. 

T/ie special case k = C, ko = №.. — Suppose 

7r = 7rV=7T(g>Cc; 1 

is irreducible and UJ is a unitary character. Since TT = 7rv there exists a nondegen­
erate invariant hermitian symmetric form. The case we have in mind is where the 
representation TT is unitary, so that this invariant hermitian form on V is positive 
definite. In this case choose the basis to be an orthonormal basis of V with respect to 
this hermitian form. Then we get Tf(g) = TTV (g) = Tr(g~1)/ (This is true in the finite 
dimensional case and carries over in our situations). Put UJ1 = UJ for the complex 
conjugation. Then the maps A — Ay (7 complex conjugation) and ip defined above 
coincide up to a constant t/j = const. • A. The cocycle condition gives A A = A • E. 
Hence A A — A A and therefore A G R. Hence for A suitably chosen we can assume 
A,, := A G {±1}. In fact this sign cis' the cohomology class in H2(T, C*) =* Z/2Z. Put 
6(v) — ~/(A(v)) for the chosen complex conjugation 7 on V. Then 6 is C-antilinear. 
We get 0 o Tr(g) ~~ uj(g) • n(g) o 0 and 02 = A • A = Xn 

e2 = xn • id. 

Remark 4 (antilinear maps). — Suppose V, W are complex vector spaces with nonde­
generate hermitian symmetric forms. Let (p : V —> W be a 7-linear map, where 
7 G Gal(C/M). Then define the adjoint (/)* : W V by (4>(v),w)w = (v, </>*(w))v, if 
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7 is complex conjugation. Then 0* is 7-linear and (cp\ o 02)* = 02 0 4>ii (0*)* = 0- If 
4> is a 7-linear isomorphism, then also Hence 0 i—> (</>*)_1 defines an involution 
of the group of all 7-linear automorphisms of V. Suppose V, W are complex vector 
spaces with representations Try, of G. Suppose (., .)w a nondegenerate hermitian-
symmetric bilinear form on V, which is G invariant (Tr(g)v,Tr(g)w) = (v,w). Suppose 
the same for W. Suppose UJ is a character of G. Consider cj-equivariant 7-linear 
homomorphisms 6 : V —> W for which 0 o 7ry(<?) = 7(0;(51)) • TTw(g) 0 0- We then 
say 6 is a (UJ, 7)-homomorphism. The composition 9' o 0 of a (a;, 7)-homomorphism 
and a (a;7,7/)-homomorphism is a (7-1(u/)u;, 7/7)-homomorphism. The transpose of a 
(UJ, 7)-homomorphism is a (/y(uj)~1,7)-homomorphism. Furthermore, if 9 is invertible, 
then is again a (a;, 7)-homomorphisms and 9~x is a (7(0;)_1, 7)-homomorphism. 
Suppose V — W and suppose 7 is the complex conjugation. Suppose 9 is an C-
antilinear automorphism 9 : V —•» V, so that 

0 o TT(p) = • TT(#) O 9. 

Assume 9* = e • 9 for some 5 G {±1}- If the representation TT of G on V is irreducible, 
then Schur's lemma implies that the C-vector space of (CJ, 7)-endomorphisms of V 
is one dimensional. Hence 9* = £ • 9 for e G {±1} holds automatically. Define 
[v,w] = (9(v),w). This is a C-bilinear form such that [7r(g)v,7r(g)w] — uj(g)[v,w] and 
such that [w,v] = e • [v,w]. If TT is irreducible, then 9~x — A-1 • 9 and A G C* and 
((9*)-1 = p • 9 and p G C* and 1 = pA .̂ If (.,.) is definite, then p • idy = 9*9 is 
positive definite and p G M>0 and also A G R*. Replacing 9 by a suitably multiple we 
get a well defined A = A^ G {±1} such that p = 1 and 92 = A^ • idy. Furthermore 
A^ = e = e(G,ir,uj). Hence 

92 =e(G,7T,uj) - id. 

Remark 5 (Whittaker models). — Suppose G is a quasisplit reductive group with Borel 
group B over a local nonarchimedian field F. Suppose ip is a generic unitary character 
of its unipotent radical N. Suppose g >—> gx is an involutive automorphism of (G, 5 ) 
which maps ip to its inverse Let be the induced space I n d ^ ^ ( ^ ) with the left 
action of G(F) by the right translations R^(g),g G G (F). Let (TT, F) be an admissible 
irreducible representation of G(F) such that TTX = 7f, where 7rx(g) = ir(gx) is defined 
as a representation of G(F) on V. Also the complex conjugate TT (for a suitably 
choice of basis respecting admissibility) is defined as a representation of G(F) on V. 
Furthermore suppose that TT has a unique Whittaker model for ip. So we can identify 
TT with its 7r-isotypic component in W^. 

Claim. — In this situation there exists a nontrivial antilinear endomorphism 
9X'- V—> V of the representation space V of TT such that 92 = idy and 9X o TT = TTX o 9x 
holds. The map 9X is unique up to a constant. 
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Proof. — Let A : - be defined by (A/Xff) = f{gx) and B : ^ by 
(Bf)(g) — f(g). Then 6X ~ B o A : —» W ,̂ is an antilinear isomorphism, satisfies 
^ = id, such that OxoR^(g) = R^(g)o6x. This is clear, since AoR^(gx) = R^(g)oA 
and since J3 o R^(g) = R^p(g) ° -B. But then also 0X o R^(g) = R^{g) ° by the 
involutive property. Hence 0X maps the 7r-isotypic subspace bijectively to the TTX-
isotypic subspace. • 

Modifications. — Suppose s G G (F), so that ssx G ZQ{F) is in the center of G(F). 
Then ¿5(0) = sgxs~l is an involutive automorphism of G. Furthermore 6S = TT(S)6x 
is C-antilinear and satisfies 6S o n(g) = Tr(sgxs~1) o 6S. Then (0S)2 = OJ7V(SSX) • idy by 
the last claim. In certain relevant cases s can be chosen so that Tr(sgxs~1) = TD(g)Tx(g) 
holds. If this is the case, then E(G, TT.UJ) = ujn(ssx) by remark 4. 

/. Example. — Let G be the group of F-valued points of a reductive group over a 
nonarchimedian local field, and let K be a suitable compact open subgroup. Assume 
that TT = 7rv <S> holds, and that TT contains the trivial representation of K with 
multiplicity one. If UJ is trivial on K, then E(G,TT,UJ) = 1. Hence for unramified 
representations u, TT we get e(G,TT,uj) — 1. 

2. Example. — For G = G1(7V) and g G G1(7V, F) define g* = (g')-1. Let K be the 
matrix in Gl(iV, F) with entry 1 in the antidiagonal and zero else. Then gx — Kg*K is 
an involutive automorphism of G1(7V, F). There exists a Borel group B C Gl(N,F) 
preserved by this involution and a generic unitary character ip of its unipotent radical 
such that ip(nx) = ip(n). Suppose TT is irreducible, unitary and nondegenerate with 
^-Whittaker model. [Sha] th. 3.1. Then by [Sha], p. 185 we know TTX = 7rv, hence 
for unitary TT also TTX = TT, and we are in a situation as in remark 5. Let 6X be as in 
remark 5. 

The case Gl(2, F). — Then 7f = TTW = ujn <g> TT holds. Put 0S TT(S)OX for s = J, J as 
below. Then 0S o ix(g) = (UJ~X <S> n)(g) o 6S since JgxJ-1 = det(g)~1g. Furthermore 
(0S)2 = ^ ( - 1 ) • idy since ssx = s2 = -E. Therefore e(Gl(2, F) , TT , ^ ) = ^ ( - 1 ) by 
remark 4. It is not difficult to see that this assertion remains true also for nonunitary 
irreducible representations TT. 

3. Example. — For G = GSp(2rz) consider 

J = 
о & 

-E О 

of rank N = 2n. Then g G GSp(2n, F) is equivalent to Jg* J~x — X(g)~1 • g for some 
multiplier X(g) G F*. Furthermore c(g) = \(g)~1sgs is an involutive automorphism 
of GSp(2n, F) such that TTL = UJ'1 <g> TT holds if 

s = d i a g ( l , - l , l , - l , . . . , ± l , - l , l , - l , . . . , T l ) , A(s) = - 1 . 
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There exists a Borel group B C GSp(2n, F) and a generic character ip of its unipotent 
radical, so that ip(i(n)) = ip(n). Suppose (V, II) is an irreducible admissible unitary 
representation of GSp(2n, F) for a local nonarchimedian field. Suppose II is generic, 
so admits a Whittaker model for ip. Then II = ITV, hence II = IP (for n = 2 by lemma 
1.1). So we can apply remark 5 for the involutive automorphism gx = b(g). This gives 
a C-antilinear automorphism 0X. Put 6S = U(s)0x. Then the modification 6S satisfies 
(0S)2 =uju{st{s)) = a ; n ( - l ) - i d v and 6S ollfo) = Ii(si(g)s-1) oOs = (UJ^1 ®U){g) o0s. 
Hence by remark 4 

e(GSp(4,F),n,o;n) = w n ( - l ) . 

4. Example (Generalized Whittaker models). — Suppose G — GSp(4,F). Let P = 
M N be the Siegel parabolic as in [PS], p. 507. Suppose П is a unitary irreducible 
admissible representation of GSp(4, F) for a local nonarchimedian field F , which has 
a nontrivial generalized Whittaker functional v 0 фт attached to a nondegenerate 
symmetric matrix T = T' G M2^(F). According to [PS] theorem 1.1 this functional 
is unique, if it exists. We briefly recall part of the definition. 

The matrix T defines a character ipr of N(F) —• C*. The stabilizer of this character 
in M(F) is a semidirect product K* • (Z/2Z), where K/F is a quadratic algebra 
determined by the discriminant of Т. K* is embedded in M(F) = Gl(2, F) by the 
regular representation. The similitude factor X(y) of у G K* with respect to this 
embedding is Norm^/F(y). The group Z/2Z induces the involution a of K/Q, so we 
view the generator a of this group as an element a G M(F) С GSp(4, F) in this way. 
In fact 

a = diag(l, - 1 , 1 , -1 ) respective!} o~ = diag o n p i 
i о) ' l i о 

in the first respectively second case of [PS]. Then a G M(F) has multiplier A(cr) = 1. 
Finally v is a character of K*. Consider the automorphism ga = cr(g\(g)~1)a on 
GSp(4,F). Therefore g H-> ga is an involutive automorphism of GSp(4,F). If v is a 
unitary character then (y ® ipT)(pa) — {v ® IPT)(p) for all p in the semidirect product 
N(F).K*. In fact, for y G K* C M(F) we get ya = a(y)NormK/F(y)~l. Since 
cr(y)y is in the center of GSp(4, F) we necessarily have v(cr(y)y) = ujuv(a{ij)y) and 
v(ya) = v(o~(y) Norm^yF(?/)) = ^(£/)-1. Composed with additional conjugation by 
diag(F, — E) we get the new involution g i—*> T(g), which is similar to the involution 
L considered above. T has the property (y (g) IPT)(L(p)) — v 0 IPT(p) for all p in the 
semidirect product N(F).K*. 

This being said we are in a situation, which is similar to the one of remark 5. (V, n) 
is an irreducible, admissible unitary representation of GSp(4, F) for a nonarchimedian 
local field F , which has a generalized Whittaker model for v (g) ipT- The involutive 
automorphism X of GSp(4, F) preserves K* • N and maps v ® ipr to its complex 
conjugate. Furthermore [V,W) ^ (V,nv) ^ (V,II) by lemma 1.1. So the argument of 
remark 5 carries over. Hence there exists an C-antilinear automorphism 0 of V such 
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that O2 — idy and such that 0 o 11(g) = U(t(g)) o 0 holds, and 6 is unique up to a 
constant. 

Modifications. — For s~l = diag(jE", —E)a we have SL(S) = —E and sT(g)s~l = 
\(g)~1g. Then 0S = Ii(s)6 is antilinear, such that (6S)2 = ÏI(sT(s)) = CJN(—1) • idy 
and #s o 11(a) = Tl(sT(g)s~l) o #s = (u;^1 0 II)(g) o 0S. By remark 4 therefore 

e(GSp(4,F),n,wn) = w n ( - l ) . 

5. Example. — Suppose IIoo is an irreducible representation of the group GSp(4, R), 
which is in the discrete series of weight (k\, k2). Then 

e(GSp(4,R),noo,u*iJ =unx{-l) = (-l)fcl+fc2. 

Proof. — We restrict to the minimal Xoo-type. is the semidirect product of 
U(2) and ¿00, where conjugation by ¿00 induces complex conjugation on the unitary 
group U(2). The minimal Koo-type r occurs with multiplicity one and is induced 
from the irreducible representation TK1:K2 °f U(2) of highest weight (fci,/^), where 
fci ^ /c2 ^ 3 in the holomorphic case. Similar for TKLJ2-K2 m the Whittaker case. As 
a representation of U(2) it decomposes into the two nonisomorphic representations 

TkiM ® RKUK2 resP- RKu2-K2 © TKu2-K2- Since fci ~k2 resp. hi ^ k2 - 2, the two 
constituents a, CFLOC of r restricted to U(2) are not isomorphic. Therefore the space 
of U(2)-homomorphisms r —> rv ® c^n^ is two dimensional: Let (.,.) be a form 
define by such a homomorphism. Write VT = Va 0 Va, such that ¿00 £ î oo acts by 
¿00(^1,^2) = (^2,^1) and U(2) acts by cr 0 aL°°. Choose a C-bilinear form (^1,^2) 
on Va, such that (v\,V2) = (^2,^1) = (cr(k)vi, a(kLoc )v2). Then ((^i, v2), (w\, 1^2)) = 
a • (vi,w2) + /5 • (wi,v2). Since ¿00 £ î oo acts by ¿00(^1,^2) = (^2,^1), ^«,(¿00) = 
wnoo(-1) implies a = /3 • uJn^- Therefore the parity of (.,.) is a/j3 = u;noc( — 1). 
Finally u U - 1 ) =o;Tfciifc2(-l) = ( - 1 ) ^ . • 

6. Example. — Consider representations Ip(o~) induced from a standard parabolic 
subgroup P{F) — M(F)N(F) of the group G(F) of F-valued points of a connected 
reductive group G over a local nonarchimedian field F of characteristic zero for an 
irreducible admissible representation (cr, Va) of the Levi M(F) group. For / £ Ip(cr) 
and h £ Ip(aw) the integral JP^F^G^{f{g),h(g))dg is well defined. This defines a 
pairing and induces a canonical isomorphism Jp(crv) = Ip(a)v. For a character UJ 
of G(F) let also denote its restriction to M(F). So ip(cr)v ® UJ = Ip(crv) ® UJ = 
Ip(crv <8>UJ), in a sense, holds canonically. For an element w in the Weyl group, which 
stabilizes M and maps P to the opposite parabolic w(P) — P , choose a representative 
w £ G(F). Assume 

crv (g) a; = iu(cr), IO(WJ(CT)) = a, 

where (w(<r), Va) is defined by w(a)(m) — a(wmw~l). This defines a nondegenerate 
G(F)-equivariant pairing (.,.) : Ip(a) x Ip(w(cr)) —> UJ from the induced isomorphism 
/p(crv 0(j) = Ip(w(a)). So to give a G(F)-equivariant map ^ / : ip(cr) —> Ip{o^Y ®UJ 
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is the same as to give an Gr(i?)-equivariant map A(a,w) : Ip(cr) —> Ip(w(a)), where 
the pairing [.,.] corresponding to ipj is [/, h] = (/, A(a,w)(h)) 

Ip(a) > Ip{o-y 0 UJ 

A(a,w) 
Ip(w(a)) 

Suppose <j — cr° 0 x f°r a tempered representation a0 of M(F) and an unramified 
character % of M(F). The unramified characters of M(F) define a complex manifold 
X(ao). If x varies, the representation spaces Ip(cr) can be considered to be indepen­
dent from x (via the Iwasawa decomposition). If x varies over a subset Y(CFQ) C X(CFQ) 
of characters for which x(w(m)) — x(m)_1 holds, also the pairing (.,.) resp. the fixed 
isomorphism Ip(cr)v 0 UJ = Ip(a(w)) can be chosen to be independent from x-

If |x| > 0 is in the positive cone in the sense of [BW], XI prop. 2.6, then Ip(cr) has 
a unique irreducible quotient TT = Jp(a) , the Langlands quotient. It is the image of 
the intertwiner j : Ip(cr) —> I^(cr) defined by j(f)(g) = Jtv(f) f(n9)dn- This integral 
is absolutely convergent and also uniformly in g on compact a for |x| > 0. j is a 
nonzero map, whose image is the unique irreducible submodule of ip(<r). See [BW], 
XI prop. 2.6. Since f(g) G I-p(o-) iff F(g) — f(w~1g) G Ip(w(o~)) by our assumptions 
on w, the properties of j are inherited by the operator A(a, w) : Ip(cr) —> Ip(w(a)) 
defined to be j(f)(w~lg) 

A(a,w)(f)(g) = ^ \ lb 
/ O lng)dg. 

Viewed as a function in \ it is a holomorphic operator in the domain |x| > 0. Further­
more the corresponding ipi induces an isomorphism xp : TT —•> 7rv 0 UJ on the Langlands 
quotient 

IP a Ip(a) 

A(a, w) 

Ip(w(a)) 2pT ^ \ lb 

Ip(cr)v ®UJ = Ip(cr)v 0 1 7TV (g)UJ 

Suppose ipix : Jx —> ZJ£ 0 a; defines an analytic family of ±-selfdual intertwining 
operators for Jx = Ip(cr° 0 x)- Hence -0/ = e(x) • ipix and e(x) is an analytic 
function in x> hence constant e(x) = s. Such families exist, if for x > 0 in general 
position the representation Ix is irreducible and if X(ao) = Y(CTQ). Since there are 
=b-self dual isomorphisms I£ 0 UJ = Ix for x m general position, the existence of a 
family of dz-selfdual intertwining operators follows by meromorphic continuation on 
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the parameter space. Returning to the Langlands quotient 7r, for fixed |x| > 0 the 
pairing on TT induced by the map ijj — ipx is (., A(a, w).). Hence the parity satisfies 
e(G(F), TT, UJ) — e(G(F), Ip(a),uj,ipj). Since varying x does not change the parity of 
ipix, the computation of this sign can be reduced to the tempered case by meromorphic 
continuation to the unitary line |x| = 1. This reduces the computation of e to the 
case of a unitary character x respectively a tempered representation a. 

Remark. — The situation above applies for the group GSp(2n, F), where UJ = UJU ° A 
and where UJU is the central character of the induced representation n = Ip(o~). 
Furthermore, because —1 is in the center of G(F) and M(F) , for unramified x the 
central characters satisfy uJiP(a)(~ 1) = —1) = ĉr(g)x(—1) = UIP((T®X) ( — -0> since 
x(—1) = 1. Hence this argument shows, that £:(GSp(4, F) , n , UJU) — UJ\\{—\) holds 
for all irreducible admissible representations if it holds for all tempered irreducible 
representations. 

Notice wgw~x = g*\(g) for g G GSp(2n,F) by definition, where g* — (g')~1. For 
G — GSp(2n) consider standard parabolic group P, whose elements g are of the form 

'A 0 B *\ 
* a * * 
C O D * 

^0 0 0 dj 

where A,B,C,D define an element in h G GSp(2no,i?) and a is a block diagonal 
matrix in rii>i Gl(n^, F) such that Y2i>oni = n- ^n tne case no = 0 formally define 
GSp(0, F) = F*, and then g = diag(a, d) with d = a*h and h G GSp(0, F). Elements 
in the Levi group are given by m = (a, h) so that (a, h)* = (a*, h*) and A(a, h) = A(/i), 
where A is the similitude homomorphism of GSp(2n, F) or GSp(2no,P). The matrix 
w = J of example 3 represents the longest element in the Weyl group and satisfies 
wPw"1 = P, wMw~x = M. Furthermore x(.w(m)) — x(m)-1 holds for characters 
X of M(F). An irreducible representation a of M(F) has the form a = TT № r, 
for an irreducible representation r of GSp(2no,P) and an irreducible representa­
tion TT of Yli>i Gl(rii, F) . The central character of a is cja = ujnujT for no / 0 
resp. ujcr — UJTTUJ2. for no = 0. The central character uja of a restricted to the center 
of GSp(2n, F) coincides with the central character uJu(a) °f the induced representa­
tion n = 1(a) restricted to M(F). Furthermore wgw~l = g*\(g) implies, that the 
condition <j(w(a)) = crv (g) (ĉ n ° A) is equivalent to the condition 

a(m*) = av (m) 

or rv(h) = r(h*) and 7r(a*) = 7rv(a). The latter conditions should always hold. For 
n ^ 2 this follows from lemma 1.1. 

7. Example. — Let F be a local nonarchimedian field of characteristic zero. Let G — 
GSp(2n, F) and P = MN be a standard parabolic subgroup as in the last example. 
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Suppose a is an irreducible unitary generic discrete series representation of M(F) 
such that 

* r^j V r^> — 
a = a• = a. This is always true for n = 2 as explained above. The second condition always holds 

for unitary a. Then there exists an antilinear isomorphism 0 of the representation 
space of a such that 6 o a = cr* o 6 and 62 = id hold. E.g. for n = 2 set 0 = CT(K)9x 
as in example 2 (use ftftx = 1 and remark 5). 

Let n = 1(a) = I n d p ^ 4 ' ^ (cr) be the unitary induced representation of GSp(4, F) 
on the representation space I (a). Put UJ = UJU ° A. The intertwining operators 
4̂(cr, w) : 1(a) —• I(w(a)) for iZ; in the Weyl group with representatives u> G GSp(4, F) 

are defined, by meromorphic continuation, from the integral 

(A(a,w)f)(g) 
JNW(F) 

f(w 1ng)dn 

as in [Sh]. Suppose this is well-defined and nontrivial. See [Sh] cor. 7.6 for a criterion 
for cuspidal a. If w is in the center with image w = 1 in the Weyl group, then 
A(a,w) = UJU(UJ) - id. In particular A(a, —E) = UJU(—1) - id. Furthermore ÏI(a®uj) = 
Il(cr) 0CJ holds for the restrictions of the unitary characters UJ of GSp(4, F) to M(F). 
Then n(cr) and n(cr0x) have the same representation space. With this identification 
4̂(cr 0 UJ,W) = A(a,w). This is clear from the above integral formula, since there 

exists n = n~mk with A(m) = X(k) = 1 for n G Nw(F),m G M(F),k G K for the 
similitude character A of GSp(4). 

By functoriality the C-antilinear M(F)-equivariant map 6 : a —» cr* induces a C-
antilinear map /(0) : /(cr) -» /(cr*). Now put w = J and 6 = A(<7*, J) o 7(0). Then 
B is C-antilinear so that 

Q : 1(a) - ^ L Ka*] A(a*,J) 
I(J(a*))-

As explained in example 6, w = J represents the longest element of W such that 
w(a*) = UJ'1 0 cr = UJ^1 0 cr (as identities). Therefore /(J(cr*)) = I(a 0 u;^1) = 
1(a) 0o;ri1. Hence G can be viewed as an endomorphism of the representation space 
1(a). It commutes with the group action up to a character, and defines a (UJU, 7)-linear 
endomorphism 

G : 1(a) — 1(a). 

From the integral formula for the intertwiner and 6a*9 = a we get 1(6) A(a*, J)I(6) = 
A(a, J). Since I(62) = /(id) = id, we get for 02 = A n ^ • id the expression 

O2 = A(a*,J)I(6)A(a*,J)I(6) -- A(a*,J)I(62)A(a, J) A(a*,J)A(a, J). 

Now A(a,J) = A(a <g> uv,1, J ) = ,4(J(er*), J ) . Since J2 = -id, hence 

e2 = A(a* ,J)A(J(a*), J) Lün(-l)-A(a*,J)A(J(a*),J-1). 

But 
^ . J ^ J I A * ) , ^ - 1 ) 7 ( 0 , a*, r j , ^ ) - S ( 0 , K ) v , o , V ) - 1 • id 
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is the Plancherel measure in the sense of Shahidi [Sh], p. 274. Now use 7(0, cr, r j , ijj) — 
7 ( 0 , ^ , 0 , ^ ) = 7(0, <7,rj,^) and 7(0,crv,rj,^) = 7(0,cr,o,^) ([Sh](7.8.1) for s = 
0). Here r 1—>• r is involutive and related to the functional equation [Sh] prop. 7.8. 
Therefore 

A(<T*,J)A(J(<T*), J'1) = 17(0, <T*, rj, • id . 

This positive real number is another expression for the Plancherel measure. So B2 = 
^n( — 1) * id holds after a suitable normalization. In other words 

£(GSp(2n, F) , n„, UJU) = tJn(-l) . 

This follows by remark 4, since n = /(cr) is unitary. 

8. Example. — Suppose k = Qz. Let pn0,A be the four dimensional semisimple repre­
sentation of Gal(Q/Q) attached to a unitary irreducible automorphic representation 
Ho (as in theorem I). The identity n0 = <^UJU0 and the identity Lp(Jlo:Pl s — w/2) — 
det(l - puxiFiob^p-3)-1 imply 

PÌÌ,A ® (̂ n0 ' MZ W) = Pn,A 

Let us discuss, whether pn,A admits a nondegenerate equivariant symplectic pairing 
with multiplier UJ — UJU0^W- Decompose pn,\ = (BrriiPi into irreducible subrep-
resentations. Then either p\ (g) UJ = pj with pj ^ pi. (For instance, if pi is one 
dimensional. This follows from property (c) of n formulated in section 2). The repre­
sentation spanned by these subrepresentations pi admits a symplectic pairing — for 
trivial reasons — as in remark 2 above. Then there is the case of two dimensional 
subrepresentations pi, such that p\ 0 UJ = pi. These subrepresentations obviously 
admit a nondegenerate symplectic form with the multiplier UJ. This leaves us with 
the remaining nontrivial case, where pn,A itself is irreducible. 

9. Example. — Consider the special case of the group GSp(4) over Q. Let VM be a 
coefficient system for a Siegel modular threefold attached to the discrete series of 
weight (k\,k2) of GSp(4,R). On the cuspidal part of the third cohomology group 
Hp(M,V^) with k = Qi we already have defined the modified cup-pairing 77,77' 1—> 
tr^Ur]' UUJQ1). It is a nondegenerate equivariant pairing (Wnf ®Hf)®(Wnf <8>II/) —> 
uJu^3 &0JTI of parity —(—l)kl+k2. Notice n = Ho ® \\-\\~% for unitary n0. Hence the 
modified cup-pairing defines an e-symmetric isomorphism 

{WUf ^n/)v <g> (uJn {WUf ^ n / ) v <g> (uJnPi 3 ®uUf) 

of parity — (—l)fcl+fc2. As explained in example 8 we can reduce to the following case 

Assumption. — Suppose Wuf is an isotypic multiple of an irreducible representation 
of the Galois group Gal(0/Q) and n is neither CAP nor a weak endoscopic lift. 
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Since Uf is irreducible and 11/ = 11^ ® ujuf is essentially unique, its parity is 
well defined. Hence by remark 2 the modified cup-pairing is induced from an e-
symmetric isomorphism 

(l + C(^)) + 2-^x(^) = 0.(l + C(^)) 

such that e(G&\(Q/Q),WUf,unvr3^) • e(G(Af),Uf,uJnf) = -(-l)fcl+fc2 holds. 
Therefore remark 2 and example 5 imply 

D.l. Lemma. — The representation of the Galois group Gal(Q/Q) on Wuf preserves a 
nondegenerate bilinear form with multiplier unM/-3 and parity — e(GSp(4, A), n , u;n)-
The following statements are equivalent: 

(1) e(GSp(4,A),n,a;n) = l 

(2) e(Gal(Q/Q), W h . ^ n ^ r 3 ^ ) = - 1 -

In the rest of this section we proof assertion (1J and also compute each local parity 
£(GSp(Qv), UV1 cJrO- In fact we show e(GSp(Qv), Uv,LUTIv) — ouuv( — 1)- Hence as­
sertion (1) follows from the product formula Y[v ^n(—1) — 1- Before that we first also 
give a global argument. 

We have Vn.f<8> — Wnf 0 c l i / . Fix a nontrivial antilinear (OJQ,7)-automorphism Of 
of Uof. Suitably normalized it satisfies 92 = e(GSp(4, A/), 11/, c^ri/) G {±1} by re­
mark 1. There is a notion of tensor product for 7-linear homomorphisms <fi : V —> W, 
</>' : V -> W such that (0 <g>c (j)')(v <g)c v') = </>(v) 0C <t>'{v'). This is a well-defined 
7-linear homomorphism from V®cV to W(&cWf. By Schur's lemma we obtain an iso­
morphism between the C-vector space of (uio, 7)-endomorphisms Ooo of Vuf and the 7-
linear endomorphisms On of Wnf, such that Qoo = 9n®0f- This is not a ring homomor­
phism unless An/ = 1, since O2^ = 6^ • enf. The induced morphism 6JI • Wnf —» Wnf 
is C-antilinear and satisfies 6^ = \nf 'id. We apply this for ^oo(n) = ^¿,(77) U^o- This 
is a (ĉ o, 7)-endomorphisms of Vnf. It is a C-antilinear homomorphism, which maps 
Vnfq bijectively to itself such that O2^ — ^ ^ ( — 1 ) - Hence it induces a C-antilinear 
automorphisms OJI of W^J so that 6n = £(GSp(4, A/), n / , t^ri/VII^ ( — 1) • id. There­
fore 

D.2. Lemma. — The statements of lemma D.l are equivalent to any of the following 
two assertions: 

(3) £(GSp(4,A/) ,n/ ,a;n /Vn00(-l) = 1. 
(4) 0U = 1 for the antilinear operator 9u : W^q —» W^qf. 

Proof — The equivalence of (3) and (4) has been shown above. For the equivalence 
of (1) and (2) and (3) is clear by example 5. • 

Proof of theorem IV. — Since any antilinear nontrivial endomorphism of C has posi­
tive square, we get 6U = 1 if dim(VF^) = 1 holds for at least one choice of q,p. So if 
m(noon/) = 1 has multiplicity 1 for one choice of in the L-packet, then property 
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(4) does hold. So all the equivalent properties (l)-(4) hold. Of course property (2) 
implies theorem IV. C 

D.3. Lemma. — Let Hv be an irreducible admissible representations GSp(4, Fv) for a 
local nonarchimedian field Fv of characteristic zero. Then the parity for the central 
character UJU is determined by 

£(GSp(4,F) ,nv,a ;nJ = a;n„(-l) . 

Proof. — Assume IIv is cuspidal. Then 11^ can be globally embedded into a 
cuspidal irreducible automorphic representation II of GSp(4,Ai?). For such II 
there exists T = T' G M2,2(^), so that det(T) / 0 and a 0 G II, such that 
/a/(f)\7V(af) (Kn#)'*/;T(n)(̂ n 7^ 0- See [S]. Here P — MN is the Siegel parabolic of 
upper triangular block matrices. Attached to T is the quadratic algebra K/F defined 
by the discriminant of T. Kx(Ap) — A*K stabilizes the character ipT- Since n is 
cuspidal the integrals /x*xA^ /jv(f)^jv(af) ^V^i" ® ipT)(yn)dy*dn < oc are well 
defined by a well known Sobolev type argument. Furthermore, for suitable choice 
of 0, there exists a v for which one of these integrals is not zero, v can be chosen 
to be unitary, since then v(a(y)y) = uJnv(o~(y)y). This defines a nontrivial global 
generalized Whittaker model of n in the sense of [PS]. It induces a local nontrivial 
generalized Whittaker model of Hv. Hence e (Hv, LJU.V) = ^nv( — 1) by example 4. 

Since for GSp(4,Fv) an irreducible representation Uv in the discrete series is 
generic, if it is not cuspidal, the claim follows from example 3 above. 

If is tempered, but not in the discrete series, then Iiv is unitary induced from a 
discrete series representation ov of the Levi subgroup of a proper parabolic subgroup. 
Since the Levi subgroups are build from groups Gl(l) and Gl(2), such representations 
av are necessarily generic. For GSp(4, Fv) properly induced representations of unitary 
discrete series representations are irreducible (hence again generic [Sh] and covered 
by example 3) except for the case, where the parabolic is the Klingen parabolic sub­
group Q. Then these induced representations are reducible with two constituents 
called Wp+(p) and Wp-(p). Both Wp±(p) are limits of discrete series representa­
tions. For cuspidal p they were found by Waldspurger. For special representations 
p they are also denoted T+, T_ in [W]. In the notation of loc. cit. they are the 
two constituents of 1 x p, where p is an irreducible discrete series representation of 
Gl(2, Fv) and it is shown, that they occur as local components of weak endoscopic lifts. 
The multiplicity statement of hyp. A(6) implies, that these representations occur as 
local constituents Uv of suitably chosen global cuspidal automorphic representations 
of GSp(4, Ap) for some number field F. Hence we can argue as above in the case of 
cuspidal representations Iiv. 

Via the Langlands classification the case of an arbitrary irreducible admissible 
representations finally is reduced to the tempered case (example 6). • 
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