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POLARIZABLE TWISTOR -MODULES

Claude Sabbah

Abstract. — We prove a Decomposition Theorem for the direct image of an irreducible
local system on a smooth complex projective variety under a morphism with values in
another smooth complex projective variety. For this purpose, we construct a category
of polarized twistor Z-modules and show a Decomposition Theorem in this category.

Résumé (2-modules avec structure de twisteur polarisable). —  Nous montrons un
théoréme de décomposition pour l'image directe d'un systéme local irréductible sur
une variété projective complexe lisse par un morphisme a valeurs dans une autre
rariété projective complexe lisse. A cet effet, nous construisons une catégoriec de Z-
modules avee structure de twisteur polarisée ¢t nous montrons un théoréme de deé-
composition dans cette catégorie.
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INTRODUCTION

Let X be a smooth complex projective manifold and let .# be a locally constant
sheaf of C-vector spaces of finite dimension on X. We assume that Z is semisimple,
i.e., a direct sum of irreducible locally constant sheaves on X. Then it is known that,
given any ample line bundle on X, the corresponding Hard Lefschetz Theorem holds
for the cohomology of X with values in .%: if .% is constant, this follows from Hodge
theory; for general semisimple local systems, this was proved by C. Simpson [63] using
the existence of a harmonic metric [13]. The existence of such a metric also allows
him to show easily that the restriction of .7 to any smooth subvariety of X remains
semisimple.

In this article, we extend to such semisimple local systems other properties known
to be true for the constant sheaf, properties usually deduced from Hodge theory.
These properties will concern the behaviour with respect to morphisms. They were
first proved for the constant sheaf (¢f. (15, 17, 60, 66, 3, 28]) and then, more
generally, for local systems underlying a polarizable Hodge Module, as a consequence
of the work of M. Saito [56].

Given a local system .# of finite dimensional C-vector spaces on a complex man-
ifold X, it will be convenient to denote by P.%# the associated perverse complex
Z[dim X], i.e.. the complex having .7 as its only nonzero term. this term being
in degree — dim X.

The proof of the following results will be given in §6.1.

Main Theorem 1 (Decomposition Theorem). Let X be a smooth compler projective
variety and let .7 be a semisimple local system of finite dimensional C-vector spaces
on X. Let U be an open set of X and let f: U — 'Y be a proper holomorphic mapping
in a complex manifold Y. Fiz an ample line bundle on X. Then

(1) the relative Hard Lefschetz Theorem holds for the perverse cohomology sheaves
’{%/i(R,/'*",_% i) of the direct image;

(2) the direct image complex Rf.L.7; decomposes (maybe non canonically) as the
direct sum of its perverse cohomology sheaves:

RPT | ~ &P A (REPF )| ~i);



2 INTRODUCTION

(3) each perverse cohomology sheaf Ii%i(R,f*’i%U) decomposes as the direct sum
of intersection complezes supported on closed irreducible analytic subsets Z of Y, i.e.,
of the form IC*(P.%), where & is a local system on a smooth open dense set Z ~ Z',
with Z' closed analytic in Z;

(4) if moreover U = X and Y is projective, then each perverse cohomology sheaf
v (Rf.PF) is semisimple, i.e., the local systems & are semisimple.

Main Theorem 2 (Vanishing cycles). Let X be a smooth complex projective variety
and let . F be a semisimple local system on X. Let U be an open set of X and let
f U — C be a holomorphic function on U which is proper. Then, for any € € Z,
the perverse complezes gry P PF and grire P 7 . obtained by grading with respect to
the monodromy filtration the perverse complexes of nearby or vanishing cycles, are
semisimple perverse sheaves on f~1(0).

Remarks

(1) We note that (1) = (2) in Main Theorem 1 follows from an argument of Deligne
[15].

(2) The nearby and vanishing cycles functors ¢y and ¢y defined by Deligne [19]
are shifted by —1, so that they send perverse sheaves to perverse sheaves. They are
denoted by Py and ¥y, following M. Saito [56].

(3) It is known that the Main Theorem 1 implies the local invariant cycle theorem
for the cohomology with coefficients in .% (c¢f. [3, Cor.6.2.8 and 6.2.9], see also [57,
Cor.3.6 and 3.7]). If for instance Y = C then, for any k& > 0 and for ¢ # 0 small
enough, there is an cxact scquence

T-1d

HY(J7H0). #) — HY(S7H(0). 7) HA (1 (1), 7).

where T denotes the monodromy. It also implies the exactness of the Clemens-Schmid
sequence.

(4) Owing to the fact that, if .%y is a perverse complex of Q-vector spaces on a
complex analytic manifold, then .Zg is semisimple if and only if .#¢ = C®g .Zg is so,
the previous results apply as well to Q-local systems, giving semisimple Q-perverse
complexes as a result.

(5) It would be possible to define a category of perverse complexes “of smooth
origin”, obtained after iterating various operations starting from a semisimple local
system on a smooth complex projective variety, e.g., taking perverse cohomology
of a projective direct image, taking monodromy-graded nearby or vanishing cycles
relative to a projective holomorphic function, taking sub-quotients of such objects.
The perverse complexes in this category are semisimple.

(6) A conjecture of M. Kashiwara [34]  which was the main motivation for this
work— asserts in particular that these results should hold when .# is any semisimple
perverse sheaf (with coefficients in C) on X. In the complex situation that we consider,
they are proved when .# underlies a polarizable Hodge Module, i.c., if on a smooth
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INTRODUCTION 3

dense open set of its support, the perverse sheaf .# is (up to a shift) a local system
defined over Q or R underlying a variation of polarized Hodge structures defined over
Q or R: this is a consequence of the work of M. Saito [56, 58] and [12, 35], and of
the known fact (see [21]) that, on a smooth Zariski open set of a projective variety,
the local system underlying a variation of complex Hodge structures is semisimple.

Let us indicate that the conjecture of Kashiwara is even more general, as it asserts
that analogues of such results should be true for semisimple holonomic Z-modules
on smooth complex projective varieties. However, we will not seriously consider non
regular Z-modules in this article.

(7) First were proved the arithmetic analogues of these theorems, i.e., for “pure
sheaves” instead of semisimple sheaves (c¢f. [3]) and they were used to give the first
proof of the Decomposition Theorem for the constant sheaf in the complex case. An
arithmetic approach to the conjecture of Kashiwara (at least for C-perverse sheaves)
has recently been proposed by V.Drinfeld [24].

(8) It should be emphasized that we work with global properties on a projective
variety, namely, semisimplicity. Nevertheless, the main idea in the proof is to show
that these global properties can be expressed by local ones, i.e., by showing that each
irreducible local system on X underlies a variation of some structure, analogous to
a polarized Hodge structure, called a polarized twistor structure. Extending this to
irreducible perverse sheaves is the contents of Conjecture 4.2.13.

(9) It will be more convenient to work with the category of regular holonomic Zx-
modules instead of that of C-perverse sheaves on X. It is known that both categories
are equivalent via the de Rham functor, and that this equivalence is compatible
with the corresponding direct image functors or with the nearby and vanishing cycles
functors. We will freely use this compatibility.

Let us now give some explanation on the main steps of the proof. We will use three
sources of ideas:

(1) the theory of twistor structures developed by C.Simpson (after ideas of P. De-
ligne),

(2) the techniques developed by M. Saito in the theory of polarizable Hodge Mod-
ules,

(3) the use of distributions and Mellin transform, as inspired by the work of
M. Kashiwara and D. Barlet.

One of the main objectives, when trying to prove a decomposition theorem, is to
develop a notion of weight satislying good properties with respect to standard func-
tors. In other words, the category of semisimple local systems (or, better, semisimple
perverse sheaves) should satisfy the properties that one expects for pure sheaves. If
the Hodge structure contains in its very definition such a notion, it is not clear a priori
how to associate a weight to an irreducible perverse sheaf: one could give it weight 0,
but one should then explain why P2 (R f,.%) has weight i for instance. On the other
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4 INTRODUCTION

hand, it is natural to expect that. if a notion of “pure sheaf” exists in the complex
setting, it should be more general than that of polarized Hodge Modules, and even of
that of “pure perverse sheaf”™. Indeed. in the arithmetic situation, one is able to treat
sheaves with wild ramification (e.g.. Fourier transform of pure sheaves with moderate
ramification).

The very nice idea of a twistor structure allows one to work with the notion of
weight. Let us quickly explain it. referring to [64] (see also §§2.1 and 2.2 below) for
a more detailed presentation. Let (V. V) be a flat holomorphic vector bundle on a
smooth manifold X, that we regard as a €' vector bundle H on X equipped with
a flat €™ connection D, the holomorphic structure being given by the (0, 1) part
D" of the connection. A twistor structure of weight w € Z on (V. V) (or a variation
of twistor structures) consists of the datum of a ("> vector bundle A on X x P!,
holomorphic with respect to the variable of P'. equipped with relative connections
D', D" (i.e., there is no derivation with respect to the P! variable). with poles along
X x {0} and X x {oc} respectively. and such that the restriction of 7 to any {w,} x P!

VY (see §2.2 for a more precise definition, in particular for

is isomorphic to Opi (w
D', D").

Thercfore, a variation of twistor structures on X lives on X x P, One of the main
properties required for weights, namely that there is no nonzero morphism from an
object of weight w to an object of weight w’ < w. follows from the analogous property
for line bundles on P!, One can also define the notion of polarization (sce loc. cit.).

The main device to produce a variation of polarized twistor structures on a holo-
morphic flat bundle (V. V) is given by the construction of a harmonic metric. It
follows from a theorem of K. Corlette [13] and C. Simpson [63] that a local system
F of C-vector spaces on a compact Kéhler manifold X “underlies™ a variation of po-
larized twistor structures if and only if it is sciisimple, because semisimplicity is a
necessary and sufficient condition to build on the flat bundle (V. V) associated with .7
a harmonic metric.

The next step closely follows ideas of M. Saito [56]. namely it consists in defining in
its own right a category of “singular variations of polarized twistor structures”. This is
done via the theory of Z-modules, and more precisely via the theory of Z-modules,
which is a natural extension to X x (P! < {x}) of the theory of Zx-modules. In
order to keep some control on the coherence properties. we are not allowed to use:
C™> coefficients. Therefore, we modify a little bit the presentation of the object .7#
introduced above, as associated to the left Zy-module (V. V). -

Put ) = P!~ {~} with coordinate z and Q. = P' < {0}. We can regard .7 as the
result of a C'> gluing between /;/T\ w6, and A x o onsome neighbourhood of X xS,
where S denotes the circle |z| = 1. Equivalently. denoting by 57 the dual bundle,

T o ooarded ag ¢ soenerate nairi 744 .4 i . ;
the gluing can be regarded as a nondegencrate pairing on )y o @ #{x xs with values

2

in the sheaf of C'> functions on some neighbourhood of X x S which are holomorphic
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INTRODUCTION 5

with respect to z. We can restrict this pairing to the holomorphic/antiholomorphic

object /S”l’s ® HY

where we put

and A = Ker [[3/ : e%fixxs - %XXSJ'

ii‘[é = Ker [13” s =

Its restriction to any {:I,'O} x P! should define a bundle @p: (w)™*Y.

We extend this construction to Zx-modules as follows: the basic objects are triples
(', 4", C), where 4’ 4" are coherent %y » o,-modules (see §§0.2-0.3 for the def-
inition of the sheaf #). To any Zx «xq,-module .# is associated a “conjugate” object
# . which is a coherent R .. -module (here, X is the complex conjugate mani-
fold); now, C is a pairing on l/l’ vxs Dos A akes values in distributions
on X x S which are continuous with respect to z. A polarization will then appear as

an isomorphisin .#" — . #" of #x xa,-modules.

Example. - - Given any C-vector space I, denote by H its complex conjugate and by
HY its dual. Define H' = HY and H” = H. There is a natural pairing (i.e., C-linear
map) H' @¢ H” — C, induced by the natural duality pairing HY ®¢ H — C.

On the other hand, counsider the category of triples (H', H"”,C), where H', H”
are C-vector spaces and C' is a nondegenerate pairing H' @¢ H” — C: morphisms
¢ (H].H{,Cy) — (H), HY,Cy) arc pairs ¢ = (¢, ¢") with ¢’ + H) — H{. ¢" :
H! — HY xu(‘h that C'(¢' (mb), my) = Clmly. " (m’)).

We have constructed above a functor from the category of C-vector spaces to this
category of triples. It is easily scen to be an equivalence.

Under this equivalence. the Hermitian dual H* = T oof H corresponds to
(H'.H".C)* dof (H". H'.C*) with C*(m".m’) dof C'(m’.m”), and a sesquilinear
form on H. which is nothing but a morphism .& : H* — H, corresponds to a mor-
phism . (H'.H".C)" — (H'.H".C). i.c.. a pair (S".S") with 8. 8" : H" — H'
such that C'(S"m”. ") = & (S, m’).

In order to say that the pairing C' on . //| rxs & 2.0 g is holomorphic and nonde-

X x

generate, and therefore defines a “gluing”, we bll()lll(l L(‘ able to restrict it to {a,} x S
for any x, € X. “Restriction” is understood here under the broader sense of “taking
nearby or vanishing cycles”. Hence, in order to “restrict™ .#”" or . 4", we impose that
they have a Malgrange-Kashiwara filtration, i.c.. admit Bernstein polynomials. In
order to restrict the pairing C'. we use a device developed by D. Barlet in a ncarby
context, namely by taking residues of Mellin transforims of distributions.

The main technical result is then the construction of the category of regular po-
larized twistor Z-modules. mimicking that of polarized Hodge Modules [56], and the
proof of a decomposition theorem in this category (Theorem 6.1.1).

To conclude with a proof of M. Kashiwara’s conjecture for semisimple perverse
sheaves, one should prove that the functor which associates to cach regular polarized
twistor Zx-module (.Z.,.#,C) of weight 0 (the polarization is Id : .# — .#) the
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6 INTRODUCTION

Px-module .| x (1} is an equivalence with the subcategory of semisimple regular
holonomic Zx-modules, when X is a complex projective manifold.

We are not able to prove this equivalence in such a generality. However, we prove
the equivalence for smooth objects, and also when X is a curve. According to a
Zariski-Lefschetz Theorem due to H. Hamm and Lé D.T. [29], and using the Riemann-
Hilbert correspondence, this implies at least that the functor above takes values in
the category of semisimple regular holonomic Zx-modules. This is enough to get the
Main Theorems.

What is the overlap with M. Saito’s theory of polarizable Hodge Modules? The
main difference with M. Saito’s theory consists in the way of introducing the polar-
ization.

The method of M. Saito is “a la Deligne”, using a perverse complex defined over Q
or R (and the de Rham functor from holonomic Z-modules to C-perverse sheaves)
to get the rational or real structure. The polarization is then introduced at the
topological level (perverse complexes) as a bilinear form, namely the Poincaré-Verdier
duality. We do not know whether such an approach would be possible for polarizable
twistor Z-modules.

Here, we use a purely analytical approach “a la Griffiths”, without paying attention
to the possible existence of a Q- or R-structure. The polarization is directly intro-
duced as a Hermitian form. In particular, we do not use the duality functor and we
do not need to show various compatibilities with the de Rham functor. This approach
uses therefore less derived category techniques than the previous one. Moreover, it
is possible (¢f. §4.2.d) to introduce a category of polarizable Hodge Z-modules as a
subcategory of twistor Z-modules, by considering those twistor Z-modules which are
invariant under the natural C* action on the category (similarly to what C.Simpson
does for “systems of Hodge bundles” [61, 63]). This gives a generalization of com-
plex variations of Hodge structures (without real structure). We do not know if this
category is equivalent to the category one gets by M. Saito’s method, but this can be
expected. A similar category, that of integrable twistor Z-modules, is considered in
Chapter 7.

What is the overlap with C.Simpson’s study of Higgs bundles [63]7 First, no-
tice that we consider objects which can have complicated singularities, so we do not
consider any question concerning moduli. We are mainly interested in the functor
sending a twistor Z-module to its associated Z-module by restricting to z =1 (z is
the standard name we use for the variable on P'). We could also consider its asso-
ciated Higgs module by restricting to z = 0 (sce §1.2). In the first case, we at least
know the image category, namely that of semisimple regular holonomic Z-modules.
In the second case, we have no idea of how to characterize the image of the functor
and if an equivalence could be true, similarly to what is done in the smooth case by
C.Simpson [63] or in a slightly more general case by O. Biquard [4].

Let us now describe with more details the contents of this article.

ASTERISQUE 300



INTRODUCTION 7

In Chapter 1, we give the main properties of # s -modules. They are very similar
to that of Zx-modules. The new objects are the sesquilinear pairing C, and the
category “- Triples(X) (the objects are triples formed with two Z 2 -modules and a
sesquilinear pairing between them), to which we extend various functors. We have
tried to be precise concerning signs.

Chapter 2 introduces the notion of a (polarized) twistor structure, following
C.Simpson [64]. We first consider the case when the base X is a point, to get
the analogue of a (polarized) Hodge structure. We develop the notion of a Letf-
schetz twistor structure and adapt to this situation previous results of M. Saito and
P.Deligne. Last, we develop the notion of a smooth twistor structure on a smooth
complex manifold X. The main point of this chapter is to express the notion of a
twistor structure in the frame of the category - Triples, in order to extend this
notion to arbitrary holonomic 4 4 -modules.

Chapter 3 extends to Z»-modules the notion of specializability along a hyper-
surface-—a notion introduced by B.Malgrange and M. Kashiwara for Zx-module,
together with the now called Malgrange-Kashiwara filtration—and analyzes vari-
ous properties of the nearby and vanishing cycles functors. The specialization of
a sesquilinear pairing is then defined by means of the residue of a Mellin transform,
in analogy with some works of D.Barlet. All together, this defines the notion of a
specializable object in the category %- Triples(X). The category of S-decomposable
objects, introduced in §3.5, is inspired from [56].

In Chapter 4, we introduce the category of twistor Z-modules on X as a sub-
category of - Triples(X). We prove various property of the category of (polarized)
twistor Z-modules, analogous to that of (polarized) Hodge Modules [56]. We show
that regular twistor Z-modules induce semisimple regular Z-modules by the de Rham
functor =Zpr.

Chapter 5 establishes the equivalence between regular twistor Z-modules and
semisimple perverse sheaves (or semisimple regular holonomic Z-modules) on com-
pact Riemann surfaces, by expressing the results of C.Simpson [62] and O.Biquard
[4] in the frame of polarized regular twistor Z-modules. In order to establish the
equivalence, we also adapt results of D. Barlet and H.-M. Maire [2] concerning Mellin
transform.

The main theorems are proved in Chapter 6, following the strategy of M. Saito [56].
We reduce the proof to the case when X is a compact Riemann surface and f is the
constant map to a point. In this case, we generalize the results of S. Zucker [72] to
polarizable regular twistor Z-modules.

In Chapter 7, we cousider the category of integrable twistor Z-modules. This chap-
ter, written somewhat after the previous ones, is an adaptation to the present theory
of the notion of CV-structure considered in [30]. We mainly prove a “local unitarity”
statement (the local exponents are real and, in the regular case, the eigenvalues of

SOCIETE MATHEMATIQUE DE FRANCE 2005



8 INTRODUCTION

local monodromies have absolute value equal to one). The interest of such a subcat-
egory should be for the non regular case, where it should play the role of singular
variations of polarized Hodge structures.

In the Appendix, we sketch an application of the previous results to Fourier-Laplace
transform. We analyze the behaviour of polarized regular twistor Z-modules under a
partial (one-dimensional) Fourier-Laplace transform and we generalize to such objects
the main result of [52], comparing. for a given function f. the nearby cycles at f = oo
and the nearby or vanishing cycles for the partial Fourier-Laplace transform in the
f-direction (Theorem A.4.1). Complete proofs can be found in [55].

Since the first version of this article was written, there has been progress in various
directions.

(1) In the first version of this article, the category of polarized twistor Z-modules
was restricted to the local unitary case, mainly because of a lack of proof of Theorem
6.2.5 in general. This restriction is now unnecessary. due a new proof of this theorem.

(2) The main progress comes from recent work of T. Mochizuki [48, 49]. Contin-
uing [47], T. Mochizuki generalizes the contents of Chapter 5 in two directions:

he considers an arbitrary parabolic structure along the divisor, whereas only a
natural parabolic structure is considered here, that we call “Deligne type”; depending
on the point of view, one could call the objects defined by T.Mochizuki as “twistor
Z-modules with parabolic structure”, or the objects of the present article as “twistor
Z-modules of Deligne type” (or “pure imaginary™ after [49]): the category of polarized
regular twistor Z-modules that we define here should be (and is, after the work of
Mochizuki) equivalent to the category of semisimple perverse sheaves. on a smooth
projective variety, whereas twistor Z-modules with parabolic structure give rise to
semisimple “perverse-sheaves-with-parabolic-structure™

he is able to treat the case of the complement of a normal crossing divisor on a
smooth complex manifold of arbitrary dimension.

All together, it scems that. according to the work of O.Biquard [4] and J. Jost
and K. Zuo [31, 32, 73] (revisited in [49]). the proof of of Conjecture 4.2.13. hence
a proof of the conjecture of Kashiwara for perverse sheaves (and even for perverse
sheaves “with parabolic structure”) with analytical methods. is now complete.

(3) On the other hand, according to recent results of G. Boeckle and C. Khare [7]
or of D.Gaitsgory [26]. a proof of the conjecture of de Jong used by V.Drinfeld is
available: therefore, the arithmetic approach of Drinfeld [24] to the conjecture of
Kashiwara (for perverse sheaves) is also complete.

(4) Let us also mention a new proof of the decomposition theorem for the constant
sheaf, obtained by M.A.de Cataldo and L. Migliorini [11]. with methods completely
different from those developed by M. Saito. We do not know if such methods can be
adapted to more general local systems.
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INTRODUCTION 9

(5) The non regular case of Kashiwara's conjecture is still open. Extending the
work of C.Simpson [62] and O. Biquard [4] to holomorphic bundles on compact Rie-
mann surfaces with meromorphic connections having irregular singularities would be
a first step. Some results in this direction are obtained in [53] and [5]. See also [54]
and [68] for the behaviour with respect to the Fourier-Laplace transform in dimension
one.
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CHAPTER O

PRELIMINARIES

0.1. Some signs

(a) We will use the function
7 =5 {£1}
ar—s e(a) = (~1)2(eV/2
which satisfies in particular
sla+1)=¢e(—a) = (=1)%(a), e(a+b)=(—1)*(a)e(b).
Recall that, on C™ with coordinates z; = xy +iyr (k= 1,...,n), we have
dz1 AN ANdzp NdZy N NdZ, = e(n)(dzy ANdZy) A A (dzy AN dZy)

and that dzp A dzZp = —2i(dx A dyy).

(b) We follow the sign convention given in [18, §§0 and 1]. When we write a
multi-complex, we understand implicitly that we take the associated simple complex,
ordered as written, with differential equal to the sum of the partial differentials.

Given any sheaf ., denote by (God®.Z,d) the standard semisimplicial resolu-
tion of .Z by flabby sheaves, as defined in [27, Appendice]. For a complex (.£°,d),
we regard God®.#* as a double complex ordered as written, i.e., with differential
(0;,(—1)'d;) on God’ .27, and therefore also as the associated simple complex.

0.2. In this article, X denotes a complex analytic manifold of dimension dim X = n,
O'x denotes the sheaf of holomorphic functions on X and Zx the sheaf of linear
differential operators with coefficients in @x. The sheaf @x is equipped with its
natural structure of left Zx-module and the sheaf wy of holomorphic differential
n-forms with its structure of right Zx-module.

We denote by X the complex conjugate manifold, equipped with the structure

., def — . o ”
sheaf O~ = O and by Xp the underlying ¢'>° manifold.
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The increasing filtration of Zy by the order is denoted by F,Zy. Given a filtered
object (M. F,M) (filtrations are increasing and indexed by Z), the associated Rees
object RpM def ErezFiu M 2% is the graded object constructed with the new variable z.
In particular, we will consider the Rees ring Ry this is a sheaf of rings on X. The
filtration induced by F,Z7x on Oy satisfies Fi .0y = Ox for k > 0 and F,0x = 0 for
k < 0, so the associated Rees ring Rp @y is equal to Ox|z].

We will denote by Rx the sheaf Ry 7y when we forget its grading, and call it the
differential deformation sheaf. This is a sheaf of rings on X. In local coordinates
on X, we denote now by 0,., in Rx the element zd,., in RpZy. With such a notation,
we have

Rx = Ox[Z](0,,..... O0.,)-
where 0, satisfy the relations
of

dx;

0,,,0,,]=0 and [0, . f(r.z)] ==z
One has (forgetting grading)
Rx/2:Rx = RpYx[2RePx = ot 9x = Ox[TX].
where Ox[T'X] denotes the sheaf of holomorphic functions on the cotangent bundle
T*X which are polynomials with respect to the fibres of T*X — X in other words,
Ox[TX) = psOpr-xq1)(x¢), where p: P(T* X 4:1) — X denotes the projection and
oo denotes the section at infinity of the projective bundle.
The left action of Ry on RpOx = Ox|[z] is defined by

aJf
?j,. (. = = z—.
9, (f(r.2)) = s5%
0.3. Let ©p = C be the complex line equipped with a fixed coordinate z. We will

denote by ¢ the imaginary part of z. Put C* = {z # 0}. Let us denote by Q. the
other chart of P!, centered at z = ~o.

Let us denote by 2" the product X x €y and by @5 the sheaf of holomorphic
functions on it, by 2°° the product X x C*. Let 7 : 2" — X denote be the natural
projection. If .# is a sheaf on 2", we denote by .#° its restriction to 2°°. We will
consider the sheaves

Ry =0y & RpPx and Ay =04 & RpPx.
Ox (2] Ox[7]
In local coordinates on X, we have Z9 = 05 (0y,.....04,).

We will denote by © 4 the sheaf of holomorphic vector fields relative to the pro-
jection 27 — Qg, which vanish at z = 0. This is the @2 -locally free sheaf generated
by 0z,,...,0,,. It is contained in Z 4.

Dually, we denote by Q!,- = Z_ISZ}Yxsz‘./sz(, C Q,l\’xsz‘,/sz(. [271] the sheaf of holomor-
phic 1-forms on 2" relative to the projection 2" — g, which have a pole of order

one at most along z = 0. We will put Q% = A*Ql,.. The differential d : Q%,- — Ql‘fl
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is induced by the relative differential d = dx «q,/q,. The natural left multiplication
of ©®» on Z 4 can be written as a connection
1
NV Ay — Qy 069 Ry
KA

satisfying the Leibniz rule V(fP) = df @ P+ fV P. More generally, a left % 4 -module
A is nothing but a &'y -module with a flat connection V : .4 — Qluj ®e, M. Put

lef _ - . p .
wr T QL =z "Wx w0, /- Lhis is naturally a right % s--module: the action
is given by w - § = —Zcw, where .Z denotes the Lie derivative, here equal to the

composition of the interior product ¢ by £ with the relative differential d.

0.4. We denote by S the circle |z| = 1 in Qo N Q. For a &4 or Z 4 -module .# | we
denote by .#|g its sheaf-theoretic restriction to X x S. In particular, we will consider
the sheaves @y g and # 4 s. We will simply denote &g, |s by Os. We will also use
the sheaves

def . p
Oxxyxs = Olxxan)s Qos Oxxay)s

def . .
"%(,V.Y)xs = '%)(XxSZU)IS Kog %(szz‘,)\s

0.5. Distributions and currents. — We will need to consider distributions on
Xr X S which are regular with respect to the variable on S, in order to be able to
specialize them with respect to the variable of S. Let us introduce some notation.

Let T be a (™ manifold with a fixed volume form voly (we will mainly use
(T.volp) = (S.dargz)). For k = 0,...,00, we denote by ?5( . the sheaf of C*
functions on Xp x T and by (?i”:)T/T the sheaf of C'™ relative (with respect to the
projection X x T — T) (n,n) forms of maximal degree, and we put an index ¢ for
those objects with compact support. We denote by ”Dbf‘\}; <1/ the sheaf on Xg x T of
distributions which are C'* with respect to T: by definition, given any open set W of
Xp x T. an element of Dbk wryr (W) is a C(T')-linear map 5{”;;”((11) — CH(T)
which is continuous with respect to the usual norin on C(/T'(T) (sup of the modules
of partial derivatives up to order k) and the family of semi-norms on ﬁ'_,\(‘,":':,)]‘/,],.(,(l'ir)
obtained by taking the sup on some compact set of W of the module of partial deriva-
tives up to some order with respect to X and up to order & with respect to 1. Given
a compact set in W, the smallest order in d, which is needed is called the order of u.
Such an element u defines a usual distribution on Xg x T by integration along T with
the fixed volume form volp.

It is sometimes more convenient to work with currents of maximal degree, which
are C* with respect to 7. We denote by Q"‘,'(" <TT the corresponding sheaf: a section

R

on W is a continuous C™(T')-lincar map €3 7 (W) — CH(T). In particular, when
T =S8, Db{‘{;xs/s (resp. €k ><S/S) is a left (resp. right) module over H(x x).s defined

above.
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The regularity of distributions with respect to 7T is useful in order to get the
following;:

-~ The restriction to any subvariety 7" of an object of @bff(mxT/T is well defined
and is an object of @b]} <177~ In particular. if T’ is reduced to a point, we get a
ordinary distribution on Xg.

When T' = S, if p(z) is any nonzero polynomial. then

(0.5.1) we Db, gs(W) and p(z) u=0=>u=0.
Examples 0.5.2

(1) If T is the Euclidean space RP and Ay is the Laplacian on it, the subsheaf

Ker Ap of T-harmonic distributions in Db x. « 7 Is contained in @bﬁ; xT/T for any k.

(2) If Q is an open set in C with coordinate z, the sheaf DbY. 1 Kerd, of

distributions on Xp x € which are holomorphic with respect to z is contained in
’DbA <o for any k. We will also denote by Gt the s‘heaf of C"> functions on
Xgr x 2 which are holomorphic with respect to z and by (?)ﬂ/ ]s ' the restriction to S
()f (/ OC,an

,’/J/;)V" .

(3) Let X = D be the open disc of radius 1 and coordinate t. Set 2 = C~ (—=N*).
For each ¢ € N,

2 Y
U, def It|** [log 1]
i I S I

¢!
defines a global scction of ’Dba\f'xsz (variable s on €2). The order of U, is finite on any
domain QN {Res > =N}, N > 0. If we set U, = 0 for ¢ < 0, we have

tUe =1U = sUyp + Uy

(4) Let X beasabove. Forz € S, t€ X and (> 1, 2/?’7 1/zt" is purely imaginary,
s0 that the function ¢/ ~1/t" defines a distribution on Xg x S. This distribution is
a section of Qb(;\’;u,xs/s (it is even a section of Db xs/s i £=1).

Let us denote by ¢ ,}“Xs the subsheaf of €% 4 of functions which are holomorphic

with respect to X. We then have:

Lemma 0.5.3 (Dolbeault-Grothendieck).  Ker[dy : Dbl <88 ’Db(g xS/S]
G o

In the following, we will only use the continuity property with respect to S, and
we will denote by Dby, wg/g the sheaf @b&- . xS/S-

0.6. Spencer and de Rham. — The de Rham complex (of &4') will be usually
shifted by n = dim X, with differential (=1)"d. We will denote it by (7. (=1)"d).
Given any k > 0, the contraction is the morphism

wa %o, NOp — QT

(0.6.1) ww & — e(n—kw(ENs).
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The Spencer complex (Sp’y-(O2°),5) is the complex Za ®¢, N *Oq (with « < 0)
of locally free left % ,-modules of finite rank, with differential § given by

- k
PR&E AN é’eZ(—l)"‘lP&@&A-~-A5A-~-A£k

1=1

Y ()P RELGING A NG A NG A Ny
i<j
It is locally isomorphic to the Koszul complex K(Z 4, -0y, , ..., -0y, ). It is aresolution
of 09 as a left # 2 -module. Under the contraction (0.6.1)

wy @ /\k@gr AN QZ;k
Oy ’

the complex (w1 R , Sp}((/fy),(?) = (w1 Re., /\_.(;)tygj,(S) is identified with the
complex (5. (=1)"d).

Similarly, putting as above n = dim X, the complex (Q%* @¢, #4.V), with
differential V given by

wnit @ P Y (<1 dwnsy @ P+ (=1)'wnie AVP,

is a resolution of wy- as a right Z 4 -module. We will use the notation SZ;JT' for AMO 4.

Let us denote by (é‘”;'ﬁ"o). (—1)"d") the complex 65> ™ ¢, Q%" with the differ-
ential induced by (—1)"d (here, we assuine n+e > 0; recall that the exponent an means
“holomorphic with respect to z”). More generally, let 6"};’” P 5()’}+1).0) A ﬂ*ﬁf{om
(the antiholomorphic part does not produce new poles or zeros along z = 0) and let
d” be the usual antiholomorphic differential. For any p. the complex (6’;'&”"),(1”)
is a resolution of Q7. We thercfore have a complex (£5+°, (~1)"d), which is the
single complex associated to the double complex ((f(}" re) (—1)nddr).

In particular, we have a natural quasi-isomorphism of complexes of right 2, -
modules:

Qt @0, Zr.V) " (3 o, Ba V)

by sending holomorphic k-forms to (k,0)-forms. Remark that the terms of these
complexes are flat over @ y-.

0.7. Left and right. — At some places in this paper, it is simpler to work with

right # 4 -modules. The correspondence between both points of view is analogous

to that for Zy-modules. Any left % ,-module .#! gives rise to a right one .#" by

putting (c¢f. [10] for instance) . #" = wy ©g, #' and. for any vector field &,
(w@m) - £=wE@m —w®Em.

Conversely, put .#' = #ome, (wy,.#"). which has in a natural way the structure
of a left # 4 -module. The natural morphisms

M — Home, (Wa war e, ,////l)7 wa R, Home, (wWa, ") — H"

are isomorphisms of %4 -modules.
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If A,/ are two left Z 4 -modules, we have a natural isomorphism of sheaves of
C-vector spaces

N R, A = " R, N

0.7.1
( ) (wen)@am — (W&m)2n,
which is functorial in .Z and in . 4.

We note that wa ®g, Z2 has therefore two structures of right Z 4 -module,
denoted by -, and +:

(wP) Q=wx (PQ) and (wZ P) E=w - £EQP —w®EP,

for P, local sections of Z 45 and £ a local section of © 4. Recall (¢f. [56, Lemme

2.4.2]) that there is a unique involution ¢ : w» @6, Z» — wa @, A2 which is the

identity on wg @1 and exchanges both structures: it is given by w@ P — (w® 1)+ P.
In particular, the isomorphism of right % »-modules

. ) I n—k .
wr ©o, (R So, NOr) — Q7" 26, Hr
[w ®(1® 5)] ¢ P— (e(n — k)w(E A .)) ® P
where the right structure of the right-hand term is the trivial one and that of the

left-hand term is nothing but that induced by the left structure after going from left
to right, induces an isomorphism of complexes of right % » -modules

(0.7.2) Liway & (Sp},-(//y-)ﬁ) = (Q’,',;" “ Ay V).
O Oy
Similarly, if .# is any left .2y -module and .#" = wy @e¢, A is the associated
right % »--module, therc is an isomorphism
(0.7.3) A" @%, (Sp?,-((/y').(S) ~ (w,y' @eo, H Do, A”'(—),y'.(s)
= (VT we, V) = (4 e R N) @, M

given on wy Re , M D¢, NO ., by
w@mEr— eln—hk)w(ENs)wm.

In the same vein, let . be aleft Z »-module. Then . # @4, A 9 has the structure
of a left and of a right Z»-module: - (m@ P) = (Em)z P+m@ &P, and (m@ P)-¢ =
m (PE) for any local vector field . Similarly. # 5 % g, .4 also has such a structure:
E-(Pom)=(P)@mand (P®m)-&=P&wm—Pwém.

Then, there exists a unique isomorphism
(0.7.4) MGG, Ry —— Ry Te, M
of left and right %, -modules. which induces the identity on #Z @1 =1®.4. If € is
any local vector field, this isomorphism is given by

m@&=m)Er— (1om)é=Exm—1%&mn.
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0.8. Let D be an open disc centered at the origin in C with complex coordinate .
We assume that it has radius < 1 (this will be always the case later on, as we can
reduce the size of the disc). The logarithm L(#) is defined as

L(t) = |log |t]*| = = log(t7).
It satisfies, for any k& € R,
a(L(t)=* _O(L(t)y *
(0.8.1) L(t)kt M = L(t)M L(_)—) = kL)L
ot ot

0.9. Let o = o' + ia” be a complex number with o = Re(a), o = Im(a). For
z € C, put
(0.9.1) axz=az+id(z = 1)?/2 =o'z +id (z2 +1)/2.
The following properties are casily verified:
« — « * z is R-lincar;
for z # 0, the expression

(A7 99

=o' +iad’(z+1/2)/2

is “real” in the sense of the conjugation defined in §1.5.a, i.c., is invariant when we
replace ¢ with —i and z with —1/z: indeed, using this notion of conjugation, it is the
“real” part of o + iza”, namely %[(n’ +iza) + (o +iza)]:
if o/ =0 orif z, = Fi. we have (o * 2,)/2, = o;
We have « * z, = 0 if and only if one of the following properties is satisfied:
(1) =0,
(2) o # 0is real (i.e., o =0 and o’ £ 0) and z, = 0,
(3) o # 0 is not real (i.e.. o” #0) and z, = i((a'/a”) £ /14 (o//a')?) (in
particular z, € iR*);
in particular,
axz,=0and o # 0 = {ZU < i,
2z, = ti <= «is purely imaginary.

Let A € C be a finite subset and put A = A+ Z. A complex number z, € Qg
is singular with respect to A if there exist oy, o € A UZ such that oy # a2 and
(a1 —az) x z, = 0. Such a z, is purely imaginary. The set of nonzero A-singular
complex numbers is discrete in /R*, and 0 is its only possible limit point in iR. It is
reduced to {0} if A C R. We denote it by Sing(A).

() = o' = (0" = Re(o +iz,0"") (where

Re is taken in the usual sense). The following lemma will be useful:

For z, € Qg. denote ¢, = Im z, and set £

o

Lemma 0.9.2. Fir z, € Qq. If (., () =0, then axz, =0 = a =0.
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Proof. — Assume first that z, = 0. The hypothesis is that o/ = 0. We then have
axzo =ia" /2.
Assume now that z, # 0. The hypothesis is that o/ = (,” and we have

O*zo o (Co+i(20 +1/20)/2).

2o
If @” # 0, this could vanish only if z, + 1/, is purely imaginary, hence only if z, is
50, i.¢., 0 # z, = i(o; but we would have 0 = ¢, +i(z, + 1/2,)/2 = ({o + 1/¢(,)/2 with
Co € R*, impossible. O

AS']‘I,-‘?R,]SQUH 300



CHAPTER 1

COHERENT AND HOLONOMIC Z,-MODULES

1.1. Coherent and good # 4 -modules

1.1.a. The ring Ry is equipped with a natural increasing filtration (locally given by
the total degree in 9,,) and the associated graded object is naturally identified with
the sheaf ‘
Ox [)TX] S O xan)(00) 2],

where p is as in §0.2. By usual arguments, it follows that Ry is a coherent sheaf of
rings on X.

Analogous results hold for % ;-, which is a coherent sheaf of rings on 2", by re-
placing Ox|z] with @y .

We can identify the restriction Z 4-o with the sheaf of relative differential operators
Dy e by

Ov, ERyo — 00, =2 100, € Do e
It follows in particular that, for any z, # 0 and any coherent % 3 --module ., the
cohomology modules of the complex of %y -modules Li} .4 def { i == &)} are
coherent Zy-modules. Following [62], we put
S ) )t and Epr( ) (-

Then Zpei (. #) is a coherent &' x [T X]-module and Zpr(.#) is a coherent Zx-module.

We note that the datuin of a left Zx-module M is equivalent to the datum of a
O'x-module M equipped with a flat connection V : M — QY @4 M. Similarly,
the datum of a (left) &x[T'X]-module M is equivalent to that of a @x-module M
equipped with a Oy -lincar morphism 0 : M — Q}Y ®ey M satisfying the Higgs
condition 6 A0 = 0.

1.1.b. De Rham and Dolbeault complexes. — Recall that the de Rham com-
plex DR(M) of a left Zx-module M is the complex Q4T @ M with differential

V(wnir @m) = (=1)"dwp sk @m + (=1 wnin A V.
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Similarly, the Dolbeault complex Dol(Al) of a &[T X]-module M is the complex
OV @e M with differential (=1)° A0 (i.e., (=1)"6 A when putting the forms on
the right).

Let now .# be a left 2 »--module. Its de Rham complex DR(.#Z) is Q' ®4, 4
with differential

V(wntr @m) = (=1)"dw, 11 @ m + (——1)"’w,1+k ANm.

As DR.# is a complex of O, -modules, we have Lii (DR.#) = DR(Li% .#)if z, # 0
and Li§(DR.#Z) = Dol(Lij. ).

The de Rham complex DR(.#) of a left # 4 -module is also equal to the complex
(QZ;—' Qe, . N) D, M.

We define the de Rham complex of a right %, -module .4 as A @4, Sph- (O ).

Using (0.7.3), we have a functorial isomorphism DR(.#") ——~ DR(.#) for any left
X 2 -module . .

1.1.c. The sheaf Z4 comes equipped with an increasing filtration by locally free
O »-submodules, indexed by the order in 0, ..., 0., - We can therefore define, as
usual, the notion of a good filtration on a %4 -module. Following [59], we say that
a Xy -module .Z is good if, for any compact subset .# C .2, there exists in a
neighbourhood of 77, a finite filtration of .#Z by % » -modules such that all successive
quotients have a good # 4 -filtration. This implies that .# is coherent.

1.2. The involutivity theorem

Let .# be a coherent Z 2--module. The support in T*X x Qg of the graded module
associated to any local good filtration of .# does not depend on the choice of such
a good filtration and is defined globally (see e.g.. [6. Prop. A:I11.3.21]): this is the
characteristic variety Char.# of .Z .

For any z, # 0, denote by Char,, (.#) the union of the characteristic varieties of
the cohomology Zx-modules of Li} .. There is a natural inclusion Char. (.#) C
Char Z N (T*X X {z,}).

Let X(.#) C T*X be the support of =pe(.#). This is a kind of “characteristic
variety”, but can fail to be homogeneous with respect to the usual C*-action on T*X.

It is possible to associate a multiplicity to each irreducible component of Char .,
Char,, (. #) or (.#) to get a characteristic cycle.

The definition of Char.#, Char, (.#) or £(.#) extends to complexes: just take
the union of characteristic varieties of the cohomology sheaves.

The support Supp.# C X is by definition the closure of the projection of Char .#
in X. This is the smallest closed subset Z of X such that .# vanishes identically on

(X~ Z) x Q.
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Definition 1.2.1. — A X y-module . is said to be strict if it has no Oq,-torsion. A
complex .#° of Z 4 -modules is said to be strict if each of its cohomology modules
is so. A morphism ¢ : .# — A is strict if the corresponding complex is so, i.e., if
Ker ¢ and Coker ¢ are strict.

We note that, for a strict Z 4 -module .#, the restriction Lz%/ reduces to the
degree 0 term .4 /(z — z,).# .

Lemma 1.2.2

(1) Let .# be a Xy -module equipped with a finite increasing filtration W4 by
X 9 -submodules. If each gl,‘\‘%/ is strict, then 4 is strict.

(2) Let p: .4 — A be a morphism of %4 -modules. We assume that .4 ,. A have
a finite filtration W by X o -submodules and that o is strictly compatible with W, i.e.,
satisfies oWy ) = Wi ¥ N 4). If gr}¥ o is strict for all k. then ¢ is strict.

Proof. The first point is clear. Let us prove (2). By strict compatibility, the
sequence

o .
i @ griV 4 — gr) Cokeryp — 0

0 — gr)¥ Kerg — gr)l . #

is exact, putting on Ker ¢ and Coker ¢ the induced filtration. By strictness of gr}"}/ap,
and applying (1) to Ker p and Coker p, one gets (2). O

Theorem 1.2.3. Let .# be a strict coherent A4 9 -module. Then X(.#) and
Char, (#) (z, € C*) are involutive in T X . and Char .# is involutive in T*X x

“o

(with respect to the Poisson bracket z{, }).

Proof. This is well-known for the characteristic varieties Char, (.#) and Char.#
([25], see also [6, A:111.3.25]). The proof of Gabber’s involutivity theorem also applies
to (.4 ) because .# is strict (indeed, Zo-/2°% o is a Gabber ring, in the sense of
(6. A:IIL.3]). O

The restriction of Char.# over {z = 0} is not controlled by the involutivity the-
orem. However, the restriction to {z = 0} of components of Char.# for which the
fibre at some z, # 0 is Lagrangian is a union of irreducible conical Lagrangian closed
analytic subsets of T*X.

Definition 1.2.4. A Z yp-module A is said to be holonomic if it is good and there
exists a conical Lagrangian variety A C T*X such that the characteristic variety
Char . is contained in AxQq. A complex .Z* of # »--modules is said to be holonomic
if each of its cohomology module is so.

If .# is holonomic, then any irreducible component of Char.# is equal to T35 X x Qg
or to T4 X x {z,} for some closed irreducible analytic subset Z of X and some z, € Q.
In particular, the support of .Z is equal to the projection of Char.# in X.
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In an exact sequence 0 — . #' — # — 4" — 0 of good #»-modules, .# is
holonomic if and only if .#" and .#" are so: indeed, we have Char(.#) = Char(.Z')U
Char(.2").

Proposition 1.2.5 (Restriction to z = z,). — If A is holonomic, then for any z,#0,
the cohomology modules of L., .# are holonomic Zx-modules. Moreover, if A is
strict, (. #) is Lagrangian.

Proof. — Let F,.# be a good filtration of .# locally near a point of X x {z,}. It
induces a good filtration (F,.# )N(z—z,).# on the coherent % » -submodule (z—z,).#
as well as on the coherent quotient .#/(z — z,).# . the graded module of which is a
quotient of gr¥.# /(z — z,)gr’.# . Similarly, ng[Ker(z — 2:0)] is contained in the
kernel of z — z, acting on grpt%/. This implies the first point. For z, = 0, we have
dim X < dimX(.#) (X(.#) is involutive)

= dim Supp gt (4 /z.#) (conservation of the dimension by grading)

< dim Suppgr? /= gt

<dim X (A is holonomic). O

The variety 3(.#) is well-behaved in exact sequences only for strict objects in
general. One has for instance

Proposition 1.2.6. — Let 0 — . #' — # — #" — 0 be an exact sequence of strict
holonomic Rqa -modules. Then L(#) = S(#") US(#") and the corresponding

Lagrangian cycles behave in an additive way. O
Remark 1.2.7. — Analogous results hold for Ryx-modules. We leave them to the
reader.

Proposition 1.2.8. Let A be a strict coherent X% »--module, the characteristic variety

of which is contained in the zero section Ty X x Qqu. Then,

(1) A is Og -coherent,

(2) #° is locally (on Z°°) isomorphic to /7‘/’,0 equipped with its natural structure
of left R# 5> -module, for some integer d,

(3) there exists a mowhere dense closed analytic subset Z C X such that # is
O 9 -locally free on 2 N Z.

Proof. The first point is clear. As .#° is € y-o-coherent (hence good as a X y-o-
module), the second point follows from [16, Theorem 2.23 (iii)] and strictness. The
third point also follows from strictness. O

Remark 1.2.9. — Under the assumption of Proposition 1.2.8, there exists locally on X
a vector bundle E such that .#° = 7°*E as a 0 y<-module (indeed, if U is any
contractible Stein open set of X, any vector bundle on U x C* is topologically trivial,
hence analytically trivial, by Grauert’s theorem).
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1.3. Examples

1.3.a. The twistor deformation of an irreducible flat connection to a Higgs
bundle [63, 64]. — Let X be a projective manifold and let (V, V) be a flat holo-
morphic vector bundle on X. The construction explained in loc. cit. gives an example
of (and in fact is a model for) a strict holonomic & 4-module. Let us recall the main
definitions.

Let Dy = Dj, + D{, be the flat connection on H def CF ®oy V. sothat (V,V) =
(Ker DY, D{,), and let h be a metric on (H, Dy/). There exist connections denoted D',
(of type (1,0)) and DY, (of type (0,1)), and a (1.0)-form 7, with values in End(H)
such that, denoting by 6% the adjoint of 6% with respect to h, we have, for any local
sections u, v of H,

d'h(u,v) = h(Dgu,v) + h(u, Div),
d"h(u,v) = h(Dgu,v) + h(u, Diyv),
hOgu,v) = h{u, 0%v),

(= Dyt 0. DI =D+ 0l

These objects are uniquely defined by the previous requirements. We note that, by
applying d’ or d” to each of the first three lines above, we see that D? is adjoint to
D2, DY.(0%) is adjoint to D'(0},) and Dy DY + DYDY, is selfadjoint with respect
to h.

The triple (H, Dy, h) (or (V,V,h), or simply h, if (V,V) is fixed) is said to be
harmonic if the operator DY, + 67, has square 0. By looking at types, this is equivalent
to

DV =0. DL#) =0, 0N =0.
By adjunction, this implies

DE =0, DL0F%) =0, 0LA0L=0.
Moreover, the flatness of Dy implies then

Dip(0g) =0. Di(0p) =0, DpDg+ DpDy = —(0p0% + 050%).

Let E = Ker D%, : H — H. This is a holomorphic vector bundle equipped with
a holomorphic End(E)-valued 1-form 0, satisfying 6 A 6 = 0. It is called a Higgs
bundle and 0%, is its associated Higgs field.

Remark that 0, : E — E ®¢ Q4 can be regarded as a holomorphic map 6% :
Ox — End(FE) satisfying [07%:(£), 0% (n)] = 0 for any vector fields &, 7, defining thus
the structure of a Ox [T X]-module on E. Its support in 7*X is thercfore a finite
ramified covering of X.

The previous relations also imply that, if z, is any complex number, the operator
DY, + z,07% is a complex structure on H. Moreover, if z, # 0, the holomorphic
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bundle V,, = Ker(D%, + z,6%.) is equipped with a flat holomorphic connection V,, =
DYy + 2,10 For z, = 1 we recover (V, V).
Consider the ¢, ""-module 7" = ¢ ,;~" Dr-143x 7 'H, equipped with a d” op-

erator
(1.3.1) e = Dy, + z0%.

This defines a holomorphic subbundle 7 (that is, a locally free @4 -submodule
such that €, @4, A" = ), which is thus strict. Morcover, it has the natural
structure of a good Z4--module, using the flat connection

(1.3.2) ' =Dy + 27105

One has Epoi () = (E,0%) and Epr () = (V. D},). Clearly, Char.#” is equal to
T3 X x Qg (take the trivial filtration). Then " is a strict holonomic Z »--module.

Remark. The support ¥ C T*X of a holomorphic Higgs bundle (E,0%) (regarded
as a Ox[T'X]-module) coming from a harmonic flat bundle (H, Dy, h) is Lagrangian
in T*X, after Proposition 1.2.5. More generally, any Higgs bundle (F.6%) on a
projective manifold X satisfies this property, without referring to the existence of a
Hermite-Einstein metric (i.e., an associated flat harmonic bundle): indeed, restrict
the standard holomorphic Liouville 1-form on T* X to ¥ and then lift it to a resolution
Y of the singularities of ¥, which is a projective manifold, as it is a finite ramified
covering of X; by standard Hodge theory, the lifted form is closed, hence so is its
restriction to the regular part ¢ of 3; the restriction to 32 of the canonical 2-form
on 7% X is thus identically 0 on X°.

1.3.b. Filtered Zx-modules. — Let (M, F) be a filtered holonomic Zx-module
and RpM the associated graded Rees module. Put .# = 0o @gy ;) RFM. By
construction, .# has no z-torsion and thus is strict holonomic, because Char.#Z =
Char(M) x Q.

1.3.c. Variations of complex Hodge structures [63]. — Let H = @,z HP"" P
be a C*° vector bundle on X, where w € Z is fixed, equipped with a flat connection
Dy = D’V + D’v’, and a flat nondegenerate Hermitian bilinear form k such that the
direct sum decomposition of H is k-orthogonal, (—1)?i~"k is a metric on HP" 7P,
i.e., (—1)Pi~"k is positive definite on the fibres of H?**~P for cach p, and

D/V(Hp,w—p) C (Hp,uv—p e H))—l.m—])+]) Rex Q‘l\.

D{;([{p.m—-[)) C (Hp,urfp ey [[1)+1.4,n—pf]) ®f77 Q]T

where X denotes the complex conjugate manifold.
Let us denote by D}, = Dy + 0%, and DY, = D/, + %, the corresponding decompo-
sition. Then the metric h defined as (—1)?i~"k on H?" P and such that the direct
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sum decomposition of H is h-orthogonal is a harmonic metric and the objects D7,

"%, 0% and 67, are the one associated with (h, Dy) as in example 1.3.a.

Put F? = @,5,H%"" 9. This bundle is stable under D{.. Let FPV = FPNV
be the corresponding holomorphic bundle. Consider on the Rees module @F?z77 C
Hlz.z7Y = H ¢ Clz. 271} the holomorphic structure induced by D{.. The holo-
morphic bundle corresponding to it is the Rees module @©,FPVz7" attached as in
example 1.3.b to the filtered Zx-module (V, F*V) (put F, = F~* to get an increasing
filtration).

On the other hand. consider on C[z] ®c H the holomorphic structure given by
DYy + 207, as defined in example 1.3.a.

The natural C[z]-linear map

Cle] ®c H -2 Clz, 2 Y @c H

1 ® (Ruy) — Z wpz "’

is an isomorphism onto ¢ F?z~* and the following diagram commutes

Clzl@c H L @FP,P

DY+ ,:/9%‘{ l[){ﬂ
Clzl®c H AN GFPz P

showing that, in case of complex variation of Hodge structures. the construction of

examples 1.3.a and 1.3.b are isomorphic.

1.4. Direct and inverse images of %y -modules

1.4.a. Direct images of # 4 -modules. — Let f: X — Y be a holomorphic map
between analytic manifolds and denote also by f : 2~ — % the map trivially induced.
As in the theory of Zx-modules, one defines the sheaves Zy .o and Xy o with
their bimodule structure: the sheaf Xy 0w = Oy Rs-14, 1%y is a left-right
(%o, f~1%w)-bimodule when using the natural right f~'%»-module structure and
the usual twisted left 24 -module structure: for any section & of the sheaf © 4 of
vector fields on 2" tangent to the fibres of 7 and vanishing at z = 0 (¢f. §0.3), T'f(&)
is a local section of €y & 14, Ou. hence acts by left multiplication on %oy :
put £ (p @ P)=¢&(p) @ P+ Tf(E)(p@ P).

The sheaf Z. — 9+ is obtained by using the usual left-right transformation (see e.g.,
[10] for details). Recall that, if f is an embedding, the sheaves Zy . and Xy — o
are locally free over Z 4.

Let us denote by Sp%_ ., (€ 2°) the complex Sp%- (04 )@ p-1¢,, f~ ' A, where the
left # 2 structure for each term is twisted as above (recall that the Spencer complex
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Sp% (O2) was defined in §0.6). Then Sp%,-_ ., (02) is a resolution of Zy .4 as a
bimodule, by locally free left % 4 -modules.

Examples 1.4.1. - For f =1d: X — X, the relative Spencer complex Sp%-_ - (O 2)
which is nothing but Sp%-(0») @, #o is a resolution of oo~ = Z o as a left
and right Zz-module. For f : X — pt, the complex Sp’y (O u) = Sph-(Ta) is
a resolution of Zg _.,p = Ox. If X =Y x Z and f is the projection, the complex
Ry e, NT°O 2 /o s also a resolution of 7 5 .5 as a bimodule. We moreover have
a canonical quasi-isomorphism as bimodules
SPY i (O2) = (B Ro, N O ) f ® AT Ow @, B
YO

=(Z2 @0, N "Ouy) A FHSpy (On) %0, Ra)

<

-
— (Z2 ®0, N"Og )/7’]%”/ [ Ry —y
Dy

=RZx Re, /\7'(‘);}'/5@/.

Recall that God® denotes the canonical Godement resolution (cf. §0.1(b)). Remark
that, if .Z and .# are O -modules and if .7 is locally free, then the natural inclusion
of complexes God* (&) ®¢, F — God* (¥ e, F) is a quasi-isomorphism.

Definition 1.4.2. The direct image with proper support f; is the functor from
Mod"(Z 4) to DT (Mod" (%)) defined by (we take the single complex associated
to the double complex)

fiotl = 1 God” (. = Sp%y oy (0)
Ky
It is a realization of Rf (%/ @,%9_ Koy —w).

Remarks 1.4.3

(1) ft can be extended as a functor from D¥(Mod"(Z4)) to D (Mod" (Za)).

(2) Let f: X — Y be as above and let Z be another manifold. Put F = f x Idz :
X xZ — Y x Z. Let us denote by fi the direct image defined on Mod" (22"« «)
using the relative Spencer complex (i.e.. defined with © ., »/7) and regarding
the Z» action as an extra structurc on the terms of fi.#, commuting with the
differentials of this complex. Then there is a canonical and functorial isomorphism of
functors f; — Fy. We will not distinguish between both functors.

Proposition 1.4.4

(1) Let f: X =Y and g : Y — Z be two maps. There is a functorial canonical
isomorphism of functors (g o f)+ = gt fi.
(2) If f is an embedding, then fi. 0 = f.( M Dy, B —w).
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B) If f: X =Y xZ =Y is the projection, we have
fr# = fiGod® (// KRe ., /\_.(‘)(%'/y),
and this complex is canonically and functorially isomorphic to the relative Dolbeault
complex fi( M @o, ’;./.2/)

Proof. — We have a natural morphism

SpYy . w (O2) @ Sply  p(On) —SpY .y (On) & 'Ry »
f R f A
—= SpYy 4 (O2).
Both complexes are a resolution of #Z 4, ¢ by locally free Z 4 -modules: this is clear
for the right-hand term: for the left-hand term, remark that it is naturally quasi-
isomorphic to

Royw @ SPy_w(On)=0n @ Sply_,(On)
f YRy f1O0w

~

=0y @ [ 'Po_y»
fY0,

= Oy 2l GV TRy (R is Oy locally free)
g Oy

=Ry _. .
Use now the fact that the natural morphism g fi God® — ¢ God® f; God® is an isomor-
phism, as fi God® is e-soft, to get the first point. The second point is easy, as Zo o
is then Z 4 locally free. For the third point, use Example 1.4.1. The canonical
isomorphism is obtained by applying fi to the diagram

God™ (A Do, E,%5) < # R0, 755
|
G()(l' (/// @(/ﬁ, /\_.(—);}‘/3/)

and by using the fact that, each term .7 ©¢ . 5;7, being c-soft on each fibre of f,

its direct images R’ fi( 4 o, (9;'/}) vanish for any j # 0. |

If f is proper, or proper on the support of .#, we have an isomorphism in the
category DT (Mod" (% )):
def

Rf(# 2%, #y—w) "> RINM Y, Bo—n) = [

If moreover . is good, then, for any compact set £ in %, it can be expressed
in a neighbourhood of f~1(.#) as a successive extension of modules which admit
a resolution by coherent induced % g--modules in the neighbourhood of f=1(.¢).
Arguing for instance as in [42], one gets:
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Theorem 1.4.5. Let A be a good right # - -module (or bounded complex) and let
f X — Y be a holomorphic map which is proper (or proper on the support of .4 ).
Then the object fi.# is good and Char f.. 4 C f[(T*f)‘] Char,/{]. O

Corollary 1.4.6. - If ./ is holonomic and [ is proper on the support of .4 . then
[ is holonomic. 0

Remark 1.4.7. Let i : X < X’ be a closed inclusion. Then a Z s -module .#
is coherent (resp. holonomic, resp. strict) if and only if the #Z4--module i .# is so.
Indeed, this is a local property and it is enough to verify it for the inclusion X =
X x {0} — X xC. Let us denote by t the coordinate on C. Then i . # = .# ¢ C[0,],
the 05 -action on the degree 0 terms being defined as the action of @'»-. The assertion
is then clear.

Remark 1.4.8 (Direct image for a left %7 ,--module). The direct image for left % 4 -
modules is defined as usual by using the standard left-right transformation. It can
be obtained by a formula analogous to that of Definition 1.4.2, using the bi-module

We assume that f: X = Z xY — Y is the projection and put n = dimZ =
dim X/Y. If 4 is a left #Z 4 -module, the direct image f;.# can be computed directly
with relative de Rham complex:

fitt = fi God® (Sl’éf./’w “e, M),

and, using the Dolbeault resolution.

Remark 1.4.9 (Restriction to z = z,). If 2o # 0. one has L. (fy.#) = fi(L. ).
where the right-hand f; denotes the direct image of Z-modules.

1.4.b. Inverse images of %, -modules. — Let f : X — Y be a holomorphic
map and let .# be a left Z4-module. The inverse image f.# is the object

‘ L - —1
=‘%),"Ijﬁ:fy -1, f N/

In general, we only consider the case when [ is smooth (or, more generally, non-
characteristic, ¢f. §3.7). Then, @y being f~ 1@y -flat, we have the equality f+.# =
Ox Qp-10, [ 4 with the structure of a left % ,-module defined as for Zy .
It is Za-good if . is Ra-good.

Assume on the other hand that .# is @y -locally free of finite rank, but make no
assumption on f. Then fT.# = f*.# as an O 3 -module, with the structure of a left
X g-module defined as above. It is also @4 -locally free of finite rank.
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1.5. Sesquilinear pairings on %z -modules

1.5.a. Conjugation. — Let us denote by Xr the C*°-manifold underlying X and
by X the complex analytic manifold conjugate to X, i.e., Xg equipped with the
structural sheaf @x of antiholomorphic functions. We note that the conjugate of an
open set of X is the same open set with a different sheaf of holomorphic functions.
Recall that the conjugation  : Ox — O makes Oy a Ox-module. Given any
Ox-module .Z . we denote by .Z its conjugate O ~-module defined by

F =0 0 F.
T oy

One can extend  as a ring morphisin ¥y — %5 (in local coordinates, 0., = Oz,)
and define similarly .Z for Zx-modules.

On the P! factor, we will define a geometric conjugation that we also denote by~ .
It is induced by the involution z — —1/z. For notational convenience, we denote for
a while by ¢ the nsual conjugation functor on P'. Given any open set €2 of Pt denote
by € its image by the previous involution. Then, if g(z) is a holomorphic function
on €2, its conjugate (=) is by definition the holomorphic function ¢(g(—1/¢(z))) on Q.
We note that we have

0 =0%. D=0y and S=S8.

We will now mix these two notions to get a conjugation functor on X x P! We
continue to denote by ¢ the usual conjugation functor on X x P!, but we keep the
notation ~ on X. Let o : ¢P' — P! or P! — ¢P! denote the antilincar involution
of P! defined by

o(c(z))=—=1/z or o(z)=—1/c(z).
Then. for any open set Q C P!, o induces isomorphisms
() = Q.

We also denote by o the inverse isomorphisms. Define o on X x P! so that it is the
identity on the X-factor.

We now have a conjugation functor L e given any holomorphic function
S, z) on an open set U x Q of X x P!, we put f(w, z) = c(f(x,—1/c(2))); therefore,

defines a functor, also denoted by as above, which sends Zx «o-modules to
Hx o = Hxyg-modules and conversely (in particular, 9,, = —2719%,). We note
also that, if m is a section of . # on U x §2, it is also a section of c.Z on U x €1, that we
denote by ¢(m), and it defines a section i of .# = o*c./ on U x o 1(Q) = U x a().

In particular, we have an identification
Oxxa=Oxxar Oxxoez) = O (a-1/2)

by putting as above f(x,z) = c(f(z,—1/c(z))). Similarly, we have Zx o = %,
when 2 C C*, € g = €% s Dbx.xs/s = Dby, xs/s, ete. Be careful, however,
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that these last identifications are not @g-linear. but are linear over the “conjugation”
0'5 e ﬁ_s = CU*(?]S

(1.5.1) _
Az) — A(z) = c(M(=1/c(2))).
1.5.b. Sesquilinear pairings. — We use notation and results of §§0.3-0.5.
Given two left Z 4 -modules #’ and .#", we define a sesquilinear pairing between
//"S and %/]’é as a %y ¥ g-linear pairing

C: M @ MG — Dby, /s,
S

where the left-hand term is equipped with its natural ;%( X x),g-structure. Similarly,
a sesquilinear pairing for right % s--modules takes values in €x, ,g/s.

Remark 1.5.2. — 1t is easy to verify that the various functors “going from left to right”,
for # 4|s- and ,%’(X’y)vs-mo(lules are compatible, and that they are compatible with
sesquilinear pairings.

Lemma 1.5.3. If 4, .#" are strict holonomic Z# 5 -modules having their character-
istic varieties Char .#'°, Char.#"° contained in the zero section, then any sesquilin-

ear pairing C between A" and A" takes values in %:ﬁ“;“‘
Proof. -~ The assertion is local on .2". According to Proposition 1.2.8, when restricted

to X°, A, 4" are Oy -locally free of finite rank and, given any (z,,2,) € X x S,
we can find bascs e, e” of L»//(’mm:”).g/{(";m ., satisfying de’ = 0, de” = 0. Lemma
0.5.3 then shows in particular that C' takes values in ?5’%;" (and more precisely in

the subsheaf of functions which are real analytic with respect to X). d

Example 1.5.4 (Basic holomorphic distributions). - Let 3 = 8’ + i3” be a complex
number such that 3 ¢ —N*. We note that there exists an open neighbourhood
nbg(S) such that the map nbg(S) — C defined by z — (8 * z)/z (recall that the
operation x is defined by (0.9.1)) takes values in C ~ (—N*):
— if 5” = 0, this function is constant and equal to 3';

otherwise, (8 x 2)/z = —k € —N* is equivalent to z = i((3 + k)/3" +
VI8 +k)/B87?). k € N*: the solutions belong to iR ~ {#i} and do not
accumulate at +i.

Putting s = 8 x z/z in Example 0.5.2(3), we therefore get a section ug, = U
of Dby, xs/s: we have ugy = [¢[2(7*2)/L(t)" /1. Then, the ugz, satisfy (if we set
up. -1 = 0)

(1.5.5) (t0y — B*2)ug e = ugr—1.

Recall that (3% 2)/z = (3% 2)/z. d.e., (3% 2)/z is “real”, where ~ is the conjugation
defined in §1.5.a, or equivalently, 3 x z = 3 x%. Hence w3, = uge. Consequently, the
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ug,¢ also satisfy
(156) (?Sf—ﬁ*z)uﬁj =UZ 1.

Fix z, € S. Let 3 € C be such that Re(3 x 2z,)/2o = ' — (20 + 1/2,)/2 > —1.
Then, there exists a neighbourhood A of z, in S on which ug ¢ defines an element of
L, .(D x A). If B is a finite set of complex numbers 3 such that

(1.5.7) B3€ B= Re(Bx2z,)/20 > —1,
(158) B, 02 € B and £ — B € 7L —> B31 = B2,

then the family (ug.¢)pen.cen of elements of Li (D x A) (with A small enough,
depending on B), is free over C*°(D x A): this is seen by considering the order of
growth for any z € A.

1.6. The category #- Triples(X)
1.6.a. The category %- Triples(X) and Hermitian adjunction
Definition 1.6.1 (of - Triples(X))
An object of #- Triples(X) is a triple 7 = (4", . #",C), where .4, .#" are left
Z 5 -modules and

C
s ;2

Mg — Dbx. xs/s
is a sesquilinear pairing.

- A morphism ¢ : (A, #].Cy) — (M, 4. Cs) is a pair (¢'.¢"), where ¢
My — M and @ A — A are Xy -linear and compatible with Cy, Ca, i.e.,
satisfy

Cy (99/'1;) = CZ('a 99//*)'
The Tate twist of an object of %- Triples(X) is defined, for k € %Z. by
(. a",CVk) = (A, &", (iz) **C).

Any morphism between triples is also a morphism between the twisted triples (with
the same twist), and we denote it in the same way.

The category %- Triples(X) is abelian. If .7 is an object of #- Triples(X) and
Az) € O(8S), the object A(z) - .7 is by definition the object (&', . #",\(z)C). If
v A4 — 5 is a morphism, then it is also a morphism between A(z) - .77 and
Az) - T

There are two functors .7 +— .4’ and 7 + 4", the first one to the category
Mod(Z 2 )°P (opposite category), and the second one to Mod(Z 4 ). The identity
morphism Id # is defined as (Id g4/, Id_4~).
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Definition 1.6.2 (Adjunction). -~ Let .7 = (.4, .#".C) be an object of Z- Triples(X).
Its Hermitian adjoint .7* is by definition

T = (', " Cy Y (. .. with C*(pom) S Clm. ).

If o = (¢, ") : 74 — P is a morphism in #- Triples(X), its adjoint p* et (", ")
is a morphism 75" — .77 in #- Triples(X).

For k € %Z, we choose a canonical isomorphism:
(1.6.3) (—1)2K1d g0 I g ) = T (b)) == T*(—k)*.

This isomorphism defines by adjunction an isomorphism .7*(—k) — .7 (k)* which
is compatible with the composition of twists. These isomorphisms are equal to Id if
keZ.

Remark 1.6.4. - We can define similarly the category Z-Triples(X)™: the objects
are triples (&', .#",C), wheve .#',.#" are right Z , -modules and C takes values
in €x, xs/s. The Hermitian adjoint is defined similarly.

Given a left triple (.Z’..Z". C), the associated right triple is (.Z"", .#"",C") with
M =wa R¢, A and similarly for .#"; moreover, C" is defined as

C" (W @m,w" @) = 5(71)(277)71 SCm.m)w' AW (n = dim X).
Going from left to right is compatible with adjunction: (C")* = (C*)".

Definition 1.6.5. A sesquilincar duality of weight w € Z on .7 is a morphism & :
T — T*(—w).

Write . = (57, 5") with S',S" . .#" — .#’. Then .¥ is a morphism if and only

if C,57,8" satisty, for local sections juy., o of .2
C(S'm-,/_lz) = (i2)27C* (1. §7az).

Let k € 1Z Put . (k) = ((—1)*5',5”). Then.# is a sesquilinear duality of weight w
on .7 if cmd only if (k) : ( ) — (T (k)" (—w + 2k) is a sesquilinear duality of
weight w — 2k on .7 (k).
on .7 (w/2).

We note that (k) is obtained by composing .% : .7 (k) — J*(—w + k) with
the canonical isomorphism chosen above .7* = .7 (k)*(k), applied to the (—w + k)

In I)dl’fl(llldl S (w/2) is a sesquilinear duality of weight 0

twisted objects.
If . :.7 — 7*(—w) has weight w, associate to it the sesquilinear pairing on S:
(1.6.6) hs.o ' (i2) " Co (" 2 1d) A =

//’5

”/|s — Dbx.xs/s -

We note that hs. v = hg o for any k € : Z We denote this pairing by hg when .
is fixed.
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Definition 1.6.7. A sesquilinear duality of weight w on .7 is said to be Hermitian
if it satisfies
((}/;* — (71)11"y,', 7:.(1, S/ _ (_1),11'5//‘

The exponent w is useful to get that, if . is Hermitian, then .%/(k) is Hermitian
for any k € %Z. If .7 — 7*(—w) is Hermitian, then its associated sesquilinear
pairing hg_ o on S is Hermitian, i.e., hg = hs.

Remark 1.6.8. — Let . 1.7 — 7* be a Hermitian duality of weight 0. We assume
that .¥ is an isomorphism. Put .# = .#". Then 7 is isomorphic to the triple
(A, .7, hs) which is self-adjoint and, under this isomorphism, . corresponds to
(Id 7., 1d ). Indeed. the isomorphism is nothing but

(S" Ad yr) : (M. " .C) — (A" . 4" hs).

as S’ = S” by assumption. This trick, combined with a Tate twist by (w/2), reduces
the study of polarized twistor Z-modules (c¢f. Definition 4.2.1) to that of objects of
the form [(#,.#.C). (Id ».1d 4)].

1.6.b. Smooth triples. — We say that an object .7 = (&',.#".C) of
A-Triples(X) is smooth if .#' and 4" are Oy locally free of finite rank. Tt
follows from Lemma 1.5.3 that, for a smooth triple .7, the sesquilinear pairing C'

takes values in 4 §° «S-

Definition 1.6.9 (Inverse image). - Let f : Y — X be a holomorphic map between
complex analytic manifolds Y and X. The inverse image by f of the left smooth
triple .7 = (. #',.#".C) is the smooth triple f*.7 = (f*.#', f*.#", f+C). where
frot = f*.4 is taken in the sense of d-modules with connections (¢f. §1.4.b) and
freaem/ Tem”) =Cim',m") o f.

Remarks 1.6.10
The inverse image by f of C' by is well defined because C' takes values in €O
functions on X, and not only in distributions on X.
The inverse image by f of a morphism is the usual inverse image of each com-
ponent of the morphisni.
-- The inverse image functor commutes with Tate twist and Hermitian adjunction.

The last remark allows one to introduce:

Definition 1.6.11 (Inverse image of a sesquilinear duality). — We assume that 7 is
smooth. The inverse image

fry T — T (—w)

of a sesquilinear pairing .« = (57, 5") : 7 — T*(—w) of weight w is the morphism

(f* S/. f*S//) .
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A Hermitian sesquilinear duality of weight w remains Hermitian of weight w after
inverse image.

1.6.c. Differential graded #-triples. — Consider the category of graded %-
triples .7 = @;¢z.77. Morphisms are graded. We will follow the usual convention
when writing indices: .7; = .7 7J. For k € Z, put (7 [k]); = 7k or (T[k])) =TIk,
The shift [«] and the twist (¢) commute. A differential d is a morphism .7 — F[1](e)
such that d o d = 0, for some ¢ € Z.

The Hermitian adjunction is defined by .7* = &;(.7*)7 with the grading (7)) =
(7 71)*. We have (T [k])* = 7*[—k].

A sesquilinear duality of weight w on .7 is a (graded) morphism .v : .7 — .7*(—w),
i.e., a family of morphisms .7 : 77 — T (—w).

A morphism ¢ : .7 — T[k]({) is selfadjoint (resp. skewadjoint) with respect to .&
if the following diagram commutes (resp. anticommutes):

T —y/~—-> T*(—w)
7| |
S

Tk () L= T*[k](£ — w)

A differential d is selfadjoint with respect to .¢ if and only if . is a morphism of
complexes (7, d) — (7 (—w).d").

Filtered objects are defined similarly: a decreasing filtration F'*.7 of .7 consists of
the datum of decreasing filtrations F'*.#'. F'*.#" such that. for any k € Z, we have
C(F Y 7' FFau") = 0; then FK.7 = (' |JF "L’ FF ", C) is well defined
and we have grh.. 7 = (gr;l".///’.gr’;’p.///”. (') (where we still denote by C' the pairing
naturally induced by C).

Define the decreasing filtration F*.7* by FX(.7*) = (" )F~*ta’' . Fr 7', C*).
k(7)) = (gr;"ﬂ7)* and, considering the total graded object grp. 7, this is
compatible with the definition above of adjunction for graded objects.

Then gr

Lemma 1.6.12. Let (.7, F*) be a filtered % -triple, equipped with a filtered differen-
tial d and a filtered sesquilinear duality . of weight w. We assume that d is selfad-
joint with respect to .. Then . induces a natural sesquilinear duality of weight w
on E{ = @, H7 (gt T) with respect to which the differential d; : E{ — E{H 15
selfadjoint. O

1.6.d. Direct images in %- Triples. — The purpose of this paragraph is to de-
fine, for any holomorphic map f : X — Y and any object .7 = (&', .#".C) of
- Triples(X), an object f1.7 in the derived category D1 (#- Triples(Y')). Such an
object is a complex ((.#'*)°P A"+ C*), where the first term is a complex in the
opposite category Mod(#» )°P (given a complex .4 in Mod(%Zx ). we put .4 °PF =
A7) and the second term a complex in Mod(#). Therefore C* is a morphism
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,A/,é_k 4/15" — €y, xs/s which is compatible with the differentials, i.e., the following
diagram commutes:

4|/é F®. 4/‘”" ——————>C ¢y, xs/s

d/T Jdu H
Ck+1

—k—1 Ik+1
’4/|S ®‘/V\S —>Q:Yw><S’S

The complex f;.7 will take the form ((f+.2')°P, f+.#", f+C), where f.Z', f;.#" are
defined in § 1.4.a and (f;.#”)°P is the corresponding complex in the opposite category.
We will therefore obtain a family of sesquilinear pairings

(1.6.13) FC A fr ) R0y AT M) — Crxsys.

We will define f;C' when f is a projection and when f is an inclusion. For a
general f, we write it as the composition of its graph inclusion iy and of the canonical
projection py, and put fi = pyiifi.

We will prove
(1.6.14) F(T7) = (f;-fﬂ)*

and, whenever f and g are composable,

(1.6.15) (9o f1+T = gt(f+7)

(a) Case of a projection f: X =Z xY — Y and left triples. Recall (c¢f. Remark
148) that we have (fT///)S = f! ((?;]?;S/YPXS ®”.”)’\S ﬁls) jOIlSi(iCI’ the family O[.
morphisms

(fTC) f‘( "X ><S/& xs ®0.,s /'/\s) OO f({);\+XS/'Yu><S Ko ,s ”[/é,) — Dby.xs/s

defined by

(1.6.16) " @m’)ye (i em’) — ;—_‘_{ / C(m' m"yn" 7 At
i)
Lemma 1.6.17
(1) f+7 = Lef ((fy.a")P, fr." . [+C) is an object of D (%- Triples(Y)).

(2) We have (f;C*)~7 = ((f+O)7)*.
(3) If f.g are two composable projections, we have (g o f);C = gi(f+C).

Proof. We have, by %(x ¥).s-linearity of €', and up to multiplication by (—1)",

(f1CY (V! &vm)o"om)
B 8(77 +7)
(2im)n
(
(2im)n

/ (Cm" mydn" ="+ C(Vm/ m”)y AT At

e(n+j)

Sim)n / (C(m' . m)ydy™ 7~ +d'C(m/,;m”) A 7}'”_‘7'“'1) Annti
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and similarly
(f+CY (7 om!) o V(i com™))
em+j+1) [ . - @ — -
= —((;ﬁ#;) // TR (Cn" Ny Ayt + C('In’,’l}l”)([?ﬂ’ﬂ)
en+y5+1) [ . — _
= —(”‘ J ) / A (AT COn ) At Com o7 ) dn ).
(2im)m ¥
Using that e(n+j+1) = (=1)""Je(n+j) = (—=1)"Jz(n+j). Stokes Formula implies
that both terms are equal. hence 1.6.17(1).

To prove 1.6.17(2). remark that we have

g *\—j 14 - — 3 n— v* 1
(SsC) (" @m"y @ (=7 o)) = i J) C (" Yy A n—a
(2im)"

_ (=1 e(n =)
(2im)"

:(("-T ) ) (( Il+lr»,” )Q/(]7'71">)f71 ))
the last equality following from (=1)/2(n — j) = 2(n + j).

/(' m! )y g =I A

Last. 1.6.17(3) follows from
(—1) (m=k)(n+j) e(m+n+j+k) = (——]_)(”'H’)("*-”:(m+n+,j+l\t) =z(n+j)e(m+k). O
(b) Case of a closed inclusion i : X — Y. Consider first the case of right triples.
In this casc, iy. # is generated by i . # as a .#y-module. The pairing i4C' is extended

by #y-linearity from its restriction to 'i,*.///l’s o i*,f//‘/é. where it is defined as the
composition of C' with the direet iimage of currents

L4+

Cx, xs/8 Cy. xs/s

Uiy pu ) {upol)y (e (Y x8))

For left triples, define i+C' in such a way that (i+C')" = i+(C"). where C" is defined in
Remark 1.6.4. If X is a submanifold of Y defined by a; =0 (j € J C {1....,n}), we

identify i.# with .# @¢ C[0,, jc,/] and we have, for any ¢ € &' (Y x §/S),

O @ 1T 1)) = (Cl’ ). s .
((;+C)Y(m" & 1.m ) ) < (m'.m’) . 5’;(1:1{,-/\(1ﬂ>

The conclusions of Lemma 1.6.17 clearly hold for the case of closed inclusions.

Remark. - It can be more convenicent to write the form s=dax; A dT; as
27 J J

1 dry A dry

25m oz z

when checking the compatibilities below.
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(¢) General case. — For a general f. define f; as the composition psiist as indicated
above. One has to check first that this is compatible with the previous definitions
when f is a projection or an inclusion. This is mainly reduced to checking this for a
closed inclusion f: X — Y.

Then, to conclude that (go f); = g4 f+. and to end the proof of (1.6.14) and (1.6.15),
it is enough to show that, in the following cartesian diagram,

Id x1

XXxY‘“——W—> X xY’

p p
l‘ /
Yy —————Y
we have pi o (Id xi')+ = iyp;.
We leave both computations to the reader. O

1.6.e. The Lefschetz morphism. — Let ¢ € H?(X.C) be a real (1, 1)-class (the
Chern class of a holomorphic line bundle for instance). We will show that it induces,
for any Z 4 -module .7, a morphism

Le: )7”]‘1/// — -%ﬂl}sz.%/

in such a way that. if 7 = (#Z'..#4".C) is an object of the category #- Triples(X)
or the derived category D(#- Triples(X)). then L. induces a functorial morphism in
- Triples(Y):

(1.6.18) L= (L L) S (Lo Le) s fl7 — fIP27(1).

[t will be enough to apply the following computation to a closed real (1, 1)-form
w e I'(X, 6’%1) representing c.

Let iy : X — X X Y be the graph inclusion of f and let p : X x Y — Y be the
projection. We have f1.7 = pyip+ 7. So we can replace 7 with iy ;.7 and assume
that f is the projection X = Z x Y — Y.

Let w be a real closed (1.1)-form on X. We detine Ly, : fr.# — f;.#[2] as the
morphism induced by z 7 twA on fy (6')"’;',,/ e, ,f//). where n = dim X/Y (¢f. Remark
1.4.8). Tt is a morphism because w is closed and the morphism induced on the coho-
mology depends on ¢ only.

We will now show that, as w is real 2-form, we have a morphism

L= (L L)Y (L L) |7 — fIT27(1).
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As w is a real 2-form, we have, by Formula (1.6.16) and using that e(n + j + 2) =

—&(n+j),
fC’(L/("J 2@m)nti @ p) = %‘,—J;/C?nu) Lo AnnTIT2 At
= —(iz) -2f ;I“F,J /C m, )" T2 A 2 lw At
i)
sen+j+2) neje2 T
= (iz)” (—2——~— Clm, i)™ 72 A z=Tw Aqgnti
77-{- n

= (iz) 2 fC (T Y wm, L (0" + @ p)).
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CHAPTER 2

SMOOTH TWISTOR STRUCTURES

The notion of a twistor structure has been introduced by C.Simpson in [64] (see
also [65]) in order to extend the formalism of variations of Hodge structures to more
general local systems. The purpose of this chapter is to review the basic definitions
in the language of - Triples, in order to extend them to %z -modules. Following
Simpson, we express the Hodge theory developed in [63] in terms of twistors and
recall the proof of the Hodge-Simpson theorem 2.2.4. Nevertheless, this theorem will
not be used in its full strength for twistor Z-modules, according to the method of
M. Saito. It is useful, however, to understand the main result (Theorem 6.1.1).

2.1. Twistor structures in dimension 0

In order to explain such a definition, we will first give details on the simplest
example, i.e., when X is reduced to a point. We will first give definitions for weight 0,
then give the way to obtain a twistor of weight 0 from a twistor of weight w: this is
the analogue of the Weil operator C' in Hodge theory. The convention taken here will
look convenient later on.

2.1.a. Twistor structures in dimension 0 after C.Simpson [64]. — A pure
twistor of rank d and weight w is a vector bundle on P! isomorphic to (@1 (w))?.
A mized twistor is a vector bundle % on P! equipped with an increasing filtration
W, indexed by Z such that, for each ¢ € 7Z, gr}";(; is pure of weight ¢. A pure twistor
structure can also be regarded as a mixed twistor structure in a natural way. A
morphism of mixed twistor structures is a morphism of vector bundles which respects
the filtrations W. There are no nonzero morphisms between pure twistor structures
when the weight of the source is strictly bigger than the weight of the target. The
category of pure twistor structures of weight w is equivalent to the category of C-vector
spaces, hence it is abelian. The category of mixed twistor structures is therefore
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abelian and any morphism is strict with respect to W (see loc. cit., and also [17,
Th.1.2.10], [56, Lemme 5.1.15]).

2.1.b. Twistor structures in dimension () as objects of %- Triples. — We will
give an equivalent definition of twistor structures which will be extended to arbitrary
dimensions in §4.1. A twistor structure of rank d and of weight w consists of the data
of two free Oq,-modules .77’ and .#" and of a Ug-lincar pairing

(2.1.1) C: Ay 2 HG — O

(in other words, (27, 2", C) is an object of #- Triples(pt) where C takes values in
Os instead of only %3), such that (a) and (b) below are satisfied:

(a) The sesquilinear pairing (2.1.1) is nondegencrate, i.e., its matrix in any local
basis of .%(é and . "S’ is invertible, so that the associated @g-linear morphism induces
an isomorphism

(2.1.2) HG o AL E Aome, (A, On,)s.

(b) The locally free @pi-module A obtained by gluing 27"V (dual of 27, chart
Qo) and 7 (conjugate of ", chart Q. ¢f. §1.5.a) using (2.1.2) is isomorphic to
Opr (w)?,

Having chosen 0 and oc on P!, the category of twistor structures of weight w is a
full subcategory of #- Triples(pt): a morphisin ¢ : (). 27", Cy) — (A, 45, Co)
consists of the data of morphisms ' + A — A "« H# — ) of Oh,-modules
such that C (' () @ m/l) = Cu(mh @ " (m})) for any z, € S and all mb € Y L
my € A" . (rvecall that o(z,) = —z, when z, € S). This category is clearly
equivalent to the category of semistable vector bundles of slope w on PL, or to the
category of finite dimensional C-vector spaces.

The notion of a Tate twist is also well defined: recall that, for & € %Z. we put
(2.1.3) (A A CVE) (o (i) 2RO,
The weight of (27, 7", C) (k) is w — 2k, if (. #".C) has weight w.

Weil reduction to weight 0. Given a twistor .7 = (', 2", C) of weight w, its
associated twistor of weight 0 is by definition .7 = T(w/2) = (A", 2", (iz)""C).
We note that, if ¢ : .77 — 75 is a morphism of twistors of weight w then ¢ also
defines a morphisim % — 7: We note also that. for any k € %Z. the twistors .7 and
7 (k) have the same associated twistor of weight 0.

Remark 2.1.4. A triple (7.7, C) is a pure twistor of weight w if and only of
one can find C-vector spaces H' < T'(Qq..#7). H” C T(Qq..#"") of finite dimension
(equal to rk 7 = rk.#") such that 7" = Oq, wc H', A" = Oy, @c H”, the

restriction of T'(S,C') to H' v H" takes values in z*C C T'(S. @g), and induces an
isomorphism H”7 — H'V.
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We can also define the category of mixed twistor structures as the category of
triples with a finite filtration. such that gr(”' is a pure twistor structure of weight ¢.
If (7. 7", C) is a mixed twistor structure, then #” and 7 are locally free and
C' is nondegencrate. This category is cquivalent to the category of mixed twistor

structures in the sense of Simpson.

2.1.c. Hermitian adjunction and polarization. — Recall that the Hermitian
adjoint .7* of the triple .7 = (", 2", C) is the triple T = (A", H".C*)
(cf- Definition 1.6.2). If .7 is a twistor of weight w, then .77 has weight —w. Recall
also that (7 (k)" = 7*(=k) for k € Z and that we have chosen an isomorphism

(7 (k) =

= TH(—k)if k € 3Z.
Definition 2.1.5. - Let 7 = (2, 2. C) be a twistor structure of pure weight w. A
Hermitian duality of .7 is an isomorphism ¢ : .7 — 7*(—w) which is a Hermitian
sesquilinear pairing of weight w in the sense of Definition 1.6.7, é.e.. which satisfies

S = (=S
The associated sesquilinear paiving (¢f. (1.6.6))

N lef /. , 3 0 o0 )
(2.1.6) hs = (iz) “Co(S" ©1d): //\/S/ & //\/S/ — OUg
Os
is nondegenerate and Hermitian, i.c., satisfies hg(m.ji) = hg(p.m) for local sections
m, o of //'/S’

Assume now that w = 0. We therefore have S/ = S (I(:[_S Let .# be the trivial
Opi-bhundle defined in (b) above and consider its conjugate A in the sense of 8 1.5.a.
This is the trivial vector bundle obtained by gliing .27 (chart Q) and #7V (chart
Q. ). using the conjugate of the map (2.1.2) (also denoted by ) induced by €', that
we denote by €. We can define a @i -lincar pairing I So, A — Opi in the
following way:

in the chart Q. h is the pairing (Se. o) A" Do, AT — Oo,. where (L) is the
standard duality pairing:

in the chart Q.. /i is the pairing (e. Se) :J//—”V(xi‘/;“x K — O

that both definitions agree near S follows from the fact that hg is Hermitian;
using ', one can identify 7)5 with hg: for the same reason, I is Hermitian.

Let us denote by I the rank d vector space HO(P'. /7) Its conjugate H is canon-

ically identified with HY(P'..7#). Thercfore, h induces a Hermitian pairing

(2.1.7) h=mh:H c:vﬁ — C.
Remark 2.1.8. —— We have a canonical inclusion I C F(S/{’S/) (restriction of sec-

tions). We also have a canonical conjugate inclusion H < I'(S, /l’s’) Then h can be

identified with the restriction of I'(S, hg) to H ®¢ H by these inclusions.
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If .7 has weight 0, we say that the Hermitian duality .« : .7 — .7* is a polarization
of .7 if (c) below is satisfied:

(¢) The Hermitian pairing A defines on H a positive definite Hermitian form.

Reduction to weight 0. — If 7 has weight w, we say that a Hermitian duality
ST — T*(—w) is a polarization of the twistor structure .7 of pure weight w
if . (w/2) (defined after Definition 1.6.5) is a polarization of .7 (w/2), i.c.. the posi-
tivity condition (c¢) above is satisfied for the Hermitian duality . (w/2) of the twistor
structure .7 (w/2) of weight 0. This is cquivalent to saying that, if H is defined as
above with .7 (w/2) and H C g is the corresponding inclusion, then the restriction
of hg defined by (2.1.6) to H &¢ H is positive definite.

We note that, if (.7,.9) is a polarized twistor structure of weight w, then, for any
ke %Z, (T (k),.7(k)) is a polarized twistor structure of weight w — 2k.

Under the equivalence above, the category of polarized twistor structures of
weight w (the morphisms being the morphisms of twistor structures) is equivalent
to the category of C-vector spaces with a positive definite Hermitian form (the
morphisms being all linear maps). In particular we have:

Fact 2.1.9. — Let 91 be a sublwistor structure of the polarized twistor structure
(.7,.7) (the weight is fized). Then . induces a polarization on the subtwistor, which
is a direct summand of (.7 ,.%). |

2.1.d. Complex Hodge structures and twistor structures (after [64])

Consider the example of §1.3.c with X a point. So, let H be a C-vector space
equipped with a decomposition H = 4, """ 77 that we call a complex Hodge struc-
ture. Consider the two decreasing filtrations

F'P = ¢ OV P and F = g HY O
p'zp q'2q
and the Rees modules associated to these filtrations
N TP o Clz.2 Yo H A e o Clz,2 Y w H.
P C q C

We will now work with the algebraic variant of twistor structures, where we replace
O(S) with Clz, 271, #7, #" are regarded as free C[z]-modules, and where we replace
}’/l"s with H"® = Clz, 27! @cpe) A, ete. We have

A= (@Y ICE) A =0 (AR
P P

’}(/71/ — \/D ([[7).'!1!—7)21') 'IL'(C[:]) W = (ﬁl).w—hzu,tfp(c[z..,l]).
' P

The inclusions

—=/p _ _ -— == —
AN =0F 2P CCle,z o HOGF 29 =7
P C q
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define a semistable vector bundle of weight w on P!, The pairing C is induced by the
natural C-duality pairing (, ):

(ﬁ[h’lb'*l’)vzp ® FP‘“’*Pwap N ZU‘(C[Z]

Vv w

TV’ @y (¥, y)z

Let us now compare the notion of polarization with the usual one. The natural
inclusion j : H «— H"? is induced by HP¥ P s HP-W~PzP~%_ The conjugate inclusion
7:H — T is given by H " TV (—1)pmw gwmr,

Let k& be a polarization of the Hodge structure as in §1.3.c (with dim X = 0).
We regard k as an isomorphism H?—? -~ (""" ")V Define S : #" — #" by
Sl =Wk HP0TPPTY (ﬁp‘m_[})vzl’ and S” = (—=1)"S" = (—2)"k.

For x,y € H?" P, we have

hs(j(x).5(7) = (8" (j()).3(7))

—w '/v(Sl/(;I::p—rm)’ (“1)’171"ﬂ21”711)
i2) 7" C (k(2)zP, 52" P)

— 1P (k(x), 7).

We therefore recover the usual notion of positivity.

2.1.e. Graded Lefschetz twistor structures. — Fix ¢ = +1. A graded Lefschetz
twistor structure |7 = (7. 4", C). L] of weight w € Z and type ¢ consists of

— a finite family, indexed by j € Z, of twistor structures .7 = (27, 7/, ) of
weight w — ¢, so that .7 = ®;.7;,

a graded morphism .& : .7 — J(¢) of degree —2, such that, for any j, the
component .Z : .7; — 7;_»(¢) is a morphism of twistor structures of weight w — eJ,
and that, for any j >0, .27 1 7; — 7_;(gj) is an isomorphism.

Morphisms ¢ are families (), of morphisms of twistor structures, which are compati-
ble with .. Remark that & = (L', L"), with L' : 2 — A/, and L' : A — A",
(we forget the index j for .2).

Remark 2.1.10. We will follow the usual convention when writing upper indices:
put .77 = 7_;: then .77 has weight w + ¢j and . is a morphism .77 — F7+2(¢).
The primitive part of index j = 0 of (7,.Z) is the twistor structure P.J; of
weight w — 5 defined as Ker Z7/%! : .7, — 7, 5(2(j + 1)). We therefore have
P.J, = (L"PA] . PA.C)),

where P}" = Ker[L"/! o )" — 2" ], and similarly for P.#/. The primi-
tive parts allow one to reconstruct (.7,.%) up to isomorphism using the Lefschetz
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decomposition: for any j > 0,

(2.1.11) T = A@(}Z“P%m-(—ek). Tj= 5 LIP T o (—2(k + ).

k>0
Put 7" = 7*(—w), with the grading .7/ = 7", (—w) and definc ¢’ = .2*. Then

(.7'..¢") is an object of the same kind as (17..%). Morcover we have

L

PT = (L7P7)" (~uw) (PT) (—w+<cj).

Weil reduction to weight 0. Any graded Lefschetz twistor structure (.7..%2) of
weight w and type e = £1 L gives rise to a graded twistor structure 7 of weight 0 and
a graded morphism Z 7 — 7 2 by putting 7 = 7,((w — cj)/2) and L=
We hence have

;7// _ /ﬁ, /,7]7// _ //// é/ _ (i:) errs‘ij‘j. Z/ I E// — I

The category of graded Lefschetz twistor structures of weight 0 is equivalent to the
category of graded C-vector spaces H = 4:;H; of finite dimension, equipped with a
graded nilpotent endomorphism L : H — H of degree —2, such that, for any j > 0,
L7 : Hj — H_j is an isomorphismn. More precisely. the twistor condition on .7
gives vector spaces Hi C 7. HY < " such that ¢« H'; *F;’ — Z"TEIC s
nondegenerate. Put H; = H} and use 5, to identify H' ; with H—/* Define L : H; —
Hj_5 as the restriction of L” to H”

We call this situation the case ()f weight 0 and type 0 (this is not exactly obtained
by putting w = 0 and ¢ = 0 in the previous casce).

From this equivalence. it is clear that the category of graded Lefschetz twistor
structures of weight w and type £ is abelian and that any morphism is graded with
respect to the Lefschetz decomposition (2.1.11).

Polarization. A Hermitian duality of 7 is a graded isomorphism ¢ : .7 —
Z7*(—w) which is Hermitian in the sense of Definition 1.6.7, in other words (—1)"-
selfadjoint, i.e., a family (.}),cz of isomorphisms

S = (Sl,/ W) Ty — T2 (—w),

satisfying . = (—=1)"._;, in other words a family indexed by j € Z of isomorphisms

~

IR

~

’/(/j'/, ‘Sv‘// . / ol /./((;/,

with S’ = (—=1)¥S8”. such that, for x € 2" and y € #/, we have
j j J y ‘

CH(S" . g) = (i2)2C" (2. 57y) = (i2)>C_(STy. ).

J
We say that this Hermitian duality is compatible with . if .Z is skewadjoint with
respect to ., i.¢

(2.1.12) Lo S+ S0 L =N
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This implies that .£* o ., = (—1)/._; o .%7, which can be written, using the
syminetry of .77, as

(Fjo LI = (1) (S0 L) (c==%1).

This also implies that . is completely determined by its restriction to the primitive
parts P.7; and can be rebuild using the Lefschetz decomposition.

Given a Hermitian duality .% of (.7,.%) (that is, a Hermitian duality of .7 com-
patible with .#’), the composed morphism (j > 0)

[Z2

def ng i
(21.13) (P¥), Y v o9i.p7 L. 2ipT,

(PI) (—w + <))

is thus a Hermitian duality of P.7;. We then say that . is a polarization of (.7, Z) if,
for any j = 0, this Hermitian duality (P.7’); is a polarization of the twistor structure
P.7; (of weight (w — €7)) as defined in §2.1.c.

Example 2.1.14. — Assume that w = 0 and that 7/ = 2/ = 7 and C*; = C}
for all j, so that 77, = .7;. Assume also that &} = (Id l(l) for all J The fd(,t that
£ is skewadjoint vn‘rh respect to . means that Z* = —.Z, i.e., = —L". The
polarization (P.¥); on P.7; is the morphism P.7; — (P.7;)*(j) given by

(L. L") (L PA;. PAH,Cj) — (PG, L PG, (iz) 2C_)).
The positivity condition is that I'(S,s) of the Hermitian form (2.1.6)
(iz)Cj(L"e.3) : PHjs @ s PH s — Os

takes values in C and is positive definite. when restricted to PH; C T'(S, P.J)s).
In other words, P.7;(—¢j/2) with its polarization is isomorphic to the twistor
structure (P, P, (iz)¥ C;(L"7+.3)) with polarization (Id.Id).

The datum of a polarized graded Lefschetz twistor structure (. 7,.%, %) of weight w
and type ¢ is therefore equivalent to the datum of one of weight 0 and type 0 plus
that of w.e, i.e.. to the datwn of (H, L,w,e,h), where (H,L,w,¢) is as above and
h is a homogeneous sesquilinear form of degree 0 on H & H, i.c., corresponds to a
family of pairings

h:H_; v@ﬁ, — C

such that L is skew-adjoint with respect to h and h(L7+.3) is a positive definite
Hermitian form on PH; for any j > 0.

Remark 2.1.15. The datum of (H, h, L) as above is equivalent to the datum of a
finite dimensional Hermitian C-vector space (H,h) with a SLa(R)-action: the torus
Cr*-action gives the grading. and L comes from the corresponding sly(R)-action. The
positivity condition for h(L7+.3) on PH; is then equivalent to the positivity of the
form h(We,3) on H, where W corresponds to ( % §).
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Remark 2.1.16. — The Fact 2.1.9 also applies to graded Lefschetz twistor structures
of weight w and type . Indeed, reduce first to weight 0 and type 0. According to
Remark 2.1.15, it is then a matter of proving that, given (H,h) with an action of
SL2(R) such that k(e,7) def h(We.3) is positive definite, any SLo(R)-stable subspace
H' has a SLo(R)-stable k-orthocomplement: this is clear.

Remark 2.1.17. If one forgets the notion of weight and the notion of positivity, one
can define the category of graded Lefschetz %- Triples and the notion of Hermitian
duality on objects of this category by changing above the words “twistor structure”
with the words “object of #- Triples”.

Remark 2.1.18 (Stability by extension). We assume that we have an exact sequence
0—.7"— .7 —.7"” — 0 in the category of graded Z- Triples (morphisms are graded
of degree 0); assume that each of these objects is equipped with a graded morphism
£ of degree —2 and type ¢, in a compatible way with the exact sequence; lastly,
assume that (77/,.%) and (.7",%) are graded Lefschetz twistor structures of the
same weight w. Then so is (.7,.%). Indeed, applying the Weil reduction procedure
above to all objects, one can assume from the beginning that ¢ = 0 and w = 0. We
have exact sequences 0 — 7,-’ — 7 — 7” — 0 for any j. The locally free Op1-module
corresponding to .7; is an ektonsu)n of two free Opi-modules, hence is free. We are now
reduce to consider exact sequences of graded vector spaces 0 — H — H — H” — 0
with compatible endomorphisms L, such that, for any j > 1, L; : H; — H' ; and
Lj: H;’ S HZJ- are isomorphisms. Then, L; : ; — H_; is an isomorphism.

2.1.f. Two results on polarized graded Lefschetz twistor structures. — Let
(7,%,.)and (T'..¢", ") be polarized graded Lefschetz twistor structures of type
e = £1 and weight w and w — & respectively. Let ¢, © be graded morphisms of twistors
of degree —1

c: Tjp — ,7/7 v T — T a(e)

such that . = vocand .2 = cowv. We assume that ¢, v are adjoint with respect to
S and ¢, i.e., for any j, the following diagram commutes:

S,

T - s T (—w)

and the adjoint diagram anticommutes.

Proposition 2.1.19 (cf. [56, lemme 5.2.15]). Under these assumptions, we have a de-
composition .7' = Imc @& Kerv as a graded Lefschetz twistor structure.
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Proof. — Remark first that each term of the decomposition is stable under .#’. Apply
the Weil reduction to weight 0. Now, § T are graded vector spaces with a nilpotent
endomorphism < f & of degree —2, and with sesquilinear forms h, h’ of degree 0,
such that f & are e skewadjoint. There are morphisms ¢, v of degree —1 such that
voc= f ¢ov = .2, and which are adjoint or skewadjoint to each other, as above.
The proof of [56, lelnmo 5.2.15] applies to this case. O

Fix 1,65 = +1. The notion of a (polarized) bigraded Lefschetz twistor structure
(7,4, L) of weight w and bi-type (£1,e2) is defined in a natural way, similarly to
the single graded case: £, and %% should commute and the primitive part in .75, j,
is by definition the intersection of Ker jf{‘“ and Ker A.Z’Q”H. The following lemma
will be useful in §6.4.

Lemma 2.1.20. - Let (7,.%)..%,.7) be a polarized bigraded Lefschetz twistor struc-
ture of weight w and bi-type (e,€). Put on T the grading 7 = ®j1x=¢Tj 1 and set
L =L+ L. Then (T, L4 +.%,. ) is a polarized graded Lefschetz twistor structure
of weight w and type €.

Proof. — Reduce to weight 0 and bi-type (0,0). We therefore have a Hermitian C-
vector space (H, h) equipped with a SL2(R) x SL2(R) action and a positivity condition
(¢f. Remark 2.1.15). Consider the diagonal SLo(R)-action. Then W acts by Wy =
(W, W). Now, the positivity of h(Ws,3) follows from [28. §4.3]. O
A differential d on (.7, 4 ,.%s,.) is a morphism of bidegree (—1,—1)
d: "%1«)2 I ’7J'1 *1“12*1(51 + ‘-62)
such that dod = 0. which commutes with .Z,.%% and is selfadjoint with respect to .%.
Proposition 2.1.21 (M. Saito, P. Deligne, c¢f. [56, proposition 4.2.2], [28, théoreme 4.5])

In such a situation, the cohomology Kerd/Imd, with the induced £y, %s,.s, is
a polarized bigraded Lefschetz twistor structure (7,21, . %a,. ) of weight w and type

£1.€2.
Proof. We note first that . induces a Hermitian duality on Kerd/Imd. We note

also that the Weil reduction to weight 0 commutes with taking cohomology. It is
therefore enough to prove the proposition in the case of a bigraded Lefschetz twistor
structure of weight 0 and bitype 0, 0 defined as above for the single graded case. This
is done in loc. cit. O

2.2. Smooth twistor structures in arbitrary dimension

2.2.a. A smooth twistor structure 7 = (A", ", C) (or a variation of twistor struc-
ture) weight w on 2 is a smooth object of %- Triples(X) in the sense of §1.6.b such
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that its restriction to each x, € X (in the sense of Definition 1.6.9) is a twistor
structure of pure weight w. The rank of .7 is the rank of the bundles 7, 5" .

A polarization is a Hermitian pairing . : .7 — .7*(—w) of weight w (in the sense
of Definition 1.6.7) which induces a polarization by restriction to any x, € X (in the
sense of Definition 1.6.11).

00, an
3

Remark 2.2.1. — We have seen that the sesquilinear pairing C' takes values in ¢ 28
according to Lemma 1.5.3. So the restriction to z, of each component of the smooth
twistor structure is well defined. It is also nondegenerate and gives a gluing of .#”'*
with 727, defining thus a €51 -bundle A on X x P

Lemma 2.2.2 ([64]). — The datum of a smooth polarized twistor structure of weight 0
on X is equivalent to the datum of a flat holomorphic bundle (V, V) on X with a har-
monic metric h, or the datum of a holomorphic Higgs bundle (E,0%) with a harmonic
metric h.

Proof. — Given (H, D{,,D{,. h) as in §1.3.a, consider the associated operators DY,
D%, 0%, 0%. Recall also that 2 = € 5" @ H is equipped with connections D',
and D', asin (1.3.1) and (1.3.2). Let .2 C . be defined as the kernel of D’),.. As

L

we canonically have €% = €5, we can identify the locally free €3 -module H with

its conjugate and regard h as a € -lincar morphism H @4 H — 3¢, Counsider on
H the operators

y def 5577 - def 757~ y def 777 i def 27—
D= Dy, DL DL 0. 0L 0= 0

For local sections u, v of H, we therefore have
d'h(u.T) = h(Dpu.T) + h(u. DE0)
h(0pu.T) = h(u. 07)

and the (0. 1) analogues. Extend I as

hs : //IS &,r //gs —_— (6;‘§“
Gt

by ‘p;",}f@“—lincarity. If we define as above D’7, = D, and D/-){? = D',,.. the previous
relations can be written in a more convenient way:
’ — /- /=
d'hs(u.v) = hs(D yu.v0) + hs(u. D3;0)
1 =\ — " a5 , 1 —
d"hg(u,v) = hg(Du.T) + hs(u. D7,0).
Define 57" = " and S” = 1d, S’ = Id. Let C' be the restriction to //i”s Ros //Té
of hs. The & X‘Y)‘S—liu(\,arity of C'is clear from the analogous property of hg. Let us
verify the %,y 5 g-linearity: for a local section v of /"’s we have D', 0 = 0, hence
L_v = 0; therefore, given z . for local sections u of 7 and v of #”, | we have
DZ_% = 0: therefore, g o € S. for local sect £ and v of A" _ 1
(using the standard d’ operator on functions),

d'C(u,v) = hs(D'yu.?) + hs(u, D"7Tv) = hs(D'yyu,v) = C(D'yu,v).
The d”-linearity is obtained similarly, exchanging the roles of uw and w.
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Now we will show that (77,7, C) is a smooth polarized twistor structure of
weight 0 on X. Let us denote by A the bundle on X x P! obtained by gluing the dual
AV (chart Qq, coordinate z) with the conjugate # (chart Q... coordinate z’) using
the isomorphism hg : 75 = .)?”v As hg induces the isomorphism b : H —— HY
(using the natural inclusions HY =1® HY C .. %”g and H =19 H C 7. %’S), the

natural map €'y % @y H — A is an isomor phism and 7, h (¢f. (2.1.7)) is identified
with h. The 1(\&111(11011 of these objects to cach x, € )s gives therefore a polarized
twistor structure of weight 0. Now. as we have " = m’('” R, . the restriction
of #" to x, € X is equal to that of .7, and this sh()ws that (7. 27, C,.s) with
. = (Id, Id), is a smooth polarized twistor structure of weight 0 on X.

Last. let us show that. by restriction to z = 1, one recovers (V, V). We know that

I)ff?, = 0, so the Dolbeault complex (// S )’f ) is a resolution of . As 7"

and the terms of this complex are g -locally free. the restriction to z = 1 of this
complex is a resolution of 7”7 /(z — 1).7”. But we clearly have #77/(z — 1) = H
and D', o1 = = D{..s0o " [(z—1)#" = Ker D> = V. Conclude by noticing that the
restriction of D), to z = 11is Dj,.

Conversely, let (77, 2".C,.7) be a polarized twistor structure of weight 0. We
will assume that . #" = 77 and . = (Id.1d) (it is not difficult to reduce to this case,
(’f Remark 1.6.8). Put 7" = ¢ @4, 4" and denote by hg : /s b"/,‘;“'s‘;“ -//18 -

S0 the €058 - linear morphism 111(111( od by €. As it is nondegenerate, we can
" 2°1s 218 2

use it to glue 27V (on X x Q) with 7 (on X x Q). and obtain a locally free
% oo -module 7.

As (7, 7. C) has weight 0. the restriction of A to any x, € X is the trivial
bundle on P!, thus the natural morphism 7r*7r*/"/\’ — A is an isomorphism and
HY 1,7 is a ¢ locally free sheaf such that A = Caip @ 3 H. We define
the metric 7 on H as m.h. where h is constructed as in §2.1.c. As 1‘11(‘1 ¢ is a natural
inclusion H C 7r*7|s and a conjugate inclusion H C m,.#s (induced by the natural
restriction morphism 7. — mg,). the metric h can also be defined as the restriction
of I'(S. hs) to H ¢ x H (cf. Remark 2.1.8).

The bundle .7 comes equipped with a (1, 0)-connection relative to 7 : X x P! — P71,
with poles of order at most one along X x {0}:

D =D A — Qi (X x{0}) & A
O x xp
Indeed, in the chart €. the #»--structure on 2#” defines such a (1, 0)-connection on
7 (cf. §0.3), hence in a natural way on V. Put the trivial 0*% 4 -structure on
A = o*eH" (a bundle Which is purely antiholomorphic with respect to X because
of ¢). Therefore, 77";“9 = ‘(’X X‘;'z' ® o

— ' has a natural connection of type
(1,0) induced by d" on €5 .
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Let us verify that both z-connections on //|S and 7?(|S correspond each other under
the gluing hg. For m, p local sections of g and .4 local sections of ‘6);‘0@“7 we
have

d'hs(pm,ym) = d' (p0C(m. 1)) = hs(f)/(upm), Y7t) + hs(pm. 5’(@/)ﬁ)).

as C'is Z ¢ 5 g-linear and D’ (Yq) = d'v .

A similar definition and construction can be done for the conjugate notion, namely
a relative connection of type (0, 1). with poles along X x {oc}. We denote it by D”.

Composing D’ with the residue along X x {0}, we get an endomorphism of H, that
we denote by —Hf According to the relative triviality of /?’) we can write D' as

Y =1lp
D = D — =z 0%

where D% is a (1.0)-connection on 0 =r. . Similarly, write D" = DL+ z710% =
D% — ,:/9%. Define also on 7

DL =o"¢(D") = D + z—‘og = D}y — 30,

I
D' =o*c(D') = DL — 210" = DIl + 20,
7 (D) 2 E

The Z . ¥).s-lnearity of C" implics that hg is L()Illpdtll)l( with D’ . D’ on the one
w

hand, dIld with D” D%; on the other hand. i.e., satisfies. for 10(@1 sections u, v of
H CT(S, #s),

d' hs(u,v) = hs (D}, + 2710;;)'11/,1_)) + hs (u, (D/— - 3719’—3)’1—1).
d"hs(u,0) = hs (D + 20%)u.T) + hs (u. (D% — 2075)7).

From this and from flatness properties of the connections D’..... which is a conse-
quence of the existence of a Zy- or a #o=—structure, we get (LH relations needed for
the harmonicity of h. O

Remark 2.2.3. Keep notation as in the proof above. Let € be a basis of .77 which
is orthonormal for hg. Then € is contained in H (and therefore is an orthonormal
basis for h). Indeed, it defines bases € and € of Y and ¢ respectively. The
orthonormality property exactly means that these two bases coincide near S, hence

define a basis of .. Consequently, € is contained in H and therefore € is contained
in H.

2.2.b. Hodge theory for smooth twistor structures. — Let X be a com-
pact Kihler manifold with Kéhler form w, and let (.7..7) be a smooth polarized
twistor structure on X of weight w, with .7 = (', #',C) and .&¥ = (5',9") =

((=1)"1d,1d). Let us denote by f: X — pt the constant map.

Hodge-Simpson Theorem 2.2.4. The direct image (@, fT] T .,.Z.,) is a graded polar-
ized Lefschetz twistor structure of weight w and type € = 1.
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We will be more explicit on the polarization later on. We will restrict to the case
w = 0. The general case follows easily by changing C' to (iz)*C and 5’ to (—1)*S’.

Proof. - Let us first recall the results of [63, §2] concerning this point. Let
(H. Dy, h) be a harmonic bundle on X as in §1.3.a, with associated operators D',

b, 0 and 0). Put D = D)y + 0, and Do = DY, + 0. so that Dy = D + Dy
(notice that D. Dy are not of type (1.0) or (0,1)). The main observation is that
the Kahler identities

Ap, =20p  =2Ap,.

are satisfied for the Laplacian, and that the Lefschetz operator L = w A commutes
with these Laplacians. For any z, € C, let A, be the Laplacian of D def Do+2oD.
Then, the Kéhler identities proved in loc. cit. for Dy and Do (which are denoted there
respectively by D” and Dj) imply that

(2.2.5) A, = (14 |z[)An,.

It follows that the spaces Harlnfa(H) of A, -harmonic sections are independent
of z, and that the harmonic sections arc closed with respect to any D, . Moreover,
Harm? (H) is equal to the cohomology of the complex I'(X. (&% Ry H, D.,)).

The Lefschetz operator induces a sla-structure on the space of harmonic sections.

Cousider the complex

((C[:] S 5 HiDot zDOC).

The restriction of this complex to each z, € Q, gives the previous complex. We can

“rescale” this complex by the isomorphism

Clz]®éL! @ H - 277Clz oY s CClzz'@ék" g H
(2.2.6) € 3 5y
R me— 2 PPt m

so that the differential Dy + 2D is changed into Dy = D', + D', where D/, =
DYy + 2z 10 and D', = DY. + 207 arc the restriction of D’—/7 and D%7 respectively
to the chart €2g. We have

Gy @ /(C[z] ®EY ® HiDo+ /ZrDoo> = (657 @gxn . Doy).
oxl c Vg i v

is

It follows that, for z, # 0, the restricted complex ((93* * 6 Qg 3z A, D/{)
nothing but the de Rham complex of the flat holomorphic bundle (V.. D, + 2z, 10%),
with V., = Ker(DY + z,0%) (cf. §1.3.a), the cohomology of which is the lo(,dl system

Zo

V., = KerV, : and for z, = 0, the restricted complex is the Dolbeault complex

Zo Zo

(QX R E, eE)'

\,—~
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We now come back to the proof of the theorem. Recall that, as D', defines a
complex structure on 777, we have

(VY ®6, A Dyr) == (E,7 Gz A, Dy).
Therefore, after (1.6.16), we can compute fi.7 as follows:

fT ( W Jf (6m+. Bg . D//) /'f ( m+. ‘%;_a“ . D,;y;),(7~j>

and CV = f# hs is the natural sesquilinear pairing

fihs : H(X: (678 @ Ajs. Dor)) g@sH-i (X8 @ As. D)) — Os

induced by

o I E— em+y) [ i =T
[7/" J® m] ® [7/”*-7 @ /,L] — st J) - J) hs(m, @) n" = Annti.
(2im) S
Strictness of f+2'. - The cohomology .i’//J'fT.}’/”’ is a coherent Og -module. Let

us denote by hi its generic rank. We note that, for any z, € g, the dimension of
the space H/ (X, (£57* @ Qegeon A, D)oz ) is equal to that of the space of A -

harmonic (n + j)-forms, henge is independent of z,. It is therefore equal to A7 for
any z,. Consider now the exact sequence

z— 2z

s HO o O fo At — HI (X (E3F 2 A0) ..

k; .
_'/> {7(///)4*1"('1_‘%/()/ N
If k; = 0 for some i, then '/'”" f’r A7 is locally free at z, and k;_ | = 0, so 7/’7va A s
locally free at z, i(n any j < i. As A f. " =0 for j > 0. this shows that #7 f;.2”
is locally free for any j.
Twistor condition. We want to prove that, for any j, the sesquilinear pairing ft, C
is nondegenerate and defines a gluing of weight j. According to the strictness property
above, it is enough to show the nondegeneracy after restricting to fibres z = z, for
z, € S. Remark also that Dy .—. = Dy . The Hermitian metric h induces
therefore a nondegencrate pairing of flat bundles compatible with the differential:
h:(H.Dy..,) @ (H, Dy L) — (€% .d).
Poincaré duality applied to the de Rham complex of these flat bundles gives the
nondegeneracy of (f‘r7 Cazz, -

Remark. The nondegeneracy can also be obtained as a consequence of the positivity
proved below, without referring to Poincaré duality.

Consider now the inclusion
TEY @ He— )7 @ A
X : 2 v
(6‘“?_ (6/;&'»1\.“

sending n”" 7 P Qm to z PP "I 7P m. We then have //( Harm?\é_*i (H)) C Ker D .
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Moreover, we have seen that, for any z,, the projection of ¢ ( Hannff(_'j (H ))

- in the de Rham space H" /(X (&% @ H. Dy._ ) if zg # 0, and

~ in the Dolbeault space H" (X ; (&% ® H, D + 0%)) if z, = 0,
is an isomorphism of C-vector spaces. It follows that /,( Harm;’f‘j(H)) is a lattice in
H (X (&4 @ A . Dy)). i.c., that we have

H™J (X (&Y @A . Dy)) = Og, @ Harm”{j(H)).
. 2 :
To get the twistor condition, it is now enough to show that fT C induces a pairing
of Harm'y / (H)) %} t(Harm'yH (H)) — 24C.

This follows from the fact that, for sections 77 @ m of &7 @ H and ny ™ 7" P @ u of
¢ P @ H with p+q=n—j.

R(m. @) e(m? ) A ey 0" TP) = (= )" h(m, )T Any TP,

The Lefschetz morphism. — The condition on the Lefschetz morphism, defined on
§1.6.e, comes from the same property for w A on harmonic sections Harm ifj(H), as

w) =27 w.

Polarization. — We will follow the notation introduced in §2.1.e. Put .7 = f{jﬂ.
This is a twistor structure of weight —j. We have .7, = (7, 2'~7.C;) with C; =
C 7, where 57 stands for .27 f, (5;+.Wa’,‘ . D ). Moreover we have Cr, =C;
(¢f. Lemma 1.6.17(2)). Hence we can put . = (Id.1d) : .73 — .7, It clearly H‘dtlbfl(,‘b
S =" . Morcover, .Z, is skewadjoint with respect to .&; as in (2.1.12), because
by constm(‘tlon we have £ = —.Z,. Let us verify the positivity condition on the
primitive part. We are in the situation of Example 2.1.14, with L” = 271wA = ((w)A
and ¢ = 1.

Consider first a primitive section n”¢ @ my, 4 of &7 @ H with p+q = n —j. Then,
by definition, "¢ is a primitive (p, ¢)-form. We have ¢(n??®@ m,, o) = 279" Q@ my, 4.
Taking notation of Example 2.1.14, we want to show that

('iz)JC’_~j(/,(wJ AT @ my, ), LnPd @ 'm,p.q)) > 0.

This amounts to showing that

;(F"_/ Iy, T ) T APTA W > 0.

(:

This classically follows from the primitivity of n”°9, because, denoting by * the Hodge
operator, we have (n — )i’ Pd A wl = jl x )P4 (see e.g., [22, §8.C]) and h is
positive definite.

(_1)1',;1'

By decomposing any primitive section of &'? ® H with respect to an orthonormal
basis of H, we get the positivity statement for it.

Given any primitive harmonic section in Harln}f‘j(H), we apply the previous result
to any of its (p, ¢) component, with p + ¢ = n — j, to get the positivity. O
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CHAPTER 3

SPECIALIZABLE #,-MODULES

One of the main tools in the theory of polarized Hodge Modules [56] is the notion
of nearby cycles (or specialization) extended to Z-modules. It involves the notions
of Bernstein polynomial and Malgrange-Kashiwara filtration, denoted by V. The
purpose of this chapter is to introduce a category of #Z 4 -modules (or #- Triples) for
which a good notion of specialization can be defined.

In §3.1, we recall with details the basic properties of the V-filtrations for %4 -
modules. We follow [51, 46].

In §3.2, we briefly review the construction of the Malgrange-Kashiwara filtration
for coherent Z-modules (see e.g., [46]). We keep notation of §3.1.a. Recall that this
filtration was introduced by M. Kashiwara [33] in order to generalize previous results
by B.Malgrange [40] to arbitrary regular holonomic Z-modules. The presentation
we give here comes from various published sources (e.g., [51, 46, 56]) and from an
unpublished letter of B. Malgrange to P. Deligne dated january 1984.

3.1. V-filtrations

3.1.a. Let X’ be a complex manifold and let X be an open set in C x X’. We denote
by ¢ the coordinate on C, that we also regard as a function on X, and by 0; the
corresponding vector field. We set Xo = t~1(0) € X (which is open in X’) and we
denote by Zx, (resp. Fz;,) its ideal in Ox (resp. in Oy-).
Let us denote by V,Z 2 the increasing filtration indexed by Z associated with Xo:
for any (z,z) € 27,
ViR (o) =AP € Ry (22) | P- I

ci—k P
Do) © ey VI €LY
where we put #¢ = 0, if £ < 0. In any local coordinate system (o, ..., 2,) = z’
of X'/, the germ P € Z 4 is in V. Z 4 iff
= P =3 g @t 2 ) (010, it k= 0
P =tMQ with Q € VoZy. it k € =N (ice., Vi#y = V% 2 = VoA 5 - tIF]):
P = Z()g_jgk QJBZ{ with Q; € VoZa, it k € N (e, ViZa = Z_’I;;:O IV Ry =
Zklzo VoR g - 07).

J



56 CHAPTER 3. SPECIALIZABLE %, -MODULES

Set Vi@ g = VR4 N Oy . This is nothing but the .74 -adic filtration on &4-. The
following can be proved exactly as for Zx-modules (sce e.g., [46]):

~ ViR ViR C Vi oZ 2 with equality for k.4 <0 or k, ¢ > 0.
- ka%)g;f\yh = <%,;'x\,zx;, for any k € Z.
(mk‘/k'%”.)ley/h = {0}

Definition 3.1.1. - Let .4 be aleft # 5 -module. A V-filtration of .# is an increasing
filtration U,.# indexed by Z, which is exhaustive. and such that, for any k, ¢ € Z. we
have Vi, Z o - Up.tl C (]]Hr/;,,//.

Remarks 3.1.2

(1) We will identify the sheaf of rings gl(v}%’/ def W),%L%-/V,l.’%’%, which is sup-
ported on 2y, with the ring Z 2 [td,]. still denoting by ¢9; the class of t3; in glg%’/)
In particular, # 2 is a subring of gl(‘)/%} The class of td; commutes with any section
of %‘Q‘“ .

(2) Given a holomorphic function f : X’ — C on a complex manifold X’ and a
R o -module .Z, we will usually denote by iy : X’ — X = C x X’ the inclusion of
the graph of f, by ¢ the coordinate on C, and we will consider V-filtrations on the
X g-module iy A .

3.1.b. Coherence

Coherence of the Rees sheaf of rings. —- Introduce the Rees sheaf of rings Ry Zy =
OrVieZ o - ¢*, where ¢ is a new variable. and similarly Ry 05 = ©, Vi O -¢*. which
is naturally a &y -module. Let us recall some basic coherence properties of these
sheaves on 2.

Let .# be a compact polycylinder in 2", Then Ry Oq (F) = Ry (09 (X)) is
Noetherian, being the Rees ring of the .#,; -adic filtration on the Noetherian ring
O 2 (A") (Theorem of Frisch). Similarly. as @5 (, . is flat on Oy () for any (x, z) €
o, the ring (RvOg )z = Rv OO0 (X)) @, (x) ﬁf},.:) is flat on Ry Oy (X).

Let us show that Ry @5 is coherent on 2. Let % be any open set in 2" and let
v (Ry //,,g-)i’,,.]/ — (Ry /f;g;)f,,]/ be any morphism. Let %" be a polycylinder contained
in 2. Then, Kerp(J¢) is finitely generated over Ry 02 (24) by noctherianity and,
if ¥ is the interior of ", we have Kerpy = Ker o(#) @, o, () (RvOa2 )y by
flatness. So Ker ¢y is finitely generated, proving the coherence of Ry &y

Before considering Ry Z#4-, consider the sheaf &4 [7,&....,&,] equipped with
the V-filtration for which 7 has degree 1, &, .... &, have degree 0, and induc-

ing the V-filtration on &4 . Firstly, forgetting 7, we have Ry (02 (&2, ..., &) =
(Ry Oy )€, ..., &) Secondly, Vi(Oy 1. &.....6.]) = ZJ>O Vi j(Og &, ... &)
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3.1. V-FILTRATIONS 57

for any k € Z. hence we have a surjective morphisi

Ry Oy (&, .. .. €] ©c Clr'] — Ry (Oy (1.6 ... &)
ViOo (€, ... E)d T v ViO iy 6, .. ., &gt

If 7 C 42 is any polycylinder, then (1{\,7/7,%-(1/))[7”,62,...,En] is Noetherian.
Therefore, Ry (02 (1. 8. ....&,])(#) is Noctherian.

As Ry Z 4 can be filtered (by the degree of the operators) in such a way that,
locally on 27, grRy - is isomorphic to Ry (09 |7,&2,....&,]), this implies that,
if # is any sufficiently small polycylinder, then Ry.%Z 4 (%) is Noetherian. Using the
previous results and standard arguments, one concludes that Ry %4 is coherent.

Good V -filtrations. — Let (4 ,U,.#) be a V-filtered #Z 4 -module. The filtration is
good if, for any compact set £ C 27, there exists ky = 0 such that, in a neighbour-
hood of 7, we have for all k > kg

Uyt =tF U 4 and Uptt = O U, A .
2

0 j<k—ko

and any U, is Vo 9 -coherent.

The filtration U,.# is good if and only if the Rees module Uy # - qk is coherent
over Ry Z#» . Equivalently, there should exist, locally on 27, a presentation %b) -
Ky — A — 0, inducing for cach k € Z a presentation U;,u%’gz —Up#Yy — Ul —0,
where the filtration on the free modules #%.. %" are obtained by suitably shifting
V.% » on each summand. In particular, we get

Lemma 3.1.3. —  Locally on 2, there exists ko such that, for any k < ko, t : U_p.# —
U_j_1.4 is bijective.

Proof. — Indeed, using a presentation of .4 as above, it is ecnough to show the lemma
for #9 with a filtration as above, and we are reduced to consider each summand
X9 with a shifted standard V-filtration U, % 2. There, we can choose kg such that
U/\v“,‘%,g‘ =VoZ# o |

In a similar way we get:

Lemma 3.1.4. Let % be a coherent Vo# o -module and let .7 be its t-torsion sub-
sheaf, i.e., the subsheaf of local sections locally killed by some power of t. Then, locally
on 2, there exists { such that T Nt‘y = 0.

Proof. Consider the t-adic filtration on Vo Z 4, i.e., the filtration V;%# 4 with j < 0.
Then the filtration t=7% is good with respect to it, and locally we have a surjective
morphism (Vo Z4 )" — % which is strict with respect to the V-filtration. Its ker-
nel ¢ is coherent and comes equipped with the induced V-filtration, which is good.
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58 CHAPTER 3. SPECIALIZABLE £, -MODULES

In particular, locally on 2", there exists jo < 0 such that V., # = t IV, % for
any j < 0. For any j < 0 we thercfore have locally an exact sequence

(Vi )" — (Vi B! — 4=y ),
As t : Vi#y — Vi1 Ao is bijective for k < 0. we conclude that ¢t : t 0% —
t=I0+1 9/ s so, hence .7 Nt~ 0w = 0. O
Proposition 3.1.5. If . is a coherent Xy -submodule of A and U, # is a good

def

filtration of A, then the V fillration U, V" = A NU,.# is also good.

Proof. It is now standard (it follows from coherence properties of the Rees module
DrUp A - ¢~ sce e.g., [44]). o
Remarks 3.1.6

(1) It is straightforward to develop the theory in the case of right Z2--modules.
If U,(.#) is a V-filtration of the left module .#, then U, (wa ®¢, #) of war e,
U,(.#) is the corresponding filtration of the corresponding right module. This cor-
respondence is compatible with taking the graded object with respect to U,. The
operator —0;t (acting on the left) corresponds to tJ; (acting on the right).

(2) Given an increasing filtration U, (lower indices), we define the associated de-
creasing filtration (upper indices) by U¥ = U_y_1. If b(—(0st + k2)) - grt .4 = 0 for
all k € Z. we have b/ (t0; — (z) - gri, 2 = 0 for all € Z, if we put V' (s) = b(—s).

3.1.c. V-filtration and direct images. — The purpose of this section is to es-
tablish the compatibility between taking a direct image and taking a graded part of
a V-filtered % »-module. We will give an analogue of Proposition 3.3.17 of [56].

Definition 3.1.7. Let .# be a left Z,-module equipped with an exhaustive in-
creasing filtration U,.# indexed by Z such that Vi Z, - Uptl C Upyo.# for any
k.t € Z. We say that (# .U, #) is monodromic if. locally on 2. there exists a
monic polynomial b(s) € C[z][s] such that

(1) b(—(0¢t + k2))-gril ./ =0 for all k € Z,

(2) ged(b(s — kz),b(s — €z)) € Clz] ~ {0} for all k # £.

For right 24 -modules, we use the convention of Remark 3.1.6(1).

Theorem 3.1.8. Let [ : X — Y be holomorphic map between complex analytic
manifolds and let t € C be a new variable. Put ' = f x1d: X xC —Y x C. Let .«
be a right %o wc-module equipped with a V-filtration U,.# (relative to the function
t: X xC — C). Then U, 4 defines canonically and functorially a V-filtration
U AN M.

We assume that I is proper on the support of .2 .

(1) If .# is good and U, # is a good V -filtration, then U, (Fi.#) is a good
V -filtration.
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3.1. V-FILTRATIONS 59

(2) If moreover (M ,Ue#) is monodromic and figrV.# is strict, then one has a
canonical and functorial isomorphism of Xy -modules (k € 7.)

gty (A Fyat) = A frgrl ).
grV (%”‘FT//) is monodromic and strict.

Remark 3.1.9. — In the last assertion, we regard gri.# as a right Z2-module, and
f1 is defined as in § 1.4.a. By functoriality, the action of td; descends to 7 ( frgr! . #).

Proof. — We will use the isomorphism Fy = f; for .# (see Remark 1.4.3(2)). i.e., we
take the direct image regarding .# as a Z - «c/c equipped with a compatible action
of 0;. Put 4" = fi.#. This complex is naturally filtered by U,.4"* def iU .
Therefore, we define the filtration on its cohomology by
U AN tt) = U (fr. ) S image [ A frUtl) — A (f1.4)].
We note that, for any j. fiU;.# is the direct image of U;.# regarded as a Z 4 «c/c-
module, on which we put the natural action of ¢J,.
The relation with the Rees construction is given by the following lemma:

Lemma 3.1.10. - Let (A .U, /") be a V-filtered complex of X «c-modules. Put
U; 00 N") ©f nage (ANU; N — A(A*)]. Then we have
(R A°*) [g-torsion = Ry (N,

In particular, if Ry A has Ry xc-coherent cohomology. then U, 20 (.A*) is a good
V -filtration.

Proof. — One has a surjective morphism of graded modules ' (Ry./°) —
Ry 7(.A*), by definition, and this morphism induces an isomorphism after tensor-
ing with Clg, ¢ ). U

Lemma 3.1.11. — If .# is good, then any coherent Vo# 4 -submodule is good.

Proof. As a coherent V. Z 4 -submodule of .# induces on any subquotient of .4 a
coherent Vo 4 -submodule, we can reduce to the case when .# has a good filtration.
It is then enough to prove that any coherent Vo #Z o -submodule .4 of . is contained
in such a submodule having a good filtration. If .# is a @y -coherent submodule
of .# which generates .#, then .4 is contained in Vi %y - % for some k, hence the
result. O

This lemma allows one to apply Grauert’s coherence theorem to each Uy, in or-
der to get that each fiU;.# has Vy# g -coherent cohomology under the properness
assumption. We conclude that for cach i, j, U; 7 fr. # is VoA 2--coherent.

In order to end the proof of (1), we need to prove that each U, " f1.4 is a good
V-filtration. We will compute directly the Rees module associated with this filtration,
in order to get its coherence. Let us first consider the analogue of Lemma 3.1.11.
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60 CHAPTER 3. SPECIALIZABLE 2, -NODULES

Keep notation of §3.1.h. The graded ring Ry % - is filtered by the degree in the
derivatives ¢J,, and the degree-zero term of the filtration is Ry €5, with V.04 =
Oy for k>0and =t %0, for k <0.

Let (4, U,. #) be a V-filtered right # , -module and let Ry.# be the associated
Rees module. We therefore have the notion of a good filtration on Ry.# (by coherent
graded Ry Oy -submodules). If Ry . # has a good filtration (or equivalently if Ry .#
is generated by a coherent graded Ry @ y-module). it is Ry % 4 -coherent and has a
left resolution by coherent “induced” graded Ry # »-modules, of the form G ®r, s,
Ry %5 . where G is graded Ry @y -coherent. We can even assume (by killing the
g-torsion) that each term G®Rp. ¢, Ry, has no g-torsion, or in other words that it
takes the form Ry (L ®¢, #2). where L is @ 5 -coherent. having support contained
in Supp.#, and equipped with a good V-filtration (i.c., a good .74, -adic filtration)
and U, (L ®g, H2°) is defined in the usual way.

We say that Ry.4 is good if. in the neighbourhood of any compact set 2 C
A, Ry.# is a finite successive extension of graded Ry »p-modules having a good
filtration.

Lemma 3.1.12. We assume that .4 is a good A, -module and let U,.# be a good
V-filtration of .# . Then Ry.# is a good graded Ry % » -module.

Proof. — Fix a compact set £ C 2. First, it is enough to prove the lemma when
# has a good filtration in some neighbourhood of .7, because a good V-filtration
U..# induces naturally on any subquotient .#”’ of .# a good V-filtration, so that
R A’ is a subquotient of Ry 4 .

Therefore, assume that .# is generated by a coherent & g--module .7, i.e., .4 =
KAy - F. Consider the V-filtration Ul # generated by Z, i.e., UL.# =V, Xy - F.
Then, clearly, Ry @y - . F = 23 Vi0O s - Fq¢¥ is a coherent graded Ry € 9--module
which generates Ry . .

If the filtration U!.# is obtained from U..# by a shift by —¢ € Z. i.e., if Ry».# =
¢" Ryt © #q,q" ], then Ryn.# is generated by the Ry @ »-coherent submodule
(1[11)v (7;} . 5’2

On the other hand, let U!.# be a good V-filtration such that Ry .# has a good
filtration. Then any good V-filtration U,.# such that U.# C U} . # for any k satisfies
the same property, because Ryr. is thus a coherent graded submodule of Ry .4 . so
a good filtration on the latter induces a good filtration on the former.

As any good V-filtration U,.Z is contained, in some necighbourhood of J#, in the
good V-filtration U..# suitably shifted. we get the lemma. O

To end the proof of Part (1). it is therefore enough to prove it for induced modules
M =L @, Rz, with L coherent over @ 3 and Fy,,p 1. proper. We will indicate it
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3.1. V-FILTRATIONS 61

when f: X =Y x Z — Y is the projection. We then have
U(L®¢, .#sxc)="U, [(L Dproy, - [\ Ruxc) © <%,%'><(C/??><C}

S 0w

=Uj(L@sr0,,. ] " Ruxc) ©  Royxciwxc
[ 10y

because the V-filtration on & s «c o «c is nothing but the t-adic filtration. Now, we
have
JtUHL @, . Boxc) = REUNL @i, B xc)
=U;j(Rf«L ¢, . #wxc).

if we filter the complex R f. L by subcomplexes R f,U;(L) and we filter the tensor prod-
uct as usual. By Grauert’s theorem applied to coherent Ry €4 «c-sheaves, Rf, Ry L
is Ry O xc-coherent, hence fiRy(L ®p, Z2°) is Ry Xy «c-coherent. After Lemma
3.1.10, we get 3.1.8(1). O

In order to get Part (2) of the theorem, we will first prove:
Proposition 3.1.13. Let (A, U, A"*) be a 'V -filtered complex of Ry wc-modules. We
assume that

(1) the complex gx¥ . 4° is strict and monodromic,

(2) there exists jo such that for all j < jo and all i, the left multiplication by t
induces an isomorphism t : Uj. g Uj_1 N

(3) There exists iy € Z such that, for nl/1 io and any j. one has A (U;.4*) = 0.
Then for any i,j the morphism A (U;. ¥'*) — AH(A*) is injective. Moreover, the
filtration U, () defined by

U; 7 (A7) = image [A(Uj A ") — AH(A")]

satisfies gV AT (N ) = AN (Vo).

Proof. It will have three steps.
First step. — This step proves a formal analogue of the conclusion of the proposition.
Put

(ﬁ:@xUj.4"/(/;':M° and ;'\':111_1}(747'
‘ J
Under the assumption of Propos‘ition 3.1.13, we will prove the following:

(a) For all k < ] UA N = Uj. T s injective (hence, for all j, UTA\/' s
injective) and U v /U AN =Up N U N0

(b) For (myA Jo AU N U A*) s strict.

(c) //'(U, A*) =lim, UGN U A,

(d) /”(lﬁ) — AN /’\') is injective.

(

P

e) (N = 11111 /?‘"(U ).
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62 CHAPTER 3. SPECIALIZABLE £, -MODULES

Define Ujjf'i(L.A//\') = image [%”’(ﬁ‘) — //”(A//\')] Then the statements (a)
and (d) imply that

—
i1-

@ AN ) = AN U2 A7) = A o),

For ¢ < k < j consider the exact sequence of complexes
0 — Uk,/V./U/./V. e [/‘7'.//‘/./(]5.,4/' — ([j,/V./Uk,/‘/. — 0.

As the projective system (U;. 4" /Up.A""), trivially satisfies the Mittag-Leffler condi-
tion (ML), the sequence remains exact after passing to the projective limit, so we get
an exact sequence of complexes

0 UV = Up N —— U A" U V' — 0,

hence (a).

Let us show by induction on n > 1 that, for all ¢ and j,

(b)p, A (U;N*JU;—p A*) is strict (hence (b));
Indeed, (b); follows from Assumption 3.1.13(1). Remark also that, by induc-
tion on n > 1, 3.1.13(1) implies that, for any n. ¢4, S(Us/Ur_,) is killed by

¢
[Thieoyyq b(Oet + kz).
For n > 2, consider the exact sequence

e AU JUy ) > AU U ) — AU, U, )
v )
— AU JUjp) — -

Any local section of Im ) is then killed by b(0;t + jz) and H{;;_HH b(0:t + k=),
hence by a nonzero holomorphic function of z. By strictness (b),_, applied to
N s (Uj—1/Uj_y), this implies that ¢ = 0, so the previous sequence of A is exact
and #(U;/U;_,) is also strict, hence (b),,.

By the same argument, we get an exact sequence, for all £ < k < j,
(3.1.14)

0 — HUNJUN) — (UGN JUN ) — U N U ) — 0.

Consequently, the projective system (#H(U; A" /U /")) satisfies (ML), so we get
(¢) (see e.g., [37, Prop. 1.12.4]). Moreover. taking the limit on ¢ in the previous exact
sequence gives, according to (ML), an exact sequence

0~ TN ) — AN, N ) — AU N JUpH ) — 0,

hence (d). Now, (e) is clear.
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3.1. V-FILTRATIONS 63

Second step. — For any i, j, denote by 7J‘ C A(U;.A4") the t-torsion subsheaf of
.%m(Uj(A/'). We will now prove that it is enough to show that there exists jp such
that, for each ¢ and each j < jo,

(3.1.15) 7§ =0.

We assume that (3.1.15) is proved (step 3). Let j < jo and let ¢ > j. Then,
by definition of a V-filtration, ¢t~/ acts by 0 on Up#"*/U;. 4", so that the image
of AN UpV*JU;A*) in (U A") is contained in .7}, and thus is zero. We
therefore have an exact sequence for any i:

00— H(U;N) — H(UpN*) — H(Up NV JU;N®) — 0.
Using (3.1.14), we get for any ¢ the exact sequence
0 — AU N ) — AU V) — A (gt /) — 0.
This implies that #7(Ug /") — #(A*) is injective. Put UpsZ/(A°) =
image [,Wi(Up,W“) — 7?”‘(/1/')] We thus have, for any ¢, ¢ € Z,
grl () = A (gl ).
Third step: proof of (3.1.15). — Remark first that, according to 3.1.13(2), the multi-

plication by ¢ induces an isomorphism ¢ : UJ//AV\" — Uj_1.A"* for j < jo, and that (d)
in Step one implies that, for all ¢ and all 7 < jo, the multiplication by ¢ on %’”((ﬁ)
is injective.

The proof of (3.1.15) is done by decreasing induction on i. It clearly hods for i > g
(given by 3.1.13(3)). We assume that, for any j < jo, we have (77‘“1 = 0. We have
(after 3.1.13(2)) an exact sequence of complexes, for any ¢ > 0,

¢
0 — Ul s U4 s U JU; o — 0.

As ."7J~"+l = 0, we have, for any £ > 0 an exact sequence

AU N RN AU N — UGN Uj— e V) — 0,
hence, according to Step one,

AT, N AU N ) = A UGN U N = AU N ) AU N,
According to Lemma 3.1.4, for ¢ big enough (locally on 27), the map 77‘ —
HNU;N ) A (U; 4*) is injective. Tt follows that 77 — %”’(lﬁ) is injective
too. But we know that t is injective on 227" (U;.4"*) for j < jo, hence ‘»(71" = 0, thus

concluding Step 3. O

We apply the proposition to .A4° = fi.# equipped with U, 4/ = fiU,. # to
get 3.1.8(2). That Assumption (1) in the proposition is satisfied follows from the
assumptions in 3.1.8(2). Assumption (2) is a consequence of the fact that U,.# is a
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good V-filtration and Lemma 3.1.3. Last, Assumption (3) is satisfied because f has
finite cohomological dimension. Od

3.1.d. Regularity. — We keep notation of §3.1.a. We can identify the sheaf Z 4 /¢
of differential operators relative to the function ¢ (constructed from the sheaf Zx,c
by the Rees procedure) as the subsheaf of V% 2+ of operators commuting with .

We say that the V-filtered #Z 4 -module (.7, U, #) is regular along % if, for all
ke€Z, Upt is t%’gf/c—cohcrcnt near Zq. If such a condition is satisfied for some good
filtration U,.#, it is satisfied for any. In an exact sequence, the extreme terms are
regular along Zg if and only if the middle term is so.

By an argument analogous to that of Lemma 3.1.11, and applying Grauert’s the-
orem, one proves that, in the situation of Theorem 3.1.8, if .#Z is good and regular
along 27 x {0}, then FL.# is regular along % x {0}.

3.2. Review on specializable 7x-modules

We keep notation of §3.1.a. A coherent left Zx-module M is said to be specializable
along Xy if any local section m of M has a Bernstein polynomial b,,(s) € C[s] ~ {0}
such that b, (=0;t)m € V_1(Zx) -m (the filtration V,(Zx) is defined as in §3.1.a; we
usually assume that b, is minimal for this property).

An equivalent definition is that there exists. locally on X, a good V-filtration U,M
and a polynomial by (s) € C[s] ~ {0} such that. for any k& € Z, we have
(%) by (— (Ot + k) - vl AL = 0.

Indeed, in one direction, take the V-filtration generated by a finite number of local
generators of A in the other direction. use that two good filtrations are locally
comparable.

If we decompose by (s) as a product by (s)b2(s) then. putting

() Ul = Usy + bi(—(ht + k) U,

we get a new good V-filtration U, with polynomial byr = by (s — 1)ba(s). Therefore,
an equivalent definition of specializability is that there exists, locally on X, a good
V-filtration U, M and a polynomial by (s) € C[s] ~ {0} satisfying

(3.2.1) the roots of by do not differ by a nonzero integer,

such that (k) is satisfied.
For such a good filtration U,M and any « € C, put

YU M = UKer[(Oit + a)" o’ A —— gV M.
n

We then have ¥, M = 0 unless a € b;'(0) + Z, and gr/ M = &,0F M.
For any k € Z, there are Zx,-linear morphisms

togr M — gt/ M and -0, : grt/ M — grii!_] M.
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These morphisins are compatible with the decomposition with respect to the gener-
alized cigenvalues of —d;t and induce morphisis

Sl M — ol M and = Oy ) M — i M

for any o € C. The first one is an isomorphism if o« # 0 and the second onc if o # —1,
as Ot (resp. tdy) is invertible on Y M if o # 0 (resp. o # —1). We denote by
can : ¢ _ M — ! M the morphism induced by —d; and by var : M — 7 M

the morphism induced by ¢.

If U, M is any good V-filtration of A defined on some open set of X, with Bernstein
polynomial by, then any other good V-filtration U, A, defined on this open set or on
any subset of it, has a Bernstein polynomial b/, and this polynomial satisfies b,;,] (0) C
bf,l(()) + Z. If we assume that U, M satisfies (3.2.1), then any other good V-filtration
U!M defined on the same (or on a smaller) domain, and satisfying 1;[7,1(0) C ()[','1(0).,
is equal to U, M.

Consequently, if M is specializable, given any section o of the projection C — C/Z,
there exists a unique good V-filtration U M, globally defined on X, such that any
local Bernstein polynomial by satisfies bb (0) C imageo. Any morphism between
specializable Zy-modules is strictly compatible with the filtration U?.

Let £ : C — R be a R-lincar form such that ¢(Z) C Z. It defines a relation <, on C:
ay e ag it (o) < f(az). One usually takes £(«) = Re(a), but we will need below
(see Proposition 3.3.14) to consider various such linear forms.

Let m be a local section of M. If b,,, is the Bernstein polynomial of m, we define the
(-order of m as ord¢(m) = max{l(«) | b, («v) = 0}. Define the V-filtration by the (-
order VO M by the following property: a local section im is in VL,(/)]\[ iff ordy(m) < k.
If M is specializable, this filtration is good. It is the filtration associated to the section
of C — C/Z which has image in {s | ¢(s) € [0.1[}.

It will be convenient, later on. to regard this filtration as indexed by R with a
discrete set of jumps, corresponding to the zeros of the possible b,,. Let us recall this
notion. Let Ag be a finite set in R and put Ag = Ar + Z. A good V -filtration of M
indexed by Ag is by definition a family (DU, M (a € Ag) of good V-filtrations indexed
by Z which satisfy the following properties:

- DU WUM if a <D,

et D M = DU, M.
def (

For any a € Ag. one then defines U, M =
of Ar which is strictly smaller than a, then one puts gr,, UN = U, M/Uc M.

(@M. If < a denotes the largest element

If UM and UM are two good V-filtrations satisfying (3.2.1), then there are iso-
morphisms ¢ Al OV M which are compatible with ¢ and —;. Indeed, by the
uniqueness above, U and U’ can be related by a finite sequence of transformations of
type (xx) for which, at cach step, by and by do not have any common root. It is thus
enough to prove the assertion when U and U’ are as in (+x), and ged(by, b)) = 1.
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In such a situation, we have an exact sequence
/ / / /
0— Up1/Upy — Up/Upy — Up /Uy — 0.

On the one hand, the natural morphism U}, /Uy _1 — Uy /U,_ is injective with image
equal to Kerbo(—0it + k), as ged(by.b) = 1. On the other hand, Ug_1 /Ui —
Uj—1/Uj,_, is onto and induces an isomorphism Ker by (=it +k — 1) = U1 JUL_ .

The assertion follows.

u”

As a consequence, taking a section ¢ as above, the modules ¢’

M are globally
defined, and are independent of o up to a canonical isomorphism. They are equipped
with the action of a nilpotent operator, locally obtained as the action of —dit. We
denote them simply by ¢, oM. We note however that, to define can and var, one

needs an equation {t = 0} for X, and a corresponding vector field 0;.

Any coherent sub or quotient module of a specializable Zx-module is so. For a
specializable Zx-module,

(1) can : ¢y, 1M — oM is onto iff M has no coherent quotient Zx-module
supported on Xo,

(2) var : oM — 1M is injective iff A has no coherent sub Zx-module
supported on Xg,

(3) YoM = Imcan@® Kervar iff M = M’ @ M with M’ satisfying 1 and 2 and
M" supported on Xj.

3.3. The category .#2(X.t)

3.3.a. Keep notation of §3.1.a. We will work with increasing filtrations. To get a
decreasing filtration U® from an increasing one U,. put UP = U_z_4 (see Remark
3.1.6(2)).

We will introduce the Malgrange-Kashiwara filtration in the setting of Za -
modules. When the set A below is contained in R. the presentation can be simplified,
as the Malgrange-Kashiwara filtration is then defined globally with respect to z, and
not only locally. For A C C general, the definitions below are suggested by Corollary
5.3.9.

The strictness assumption is important, as emphasized yet in Theorem 3.1.8: for
Hodge modules, it means a good behaviour of the Hodge filtration under the operation
of taking nearby or vanishing cycles. Moreover. it important to notice that, under
a strictness assumption, the “nearby cycles” ¥y . # are defined globally with respect
to z.

Definition 3.3.1. A coherent left Z 5 -module . # is said to be specializable along
Ao if there exists, locally on X, a finite subset A C C and for any local section m

ASTERISQUE 300



3.3. THE CATEGORY .¥%(X, ) 67

of .7 . there exists a polynomial by, (s) = [[,ca [Teez(s — (@ + €) % z)V ¢ satisfying

b (—0¢t) -m € V_1Z 4 - m (for left modules),
m b, (10;) € m - V_1%# 9 (for right modules).

An equivalent definition is that there exists, locally on 27, a good V-filtration U, .#
and a polynomial b/ (s) of the same kind, such that, for any k& € Z, we have

(%) bu(—(0¢t + kz)) - gry 4 =0, resp. gt A - by (td, — kz) = 0.

Indeed, in one direction, take the V-filtration generated by a finite number of local
generators of .#; in the other direction, use that two good filtrations are locally
comparable.

Remark that any coherent # 4 -submodule or quotient of .# is specializable if .#
is so (take the induced filtration, which is good, by Proposition 3.1.5). In particular,
the category of specializable % 4--modules is abelian.

If we decompose b (s) as a product by(s)ba(s) then, putting

(**) U}: =Up_ +b1(*(a¢t+/ﬁz))Ukw

we get a new good V-filtration U, with polynomial by;r = by(s—1)ba(s). Therefore, an
equivalent definition of specializability is that there exists locally a good V-filtration U
with polynomial by (s) = [],e (s — a* z)" for some integers v, and A is contained
in the image of a section o of the projection C — C/Z. In other words, (.#,U,. #) is
monodromic (¢f. Definition 3.1.7) with a particular form for b.

The constructions made in §3.2 can be applied word for word here, provided that
we avoid singular points with respect to A ©Arz (¢f. §0.9). Indeed, we need such a
nonsingularity asswumption to get that ged(by, b2) is invertible when b; = 0 and by = 0
do not have common components. In the neighbourhood of such singular points (in
particular in the necighbourhood of 0), we will need the constructions of the next

subsections.

The choice of the generating set A can be changed. Put A = A + Z and, for
any 2z, € Qo and a € A, set €., (o) = « — (0" (recall that ¢, f 1 Z,, SO that
(., () = Re(a + izocd”); remark also that £, (o + 1) = £, () + 1, ¢f. §0.9); set also
A(zo) ={a € A 1., (a) € [0.1[}. Then, the specializability of .# is equivalent to the
local existence of a good V-filtration U{*).# with polynomial by, (s) having roots

in A(z,).

3.3.b. It will be convenient to work with filtrations indexed by Ig + Z for some finite
set Ig C R, that we now define. Let .# be a coherent #4 -module and Ig C R be
a finite set contained in the image of a section of R — R/Z. A good filtration of .4
indexed by Iy + Z consists of a family (a € Ig) of filtrations (U, .# indexed by Z,
which are good with respect to V, 22 and such that one has

(3.3.2) at+k<b+l = Vst c OU.M.
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We denote Uy # = (U, # and grfl",/// =U, #|Uc,.#. We can also regard U,. #
as a filtration indexed by R with jumps at [: + Z at most.

Saying that . is specializable is then equivalent to saying that, near any (@, z,) €
27, it has a good filtration indexed by £. (A) = 1. (A(z,)) + Z such that, for any
a € R,

(3.3.3) [ ot—awxs ol ™ 7 =0.
€A
o ()=a

where the integers v, only depend on v mod Z. Remark that the set of indices (hence
the order of the filtration) depends on the point zy. This is suggested by Corollary
5.3.1 below.

Lemma 3.3.4. We assume that .7 has. in the neighbourhood of any point (x,. z,) €
20. a good filtration U 4 indeved by (. (A). satisfying (3.3.3) and such that
grflﬂz")./// is a strict Ay, -module for any a € R. Then.

def

(1) for any coherent submodule .V C 4. the filtration UEe). 4
is a good filtration satisfying the same properties:

UG a0 0N

(2) such a filtration is unique: it is therefore globally defined on some neighbourhood
of X x (R+4C,): it will be denoted by VE) . 4 and be called the Malgrange-Kashiwara
filtration of .# along X x (R +i¢,):

(3) this filtration is equal to the filtration by the (. -order along 2.:

(4) any morphism o : .M — A between such # - -modules is compatible with the
V=) filtration:

(5) the construction of the V') -filtration is locally constant with respect to =;

(6) near any z, € Qo one has. for any a € (. (A).

SV NEN
er, A = = 00

with
(lif

W\ Zo sz0) zo)
it = U, Ker [0+ axz) N = Y AN 4T

(7) for any o € A, there exists a strict coherent Ay, -module Wy . # equipped with
a nilpotent endomorphisim N such that. near any z, € €y,

('dz,,”.///. N) ~ ('(/r,(i‘,‘). . — (0t + o x :))

Proof

(1) The filtration U(*). 4 def UGt 1.4 is good (by Proposition 3.1.5) and
clearly satisfies (3.3.3). For cach a € €. (A). g™
hence is also strict.

s . 7(z0)
A is a submodule of grt/ ™,

(2) Let U and U'**) be two such filtrations on ., that we can assume to
be indexed by the same set £. (A). Locally. there exists £ € N such that, for all
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a € {,,(A), one has

Z0) Z, Z() ("0)
[]a 14 C U( ) C Ua+ Ua+2£

Let m be a local section of U™ # and assume that there exists b € Ja.a + €] such
that m € Ug(z”> LU Then, there exist polynomials By (s) and By (s), where By,

<b
has roots a *x z with £, ((y) < a and By has roots «a % z with £, («) = b, such that
BU(—G,/ ) € U(”’ /((,j A and By (—04t) -m € U;(Z"[%/. Hence, there exists

) € Clz] ~ {0} such that p(z)m € U ”’) As gl‘g/(:“)(/// is strict, this implies that
m € U “”), a contradiction. This shows that m € U!L(Z“). Exchanging the roles of U

and U’ gives the uniquencss.

(3) Let us first define the filtration by the ¢, -order for a filtered module satisfying
(3.3.3). Let (2o, 2,) € Zo and m € My, According to the proof of (1), we will
assume that, locally at (., z,), the section m generates .Z .

There exists a minimal polynomial b, (s) as in Definition 3.3.1 such that a relation
b (—O0¢t) - m € Vo1 % 5 - m is satisfied. The £, -order of m along 2 is the largest
a € R for which there exists o with ¢, () = a, such that a x z is a root of b,,.
This defines an increasing filtration of .#, called the filtration by the order. It is not
necessarily good a priori. Denote it by V/() 7 and denote by V. *) # the filtration
obtained in (2).

We clearly have V, (, o Va ') g for cach a € R. Let us prove the reverse
inclusion. We assuie that m has ¢, -order a. If m € V})(:“).%/ — Vg)"),l/ with b > «a
there exists some integer £ > 0 such that

b (—04t) by (=0t +02) - € V<(;)’ M.

We also have
H (=0t —a*xz) - e V<<b ).,//.
O, (o)=b
for some v, = 1. If b > a. we (l('du(o from both relations that there exists p(z) €
C[z] ~ {0} such that p(z) -m € V( ©'# and, by strictness of gr,‘)'(:").//. we have
m € Vg)")‘%’, a contradiction.

(4) It is clear that any morphism between two # 4 -modules satisfying (3.3.3) is
compatible with the filtration by the ¢ -order. The assertion follows then from (3).

(5) We fix a compact set in X. The constants €, 7 below will be relative to this
compact set. We say that the filtration V(:) # is locally constant at z, with respect
to z if, for any ¢ € R and any € > 0 sufficiently small. there exists n = n(z,, a, £) such
that, for any z € A. (1) (disc of radius 5 centered at z,), we have

(3.3.5) Vil =viEN ). vELCa) =V a)..

By considering Fig. 3.a, one shows that this property is truc for the filtration by the
{,-order, hence the result by (3).
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(—l(ag+1)

FIGURE 3.A. The set {ae € A | £+, («v) = a} is equal to {a1, an}.

(6) Locally on 2", there exists v, such that I/J L # = Ker(d,t + o x z)”». The

roots of the minimal polynomial of —0;t on gr“ “' # are the a x z for « such that

f(y

(,, (o) = a. By Lemma 0.9.2, the various a*z, corresponding to distinct « are distinct,
hence, if z is sufficiently close to z,, the roots o * z remain distinct. Therefore one
has a Bézout relation between the polynomials (3,¢ + avx z)" for o € €7 !(a). and the
decomposition follows.

(7) Fix z, € Qo, sct a = €., () and fix =.n > 0 as in (5) so that, morcover, for any
z € A, (n), we have (. (a) € Ja — &, a+ £]. If £ is small enough, we have gry A =
vjj;’.m/ufrﬁ H, for any z € A, (n). By (5), we can compute qrf:;’)(l%/)z using the

filtration V). ..

PN, = Ker [ — (Ot + axz) V() VEL( )
— VL (a) VEL ().

Fix z € A, (n). By construction, if 3 € A is such that £,(3) € |Ja — ¢,a + €]. then
(. (0) = é’m( v) (on Fig. 3.a, each such 3 corresponds to a line cutting the intersection
of the horizontal strip of width 2z and the vertical strip of width n). By Lemma 0.9.2,
if 3 # «, we then have 3 x z, # « % z, and this remains true for any z near z,, so
that 2z — (8 — «) * 2z is locally iuvutil)lo Forb € Ja —c.a+¢e] and b # £.(«a). the
operator —(0;t 4+ a * z) acting on gr) a— E-‘,W‘_.(,,);,,'q’ﬁj).%/; (see (6) above for
the decomposition) can be written, on cach summand. as the sum of the nilpotent
operator —(0;t + 3= z) and of the invertible operator [( — «) % z] Id. It is therefore
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invertible. This implies that

W), c VI () VL) c v )VEL (),

0. ((y) a 8 z
and that the natural plOJECthH (Whlch is now defined) from w(”’ (M), to grgvj(z)‘%lz

is an isomorphism A, ., onto ’1/) ( ).

In order to show ‘rhat the various 1/1t (Y( #) glue as a sheaf Yy o(#) on 2y, it
is enough to show that the family of isomorphisms A,/ . is transitive, i.e., A\,» , =

A 2r 0 Ay whenever 2/ € A, and 2” € A, NA,. This follows from (3.3.5) which

holds for z, 2/, 2". O

Remarks 3.3.6. — The strictness assumption in Lemma 3.3.4 is used only necar the
points of Sing A(.#). More precisely, the lemma holds without any strictness assump-
tion if we extend the coefficients by tensoring over O, by the ring 0q, (* Sing A(.#))
obtained by inverting polynomials vanishing on Sing A. If we allow to divide by such
polynomials, the proof gives the uniqueness of the Malgrange-Kashiwara filtration, as
well as its coincidence with the filtration by the order.

Let .../ be as in Lemma 3.3.4.

(1) If ¢ : A — . is any morphism, then grtZ '(a)ap sends Yy o, I Y o Nz, Tt
is globally (leﬁned Let us denote by 1 o : ¥4 o n — Pt o~ the morphism induced
locally by g,I - maﬁ

(2) What pIevents the filtration V.*) to be defined independently of z is that
V,l(':)(k//z) jumps for values of a depending on ¢, more precisely for a = o’ — (o,
a e A If A C R (eg., if the local monodromy of the perverse sheaf corresponding
to Zpr(.#) around 0 is quasi-unipotent or unitary), then the V-filtration is globally
defined on .#. Otherwise, the natural order on the set €,(A) may depend on z, as
shown on Fig.3.a. One can compare the various V},(:)(,%/Z) for z in a neighbourhood
of z, if no jump occurs at a for these germs. This explains that, given any a, we
,+c( ) (see Fig.3.a).

If A C R, then the previous lemma is simpler, as ¢, () = « for any « € A.

compare the various V,
The order does not depend on z, and the V-filtration is globally defined. Moreover,
V.o = gr¥ A for any o € A.

In Corollary 5.3.1, we will regard £, (a) as a growth order indexing a parabolic
filtration. This growth order depends on ¢. A similar problem occurs when defining
the Stokes structure of a meromorphic connection of one variable, as for instance in
[43, p.56].

(3) The nilpotent endomorphism
— (Ot + % 2) Yyl — Yy o

is denoted by N. There exists a unique increasing filtration M(N), of ¢y . # by X z,-
submodules, indexed by Z, such that, for any £ > 0, N maps M, into My, _» for all & and

SOCIETE MATHEMATIQUE DE FRANCE 2005



72 CHAPTER 3. SPECIALIZABLE #Z»-MODULES

N* induces an isomorphism gr}! —— gr™, for any ¢ > 0. It is called the monodromy

filtration of N (cf. [20, §1.6]). Each gr™Myy . # has a Lefschetz decomposition, with
basic pieces the primitive parts (¢ > 0)

lef /
Pory" oot = Ker [N gr) i ot — ox™, oty 0]

We note however that grlg\lw,‘,y,// need not be strict, even if ¢, . # is so.

(4) By an argument similar to that of the lemma, one shows that t : ¥, —
Ut.a—1.4 s injective for av # 0 and Oy : V.ol — Ut as1 A is so for a # —1. We
note that, by Lemma 3.1.3, we also get that ¢ : Vi — V“(f"l),/// is injective for
a < 0, because V%) 4 is good.

We note also that, for any o with Re v # 0. the morphism ¢ : ¢y o #|\s — Vt.a—1.#|s
is an isomorphism. Indeed, we already know that ¢ is injective. Morcover, as Re oo # 0,
we have avx z/z # 0 for any z € S, and therefore 9, is invertible on ¢ o 1.#s, hence
the surjectivity of ¢.

(5) Recall that if z, € iR, then o x z, = 0 = o = 0. For such a z, and for a # 0,
0;t 1s therefore invertible on v .# in a neighbourhood of z,. This implies that, in
a neighbourhood of such a z,. we can replace “injective”™ with “isomorphism”™ in (4)
above.

(6) There is a diagram of morphisms

can = —0;
Vel o
var = f

where var is induced by the action of ¢ and can by that of 0.
(7) For right 4 4--modules, N is defined as the endomorphism induced by the right
action of td; — a * z, can by that of 9, and var by that of ¢.

Corollary 3.3.7. — We assume that .# is as in Lemma 3.3.4 and let z, € Qg. Let K
be a compact set of X and let Q be an open neighbourhood of z, such that V=) 4
evists on K x Q. Let W C K be an open set. If m € U'(W x Q.. ). there exists a
finite set A(m) C C and v : A(m) — N* such that

(1) Yy S A(IH) = 'L/‘Vf.a,.///‘”'ﬁxgz ?é ()q

(2) v(vy) < the order of nilpotency of N on Wy~ )y x o
so that, putting b,,(s) = H’y(:‘/\(m)(S — 3 *2)"D) one has by, (—=0:it) - m €V 1Ry - m.

In other words, a Bernstein polynomial exists in a more global setting than in
Definition 3.3.1.

Proof. — One can assume that .# = %, - m, according to Lemma 3.3.4(1). Use
then that the good filtration V.75 - is comparable to the Malgrange-Kashiwara
filtration V). # on K x Q. O
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Definitions 3.3.8 (Strict specializability)

(1) A specializable 4 ,-module is said to be strictly specializable along 2 if one
can find, locally near any point (., 2,) € 20, a good filtration V,(3), 7 satisfying
(3.3.3) and such that morcover

(a) for every a € R, {-’;I‘(‘,f'(:”)./// is a strict Z,:-module (hence V.*2) # is the
Malgrange-Kashiwara filtration of . # near z,);

(b) t 0.l — Vo144 is onto for 1. (a) < 0;

(¢) Oy : V.0l — Py 1.4 is onto for £, () = —1 but o # —1.

(2) A morphism ¢ : .# — .4 between two strictly specializable %, -modules is
strictly specializable if, for any o € A, the morphisms ¢ ¢ are strict.

(3) The category .«?(X. ) has strictly specializable % ,--modules as objects and
strictly specializable morphisis as morphisis.

(4) Let f : X — C be an analytic function and let .# be a #,-module. Let
us denote by iy @ X — X x C the graph inclusion. We say that .4 is strictly
specializable along f = 0 if iy .4 is strictly specializable along X x {0}. We then
SCt Vf ol = ro(iyq. ). These are coherent # 4 -modules. It f = ¢ is induced by
a projection. we have. by an casy verification, ¢y o (ip 4. #) =iy (.. ) for any .

Remarks 3.3.9

(1) As we have seen in Lemma 3.3.4(6). Condition (la) implies that. for every
a € R, we have a local decomposition gr(‘,»(:"',// = Daen. t. (a)=alta- .

(2) We note that, according to 3.3.6(4). we can replace “onto™ with “an isomor-
phism”™ in 3.3.8(1b) and (lc). Therefore, there is. for any A € Z and near z,. a pre-
ferred isomorphism ¢y . # —— ¥y aen. 2. obtained by suitably composing 3.3.8(1h)
and 3.3.8(1¢): this isomorphism is not globally defined with respect to 2. unless a is
real.

Moreover. locally, ¢ : Vi — V”(i”l).// is an isomorphism for a < 0: indeed, it
is an isomorphism for a < 0. as the filtration is V-good; apply then 3.3.8(1b).

(3) Conditions 3.3.8(1b) and (1¢) are automatically satisfied if we restrict to z &
Sing(A). as we remarked in 3.3.6(5). These are really conditions near the singular
points with respect to A, as defined in §0.9.

(4) We assume that .# and .4 are strictly specializable along 2. If ¢ : . — N
is any “y--lincar morphism., it induces a morphism ¢y o9 @ VYot — Y104 . by
Remark 3.3.6(1). According to 3.3.8(1b) or 3.3.8(1¢) (and to (2) above), in order to
get the strict specializability of . it is cnough to verify strictness of ¥y, for one
representative o of cach class in A/Z, and for « = —1,0. Assume now that ¢ is
strictly specializable. Then we have locally gr(“'(;")g; = BacA, b, (a)=aVt.a@. Which is
therefore also strict.

(5) Let U\ # be a good V-filtration indexed by £, (A) which satisfies (3.3.3),

3.3.8(1b) and (1c¢), but satisfies 3.3.8(1a) for @ < 0 only. Then one shows by induction
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that 3, : gtV — grg:f)(// is an isomorphism if ¢ > —1 and therefore 3.3.8(1a) is

satisfied for any a.

Lemma 3.3.10. — Let ¢ : . # — A be a strictly specializable morphism between
strictly specializable modules. Then ¢ is V-strict, Kerg and Cokery are strictly
specializable and, for each «. one has

Yo Kerp = Keryy o and 1y o Coker p = Coker ¢ 4.

Proof. - Fix z, and forget about the exponent (z,). As indicated in Remark 3.3.6,
the result holds after inverting polynomials of the variable z vanishing on Sing A(.Z)U
Sing A(.47). The assumption on ¢ is made to control the behaviour near the singular
set.

Let us prove the V-strictness of ¢. We have to show that, for any a € R, we have
Ime NVt =@V, #)). As both filtrations Im o NV, 4 and o(V,.#)) of Im ¢ are
good (Artin-Rees for the first one), there exists & € N such that, for any a € R we
have Imp NV, 1. A C @(V,.#)). Therefore. if, for any a. the morphism V,/V,_ 1 (¥)
is strict for the induced V-filtrations on V., /V,_,(#) and V,/V,_(.4), then ¢ is
V-strict.

Let us now show, by induction on the length of the induced V-filtration, that, for
any a’,a with a’ < a, the morphism V,, /V, () is V-strict and that Coker V, /Vy/ () is
strict. This is by assumption if the length is one. Let «” € ]a’, a[ be a jumping index
and let n be a local section of o(V,.#) N V. A + V... 4. There exists a polynomial
p(z) such that p(z)-n is a local section of (V. )+ V.4, as indicated above. Hence
the class of p(z)n in Coker V,, /V,~ () is zero. By induction, the previous module is
strict, hence the class of n itself vanishes, that is. n € (V. #) + V,,.4". In other
words, V,/Va (@) is V-strict. As a consequence, we have grY, Coker V, /Vo/ () =
Cokergry, o for any @’ € Ja’,a], which is strict by assumption, hence, by Lemma
1.2.2(1), Coker V,, / Vi, () is strict. This gives the V-strictness of ¢.

Put on Kerp and Coker ¢ the filtration naturally induced by V. This is a good
filtration satisfying (3.3.3). We know that it satisfies 3.3.8(1a) on Kery (Lemma
3.3.4(1)), so we call it V, Kerp. By the V-strictness of ¢ that we have just proved,
we have an exact sequence

Vo
Ela?, gr},”'./V — grf,f Coker p — 0.

By assumption and Remark 3.3.9(4), Coker gr¥ ¢ is strict, so U, Coker ¢ also satisfies
3.3.8(1a). By Lemma 3.3.4, it is equal to the V-filtration on Coker ¢. Now, 3.3.8(1b)
and (1c¢) are clear. |

4 /S
00— grt Keryp — gr¥

Proposition 3.3.11. Let A be a strictly specializable X »--module.
(a) If A = . "D . A", then A and &' are strictly specializable.
(b) If A is supported on 2, then Voo =0 and .4 = i Vo & .
(c) The following properties are equivalent:
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(1) var : @ 0.l — Yr. 1. s injective,
(2) .# has no proper sub-Z 4 -module supported on 2y,
(3) . has no proper subobject in .*(X,t) supported on 2.
(d) If can : ¢y 1. H# — Uy 0.4 is onto, then .# has no proper quotient satisfying
3.3.8(1a) and supported on 2.
(e) The following properties are equivalent:
(1" Yy 0. = Im can & Ker var,
2 M = A M with A satisfying (¢) and (d) and A" supported
on Zg.

In (b), one should put an exponent (z,); however, as a consequence of the proof,
the lattice A is then contained in Z, and therefore the various filtrations V.*), # glue
as a global V-filtration, so that the statement is not ambiguous.

Proof. — We work locally near z, and forget the exponent (z,) in the notation. Be-
cause of Properties 3.3.8(1b) and (1¢) and Remark 3.3.9(1), we can replace ;o with
gry and ¢y, with gr¥’; in 3.3.11(c), (d) and (e).

(a) For 4 = .#" ov A", put Uy N = Vo td NN . Then Updd U, tt' & U 4"
is a good filtration of .7 satisfying (3.3.3). As gr’/. 4" is a submodule of gr!. 7, it is
strict. From Lemma 3.3.4 one concludes that U,.# = V,.# and it follows that .#Z’
and .Z" are strictly specializable with U,.#' =V, .#" and U,.#" =V, #" .

(b) As t is injective on Vog.#, one has Vog.# = 0. Similarly, gr¥’.# = 0 for a ¢ N.
As t is injective on gr) . # for k = 1 (¢f. Remark 3.3.6(4)), one has
Wl =Kerlt . M — H].
As O :gr) M — grk,;r]./// is an isomorphism for k& > 0, one gets

M= & Votdd =i Vot
k>0

(¢) (cl) < (c2): It is enough to show that the mappings
Ker[t: Vot — V_.4)
D —~—
Kerlt: # — . #) Ker [t :grl . # — gr¥ | ]
are isomorphisms. It is clear for the right one, since t @ Voog.# — V._|.# is an
isomorphism. For the left one this follows from the fact that ¢ is injective on grY. #
for a # 0 according to Remark 3.3.6(4).
(¢2) & (e3): let us verify < (the other implication is clear). Let .7 denote the
t-torsion submodule of .#Z and .7’ the submodule generated by

Fo ' Ker t:t — ).

Assertion 1. — 7' is a subobject of A in ?(X,t).
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This assertion gives the implication < because. by assumption, .7’ = 0. hence
t:.# — A is injective, so .7 = ().

Proof of the assertion. Let us show first that .7’ is 4 »-coherent. As we remarked
above. we have .7, = Ker|t : gr(‘)'/'u/l — gr[l.,// ]. Now, .7, is the kernel of a linear
morphism between % »;-colhierent modules. hence is also # 4 -coherent. It follows
that .7’ is # 4 -coherent.
Let us now show that .77 is strictly specializable. We note that .7 is strict because
it is equal to
Kor[ pry A — g ///}

Let U, .7 be the filtration induced by V,.# on .7'. One shows as in (b) that U7 =0
and grl’.7’ = 0 for a € N. Let us show by induction on & that

Up 7" = Ty + 0, T + -+ 01 7.

Let us denote by U].77 the right hand term. The inclusion D is clear. Let (a,. 2,) €
A
2o, m € UA.J7(.’,.“;“) and let ¢ > k such that m € [/h’ 2} If ¢ > k one has

me T Vi M, .., henee t'm e VoL 4, .0 7(/1 ) = 0. Put

o
mo= g+ Opmy + -+ dymy,

with tm; =0 (j =0..... 7). One then has #05m, = 0 and, as

5/711( = H it —jz)-me = (—=1) 02 my
J=0

and 7 is strict, one concludes that my = 0. hence m € U/_,.7'

(v .2+ This implies

the other inclusion.

As et 77 s stll(t (because it is contained in grl’.#), one deduces from Remark
3.3.6(4) that 0 : A, "7 — gﬁlkH 7' is injective for A > 0. The previous computation
shows that it is ()nto, henee .77 is strictly specializable and U,. 7" is its Malgrange-
Kashiwara filtration.

It is now enough to prove that the injective 111()1'1)111%111 grf,"y T — (rr(‘,, W is %trict.
But its cokernel is identified with the submodule It : gv} . # — vV, #) of grV'|. # .
which is strict. O

(d) If can is onuto, then .# = By - Voo 2. If . # has a t-torsion quotient .7
satisfying 3.3.8(1a), then Vo7 = () 80 Veo.# is contained in Ker[.# — 7] and so
is Zoy - Vool = .4, henee .7 = ().

(e) (el) = (¢2): Put
Ugdl' =Vegtl +04V_y. 0 and Ty = Kerlt: M — ).
The assumption (1) is equivalent to Vo.# = Uy.#' & F. Define
Ul =V Ry -Uptt' and Uptl" = ViiRBa - T
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fork >0. As Vi = Vi1 M +0,Vie_ .2 for k > 1, one has Vot = Up. ' +Up "
for £ > 0. Let us show by induction on & > 0 that this sum is direct. Fix & > 1 and
let m € Up.#' " UR.#Z". Write

m=mj_, +0my_, =mi_, +0m)_,

with mj,_.n},_, € Up—r#’ and mj_,.nj_, € Up_1.#". One has O;[n),_,] =
Ocn/_ 1 in Vi /| Vi 1., hence, as
k-1

O - V/\;,]////Vk_.z./// — Vk///kallf

is bijective for k > 1, one gets [n},_,] = [n}/_,] in V1.4 /Vi_o.# and by induction
one deduces that both terms are zero. One concludes that meUy_1.#4' NUp_ 14" =0
by induction.

This implics that . # = . 4" &.#" with .4’ Lof UpUp.#" and .#" defined similarly.
It follows from (a) that both .#’ and .#" are strictly specializable and the filtra-
tions U, above arc their Malgrange-Kashiwara filtrations. In particular .#’ satisfies
() and (d).

(e2) = (cl): One has Vog.#"” = 0. Let us show that Imcan = gr}.#’ and
Kervar = gry.#". The inclusions Imcan C gry .4’ and Kervar D gry.#" are clear.
Moreover gry . ' M Kervar = 0 as .#' satisfies (c). Last, can: gr¥,. #' — gry 4" is

onto, as .4 satisfies (d). Hence gry.# = Im can ¢ Ker var. O
Corollary 3.3.12 (Kashiwara’s equivalence). - The functor i induces an equivalence

between the category of coherent strict X u;, -modules (and strict morphisms) and the
full subcategory ,S/j;i;'(X.t) of .#*(X,t) consisting of objects supported on Zy. An
inverse functor is .

Proof. - Tt follows from Proposition 3.3.11(h). OJ
Proposition 3.3.13 (Strict specializability along {t" = 0}). -~ We assume that .# s
strictly specializable along {t = 0}. Put f = t" for r = 2. Then .# is strictly

specializable along {f = 0} and, if we denote by i : {t = 0} — X the closed inclusion,
we have (Vy o # . N) = (iy ) po.# NJ/1) for any « and an isomorphism

def s
cany = cango(t" 1)1

caly /1—\ cany

- . 77 I En— /
Wy 1. ~ Vol p =iy Vo M *l = A — — j Yo

&_’//—

var ¢ N
def .
vary = t' Lo var,
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Proof. — We fix z, and we forget about the exponent (z,), when working in a neigh-
bourhood of z,. We can write iy . # = Gpen.dl %086 as a B a o Clu] (D, )-module,
with

k(2 8) =m e oks.
0i(m @ 8) = (04m) =6 — (rt" 'm) © 9,0,
u(m@9) =({t"m) @
Ox(m®d)= ((/}m) J.

and with the usual commutation rules. For the sake of simplicity, we will write Z 2« ¢
instead of Z 9 ®c Clu](d,) and V) Z 4 «c instead of Z4 ¢ Clul(ud,).
For a < 0, put

Vaif+/// ()ilx\,‘“/ra.//l@(s),

and for a > 0 define inductively
Viipooll S Vi ol +0,Va_rig o M.
We assume that a < 0. Using the relation
(Ouu+a*xz)(m®d) = %([(6,1‘, +raxz)ml ®0 —0,(tm @ 4)),
one shows that, if
H (Ot + (rev) x 2)"r o Vool C Vepo
£, (ra)=ra

then
H (Ouu+a*z)" Vi o M C Veyipy .
b, (a)=a
thus (3.3.3) for a < 0.
Ifmy, ..., my generate V... # over Vo.# 4 . then m©6,. .., my®0 generate V, iy A
over Vo Z 2 xc, as follows from the relation

(Ortm) @ 6 = (04t — ro,u)(m @ 6).

It follows that Vi . is VoZ 3 xc-coherent for any a < 0, hence for any a.
For any a we clearly have

Vaorigy ol CuVyig ol (resp. Vogprigpll CVegprifpdl +0,Vyip M)

with equality if @ < 0 (resp. if ¢ > —1). as an analogous property is true for ..
Therefore, Vyip . # is a good V-filtration.

According to Remark 3.3.9(5). it is now enough to prove the second part of the
proposition, hence we now assume that a < 0.
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We have Vyig = Veaiy g W*Zpo (Vyatt @08). One shows, by considering
the degree in 9,, that the natural map

operY MO — Vi

O [ma]dF — [Z % (my ® 5)}
k

is an isomorphism of #Z 4 -modules. The desired assertions follow. O

Proposition 3.3.14 (Restriction to z = z,). — Let z, € Qo and let A be a strictly spe-
cializable % 4 -module with Malgrange-Kashiwara filtration V.*).# near z,. Put
M., = H](z—z2,)4.

Zo

(1) For any a € R, we have, near z,,
VENM) N (2= 20)l = (2= 20) - V().

The filtration U,(M.,) naturally induced by V) (L) on 4 |(z — 2,).4 is good with
respect to V,.Px (zo #0) or to V,ert' Py (2, = 0) and, for any a,

gl (M) =gt ot [z~ zo)erl

Moreover, grf/ (M,) is naturally decomposed as the direct sum ©ajr, (a)=a z/ P

/.,,,7

with
d( f

;. (:)]\[:v Pt %// o)t.a .
Last,
oty ‘”)]\[w — ut””> M., is an isomorphism if €, (o) <0,
o O @ J o M~ — 1/,?“("“]\[“ is an isomorphism if £. (o) = —1 but o # —1.
We still denote by N :
by N, and similarly for can and var.
(2) If zo # 0. then
(a) ML, is specializable along X as a jx-modulc
(b) ((),1‘ +a*2,/20) = N/z, is nilpotent on 1/', - "M,
(¢) O = 4y ”)]\L U'( ”_HA[ . s an isomorphism if (. () = —1 but o # —1.
(3) If z, & Sing A, in particular if z, € iR, the induced V -filtration U M, is a

Zo0

Malgrange-Kashiwara filtration V.*=) M, = (for some R-linear form L. depending on

(zo) M. — L/r,(j"’)]\[;” the nilpotent endomorphism induced

M‘u

2o only) and we have
PO ML, = P ansyyjz, Moy

Zo Zo

i particular. ””)]\[ = U oM, for a € R, e.g.. « = —1.0; moreover, N induces
ZoN:,, can in(lu,(,e,s 20 (,(m;” and var induces var,, (where N, . can,, ,var., are defined
in §3.2 for M., ).

Proof. We work locally near z, and forget (z,) in the notation. Let m be a local
section of V,,(#) N (z — z,).#. Then m = (z — z,)n where n is a local section of Vi, . #
for some b. If b > a, then n induces a torsion element in gr}.#, hence n € Vo
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by 3.3.8(1la). This gives the first assertion. The other assertions are clear (cf. §3.2).
Let us give more details when z, ¢ Sing A. If we fix a, the roots of the minimal
polynomial of —8;t on gr¥/ (M. ) are the v = (a % z,)/z, where a satisfies £, (a) = a.
If z, & Sing A, then v — a is a R-linear form on ~ (because o — (v * z,)/2, is a R-
linear automorphism of C), that we denote by L. (v). We note that, as z, € Sing A,
we have v € Z only if o« € Z and therefore L. (Z) C Z. The filtration U, is then equal
to the Malgrange-Kashiwara filtration associated with L. (see §3.2).

If z, € Sing A~ {0}, the roots of the minimal polynomial of —d;t on gr (M.

Zo

) may
differ by a nonzero integer, hence the filtration U, is not useful to compute ¢ (M)

Zo )t

On the other hand, if z, € R*, we have £,, = Re and Re(a * 2,/2,) = Re(a),
so the roots of the minimal polynomial of —d;t on grf]([\/[, ) are the « for which

Zo

Re(a) = a. In the case z, = 1 (corresponding to the functor Zpr), we also have a

perfect correspondence with can and var. O
Remark. With the only assumption of strict specializability, we cannot give general

statements concerning the behaviour of Properties (b) to (¢) of Proposition 3.3.11 by
restriction to z = z, # 0. We will come back on this in Proposition 4.1.19.

We can now reformulate Theorem 3.1.8 for strictly specializable modules. Let us
take notation used in this theorem.

Theorem 3.3.15. — We assume that .# is good and strictly specializable along X x
{0}, and that F' is proper on the support of 4. Assume moreover that, for any c.
the complexes fi o.# are strict. Then the Xy «c-modules ,}’/"(Ff.,/{) are strictly
specializable along Y x {0}. Moreover, for any «., we have a canonical and functorial
isomorphism

U N (Fs ) = A (fi .04 ).

Proof. — We can work locally necar z, € Qg and we forget the exponent (z,). We
note that, because of Remark 3.3.9(1), the complex ,/'Jrgr(v,'. # is strict for any a € R.
Let us denote by U, 2 (Fy.2) the filtration induced by #¢(f;V,.#'). We can apply
to it the conclusions of Theorem 3.1.8 (after extending it to the case of filtrations
indexed by Iy + 7). This filtration satisfies (3.3.3) and, by assumption, 3.3.8(1a). It
is therefore equal to the Malgrange-Kashiwara filtration (¢f. Lemma 3.3.4). We hence
have

gra A (B M) = A (frgrg M) = & A (fiipad).

As the image of 7 fiihy 0 ) — gry AU (Fy. 4 ) is clearly contained in ¢y o 7 (Fy 4 ).
it is therefore equal to it.

The canonical isomorphism 7 fii)y o) — V1.0 (Fr. /) that we have con-
structed is a priori only defined locally near z,. However, it is locally independent of

the choice of z,: to see this. replace grg above with Va(is)/\/“(f‘f) for € small enough,
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and argue as in the proof of Lemma 3.3.4(7). Therefore, it is globally defined with
respect to z.

Ast: V. # — V, 1. # is an isomorphism for a < 0, it also induces an isomorphisim
A fiVaodl) — AU fsVartl). As K (fiVotl) — H(Fy.4) is injective for
any a and has image V, #7'(Fy.# ). this shows that 2" (F;.Z) satisfies 3.3.8(1b) and,
by the same argument, 3.3.8(1c¢). O

Remark 3.3.16. It is enough to verify the strictness condition of the theorem for
those a such that Re(w) € [—1,0[ and for a = 0: indeed, strictness is a local property
with respect to z, and one can apply locally 3.3.8(1b) and (1c).

3.4. Localization and minimal extension across a hypersurface

3.4.a. Localization of a strictly specializable %, -module. — Consider the
sheaf of rings #Z,-[t ']. We note that we have Z, [t7'] = (VoZ)[t '], as 0, =
t=1(t3;). This ring has a V-filtration defined by Vi#Z - [t71] = t=*Vo# »-. One can
define the notion of a good V-filtration for a coherent .%;9'[1‘"1]—1110(11110 //7 as well
as the notion of specializability. Then Lemma 3.3.4 applies similarly, and shows the
existence of a canonical V,*)-filtration.

The situation simplifies here, as ¢ : V(,,(:"),//7 — V:l(i”l).//x is an isomorphism for
any . It follows that ¢ : Ur'zf.“,/7H Ut ,,1./7/’7is an isomorphism for any o, and we do
not need to consider the (can. var) diagram. Morcover, strict specializability reduces
here to Condition 3.3.8(1a). as we are not interested in Condition 3.3.8(1¢).

Lemma 3.4.1. — Let ./ be a coherent 2 - -module which is strictly specializable along
t =0. Then .4 < R [t @, A is a coherent Xy [t -module which is strictly
specializable along t = 0. Moreover, the natural morphism .4 — .4 induces, in the
neighbourhood of any z, € Qo, an isomorphism of Vo.# » -modules
Va<0. VE o =ve) g,

Proof. - We have . 7 = Oyt @, A asa Oy [t~ -module. Locally. the injective
map V(,()// — .7 induces, by flatness of @, [t7'] over @5, an injective map
//‘y-[t”l] R, ‘/U()// < .. which is onto because . Z = ZA»;() ()Tf“/;,(:"). # . so that

N D (e ER L i A N (R ER AR

E>0 k>0

As gl‘(‘{(:”). # is killed (locally) by some power of ¢t, we also have M= Ot~ ®e,
V<(f)").%/. Put then V”(;A)//\: t=% @ V.5 for any a € [~1.0] and any k € Z. This
defines a filtration of .#. which has all the properties required for the Malgrange-
Kashiwara filtration. As t : V(,(Z”).%/ — V(ff“l),c// is bijective for a < 0, we get the

required isomorphism. O
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Lemma 3.4.2. — Let .# be strictly specializable along t = 0. Put = Ryt ..
Then, A

(1) for any o € N, we have vy o # C 'g/),.(,//,x,

(2) for any o with Rea € [=1.0[, we have Uy o #s = V1.0 H|s-

Proof

(1) We know, by Lemma 3.4.1, that the inclusion is an equality near z, if £, () <0.
Fix now o ¢ N. Locally near z,, there exists & € N such that ¢, (o — k) < 0. We
have a commutative diagram

S
l
fl‘l zlfk
Ut oM —= ’l/’/uf;,-//?'

where the left vertical arrow is injective, by Remark 3.3.6(4), hence the result.

(2) Choose k € N* big enough so that £_ (v — k) < 0 for any o with Rea € [—1,0]
and any z € S. We note now that, for any ¢ > 0, ( =€) xz # 0 for 2 € S, as
Re(ar =€) # 0 (cf. §0.9). Therefore, as tdy 4 (o — £) % z is nilpotent on ¥y.q ¢ 1.#|s.
t0; is bijective on it and thus the map ¢ : ¢y (. #|g — Wi a—e—1.#)s is onto, so
that the left vertical map in the diagram above, restricted to S, is onto, as was to be
proved. O

Deﬁniﬁ'fm 3.4.3 (Nearby cycles). Let .4 be strictly specializable along ¢t = 0 and
put A =Rt @n, . For a such that Rea € [—1,0], put

‘l’t‘(wl{ déf 'l/f"i.u'//z

Remarks 3.4.4

(1) By the definition of strict specializability, we have, for any o & N, a local (with
respect to z) isomorphism Wy . # ~ ), o.# . given by a suitable power of t or of 0.

(2) On the other hand, by Lemma 3.4.2(1), we have ¥y o.# C VY .# and
Yt tlis = Vi Mg, for any o with Rea € [—-1.0[.

(3) Last, if a is real and in [—1,0[, we have ¢y o4 = Vi o, as (o) = a <0
for any z.

Remark 3.4.5 (Strict specializability along {t" = 0}). — Proposition 3.3.13 (forgetting
the assertion on can and var) applies to strictly specializable % 4-[t~]-modules. Re-
mark that, with the notation of loc. cit., the action of u is invertible on 1j+%7 There-
fore, we deduce that, if Rea € [—=1,0[, (Vs 0. # .N) = i (V) po—1ra)# . N/r), where
[ra] € Z is such that Re(ra — [ra]) € [-1.0[.
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3.4.b. Minimal extension across a hypersurface

Proposition 3.4.6. Let .4 be a strictly specializable R o [t~t]-module. In the neigh-
bourhood of any z, € gy, consider the %y -submodule WA of N generated bJ
Véf,")%/ Then, the various .#'**) glue as a coherent %’1 -submodule .# of . %/
which is the unique strictly specializable X 9 -submodule of Va saz‘,zsjymg

() Zolt= @, M =4,

(2) can is onto and var is injective.

Moreover, the filtration defined by

o v a ifa <0,
(54())(*) ‘/“ )M = Z[GN.”/<0 6?‘4}/20)«//2 lf a>0
o' +e<a

is its Malgrange-Kashiwara filtration near z,.

Definition 3.4.7 (Minimal extension). — We call the X g-submodule .#Z of . v given
by Proposition 3.4.6 the minimal extension of . & across t = 0.

Proof of Proposition 3.4.6. — The question is local on 2", so we work in the neigh-
bourhood of some compact set in X and on some disc A, (n). on which V.(:“)QZ/V
exists. We denote by A the set of indices of this filtration.

Let us first prove that .# does not depend on z,. We have to prove that, if 7 is
small enough, then for any z € A. (n), the germ ) s equal to the germ )
The problem comes from the fact that V<(,") # can fail to induce Véb)% at z. Fix
€ > 0 such that

(3.4.8) Vil ad=via.

Then, after Lemma 3.3.4(5) and (3.3.5), we have, for n > 0 small enough and any
z€ Az, ().

(3.4.9) Vil a. =V . v . v

. 20) z . . L.
Therefore, /?’;( C //f ' In order to prove the reverse inclusion, it is enough to
show the inclusion

(3.4.10) . eV A+ oV =V 1oV

because if ) is small enough. we have V<(“_)1%Z C V<(B>%Z equivalently, it is enough
to show that, for any o € A and any z # z, near z, such that ¢, («) € | — £,0],
the operator Ot is onto on ¥, .. Z/\. Recall (¢f. Lemma 0.9.2) that, if « is such that
(. () =0, then a*z, = 0 if and only if & = 0. Therefore, for any € > 0 small enough
there exists n > 0 such that

(t..(a) €] —e. 0}, z€ A, (n) and « € AN {0}) = a*z #0.

<o
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As —(0¢t + « * z) is nilpotent on ’u}',g.(,.//Z. the previous choice of e, 7 is convenient to
get (3.4.10).

Clearly, each .#(*¢) is 9 »-coherent on the open set where it is defined. Let us
now show that it is strictly specializable along t = 0. Near z,, .# = o) comes
equipped with a filtration V.*¢).# defined by (3.4.6)(x). This V-filtration is good,
and . is specializable. This filtration satisfies Properties 3.3.8(1a). (1b) aund (lc):
indeed, this follows from the strict specializability of A for (la) with @ < 0 and
for (1b); for (la) with a = 0. notice that gl'(‘]"(:“).ﬁ’ is identified with the image of
0, : gz,l‘,i’//\% gl‘(v,"(:('),//;-l)yf construction. hence is strict, being contained in the
strict module grg(z”’.////w; for (1c¢), this follows from the definition of the V-filtration;
apply then Remark 3.3.9(5). Therefore. . # is strictly specializable.

Similarly, Oy : ¢y 1.4 — Yy.0.4 is onto. by construction, as ¥, o.# is identified
with

image [ﬂt S . %;~—> ’z;’vt_().//ﬂ.
Ast: ’z/,rt,()(%/v—» '1/'[,_1,//?15 an isomorphism. we conclude that, for ., var is injective.

Let us end with the uniqueness statement. Let .4 C Va satisfying 3.4.6(1) and
(2). Then, by Lemma 3.4.1 and 3.4.6(1). ‘/’éfj").ﬂy" = V<(f)"),/7: V<(E,)//7 As can is

onto and as ./ satisfies 3.3.8(1¢), we have .4 = #, - V<('(:)”)-/V near z,. hence the

desired uniqueness assertion. O

3.5. Strictly S(upport)-decomposable # 4 -modules
Definition 3.5.1. We say that a Z »--module .# is

- strictly S-decomposable along 2 if it is strictly specializable along 2 and sat-
isfies the equivalent conditions 3.3.11(¢):
- strictly S-decomposable at x, € X if for any analytic germ f : (X, z,) — (C,0),
if.4./ is strictly S-decomposable along 27 x {0} in some neighbourhood of z,:
strictly S-decomposable if it is strictly S-decomposable at all points 2, € X.

Lemma 3.5.2

(1) If A is strictly S-decomposable along {t = 0}. then it is strictly S-decomposable
along {t" = 0} for any r > 1.
(2) If # = . #\ @ My, then A is strictly S-decomposable of some kind if and only
if A and My are so.
(3) We assume that .4 is strictly S-decomposable and Z is pure dimensional. Then
the following conditions are equivalent:
(a) for any analytic germ [ (X.x,) — (C.0) such that f~1(0)NZ has every-
where codimension one in Z, i .4 satisfies both conditions 3.3.11(c¢) and (d);
(b) near any x,, there is no coherent submodule of .4 with support having
codimension > 1 in Z:

ASTERISQUE 300



3.5. STRICTLY S(UPPORT)-DECOMPOSABLE £ »-MODULES 85

(¢) mear any x,, there is no nonzero morphism @ : .4 — AN, with A strictly
S-decomposable at x,, such that Tm ¢ is supported in codimension > 1 in Z.

Definition 3.5.3. — Let Z be a pure dimensional closed analytic subset of X and let
A be strictly S-decomposable. We say that .# has strict support Z if the equivalent
conditions of 3.5.2(3) are satisfied.

Proof of Lemma 3.5.2. The first point is a direct consequence of Proposition 3.3.13
and the second one is clear. For the third one, let us show for instance (3a) <= (3c).
Let ¢ : . # — A, with .4 strictly S-decomposable at 2, such that Tm¢ C f~1(0).
Then 3.3.11(d) implies that Img = 0. Conversely, given f such that f~!(0) has
everywhere codimension one in Z, decompose iy 4 # asin 3.3.11(c). Then (3¢) implies
that .#" = 0. O

We will now show that a strictly S-decomposable holonomic # 5 -module can indeed
be decomposed as the direct sum of holonomic Z 4 -modules having strict support.
We first consider the local decomposition and, by uniqueness, we get the global one.
It is important for that to be able to define a priori the strict components. They are
obtained from the characteristic variety.

Proposition 3.5.4. — Let .4 be holonomic and strictly S-decomposable at x,. and let
(Zisx0)ier be the minimal family of closed irreducible analytic germs (Z;,x,) such
that Char . C U;Ty; X X Qo near x,. There evists a unique decomposition M, =
@Picr Mz, », of germs at x, such that .z, ., =0 or has strict support (Z;,x,).

Proof. — We will argue by induction on dim Supp.#. First, we reduce to the casc
when the support S of .# (see after Definition 1.2.4) is irreducible. Let S’ be an
irreducible component of S at x, and let S” be the union of all other ones. Let
f(X.x,) — (C,0) be an analytic germ such that §” C f=1(0) and (S, z,) ¢ f~1(0).
Then, according to 3.3.11(e), near x,, .4 has a decomposition .# = .#" & .#", with
A" supported on S” and satisfying 3.3.11(¢) and (d), and .#" supported on S”.

Conversely. if we have any local decomposition .# = ®.#s,, with (S;.x,) irre-
ducible and .#s, (strictly S-decomposable after Lemma 3.5.2(2)) having strict sup-
port S;. then S; C 8" or S; C 8" and A’ = &g,¢50 Ms,, M" = Sg,con Ms,.

By induction on the number of irreducible components, we are reduced to the case
when (5, x,) is irreducible. We can assume that dim .S > 0.

Choose now a germ f : (X,x,) — (C,0) which is nonconstant on S and such
that f=1(0) contains all components Z; except S. We have, as above, a unique
decomposition .# = .#"' & 4" of germs at x,, where .4’ satisfies 3.3.11(c) and (d).
and .#" is supported on f~1(0). by Proposition 3.3.11(e). Moreover, .#" and .#" are
also strictly S-decomposable at x,. We can apply the inductive assumption to .Z".
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Let us show that .#” has strict support S near x,: if .#/ is a coherent submodule
of .#" supported on a strict analytic subset Z C S, then Z is contained in the union
of the components Z;, hence .7/ is supported in f~1(0), so is zero. O

By uniqueness of the local decomposition. we get:

Corollary 3.5.5. Let . be holonomic and strictly S-decomposable on X and let
(Z:)ic1 be the minimal (locally finite) family of closed irreducible analytic subsets Z;
such that Char .#° C uiT; X xC*. There exists a unique decomposition H = ©; Mz,
such that each .#z, =0 or has strict support Z;. O

A closed analytic irreducible subset Z of X such that .#z # 0 is called a strict
component of .4 .
Corollary 3.5.6. — Let A, .#" be two holonomic Xz -module which are strictly S-

decomposable and let (Z;);c; be the family of their strict components. Then any
morphism ¢ : %/él — ///}” vanishes identically if Z; # Z;.

Proof. -~ The image of ¢ is supported on Z; N Z;. which is a proper closed analytic
subset either of Z; or of Z;, if Z; # Z;. O

The following will be useful:

Corollary 3.5.7. - Let .# be holonomic and strictly S-decomposable. Then .# is
strict.

Proof. — The question is local, and we can assume that .# has strict support Z with
Z closed irreducible analytic near a,.

First, there exists an open dense set of Z on which . is strict. Indeed, by Kashi-
wara’s equivalence on the smooth part of Z. we can reduce to the case when Z = X|
and by restricting to a dense open set, we can assume that Char.# is the zero section.
Hence we are reduced to the case when . is €y -coherent. If ¢ is a local coordinate,
notice that .2 /t.d = ;1.4 , as the filtration defined by Up.# = t=*.4 for k <0
and Up.# = A for k > 0 satisfies all properties of the Malgrange-Kashiwara filtra-
tion. Let m be a local section of . killed by p(z). Then m is zero in .# /t.# by
strict specializability. As .# is Oy -coherent, Nakayama’'s lemma implies that m = 0.

Let now m be a local section of .# ncar z, killed by some p(z). Then Zg - m is
supported by a strict analytic set of Z near r, by the previous argument. As .# has
strict support Z, we conclude that m = 0. O

Let us end this paragraph with a result concerning sesquilinear pairings:

Proposition 3.5.8. — Let ', .#" be two holonomic 2 -module which are strictly
S-decomposable and let (Z;)icr be the family of their strict components. Then any
sesquilinear pairing C '%/é,\s R e "%5_,\8 — Dby, «s/s vanishes identically if
Zi# Z;.
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Proof. - The assertion is local on X x S, so we fix z, € S and z, € X and we work
with germs at (x,, z,). Assume for instance that Z; is not contained in Z; and consider
an analytic function, that we can assume to be a local coordinate ¢ by Kashiwara’s
equivalence, such that ¢t = 0 on Z; and ¢ # 0 on Z,. Consider C' as a morphism
%/Z s — S omgy—— pe (l/}’ ‘S,CDbXMS/S) Fix local & g -generators mf, .. m’/ of
M (1 . By 3.3. 11(h) there exists ¢ > 0 such that t9m) =0 forall k =1,... (.

“ 170’7-”

Let m' € . %}, (20, And let p be the maximum of the orders of € (m/ )(mk) on some

neighbourhood of (1,.2,). As tP*174 /1% is CP, we have, for any k= 1,...,¢,
R tpt1l+q
tPHIC(m’ ) (my) = T 'C(m'y(my) =0,
hence ##*119C(m’) = 0. Applying this to generators of ’/{’/A,q(.ﬂmzo) shows that all

local sections of 0('%”/2;.(41:(,.:,))) are killed by some power of ¢.

As .y Thas strict support Z;, we know from Proposition 3.3.11(d) that
V<((J") ///2” -, generates ‘///é,,(.:r,.\:“) over #y . It is therefore enough to show
that C’(V<6’ My, (2 zy) =0

On the one hand we have ("(V("”) a J” .y) = 0 for k < 0: indeed, by
Lemma 3.1.3, ¢ : C'(VL.(”' k%/é“(il,m:“)) — O ,\::‘1 M7, ) is an isomorphism for k < 0,
hence acts injectively on C(Vk(z“),%/é’.(4,:0_:“)), therefore the conclusion follows, as t is
also nilpotent by the argument above.

Let now & < 0 be such that C(V, “’) My, (v =) = 0. and let m' be a section
of V;“"),///é,’(‘,r“‘z”); there exists b(s) of the fol m Lo e (ayepp—r (8 — ax2)" such
that b(—0.t)m’ € ‘/k(:l)///é(;'r) hence b(—0,t)C(m’) = 0; on the other hand, we
have seen that there exists N such that tN+t'C(m’) = 0. hence. putting B(s) =
H‘(V:O(s —{z), it also satisfics B(—0,t)C(m') = 0; notice now that b(s) and B(s) have
no common root, so there exists p(z) € C[z] {0} such that p(z)C'(m’) = 0. According
to (0.5.1), we conclude that C'(m’) = 0. a

3.6. Specialization of a sesquilinear pairing

3.6.a. Sesquilinear pairing on nearby cycles. — We keep notation of §§ 1.5 and
3.1.a. Let .’ and .#" be two objects of .#2(X,t) and let

C: /45 ’// — Dby, xs/s
be a sesquilinear pairing. In the iollowing, we will assume that the % 9 -modules are

also good (in the applications they will be holonomic). The purpose of this paragraph
is to define, for any « € C, a sesquilinear pairing

< aly / s 17
l//t,ac . l«'f.(w*/%s ‘20 1//1‘,0*%5 - QbXWFXS/Sv
S
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compatible with N, i.e., such that, with obvious notation,
(3.6.1) Vr.o C(N[m], 1)) = (i2)%¢.o C(Im]. Nu]),

where N denotes the action of —(0:t + a * z) on ¥y . Using the notation of Tate
twist introduced in (2.1.3) and the notion of morphism of %- Triples(X ) introduced
in Definition 1.6.1, we will put .4 = (N, N”) with N” = iN and N’ = —N" = —iN,
so that .4 is a morphism of - Triples(Xy):

(3.6.2) N l/)my(Q///‘ M'.C) —— U»/'t.a('//{,~ M C)(-1)
which satisfies 4™ = — 4.
Remarks 3.6.3

(1) Once such specializations are defined, we get, according to the compatibility
with N, pairings

, Y PN\ T
V1,000 1 gl 0 Mg @ g1y Vo g — Dbx,, xs/s -
S

In other words, using the notion of graded Lefschetz #- Triples introduced in Remark
2.1.17, the graded object

1., / def , . / P
(grl.\l/l/"t,cv 7 gl‘l\,lzﬂ/) = ( ﬁ? (grlll[l//'lxv'”/~ gri}lwl‘.rw%”a U)f.(v,fc) 5 grlllz' A )

is a graded Lefschetz triple with ¢ = —1.

(2) As C'is ,W(X.l;)_s—linoar, it easily follows from the definition of ¢ ,C' that we
know all ¢4 ,C' as soon as we know them for Re(a) € [—1,0[ and for o = 0, according
to 3.3.8(1b) and (1c).

In order to define the specialization of C'. we will use the residue of a Mellin
transform, that we consider now.

Let ', 4" be two objects of .#2(X.t) and let C : ////‘/S R o —//—‘/é — Dby, xs/s
be a sesquilinear pairing. Fix (z,, z,) € X x S. For local sections m’,m” of .4", .#"
defined in some neighbourhood of (x,,2,) in X x S the distribution C(m’,m) has
some finite order p on nbyys(7,. 2,). For 2Res > p, the function [t[?* is CP, so for
any such s, [t|2°C(m’.m") is a section of Dby, xs/s on nbx xs(x,. 2,). Moreover, for
any relative form 1) of maximal degree with compact support on nbx xs(x,, z,). the
function s — <|t]2”C(771',W). ’u’*> is holomorphic on the half-plane {2Res > p}. We
say that |t|2*C'(m/, m") depends holomorphically on s on nbx xs(Zo, zo) X {2Res > p}.

Let x(t) be a real C> function with compact support, which is =1 near ¢t = 0. In
the following, we will consider differential forms ¥ = @ A x() %dt A dl, where ¢ is a
relative form of maximal degree on Xy x S.

Proposition 3.6.4. Let A4, . #",C be as above. Then, for any (x,,2,)€ X X S,
there exists an integer L > 0 and a finite set of compler numbers ~ satisfying
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'lf'th,/%(/.lru.:u) 7& 0 and ’l’/)tﬁ‘////(/‘;f“
and m” ()f”/(/\:» -

.y # 0. such that. for any element m' of .4

(Toe20)

Zo

) the correspondence

(3.6.4) (%) @ — HF(S —yxz/2) (PO mT), o A x(t) S=dt Adt)

defines, for any s € C, a section ()f’DwaXs/s on nbx,xs(Te, 2o) which is holomor-
phic with respect to s € C.

The proposition asserts that the distribution
@ (JtP°C(m/ . m”), o A x(t) =dt A dT)

extends as a distribution on nby,xs (., z,) depending meromorphically on s, with
poles along the sets s = —k + v * z/z (k € N), and with a bounded order. We note
that changing the function y will modify the previous meromorphic distribution by
a holomorphic one. as [t|?* is O for any s away from ¢ = 0. The proposition is a

consequence of the following more precise lemma.

Lemma 3.6.5. Let (xo.20) € Xo X S and let ay,as € R. There exist L > 0 and
a finite set of v satisfying

’(,“/"t<‘)"///(/‘l‘“_;“) # 0, (r’/’t.v'”(/;»“r.;,,) #0, L, (7) <ap, (. :(,(7) < axz,

such that. for any sections m' € Lf,(,:").«//(’m ., and m' e Va(-fz”).f/(/;. 2 the corre-

spondence

(3.6.5)(*) Y — H D(s —v*z/z)" - (JtP*C(m'.m"). o A X(t) 5=dt A dE)

defines, for any s € C, a section of Dby, xs/s on nbx,xs(€o, 2o) which is holomor-
phic with respect to s € C.
 SUTTLE reover 3 " o’ (re. m') g Vize) / reen 4
Assume moreover that the class of m’ (resp.m”) in gr; '///(J‘(,«Z(,) (resp. in
V(o) 17 / o am  Ary 7l o1 > mroda e 3
er,, M ) As i g AL (resp.in Dty A .y/)- Then the product of
T factors can be indexed by a set of v satisfying moreover

(3.6.5) (%) 2Re(v) < ar +az or if o) = g dof a, vy = a.

Proof. — Let b,/ (S) = HweA(m’)(S — 4% 2)") be the Bernstein polynomial of m’
(¢f. Corollary 3.3.7), with v(v) bounded by the nilpotency index L of N. Tt is enough
to prove that Hw,'eA(m’) [(s—vx2/2)"0) is a convenient product of I factors. Indeed,
arguing similarly for m”. one obtains that the product indexed by A(m’) N A(m'") is
convenient. It is then casy to verify that Conditions (3.6.5)(x%) on v are satisfied by
any v € A(m’) N A(m"). Remark that £, (v) 4+ (_., (7) = 2Re(7).

We note first that, for any local section @ of VoA y (4, 2,), and any C>-form 1
on nbx xs(@o. 20) with compact support, the form (Jt*¢) - Q is CP with compact
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support if 2Re s > p. Applying this to the Bernstein relation Q = b,/ (—=0;t) — t P for
m’, one gets
0 = ([byy (=0st) — tPIC (7)., |t]** )
(3.6.6) ={(C(m",m"), (|t]**¥) - by (—0st) — tP])
= by (28)(C (') [t** ) + (C(m' "), |t[**tn)
for some 7, which is a polynomial in s with coefficients being C'>° with compact

support contained in that of ¢. As [t]?*t is CP for 2Res + 1 > p, we can argue by
induction to show that, for any ¢ and & € N,

(3.6.7) S by (z(s —hk+1))- - b,n/(zs)<|/|2”C}'(m,',m), )

extends as a holomorphic function on {s | 2Res > p — k}. Apply this result to
¥ =@ A x(t) g=dt AdE to get the lemma. O

Remark 3.6.8. The previous proof also applies if we only assume that C' is '%(X.Y).S'

linear away from {t = 0}. Indeed, this implies that [b,, (=0.t) — tP]C(m’,m”) is
supported on {t = 0}, and (3.6.6) only holds for Re s big enough, maybe > p. Then,
(3.6.7) coincides with a holomorphic distribution defined on {s | 2Res > p — k}
only for Res > 0. But, by uniqueness of analytic extension, it coincides with it on
Res > p.

A distribution on Xg x S/S which is continuous with respect to z and holo-
morphic with respect to S can be restricted as a distribution to sets of the form

s = « x z/z. This restriction is continuous with respect to z. By a similar
argument, the polar coefficients along s = « % z/z of the meromorphic distribu-

tion <|t|2”C(m',W), o« A x(t) #dt A (ﬁ> exist as semi-meromorphic distributions on
nbx,xs(To, 20) (i.e., the exists a polynomial p(z) such that, after multiplication
by p(z), the distribution is continuous with respect to z). The possible poles are the
z € S such that there exists v as in (3.6.5)(x*) with (y —n —a)*z = 0. n € N and
n#0if v = a.

Lemma 3.6.9. Let [m'] be a local section of .o ' near (x,.z,) and [m"] a local
section of V.o #" near (r,,—z,). Then. the polar coefficients of the distribution
(JtPPCm’ '), « A x(t) ﬁ(lt Adl) along s = a* z/z do neither depend on the choice
of the local liftings m',m” of [m'],[m"] nor on the choice of x, and take value in

Qon;,XS/S~
Proof. Indeed, any other local lifting of m’ can be written as m’ + p/, where 1/ is a
local section of Vi;’z’i(”).%{’. By the previous lemma, ([¢[2°C(u/,m"), e Ax(t) 5=dt AdE)

is holomorphic along s = a*z/2z. We note also that a different choice of the function x
does not modify the polar coefficients.

We want to show that the polar coefficients do not have poles in some neighbour-
hood of S. The possible poles of the polar coeflicients, as we have seen above, are
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such that (v —n —«)*z =0, with n € N and n # 0 if v = a. Now, (3.6.5)(**) shows
that the only possible v # « are such that Re(y) < Re(«), hence for any v,n that
we have to consider, we have Re(y — n — «) < 0, hence # 0. Now, there can be no
z € S with (y —n—«)*xz =0 (by §0.9, we should have z = +i and v —n — « purely
imaginary). O

According to this lemina, we get a sesquilinear pairing

7 IL/)i,,(vC
(3.6.10) Vea s o Vg ———— Db, xs/s
.6. S
m'], [m” ReS—qun /s t2C(m! . m7), « A (t gt A dE 7
/ 2

where m’, m” are local liftings of [m/], [m”]. The compatibility (3.6.1) of ¥ ,C with N
follows from £07]t|>* = (iz) 720 |t[** (recall that v x z/z is real).

Definition 3.6.11. For Rea € [—1,0][, the specialized sesquilinear pairing ¥; ,C' is
defined as ¢ ,C, according to Remark 3.4.4(2).

Remark 3.6.12. We have defined a functor v, o, and similarly ¥, , if Rea € [—1,0],
from the category of strictly specializable objects of %- Triples(X), i.e., objects J =
(A, 4", C) such that .#" and .#" are in .?(X,t), to the category %- Triples(Xg)
by putting ¢;. .7 = (V.o 10" Y1 ,C). This functor clearly commutes with
any Tate twist by k& € %Z.

Remark 3.6.13 (Behaviour with respect to adjunction). — As x(¢) #dt Adl is real, we
have Y o(C*) = (V.o C)*. If . .7 — T*(—w) is a sesquilincar duality of
weight w on .7, then ¢ . is a sesquilinear duality of weight w on ¢y ,.7. As
W08 and ¢y 8" commute with N, we have A o)y . = = o o A (recall
that .4 = (—iN,iN)). Then grMy, .7 is a graded triple in the sensc given in §1.6.¢
and grf\['z/),,.(,,y/ is a (graded) sesquilinear duality of weight w on it. Last, we see that
grlllzf/‘/ is skewadjoint with respect to grﬂ\ld)[ o5 in other words, gr?lz/),_af’ is a Her-
mitian duality of (grMy .7, grM,. #). Consequently, (2.1.13) defines a Hermitian
duality on the primitive parts.

If for instance 4" = . #" = .# and C* = C, so that . = (Id,1d) is a Hermitian
duality of weight 0. we have ;o (C)* = 9 o(C), and we are in the situation of
Example 2.1.14. The sesquilinear pairing on the primitive part

P, C: Pexy byallis @ Per'tadls — Dby, xs/s
S
is given by the formula
9 , def . \_¢ ,
(3.6.14) Py, C = (i2) "0 sC((IN) o, 7).

Remark 3.6.15. — We assume that 7 is a smooth twistor. In particular, C' takes
values in C*° functions. Then ¢, 1.7 is equal to the restriction of .7 along {t = 0}
as defined in Definition 1.6.9.

SOCIETE MATHEMATIQUE DE FRANCE 2005



92 CHAPTER 3. SPECIALIZABLE 2, -MODULES

Remark 3.6.16. - Let f = t" for » > 1. Let iy be the graph inclusion of f and let
i: {t =0} — X be the closed inclusion. Similarly to Proposition 3.3.13, one shows
that ¥ 5 oC =iy ) .0 C.

3.6.b. Vanishing cycles and sesquilinear pairings. — If .#’ or .#" are sup-
ported on Xy, we have ¢y ,C = 0 for any «. We should therefore also define the
“vanishing cycle analogue” ¢; (C' in order to recover an interesting sesquilinear form
on Yo' Reg Yeo A" i1 any case. We continue to assume in the following that
M, A" are strictly specializable along {t = 0}.

The function Ig. In the following, we always assume that z varies in S. Let x(0)
be a C'> function of the complex variable # such that Y has compact support on C
and Y = 1 near 8 = 0. For s such that Res > 0. the function

[g(t,s.z)déf/ B0/ 1912071 3(0) 5= db) A df

is continuous with respect to ¢ and holomorphic with respect to s (notice that the
exponent tz/68 — t/fz is purely imaginary. as z € S). It also varies smoothly with
respect to z. For any p € N. the function I5. when restricted to the domain 2 Re s > p,
is C? in t and holomorphic with 1('51)oct to s.

Define I j.¢ by replacing \()\2(S with 058" ‘H\ ) in the integral defining I3 in
particular, we have Iy = Ig 0.0 and Igpn(t,s.2) = Ig(t.s + k, z) for any k € Z.

Remark 3.6.17. -~ We can also use the coordinate 7 = 1/6 to write I¢(t, s, z) as
Li(t.s.2) = / (P15 | T2 S e p dF

where now X is C°°,is = 1 near 7 = oc and = 0 near 7 = 0. It is the Fourier transform
of |7~ 2(s+1) X(7) up to a sc dling factor z: put 7 = £ +in and t/2z = y + ix; then
Ig(t,s.z) = L [e-ixstum) |7'|7 GO L) de A dy.

If we denote by .# the Fourier transform with kernel e”"”/" L

—dr A dT, then the
inverse Fourier transform . ~! has kernel ,_””‘”/‘idz‘ A dt.

For Re s large enough, using Stokes formula. we obtain
tlgp1e(t, s, 2) = —2(s + k) Igpe(t.s.2) — 2log 00 k4 1.0(t 8, 2)
g o1 (s 2) = —Z(s + OIgpe(t.s.2) = ZLyg o5 g1 (L5 2),
with I(')X\’/(')()JY+1~UIr’))’{/(")ﬁ.k.f+l € C™(C x C x S), holomorphic with respect to s € C.
In particular we get
[t Ig(t s — 1.2) = —s®Ig(t.s.2) + - -
where “- .7 is C* in (t, s, z) and holomorphic with respect to s € C. This equality

holds on Re s > 1. This allows one to extend I as a C™ function on {t # 0} x C x S,
holomorphic with respect to s.
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For Res > 1, we have
Oilg(t,s,2) = —Ig —10(t,s,2) and 0/dz(t,s,2) = —Igo.-1(t, s, 2),

hence
10l = zslg + z1pg/001,0 and ?ESTI; = Zslg + 31@§/a§,o,r
By analytic extension, these equalities hold on {t # 0} x C x S.

Definition of ¢¢oC. — Let m’, m" be local sections (near (w,, 40) and (v,, —z,) with
20 €S) of Vot V. " hftlng lo(,al sections [mn/], "] of Yy 0.4 0y o.#" . Using the
previous properties of I, one shows as in Lemma 3.6.5 that, for any test form ¢ on
2o and any compactly supported C*° function x(¢) such that x = 1 near ¢ = 0, the
function

s — (Ig(t,s,2)C(m',;m”), o A x(t)5=dt A dE)
is holomorphic for Re s big enough and extends as a meromorphic function of s with

poles at most on s = 0 and on sets s = v * z/z with Revy < 0.
We put

(3.6.18) <¢t‘00([m,’],m),ap> ef Resg—o (C(m/,m"), o A Ig(t, s, 2)x(t )5 _dt A dE).

This residue does not depend on the choice of ¥ and x, nor on the choice of the
representatives m’.m” in Vo', Vo.#" (cf. Lemma 3.6.9), and defines a section of
Dbx,.xs/s- As we can take x and X real, one obtains that ¢;o0(C*) = (¢:,0C)".
Arguing as for vy ,C', one gets the analogue of (3.6.1). We define then

(3.6.19) 0107 = e A, A", C) of (ot P, Py oC).

and we have a morphism .4 : ¢;.0.7 — pr.0.7 (—1) in - Triples(Xo).

Remark 3.6.20. -~ Let us explain the definition of ¢; oC. Consider the one-variable
distribution with compact support (xC(m’, m”) ). Its Fourier transform is a dis-
tribution of the variable 7, that we localize near 7 = oo and to which we apply the
functor vy, _1, to obtain ¢, oC'. This procedure is similar to a microlocalization with
respect to the variable ¢

The morphisms €an and Yar. — We define
“an = (var,ican) and Yar = (—ican,var).

Omnce they are known to be morphisms in %-Triples(Xy), they clearly satisfy

Yaro Gan = Ny, _,, Cano Yar = N, .
Lemma 3.6.21. The morphisms €an and Yar are morphisms in %- Triples(Xg):
G , Y
Vi1 T = 90T (<1/2), b0 (1/2) = gy 1.7
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Remark 3.6.22 (Behaviour with respect to adjunction).  Let . : .7 — J*(—w)
be a sesquilinear duality of weight w. Using the canonical isomorphism (1.6.3)
(d1 0T (1/2))" —> ¢1.0T*(—1/2) given by (Idy, , ar, — Idy, y.a), We get a commu-
tative diagram

.Y
T Vet Uy 1T (—w)
‘ﬁmJ' JV’V(J,T*
. wt,my/
(/1)1,7(),,7(—1/2) —_— (/J)LQ.,?*(—’U? — 1/2)

and an adjoint anticommutative diagram.

Proof of Lemma 3.6.21. — Let us show that %an is a morphism in %- Triples(Xy),
the proof for Yar being similar. Let [m(] (resp. [m”]) be a local section of ¢y o.#’
(resp. ¢, _1.24""). We have to show that

(3.6.23)  Resy—o 2(C(mf.m" ). ¢ A I(t. s. z)x(f,)idt A dE)

= Resg——1 (C(m{.m” ), o At x(t) 5= dt A dE).
We can replace alg(t,s,z) with —I5q10(t.s — 1,2), so that the left-hand term in
(3.6.23) is
(3.6.24) Ress——1 (C(mb, m" ), o A (—2Ig1.0(t, s.2))x(t)5=dt A di).

Let us denote by 7' the one-variable distribution (xC(m{, m” ), ) obtained by
integration in the Xy direction. It has compact support by definition of x. Therefore,
its Fourier transform .#7T is a C>°-function of 7., z, which has slow growth, as well as
all its derivatives, when 7 — oc. The function in (3.6.24) is then written as

(3.6.25) -z/,@T(T,/, 7 2D R(r )5=dT A dT.

On the other hand, the function in the RHS of (3.6.23) is

(Tt x(t) = dt A dly = (FT. PF”(titlg‘“X(f,)%dt A dE))
(3.6.206) g )
= / FT(1.2) . (tt]**x) 5= dT A dT
(in order to get this expression, we replace y with x? in (3.6.23), which does not
change the residue, as previously remarked).
The function fXJ,o(T, s,z). -— Let us state some properties of the function
- def _ )
Liio(rs,2) = FLHtH*Y).

(1) Let us denote by fx_;f,e(r, s,z) (k,¢ € Z) the function obtained by integrating
}t|2”t"'ff. Then, for any s € C with Re(s + 1+ (k + ¢)/2) > 0 and any 2z € S, the
function (7,s,2) — Ly k(7,8 2) is C°, depends holomorphically on s, and satisfies
lim, e Iy k(7. 8,2) = 0 locally uniformly with respect to s,z (apply the classical
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Riemann-Lebesgue lemma saying that the Fourier transform of a function in L' is
continuous and tends to 0 at infinity).

(2) We have
(3.6.27) Thoke=—2(s+ k) k10— 2oy jorke Orly ke = Iy ki1e

.6. - - ~ -~ ~
Tlhowe = —2(s + O L ko1 —Zloyjorne Orlpke = Iy ks,
where the equalities hold on the common domain of definition (with respect to s) of
the functions involved. We note that the functions Iy, ;¢ and I, O /0T k¢ AT€ C*° on
P! x C x S, depend holomorphically on s, and are infinitely flat at 7 = oo (because
t"’#|t|2”(‘)t7;x is C™ in t with compact support, and holomorphic with respect to s,
so that its Fourier transform is in the Schwartz class, holomorphically with respect
to s).

It follows that, for Re(s + 1) + (k + ¢)/2 > 0, we have

(3.6.28) TO ke = —2(s+k+ 1)L ke — 2Loy ot k1,00
Tij]x.l\:,(’ = —E(S + E =+ 1)1)(,]»«'@ — EI('))(/(’)?,AL/—{-l'
3) Consider the variable # = 77! with corresponding derivation 9y = —729;,
S] g

and write [, 4 ¢(f, s, z) the function fx,wr in this variable. Then, for any p > 0, any
s € C with Re(s + 1+ (k+€)/2) > p and any z € S, all derivatives up to order p of
[AXJ\.,((H, s, z) with respect to 8 tend to 0 when 8 — 0, locally uniformly with respect
to s,z (use (3.6.28) and (3.6.27)); in particular, fov,f(Tv s, 2) extends as a function of
class C? on P! x {Re(s + 1 + (k 4+ £)/2) > p} x S, holomorphic with respect to s.

The function /[\XJ’Q(T, s,z) is C* in 7 and holomorphic in s on {s | Res > —3/2}.
Using the function x(7) as above, we conclude that the integral

(3.6.29) /,/@T(T, 2) - F NP (L — R(r)) fdr A dF

is holomorphic with respect to s for Res > —3/2. It can thus be neglected when
computing the residue at s = —1. The question reduces therefore to the comparison

-~ _ —2(s+1
of Iy1.0(7,s,2) and 771 |7 D when 7 — o0.

Put .]A'XJ‘O(T. $,z) =T |T|2(S+l) fX‘L()(T, s,z). Then, by (3.6.28), we have

010 _ 3 _O0Ti0 5
T——OT = —Jox/0t,1,05 o7  Jox/o10.1

and both functions Jy, sar.1.0 and Jy, 57 91 extend as C> functions, infinitely flat at
7 = oo and holomorphic with respect to s € C. Put

-1
[{X(T’ S, Z) —_ / i}]&)\,/atlyo()\'r, S, Z) + JOX/(‘)?,O,] ()\T, S, Z)} dA.
JO

Then R’x is of the same kind.
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Lemma 3.6.30. — For any s in the strip Re(s + 1) € | = 1, —=1/4], the function T —
Jy1.0(7. 8, 2) satisfies

~ I'(s+2)
lim J T8, 2) = —2 ——.
A X‘,I,O( ) F(—'S)
Proof. — We can assume that x is a C> function of [t|?, that we still write x(|#|?).

For simplicity, we assume that x = 1 for |t| < 1. Then the limit of J, 1 ¢ is also equal
to the limit of the integral

J(1,8,2) = /

Jit<1

2(s+1) i dt d?

)sz—H,T/z z;_t_ A _7_

€ tr|tT| -

By a simple change of variables, we have
2 2s 4 -
J(1,8,2) =2 / ety 1y s=du A d.

Jul<| 7]

1 27
axJo ¢

J(1,8,2) =2z / J_1(2p)p*=tVdp
J p<|T]

,—irsiny

Using the Bessel function Ji(x) = et dy, we can write

= ~272("+1)z/ Jip)pt T dp,  as Jp = —J_ 1.
Jp<2|T|

For Re(s + 1) € | — 1,—1/4[, the limit when |7| of the previous integral is equal to

226D (s + 2)/T'(—s) (¢f. [71, §13.24, p. 391]). O
From Lemma 3.6.30, we can write, on the strip Re(s + 1) € | — 1/2, —1/4],
~ sy T(s 42
(3.6.31) Loaolr,s,2) = —27" 17| 2601 D+ 2) + K\ (7.5, 2)
/ F(*(S) /
where K (7,8,2) = —z7 ! )T|~2(s+l) I:’X is C> on C x C x S, infinitely flat at 7 = oo

and holomorphic with respect to s. For any p > 0, apply (0,0+)” to the previous
equality restricted to 7 # 0 (where both sides are €™ in 7 and holomorphic with
respect to s; preferably, multiply both sides by Y(7)), to get, for s in the same strip,

fx‘,‘o(ﬂ s+p,z)=—zr ! |7_|—2(s+p+1) w + (0:07)P K\ (7,5, 2)
['(=s—p)
where the last term remains infinitely flat at 7 = oc. It follows that (3.6.31) remains
true on any strip Re(s+1) € [p—1/2,p—1/4] with p > 0 and a function Ks(p) instead
of Ky.

Choose p such that the two the meromorphic functions considered in (3.6.23) are
holomorphic on the strip Re(s + 1) € |p — 1/2,p — 1/4[. The difference between
['(s+2)/T(—s) times the function in the LHS and the function in the RHS coincides,
on this strip, with a holomorphic function on the half-plane {s | Re s > —3/2} (taking
into account (3.6.29) and Ki”)). It is then equal to it on this whole half-plane, hence
has residue 0 at s = —1. |
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Let us emphasize two cases:

(1) Let us denote by ¢ the inclusion {t = 0} — X. Remark that, if .#’ and .#"
are in .’2(X, t) and are supported on {t = ()} so that .7 =i A, and 4" =iy 4,
then any sesquilinear pairing C on . //‘ans //S is equal to i1+ Cy for some scs(puhn(nu
pairing C on . //015 N o //oys Indeed, by /’(\ ) g-linearity, C' is determined by its

restriction to //OJS R o - %/()]S conclude by using that tC(mpy, mll) = C(tmiy. mfl) = 0.

We have .} = {04 and A = 1 o.#". Morcover:
Lemma 3.6.32. — The pairing ¢ oC' is equal to Cy.
Proof. — By definition. as x(0) = 1, we have for Re s > 0,
<C mg, m()) e N Ig(ts, z)x(t )—(11‘/\(1{> = <C0 my, m(,) <p> -13(0, 5, 2).
As X(0) =1, we have Ress—¢ I5(0.5,2) = 1. O
(2) We assume that can is onto.
Lemma 3.6.33. — Let my.my be local sections of Vo.#', Vo. /" lifting local sections
[mg]. [my] of Yo' pro.#". Then
{¢r.0C([mp)]. [mfl]). «) = Resq—o —<M)“C' (mg.mg).« A x(t)=dt A di).
Proof. There exists a local section [m” ] of 4y _1.#" such that [m{] = i can[mn”].
We have
(P C(mym). o Ax(t)g=dt AdE) = ([t[**C(tmy. tm]]). s A X(t)5=dt A df)
= ([t]**C(tm{, iNm"” ).« A x(t)5=dt A dF)
= (=0t [t]**)C(tmpy. m"™ ). o AX(t)5=dt A dE) + (s, 2)
= —iZ(s + Dt Ctmb. m” ). o Ax(t)5=dt Adl) + J(s.2)
—(iz) " Y(s+1 <|f\2’C(hn(),m e AX(t)g=dt AdE) + J (s, 2).
where J (s, z) is meromorphic with respect to s and has no pole along s = —1. There-
fore, as ¢r.0C([mg], [mf]) = de.oC(my), i canfm’ |]) = (iz)" e —1C(var[mp)], [m”]),
we get
(&r.0C([mg). Img]). o) = (iz) 7' Reso——y (Jt**C(tmf. " ).« A x(t)5=dt A dF)
—1
s+1
= Ress—0 —<|1‘}2s (mg. mg).« A x(t)g=dt A dE). O

= Resg— g (tFEIC g, my). « A X(t)g=dt A dt)

Corollary 3.6.34. — Let .7 = (', . #",C) be an object of %- Triples(X). We assume
that . A', #" are strictly specializable along {t = 0}. The following properties are
equivalent:

(1) ¢1,07 =ImEan® Ker Yar in Z- Triples(X),
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(2) 7 = 7 D S in Z-Triples(X), with .75 supported on {t = 0} and Z; being
such that its €Can is onto and its Var is injective.

Proof. —- The part for .#',.#" is Proposition 3.3.11. That ¢;oC decomposes is
proved as in Proposition 3.5.8. O

3.6.c. Direct images and specialization of sesquilinear pairings. — We take
the notation used in Theorem 3.1.8.

Corollary 3.6.35. — Let .7 = (#',.#",C) be an object of %#-Triples(X x C).
We assume that A, #" satisfy the conditions in Theorem 3.3.15. Then, for
any o with Rea € [=1,0[, we have Wy (o (FyT) = H(f1W1.0T). Moreover,
we have ¢y o (FyT) = A (fidioT) and, with obvious notation, Canyi(r,7) =
A fr Can), Varypip, 7y = " (f Var).

Proof. Apply Theorem 3.3.15 for .Z', .#"" and €an. Yar. It remains to controlling
the behaviour of ¥ oC, ¢,0C under Fy. Now the result is a direct consequence of
the definition of 1 C, ¢;.0C, as we can compute with local sections of V, ', V, 4" .
knowing that, for .# = .#"' or .#", the filtration V, ' (Fy.4) is 7 (fiV..#). O

3.7. Noncharacteristic inverse image

3.7.a. Noncharacteristic and strictly noncharacteristic %2 -modules along
a submanifold. — Let .# be a holonomic %, -module with characteristic variety
Char.# contained in A x €y, where A C T"X is Lagrangian. Let Z C X be a
submanifold of X and denote by i : Z — X the inclusion. We say that .# is
noncharacteristic along Z if T2 X N A C T X for some choice of A as above.

Locally on Z, we can choose a smooth map t = (t1,....t,) : X — CP such that
Z = t }(0) and we can regard t as a projection. We can therefore consider the
sheaf %y jco of relative differential operators with respect to the projection t. The
following is classical and casy:

Lemma 3.7.1. If A is noncharacteristic along Z, then A is (locally on Z) R 2 jcv-
coherent. If Z has codimension one, then .# is reqular along Z.

Proof. — Indeed, if .4 is noncharacteristic along Z, then any local good filtration
E, % of 4 as a #4-module is such that gri”.# is gI'F<%y'-/\cp—(:()horcnt. O

Definition 3.7.2. The Z 9--module . is strictly noncharacteristic along Z if it is
noncharacteristic along Z and the (ordinary) restriction Oy Q¢ .#|z is strict.

Remark 3.7.3. — If f: Z — X is any morphism between smooth complex manifold,
we can similarly define, for a holonomic % 2 -module ., what “(strictly) nonchar-
acteristic with respect to f” means. Decompose [ as en embedding followed by a
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projection. Then . is always strictly non characteristic with respect to the projec-
tion. Hence, in practice, it is enough to check this property for embeddings.

Lemma 3.7.4. — Let Z be a smooth hypersurface. We assume that .# is strictly non-
characteristic along Z. Then,

(1) . is strictly specializable along Z,
(2) we have Oy D¢, Mz = Oy ®Iﬁﬂ, Rars

Proof. -~ We can work locally on X. We assume that Z is defined by a local equation
t = 0. As .# is noncharacteristic along Z, Lemma 3.7.1 shows that .# is specializable
and regular along ¢t = 0, and we can choose as a good V-filtration the filtration given
by Vool = 4, V1Ml =t 4 for k >0 and gr) . # = 0 for a ¢ —N* (here the
filtration is independent of the choice of z, as the indices are real). The restriction
it is equal to gr¥ . and is still holonomic with characteristic variety contained
in Ap x Qp, where Ag is the image of Az by the cotangent map 1™ : T* X, — T Z.
Moreover, the action of t3; on gr¥,.# vanishes, because for a local section m of .,
O,m is also a local section of .Z .

With the assumption of strictness of .4 /t.# , we conclude that ./ is strictly spe-
cializable and regular along Z. In such a situation, the V-filtration defined above
is the Malgrange-Kashiwara filtration and we have o, . # = gV, # = A/t .
Moreover, t : .# — .# is injective, because .# = V_1.# (cf. Remark 3.3.6(4)), i.e.,

Oy @6, My =0y 5, Mz

Last, remark that can and var are both equal to 0, as ¥ o.# = 0. O
An adjunction morphism. — Let 7 : X — X be a proper analytic map between
complex analytic manifolds, which is an isomorphism almost everywhere (say that =
is a proper modification of X'). We assume that # = p o7, where 7 : X < X x P! is
a closed inclusion and p : X x P! — X is the projection. Let .# be an holonomic
Z 2-module which is strictly noncharacteristic with respect to w. By Lemma 3.7.4,
7t is a holonomic Z z-module.

Lemma 3.7.5. — Under these conditions, there is a natural adjunction morphism o :

VAT sk o/

Proof. Put n = dim X = dim X. The right % ;~module associated with 7+ #
s Wz @r-10, 7t . Using the contraction isomorphism (0.6.1), we identify the
complex

(w’/y. @ 77_1(%/) %Q’fo‘ Sply ., = (w(ﬁ-ﬂ_(}_i) 7771.%/> 9O A0y ® TRy
o

Y10, LG oy ‘{/—‘;f =1
with the de Rham complex
Q}E ® 7 NMRe, Ra)
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of the (inverse image of) the left Z ,-module .# = o, A4, the right # 4 -structure
being trivially induced by that on .#,-. Using the isomorphism (0.7.4), this complex
is isomorphic to the de Rham complex

e . o~ onte iy
Q,}f ® w (P Do, H) = ff} oo (R D6, M.

70y LR 7

We now have a morphism

M =wy R MV (R, M) — (78 @ (R Do, M)

@y Oy .y
— T ((5”5" v nT MRy P, //)) ~ g (atH),
2 =1¢,
Lence a morphism .#" — 7 (z*.4)". O
3.7.b. Noncharacteristic inverse image of a sesquilinear pairing. — Con-

sider first the case of the inclusion of a smooth hypersurface Z = {t = 0}. If C' is a
sesquilinear pairing, then ¢y, 1" is defined by the formula of Definition 3.6.11. We
note that, by applying the same argument as in Lenuna 3.6.5, for any local sections
m' of .#" and m” of .#". the function .ﬂ(&(;)

- () has at most simple poles at
m’.m') .o

s = —1.-=2,... and no other poles.
It.7 = (#',.7",C) is an object of - Triples(X ) with .#"..Z" holonomic, and if
A A arve strictly noncharacteristic along Xg. then one can define it.7 as v, _1.7.
The following result will be useful in the proof of Theorem 6.1.1 (¢f. §6.4(3)).

Proposition 3.7.6. — We assume that . is strictly noncharacteristic along the smooth
hypersurface 72 C X. Let j : X N~ Z — X denote the open inclusion. Given any
sesquilinear pairing CO @ j*.#\s ©og j* Mg — Dbxzxs/s. there evisls at most one
sesquilinear pairing C' on .#|g which cxtends C°.

Proof. The question is local on X x S. so let @, € Z, z, € S. We assume that
we have a coordinate system (f.27) such that Z = {t = 0}. We can consider relative
differential forms of maximal degree, namely forms ¢ = a - da’ A dZ' where a is a
)< ‘///(‘,.”_.

is a sesquilincar pairing on .. Then, for a relative differential form ¢ of maximal

section of € g. Let m/,m” be sections of .#| y- We assume that C

Lo ~Zo

degree supported in nb(wrg. z,), (C(m’,m”), ) is the scection of Dby, xg/5. where
D = {|t| < R}, defined by

n(t,z)g=dt A df — (C(m' . m"). p At z)5=dt AdE).

We can regard (C(m/,m”), ) as a distribution on Dgr with values in the Banach
space CY(S), using the formula above.

We assume that we have two extensions C'i.Co of C°. For m/,m'” as above, put
w=Cyr(m'.m")~Co(m’,m”). It is then enough to prove that, for any relative form 1,
the distribution (u, ¢) on the disc is equal to 0: indeed, for any test form ¢ supported
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in nb(z,. z,), we can write ¢ = ¥ A x, for some relative form ¢ and some test form x
on the disc; then, (u, @) = < u. ), x) = 0.
Let us denote by p the order of the distribution « on nb(x,, z,). We have

(3.7.7) (u, vy = Z )\a,b('l/))(y)f@l;’%,

0<a+b<p
for some A, p(¢) € ‘ﬁg’{zo, where dg € Dbp, «s/s denotes the Dirac distribution at
t = 0. Let us show that all A\, ,(¢) vanish identically. This is true if ¢» vanishes at
order = p+1 along {t = 0}. We can thercfore assume that 1) does not depend on ¢,7.
Using the Bernstein equatiun for m/, we obtain, for a convenient choice of N,

B(td,) - m' = (td; — kz)| -m' = tPT! (tfj,)‘7P~(t,:1;’,{’5’.) -m/.
J x
k=0 J

According to (3.7.7), the coefficient of (’)‘[5?(50 in B(td,) - (u.¢) is pa(z)Aap(y), with
ftq(z) invertible on 8. On the other hand, for any j, by (3.7.7) applied to ¢ - P;
P (4 - P;) =0, hence tPHL(t0)7 (u, ) - Pj) = 0. Therefore, all A ,(¢) vanish. O

3.7.c. Specialization along two normally crossing divisors. — We will need
the results below in the proof of Theorem 6.1.1, §6.4. The result is an adaptation of
[56, §63.5.11-3.5.18].

We assume that we are in the following situation: let ¥ = Y] U Y5 be a normal
crossing divisor in a smooth manifold X and let .7 = (#’,.#",C) be an object of
- Triples(X). We assume that .#',.#" are holonomic with (lldld(,teustlc variety
contained in A x €, for some Lagrangian variety A € T*X. Assume also that
A, 4" are strictly noncharacteristic along Yy, Yy and Z = Y1NY5 in a neighbourhood

of Z. We will work in local coordinates near a point of Z: we put Y7 = {1 = 0},
Yo = {22 = 0}.

Lemma 3.7.8. Under these conditions, for .# = .#" or .#" and near each point
of Z,

A is strictly specializable along Yiand Yo,

Vool vanishes for o & —=N" and j = 1,2,

Voo, 1M = M 214 is strictly specializable along {xs = 0} and conversely,
~we have Yoy A, M = Vp, Ay M= M1 20 M,

- for any local sections m’ of A" and m” of .#", the two-variable Mellin transform

) —_ 2 2 . .
(C(m!,m"), Lo [ o™ () has only simple poles along lines s, = —1 — k, so =
—1—¢, k. ¢ € N and no other poles,

we have Ypy 10, 1T = Vo) 1 Way, 1T . O

We now will compute the specialization of .7 along z;2x2 = 0. Let us denote by f
the monomial zyxe and let iy : X — X x C be the graph inclusion. Let ¢ be the
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coordinate on C, so that is(X) = {t — f = 0}. We assume that .#' = .#" = .# and
that . = (Id,1d) is a Hermitian duality of weight 0 on 7.

Lemma 3.7.9. — Under the same conditions, for .# = .#' or . #", the Z 2 «c-module
if 4. is strictly S-decomposable along {t = 0}, we have Yy o.M =0 for o € Z and
there are local isomorphisms

Ly, +(/’J.’| —1- % Z)z +1/}7.”z —l/% pr:o-
ZZ<+I¢’:1:1.—~1/¢)J72A—1<% Zfe = 1

Last, the sesquilinear pairing on the primitive part given by Formula (3.6.14) coincides
with the corresponding specialization of C.

Pgry'yr (. )“{

Proof. — We will only insist on the computation of ¢, _1C, as the computation of
Wi(if 4.4) is done in [56]. We have if  # = Open.l @ 0kS(t — xy o) with the usual
structure of a Zy wc-module. By loc. cit.. we have V_y(if . #) =Ry - (M ©0) and,
fork >0
Vorwlipedl) = t"Vorlip o), Vogwlipodl) =Y V(i ).
<k
Moreover, (td;)? vanishes on gr¥, (i ,»,Jr.%/) and the monodromy filtration is given by
1\1,2‘/‘ (If+///) (lf+%/)
1\1-] Vﬂl(l‘f.+<f/) = ta/ . V71(’Lj,+.%) + V,Q(ifﬂu%%
MoVoi(igq ) = Ro - ((x1,22).40 2 6),
MV (i) = Voalipo ).
These formulas lead to the isomorphisms given in the lemma. It is also clear that can
is onto, and one shows that var is injective, identifying therefore ¢y o(iy +.#) with
gr™M 4, 1 (is .#). This gives the strict S-decomposability of .# along =0}.
1¥t, fit g
Let us now compute Formula (3.6.14) for £ = 0, 1. For that purpose, let m/,m” be
local sections of .. They define local sections m’ @ ¢ and m” @ of V_(if 4.4 ).
Assume first that £ = 1. For a local section ¢ of &¢", we have to compute

(iz) ' Resg— ) <1f LC((—itd)m’ @ 6.m" % 6). [t X (L) A g=dt A df>.
Then it is equal to (sce also the computation of (3.8.2) below)

Resg——1(s + 1)<C’(m/,m }Llizl x(x129 <,J>

2~1|I i

that we have to compare with Resg, ——1 Resg,—_1 <C(m "), || (T1T2)¢>

By Lemma 3.7.8, both residues coincide.
Assume now that £ = 0 and take m/. m” € (z1.x2).#. Il m' = xym and m” = xop,

then the function <(7(m.,ﬁ). };1:1;1;212'“'1 x(r122)¢) has no pole at s = —1, after Lemma
3.7.8. If for instance m’ = J,lm and m” = xp, then (iy, 4., —1C (M, 1), v) and
Ress—_1 (C(m. 1), |11|25+2 lzo® x (2122 )i) coincide. O
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3.8. A local computation

Let 7 = (#',.#",C) be a smooth twistor structure (¢f. §2.2) on a complex mani-
fold X. The purpose of this paragraph is to compute the nearby cycles of (.Z', . #",C)
with respect to a function f which takes the form f(z1,...,z,) = x; -z, for some
local coordinates 1y, ..., 2, on X and for some p > 1. The goal is to show that, first,
T is strictly specializable along f = 0, and to compute the primitive parts in terms
of the restriction of .7 to various coordinate planes, in the sense of Definition 1.6.9.
As, by definition, these restrictions are smooth twistor structures, this will imply that
the primitive parts are so. The computation is local on X.

For ¢ < p. denote by #; the set of subsets I C {1,...,p} having cardinal equal

to {. For I € #;. denote by I¢ its complement in {1,...,p} and by 4; the inclusion
{x; =0} — X.
Proposition 3.8.1. Let T be a smooth twistor structure of weight w on X. Then,

(1) the Za -triple .7 is reqular and strictly specializable along f = 0 (with a set A
of eigenvalues contained in Z,), and is strictly S-decornposable along f = 0, with only
one strict component;

(2) for o € [=1,0[, we have ¢ .7 =0 unless « = —1 and, for any { > 0, there is
a functorial isormorphism

S gy iy T s Pl (7)) (4)2),
Je i

where M ¢ 7 denotes the monodromy filtration.

Proof. — Let us begin with the trivial smooth twistor .7 = (€4, Oy, C') where C' is
trivially defined by C(1,1) = 1. Except for the computation of ¢ yC, this is proved in
[56. §3.6]. We will recall some details in order to compute ¢y C. We put y; = z,,4, for
J=1,...,n—p. If § denotes the Z 4 xc-generator of iy 04 , we have the following
relations:

P
to = f(x)d, ;0,0 =—(10; +2)d, 0,0 =0, t(HElm)()’ = (—t0)P9.
=1
This shows that § € V_i(iy 4 @y ) and that gr) (i; 02 ) = 0 for & ¢ Z. Regularity
along {t = 0} is also clear. It can be shown that V_y(if 102 ) = Vo(Za xc) 6
and that any local section of V_;(iy @4 ) has a unique representative modulo
V_o(iy Oy ) of the form

do—1
DD glareay y)a ()" Paa (—t,)(t0).
a€Nr k=0
with Py 1(s) = T2 [icrca, 1 (s = €2) (see [52]), du1 = #{i | a; — 1 > 0},
I(a) = {i | a; = 0} and g holomorphic in its variables. One can also show that
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sections of Pgr?[gr‘_/li 74O 4 are uniquely represented by elements of the form

Z Z g("EI"-y)”;(iIPGI—ll(“tat)(té)
Ic{l,...,p}are(N=)I
[I|=£+1

which can be rewritten as

Z Z gl y)Olt (v, 1186).

[t can be shown that, for j € I°,
O, [g(:L‘p:,1/)5)2’,(:51_11t6)} = g, (g(;z'p».y))(‘)ﬁ‘l(;tl_l‘td) mod My_;.
One then gets an isomorphism

PgrMler? if+Op —

, liijif+Op

D
Fra

glwre y) 0yt (wy 11H6) — glwre.y)O% .

m

One can compute similarly Pgrigryi; @5 (see [56, 51, 52]) and can, var, and
prove in that way that @4 is strictly specializable and strictly S-decomposable along
{f =0}

Let us now show that the previous isomorphism is an isomorphism of Z-triples,
once the left one is twisted by (¢/2), i.e., the corresponding C' is multiplied by (iz)~*.
Fix J € Z¢41 and, for any test form ¢ with support contained in the fixed coordinate
chart, put » =@, A, s=dx; A dT;. On the one hand. we have

(ig4i5C(1L 1), 0) = / -
J{a;=0[j€ T}
On the other hand, according to Example 2.1.14, as N” = N = —itd;, we have to
compute

(3.8.2)  (iz) “Rese— <if_+C’((—itfﬁj,)‘/.'ltjl"f& ;1:;1"1‘,(5), [t1% x (t)p A S=dt A df>.
Remark first that
(3.8.2) = (iz) " “Reso— <z,_+c(;c,,w5. 2706). (i0:) (| x (1) p A 5=dt A df>

= Resg—_1 {(s + 1)1{<if‘ },(j(fl,"]v 0, (5). [t1%* x(t)p A #dt A df>} ,

as the term containing derivatives of x will not create any residue. Putting 7 =t — f,
we have . ,

28 1 —

[t125x(t)p A 5=dt A dE

%JT AN dT

= f1* x(f)e,

and, by definition of ¢y o,

(3.8.2) = Resg—— [(s + 1) /x |.'r,J.-|2 |f|2s X(f)p] .
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The integral has a pole of order £ + 1 at s = —1 produced by
‘ 25 i —
/’ EFIRECIRA H s=da; A dT;
X JES

and the coefficient of the pole is [{a, —oljesy P This gives (2) for iy 4 Oy
YT : ’

If now .7 is any smooth twistor, remark that, for .# = .#' or .#", we have
iy M = M D¢, 1740, with its usual twisted structure of #»--module, and that
the action of t and J¢ comes from that oniy Gy . As . # is assumed to be @ 4--locally
free, the filtration of i; . # defined by Voij . # = . # ®@¢, Viliy40y ) satislies
all properties of the Malgrange-Kashiwara filtration. It is then casy to deduce all
assertions of the proposition for.# from the corresponding statement for iy @y O
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CHAPTER 4

POLARIZABLE TWISTOR 2-MODULES

4.1. Definition of a twistor “-module

We will follow the inductive method of [56, §5.1] to define the notion of (polarized)
twistor Z-module.

Let X be a complex analytic manifold and let w € Z. We will define by induction
on d € N the category MT¢4(X, w) of twistor Zx -modules of weight w on X, having
a support of dimension < d. This will be a subcategory of the category #- Triples(X)
introduced in §1.6. We will also define the full subcategory MTgI(X, w) of regular
twistor Zx-modules

Definition 4.1.1 (Twistor Z7-modules). The category MT ¢4(X, w) is the full subcat-
egory of - Triples(X) for which the objects are triples (.2, . #" ., C) satisfying:

(HSD) ... are holonomic, strictly S-decomposable, and have support of dimension
< d.

(MT+¢) For any open set U C X and any holomorphic function f : U — C, for any «
with Re(a) € [—1,0[ and any integer £ > 0, the triple

oMW (" ) (N (), M (), e W, C)

is an object of MT<q—1 (U. w + £).

(MTg) For any zero-dimensional strict component {x,} of .#" or 4", we have
(Ml ) Crony) = iy (A H.C)
where (7, ", C,) is a twistor structure of dimension 0 and weight w.
Regular objects can be defined similarly:

Definition 4.1.2 (Regular twistor Z-modules). The category MT 2(),( X, w) is the full
subcategory of - Triples(X') for which the objects are triples (.#', #", C') satisfying:
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(HSD) .4, . #" ave holonomic, strictly S-decomposable, and have support of dimension
< d.

(REG) For any open set U C X and any holomorphic function f : U — C, the
restrictions . %/IU %/U are regular along {f = 0}.

(MT<p) For any open set U C X and any holomorphic function f : U — C, for any «
with Re(w) € [—1,0[ and any integer £ > 0. the triple

def

g Wy o (" C) = (MW () My () g )

is an object of MT(<'(1_] (U,w+70).

(MTy) For any zero-dimensional strict component {.r,} of .#" or .#". we have
(‘%/{/J'u}” ’///{,f;»,.}v ("7{ .1:,)}) - i{-"n}Jr('//?/* A", Co)

where (#7. #7".C,) is a twistor structurc of dimension 0 and weight w.

Clearly, MT<(1(X w) is a full subcategory of NT < (X, w). Let us justify all under-
statements made in the definition of the category MT(X,w). We note that we have
used the W functor of Definition 3.4.3. Remark first:

Proposition 4.1.3. If (' 7" .C) is an object of NN'T < (X.w), then 4" and .#"
are strict, as well as grﬁ\'(,/v./v.(,,/f/’, gri\lt/{,-.(,,//f/” Jor any analytic germ f, any o € C
and any € € Z. In particular, Oy and @po.#" are strict for any o € C.

Proof. Set .# = 2" or .. The strictuess of . follows from (HSD), after
Corollary 3.5.7. The s’tri('tn(\ss‘ of erMWy .7 for Rea € [—=1,0[ is by definition. To
get the strictness of g,I, (/'j o for any o ¢ N. remark that the property is local
with respect to z. Use then the filtration V.**) and its graded picces, and use the
isomorphisms ¢ or 0; to increase or decrease Re «v, depending whether ¢, (a) < 0 or
C, () =2 -1, if a« ¢ N.

Let us show the strictness of gr}'s .. # for a = 0 (hence for any o € N). We
can assume that .# has strict support. If f = 0 on the support of .4, then the
monodromy filtration is trivial and the strictness of 1y o.# is a consequence of the
strictness of ., by Kashiwara’s equivalence 3.3.12. Otherwise, we know by [56,
Lemma 5.1.12] that var : (0.4, M,) — (g 1.2 N, 1) is injective and strict, i.e.,
induces an injective morphism after grading. Therefore, each gri\ldv/-‘(),%/ is strict.

The strictness of 1¢ o.# follows then from Lemma 1.2.2. O

We note also that we have locally finite strict S-decompositions .#’ = @z .47,
and A" = ®yn.#},, where Z' belongs to the set of strict irreducible components of
A and Z” to that of .#". For any open set U C X, the irreducible components
of all Z' NU form the set of strict components of '///’I/U‘ and similarly for .#"'. For
f U — C, we have 't;’r./-_(_y./%/fd(,v =0 for any o € N if f vanishes identically on the strict
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component Z[; of ‘/f"U, and has support of codimension one in Zj, otherwise. The
support of 'l/)f‘a(%‘/U has therefore dimension < d — 1.

According to Proposition 3.5.8, the component Cyz/ 2z of C on .4/ s ®os Q///g,,is
vanishes unless Z' = Z”. We denote therefore by Cz the component of C' when
Z = Z' = Z'" is a common strict component of .#’ and .#"”. We thus have a
S-decomposition

(4.1.4) (', 4", C) =& (M. MY, Cy)

indexed by the set of strict components of .Z" or .#". We will see below (Corollary
4.1.6) that the set of strict components is the same for .#’ and .#", and that each
(AL, A .Cyz)is a twistor Z-module of weight w.

With such a notation, (MTy) is concerned with the zero-dimensional strict com-

ponents, which are not seen by (MTsg). Assume for instance that we work with

right # 4 -modules. Take local coordinates z,,...,x, at z,. Then (MTy) says that
. {/x“} =" @c Cl0.,,....04,], ///{”r} = A" @¢c C[0,,,...,0,,] and Cy, y is ob-

tained by Z y ) g-linearity from its restriction to //"’S ®og %“’é’ There, it is equal
to C, - d,,, where §,, denotes the Dirac current at x, and C,, : %‘I’/S R oy /?‘l”s’ — Os is
given by (2.1.1).

It is easy to see now that the set of zero-dimensional strict components is the
same for .#" and .#": if {x,} is not a strict component of .Z" for instance, then
. /{’_/,_ y =0 and thus 7”7 = 0. As C, is nondegenerate, this implies that 7”7 = 0,
therefore ,//{/J y = 0 and {x,} is not a strict component of .Z’.

We will now give the basic properties of twistor Z-modules.
4.1.a. Locality. — For any open set U C X, there exists a natural restriction
functor (and a regular analogue)
)
MTa(X, w) 2% MTey(U, w).
Moreover, if (.#',.#",C) is any object of %- Triples(X) such that, for any open set U
of a covering of X. (#',.#",C) |y is an object of MT ¢y(U, w), then (&', .#".C) is
an object of the category MT ¢ (X, w).
4.1.b. Stability by direct summand
Proposition 4.1.5. — If (#'..47",C) = (M| D4, #]' D .45, C,DCy) is an object
of MT<(X,w), then each (], 7! ,C;) (i = 1,2) also. Moreover, reqularity is
conserved.
Proof. -~ The property of holonomicity restricts to direct summands, as well as the
property of strict specializability (3.3.11(a)) and, as Property 3.3.11(e) also restricts
to direct summands, it follows that strict S-decomposability restricts too. It is easy
to see that (REG) restricts to direct summands. Then argue by induction on d for
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(MTsp). For (MTy), use the fact that a direct summand of a trivial holomorphic
vector bundle (on P!) remains trivial. O

Corollary 4.1.6. — If (', #".C) is an object of the category MT<q(X,w), then the
strict components of A" and .AH" are the same and the S-decomposition (4.1.4) holds
in MT<q(X,w). Moreover, MT<y(X,w) is the direct sum of the full subcategories
MT 7y (X, w) consisting of objects having strict support on the irreducible closed an-
alytic subset Z C X of dimension < d.

Proof. We assume that there is a strict component Z’ of .#’ which is not a strict
component of .#Z"”. Then we have an object (.#7,.0.0) in MT<4(X.w), according
to the previous proposition. Argue now by induction on dim Z’, the case dim Z" = 0
having being treated above. Let f be the germ of any smooth function such that
f710) N Z' has codimension one in Z’'. By induction, we have ¢ o.#%, = 0 for any
a ¢ N. By Kashiwara’s equivalence on some open dense set of Z’, we can assume that
Z' = X, that .4}, is Oy -coherent, and we can choose for f a local coordinate ¢, so
that we conclude that .47, /t.4},, = 0. By Nakayama's lemma, we have .#7},, = 0 near
t =0, hence .#7, = 0 by definition of the strict support. This gives a contradiction.

The remaining statement is easy. (]

4.1.c. Kashiwara’s equivalence. — Let i denote the inclusion of X as a closed
analytic submanifold of the analytic manifold X’. Then the functor iy induces an
equivalence between MT(X, w) and MTx (X', w) (objects supported on X), which

induces an equivalence between the regular subcategories.

Remark 4.1.7. — 1t follows from Remarks 3.4.5 and 3.6.16 that, if (MT)~ is satisfied
for some holomorphic function f, it is satisfied for all f", r > 1. Therefore, it is
enough in practice to verify (MT)-( for holomorphic functions which are not a power.
A similar reduction holds for strict S-decomposability in (HSD), according to Lemma
3.5.2(1).

4.1.d. Generic structure of twistor Zx-modules

Proposition 4.1.8. Let (A", .#",C) be an object of MT(X, w) having strict support
on the irreducible closed analytic set Z C X. Then there exists an open dense set
7' < Z and a smooth twistor structure (. 7".C) of weight w on Z', such that
(A A" C)gr =ig (A", H".C).

Proof. — Restrict first to a smooth open set of Z and apply Kashiwara’s equivalence
to reduce to the case when Z = X. On some dense open set of X, the characteris-
tic variety of .#' and .#" is contained in the zero section. By Proposition 1.2.8(3),
M and A" are Og--locally free on some dense open set X’ of X, and by 1.2.8(2),
putting .# = .#" or .&", we have .#° = V_1.#° with respect to any local coordi-
nate t. Consequently, ¢y . is supported on {z = 0} if @ € —N*, hence vanishes
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because of strictness (cf. Proposition 4.1.3). We thus have .# /t.# = gr¥,.# and the
monodromy filtration on it is trivial. Moreover, this is a @ 2; -locally free module and,
after Remark 3.6.15, ¢, _1C is the restriction of C' to t = 0, so we can continue until
we reach a twistor structure of dimension 0. Therefore, (.#',.#",C) is a smooth
twistor structure according to the definition given in §2.2. O

4.1.e. Morphisms

Proposition 4.1.9. — There is no nonzero morphism (in %- Triples(X)) from an object
in the category MT(X,w) to an object in MT(X,w') if w > w'.

Proof. —- Let o (], 4], C) — (M5, A5, Cs) be such a morphism. According to
Corollary 4.1.6, we can assume that both have the irreducible closed analytic set Z as
their strict support. As the result is clear for smooth twistor structures (there is no
nontrivial morphism from @1 (w) to Op (w') if w > w'), it follows from Proposition
4.1.8 that the support of Im ¢ is strictly smaller than Z. By definition of the strict
support (cf. Definition 3.5.3), this implies that Im ¢ = 0. 4

Proposition 4.1.10. The categories MT (X, w) and MT ™) (X w) are abelian, all mor-
phisms are strict and strictly specializable.

Proof. It is analogous to that of [56, Prop.5.1.14]. Let us indicate it for
MT® (X, w), the case of MT(X,w) being similar.  Introduce the subcategory
MTW® (X, w) of #- Triples(X). the objects of which are triples with a finite fil-
tration W, indexed by Z such that, for each ¢, gr}’ is in MT® (X, w + ). The
morphisms in MTW " (X w) are the morphisms of %- Triples(X) which respect the
filtration W. Counsider both properties:

(aq) I\ITg()](X. w) abelian, all morphisims are strict and strictly specializable;

(ba) MT\N(Q{(X, w) abelian and morphisms are strict and strictly compatible with
the filtration W.

Remark first that (ag) follows from Kashiwara’s equivalence of §4.1.c and the
corresponding result in dimension 0 (¢f. §2.1.b).
(aq) = (bg). We note first that, by Proposition 4.1.3 and Lemma 1.2.2, the objects
in I\TTVV(;(),(X,'LU) are strict Z »-modules. According to Proposition 4.1.9 and [56,
Lemme 5.1.15], (aq) implies that the category 1\»1TW23AX. w) is abelian and that mor-
phisms are strictly compatible with W. Using Lemma 1.2.2 once more, we conclude
that all morphisms are strict.
(ba—1) = (aq) for d = 1. The question is local. Let ¢ = (@', ") : (A, .#].Cy) —
(A, A5, Cy) be a morphism of pure twistor Z-modules of weight w. According
to Proposition 4.1.9, we can assume that all the % 4-modules involved have strict
support Z (closed irreducible analytic subset of X') of dimension d. We will first show
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that Ker ¢ and Coker ¢ are also strictly specializable, S-decomposable and have strict
support 7.

Let f be the germ of an analytic function not vanishing identically on Z, that we
can assume to be a local coordinate ¢, using the graph embedding of f and according
to Kashiwara’s equivalence of §4.1.c. By (bg_1), ¥;. ¢ is strict if o € N, according
to 3.3.8(1b) and (1c¢). We will show below that

Yo and Yy " are strict (hence so are vy ¢’ and Yy ¢’ for any k € N,
according to 3.3.8(1c¢)),

can is onto for Ker ¢’

and Ker ", and
- var is injective for Coker ¢’ and Coker "

The first assertion will be enough to show that ¢ and ¢” are strictly specializable,
hence Ker¢', ..., Coker¢” are also strictly specializable (Lemma 3.3.10). The two
other assertions will insure that these modules satisfy Properties 3.3.11(c) and (d),
hence are strictly S-decomposable along {t = 0} and have neither sub nor quotient
module supported on Z N {f = 0}. Applying this for any such f implies that
Ker ¢/, ..., Coker¢” are strictly S-decomposable and have strict support Z. Now,
Ker ¢/, ..., Coker ¢ are clearly holonomic and regular along {t = 0}, hence they are
also strict ((f Corollary 3.5.7). We now have obtained that ¢ is strict and strictly
specializable.

Let us come back to the proof of the previous threc assertions. As var is injective
for 4" and ", we identify 1 o’ to the restriction of ¢y 1" on Im N C )y .43,
and similarly for ¢”. By the inductive assumption. the morphism

N (e, M A 0 1 C) —— (o M b A D 1 Cr) (1)

is strict, for k = 1,2 and Im.4" is an object of 1\[1\’\’(I _1(Xo,w). Using once more
this inductive assumption, the restriction of ¢y _1¢ on [111 A s strict. hence the first
point.

In order to show the other assertions, consider the following diagram of exact
sequences (and the similar diagram for ¢'):

r7199
0— ¢y 1 Kerp" —— by M| —————— by M — py ) Cokerp” — 0

lcan Nl/ lcan Nz/ lcan lcan
Pr0¢”

0)— U’)[‘(] Ker (,0” —_— l/r'[,‘():%/ l,/f 0- / E— ’(;’/),H() C()ker ()0// — 0
[va,r \ fvar \ \[v(u Jvar
0— 1 Ker @ —— oy 1.2 4> Wy 1. MY —— 1y Coker " — 0

We have to prove that the left up can is onto and that the right down var is injective.
This amounts to showing that Im Ny N Ker ¢ 10" = Ny (Ker ¢y —19”) (because this
is equivalent to ImcannNKervy gp” = can(Ker v o¢”)) and Im Ny N Im )y 19" =
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No(Im gy "), This follows from the lemma below applied to the germs of the

various sheaves.

Lemma4.1.11. — Let Ey, Fy be two Z-modules, equipped with nilpotent endomor-
phisms N1, No. Let X\ : Ey — FEs be a morphism commuting with Nq.No, which is
strictly compatible with the corresponding monodromy filtrations NM(N1), M(N2). Then

ImN; NKerA=Nj(KerA) and ImNoNImA=Ny(ImA).

Proof. —— By the characteristic property of the monodromy filtration and by the
strict compatibility of A, we have M(Np) N Ker A = M(Nyjkera) and M(N2) N Im A =
M(Ny| 1 2). Moreover, each grM\ decomposes with respect to the Lefschetz decom-
position. It follows that the property of the lemma is true at the graded level.

Let us show the first equality, the second one being similar. By the previous remark

we have
ImN; N Ker ANM(N,), =N,y ( Ker A N MN(N, )H_Q) +ImN; NKer A\NDNM(Ny )y,

and we can argue by induction on £ to conclude. O

To end the proof of (by_;) = (a4), it remains to be proved that Ker ¢ and Coker ¢
satisfy (MT<g). It follows from the abclianity of MT\N(gr,)p[(X- w) and from the
strict specializability of ¢ that ¥, , Ker ¢ and W, , Coker ¢ (with Rea € [—1.0[) are
in MTWY), |
the monodromy filtration. This gives (MTs(). concluding the proof of Proposition
4.1.10. O

(X.w) and. as we have seen in Lemma 4.1.11, the weight filtration is

Corollary 4.1.12. Given any morphism ¢ @ 7, — 75 between objects of MT(X, w)
and any germ [ of holomorphic function on X, then, for any o & N, the specialized
morphism Wy o is strictly compatible with the monodromy filtration M, and. for each
(€ Z, gtM Wy o decomposes with respect to the Lefschetz decomposition, i.e.,

1S . N .I\ ,

N B AP Viay (1> 0),
e W rap = / k= g M )

Af}ho‘ VETEPerY, o Wrap (£ L0).

In particular we have
gr}\l\ll,.(, Ker ¢ = Ker gri“‘ll,i(.ap
and similarly for Coker, where, on the left side, the fillration M, is that induced

naturally by M,V .71 or, equivalently, the monodromy filtration of ./ acting on
U, o Kerp = Ker U, . O

Corollary 4.1.13. If .7 is in MT«<q(X,w), then the Lefschetz decomposition for
g‘rfM\lf,,‘(, T (with Re(«) € [—1.0[) holds in MT¢q—1(X,w + ¢).
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Proof. — Indeed, A" : gr)'W, .7 — g1} , U, ,.7(—1) is a morphism in the category
MT¢i-1(X,w + £), which is abelian, so the primitive part is an object of this cate-
gory, and therefore each term of the Lefschetz decomposition is also an object of this
category. d

4.1.f. Graded Lefschetz twistor Zx-modules. — Given € = £1. we can define
the category MLT«q4(X, w;e) of graded Lefschetz twistor Zx-modules as in §2.1.¢:
the objects are pairs (.7, .Z). with .7 = $.7;, and .7; are objects of MT ¢4 (X, w — 5);
£ is a graded morphism .7; — .7, _5(e) of degree —2, such that, for j > 0, £7 : .7, —
7_;(ej) is an isomorphism. We note that, by Proposition 4.1.10, P.7; is an object of
MT¢q(X,w — €j) and the Lefschetz decomposition of .7 holds in MT«4(X, w — 7);
moreover, the category MLT ¢4(X, w;¢) is abelian, any morphism is graded with re-
spect to the Lefschetz decomposition, and moreover is strict and strictly specializable,
as follows from Proposition 4.1.10.

More generally, for any & > 0 and € = (g1,...,e,) = (£1,...,+1), we can define
the category MLT¢4(X, w; e) of k-graded Lefschetz twistor Zx-modules: the objects
are tuples (.7, %), with & = (A,...,. %), T = ©jeyr T, cach .75 is an object in
Mng(X, w=3, Eij,;), the morphisms .Z; should pairwise commute, be of k-degree
(0,...,—2,...,0) and for any j with 7; > 0, Z’,’ should induce an isomorphism from
75 to the component where j; is replaced with —j;: the primitive part P.Jj, for
J1s---5Jk = 0, is the intersection of the Ker.%f’“ and we have a Lefschetz multi-
decomposition, with respect to which any morphism is multi-graded. The category is
abelian, and any morphism is strict and strictly specializable.

Lemma 4.1.14. Let (.(7,.2) be an object of the category MLT <4(X,w;e). Then,
for any o with Re(a) € [—=1,0], the specialized object (gx’l.wll/t.(w?, (grl.“\lltmfl{{/l/))
is an object of MLT ¢4 (X, w; (&, —1)) and ngr?l\llm,.z = gr?d\IJ,‘,,,,P_gz,?j, where
Py denotes the multi-primitive part with respect to ..

Proof. The lemma is a direct consequence of the strict compatibility of the W, .%;
with the monodromy filtration M(.47), as follows from Proposition 4.1.10. O

Lemma 4.1.15. The category MLT < 4(X. w; €) has an inductive definition analogous
to that of MT<q(X, w), where one replaces the condition (MTsq) with the condition
(MLTsy), asking that (gr?ikll,ﬂ(,?,,.(f),N) is an object of MLT <44 (X, w; (&, —1)),
and the condition (MTy) with the analogous property (MLTy).

Proof. According to the previous lemma, it is enough to show that, if (.7,.%)
satisfies the inductive conditions, then it is an object of MLT<4(X,w;e). This is
done by induction on d, the case d = 0 being easy. One shows first that cach .7 is in
MTcq(X,w = £;j;) for any j and that \IJ,,.(,,Z:]" is an isomorphism from W, ,.7; to
ViaT =)

g forany ¢ =1.... k, any j with j; > 0. any local coordinate ¢ and

[EEERE}
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any o € C. Considering the decomposition with respect to the support. one deduces
that £/ is an isomorphism from .7 to .75, . ;. j.- O

Remark 4.1.16 (Regularity). Similar results hold for the category MLT 2()1()(. w; €)
of graded Lefschetz regular twistor #y-modules and its multi-graded analogues.

4.1.g. Vanishing cycles. — Let .7 be an object of MT¢,(X. w). By definition,
for any locally defined analytic function f. the object (¢vp — 1. 7. M, (-47)) is an object
of MTW ¢(X. w).

Corollary 4.1.17 (Vanishing cycles, c¢f. [56, Lemme 5.1.12]). For such a 7, the ob-
gect (op.0 7 . MJ(A)) is in MTW (X, w) and (gl‘l\lg/)f;(),?.gl*lﬁlz,4’”) 18 an object of
MLT <q(X.w:—1). Moreover. the morphisms €an, Yar are filtered morphisms

(gt T LAY P (60 T (=1/2) Moy ()

T, gy T (1) ML (),

(ro07(=1/2). Me1 (A7)
hence are morphisms in NITW (X, w), and similarly for gr™ Gan and g™, Yar.
Proof. - We can assuine that .7 has strict support on an irreducible closed analytic
subset Z of X. If f = 0 on Z. then the result follows from Kashiwara's equivalence
and Lemma 3.6.32.

Assue now that [ # 0on Z. The object ¢ 707 (—1/2) is equipped with a filtration
W,b¢.0.7 naturally induced by M, (.4 )¢, 1. 7. As such, according to Lemma 3.6.21,
it is identified with the image of . 47 : ((;“*_/_4 T ML ( «V)) — (u‘"‘,-_,l T(—=1). M, 2. 1))
hence is an object of N'TW (X, w), because this category is abelian.

The result now follows from [56, Lemme 5.1.12]. which gives in particular that

H'.cf')f_o.”/\ = 1\[. 1(- 4/)(’,')'/'_().7. |

Remark 4.1.18 (Regularity). Starting with an object .7 of MT™" (X, w). we con-
clude that (grMeo;0.7..47) is an object of MLT® (X, w).

4.1.h. Behaviour with respect to the functors =pr and =p,,
We can now give a statement more precise than Proposition 3.3.14 concerning the
restriction to z = z,. and in particular the behaviour of the monodromy filtration and

the property of S-decomposability.

Proposition 4.1.19 (Restriction to = = z,). Let (A, 4", C) be an object of MT (X, w).
Put # = . 4" or . #". Firz, € Qo and put M., = #[(z — z,). 4 .

(V) If (. 2" .C) is in NITY (X w) and =z, # 0, then M., is a reqular holonomic
D x -module.

(2) Let f:U — C be a holomorphic function on some open set U.
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(a) For any o & N. the restriction to = = =z, of the monodromy filtration
M,y of N is the monodromy filtration of its restriction N on 1 (, ;;)]\1
(b) We assume that f is a pr(),j(’(‘fm'n t. that can is onto and var is injective.
Then, can : ¢, ~")]\I:” (/7,( o M., is onto and var : ",‘0”)]\[:“ — t/'(””)J\I:” 18
injective.
(3) We assume that z, ¢ Sing A. Then M., is a strictly S-decomposable holonomic
Dx-module. If . # has strict support Z (irreducible closed analytic subset of X ). then

so has the restriction to = = z,.

Proof
(1) Using the definition of regularity as in [45. Def. (3.1.12)], one shows by induction
on dim Supp M., that M. is regular.

(2a) This is a consequence of the sfri(’tnoa\' of gr}},lz/,r“,w// proved in Proposition
4.1.3. Indeed. by strictuess. the filtration N, v e ")Z\[ ., naturally induced by Mowy . #

satisfies gl“t/?( M., = 01 (/7f (2 — 2, }_)1 1‘7.,;,‘.//. and then satisfics the char-
acteristic properties of the 111()11()(110111,\r filtration of the restriction of N.

(2b) That can remains onto is clear. In order to show that var remains injective by
restriction, we will use that v, l,l// Im N is strict: indeed, N : oy .4 — Uy . H#
is part of a morphism in MTW (X, w), hence its cokernel is strict. This implies that

ImN/(,,f,_” YJIMN — ¢ 4. /// — 2 )W
is injective and therefore
ImNN(z—z,)y 1.7 = (2 — z,) Im N.

\ N e 00t s / 1 s ~ A /y p ey
’ ’ 1't.0- “ o)Wt —1-7 . &

Let m be a local section of ¢y o.# such that tm € ( Zo)Wt.—1.# . As can
is onto. there exists a local section m’ of ¢y _1.# such that m = —0,m’. Then
Nm' € (z—zo)s 1.4 . B\/ the strictness property above, we have Nm/ = N(z—z,)m”
for some local section m” of y 1.4, and hence t[m — (z — z,)(=0;m”)] = 0. As var
is injective, we have m € (z — z,)t 0.4, as was to be proved.

(3) We assume that z, € Sing A and that . # has strict support Z. We will show
that M, is strictly S-decomposable and has strict support Z (the definition of these
notions for Zx-modules are given in [56]: they are also obtained by doing z = 1 in the
corresponding definitions for # ,-modules). Let f: (X, z,) — (C.0) be an analytic
germ which is nonconstant on (Z.0). Using the graph embedding of f. we can assume
that f is a coordinate t. By Proposition 3.3.14. we have (,r",(_':j)lf\[:“ = ¢y, -1 M., and

/, 0 ’\[- = oM., , can restricts to z,can,, and var restricts to var,, . Therefore,

“o

the (,onclusion follows from (2h). O
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4.2. Polarization

Definition 4.2.1 (Polarization). — A polarization of an object .7 of MT ¢4(X, w) is a
sesquilinear Hermitian duality . : .7 — .7*(—w) of weight w (cf. Definition 1.6.7)
such that:

(MTP~) for any open set U C X and any holomorphic function f: U — C, for any
« with Re(«) € [—1,0[ and any integer ¢ > 0, the morphism (Pgrl.“\llfﬂwy’)g induces
a polarization of PV .7,

(MTPy) for any zero-dimensional strict component {x,} of .#' or .#", we have
S =iz} +-%0, Where F, is a polarization of the zero-dimensional twistor structure

(A, A C).

Remarks 4.2.2
(1) We note that Condition (MTP+g) is meaningful because of Remark 3.6.13.
(2) Conditions (MTP~q) and (MTPgy) imply that the components S’ and S” =
(—1)®S" of . are isomorphisms .#"” — .#': indeed, one can assume that .7 has
only one strict component; by induction on the dimension, using a local coordinate,
one obtains that S’ is an isomorphism on a dense open sct of the support; by definition
of the strict support, S’ is thus an isomorphism.

We will denote by MTg(;(X,’w)(") the full subcategory of MT<4(X, w) of polar-
izable objects, and similarly for I\'IT(;),(X, w)®) . According to Proposition 3.5.6, we

have a S-decomposition
(4.2.3) (A M".C,S)=®z( My, M), Cr, 7).
The following proposition is casy:

Proposition 4.2.4

(1) In the situation of Proposition 4.1.5, if a polarization . is the direct sum of
two morphisms .1 and .Y, then each .&; is a polarization of (A, #! . C;).
(2) Corollary 4.1.6 holds for MT <4(X,w)®) or ]\f[Tg()l(X, w)(®),
(3) Kashiwara’s equivalence of §4.1.c holds for MT(X,w)®) or I\IT(")(X, w) ),
O

4.2.a. Semi-simplicity

Proposition 4.2.5. — If .71 is a subobject (in the category MT(X,w)) of a polarized
object (T ,.57). then . induces a polarization . of F and (F,.%) is a direct
summand of (7,.7) in MT(X,w)®). In particular, the category MT(X,w)®) is
semisimple (all objects are semisimple and morphisms between simple objects are zero
or isomorphisms).
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Proof. — By induction on the dimension of the support, the result being clear if the
support has dimension 0 (see Fact 2.1.9). We can also assume that .7 has strict
support a closed irreducible analytic subset Z of X. Put . = (5/,5”) and S = S’ or
S”. Consider then the exact sequences

04— T (—w) e—— T*(—w) —— Ty (—~w) —— 0

,,V’J S TZ

0 7 T T 0

where 9 is the cokernel, in the abelian category MT(X,w), of .7 — 7. We want
to show first that .} is an isomorphism. This is a local statement. Take a local
coordinate t such that Z ¢ {t = 0} and apply ¥, , to the previous diagram (Re(«) €
[-1,0]). According to Corollary 4.1.12, the exact sequences in the following diagram
remain exact, if M, denotes the monodromy filtration of N:

0+— {_)1 Wy T (—w) —— gry My, T (—w) +— gl Wy o0 T5 (—w) +——0
grliwlllt,(v()/}lT 1‘-’;1>I‘Ilta%/[z

Using the inductive assumption, we conclude that each gri\i‘l’t o1 is an isomorphism,
hence W .7} too. Arguing now as in Remark 4.2.2(2), we conclude that .} is an
isomorphism.

We now have a decomposition .#' = .45 & S(#]') and .#" = .#{ & S~ (.43)
and we have by definition a decomposition S = S} © S, where S3 is the isomorphism
such that Sy ' is the restriction of S™1 to ..

It remains to be proved that we have a decomposition C' = C; @ Cy. By definition,
we have C(mh,n’) = 0 for local sections mb, nf of . %/2/|s and . ’15 respectively. It is
enough to show that C'(SmY, S~ '112) = 0 for local sections my, ny of A/ s and %/
respectively. This is a direct consequence of the fact that . is Helnntlan I:I

Remark 4.2.6 (Regularity). The same result holds with regular objects.

4.2.b. Polarized graded Lefschetz twistor ¥-modules. — Let (.7,.Z) be an
object of MLT(X,w;e). A polarization . is a graded isomorphism . : 7 —

T*(—w) which is Hermitian, i.e., satisfying ./ = (— ). j. such that each .Z;
is skew-adjoint with respect to .# (i.e., £ 0. ¥ = —Fj_01,0.%; foranyi=1,...k

and any j) and that, for each j with nonnegative (,,()nlponont,b. the induced morphism
S oLV L Py Ty — (PyTy) (~w+ L)

is a polarization of the object Py . 7; of MT(X,w — " &;j;).
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Lemma4.2.7. — The categories MLT(X, w;e)® and MLT™) (X, w;e)®) have an in-
ductive definition as in Definition 4.2.1.

Proof. — This directly follows from the commutativity of Py and gry!¥, , shown in
Lemma 4.1.14. O

We also have, using Remark 2.1.16 in dimension 0:

Lemma 4.2.8. — The conclusion of Proposition 4.2.5 holds for MLT(X,w;e)®) and
MLT® (X w: e)®). O

Corollary 4.2.9. — Let (7.7, %) be an object of MLT(X,w;e)®) with strict
support Z. Let f : U — C be a holomorphic function # 0 on Z. Then
(gl'f”(bf,o(f.ﬁ/’,f),n//) is an object of MLT(X,w + 1;e,—1)®). A similar re-
sult holds for regular objects.

Proof. Apply the Lefschetz analogue of Corollary 4.1.17 and Lemma 4.2.8. O

Proposition 4.2.10. The conclusions of Propositions 2.1.19 and 2.1.21 remain valid
for graded Lefschetz (reqular) twistor Px -modules.

Proof. — We will give the proof for non regular objects, the regular case being similar.
Let us begin with Proposition 2.1.19. First, we remark that ¢(.7;41), Kerv C .7} are
objects of MT(X,w — €j), according to Proposition 4.1.10.

Let us show that Ime¢ and Kerwv are subobjects of .77 in MLT(X,w;e). We can
assume that .7,.7’ have strict support Z. Choose a local coordinate ¢ such that
codimz({t =0} N Z) = 1. We know that ¢ or v and gr%}l\l}f,'” commute (Proposition
4.1.10). It follows that, by induction, Coker £’ : ¢(.Z;41) — ¢(.7_j41) is supported
in {t = 0}, hence is equal to 0, as .7’ has strict support Z. Argue similarly for Ker v.

By Lemma 4.2.8, Iin¢ and Kerv decompose as direct sums of simple objects in
MLT(X,w;e), so their intersection is an object in the same category. By the same
argument as above, using induction on the dimension, the intersection Iin ¢cnNKer v van-
ishes. Similarly. the direct summand of Im ¢&Kerv in 7 is an object of MLT (X, w; €)
and also vanishes by induction. We therefore have a decomposition .7/ = Imc@ Ker v
in MLT(X, w; ).

Let us now consider Proposition 2.1.21. So. let ((.7}, j,)jez2. 21, Z5) be an object
of MLT (X, w;e1,£2) ) with a polarization .. Let d : 7}, ;, — Fj, 1.5,-1(c1 + £2)
be a differential in #- Triples(X'), which commutes with ¢ and .%% and is selfadjoint
with respect to .”. As both source and target of d are in MT(X,w — e1j; — €2j2),
d is a morphism in this category, hence is strict and strictly specializable (Proposition
4.1.10) and we have, for any germ f of holomorphic function any « with Re(a) €
[—1,0[ and any ¢ > 0,

Pery" U o (Kerd/Imd) = Ker(Pgr)' ¥ . d)/ Tm(Pgr)' W ,d)
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(¢f. Corollary 4.1.12). By induction on the dimension of the support, we can assert
that (PgrdW; o(Kerd/Imd), Pgri'Wy ... Por} W ,.#) is an object of the category
MLT(X N f~1(0),w + ¢, €) and we conclude with Lemma 4.2.7. O

Corollary 4.2.11 (Degeneration of a spectral sequence). — Let .7 ° be an object of the
category DT (%- Triples(X)) equipped with a Hermitian duality & + 7° — (T °)* (—w)
and with & + .7°* — 7°2](1) and A : T* — T*(—1) which commute and are
5ke’U}adj0jn¢ with respect to .. We assume that . is nilpotent and and that each
term E77 7" of the spectral sequence associated to the monodromy filtration of M, (A7)
is part of an object
@ (B = (N T, NN M L T M, )
1.
of MLT (X, w; —1,1)®), Then,
(1) the spectral sequence degenerates at Es,
(2) the filtration W, €7 (.7*) naturally induced by M,.7° is the monodromy filtra-
tion M, associated to A3 N+ AHI(T*) — AI(T*),
(3) the object
@ (gl'li[i/fj (7%, gr&]ﬁj,ﬂ/, gryi.f"fj,ﬁf, grlili,%"j&’)
ij
is an object of MLT(X,w; —1,1)(P),

A similar result holds for regular objects.

Proof. - We know (Lemma 1.6.12) that the differential d,; is selfadjoint with respect
to A7 gr™M. . Moreover, dy = #7 (g™, 7°) — 27 (gr™,.7°) is a morphism between
objects in MT (X, w+j—14). From the analogue of Proposition 2.1.21, we deduce that
(E47~"Y is part of an object of MLT (X, w: —1.1)®). Now, one shows inductively that
d, = 0 for any r > 2, by applying Proposition 4.1.9. This gives the result. (]

4.2.c. A conjecture

We now restrict our discussion to regular objects. For the non regular case, we
lack at the moment of results in dimension one.

Theorem 4.2.12. We assume that X is a complex projective manifold. The functor
which associates to each object (7,.7) in MTY (X, w)®) the regular holonomic Px -
module Zpr.#" (restriction to z, = 1) takes values in the category of semisimple
regular holonomic Zx-modules.

Proof. —— We can assume that .7 has strict support the irreducible closed analytic
subset Z ¢ X. We know that Zpr.#" is regular holonomic and has strict support Z,

according to Proposition 4.1.19. This means that there exists a dense Zariski open set
Z° C Z and a local system ¢ of finite dimensional C-vector spaces on Z¢ such that
the de Rham complex of Zpr.#"' is isomorphic to the intersection complex IC*.% up
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to a shift. We want to show that the local system .Z is semisimmple. We will argue by
induction on dim Z, starting from dim Z = 1.

The case when Z is a smooth curve is a corollary of Theorem 5.0.1 proved later in
Chapter 5, as a consequence of results of C.Simpson and O.Biquard.

Let us now consider the case when Z is singular. Let us denote by v : Z — Z the
normalization. We can assume that Z° is an open set in Z. Tt is therefore enough to
construct an object (7¥,§7) in I\/T’F(")(Z,w)(") which coincides with (.77,.%) on Z°.
The singular points of Z being isolated, this is then a local problem on Z, as we
can glue local solutions to this problem with the solution (.7,.%)z on Z°. The
noncharacteristic inverse image p*(.7,.%) by the projection p : Zx X — X is an
object of MT™ (2 x X, w)P), Choose a family of local equations t1, . . ., t,, of the graph
G(v) C Zx X of v:Z — X. Then the object Prd"Wy, (- Perd'W, pt (7..9))
gives a local solution to the problem.

Assume now that dim Z > 2. According to [29, th.1.1.3(ii)], it is enough to show
that the restriction of .% to a generic hyperplane section of Z° is semisimple, because
for such a hyperplane, 7, (Z° N H) — m(Z°) is onto. Now, the (noncharacteristic)
restriction of (.7,.%) to a generic hyperplane H still belongs to MT® (X 0 H, w)®),
because it can be locally expressed as Pgrdy, 1 (.7,.7) for a local equation t of H.
We therefore get by induction the semisimplicity of Z|zoqp, hence of & O

Conjecture 4.2.13. The functor above is an equivalence.

This assertion should also hold when X is compact and Kéhler. Its proof would give
a proof of the conjecture of M. Kashiwara recalled in the introduction, for semisimple
perverse sheaves or regular holonomic Z-modules.

Remark 4.2.14. When the conjecture holds, the functor sends a simple object in
the first category in a simple object of the second one. This will be the case when X
is a compact Riemann surface, as a consequence of Theorem 5.0.1.

4.2.d. Polarizable Hodge Z-modules and polarizable twistor Z-modules

One can develop a theory of Hodge “-modules along the lines of this chapter. We
will indicate the main steps.

In dimension 0, polarized Hodge Z-modules correspond to polarized complex
Hodge structures as in §2.1.d.

In general, replace the category of Z 4--modules with the category of graded Rg P -
modules, the morphisms being graded. Strict objects correspond to Zx-modules
equipped with a good filtration (by the Rees construction). In order to define graded
- Triples, consider sesquilinear pairings C' taking values in Dby, ®@cClz, 27 1].

In the definition of specializable graded Rp2yx-modules, one should insist on the
fact that the V-filtration is graded. Therefore, if .# = RpM for some well-filtered
PDx-module M, and if all ¢ o4 are strict, then M is specializable along {f = 0}
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and ¢ o # = Rpipf oM, where the filtration F' on ¢; o M is naturally induced from
that of M as in [56].

At this point, the definition of a complex Hodge Z-module is obtained by working
in the category of graded Z- Triples when considering Definition 4.1.2. Tt is very
similar to the category considered by M. Saito.

The polarization is introduced as a graded isomorphism between both Rp Zx-
modules entering in the definition of a complex Hodge Z-module.

The graded analogue of Conjecture 4.2.13 asserts that the category of complex
Hodge Z-modules is equivalent to that of admissible variations of polarized complex
Hodge structures. It would follow from a direct comparison with the category of
complex Hodge modules constructed by M. Saito, by the results of [56, 58].

Another approach is indicated in Chapter 7.
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CHAPTER 5

POLARIZABLE REGULAR TWISTOR 2-MODULES

ON CURVES
In this chapter we will prove:
Theorem 5.0.1. — Conjecture 4.2.13 is true when X is a compact Riemann surface.

This is nothing but a reformulation of some of the main results in [62]. Never-
theless, we will give details on the reduction to this result, as this is not completely
straightforward. Moreover, we will use the more precise description given in [4].

We will begin with the detailed computation of a basic example when dim X = 1.
It corresponds to “nilpotent orbits” in dimension one. It was considered in detail in

[62] and [4].

5.1. A basic example

Let 8 € C and put #/ = Re 3, " = Im 3. Let V° be a C-vector space of dimension
d equipped with a sly-triple (Y. X, H) and with a positive definite Hermitian form such
that X* =Y, Y* = X and H* = H. Fix an orthonormal basis v° = (v{,...,v9) of
eigenvectors for H and let w; € Z be the eigenvalue of H corresponding to v¢. It will
be convenient to assume that the basis v is obtained as follows: fix an orthonormal
basis v{, ..., vy of Ker X made with eigenvectors of H; for any j = 1...., k, consider
the vectors

(5.1.1) V5= CMY[U;’,

for¢ =0,..., w;, where ¢; ¢ is some positive constant; the basis ('l)“]’l)j_p is orthogonal,
and one can choose ¢; ¢ (with ¢; ¢ = 1) such that the basis is orthonormal.

All along this section 5.1, we denote by X the unit disc centered at 0 with coordi-
nate t and by X* the punctured disc X ~ {t = 0}. Let H = € @¢ V° be the trivial
C*°-bundle on X and let v = (v1,....vq) be the basis such that v; = 1 ® v?. We still
denote by Y, X, H the corresponding matrices in this basis and by H the restriction
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of the bundle H to the punctured disc X*. Put on H the logarithimic connection Dy
such that
Div=0.
dt
e
as in §0.8 and let € be the basis obtained from v by the change of

Div=wv (Y +31d)

Put L(t) = |log
basis of matrix

Po= 1|7 7L(t) Ve
that is,
(G cq) = (V1. va) - P(t).
Put on H|x- the Hermitian metric h such that € is an orthonormal basis. Put 22 =
€ @ H. It has a basis e(z) = v - R. € (27, ) with

5 a1t (z-1) 5
R.(t) = L(t) %2 (w“ (rx) L2, forte X' z e Q.
Put e = e(0). One also has e(z) = e - Q. with
Q.(t) = L(t) W2 (Mzu”(;X): L(t)V2,

The metric h and the connection Dy on H allow to define operators D', DY, Q’E and
0. (see §1.3.a and [63]).

Proposition 5.1.2. -—— For any 3 € C we have:

(1) the metric h on H is harmonic;

(2) the basis e(z) is holomorphic with respect to the holomorphic structure on
defined by DY + 207%.;

(3) the action of 2D, +0 defines a left X -module structure on the free Oy [1/t]-
ef Oq1/t] - e(z) C ju70 (where j: X* — X denotes the inclusion) and
M is strict and strictly specializable (cf. §3.4.a);

module A

(4) the minimal extension A of .4 across t =0 is strict holonomic;
(5) using notation of §2.2.a on X*. the sesquilinear pairing hgs : %""S Ros %”"s —

€5 extends to a sesquilinear pairing

C: -//{|S & ///|S — ,DbX-;;xS/S~
b5

Proof. We will use the following identities:
L)Y FW2 = LTy
L)X V2 = L(t)*1X
(5.1.3) eYHe Y =H+2Y
eX*He ™ = H - 2X
AYe t =Y 4+ H-X
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and. from(0.8.1),

L OO o (L)
(5.1.4) 19103 B DA ()L /E " i S U A
ot ot L(t)
Write in the basis e
D/VE‘:E'A/[/ﬂ, D(fr€:€~1\f”(—ﬁ.

One has M’ = pId+P'YP + P70, P and M” = P~'0:P. According to the
previous identities, one gets

3 Y - H/2
5.1.5 M = ’—11
(5.1.5) I ( L(f)
(5.1.6) ]\I”:fill X+ 42

IJ()

1 dt 3" Y O\ dt
5.1. 0 = (M + M")— = (i Td+— ) =
(5.1.7) () 2( + )f (/2 d+L(t) ;

1 di 3 X\ df
5.1. " = (M + M= = | —it — )=
(5.1.8) fo 2( + )/ ( i I(1+L(t)> ;

3 H/2 ) di

> L) T

Now, the matrix of D%, + 267, in the basis e(z) is zero (which gives the second point):
indeed, we have e(z) =v- R. =e- P7'R. and

(51 9) [)71]—{2 _ lt[/,.3/_5_(,:;/3//()_JZXL(ZL)H/Q d;f Aﬂ(f, Z).

The matrix of D% + 207, in € is

At (24 2X) @
2 L(t) 7

, . . Ldt
hence in the basis e(z) the coefficient of ¥ i

o4 z/3" H/2 + = .
(5.1.10) — LH—%L() H/2 2 x W2+ X e XL

2 L(1)
3+ iz3" H/2
—_— ) Id — .
*( 2 ) L

But

N (H/2 4 2X)e X = =2 X(H/2 4 2X)
=X +e* X (1/2) = 2X + H/2 — 2X = H/2,

hence the result.
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On the other hand, the matrix of 2D’z + 0% in the basis e(z) is computed in the
same way: it is equal to
3" It dt
[( Plas z/;/) 1d+Y} @ = (3 2)1d+Y] =
Therefore, Oy [1/t] - e(z) is a left Z 5 -module, which gives (3). By definition, one
has

(5.1.11) toe(z) = e(z) - [(3*2)Id+Y].

Moreover, putting z = 0 shows that the matrix of 6% in the basis e = e(0) is holo-
morphic, hence A is harmonic. We have obtained 5.1.2(1) and (2).

Counsider the filtration Uy,. i~ t=kG - e(z). This is a good filtration with re-
spect to V,# 4 [1/t] and, for any k € Z, we have gr} M~ o0& . Moreover, putting

a = —( — 1, the operator 0;t + (« + k) * 7 18 11111)()tent on gry %/ Near any z, € Qo,

the filtration V%), # 7 Uit (o) M satisfies all the properties of the Malgrange-

Kashiwara filtration, hence is equal to it. This shows 5.1.2(3). The lattice A consid-
ered after Definition 3.3.1 reduces here to o + Z.

Although the filtration V.(:“)(/Zlvis only locally defined with respect to z, when the
imaginary part o/’ is not 0, the module '1/)La+kt¢7 (for k € Z) is globally identified
with U]‘;/UA--1 .

Consider the minimal extension .# of .# across t = 0. By the results of §3.4.b, it
is strictly specializable along ¢ = 0. It is strict, because A is so. Near Zo € Qq, M s
the % 4 -submodule of .7 generated by tF=ve(z), where k., € Z is chosen such that
k., + €., (a) € [-1,0]

# is holonomic because its characteristic variety is contained in (T, DUT D) x Qg
(by an extension argument, reduce to the case when Y = 0). Remark also that the
support X(.#) of Zpo# is contained in the curve tr = i3”/2: near z,, the classes
of t7k=e;(2) (j = 1,...,d) generate Epo.# over Op[T D]; these classes satisfy the
equation

det ((tr —if"/2)1d =Y) -t Fe;(0) =0 (j=1,....d).

Let us end by proving (5). It will simplify notation and not be restrictive to
assume that Re 3 € | — 1, 0], that is, putting « = =3 — 1, Rea € [-1,0][. Fix z, € Qo.
In the local basis t™%:ve(z) of .# near z,, the matrix ct) = (C;j:”)) with entries
C’Z(; = hg(t F=oe;(2).t *=0e;(z)) defines a Ry. v~ g sesquilinear pairing.

Let A(z) be the matrix defined by (5.1.9), so that e(z) = € - A(z), where € is the
h-orthonormal basis constructed previously. Put

C ="'A(2) - A(2).
Formula (5.1.9) shows that

(5112) é — |ﬂ‘2(,3*:)/: . L(t)H/Zeﬂ:YCX/:LU)H/Q d_‘_if jt|2(f3*z)/z . B.

ASTERISQUE 300



5.1. A BASIC EXAMPLE 127

The matrix C**) can be written as [t|=2¥2oC. When t — 0, each ]Ci(j:”) behaves
therefore like ||2¢0 (P =F=0 )1 (#)* for some k € Z. By definition, we have £, (3 —k., ) €
] = 1,0]. so that Cf;”) is L}

e and defines a distribution depending analytically on z
near z, € S.

We hence define C on .# s Q4. # g as the unique (if it exists) R 5 «-linear pairing

) 1s®@eog-Hs 1 X, X8 I &

such that C(t F=e;(z).t *=0e;(2)) is the Ll extension of 677-(;”) as a distribution.
Uniqueness is clear, as we are given C' on generators. It will also allows us to glue
along S the various local constructions. It remains to prove the existence.

If one chooses a basis v° = (v, ¢);.¢ as in (5.1.1), the matrix C*) is block-diagonal,
ct) = &, C Ej)) We can therefore easily reduce to the case when Y has only one
Jordan block.

Under such an assumption, .# is %o -generated by t=F:veq(2). As we have
t=kz0epiq(2) = [t0; — (B — k., ) % 2]t F=0e1(2), we first have to verify that we indeed
have, as distributions,

ot

[0 — (8 — ho) % 2] [0 — (B — Kay) % 2] OG0 = CE0

We know that this holds on X* as C* functions. It then holds as distributions for
the L] extensions (cf. Example 1.5.4).
We note now that we have a local presentation of .# (recall that Re 3 € ] — 1,0]):

[t0r — (3 — ka,) x 2)?

R Ry — M — 0 if B &7,
'615(1‘61)’1_1

es Ry — M — 0 if §=0.

Indeed, we have a surjective morphism of the cokernel to .#, and it is enough to show
that the cokernel has no t-torsion, which can be seen easily. Thercfore, C' will be well
defined if we show that Cﬁ”) satisfies [t0; — (8 — k., ) * :]dCﬁ”) =0 (when 3 € Z) or
0,(t0,)=1C3) = 0 (when 3 = 0).

By construction, this holds on X*, so that we can write as C*° functions on X*:

d—1
szl) = C(t Foer bt Feey) = [t]2Fh)r2)/ Z(M-L(t)k/k!
k=0

for some integers ay, with ay—; = 1. By definition of the extension CEZI) this also
holds as L, functions on X. Apply now Example 1.5.4. O
Remarks 5.1.13

(1) In particular, we have C,(~]) = 0 for i + 7 > d and, in the expression (5.1.12)

for C*) the coefficients of the negative powers of L(t) vanish. This can also be seen
using the relation

((%X/:(z’ :Y(’X/Z) “H- ((zx/:e’;Y(zX/:)_l = —H.
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(2) As we assume that Re 3 € ] — 1,0]. the entries of C take value in Dbx,xs/s-
Moreover, the sesquilinear pairing v ,C on ¥, ,.# can be directly computed by
using C.

We will end this paragraph by proving:
Proposition 5.1.14. -~— Put o« = —3 — 1. Then, for any ¢ > 0, the object
(Por}'W0, o (). Pex}' Uy (A). Py, C.. =1d)
s a polarized twistor structure of weight € in the sense of §2.1.b.

Proof. — Keeping notation as above, we have ¢y o.# = 0 if v # a mod Z and
Wy # ~ 08 has basis [e(z)]. The matrix of iN = —i[0;t + o  z] in this basis is
—iY. We compute ¢ C on W, .7 with the help of the matrix C.

For simplicity, we will assume that Y has only one Jordan block, of size d. There-
fore, PerMW, (. #) =0 if { # d — 1 and has dimension 1 if £ =d — 1.

It is a matter of verifying (see Formula (3.6.14)) that the expression

(5.1.15) (iz) 7“1 Resy—nusye / [ CGN) " ey o) x(t) s=dt A dE,

(for x € C2°, x =1 near t = 0) considered as a function of z, is a positive constant.
Put Y? le; = ygeq. As iN acts as —iY, the expression (5.1.12) for C implies that

6{1.] = V"g(ﬂ*z)/z(*z)dilll/(l/((] - 1)'

hence 5((iN)d*1(,’1,W) = (=) 1;1/(15(1_1 = |i}“)(/f*:)/"(’i2)‘]‘lu( /(d—1)l. We therefore
have ) B

_ Ya 2(s—axz/z) i dt dt

5.1.15) = —24 . Res,_,. t A

(5.1.15) = s Ros,neys [ 1 x(t) =T A

Now, use that

oy o dt :
RCHS:() / |1‘|Z$X(f) Z;T N—=1. O

2. Review of some results of C.Simpson and O. Biquard

In this section, X denotes a compact Riemann surface and P a finite set of point
of X. We also set X* = X ~ P and we denote by #p the ideal of P (as a reduced
set).

5.2.a. By a meromorphic bundle on X with poles on P we mean a locally free
O'x (*P)-module of finite rank. Let V be such a bundle. A meromorphic connec-
tion on V is a C-linear morphism V : vV — QL = \/ satisfying the usual Leibniz
rule. We denote by M the meromor phic bundle V Wll]l connection V, regarded as
a left Zx-module. There is an equivalence between the category of semisimple reg-
ular holonomic Zx-modules with singularities at P and strict support X. and the
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category of semisimple meromorphic bundles with connection having regular singu-
Luiti(‘s at P: in one direction. associate to the ¥y -module A the meromorphic bundle
M =0y (xP) @¢ M; in the other direction, use V to put the structure of a 1og111<1r
holonomic module on V and associate to Al the minimal extension M C M. , the
biggest Zx-submodule of M having no quotient supported in a finite set of p()mts.

We note also that, by the Riemann-Hilbert correspondence, these categories are
equivalent to the category of se nusunple representations of mi (X™).

If we are given a decreasing filtration M® of ]\[ indexed by a finite set Bg C ]—1,0],
by Ox-locally free submodules AP such that ]\[/]\[b is supported on P for any b € Bgr
and on which the connection has at most logarithmic poles, we say, following [62],
that (H M°. V) is a filtered regular meromorphic connection. The filtration can be
extended to indices in By + Z by putting AP = I MY

5.2.b. We assume that A has only regular singularities. Consider the canonical
filtration of A (i.e.. the Malgrange-Kashiwara filtration, in dimension one): it is
indexed by Ag + Z for some finite set A € C, putting Ag = {Rea | a € A}. We
will use the increasing version of it: each ‘4,]\7 is a locally frec @x-module which
coincides with A on X*. and on which the connection acts with only simple poles,
such that the eigenvalues of the residue have real part in [—(a + 1), —a]. We will also
consider the decreasing version VM. by putting Vt = V_(p+1) and glf{ = grV (b+1)
(see Remark 3.1.6(2)), so that the eigenvalues of the residue of V on V' M have real
part in [b,b+ 1[.

The degree of a filtered regular meromorphic connection (1\7, ﬁ', V) is defined as

(log()\“[;. M. V) =deg MO+ Z Z bdim gl'bﬂw
rePbe0.1]
By the residue formula we have:

Lemma 5.2.1. If M* is the canonical Sfiltration VA of M. then d(‘,g‘(]’\\j, ﬂ') =0.
O

Say that a filtered regular meromorphic connection ( M. M* ) Is stable if any nonzero
s&b meromorphic connection (]\/ V). equipped with the induced filtration N*=Nn
M?®, satisfies

(leg(ﬁ. N‘“) - (leg(;ﬁ. M*)
rk N rk M
Owing to the fact that the filtration induced on N by the canonical filtration of A

is the canonical filtration of N. and according to the previous lemma, we get:

Lemma 5.2.2. If M* is the canonical filtration of Jﬁ, then (117 ]\7') is stable if and
only if M s irreducible. O
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5.2.c. Let V be a holomorphic bundle on X* and let h be a hermitian metric on
H = €% ®e,. V. Say that h is moderate if the subsheaf V of 7.V consisting of
sections of j.V, the h-norm of which has moderate growth near P, is a meromorphic
bundle on X. If we are given a meromorphic extension M of V', we also say that h is
moderate with respect to M if V = M. The parabolic filtration V* of V is then the
filtration by the order of growth: in a local coordinate ¢t near x, € P,

_{UEJ* ]hm{fl b o (t) ()], =0for e >0 and e <« 1}.

A criterion for the coherence of the parabolic bundles is given in [62. Prop. 3.1]. after
[14].

Let now (H. Dy) be a flat bundle on X*. Following loc. cit., say that h is tame
with respect to (H, Dy) if the h-norm of flat sections of V' grows at most polynomially
near P. If h is tame and harmonic, C.Simpson has shown [62, Th. 2] that A is mod-
erate, that each term of the parabolic filtration is &-coherent and is logarithmic with
respect to the connection V. The object (H. Dy, h) is then called a tame harmonic
bundle. Tt therefore defines a filtered meromorphic bundle with connection (ﬁ ﬁ')

We say that the tame harmonic bundle (H, Dy, h) has Deligne type if the parabolic
filtration A/ is the canonical filtration of M.

The category of tame harmonic bundles (morphisis are compatible with Dy and
bounded with respect to the metrics) is semisimple, as well as the full subcategory of
tame harmonic bundles of Deligne type (loc. cit., Th.5).

We will now use:

Theorem 5.2.3 ([62]). Let (]\\[7 ]\7') be a filtered regular meromorphic connection.
Then (]Tf j’.vf') is poly-stable, each summand having degree 0, if and only if there
exists a Hermitian metric h on M |x~ which is tame with respect to M, with associated
parabolic filtration M*, and such that (1\7];« .V.h) is harmonic. O

By the previous lemmas, if we assume that AM* is the canonical filtration, then
we can replace in the previous theorem the word “poly-stable” by “semisimple”. and
forget about the condition on the degree, which is automatically satisfied.

Corollary 5.2.4. —— The functor (H, Dy, h) — (1\7 1‘;\7.) from the category of tame har-
monic bundles to that of log-filtered meromorphic connections induces an equivalence
between the subcategory of tame harmonic bundles of Deligne type to that of semisimple
meromorphic bundles with a regular connection (or equivalently, semisimple regqular
holonomic Px -modules having strict support X ). U

5.2.d. Let M be a simple meromorphic bundle on X with poles on P and a regular
connection; it is isomorphic, locally near each point of P, to a direct sum, indexed
by 8 € C with Re 8 € ] — 1.0], of meromor phl( bundles with connection as in §5.1.
Let us denote by (V. V) the restriction of M to X*. Let M* denote the (decreasing)
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Malgrange-Kashiwara filtration of M. Hence (]\7, H’) is a polystable regular filtered
meromorphic bundle with connection of degree 0 (Lemmas 5.2.1 and 5.2.2), to which
we can apply Theorem 5.2.3.

std on V which is equal, near the

Choose a model (also called standard) metric A’
singular points, to a (onespondmg, dne(t sum of metrics as in Prop.5.1.2. The
Malgrange-Kashiwara filtration M* of M can be recovered from this metric by mea-
suring the order of growth of the norm of local sections of M (this is easily seen on
the simple basic example).

The result of C.Simpson is then more precise than Theorem 5.2.3: it asserts (see
[62. Th.6(2)]) that there exists a harmonic metric h which is comparable with kst
near .

It will be even more convenient to use the construction made by O.Biquard in [4]
which gives a more precise description of the relationship between h and A%t

We keep notation of §§1.3.a and 2.2. Let us denote by B c{peC|Repe|0,1]}
the finite set of eigenvalues of the residue of V on ]\[U/Z\[], and let B be the set
obtained from B’ by adding —1 to any 3 € B’ such that Re3 # 0: for 3 € B, we
have Re 3 € ] —1.0].

The following result is also valid for general tame harmonic bundles or poly-stable
filtered regular meromorphic connection of degree 0 that we will not consider here.

Theorem 5.2.5 (|4, §§9 and 11]). - Let (H, Dy, h) be a tame harmonic bundle on X*
of Deligne type, or equivalently, let M be a simple meromorphic regular connection
on X with singularities at P. For each puncture in P, there exists, on a small disc
D centered at this puncture, an h-orthonormal basis € of €3 @V on D* such that
the matriv of Dy in this basis can be written as

,dit dt

/’H (A[/srd P) : + (]\[//std +P//)%—

MM +Z\[’

where M'SY NS qre direct sums indexed by 3 € B of matrices (5.1.5) and (5.1.6),
and P, P" are of some Hélder type (see loc. cit.). O

5.2.e. Sketch of the proof of Theorem 5.0.1. — In §5.3, we prove a reconstruc-
tion result, namely, starting from a tame harmonic bundle of Deligne type (H, Dy, h),
we associate to it a polarized regular twistor Zx-module (7 ,.%), = (#,.#,C,1d)
of weight 0 which coincides with that given by Lemina 2.2.2 on X* and such that
Zpr.# = M is the minimal extension of the meromorphic bundle with connection
defined by h.

In §5.4, we show that the correspondence (7,.%) — (H, Dy, h) on X* of Lemma
2.2.2, starting from a polarizable regular twistor Zx-module of weight 0, gives rise
to a tame harmonic bundle of Deligne type. Moreover, we show that (7,.%) and
(.7,.)n constructed in §5.3 are isomorphic, at least locally on X.
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Both results are enough to conclude. Indecd. it is enough to prove Theorem 5.0.1
for objects having strict support X. The functor “restriction to z = 17 sends po-
larized regular twistor Z-modules to semisimple regular holonomic Z-modules, ac-
cording to §5.4. It is essentially surjective. according to §5.3. By the equivalence of
L(‘lllllld 2.2 and Corollary 5.2.4. any morphisim o : My — Mo lifts to a morphism

() xe = (Do, Sa)x- ina 11111(111(‘ way. Moreover, it induces a morphism be-
tween the meromorphic extensions . //1 — ///z which is compatible with the parabolic
filtration constructed in Corollary 5.3.1. because ¢ respects the canonical filtration.

c.. the parabolic filtration of the harmonic metric.

By the construction of §5.3.h, ¢ extends then as a morphism (\77,.7), —
(T, -5)n. Therefore, by the local isomorphism proved in §5.4, ¢ also extends (in a
unique way) as a morphism (77..9)) — (Z../5). hence the full faithfulness of the
functor. O

5.3. Proof of Theorem 5.0.1, first part

In this section, we will prove that any semisimple regular holonomic 7y -module is
of the form Zppr.#" where . " is part of an object of NT™ (X, 0)®).

Let M be a simple regular holonomic 7y -module and let M be the associated
simple meromorphic bundle with regular connection as in §5.2.d. We fix a harmonic
nietric as given by Theorem 5.2.5. and we will work locally near a point of P, with a
local coordinate ¢ centered at this point.

5.3.a. Construction of the ¢, [1//]-module # and the filtration V,. 7

In this paragraph. X will denote an open dise with coordinate 1.

Let us denote by j @ X* x Qy — X x € the open inclusion: denote as above by
27 the product X x Qq. For z € Q. recall that ¢ denotes its imaginary part; denote
also by A. () the closed dise centered at z, of radius 1 > 0; recall that H(A: (n))
denotes the (()110\])()11(1111@, Banach space of holomorphic lun(‘rlom For short. we will
denote by ,//3 the germ at (0. 2) € 27 of the @ -module . 7.

The first step consists in defining a @ 2 [1/t]-module. # and the parabolic filtration
V.4 onit. As we will see below, the parabolic filtration is only locally d(‘hn( don 2.
What is possible to define globally are the graded picces, or even the ¢y v

Let us first state a consequence of Theorem 5.2.5.
Corollary 5.3.1

(1) Let VS G be the subsheaf of local sections of j.. 7. the w*h-norm of
which has moderate growth along {0} x Qy. Then M is Oy [1/t]-locally free and is
strictly specializable along t =0 (¢f. §3.4).

(2) For any zo € Q. let (V I).r//z“)],e[;\ be the “parabolic filtration” of the germ //Z
associated with ™ h near z,, i.c., V".//Z” is the set of germs m € //Z which satisfy
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tI=P* e | ., bounded near (0. z,) for any = > 0. Then. this filtration coincides with
7*h ) =
the Malgrange-Kashiwara filtration V(":)(//Z)
(3) The Malgrange-Kashiwara filtration moreover satisfies:
a) each VP %7; is O 9 (o...y-locally free of finite rank,
(z0) o (0.20)
(b) the monodromy filtration M,(N) (cf. Remark 3.3.6(3)) of the nilpotent

endomorphism N = —(t0, — 0 x z) : 'z/ﬁf(,//zﬂ) — /l/)f(./ﬁ

graded piece gr?l(mw,ﬁ(,//zn) s Oq, .=, -locally free for any € and any /3.

) is such that each

For the proof, we will need Lemma 5.3.2 below, analogous to [4, p. 79]. Let us recall
some notation: we put D, = 2D + 0% and DY = DY, + z0.. By Theorem 5.2.5,
we write DL (resp. DY) as the sum of D (resp. D) plus a perturbation which
is controlled. We denote with the same letter the action of these connections on
endomorphisms of H with values in differential forms.

Lemma 5.3.2 (Local killing of the perturbation P"). In the situation of Theorem
5.2.5, for any z, € Qq, there exists 1 > 0 and a matriv Q) (t,z) of functions
X* — H(A., (n)) such that

(1) the H(A.,(n))-norms of L(£)° Q) (t, z), L()° D7 Q=) (t, z) and L(t)°D.Q=) (¢, :

remain bounded when t — 0, for some § > 0);
(2) in the basis &3 (z) e (Id+Q)(t, 2)). the matriz of D' is the standard
one, namely [M"59 4 (2 — 1) (M= 4 A<t /2] df /7.

def

Sketch of proof(). —— It is a variant of loc. ¢it. The basis € of Theorem 5.2.5 is de-
composed in subfamilies 5 for 3 € B. Given any matrix P, we denote by Py, 3,
its (0, 3;)-block. We will first use the following property of P = P’ or P given in
loc. cit.: there exists 0 > 0 such that

(i) for any 3 € B, the matrix function L(#)'° 5 5(t) is bounded on X*.

(ii) if 3; # 3; € B. the matrix function L(#)?*9Pg, 4,(t) is bounded on X*.
(The second condition corresponds to the case denoted by ¢ #£ 0 in loc. cit.).

We will also need a better estimate, the proof of which will be indicated in §5.B.a:
there exists € > 0 such that

(iii) if 37" # B} the matrix function [t|7° Py, 5, (¢) is bounded on X*.
Let us now fix z, € Q,. It will be convenient to work with the basis €(z) = e - e= X,
In this basis. the matrix of D” = DY, + 26}, can be written as [Std”(z) + b"(t. z)|dt /T
where

Std”(2) = @ ([ = (' + i20")/2] 1 +H/2L()).
V(. 2) = X [P 4 (z = (P + P™) /2] X,

(U1 thank O. Biquard for explaining me his proof and the referee for noticing a missing point in a
previous proof.
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We look for Id +u(t, z) such that

_ du
Ot

Then Id +Q) (¢, z) = e =X (Id +u(t. z))e*™ will be a solution to 5.3.2(2).

We can now argue as in [4, pp.78-79]. As both operators ad Std”(z) and ad H
commute, we can decompose any d x d matrix u as u = &, u’ where u(1:0
belongs to the ~(z)-eigenspace of adStd”(z) and the f-eigenspace of adH. Let
us denote by Ej.(Dj. H(A., (1)) the Banach space of matrices u of functions
Dy — H(A., (1)) on the punctured disc of radius R such that the entries of

u”t satisfy “L(t)(su””[(t)

e u™ Naan, o

For a matrix v(7+%) in the (7, ¢) eigenspace of (ad Std”(z),ad H) and for n € Z, put

(5.3.2)(%) —[Std”(z). u(t. z)] = b"(t. z) (Id +u(t, 2)).

HH(A:”(”)) bounded on D7}, and, if y(z) is not constant,

bounded.

dw N dw

Ty = p=n ¢~ Revp(1)4/2 / E; |1U|R(\7 L(w) % 000 L .
. —w

D% w 2

We note that v = ~(z) is a function of z which takes the form (3] —35)+iz (3 —3%),
for 31,32 in B. Then, either z — v(z) is not constant, i.e., 3] # (35, or it is constant
and belongs to | — 1, 1[. We define n.,(,,) s € Z by the property

el-1,0 if 'y(z) £ 0,
My + Rev(zo) § = —1 v(z)=0and £ > -1,
=0 if ,( )=0and { < —

The radius 1 > 0 is chosen such that, for any v with v(s) not constant and v(z,) € Z,.
then Rev(z) + ¢ € JRev(z,), Rev(z,) + 1[. Consider the operator

j7v U — @%/Tr(zjff) [(b”u + b//)('y./)}.

We then obtain as in loc. ¢it. that, if R is small enough, the operator 7 sends
E(s,E(D}‘{,H(AZ“(v/))) into itself, and is contracting. The fixed point u is solution of
(5.3.2)(%), where the derivative is taken in the distributional sense on D7.

We note that the only assumption of a logarithmic decay of u(7*) would cause
trouble if v(z,) € Z and 7(z) non constant. This is ruled out by the stronger decay
in |¢|* (Property (iii)) in such a case.

The first two properties of 5.3.2(1) directly follow from the construction, as
DY (Id +u) = —(Id +u)b”.

The matrix of D’ in the basis €(z) can be written as [Std'(2) + (¢, 2)]dt /¢, with
Std'(z) = @ [(z,x’)” +13")/21d+(Y + zH/2)/L(t ] and b satisfying (i) -(iii). We note
that, for u € Ejs.(Dj.H., (A(n))), we have ||L(t)*°[Std’(z) 'u,]H”:“(A( )
(and a similar property for [Std”(z),u]). In order to obtain the desired estimate for
@;Q(Z“), it is therefore enough to show that L(f)d'u(t,z) remains bounded when

bounded
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t — 0. This is obtained by an argument of elliptic regularity which closely follows
that of [4]. Details are given in §5.B.b. O

Proof of Corollary 5.3.1
Identification of the parabolic filtration. — Fix z, € €y and work in a neighbourhood
of z, as in the previous lemma. We denote by Q(**) the corresponding matrix. For
B € B, let qs,c, € Z be such that ¢, (gs.c, + 03) def qs.c, + 58" — (8" belongs to [0, 1].
The basis € of Theorem 5.2.5 is decomposed into subfamilies ez for 3 € B,
so that M/ M5 are block-diagonal matrices. Recall that we set Ag(t,z) =
e =X HEST L2 and we put A(t, z) = GpepAp(t.z). We also define similarly
the diagonal matrices 4:15(1‘/, z) = |¢]7 = L)WV and At,z) = @56323(1‘,, z). Last,
put

(5.3.3) ) =g (Id+Q) (1) A(t, z) = ") . AL, z)
(defining therefore also €”(**)), where Q(*)(t) is given by Lemma 5.3.2. For any j,
we have e (N") = |7‘|/j ALt )“"J/zsy(z”) for some /3; € B and w; € Z.

Ac L()r(hng to 5.3.2(2). the computation following (5.1.9) shows that the basis e’(*¢),
defined by

(5.3.4) ez(z") = 98¢0 e;z”),

is holomorphic. As the base changes € — e and _e — € have moderate growth along
{0} x Qq, we conclude that near z,, the sheaf . A s nothing but the &5 [1/t]-locally
free sheaf generated by e(*) in j,.#”. This gives the first part of (1). The strict
specializability follows from the proof of (2) and (3) below.

We note that the basis e(*2) can also be decomposed into subfamilies
7=l 8 =B) (BeB)
so that

(5.3.5) el = e 1 +Q5) + > e - QG)] s,
BI#8

For b € R, denote by U (”:)///7 the locally free Oy-module generated by the sections
tr (’5.:“) with n; € Z such that £ (n; + 3;) € [b,b+ 1[. We note that, for any k € Z,
we have U(bjl)‘l%/ =thup, .

We will now show that U} :);7 induces on Z/: the parabolic filtration (defined in
the statement of Corollary 5.3.1).

Formula (5.3.3) shows that each element t*e (z”) of e(*2) has parabolic order equal

to ., (k + 3;) exactly, according to the 10@,<mthnuc decay of Q*)(t) given by Lemma
5.3.2.
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(=) ¢ JZ with m; holomorphic and m; # 0 =

m;(0,2) # 0. We can assume that IILJ # 0= m;(0.z) # 0 for z # z, in a neighbour-
hood of z,. Put b = minj,,,, 4o ¢z, (n;+/3;). We will prove that m has order b. Clearly,
m has order = b. It is then enough to prove that. for any ¢ > 0, [t|7°7¢||m]| is not
bounded in any neighbourhood of (0, z,). There exists only one k € Z and 3 € B such
that, for any ¢ € [(,, (, + 1] with 7 small enough, ¢.(k 4+ ) achieves the minimum of
{€.(n; +8;) | mj #0}. We note that €. (k +3) < bif ¢ € [, (o + 1] and that, unless
[ is real, the inequality is strict if ¢ # (, (see Fig. 3.a on page 70). Let us denote by J;
the set of j for which this minimun is achieved. Put w = maxjes, w; and denote

Conversely, let m = Z m. vz‘"'e

Zo

by J the set of j € J; for which this maximum is achieved. Let m ;(0, z) be the vector
having entries m;(0, z) for j € J and 0 otherwise and put m (0, z) = e=*¥m (0, 2).
Then an easy computation shows that

(5.3.6) lmlse, o~ PEETIL) (0.2
CE[Co-Gotn)
This gives the assertion.
Computation of O, We now compute the matrix ©7, of D’ in the basis €/(**). We
note first that, by flatness, the matrix of D’ in the basis e'(72) takes the form
. dt
(5.3.7) 0, = [( @5 [(qp.c, +8) x 21d+Y3]) + P(t. :)} "
with P(t, z) holomorphic on {t # 0} x nb(z,).
Assertion. - The matriz P(t. z) satisfies:
i # B
if 02, (qs,.c, + B35) < €2 (gs,.c, + D). then Py g, /[t is holomorphic near
(0,2,):
if 02, (qs,.c, +55) > 2, (4s,.c, + k). then Py, 3, is holomorphic near (0. z,);
if 35 = k.
if wj = wy, — 2, then Py, 5, /t is holomorphic near (0, z,);
if w; < wy — 3, then Py, g, s holomorphic near (0, z0).

Proof of the assertion. We will prove that the matrix P(t, z) satisfies the following
property, for some § > 0 small enough and z € nb(z,):

Ili_l}(l) L(f)d|/,|((w<’ .g,,+j3./ 'C,’j"l’> § (q,u '4”+’3;"7<d‘/"/)L(f) 1+ (w, — u’;\v)/21)/j,‘.uk (f Z) _ ()"

from which the assertion follows. Using notation of Lemma 5.3.2, this, in turn, is
equivalent to the fact that the nmtrix of D’ in the basis €(z)(Id +u) takes the form
[Std'(2) + ¢/ (t, 2)}dt/t with ||L(£)°c(t. = (lz‘/fH” , bounded. We know, after [4],
that the matrix of D’ in the l)(ms £(z) takes tho f()rm [Std(z) + b/ (t, z)]dt/t, where
bdt/t s‘dtisﬁgs the previous estimate and Lemma 5.3.2 lmpll(,s that the functions
t e ||L(t)0u(t. z and ¢+ ||L(+)°D%u(t. z

are bounded. On the

Hn A(n)) |n A(n))
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other hand. we have ¢/(t.2)dt/t = (Id4+u)"*DLu + b'dt/t. Both terms in the right-
hand side satisfy the desired property. O

End of the proof. The assertion above shows that U(”: )/7 is stable under t0;.
Moreover. the matrix of t3; on U, Uﬁ /U 1- .y Is block-lowertriangular, if we order the

families e ;”‘) with respect to the (~ -order, each block corresponding to a value of

=0

(., (qs.c, +13). Each diagonal block is itself block-diagonal with respect to the various
S with £2 (gs.c, +3) fixed. This shows that each graded piece gr’l’f(;“)./// is Oqg-locally
free near z,, hence U (';”). # satisfies the properties of Lemma 3.3.4. Thercefore, M s
strictly specializable along t = 0 and [](.:”)«’/7: V(':)/;

Last. let T'T/',gr"’}_‘”),//"/yl)o the weight filtration of &5Y 3. It ?LlS() follows from the
previous propertics that it is decomposed with respect to @y T 7 and each sumi-
mand II’,'L,"V;["'““+J' Z/ satisfies the properties (711;11'-(1,(:tc,1'iz111g the monodromy filtration
of N = t0; — (q3.c, +/3)*z. It is therefore equal to it and N : ¢ "< - o ot gy
is conjugate to Y ;. This proves 5.3.1(3). g

Remarks 5.3.8

(1) Although the bases e*) are defined ouly locally with respect to z. the classes
of their elements in the various bundles p,‘r’\‘l'l/ﬁ’H o are globally defined on 4. We
note that these bundles are holomorphically tllvml on SZ() More precisely. for any
(€ Z and any 3 € B. there exists a basis €%, of grM), L as a Oq,-module, uniquely
determined from the basis € of Theorem 542.- .such that (€% ;) gen. ez lifts locally to
hases e(=),

In 01‘(101’ to provo this statement. it is cnough to characterize the inverse image in
VX"' B A of g_,l ./7110;11~ Zo-

First, a section m of V((;::’)U),ﬂ/;noar (0. z5) has a class in gl‘ii’jf‘:)./7(~(>11taino(l in

1/‘:;1 4 if and only if, for any j. denoting by n; € ZU {+oc} the order of its coefficient
m; on ('<j;") along ¢ = 0. we have £, (n; + 3;) > €. (3) if 3; # 3 and at least onc

m;(0.2) # 0 with 3; = /4.

When this is satisfied, the class of m has M-order ¢ if and only if, for any j with
B =3, mj0,2) = 0if w; > ¢ and m;(0,z) #Z 0 for at least one j with 3; = /3 and
w; = {.

Both assertions are proved as in the proof of Corollary 5.3. 1 This criterion can be
translated in terms of order of growth: the class of m is in w // iff for any z! # z,

and sufficiently near z,, the norm ||m,‘,_,/ |} has growth order P:{)(o’). and this class
has M-order ¢ iff morcover this norm grows as |f] AT ()2,

With this criterion in mind, one observes that two meromorphic bases given by
Formula (o 3. 3) for different choices of Q(¢) give rise to the same classes in the

various gr ,> z,r %/, so these classes can be glued when z, varies in €. By definition,
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the basis e° is adapted to the Lefschetz decomposition of ngng, hence to that of

gr™M,N. In particular, the whole basis of gr™s, o

# can be recovered from its primitive
vectors.

(2) We also have an asymptotic estimate of |[m||_., as in Formula (5.3.6) for ¢ €
[Co — 1. (o). Tt uses a maybe distinet pair (F_.k_). subject however to the relation
O (ko +p)=4. (k+ /’1’).

BV restriction to z = z,. we also get a criterion for a nonzero 1 local section m?
of M. : Let us denote by U®M., the filtration induced by V, Va (cf. Pr()pomtlon

Zo

(~ )
3.3.14). Let us denote by N the corresponding nilpotent endomorphism on gl ]\[Z“,
which is the direct sum of the various —(0;t + 3 x z,) for § such that ¢, (5) = b,
and let M,gl ]\[:“ be its monodromy filtration, that we lift as M Ub]\7~, . Restrict
the basis e(*) to a basis e of ﬁz and write m® = ZJ 15(1)t" ef. We assume that
m$#0 = m;?(()) #0. Put b = ming, 20 l-, (n; + 3;). We d(énote by J7 the set of j
such that the minimum is achieved, we put w = maxjejp w; and we denote by J¢
the set of j € J? such that the maximum is achieved. We then have the restriction of
Formula (5.3.6):

Q0 0112 2b o 2
(5.3.6)2, lm?lf5, ~, L) |

m;(0)

Moreover, m? is in U”]W:,, and its class in grar?, M. is nonzero.

(3) For any z, € §p, it is possible to find a matrix (Q(z) which is holomorphic with
respect to z and is invertible for any z near z,, so that. after changing the basis e(#)
by the matrix Q(z), the residue at ¢ = 0 of the matrix of zD g + 6%, is block-diagonal,
cach block corresponding to cigenvalues /3 * z taking the same value at z,, and is
lower-triangular, each diagonal sub-block corresponding to a given /3.

Assume moreover that z, ¢ Sing A. in particular z, # 0. Then, therc exists a
neighbourhood of z, such that, for any z in this neighbourhood and any 3. 32 € B,
the differences (3] — ) x2/2 € Z <= 3 = /3.

One can therefore apply the same arguments as in the theory of regular mero-
morphic connections of one variable with a parameter to find, near any (0, z,) with
Zo & Sing A, a basis e = (=) . P(t, z) of . # . with P(0, z,) invertible, in which the
matrix of zDg + 0, is equal to

a[(Fxz)Id ‘f‘Y,/j]‘(g.

If now z, € Sing A~ {0}, we first apply a classical “shearing transformation”, which
is composed by successive rescalings by powers of ¢ and invertible matrices depending
holomorphically on z for z near z,, so that, for any two eigenvalues 31 * z, 32 % z of the
“constant” part (i.e., depending on z only) of the matrix of zDp + 6%, the difference
is not a nonzero integer. Then it is possible to find a base change P(¢, z) as above,
such that the new matrix of zDg + 0, does not depend on ¢, is holomorphic with
respect to z and is lower triangular with eigenvalues 3 * z for the new set of 3’s.

ASTERISQUE 300



5.3. PROOF OF THEOREM 5.0.1, FIRST PART 139

We note that in both cases, .# is, locally with respect to z, an extension of rank
one O 3-[1/t]-modules with connection.

5.3.b. Construction of the % 3 -module .# and the filtration V,.#

Let us return to the global setting on the Riemann surface X. The % x-module
A is defined as the minimal extension of .# across its singular set P (¢f. Def. 3.4.7).

Corollary 5.3.9. A 1s a reqular holonomic 92y -module which is strictly specializ-
able along t = 0 and has strict support equal to X .

Proof. Let us show that . # is good. On 2"\ X, .4 = M is Oy -coherent. Let
repP. If K is any (’()mpa(*t set in {;1:} x §y, then .7 is generated by the sheaf of
h S C'lil_N for N = N large enough, as this
shoaf contains V/*1 /// 1‘01 any z, € K. This sheaf is &'y -coherent, as follows from

Corollary 5.3.1, hence . // is good.
By definition, on A (7)), the V-filtration V<°_)// restricted to indices in Z, is good;
hence . is regular along {w} x Qg for any @ € P, as cach V’ %/ is Oy -coherent.
Last, as .# is O-coherent on 27~ 2, its characteristic varlcty is the zero section
on 27\ 2, hence is contained in (T3 X UT5X) x Qq: in other words, .# is holonomic.
The strict specializability along ¢ = 0 follows from Proposition 3.4.6 and the fact
that . is a minimal extension implies that it has strict support equal to X. O

We will end this paragraph by proving:

Lemma 5.3.10. The restriction to z = 1 of the Xy -module . # is equal to M.

Proof. Consider first the restriction of .7 to z = 1. We will show that is is equal
to A (with connection). On the open set X* = X ~ P, this was shown in the
proof of Lemma 2.2.2. We know by 5.3.1(1) that .4 /(z — 1).# is Ox(xP)-locally

free. It is therefore enough to prove that ///(: 1). # and M define the same
meromorphic extension, or equivalently that . /(z—1). # C M. By the construction
of the metric h, M is the subsheaf of j, V' (where j : X* < X is the open inclusion) of

sections, the hi-norm of which has moderate growth. Now, Formula (5.3.3) computed

at z, = 1 shows that the h-norm of the basis e;(~—| has moderate growth, implying
therefore the required inclusion.

We note that the same formula shows that the filtration V] |

;1).//71'(>st1'i(‘ts to the
canonical filtration V*Al of M. Recall now that the minimal extension M C M is
the sub-Zx-module of M generated by V>~!Af. By construction, we thercfore have

M) (z— 1) C M. As M is simple, both Zx-modules coincide. O
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5.3.c. Construction of the sesquilinear pairing

We have to define a sesquilinear pairing C' on . #|g % e 7/@ with values in
Dbx. xs/s, which has to extend hig defined on X*. We will construct ¢ with values
in the sheaf Db g of distributions whicl are holomorphic with respect to z.

We first define C' locally with respect to S and then show that it glues along S. So
we fix z, € S and a compact disc A neighbourhood of z,, that we assume to be small
cenough. We denote by A” its interior. In the following. we will denote by H(A) the
Banach space of continuous functions on A which are holomorphic on its interior.

Consider the basis /(%) of V(f, :

(5.3.3): we have (7;(:“) = f”v‘\f|'j-:+i;'d‘;/L(f)“"/25//'/(:"). with ¢,

Zo

1 . .
A defined near z, by a formula analogous to

(n; +/3;) € ]—1.0]
Consider similarly the basis e/t =) of V(>_f l). # defined near —z,, with ¢_. (v, +3)) €

o

] = 1.0]. We note that, as |z,] = 1. we have o(z,) = —z, and Imo(z,) = —(,. using
the notation of §1.5.a.

The entries of the matrix of ha in these bases can be written as
(5.3.11) #1)t

12

ﬂ.;+i:r1J . ?"I. |f’,’72.+iﬁi;//: . L(f)(u'leu )/2 . (I,J‘;.»(f).

with ”“’J’«A‘(t)HH(A) — 0if 3; # 3 and [|a;, (1)[| A, locally bounded, when t — 0. As
we have (. (nj+/3;) > —=Land (. (v + ) > —1. we also have Re(n; + 3 + i,z/’j’J’-’) >
—1and Re(v, + 3, +i3)/ /=) > —1 for any z € A.if A is small enough. Therefore, the
entries of the matrix of ha are in L] (X H(A)). hence. as \/(?7}]// is @y -locally
free, ha defines a sesquilinear pairing

ha VIS ta Zoa VO Moia) — Lin (X H(A))

Zo

by Oy @ //7-1inearity.
As LL (X.H(A)) is contained in the subspace Kerd. of L (X x A®). this defines

similarly C'ac on V(f‘)l/f/m 6 po V::”I),«//‘(,(A») by Oy 2 O—5=-linearity.

Assertion 1. ha is Vo# o ia Qon Vo& 2 10ca)-lincar and Cae is Vo 3 a0 @ope

Vo# 2|5 a0y -lincar.

Assertion 2. Cae can be cxtended by 7# \ ) ac-linearity as a well-defined sesquilin-

)
ear pairing on A\ a° Do po m

At this stage, we cannot prove the assertions. as we do not have any information on
the derivatives of the functions a; . introduced above. We need a more precise expres-
sion for ha, that we will derive in Lemma 5.3.12 below. using techniques analogous
to that of [1], that we recall in §5.A.

Fix z, € S, and let A be as above. We will also assume that A is small enough
so that A N SingA C {+i}. Let m be a section of V(>7)]/// on W x A and u a
local section of V(i;)]>,/// on W x g(A), for some open set W C X. If b, denotes
the Bernstein polynomial of m, we consider the set A(m) introduced in Corollary
3.3.7, and take a minimal subset A'(m) C A(m) such that A(m) C A’'(m) —N. Put
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A'(m, ) = A’'(m) N A'(p), so that A’(m. ) — N contains all the v such that v z/z
is a root of b, and b,. We also set B (m,pu) ={—a—1]a e A'(m,u)}.

Lemma 5.3.12. — There exist integers {o = 0 and N = 0, such that, for any local

sections m, i as above, we have

‘
. ) B 0 ) o L(t)e
(5.3.12) (%) (z+1/2)Nha(m,fi) = Z Zf/u(t)It]Z(”*”)/” i
BeB’(m,u) ¢=0
on some punctured neighbourhood X* of 0 € X, where the fgy are C™ functions
X — H(A).

The proof of the lemma will be given below.

Proof of Assertion 1. Let us prove the VoZ 3 |a-lincarity of ha, the conjugate
linearity being obtained similarly. Let m, i be as in the lemma. The real part of the
exponents in (5.3.12)(x) are > —1, as Re(fxz2,)/zo = £.,(8)+{_., () for any z, € S.
For a section P of V0% 2-|a, we have to show that u «f p. ha(m,m)—ha(Pm.z) = 0.
But on the one hand. u is supported on {t = 0} as ha is known to be Vo7 4| a-linear
away from {t = 0} by the correspondence of Lemma 2.2.2. On the other hand, using
(5.3.12)(*) and (1.5.5). (z + 1/2)Nu is LL .. Therefore, (z + 1/2)Nu = 0 and, by
(0.5.1), u = 0.

We note that Formula (5.3.12)(*), when restricted to A° and applied to the bases
) gives cocfficients f3.¢ which are in C*>(X* x A®) and holomorphic with

el0), el
respect to z. This still holds for any local sections m., o on X x A°, by Oy ® O~
linearity. Then the argument for ha can be applied to Cae. O

Proof of Assertion 2. Any local scction m of .# on X x A° can be written, by
definition. as 37 - 0/ mj, where m; are local scctions of V@; " ., on X x A°. There-
fore, in order to define Cac(m. 1), we write m = Z,j;o olm;j. = ZA;() Of ik, and
put
Cac(m.m) = E 0708 Cac (my. 7y,).
Jik=0

This will be well defined if we prove that

g J/m; =0 = E 0/Cpc(mj,y,) =0 for any uy € V(i;l)«%/-zm

720 Jj20
and a conjugate statement.

Setu =73 ,-,0/Cac(m;.fi;) and & = (z+ 1/2)Nu for N big enough. After Lemma

5.3.12, there exists N > 0 and a set B’ satisfying Properties (1.5.7) and (1.5.8) in
Example 1.5.4, such that u can be written as

=y (Z ¢p,0.50tug,e + !1;3.((0’“.:3.1)«,

pBen’ j=1
teN
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where cg ¢ ; are constants and gg ¢ are C* on X x A° and holomorphic with respect
to z. The condition >_ - 0fm; = 0 implies that there exists L > 0 such that t"u = 0,
as Cae is Vo Z 4 -linear. By taking L large enough, using the freeness of the family
(ug,e) and (1.5.5), one obtains that the coefficients gz, and cg ¢ ; vanish identically,
hence uw = 0. This implies that u = 0. O

Let us now show that the construction of C' glues along S. So, fix z, and A as
above, and denote by C/. ) the sesquilinear pairing constructed above. Let z € SNA°.
We will show that C',y and C,, ) coincide on .#, @ .

By (3.4.8) and (3.4.9), they coincide on V(;)l_g‘//,, 2 V(ilz)_s.%/_z. for some ¢ > 0,
1

loc

Qf( ¥.X)..-linear, they also coincide on

as both are L; . there and as they coincide with hg away from ¢t = 0. As both are

Vo) S 0V @ (VIS A+ 0V ]

which containg V(i)"‘l.%/z @ Vi;;.%/,; by (3.4.9). Last, by X (x x),.-linearity, they
coincide on .4, @ .M .. O

Proof of Lemma 5.3.12. —— We will use the method developed in [1], using the exis-
tence of a “good operator” for m or p, which is a consequence of the regularity property
(REG). Fix local sections m. i as above. By (5.3.11), ha(m, 1) can be considered
as a distribution on X with values in H(A) which. restricted to X*, is C°°. Let us
denote by p its order in some neighbourhood of t = 0 on which we work. As m, u are
fixed, put, for any N > 0,

" (z 4+ 1/2)N(halm ). [t* 5 x(t) g=dt Adl) if k>0,

S (s) =
x.N i PURTR . _

(24 1/2)N tha(m. ). |20 (8) f=dt AdT) if k <0,

for every function x € (X, H(A)). Then. for any such y, on the open set 2Re s +
|k| > p, the function s — ﬁ:kl)v(s) takes values in H(A) and is holomorphic. In the
following, we fix R € ]0, 1] and we assume that y = 0 for |t| > R. We will be mainly
interested to the case when y = 1 near t = 0. Applying Theorem 5.A.4 to the family
(ﬂékg,(s))k will give the result. We will therefore show that the family (fik,i(g))k
satisfies the necessary assumptions for some N big enough. We will assume that

k > 0, the case & < 0 being obtained similarly. exchanging the roles of m and p.
Arguing exactly as in Lemma 3.6.5 and Remark 3.6.8. we find that /;%(s) extends
as a meromorphic function of s € C with values in H(A), with at most poles along
the sets s = v * z/z, with v € A(m, ;1) — N. Morecover. we can choose N big enough
so that all polar coefficients of fék&(s) (for any k) take values in H(A). We will fix

such a N and we forget it in the notation below. We put ha = (z+1/2)Nha.
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By the regularity property (REG), there exists an integer d and a relation

d—1

(—0t) m#(ZG J)~m,

Jj=0

for some sections a; of Oxxa. It follows that, for any x as above, we have

d—1
(s+ k)" 7F(s) = (s + k) 7B (s),
J=0

where the x; only depend on the as and x: as ha is a priori Z 5, a-linear away
from t = 0 only, this equality only holds for Res > 0; by uniqueness of analytic
continuation, it holds for any s. Applying the same reasoning for y we get

d—1
st g P(s) =" 517 (s).
i=0
For n/,n” > 1, we therefore have
(d=1)n" (d—1)n
(s+ k)™ s 7 (s) = > Z (s+ k)7 (s),
7'=0
where the functions x, - j» only depend on x,n’,n”,j’,j” and the as. As the

current ha (m, 71) has order p, there exists a constant CX,,I,/,,L//,]-/JN such that, if 2 Re s+
[k| > p. we have
k . Y . . 2 Re s+|k
[ 280 9]y, S Ot - (Lt Jsl 4 Ikl B2 KL
Let n > 0. By summing the various inequalities that we get for n’ +n” < n +p, we
get the existence of a constant Cy ,, such that, if 2Re s + |k > p, we have

(1 + ]51 + 1ki>n .RQR('S‘HH.

700

N

HA) X7

Let us now extend this for 2Res + |k| > p — ¢ for any ¢ € N. For this purpose,
consider now a Bernstein relation

H bm,(_aft + {Z) Smo= f(IP(f, fa,) -m

(=0

and put § = degb,,. Fix y as above. We therefore have

q go—1
H bin (2(s + €)) - ,I/X(’”')(s) = Z (s+k+ q)’/él;l“”(s)
(=0 j=0

for some C'™ functions depending on x, ¢ and j. By the previous reasoning, we get

bin (2(s +€)) - /,Ek)(s) < C(n.q.x) - R?Restikl+a

(L +[s|+ k[ +q)"
H(A)
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Applying Theorem 5.A.4, we now find that there exists a finite family (fs.¢)g.¢.9
of C™ functions X — H(A), ¢ being infinitely flat at ¢ = 0 and 8 € B(m, u), such
that we have on X, for x = 1 near t = 0,

- , e/ L(1)f
W mg) = (3 foamjre=- 20 g, 0
14l
3.6
Remark 5.3.13. We now give a more explicit statement when m and p locally lift

sections of ¢y .. In such a case, arguing as for (3.6.5)(**), we have for some ¢ < £,
putting g = —a — 1,
‘

- o Lt k
X(t)hA('f’l«,ﬁ) _ Zaﬁszw*:)h (f)

]
k=0 Kt

[()

2y, Lt L L )k
+fou O VAN S WY N T O L

Re~y>Re 3 k=0

The integer £+ 1 is smaller than or equal to the index of nilpotency of N on [m] or [u].

Moreover, each ¢ 4 is divisible by (z+1/2)". as the polar cocfficients of the function

iéuu (s) along s = a % z take value in H(A) for A small enough (¢f. Lemma 3.6.9).
If m., pu locally lift sections of PgrMi .., then, applying (td, — 3 * 2)* to both

terms and noticing that, for z € S, we have Re(y x z/z) = Re, gives
(5.3.13) (%) X(Oha((td, — B 2)m. 1) = ¢yt /2 (1 + 7(1))

and r(t) tends to 0 faster than some positive power of |¢].

5.3.d. Proof of the twistor properties for (.#..# . C, 1d)

We will show that the properties of Definitions 4.1.2 and 4.2.1 are satisfied for
the object (.4 ,.# ,C,1d) when one takes specialization along a coordinate t. This is
enough, according to Remark 4.1.7.

Corollary 5.3.9 shows that .# satisfies Properties (HSD) and (REG) of the category
MTY} (X, 0) of Def. 4.1.2.

We will now show that, for any 3 € B and ¢ € N, the sesquilinear form P\l/‘:_éC
defines a polarized twistor structure on ([’\Df_/.///. P\P?‘(,.%/) with polarization . =
(Id, Id).

By Definition 3.4.3, we can replace # with . # and use the basis e° (with its
primitive vectors) introduced in Remark 5.3.8(1) to compute [’\I/’,'%,C. We will do
the computation locally ()11 small compact sets A as in §5.3.¢, so that we can lift the

primitive vectors ef to (( *7. If we only usce the dominant term in Formula (5.3.3) when
computing Plll‘t ,C 0(6’7» “) (5 ‘”'”)). we recover the computation made in Proposition

5.1.14. Therefore, in order to conclude, we only need to show that the non dominant

term in (5.3.3) does not contribute to P\If‘d Cac (e (z0), <‘-:’)) Here also, the estimate

i

given by (5.3.11), Formula (5.3.3) and Lemnm .3.2 is not strong enough to eliminate
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the non dominant term in the computation of P'u”f_,C'Ao. and we use Lemma 5.3.12
and Remark 5.3.13.

If ef-,:”),e(l.*:”) locally lift primitive sections of weight ¢, Formulas (5.3.11)
and (5.3.13)(x) for 5Ao((f5, - * 3)"‘(15:‘”.(’5.‘:“)) give the same dominant term
Cawlt|?0*) /2 As |t 70F(t) — 0 for some & > 0, the remaining term in (5.3.13) (%)

does not contribute to the computation of the residue in Definition 3.6.11. Dividing

now by (z + 1/2)" gives the desired result. O

5.4. Proof of Theorem 5.0.1, second part

5.4.a. Let ((7,.Y) be a polarized regular twistor Zx-module of weight 0. We will
asstme that it has strict support X and that .2’ = .#" “ g = (Id, Id).
Its restriction to the complement X* = X ~ P of a finite set of points is therefore
a smooth twistor Zy-module of weight 0 (Proposition 4.1.8) and corresponds to a
harmonic bundle (H. Dy h) on X* in such a way that C' = hg (Lemma 2.2.2). Put
M = Zpr(#') and M = Ox(*P) @eoy M. By definition we have My. =V =
Ker D{-. We will show that the Hermitian metric I is tame with respect to M and
that its parabolic filtration is the canonical filtration of M.

We now work locally near a point of I, restricting X when necessary. We will
mainly work with .2 instead of .#. Remark first:

Lemma 5.4.1. For any z, € Qo and any a < 0, the Oy -module V,,(:")./// is locally
free on the open set where it is defined.

Proof. Recall that. for ¢ < 0. we have V )y = V ) 4 near any z, € (Qp
(ef. Lemima 3.4.1).

By the regularity assumption, vz "W is 0 o-coherent. Morcover, on ¢ # 0, it is
O »--locally free. being there equal to ., which is there a smooth twistor Z-module.
As t is injective on Vi) when a < 0 (¢f. Remark 3.3.6(4)), it follows that A
has no @, -torsion. Tt is therefore enough to show that ‘/I,("'"),%//fV:,(:”),// is O, -
locally free. By Proposition 4.1.3. cach ¢y . /// is //gzﬁ—lo( dlly ﬁ'oo As 0‘1“"':”) W =
Dar. (a)y=a't.a-# near z,. it follows that ar) " hence V ///ﬂu o) g7 s 0q,-
10(&11,\, free. O

The proof will now consist in constructing bases e and € as in §5.3. However, it
\Vill 0() in the reverse direction. Indeed, we will first construct local bases el of
<0 /// near any z, € S. We then construct local bases elz0) using Formula (5.3.3) as
a definition. Then we glue together these local bases and we recover an orthonormal
basis of the bundle H with respect to the harmonic metric A, in such a way that a

formula like (5.3.3) still holds.
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5.4.b. We will first recover precise formulas for the sesquilinear pairing C, as in
Lemma 5.3.12, starting from the definition of a regular twistor Z-module. Fix 40 €S
and let A = A, (1) be a small closed disc centered at z, on which the V%), 7 is
defined. On X*, C' = hg takes values in €7 ‘“' . If the radius 7 is small enough, we
can assue that ha is a C™ function X* — H(A) that can be written as a power
series > ¢, (t)(z — z,)". where each ¢, (f) is a €' function on X*.

Lemma 5.4.2. We assume that m lifts a scction of ¢¥i.o,.#\a and p a section of
,Iz)t,f'tz"%ﬂo’(A)‘ ,171,(371,

(1) if oy = avo et and I5) def o= 1, we have, for some ¢ € N and any t € X*,
(5.4.2)(%) ha(m.q) = [P L0 (o + (1)

with ¢, 7 € H(A), r(t) takes values in H(A) and there exists 6 > 0 such that
limy o L(#)° (O]l ay = 0:
(2) if oy # o, there exists 6 > 0 such that, for any ¢ € Z,

5.4.2) (x# liny £ 0 H $ B2 B DL () p (T ‘ = 0.

(5A2)0) T i i 0 ‘hatmm)|,

Proof. Lemma 5.3.12 and Remark 5.3.13 apply in this situation, as the argument
(=]

only uses Lemma 3.6.5 and the regularity property (REG). If oy = oo = «, we get
that, near ¢ = 0, one has. for some ¢ > 0 and some N > 0,

(z4+1/2)Nha(m. @) = [t L) ((z + 1/2)Ne(m. @) + 7(1)).

where ¢(m, ) is in H(A) ?Lll(l there exists § > 0 such that lim_—g [|7(t)

IH(A) = 0.
Therefore, 7(t) = (z+1/2)Nr(t) where r takes values in H(A), and (by the maximum
principle) we also have hnu_() H r( s, =0
If oy # o, then the same argument as in Remark 5.3.13 shows that, near ¢ = 0
and if the radius n > 0 of A is small enough. we have
11\
(z 4+ 1/2)Nhalm. i) = >3 fra®)t20 7Lk,
N k=0
where the first sum is taken for v € A such that 2Re~y > €, (1) + €_. (=2), and
j%;,. : X — H(A) are C*°. This shows that (5.4.2)(xx) holds for (z+1/z )AhA(m ),
and one concludes as above that it holds for hia(m. 7). O

5.4.c. Construction of local bases e(**) of V(('(:)") /7 — By definition, for any «
with Rea € [—1,0[ and ¢ € N, the triple (PgrMV, ... PerMW, (.4 PV, ,,C) is a
twistor structure of weight 0 with polarization (Id, Id) (¢f. Remark 3.6.13). Choose
therefore a basis €® , , of PgrMW, .4 = Pgl'ﬁ\lﬁl,_,,,/%?i((zf. Remark 3.4.4(2)) which is
orthonormal for PW, , (C, when restricted to nb(S): this is possible according to the
twistor condition (c¢f. §2.1). Extend the basis €2, , as a basis €2 , = (€2, Jwez of

gr™May . for which the matrix —Y,, of N is as in the basic example of §5.1.

ASTERISQUE 300



5.4. PROOF OF THEOREM 5.0.1, SECOND PART 147

Fix now z, € Qp. Locally near z,, lift the family el o defined as above, as a

¢ of local sections of V ///2 Similarly, extend the family e( 'é)l, na

family 'éfy v
family e f;j) = (Efié?li,)ll,gz so that, putting 3= —a — 1, the lift of (~=N)7e°, where e
is any element of e"1 poand j < s (80, — Bxz)e.

Last, for any g € Z, put ef:+21 =1 ‘Ie(“" By choosing ¢, so that £. (o + ¢a) €
[—1.0[, we get a basis of V<0 )4 near zo (this @4 -module is known to be &4 -locally
free. ¢f. Lemma 5.4.1), as it induces a basis of V<(0"),///tV<O’)Q%/.

Let &) be any other local @4 -basis of V. <(0”) # inducing e on @(tgrl\’l/z/,yf;i;’) Va
near z,. Define the matrix P by the equality € ez = gl=). (Id +P(t, z)), and recall
that the matrix A(t, z) was defined just before Formula (5.3.3). Using the definition
of the monodromy filtration and of H and denoting by A a sufficiently small closed

disc centered at z,, one easily gets:
Lemma 5.4.3. — There exists 6 > 0 such that lim;_.g L(t)‘$ HA*lPAHH(A> = 0. |
Deﬁn(‘ then for t # 0. the basis £ by ™) = g*) . A(t, z). We note that, if

glz0) = gl (I(l +Q(t. z)) is defined similarly from another basis el
to Lomma, 5.4.3, we have

(5.4.4) lim L) [ Qlly ) = 0-

=) then. according

5.4.d. Orthonormality with respect to ¢'. — Fix now z, € S. Recall then that
0(z0) = —2z,. Using Lemma 5.4.2, arguing first at the level of primitive vectors as in
Remark 5.3.13, one gets:

Lemma 5.4.5. The matriz C*) of ha in the bases g*F2) takes the form
Id+R(t, z), and there exists & > 0 such that limg o L(t)° | R(t, z)HH(A) =0. O
(F£20) g asvmpt()ti( ally orthonormal for A,
UEL)]

1(t2,)

In other words. the pair of local bases €

with speed a negative power of L(t). We note that, if & is defined similarly from
o~z .

another basis € **) then. according to Lemma 5.4.3, € has the same property

(maybe with a different §).

5.4.e. Globalization of the asymptotically orthonormal local bases

For any r € [0, 1]. let S, denote the circle of radius r in €. For any such r, cover
S, by a finite nuunber of open discs A, (z, € S,) on the closure of which the previous
construction applics. One can assume that the intersection of any three distinct such
open discs is empty. On the intersection A;; of two open sets A; and Aj, the base
change g =g, (Id +Q;;(t. 2)) satisfies limy—.o L(#)° [|Q4; (t, ~)||H(A y = 0 for some
d > 0, according to Lemma 5.4.3 and (5.4.4). '
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Lemma 5.4.6. There erists § > 0 and C° matrices Ri(t,z) on D* x A;, holomor-
phic with respect to z, such that lim, _o L(1)° ||R;(t. :)HH(A,) =0 and Id+Q;;(t.z) =
(Id4+R;(t.2))(Id+R;(t.2)) """ on X* x Aj;.

Proof. — We counsider the family (Id+Q;;(t. 2));; as a cocycle relative to the covering
(A;); with values in the Banach Lie subgroup of GLy(CY(X*)) of matrices U such
that U — Id € Matq(C?(X")), where d is the size of the matrices @ (generic rank
of A) and CJ(X*) is the Banach algebra of continuous functions ¢ on X* such
that HL(I‘,)‘SL,QHoo < +oc, with the corresponding norm [[«[| _ ;. By changing 4, one
can moreover assume that |

Q,;‘,'HX_O- < 1 for all i.j. Clearly, this cocycle can be
deformed continuously to the trivial cocycle. Hence, by standard results (cf. [9]), the
Banach bundle defined by this cocycle is topologically trivial. Tt follows then from
a generalization of Grauert’s theorem to Banach bundles, due to L. Bungart (c¢f. [8],
sec also [38]) that this bundle is holomorphically trivial. The trivialization cocycle
takes the form given in the lemma if one chooses a smaller §. O

According to Lemma 5.4.6. the basis " defined by &) = & . (Id+R;i(t, 2)) is
globally defined on some open neighbourhood nb(S,.).

Let Ag be the closed disc centered at 0 and of radius 1 in Q. Cover Ay by a finite
number of nb(S,) on which the previous construction applics. We assume that the
intersection of three distinct open sets is empty. Apply the previous argument to get
a basis € globally defined on Ag such that. according to Lemma 5.4.5, the matrix C
of hg takes the form Id +R(t, z) on X* x nb(S) with lim, o L(#)° [|[R(t, 2)| . = 0.

Lemma 5.4.7. — If X is small enough. there exists a d x d matriz S(t, z) such that

S(t, z) is continuous on X* x nb(Ag) and holomorphic with respect to z,
S(t, Z)HH(AU) =0,
S Id+R(t z) = (Id+8*(t. 2)) - (Id+5(t. 2)).

- Hlllt*,()

As usual, we denote by S* the adjoint matrix of S (where conjugation is taken as
in §1.5.a).

Define the continuous basis € of '//xx*xx\b(a‘,) by e =& - (Id+5S(t,z))"". In this
basis, the matrix of C'is equal to Id, after the lemma. This means that € is a contin-
uous basis of H and that it is orthonormal for the harmonic metric associated with
(7.5) on X*. Moreover, near any z, € S. the base change between the local basis
€ and e take the form of Formula (5.3.3) (we only get here that the corresponding
Q%) tends to 0 with ¢, and not the logarithmic speed of decay). Arguing as in Re-
mark 5.3.8(2), we conclude in particular that, when z, = 1, the V-filtration of M is
equal to the parabolic filtration defined the metric i obtained from C', as was to be

proved(?), O

(2)] thank the referee for indicating that a previous proof was not complete.
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Sketch of proof of Lemma 5.4.7. We regard Id +R(t. z) as a family, parametrized
by X. of cocycles of P! relative to the covering (nb(Ag),nb(Ag)). At ¢ = 0, this
cocycle is equal to the identity, hence the corresponding bundle is trivial. By the
rigidity of the trivial bundle on P!, this remains true for any ¢ small enough. More
precisely, arguing for instance as in [41, Lemme 4.5], there exist unique invertible
matrices Y continuous on X x nb(Ag) and X" continuous on X x nb(4Ag), both
holomorphic with respect to z, such that X”(e,0¢) = Id and Id+R(t,z) = £” - .
Set Y(t) = 5 (t,0), which is invertible, and Z’ DI 'S hence X (t,0) = Id and
Id+R(t,z) = 3" - ¥y - ¥'. Moreover, these matrices are all equal to Id at ¢ = 0, by
uniqueness.

Recall now that, as we have reduced to . = (Id, Id) and the weight equal to 0, the
sesquilinear pairing satisfies C* = C, hence R(t. ) satisfies R* = R. We thus have
Id+R(t,z) =X - 5f - %,

As X (t,00) = Id, we have, by uniqueness of such a decomposition, £ = 7.
Moreover, 3§ = Xy (in the usual sense, as no z is involved).

As Y=o = Id, we can write locally 3¢ = T*T and put Id+5 = T'Y". O

It remains to explain that (.7,.7) is locally isomorphic to (.7,.); constructed in
§5.3, where (H, h) is defined in §5.4.a, as asserted in the sketch of §5.2.e. What we
have done above is to show that, starting from a polarized twistor Z-module (.7,.9)
on a curve X. we can recover the properties that have been proved by Simpson and
Biquard for (H,h). As we have similar bases e*) on which we can compute the
connection and the A-norm of which has moderate growth at ¢ = 0, locally wniformly
with respect to z, we conclude that the localization . W of A is equal to . # defined by
Cor.5.3.1(1). Then, the corresponding minimal extensions .# are the same. Last, the
gluings C' coincide away from the singular point P, hence they coincide locally near
any z, € S on Vég"), as they take values in Llloc, there, and therefore they coincide on
M by X« ) s lincarity. O

5.A. Mellin transform and asymptotic expansions

We will recall here, with few minor modifications, some results of [2]. Fix a finite set
B C C such that no two complex numbers in 3 differ by a nonzero integer. Let A be
any compact set in ¢~ {0}, which is the closure of its interior. We keep the notation
of §0.3 concerning H(A). We note that the set K = {(8*z)/2 |5 € B and z € A}
is compact.

Definition 5.A.1. For a C'* function f:C* — H(A) satisfying

(i) f =0 for |t| = R (for some R > 0),
(ii) f has moderate growth at ¢ = 0, 7.c., there exists o9 € R such that
lin 1270 | £(8) 1y, = 0.
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the Mellin transform with parameters k', k" € N is

s () /W*f‘ F(t) 5=dt A d.

We note that /f(k » )(5) is holomorphic in the half-plane 2 Re s + k' + k" > 09 — 2.
It is clearly enough, up to a translation of s by an integer, to consider the functions
k, 0.k &
ﬁ( 0)(s) and (ﬂf(. ’ )(5) for k € N. For the sake of simplicity, we will denote, for any

keZ
THFOs) it >o,
/f“() { ! -

k
I (s) itk

Definition 5.A.2. Let B be as above and R € R+
(1) Recall (¢f. §0.8) that we put L(t) = L(¢) = ‘log [t]? | A C? function f: C* —

H(A) has Nilsson type B at t = 0 if there elet L € N and, for any § € B and
¢ e [0,L]NN, C* functions fz,: C — H(A) such that f can be written on C* as

L
=303 fae AL

BEB =0

(2) Let ¥ = ( k) (s )) , be a family of meromorphic functions of s € C with
values in H(A), i.e., of the foIm w(s)/v(s) with p, v : C — H(A) holomorphic and
¥ # 0. We say thdt f has type (B, R) if there exist

a polynomial b(s) equal to a finite product of terms s + n + (3 x z)/z with
ne€Nand g€ B,
for any N € N, any 0 € R", a constant C'(N, o, R),
such that, for any k € Z, .# %) satisfies on the half plane Res > —o — 1 — |k| /2

(1 ]+ 5DN]| (T fo.nposs s + K] +2)) 29 (5)

< C(N o, R)RQ Rvs—}—]k:\.
H(A)

Remarks 5.A.3. -~ Let .# be a family having type (B, R).

(1) We note that, Kp being compact, there exists oy such that 7 ®)(s) is holo-

morphic in the half plane Res > oy — |k| /2 for any k € Z; in particular, given a half
plane Re s > o, there exist only a finite number of k € Z for which .#*) has a pole on

kl —n— (B*z)/z

for some n € N and 3 € B, and the order of the poles is bounded by some integer L.

this half plane; moreover, the possible poles of .# (¥ (s) are s = —

(2) If .# has type (B, R) with some polynomial b, it also has type (B, R) with any
polynomial of the same kind that b divides. This can be used to show that the sum
of two families having type (B, R) still has type (B, R).

(3) The polar coefficients of FH) at its poles can, as functions of z, have poles
for some purely imaginary values of z. However, there exists a polynomial A\(z) with
poles at iR at most, such that all possible polar coefficients of A-.# ) for any k € Z,
are in H(A).
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Theorem 5.A.4 ([1,2]). — The Mellin transform f (eff(»k)(s))kez gives a one-to-one
correspondence between C™ functions f: C* — H(A) of Nilsson type B at t = 0 and

having support in |t| < R, and families of meromorphic functions (‘](k)(s))kez :C —
H(A) of type (B, R) having polar coefficients in H(A).
Proof. —- We will only indicate the few modifications to be made to the proof given in

loc. cit. Given a family (.,f/(k)(.s))kez of type (B. R), each .#(¥)(s) being holomorphic
in a half plane Res > og — |k| /2, there exists a C™° function [ : C* — H(A) which
has moderate growth at t = 0 and vanishes for |t| > R. such that J”“")(s) = ,ﬁj(k)(s)
for all k € Z and Re s > 0g. As the polar coeflicients are in H(A), one can construct
as in loc. cit., using Borel’s lemma, a function g(t) = 3, , gp.e(B)[t2PF/ L1, the

functions gz ¢ : C — H(A) being C'>°, such that the family (f/f(ﬁ)y(s)) has type

kez
(B. R) and all functions ﬂf(i)g(s) are entire.

Fix z, € A and choose an increasing sequence (0 );en with lim; 0; = 400, such that
no line Re s = ¢; contains a complex number of the form n— (8*z,)/z,, for n € Z and
€ B. Thus, there is a neighbourhood V'(z,) C A such that the distance between the
lines Re s = o and the set {n— (8xz)/z|n €Z, B € B, z € V(z,)} is bounded from
below by a positive constant. Let H; ;. be the half plane Res > —o; — 1 — |k| /2 and
let D be the union of small discs centered at these points n— (3% z,)/2, (small enough
so that they do not cut the lines Res = ;). On H; j, ~ D, Hue[o.a,]mN b(s + k| + v)

is bounded from below, so we have an estimation on this open set:

(l + U\| + |3')N ,ﬁ(k) (S)] < C/(N, o4, [?)RzRestlH

H(V(20))

S=yg

By the maximum principle, ﬂf(i)q(s) being entire, this estimation holds on H; ;. This
implies that [[f = gl (.,)) = O(|t|°) for any i. By compactness of A, we have
1/ = 9lliay = O(t]7) for any o > 0, so f — g is €™ and infinitely Hat at ¢t = 0. We
can therefore change some g3 to get the decomposition of f. O

Remark 5.A.5. — 1t is not difficult to relate the order of the poles of f}m (s) with the
integer L in Definition 5.A.2(1). In particular, if ,ﬂ;k)(s)/lﬂ(s + k| + 1) has no pole
for any k, then one can choose L =0 and B = {0} in 5.A.2(1).

5.B. Some results of O. Biquard

The results in this section are direct consequences of [4], although the lemma in
§5.B.a is not explicitly stated there. They were explained to me by O. Biquard, whom
I thank.

5.B.a. Better estimate of some perturbation terms. — We indicate here how
to obtain a posteriori better estimates for the perturbation terms P/, P” of Theo-
rem 5.2.5, that is, Property (iii) used in the proof of Lemma 5.3.2.

SOCIETE MATHEMATIQUE DE FRANCE 2005



152 CHAPTER 5. POLARIZABLE REGULAR TWISTOR Z-MODULES ON CURVES

One starts with the holomorphic bundle £ on the disc X equipped with the har-
monic metric A and the holomorphic Higgs field 6%. The Higgs field takes the form
08t 4 R(t)dt /t, where 0/5' is the Higgs field for the standard metric A% as in the ba-
sic example of §5.1. Recall that the i/3” /2 are the eigenvalues of 874, Tt is proved in
[4] that the perturbation R(t) satisfies R(0) = 0 (this argument was used in the proof
of the assertion after (5.3.7)). Moreover. the metric h can be written as the product
h = h**4(Id +v) where v is a section of the Holder space C53 for any v € [0, 1] (cf. [4,
p.77]). Using an argument similar to that of [62. Th.1 (Main estimate)], one gets:

Lemma (O. Biquard). If 3" # 37, then the component vs, 5, of v and its logarith-
mic derivatives with respect to t are O(|t|") for some n > 0. O

(An analogous statement also holds for general parabolic weights.)

To prove Property (iii), one argues then as follows. First, the operators DY, and
ngl coincide, as the holomorphic bundles F and E*¢ coincide. Let us denote by
e*td an hs*-orthonormal basis of F and by & an h-orthonormal basis obtained from
e by the Gram-Schmidt process. Then the base change P from €9 to e satisfies
’fP,gi,%g_i‘ = O(|t|") for some 7 > 0, if 37 # 37. after the lemma. It follows that,
in the basis &, the matrix of D7, is obtained from the standard matrix by adding a
perturbation term satisfying (i) (iii) of the proof of Lemma 5.3.2. By adjunction, the
same property holds for D/,.

Consider now the Higgs field. As R(t) is holomorphic and R(0) = 0, we see,
arguing as in the proof of the assertion after (5.3.7) but in the reverse direction, that
the matrix of 0, in the basis €' differs from that of #)3' by a perturbation term
which is O([t|7) for some £ > 0. Then. according to the lemma, in the basis € the
matrix of 07, differs from the standard onc (5.1.7) by a perturbation term satisfying
(i)-(iii). By adjunction, the same property holds for 67%.. O

5.B.b. Elliptic regularity. — We give details on the argument of elliptic regular-
ity used at the end of the proof of Lemma 5.3.2. Recall that Dy denotes the disc of
radius R < 1 equipped with the Poincaré metric. We will now use the supplementary
property that P = P’, P" satisfics, according to [4]:

(iv) P belongs to the Holder space CY s for any v € [0, 1[, that is, L(t)'*° P belongs
to the Holder space CV(D%,), where the distance is taken with respect to the Poincaré
metric.

(In fact, this is also true for the first derivatives of P. and we can replace 1 4 ¢ with
2 + ¢ for the components Pg, 3, with /3; # 3;. but we will not use these properties.)

For each component u(Y*)) of the matrix u obtained in the first part of Lemma

5.3.2, we have
(If [ (7(2).6) d?‘

(5.B.1) d" (=)0 +“y(2)'u(”(3)‘/‘)? +gurE Ol € Oy (Dr. H(A:,(0))).
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after (iv) and Formula (5.3.2)(x ) taking into account that the norm of dt/T is L(t).
Morcover, we know that «(7)-9 e L (Dy,. H(A., (7)) and that, if y(z) # 0, that
w0 e L3 (Dr.H(A., (1)).

The idea in loc. cit. is to apply regularity properties of an elliptic differential
operator locally in the upper half-plane with the hyperbolic metric and to use the
homogeneity property of this operator with respect to the isometries of the hyperbolic
plane to extend the corresponding inequalities to a fundamental domain covering the
punctured disc D7, (recall that we assume that R < 1).

For t € Di. we put t = e 7 with 7 = s — i and s = L(t). The metric on the
half-plane H = {s > 0} is (ds? + d0?)/s%. The covering H — D7 is denoted by ¢. On
a fixed hyperbolic ball B, (A,) C H of radius a, < 1 and center (e, 0) with 4, € R,
we have, by a standard property of the Cauchy kernel for (x) and by elliptic regularity
of the operator d” + ~(z)d7 for (xx) (sce e.g., [69, Chap. XI]), two incqualitics for any
¥ e]o.1].

#) Nollcogs, aa < Co (1@ +~(2)dm) ()

L= (B, (A, T lvllL B,,”(A‘,)))

and

(%) ”dl’”“(,'ﬂ(B,,“/l(A,,))
< CL@) (@ + 5 (2)d7)(v)]

OBy, 2(A)) T ””“G"’(B..,,/z(A,,)) ).

Here, we use that s = L(#) and s~! are bounded on the fixed balls, so that

expression computed with the Euclidean metric, where the usual elliptic inequalities

‘”(,""(B(,”(A,))) computed in the hyperbolic metric is comparable with the same

apply.

If o : H — H is a hyperbolic holomorphic isometry, we have o*(d"v + v(2)vd7) =
(d” + ~v(2)dT)(v o ). If we choose such an isometry sending the point (e°.0) to
(¢*.0), we obtain that the inequalitics (x) and (x%) also apply on the balls of radii
ao/4.a0/2, a, centered at (e1,0), with the same constants Co (1)) and C ().

Moreover, given 0 > 0, there exist constants ¢; = ¢1 (0. a,) and ¢z = ¢3(¥. a,) such
that, for any A € R, we have

e lellen s, 4y < lelleycs,, ay < 2" ollcos,, ay

(sce [4, p.54]).
Choose now a sequence A,, and R’, R” > 0 such that

Diy © q(yzaau/,l(/xn)) c Dy r]( U Ba,”(A,,l)) c D,
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For a function w on D}, with values in H(A; (7)). we have

0A, '

”“’I|C,'(g’(1);?,) < (¥, a,/2)supe |uo (j“cv.;(B"“/__)(_L‘”)
n

< Co(D)ea(V,a,/2) sup O ( I1(d" +~(2)d7)(uoq)l, ~ (Bu, (An))

+fluo (IHLX(B,,”(A,,)) )
oI +5(=)dm) W)l sy + 1l L s,y )
with C§ = (?1(’19, ao)2(V, a,/2)Co(¥). Similarly.
Hdl“||(7g(])7 < CL(I@" +~(2)d7) ()]l W(D%,) + ”“H( J(D%,) )-

Coming back to w9 we have Hu(”* H, ~(D*) < +o¢ by construction and thus
) R

H A" + (2)d7) () ”Lx(D*) < +oo after the L3 version of (5.B.1) (recall that
y R
Hdi/L 7‘ 1). The first inequality above gives Hu('y’f)H(
s

wips,y < T for any
’8 R’
¥ €10, 1[. Now, (5.B.1) implies that [[(d” +~(z)d7)(u®

‘ .
))HC;?(D;?,) < +o0 and the
second inequality above gives then Hd"u,(" “

| lewip:,.)
Hd,’u('y‘” < +oc, which is the desired statement. [

< +oc, so that, in particular,

L,;x (D;//)
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CHAPTER 6

THE DECOMPOSITION THEOREM
FOR POLARIZABLE REGULAR TWISTOR 2-MODULES

6.1. Statement of the main results and proof of the Main Theorems

Theorem 6.1.1. — Let [ : X — Y be a projective morphism between complex analytic
manifolds and let (7..%) be an object of MTU(X w)®). Let ¢ be the first Chern
class of a relatively ample line bundle on X and let £, be the corresponding Lefschetz
operator. Then (@1/{ T, %, &’B,-f]f,V’) is an object of I\ILT(")(Y. w; 1)),

Remark 6.1.2. — At the moment, Theorem 6.1.1 is proved for regular twistor Z-mo-
dules only. Regularity is used in the proof of the case when dim X = 1 and f is the
constant map (case denoted by (6.1 .l)( 1.0) 1 §6.2 below). The reduction to this case,
done in §56.3 and 6.4. does not use the regularity assumption. It seems reasonable
to expect that the techniques of [53] and [5] can be extended to obtain (6.1.1), o).
hence Theorem 6.1.1. in the non regular case as well.

Theorem 6.1.3. Let X be a complex manifold and let (7 ,.9") be a smooth polarized
twistor structure of weight w on X, in the sense of §2.2.a. Then (7 ,.%) is an object

of MTW (X, w)®).

Proof of Main Theorem 1 (sce Introduction). Let X be a smooth complex projec-
tive variety and let .# be an irreducible local system on X. Let M = 0y Q¢.Z be the
corresponding ¥x-module. It follows from the theorem of K. Corlette and C. Simpson
(¢f. Lemma 2.2.2) that M underlics a simooth polarized twistor structure of weight 0
and, from Theorem 6.1.3. that M = Zpr.#" where .#" is the second term of an
object (7..9) of MT"(X.0)(),

Let U be an open set of X and let f : U — Y be a proper morphism to a
complex analytic manifold Y. Then [ is projective. Any ample line bundle on X
will be relatively ample with respect to f. From Theorem 6.1.1, we conclude that
(©ift Tu. Lo, @if{7,,) is an object of MLT™ (Y, 0.1)®). In particular. each fiT s
strictly S-decomposable. By [15], we also know that f;. 7] ~ @,‘,f{' Ty

By restricting to z = 1, we get (1) and (2) in Main Theorem 1. We also get (3),
according to Proposition 4.1.19.
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Assumie now that U = X and Y is projective. By the Lefschetz decomposition, we
can apply Theorem 4.2.12 to conclude that fT[ M is semisimple as a regular holonomic

Zy--module. O
Proof of Main Theorem 2 (see Introduction). The argument is similar.  Starting

with an irreducible local system .7 on X. we can assume that it underlies a object of
MT® (X, 0)P). So does gty p o7 by Proposition 4.1.19, and we can apply Theorem
4.2.12 to get semisimplicity, hence Theorem 2. O

The remaining part of the chapter is devoted to the proof of Theorems 6.1.1 and
6.1.3. We closely follow [56. §5.3]. The proof of Theorem 6.1.1 is by induction on the
pair

(dim Supp -7, dim Supp f(.7)).
As (6.1.1) g ) is clear, it will be enough to prove
(6.1.1) ) o) when Supp 7 is smooth (Section 6.2).

- (6.1.1), ) = (6.1.1)(, 4,y (Section 6.3).

= (6.1.1) (< (jy—1y,0) and ((6.1.1) ;) with Supp 7 smooth) = ((5.1.1)(7“0) forn > 1
(Section 6.4).

6.2. Proof of (6.1.1), ;, when Supp .7 is smooth

Let X be a compact Riemann surface and let f : X — pt be the constant map.
We will argue as in [72]. Let (.7.,.%) = (#..# .C.1d) be a polarized twistor left Zx-
module of weight 0 on X (¢f. Remark 1.6.8). For the proof of (6.1.1)(1_0), it will be
enough to assumec that it has strict support X. Let us denote by A the localization
of .# with respect to the singular set P. As (.7..%) v~ is a smooth twistor structure,
it corresponds to a flat bundle with harmonic metric -, and we have a metric 7%h on
My (cf §5.3.).

Fix a complete metric on X* which is equivalent to the Poincaré metric near each
puncture x, € P. with volume form vol. Extend it as a metric on the bundle © -,
and therefore on &5, so that ||dt/z]| = H(HH = [t|L(¢t). On the other hand, put on
2" the product metric (Poincaré on X*, Euclidean on ) to compute the volume
form Vol. Recall that, in a local coordinate t near a puncture, we have

(6.2.1) |t L(r)“' € L*(vol) <= a>0ora=0and w <0.
Put M, = .4 /(2 — z,). 4 .

6.2.a. The holomorphic L? de Rham complex. — Let us denote by ,%7(2) C

. the submodule consisting of local sections which are locally L? with respect to
m*h. Formula (5.3.6), together Wlth (6.2.1). shows that (by switching from 3 to a) a
local section m = Z m; f”'(ﬁ Dot A is in Ao, if and ounly if. for any j, either

., (nj+ ;) >0 ((md therefore (. (n; + /3;) > 0 for any z near z,) or n; + 3; = —1

~o
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(1.0)

(that is. (o(n; + .3;) = —1 for any = near z,) and w; < 0. A(‘(‘Ol‘(lill"' to Remark
5.3.83(1). this is vqnnalvnt to saving that m is a local section of "’L ' /7. the class
of which in gr ,1 // is contained in Nyey — . // where M, denotes the monodromy
filtration of N. In particular. we have a natural inclusion ,//(2) C . Z. globally defined
with respeet to z.

Similarly. the sheaf (Q1,. 2 ./;)(2) of L? local sections of Q1. < ¢ A consists.
near z,. of local sections (df/tz) . where mis a local section of V_(l)/7 the class
of which in “1_1 "/ is contained in M Uy l///\ We also have a natural inclusion
(Qf, = //) y C QL as Tollows from the following lenma:

. vy (2, o . . . o)
Lemma 6.2.2. - Let i be a local section of (,] L the class of which in gr* "7
. . . (=TT By - . . v
is contained in N _yor! L Then i/t is a local section of A7 .

. - o) - N . N .
Proof. We denote here by NMyer'' [ the direet st of the monodromy filtrations
of N on cach ¢y . 7 with ( ~_4 ((\) = . We want to show that /n/f = Oyny +ns. where

. . - (z0)
ny is a local section of ‘, " au(l Ny a local section of L<“ . As T Vo0 N

1/(\1)/7 is bijective. this is equivalent to finding 1y as above and a lo('z\l s‘wtion ns of

<(,)// such that m = t0;n1 + ns. Equivalently. the class of m in gr'’|) " has to
be contained in image (J;. For the component in ¢y, ,].//. this is <'<1111vnl(\nl to saying
that it is contained in image(N). Now. that N ooy . 7 is contained in image(N)
is a general property of the monodromy filtration: indeed. we have NM_», = N(ANI).
as N 01‘2[ - 9,1,\[72 is onto for any A& < 0. For the component in any (,',_,,e//\ with
a Z —1. notice that 0, : (',»,‘./7 — 1",”,/; is an isomorphism. by Lemma 0.9.2. and
therefore sends bijectivelv N ooy . 7 to itsclf. O

The (l(xs'(‘ripliun above clearly shows that the connection V oon .7 sends ,//7_)) into
QL @0, //) 2y and defines the holomorphic L* de Rham complex DR(.# )5y, There

is a natwral inclusion of complexes

DR(. #7) 2« DR. 7.

Remark 6.2.3 (Restricti()n to: = 1z,). Note that 1\\/;, /// Z0) /7 is also the
localization of M. along I’. as ¢, (%] is @y -llat. A similar (~(,)1111)111uli()11 can
be made for the snl)slwa[' of local sections of \7 the norm of which is L? with
respect to the metric oand the volune form vol. Denoting by U, A the filtra-
tion induced by V. =), # (¢f. Proposition 3.3.14). this subsheal is cqual. according to
Formula (5.3.6)., in R(‘mm‘l\' 5.3.8(2), to M“lng\[ o, which is the inverse image in
U_ M., of Mygr! - Similarly. (Q4 0 \I Dy = Q\ (og Py N U (M.
We note ho\w\(‘ llml the derivative of a \((fl()ll of N l/_l M., can fail to be
L?. If we denote by ;\I:W(g) the subsheal of L? sections of 1\[;” w1t,‘11 L? derivative,

we identify M. (5, with the subsheaf of local sections of MyU_ M., the class of
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which in Mogr?, M., have a-components in I\I,zg,‘wff‘;)]\[;“ for any o # —1 such that
t (o) = -1

According to Proposition 4.1.19(2a) and the previous remarks. we have a natural
inclusion of complexes

DR(.#)(2)/ (= = 20) DR ) (2) — DR(M, ) ().

Morcover, for the same reason, the holomorphic L? de Rham complex DR,(]rfz,,)(z)
(or the Dolbeault complex if z, = 0) is a subcomplex of DR M. : indeed, it is clear
by the same Proposition that the term in degree —1 is the restriction to z = z, of a
submodule of .7 for the term in degree 0, use Lemma 6.2.2.

Proposition 6.2.4

(1) The natural inclusions of compleres DR(,/7 )(2) — DR.# and, for any z,,
DR(AL.,)) ) = DR M., . arc quasi-isomorphisms.

(2) The natural inclusion of compleres

DR(.4 )2/ (= = 20) DR(.4# ) (2) — DR(M., )2

s a quasi-isomorphism.

Proof. As the morphisms are globally defined with respect to z. the question is
local near any z,. It is also enough to work locally ncar a singular point of . in X,
with a local coordinate t. We will therefore nse the V. o) filtration.

Let us begin with the first part of (1). We then have

-V

DR.#7 = {0 — V) 7 ~ QL Vv o).

because locally this complex is nothing but

0— Vvl =%, Vit — 0.

o)

and for any a > —1, the morphism 9, : grl " # — p,‘r(‘,ll A is an isomorphism
(¢f. Definition 3.3.8(1c¢)).

As ./ is contained in .4 (being its minimal extension across ¢ = 0). we have
isomorphisms ¢ : V<(f)")./// = \/<(71)/// and ¢ : VU(:”)./// = I,VU(:”)./// C V_(;)%/
and, by Formula (3.4.6)(x). we have \/})(':"),// = O,V_(zl”),/// + V<(f,").///. Thercfore, the

previous complex is quasi-isomorphic to the complex

0 Ve g 10, Ve v 0.
1 1 <

We therefore have an exact sequence of complexes:

0 — DR(.4 ) ) — DR.# — C* — 0.
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where C'* is the complex

) — ( 55} L/J((f“)t//> [S8] (’U’J(ji'x///B’I()'L/’(jf).//)
aF—1
(?f):fl
—t0, , AN (30) ze)
_ ;éj 10 ) 1 (N )N g0 ) — 0
a#£—1
(., (a)=—1

¢

o

In order to prove the first statement of Proposition 6.2.4, we arc left with showing
that

(a) tO; l/vff”),//{ — 1‘,5,'1/),(;:’0.// is an isomorphism for any o # —1 such that
o (o) = =1,

(b) the morphism
N: (05 7 M ) — (NG N )

is an isomorphisni.

For (a). use Lemma 0.9.2 to conclude that t3; is invertible on the corresponding
Ua's.

For (b). the surjectivity is clear. The injectivity follows from the injectivity of
N : grl‘\_l > gl‘i\,LQ for k = 1 and the cquality M_» = N(Mp) that we have yet seen in
the proof of Lemma 6.2.2.

The second part of 6.2.4(1) is proved similarly: consider the complex C”* analogous
to C'*, where one replaces 1/25;"")‘/// with l/v((y:"),///M gz/z}f“)./// and 0, l/’,(,:”)./// with
1‘3,(}",({:”, ///1\142(,',(;:”), /7 then. as we have seen in Remark 6.2.3. the analogue of (a)
remains true for C*: by restriction to z = z, one gets the desired statement.

Now, 6.2.4(2) is obtained from 6.2.4(1) by restricting to = = z,. O

6.2.b. The L? complex. — Kecep notation of §2.2.h. We will define the L? complex
with z, fixed, and then for z varying near z, € Q. Recall that we put D, = Dg+2D
and D, =Dy + :,D.

Fix z, € €. Let us recall the standard definition of the L? complex Z5/(H. D)
on X. Let us denote by j @ X* <« X the inclusion, and by Ll]m,‘_\»* the sheaf on X~
of L. functions. Then ,Z’('{_))(][. D.. ) is the subsheaf of j, [Lllm,__\—* S, (’f{ o H}
defined by the following properties: a section v of the previous sheaf is a section of

L (H.D.,) iff

the norm of vjx+ with respect to the metric i on M1 and the metric on

_ (“l.\'*
ﬁ{ induced by the Poincaré metric on X* - which is a local section of j, Lllm.'_\», -5
a section of LE - (vol).

D., v/ x-, which is taken in the distributional sense, is a section of L] . @z,

it . . , -
S @ H.oand HD;”I'L\-* is a local section of LE ¢ (vol).
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The L? condition can be read on the coefficients of vpv- i any h-orthonormal basis
of H or. more generally. in any L2-adapted hasis in the sense of Zucker. According to
[72. Lemma 4.5], the restriction to = = z, of the basis =) introduced in Formula
(5.3.3) is L%-adapted. and therefore, as e*) is obtained from €”G+) by a rescaling
(tho matrix A in (5.3.3) being diagonal). it is also L%-adapted as well as the basis

U

e'*) defined in (5.3.4).

We now consider the case when z belongs to some neighbourhood of z,. Let U be
an open set of X, put U* = U N X*. In the following. we only consider functions on
open sets of .27, the restriction of which to .27 is L with respeet to the volume
form Vol.

Say that such a function £ on some open set U x Q@ < 27 is holomorphic with
respect to 2 if its restriction to U* x Q satisfies . 2 = 0.

Say that a local section ¢ of j. (L], S 7'y om TH) is a section of
Lo (A Do) it

(1) vy 5+ is holomorphic with respect to z. e in any local basis of H the cocffi-
cients v of v} 5+ satisly 0. v; = () it is therefore meaningful to consider (e, 2) x-:

(2) the norm H( 2)IN- H of v(s.2) x+ (with respect to the metric i on H and the
metric on (f(-* induced by the l’()l]l('ar(‘ metric on X*) is L? locally wniformly in z.
i.c.. on any open set U x € on which ¢ is defined. and any compact set ' C Q. we
have sup. g lle(e. 2) ||, o <+

(3) D.vype«. which is taken in the distributional sense. takes values in L] ~scctions
and satisfies (2) (and clearly (1). as D. commutes with (‘_);_).

The L? condition can be read on the coefficients in any L2-adapted basis. Formulas
(5.3.3) and (5.3.1) show that. near any (. z,) with .+ € 7 (the singular set of .7
(=)

in X). the bases e and e’ are L2-adapted.

In particular. for any z, € Q. there is a restriction morphism

Lo (A D) jame, — (H.D. ).

£

Theorem 6.2.5. Let (7. = (A .. 7.C.1d) be a polarized twistor left &~ -module
of weight O on X. Then 1‘/1,(’ natural inclusions of compleres

DR(. A )3y — . /‘“(//JD._)
and. for any z, € €.

i 14

DR(M. )2y — £y " (H. D))

are quasi-isomorphisms compatible with restriction to = = z,,.
We will use the rescaling (2.2.6) to define the inclusion. as explained in §6.2.1.

Let us begin with the analysis of the L? complexes L5 (A D) and ‘Z’(;)([[.’D:“)‘

We will use the basis €’3¢) or its restriction to = = z, that we denote in the same

way. The norm of any clement (/L(,i in the subfamily ej'”) (3 e B.t e Z)
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|2‘[[‘““““+'” L(t)"/2(1 + o(1)). where o(1) = L(#)° for some ¢ > 0. Recall that ¢y,
is chosen so that (. (q3.c, + 3) € [0.1] (¢f proof of Corollary 5.3.1). The proof
of Theorem 6.2.5 will occupy §§6.2.¢ 6.2.f. Tt will be given for z variable. The
compatibility with restriction to = = z, will be clear.

Remarks 6.2.6

(1) We will not follow here the proof given by Zucker (a dichotomy Dol-
beault/Poincaré lemma) for two reasons: the first one is that we do not know
how to adapt the proof for the Poincardé lenmma near points z, € Sing A: the sccond
one is that we want to put a parameter = in the proof. and have a proof which is
“continuous with respect to 270 in particular near = = 0. However. the proof of the
Poincaré lemma given by Zucker does not “degenerate” to the proof of the Dolbeault
lenma.

(2) We note that DR(AN[:“)(Z) = DR M., has cohomology in degree —1 only if
zo & Sing A, as a consequence of Proposition 4.1.19(3), but this can fail to be true if
z, € Sing A.

We put DL = =D + 0}, and D? = D + 201, so that D. = D. + D”. Recall
that the basis €/*#) is holomorphic with respect to D”. and that D’ acts by zd’ + Q.
where the matrix ©7 is defined by (5.3.7). Taking the notation of (5.3.7) we will
decompose 9L as

It
o’ L= tBJ(U,L(,, + x}) * z 1d if—

with =iy dt
OL iy = [Y + P(t.2)] T

OL =0 i, + O

z.nilp-

z.nilp

with Y = (¢15Y4). We will regard Y and 2 as operators and not matrices. We index
the basis €/ by 3. (&, where ¢ denotes the weight with respect to Y and k is used
to distinguish thc various clements having the same /4. €. Then we have. for any 3. €. k.
Y(e Sz )) = (/i Ly and. according to the assertion after (5.3.7),

RN
P(5) = > szpmm,.u 23,
7/.

Ean(ay e +/)< (‘Hg,+/'}>

(6.2.7) + > ZZI’* st kslt 20

~ A3 A
[ (’I"/ Coty)I>0 (a5, ‘j)

+ Z meruh vfﬁj‘\’h + Z Z[,”Mh ‘ ~)' )

A2(—2 K ALE=3 K

where the functions ps o e wn(fo2) Do s (t. 2) are ho]()m(nphl( lt follows that the

9 ) . .
L* norm of &’ is l)()un(l . As a consequence, in the basis €/G¢) | the L? condition

z.nilp
on derivatives under D. can be replaced with an L? condition on derivatives with
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162 CHAPTER 6. THE DECOMPOSITION THEOREM

respect to the diagonal operator

(6.2.8) Do ting = d" 4+ zd + O g
6.2.c. Hardy inequalities. — We will recall here the basic results that we will
necd concerning Hardy inequalities in L2,

Let [ =]A, B[ C R be a nonempty open interval and v, w two functions (weights)
on I. which are measurable and almost everywhere positive and finite. Let w be a C*!
function on [.

Theorem 6.2.9 (1.> Hardy inequalities, cf. e.g., [50. Th. 1.14]). There is an itnequality

o wll, < €t -l

with
I3 ) op .
sup / w(t)? dt - / o(H)"2dt if lim u(e) = 0.
(v - rel Ja J A r—Ay
- wr 13
sup / w(t)? dt - / o(t) 2dtdf lim u(r) = 0.
el A Joa xr—1I3

O

Corollary 6.2.10. Take A =0 and B=R > 0. with R < 1. Let (b,k) e RxZ. We
assume that (b. k) # (0,1). Given g(r) continuous on [0. R]. put

/ g(p)dp ifb< 0 orifb=0 and kL > 2.
fory=<""%,
/ g(p)dp if b>0 orif b =0 and k <0.
Jmin(Roe=k/2b)

(In the second case. we set ¢~ */2" = 4o if b =0 and k < 0: this is the limit case of
b>0 and k<0 whend — 04.)

Then there exists a constant C(R.b.k) > 0. such that limy, .o, C(R.b. k) < +x
when k # 1 and limy,—y C(R.b.k) < +>x when b = 2. such that the following
inequality holds (we consider L2([0. R]:dr/r) norms)

£y L)k }|,2_(,,'/,_ < CRbA)||glr) - "L 270 rL(r)|
_ (v (/(’) . ,,(H 1[1(/")/"/2

2.dr/r

2.dr /v’
Proof. We will choose the following weight functions with respect to the measure
dr: w(r) = "= V2LO)M 2 and o(r) = #PHU2L30)M 20 Assume first b > 0.

(1) If R < ¢ %20 ie. k/2b < L(R). we have thus lim, . f(r) = 0. We will
show the finiteness of

. R
sup / P (p) 2 dp - / p7 () R dp.
0 Jr

rel0.R] . i
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(L.0)

After the change of variable y = L(p) we have to estimate

4+>(, oI

. i 2y —k
/ (,—Zhy'{/k _2/ / (,Zbuy I'(J.U'
/. y° Jumy

The function ¢ =2 y* is decreasing on JL(R). +oc[. hence the first integral is bounded
by ¢=207 k=1 and the second one by 2P =% (i — L(R)). Here, we can therefore take
C(R.b.k)=1.

(2) Assume now k/2b > L(R) > 0. and k& # 1. hence k= 2. We have

Sr) = / . g(p) dp.

We will have to consider the two cases » € ]0, ¢ A'/ZI’[ and 1 € Je k/2b, R].

(a) If 1 € ]0. ¢ */2P[ we have to bound the same expression as above. in the
same conditions. after replacing L(1?) with A/2b. and we can therefore choose
C=1.

(b) If 1 € Je™ /20 R[. we want to estimate

- b/ 2b )
/ ()7_)[)“!/,\.72(]!/ . / (’.’[;y!/——l.- ([!/.
L(R) v

. —) .. . . . . .
The function e 2" y* is increasing. and an estimation analogous to the previous
one would give a constant C' having a bad behaviour when b — 0,4, We will
thus use that ¢72" is decreasing. As A = 2. we have, for the second inteeral.
te}

/2 o oLk
/ (")’”’y J dy < — (.l'lfl" — (L'/‘Zb)l 1‘) < T

For the first one we have

o he—1 h—1 =1 h—1
/ (,‘7‘_’[13/!//.'72(]!/ < (o 2bL(R) (4 — L(R) ) _ th(" - L) )
L(R)

so that the product is bounded by
()/v [{21»
———— (1 — (L(R) /)" ") <
G (- (L))
which has a good behaviouwr when b — 0.

(3) If k/2b > L(R) > 0. and k& = 1. the trick of part (b) above does not apply.
1—k

PRI e
(ﬁ (R D k).

because the function log is increasing. though the function x was decreasing if
k > 2. The constant that we get does not have a good behaviour when b — 0. which
could be expected. as we do not have a good Hardy inequality if b = 0 and A = 1.
When b = 0 and & # 1. the proof above degenerates to give the corresponding
inequalities.
Counsider now the case when b < 0.

SOCIHETE MATHEMATIQUE DI FRANCE 2005



164 CHAPTER 6. THE DECONPOSITION THEOREN

(1) We asswme that =220 > Roje ) } (1 — |b| L(R)). which is satisfied in
particular whenever & > 2. Then the hm( tion ¢ 722 iy inercasing on JL(R). +|.

o X
_ spy oo Ay
/ Zbl/ A 2(,[/ / (,J)!/UZ L—.)
. L(H) - y-

(0 — L(R))e 2br k=2 p2brp=ht2 b (1 L(R)/a) < 1.

An upper bound of

is given by

This situation degenerates when b — 0. to the analogous situation when b = 0 and
k=2

(2) If ¢F=20/200 < R e k< 2(1 — [B|L(R)) we find a constant with a bad
behaviour when b — 0. O

6.2.d. Proof of Theorem 6.2.5: vanishing of /2. — As in [72], we will express

o0 inf

L? functions of t = re'?, holomorphic in z. as Fourier series Y - w,, (r. 2)e™? where

neL
each wu,, is holomorphic with respect to = when z is not fixed. The L? condition will

be recalled below.

Lemma 6.2.11 (Image of D). Let o =35 o w et -)(ﬂl'k dt A di '” be a local sec-

tion of Z? (//ﬂl) with oy (t.z) = Z,,C: b ..-)('””. Th(}n if all cocffi-

cients g p0(r2) vanish identically for any 3.0 such that (. (g3, + ) = 0 and

(< —1. there exists a local section o,)‘]i”((‘_,[)‘“)(.//.'D,_) such that o = Dy = Dy
The same assertion holds after restriction to = = z,,.

Let us now be more precise on the L? condition: f(f.: ) ,) is a local section
of Z’“ ( 20) At | f(t.2)] ¢ ) L(#)/2L(t)~" is in L2( r/()dl/ ). locally uniformly
with I(‘,h[)(‘(,tr to z. A similar statcment holds for sections in (1(2) or ,2”(";) expressed

with logarithmic forms df/t and df /1. using that the norm of cach of these form is

L(#).

Proof of Lemma 6.2. ll We have to solve (up to sign) #0703 cx = @50k if Vyok
is the coefficient of (ﬁ i (h‘/f in . We will argue as in [72, Propositions 6.4 and
115 Put v = vy g and 0 = ¢yp. and v = > u, (ro2)e™ o =3 v (. 2)eln?,
We arce then reduced to solving for any n € Z
0(—)’.(1' T (roz)) =20 e, 2)
with an L? condition. If we put f, (. 2) =+ "u, (r.z) and ¢, (r. z) = 2r="" Lo, (1. 2).
this condition reads

: (e, + 2
(o2 )t e =L () <C
2.dr/r

uniformly for z near z,. If n+ (., (qs.c, +3) # 0. this remains true for z near z, and

we apply Corollary 6.2.10. If n + (. (q5.c, +3) = 0. we thus have ¢ (q3.¢, +3) =0

Gn (1.

,,) IR YN (’““‘+.’>I( )(/2+IH .
2.dr/r
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and n = 0. as - (g3.c, +/3) € [0. L. If moreover € = 0. we also apply Corollary 6.2.10,
as the constant can be chosen mniformly with respect to z for = near z, (notice that.
if ¢.(gp.c, + 3) # 0. the sign of this function changes at z = z,. hence the condition
on ().

If we consider the case when z = z, is fixed. then the only condition is ¢ # —1
when €. (g3.c, +3) = 0. O

We will now show that the L2 complexes ‘,i”(fz)(gy/'.’D;) and 45:”(;)(}].2)%) have
no %, By Lemina 6.2.11 we arc reduced to showing that. for any 4 with
o (qs.c, +3) = 0. any section f(r.z)ely ,, %A ’“ of £ (A7) with { < —1 belongs
to the image of D.. We will distinguish two (Ascs.

(1) If (gs.c, + /3) * 29 # 0. we remark that

ol Aty dt (1?7__|., LAt dil
d (f(:.,;) f); e AV

and a similar computation for ’(f(r. 2)dt/T). so that

(zd' +d") (}‘(1 :),d—f + f(r ~)(-E) = 0.

We will prove the assertion by increasing induction on €. It is true for ¢ < 0. as
the section is the equal to 0. For arbitrary ¢ < —1. it is cnough to show that
O inp (S (o 2)ely . dT/T) belongs to ImD.. This is true by induction for the part
Fl2)Y(ely ) ‘]7’ A # Consider now the image under P(t. z)dt /t and its coefficient
oncl % LU ﬁ. By (6.2.7).
if 4 # /4. the cocefficient is p(t, z) f(r.2) il 02 (g0, +7) > €., (gs.c, +3) = 0.
and tp(t.2)f(roz) if (2 (qyc, +7) < L. (([; ¢, +/4) = 0. for some holomorphic
function p(f.z). In the first case. we lmw O (gyc, + ) € ]001] so we apply
Lemma 6.2.11. In the sccond case, we have €2 (g4 .¢, +7) = 0 and the cocflicient
in the Fourier series of tp(t. 2) f(r. z) corresponding to n = 0 is zero. so we can
apply the same lemma.
If v = 4. the cocfficient is p(t.2) f(r.z) if A < € =3 and tp(t. z)f(r.z) if
A = (=2, In the second case. the coefficient in the Fourier series of ¢p(t. z) f(r. 2)
corresponding to n = 0 is zero. so we can apply Lemna 6.2.11. In the first
case. we apply the same argument to (p(f.z) — p(0. 2)) f(r. z). and the inductive
assumption for p(0. :),/‘(r. 2).

(2) If (¢p.c, + ) * z0 = 0. knowing that €. (gs.c, + ) = 0 it follows from Lenma
0.9.2 that we have in fact ¢3¢, +3 = 0. and therefore ¢3¢, = 0 and 3 = 0 by definition
of ¢j.¢,. hence (gs.c, + F) 2 = 0. As we also have (. (q3.¢, + 3) = 0. we can reduce
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to ¢ = —1 (see the proof of Lemina 6.2.11). We write

) dt (h‘ At dt
flroz)eh i — (f(’ D)oz + S "’«')"6.1.L~T>
t 7 t
dt dt
— fr )Pt 2)eh 4 T AT
as Ye |, = ¢ - It is therefore enough to show that f(r. z)P(t. z)cf 4, ‘7 A T?
belongs to the image of D.. which is proven as above using Lemma 6.2.11 and (6.2.7).
O

6.2.e. Proof of Theorem 6.2.5: computation of .#''. — By the result of §6.2.d,
the L2 complex is quasi-isomorphic to the complex

; D. .
(6.2.12) 0 — L5 (A D) —— Ker D! — 0.
Lemma 6.2.13. Any local section v dt/t + o dE/t of Ker DL < '2/)(!3)('//" D.) can be
written as the sum of a term in ImD. and a term in / a. “)( AN Ker DL

Proof. Write
= Z \7‘9}1‘.” ':) ,inf (";:;}),
S k.on

and put @) (1esp. ©2(0.0)) the st of terms for which £ (gs.¢, +9) =0 and n =0
(resp. the sum of the other terms). We claim that there exists a section 1),y of
f/&)(.//.D:) such that D”r.0) = Pr.0df/l. First. the existence of 5y in
2"“ (// D). i.c.. without taking care of D01, (.). is obtained as in Lemma 6.2.11
We wish to show that D7n.(.) belongs to / 1” (.//’) or. as we have seen. that
D’

" diag!1£(0.0) belongs to [’ 1 v (//) It is thmefm(‘ enough to show that the #£(0.0)-

part of D%y, (p.0) belongs to /(1 -0) (27"). We have
dt
—DL (DY ngw.0y) = =D (»9#().())7)

=D’ ((‘P((m) - \,9)(]7> = ‘D”( l i ) + D (y((, 0 (7)

T
dt dt
- D ( (0.0) >~ 1 ) + (()/ mlh‘r’(UU) 7 ) + (0'())_“‘1.1“5'

By considering the #(0.0)-part we get

(DN (DC 'I;t(o.o))

dt dt

DY (D’ 140, u)) £0.0) = DY (‘/ #0.0)7 ) (()~ nilp#(0.0)

According to Lemma 6.2.11, the sccond term of the right-hand side is a section of
Df;(,_,%(f;)'”)(//*. D”)). We conclude that there exists v € f/’((.zl)'())(.//". D" such that

);ﬁ(o.n)’

ay/
(DZ'/"’é(()")’)#(tJ,m =v+w
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. =z . . . . I
with w = Z‘,,”AA, w,“,;\.(t;(l_ dt and cach wy ¢ is a distribution such that drwg e = 0.
i.c.. D’w = 0: henee cach wy oy is a holomorphic function. We note now that each
z, 1.0 . C
W3l k€ i f ,{ di belongs to Z’< )( 2. D). Indeed. the L? condition is that

twsenl ||| = =@t NG 0yl € L2 (dO dr /1),

which is clearly satisfied as
R
. . , dr
/ ,.-’l:(q«_g,, +J)+2L(,,.)l <4
0 r

if z is sufficiently close to z, so that (.(q3.c, +3) > —1 (vecall that (. (q3.c, + ) €
[0.1]). We can now conclude that Dl .0y Is a section of Z’ (1. 0)( ") and that

dt d ~ dt dt
v—+y9==D.nso0 + L’——+w00 =
t t t
in other words. we are reduced to the case when ¢ = .0y
Let 4 be such that €2 (¢y.¢, +7v) = 0. We claim that. for any A € Z and .,
the coefficient (P - @) a0 18 a lincar combination of terms ¢, ¢ 40 with £ = X + 3.
cocfficients being holomorphic functions of z in a neighbourhood of z,,.

Indeed. by (6.2.7) and by the assumption ¢ = ¢ .g). we have

tp(t. =)o f3#~vyord=~vyand £ <A+ 2

P-osio0c e o=
( & 7 A) 1A pt,2)oseno M =~vand {2 N+ 3,

for some holomorphic function p(t, z) (depending on 3,y €.\ k,x). Therefore, a
nonzero cocfficient not depending on # in the Fourier expansion appears only in the
second case. by taking p(0.z)@5.¢.00-

Consider now the component on ('(A")h (]7’ A # of the relation DY (¢ dt/t) +

D (pdt/t) =0. when €. (¢,.c, +7) = 0. We get

~o

1
(6.2.14) 5I‘(A),»‘U/‘ay,.)\.,,-ﬁ(l‘. z)

= (%"0" + 7 * 2)(Pr A 001 2)) F Py ar2.m0(2) + (P 90)y a0

We know, by Lemma 0.9.2, that cither 4 % z, # 0, so v % 2z is invertible for = near z,,
or v = 0 and hence 54 x 2 = 0. We will show by decreasing induction on A that

oy dt 1. - df
@*,A.n.o(r- A:)(’/A(,,\_)H = D//(’/w ALK ()( )(i: A)h) = t_"()r ('17 ALK U( )) iy( Ar
' { 2 l
for some section 1)y x x.0(r, 2)e ':"‘H of /“ , (7", D). This will be enough to conclude

the proof of the lemma.
Assume first that v x z, # 0. Then (6.2.14) allows us to write

1 . )
(W * :)Q‘\,./\.m(\ = 57‘()1' Yy ANn0 7 2P~ A R0 § (m( )’/'\, Am k.0

m=2
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with ¢, (2) holomorphic near z, and ¢» = 1. Let us denote by (3« 2)14 a0 the term
2
between brackets. The L= condition to be satisfied is

(6.2.15) [y o () [ e LA 2 e L2 (de /)
and we have by assumption

el () 2 e Lﬁw((]r/r)
‘\,9.,4/\_,,,(,(7'. s PN e LR (dr/r)

Al o T () A /el e Lﬁ,(.((]l'/r) for any m > 2.

[ a0 (%)

| ]/’)'.)\—}—'Iu.ff.()(". Z)

Clearly. these conditions imply (6.2.15). Morcover. we have

"z, e Sy dl
':D./:.(“il}.‘,<Il‘\/‘)\"'.‘0(/",4/\.)/{) = <;"d" + qox >(’/” ALk U) /\Az; T
.y dt
- [l, P WK Z (III( )’/" Atmon.0 i( ;\”i‘ T

mz2
. . g b .. .
and this satisfies the L= condition as m > 2.
Consider now the case when 4 = 0. Then (6.2.14) allows us to write. with a small

change of notation.

1
FONNO = ;"(),- CON=20.0 7 S¥0A=2.1.0 — E ('m(l)'ln.xﬂtm.hau

- mz=l

Let us denote by nooax.o the term between brackets. We have by assmption
}l«’u./\fz.ﬁ.n("- i)|L(")(/\_2)/2 S [«f,(.((/"/")
o 2o ) LA e L2 (dir/r)
¥ Toc

l'lu Ao 2) [ L) Atun/2=1e 12 (dr/r) for any m > 1.

S . 9 oo . z,)
C'learly. these conditions imply the L= condition for I/”_)\A,;_“(‘U(/\ .- lanely

LmM2 b e L2 (dr)r).

l'lu.A.;;An(lx 2)

Moreover. we have

P =) 1 . =) dt 1(z0) (]f

D', - ding ('/(JA/\.N.()(‘(;A)\_,,-) = ;'.()r(’/lLA.;»:l))“(]_/\A,,‘ T = Y0 r)f” Aow 7
which is L? by assumption. O
6.2.f. End of the proof of Theorem 6.2.5. — First. it casily follows from Lemma

6.2.13 that the natural inclusion of the complex
/0

D!
0 — Ker DY = 20" () N Ker D! 0

in the complex (6.2.12) is a gquasi-isomorphism. We note that Z’ l 0 (.//’) NKerD! =
HZ’((._,I)'U)(.///) N KerD”' A section of each of the sheaves in this ('()1111)1(\){ is therefore

holomorphic away from + = 0. by the nsual Dolbeault-Grothendieck lemma. The L2
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condition implics that the cocflicients in the bases €/G¢) or €'Ge) dt /t have moderate
growth at 1 = 0. henee are meromorphic. The complex DR (0 /7)(2) is therefore isomor-
phic to the previous complex shifted by 1. the morphism being given by the identity
on the term of degree —1 and by the multiplication by = (the rescaling) on the term
of degree 0. O

6.2.g. End of the proof of Theorem 6.1.1 on a Riemann surface

Strictness of fi.7. Lot (.7..) = (7. ./7.C.1d) be a polarized twistor regular
7 v-module of weight 0. as in Theorem 6.1.1.

Corollary 6.2.16. The complex fo. /7 is strict.

Proof. Arguc as in the proof of Hodge-Simpson Theorem 2,210 For any z, € €.
f+M-, has finite dimensional cohomology. It follows from Proposition 6.2.4(1) that
cach DR(J?,,)Q) has fnite dimensional hypercohomology on X and. by Theorem
6.2.5. 50 does ,7)'!_,';"([[. D. ). One can therefore apply Hodge Theory to the complete
manifold X* and the Laplace operator A. . As this operator is essentially indepen-
dent of =, by (2.2.5). z,-harmonic sections are z-harmonic and D.-closed for any z.
Morcover. they have finite dimension.

As fi. 7 has Og,-coherent cohomology. we can now conclude with the same argu-
ment as in the smooth case (see the part of the proof of the Hodge-Simpson Theorem

2.2 concerning strictness). ]

Remarks 6.2.17

(1) Let M be an irreducible holonomic Zy-module with regular singularitics. We
have DR M. = L[1]. where L is an irreducible local system on X*0 and DR AT =
J«L[1]is the intersection complex attached to the shifted local system DR A v- = L[1].
if j: X" =X~ 1”— X denotes the inclusion. In particular. DR AL has cohomology
in degree —1 only. Consequently, if M # Oy, e if L # Cy .. we have

H "(X.DRA) = H"(X.j,L)=0.

and. by Poincaré duality and using that the dual A7V s also irreducible. we have
H'(X.DR M) = 0. Therefore. [ = ,/'_;_';\/.

(2) Let now .7 = ((#..7.C.1d) be a polarized twistor regular Zy-module of
weight 0. If we assume that .7 is simple and has strict support X, and if .7 is
not cqual to the twistor Z-module associated to @, then f;.7 = ,}“.;.'.7: indeed. by
Remark 4.2.14. we know that the restriction Al of .# at z, = 1 is simple and not
cqual to @x: then. by the remark above. the restriction fyAL at =z, = 1 of fi. 7 has
cohomology in degree 0 only: as f+. 7 is strict. it must have cohomology in degree ()
only. We note also that all sections of f]i),ﬂ arc primitive with respect to the Lefschetz
morphism associated to any €™ metric on X
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The twistor condition. We can assume that .7 is simple and has strict support X,
and we also assume that .7 is not equal to the twistor Z-module associated to ¢,
(otherwise the result is clear). We want to prove that the twistor condition is satisfied
for f1.7 = ,)“?:7. First, the harmonic sections Harm'(X. H) with respect to any
A form a lattice in HU(X. DR(. %7)(3,): this is proved as in §2.2.h, replacing the
™ de Rham or Dolbeault complex with the L? complex. and using Theorem 6.2.5.
Then the polarization property is proved as in §2.2.b. with the simplification that all
harmonic sections are primitive. O

6.3. Proof of (G.1.1), = (6.1.1)

n.om) (n+1L.m+1)

Let f : X — Y be a projective morphisin between complex manifolds and let
(T..9) = (A..7#,C.1d) be an object of NI'TY (X 0)P (it is casy to reduce to the
case of weight 0 by a Tate twist). We assue that it has strict support a closed
irreducible analytic set Z < X. Put n +1 = dimZ and m + 1 = dim f(Z). Fix a
relatively ample line bundle on X and let ¢ be its Chern class.

We know by Corollary 1.4.6 that the fl.# are holonomic. Let ¢ be a holomorphic
function on an open set V. Y and put g = to f: f7H(V) — C. We assume that
{t =0} N f(Z) has everywhere codimension one in f(Z). We will now show that the
]‘]Z// are strictly S-decomposable along ¢ = 0. by proving that the other conditions
for a twistor object are also satisfied.

Consider fivst (b, f{W, .7 for Re(a) € [—1.0[ (resp. Dif{og.0-7) with its nilpotent
endomorphisin /}C 4" and monodromy filtration M, (f{. 47). and the nilpotent Lefschetz
endomorphisi .Z..

Claim 6.3.1. For any o with Re o € [—1.0[. the object
(1; [g]i\lf{ W, (7). gr;\'fif U, (7). f]f . 5/,}
1.

is an object of NILT" (V. w: —1. 1)) Similarly.

i [ fogo (7).t flo,o(S). 110 2]

i,
is an object of MLTW (V,w; —1.1)®),

Sketch of proof. By the inductive assumption for o # 0 and using Corollary 4.2.9
if @ =0, we know that

a; [Flert' W, o (7)), flex? Ve, (7). fin . 2]

(resp. ...) is an object of MLT® (V.w: —1.1)®) Then we can apply Corollary 4.2.11.
O
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( (1.0) (n.0)

<(n—1).0)

As a consequence, we get the strictness of fiw, .4 for any o with Rea € [—1,0].
1 g 9
hence that of fivg .o # for any o € N. as this is a local property with respect to z.
Similarly. we get the strictness of fivy, . 7. hence that of fiv, .. # for any o € N.
) g Jitg v J+ g
Applying Theorem 3.3.15. we conclude that the fi.# arc regular and strictly spe-
Pl f
cializable along # = 0. By Corollary 3.6.35. we have f{W, .7 = W, , f{.7 for any o
with Rea € [=1.0[ and f{d, 0.7 = (/)/_(,f,i’ 7.
Now. Condition (MLT<y) along ¢t = 0 is satisfied for ; 1.7, because of the
> g T4
claim.  According to Remark 3.6.22. strict S-decomposability along t = 0 follows
then from Proposition 4.2.10. d.c.. the analogue of Proposition 2.1.19:  indeed.
as ]‘](1 commutes with .., it is cnough to prove the S-decomposability of the
primitive (relative to %) modules Pfjf,//: apply then Proposition 4.2.10 to the
objects ng1/7,,.,1[’,/"{(/7../’) = gr“]’,/'.{.'z/r,,i,l(.’7..7’) and grl\](f)g.(;/’j'{(.?..7/) =
ngPf]l(/)U.o(A7..V)A which are polarized graded Lefschetz objects according to
the claim. to get that oMo, oPfI.7 = Thmgr@an & Kerer farm use then that
4 | I} s} )
can @ (yg. - 1Pf{,//.l\l.) — ((/').,/_(.1’]"1&//.1\1.;1) and var : (dg4.0 Pf%’.//.l\l,) —
Vo A Pfil# N, ) arve strictly compatible with the monodromy filtrations
. Ty )
¢f. [56. Lemma 5.1.12)) to get that o, 0P fl.# = TImcan‘: Kervar. hence the
: g $ _
S-decomposability of fi.# and then. as in Proposition 3.5.8. that of f{.7. O
1 I+ I i

6.4. Proof of (G.1.1)
(6.1.1),, ) for n =

<m—ny.0y and ((6.1.1) o with Supp.7 smooth) =
1

We will argue as in [56. §5.3.8] by using a Lefschetz pencil. Let (17..¢) be a po-
larized regular twistor Z-module of weight w on a smooth complex projective variety
aud let ¢ be the Chern class of an ample line hbundle on X. We assume that .7 has
strict support Z. which is an irreducible closed n-dimensional algebraic subset of X
(n = 1). It is not restrictive to assume that ¢ is very ample, so that, by Kashiwara’s
equivalence. we can further assmne that X = PV and ¢ = ¢ (05~ (1)). Choose a
generic pencil of hyperplanes in PV and denote by X C X x P! the blowing up of PV
along the axis A of the pencil. We have the following diagram:

AxP =Ac . XT T, xxp ¢
(6.4.1) l FJ
P
A v X P!

We note also that the restriction of 7 to any f~1(#) is an isomorphism onto the
corresponding hyperplane in X. Put ¢ = ¢;(@%i(1)). Using Remark 1.6.8, we will
assume that .7 has weight w = 0 and that (7..9) = ((#..#.C). (1d.1d)).

The proof will take five steps:

(1) We show that 7% (.7,.7) satisfies (HSD), (REG), (MT<g) and (MTP<() along
F7NH). for any t € P
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Choose the pencil generic enough so that the axis A of the pencil is noncharac-
teristic with respect to .. Then the inclusion 7: X <= X x P! is noncharactoeristic
for p™. 7 (¢f. §3.7): this is clear away from A: if the characteristic variety A of . # is
contained in a union of sets T X x Q. with Z, C Z closed, algebraic and irreducible.
then, if 4 is noncharacteristic with respect to cach 7. sois 4 and therefore X near
any point of A-- with respect to cach Z; x P'. The characteristic variety of 77,7 is
contained in the nunion of sets T/’ X x Q. where Z; is the blow-up of Z; along AN Z;.

Morcover. for any + € P the inclusion A x {t} < X is noncharacteristic for
at.# = TrpT /by the choice of Al for anv Z; as above. the intersection of

- )1 . . - 1y s .. ] . . . P NP - .
jx{,}()& xPH) with 77, . (X xP1) is contained in the zero-section of 7%(X xP1). As
o T T Y R A TP PR A G ATV e v

we have ]/‘X{f}(/\ x P = (T") [A\X{,}‘\A it follows that »\X{,}‘\ QTZVA\ C f’{,l\.

This implies that. for any + € P'. the inclusion f7'(#) — X is noncharacteristic
for 7. # ncar any point (@, ) € A x {t}.

Therelore. near each point ., of the axis of the pencil. ¢y 7™ ((7..7) is identified
with ¢, (.7..¢"). where g = 0 is a local equation of the hyperplane f =t near r,: argne
as in the beginming of the proof of Lemma 3.7.4 to show that 77, # is specializable
() &

this module is equal to ij \(“).// = (. 7 as ./ is assumed to be strictly nonchar-

along f =t and that there exists a good V-filtration for which gl'[l,// = I_;_ |

acteristic with respect to ¢ = 01 it follows that 7.7 is so with respect to f =t a
shimilar argument is used to identify the sesquilinear pairings: the identification of the
sesquilinear dualities causes no problem. as theyv all are equal to (Id. Id).

Using the identification above near the axis. and the properties asswmed for ((7..97)
on and away from the axis. we get all propertios for 77 (.7..7) along any fibve f1(#)
(regularity follows from Lemia 3.7.1). This concludes (1).

(2) As A cuts Z in codimension 2. the support of #7. 4 is the blow-up Z of Z aud
the fibres of f\Z all have dimension n — 1. According to Step (1) and to Assumption
(G.1.1)(, 1) We can argue as in §6.3 to obtain that (ifiT(T7.).Z0) is an
object of the category METY/(P! o 1)) with w = 0. Let ns denote by a, the

constant map on the space oo Then. by asswnption (Z.c.. by the result of §6.2).

(<3, (I'v£,+,f‘_1_7r% (7..)..%.. %) is a polarized bigraded Lefschetz twistor structure
of weight w = 0. It follows from Lemma 2.1.20 that

(0 (Fig ooty ST TS L+ L)

is a polarized graded Lefschetz twistor structure of weight w = 0. By using the same

arguments as in [15]. one shows that the Leray spectral sequence
! A A L
SRR fom A KOG T T

ko 7.7 attached to this
N oA

spectral sequence satisfies in particular the following properties:

degencrates at Fy. Therefore, the Leray filtration Ler® a
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(no-

(a) gl"ljdm_(If“';,.+ Tt 7 = (1.;f;l+,)"i_"7r+ T =0for j#£ —1.0.1;
(b)y .21 Lar! (1’{,‘#7#7 — Lar! uﬁfin‘* T (k4 1) is an isomorphism for
anv A > 0 (because Ler!' = arl
(¢) Ker.Z. : (1‘{, +/T+ T — L\* :7T+ 7(1) is contained in Ler” (1’%, +7T+ 7 for
“" 7. 7(1) is an isomorphism).

Ay L N 7 Vake gt
any A (because <o “I‘””XZ-# T = pr]

We conclude from (2a) that the object ( L(zl‘\, +7T+-7. L+ ./J) is an extension of
graded Lefschetz twistor structures of weight w = 0 and. by Remark 2.1.18, is itscelf
such an object (this argument is similar to that used in [28. Th. 5.2]).

(3) We now prove that 7,7 7.7 decomposes as a direct sum. one \mmnan(l be-
ing -7. and morcover that (.7..7) is a direct summand of (/14_77+ 7. n ‘7zt We
follow the proof given in [56. §5.3.9].

Everything has to be done along A only. as 7 is an isomorphism outside of A.
Let g be a local equation of a hyperplane containing A. Then nf, # is strictly non-
characteristic along both components of g o = 0 and their intersections. so we
can apply Lemma 3.7.9. Arguing as in Claim 6.3.1 (this is permissible due to the
inductive assumption (6.1 l) J0)e a8 the fibres of 7 @ Z — Z have dimension
< n —1). we conclude that (Hﬂ,ﬂ+ (. 7 ). L) satisties (HSD). (REG). (MLT~)
and (MLTP () (sce Lemma £.2.7) along g = 0. We can cover 4 by finitely many open
sets where we can apply the previous argument. After [15]. the complex 7777 de-
composes as w7 [—i] and clearly 7wt 7 is supported on A if ¢ # 0. We note
that. as .27 = 0. 7lzx' (. 7..7) = Prla " (.7../) satisfies (HSD). (REG). (MTxg)
and (MTP~q) along g = 0. We will identify (.7..7") with a direct summand of it.

Put 70 7".7 = (4. #4,.Cy). Tt decomposes as (#y .. #0.Cy) b (Mo #.Ch)
with . 7, supported on 4 and . 7] has no submodule nor quoticnt supported on A
(usc the S-decomposability along any g = 0 as above). After lemma 3.7.5. there is an
adjunction morphism . # — . #,. This morphism is an isomorphism away from A, and
is injective. as . has no submodule supported on A, Its image is thus contained in
A and s equal to ). as . ) has no quotient supported on A. Thercfore. .7 = . 7.

That " = (') follows from Proposition 3.7.6. applicd to any germ of hyperplane
containing A. It remains to consider the polarization: notice that 7#1.9 = (Id. Id).
and that 77"y = (Id1d). as (77t 7)) = 7\ (zx".7) = 717" 7: hence the

identification of the polarizations.
(1) As .Z. vanishes on .7, we conclude from Step (3) that (ay. . 7..2.) is a direct

summand of (a g , 77.7.. 2. 4 .Z). From Step (2) and [15] we have a (non canon-

C T
ical) decomposition a ¢

can be chosen to induce a decomposition ax .7 ~ i A'(/_‘{\-.Jr.?[—— K], In particular.

Tt T~ v.;,.ui\, . 7t 7[—k]. Therefore, this decomposition

(ﬂ},‘k(lk-ﬂ T.Z.) is a graded Lefschetz twistor structure of weight @ = 0. being a
dircet summand of the graded Lefschetz twistor structure (Ggpah 7t . 7.7 + L),
N+
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(5) Tt remains to show the polarization property. In order to do so, we will use
the Fact 2.1.9 in its graded Lefschetz form given by Remark 2.1.16. Let us denote by
P'd!, .+(=[j,;,.fi7r+ 7)) the .Z/-primitive part of (12|.+(P?:‘[,-fi7'r+ 7). that is. the kernel of
%+ acting on the previous space. Then P def (P/(‘:'L;L+ (iim,fiﬁ*.?).,&ﬁ) remains a
(simply) graded Lefschetz twistor structure of weight v = 0. polarized by the family
of sesquilinear dualities (181 »+f,’+"/7+./.

According to Remark 2.1.16. we get the desired property if we show that

(a) (Brak [ 7..2.) is a sub graded Lefschetz twistor structure of B,
(b) the polarization of 7] induces the family ((1{‘,'\-_+,/'),\..

By definition. for A > 0. PIII-Z__ 7 is the kernel of ,Zi{"H acting on a}ﬁ 7. It fol-

lows from (2b) that I’(z}f" 7 N Ler! (1,;,"'+7r+.'7 = {0}. On the other hand, u}f'* T is

. . 0~k ; : . . . -
contained in Ler” a v 7.7 as . %, vanishes on ‘\»A+.7 and according to (2¢). There-
. Y P . . —k p . . e
fore, Pa(", .7 is contained in g1y a b7t 7. and more precisely in the biprimitive

N4
At TCor § S Okl — 0 k7 Thie oves (5
part Ker Z N Ker Z80 Cagy  f"7". 7. This gives (5a).
As we assume that . = (Id.Id) and .7 = .7*. the sesquilinear duality (l/ﬁ».+,y/ is

nothing but the identification (a% . 7)* = (/_’\T]_"’ 7 deduced from (1.6.14). Similarly,

N+
the sesquilinear duality on P) is induced from the identification (a2, +firr+ Ty =
a?, Iy Ka+.7. That the former identification is induced by the latter is a consequence
of Lemma 1.6.17(2) and (3). O

6.5. Proof of Theorem 6.1.3

We will prove it by induction on dim X'. The result is clear when dim X = 0. It is
easy if dim X = 1: by Remark 4.1.7. it is enough to verify Properties (HSD), (REG).
(MT~g) and (MTP~g) along any coordinate: as nearby cycles reduce then to ordinary
restriction. the result is clear.

Let dimX = n > 2 and let (.7..Y) be a smooth twistor structure of weight w on X.
It is enough to consider the case when w = 0 and . = (Id. Id). By the computation
of Proposition 3.8.1 and by induction on dim X. we know that Properties (HSD).
(REG). (MTsp) and (MTPs) are satisfied along any function like a1y - - - 2, and, by
Remark 4.1.7, along any monomial (ay---u),)".

Let ¢t : U — C be any nonconstant holomorphic function on a connected open
set U of X. Let m: U — U be a resolution of singularities of t: there exist local
coordinates near cach point of U so that t o7 is a monomial when expressed in these
coordinates. It is a projective morphism. Choose a relatively ample line bundle on U
and denote by ¢ its Chern class. We assue that Properties (HSD). (REG), (MT+g)
and (MTP.g) are satisficd for the inverse image 747 along t o = 0. Then. by
the argument of §6.3, they are satisfied for =7, 7.7 along ¢ = 0. In particular,
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)77 is strictly S-decomposable along t = 0. We denote by .77 = (&', .4'.C")
its component not supported by t = 0. Remark that. for Re(a) € [—1.0[. we have
U7 =W 7" 7. Remark also that .2, acts by 0 on .77, as it acts by 0 on .7
and .7 = 7 away from ¢ = 0. It follows that (7.« = (Id.Id)) satisfies (HSD).
(REG). (MTxsq) and (MTP~sg) along ¢ = 0.

The natural adjunction morphism . # — 7T(_:_7T+.// of Lenima 3.7.5 is injective, as
s O p--locally free. therefore it is an isomorphism onto . 77, Morcover. €7 = C'+ (',
where ("] takes values in distributions supported on ¢t = 0. Therefore. for Re(a) €
[—1.0[. we have ¢y C" = ¢, C. and (7..7") satisfies (HSD). (REG). (MT+¢) and
(MTP~<y) along t = 0.

To end the proof. we now have to cousider the case when the function t is any
monomial. By a multi-cyclic covering. we can reduce this monomial to a power
(1 --xp)" and we can apply the first part of the proof to the reduced monomial. We

arc therefore reduced to proving that, if 7 is the covering
- .
X=C'—Y=C"
o . R . .
S T vy) — () =y ry)

then. if ((7..¢) is a smooth polarized twistor structure on Y. it is a direct sunnnand
of 77t (. 7,.¢). Indeed. we can assume (by induction on the number of cyclic cov-
erings needed). that 71 (7.9 satisfies (HSD). (REG). (MT~) and (MTP ) along
tom=0. We will conclude as above that 77t (.7..7) does so along ¢ = 0. and
therefore so does (.7..Y).

Put .0 = Oy 0 0. where € denotes the sheaf of functions having trace zero

along 7. Similarly. put

L ) Lok ~ ~ Lok ~ L
Y Oy = (’—l - m,) SOt Ot = (( iy 0) & (‘_’_‘ % 0 ] <n ,)

where Q! is the sheaf of relative 1-forms having trace 0 along 7 and &4+ [v1]<h—2 is the

sheaf of polynomials of degree < A — 2 in .y with cocefficients depending on g, ... .. r,
L

7 . op . , = . | ~ . .

only. We note that the relative differential d @ @ O 0 — ( L & (),»//) o Qs

diagonal with respect to the direct sum decomposition.
We will compute 74 by using the diagram

w

Xt Cx X —Z sy

Then. 7t # = 0y @p1 g, L withiits left ) -structwre (given by O, (15 m) =
A';I'f’”l @ 0y,m, of. §1.4.0), and 7 7. # is the complex

Vo dr i
— — MO Bo, A7),

7.0y Zp., AT
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with
- ~ R j o
Vo(f@mr!)y=df it + — % [f = (0, mT — Tt )}
As V4 is compatible with the direct suun decomposition corresponding to the trace.

we have a decomposition of 2., -modules

M= MM

S . S . lef
We will now show that this decomposition is orthogonal with respect to €7 =

Wﬁﬂ'*(' It is enough to show that. for compactly supported (n.n) forms ¢(y;. ') =
X(yi.a")dyy A dy, AH _ydry NdT.
A
dah

ke ok
(6.5.1) <w+(;+c')“((’% () B 1»:;)) ey )> —0

if fe o and for 0 << h—2.

h L
(6.5.2) <w+(i+f'/)“(il—l (e m). ‘ -,] o (hglat) @ /1)>A\,9(}1/|.;1")> = 0.

The left-hand term of (6.5.1) is, up to constants.
Aok AT A dyy A dgy A H.'il:'z daoj NdT;
d(yy — 8y ANd(yy — %)
:(‘(m./_/)/ (g F (. ydak Arll,/\H{ll,/\(/I,—()

=

Clm. 1) / (e T )

as trx f = 0. The argument for (6.5.2) is similar. O
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CHAPTER 7

INTEGRABILITY

This chapter is concerned with the notion of integrability of a twistor “-module,
a notion which is directly inspired from [30]. where it is called a C'V-structure!™.

We define the notion of integrability of a ., -module. We analyze the behaviour of
such a notion with respect to various functors, like direct image by a proper morphisn,
inverse image. specialization. This notion is then extended to the category #- Triples,
i.e.. we define the notion of integrability of a sesquilinear pairing between integrable
A y-modules. We also analvze its behaviour with respect to the previous functors
extended to the category #- Triples. Last. we extend Theorems 6.1.1 and 6.1.3 to the
corresponding categories of integrable objects.

It could scemr a priori that this notion is uscless when the underlying manifold is
projective or affine: a variation of smooth polarizable twistor structures on a com-
pact Kéhler manifold (i.e.. a flat holomorphic vector bundle with a harmonic metric)
is integrable if and only if it underlies a variation of polarized Hodge structures.
I also conjecture that the same result holds for a flat holomorphic vector bundle on
a punctured compact Riemann surface with a fame harmonic metric. In any case.
a consequence of this integrability property is that, in the tame or regular case. the
cigenvalues of local monodromies have absolute value equal to one.

Nevertheless. this integrability property sceims to be the right gencralization of the
notion of a variation of polarized Hodge structure when irregular singularities occur.

7.1. Integrable .# ,-modules and integrable triples

7.1l.a. Integrable #,-modules. — Lect .# be a @, -module equipped with a
flat relative connection Vo, g, as above. We say that .4 is integrable if V4,
comes from a (absolute) flat meromorphic connection V having Poincard rank one
along = = 0. d.e.. such that =V has cocfficients in the sheat of logarithmic 1-forms

(DeCV™ i for Cecotti-Vafa.



178 CHAPTER 7. INTEGRABILITY

Q',-(log{z = 0}). d.e.. has holomorphic coefficients when expressed in any local basis
dry..... di,,.dz/z.
In the following. we denote by d. the operator z20)..

using here the notion of
geontetric conjugation of §1.5.a. This should not be confused with the corresponding
operator using the usual conjugation on z. The latter will not be used in this chapter.
We consider the sheaf of rings %/<(7) ecnerated by 4, and O0.. with the following
commutation relations:

[0..0,,] =20, [0..f(z.0)] = ,:2()~7'(:...»).

0z

Let .4 be a %5 -module. We say that . in integrable if the 7, -structure extends
to a A 5 (J.)-structure; in other words. if .7 is cquipped with a @ y-lincar operator
D. :.# — .. which satisfics the previous commutation relations with the action of
# . The integrable # ,-modules are the @, -modules equipped with an absolute
flat connection having Poincaré rank one along =z = 0.

We note that. if . admits a d.-action. it admits a family of such actions
parametrized by C: for A € C and m € . 4. put J.exm = (0, — Az)m.

Examples 7.1.1

(1) Let . be a locally free @ ,--module equipped with a flat meromorphic con-

nection V- ohaving pole along the divisor z = (0 at most. and having Poincaré rank
one there (i.e.. 2V has logarithmic poles along = = 0). Then .# is a coherent holo-

nomic 4 p-module (with characteristic variety equal to the zero section in the relative
cotangent bundle (77X) x €2y). Morcover, it is integrable by definition.

Examples of such objects are constructed in [23] by partial Fourier transform of
regular holonomic modules on X x Al equipped with a lattice (i.e.. a @-coherent
submodule) when a noncharacteristic asswmption is satisfied.

(2) Let A be a coherent &y -module equipped with a good filtration Fy M. Con-
sider the Rees module Ry M def 2P on the Rees ring Ry @y, After tensoring over
Ox[z] by O, on gets a coherent 4y -module . 7. with Char M x £y as characteristic
variety. As F,A[ is increasing. there is a natural action of zd. on RpAfl. hence an

action of d.. Thercfore, . # is an integrable coherent .4 5 -module.

7.1.b. Integrability of a sesquilinear pairing. — A sesquilincar pairing between
two A y-modules .7 .. 7" is a '//”A(A\'T)_s'h“("‘“' morphism

v AN
( ’//‘S /,,(/sr//l/é ‘—'DbA\"XS/S‘
Let .# be an integrable %, -module. On . #|g. we can consider the action of zd.,

defined as the action of (1/z) 20-.

Define the action of zd. on €¥, g using polar coordinates. namely. if = = |2 v

e,

z0,¢(.0) = —é(‘),:/(‘)(). We therefore have a natural action of zd. on the sheaf of
distributions Dbx. xs.
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7.1. INTEGRABLE # ., -MODULES AND INTEGRABLE TRIPLES 179

Let .Z’..#" be integrable % »-modules and let €' : '/'I/S Rog //I/é — Dbx.«s/s
be a sesquilinear pairing. We say that the scesquilinear pairing is integrable if the
following equation is satisfied in Dby, «s (recall that Dby, «g/g is naturally included
in Wby xs):

(7.1.2) 20.C(m' ") = C(z0-m" ") — C(m’. zd-m")

for any local sections . m” of //I/S//l/é Although the right-hand term is in

Db . «g/g. the left-hand term has a priori a meaning in Dby, «g ounly: the inte-
N:xS/S ! g : .

grability condition implies that it belongs to Dby, «g/s.

7.1.c. The category % int-Triples(X). — Wesay that an object 7 = (#',.#".C)
of - Triples(X) is integrable if .#'..#" are integrable. i.c.. cquipped with a 0.-
action. and ' is integrable. i.e.. compatible with it. i.e.. satisfving (7.1.2). There is
a family, parametrized by C. of d.-actions on .7: for any A € C, consider the action
by 0. — Az on . #" and the action of 9. — Az on .#"”. We say that such actions are
cquivalent.

Let .71..75 be two integrable triples. each one equipped with an equivalence class
of J.-actions. We say that a morphism ¢ : 7] — .7 is integrable if it commutes with
some representatives of the 0.-actions. Then. for any representative of the 9.-action
on 7. there is a unique representative of the O.-action on .7 such that (o commmutes
with both.

Given two objects 77,7 in #-Triples(X), denote by Hom(.7,.7) the set of
morphisms in - Triples(X) between these two objects. 1f 7.7, are objects of
2 int-Triples(X). denote by Homgy (77..7%) € Hom(.77..7) the set of integrable
morphisis between them. The category & int-Triples(X) is abelian.

The adjunction functor is an equivalence in Z int-Triples(X). There is a notion
of sesquilinear duality, which has to be a morphism in % int-Triples(X) between .7
and 7.

We note that the Tate twist is compatible with integrability: if (7.1.2) is satisfied
by C'. it is satisfied by (iz)=2*C for k € %Z if we change the choice of the J.-action
on . " and .#". and replacce it with the action of 0. — k= and 9. + k= respectively.

Example 7.1.3. - Let 7 be integrable. Then its adjoint .7 * is also integrable. Let
w € Z and let . be a sesquilinear duality of weight w on .7, i.e.. a morphism
T — T*(—w) in #-Triples(X ). We say that . is integrable if .% is a morphism in
Homint (.7, 7 (—w)).

Let .7 be integrable and equipped with a sesquilinear duality . of weight w.
There is a family. parametrized by R. of d.-actions for which (.7..#) satisfies the
same properties: for any A € R. consider the action by 9. — Az on .#” and the action

of 0. — Az on . 4"
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180 CHAPTER 7. INTEGRABILITY

7.1.d. Integrability and direct images. — Lect f : X — Y be a holomorphic
map. The direct image functor for .2, --modules is defined in 1.4d.a. mimicking the
corresponding functor for y-modules. The direct image for objects in 7- Triples(X)
is defined in § 1.6.d of loc. ¢it. Integrability is well-hehaved with respect to the direct
image functor of (right) 4 ,--modules or triples:

Proposition 7.1.4. Let A7 be a vight A - -module which is (right) integrable. Then
cach right Ay -module R fy. 2t is vight integrable. If (7', #".C) is an object of
A int-Triples(X), then A f(&'..#".C) is an object of #int-Triples(Y') for any
jez.

We note that w4 is an integrable right .2, -1module. and that the usual right —left
transformations for 4, -modules also transforis right integrability into left integra-
bility.

Proof. Remark first that %, is an integrable left .4, -module. The left action of
J- is locally defined by

D.(>, anle.2)0Y) =3, (220a/0z + = o] a)d).

On the other hand. the sheat © - (vector fields relative to the projection 27 — Qg

which vanish along = = 0) is equipped with a left action of d.: simply put. in some
local coordinate system (..., ry) on X 0.(0,,) = z0,,. Similarly. the exterior

product is equipped with such an action. such that
D04, A A0, ) = k20, A AD,

It follows that cach term of the Spencer complex (Sp%y(€,).6) is a loft £, (D.)-
module. One checks that the differential & commutes with the .4 y'(?j;)—n(*tion.

If . 7 is a vight 2, (0. )-module and . 17 is a loft A (0 )-module. then . # @ ¢, NV
is a right ., (J.)-module.  Similarly. .7 4, .4 remains equipped with a right
action of 9. defined by

(m - n) 0. =m0, v —m o d-n.

Let f: X — Y be aholomorphic map. The relative Spencer complex Sp%y-_ , (0.57)
is & complex of left ,%,v)'<51>—111()(1111(‘.\' and right f~ 12 4 -modules.

If .4 is a vight .2, (0.)-module. then .7 ~ ,», Sp*y (€4 ) remains equipped
with a right [~ "2 »-module structure and a right action of 9.. Tt is in fact a complex
of vight 4, (D-)-modules.

These properties remain true after taking a Godement resolution. Therefore, the
action of 0. is compatible with the constrnetion of direct images given in § 1.4.a. hence
the first part of the proposition.

The integrability of the various f:i_’(,' ATl g A T — Dby g )s IS
then casy to get. O
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7.2. INTEGRABLE SMOOTH TWISTOR STRUCTURES 181

Remark 7.1.5 (Integrability of the Lefschetz morphism). Let us ('(_)usi(ler the situa-
tion of §1.6.c. We have a Lefschetz morphism .7, - }‘T’ T — ,3r’+2.‘7(1). By the

previous proposition we know that. if 7 is integrable, }‘T’ T and f‘THZ,‘? are so. We
claim that .Z. € Homyj,y ()‘T’ 7. ')"'Tj+2.:7(1)): in the case of a projection. for instance,
L. (=L,.L.), where L, is 27 'wA and w is a closed real (1.1) form on X with
class ¢; use that z=1(d, — 2) = ¢

7.2. Integrable smooth twistor structures

7.2.a. Preliminary remark. — We assume that X = pt and that (#77..#".C)
defines a twistor structure of weight 0. that is. .#”.. #" are locally free Og, -modules
of finite rank and ' takes values in Og (¢f. §2.1.b). Saying that .#’..#" arc integrable
means that they are equipped with a connection having a pole of order < 2 at 0. and
1o other pole, or equivalently. that they are equipped with a d.-action. Then. saying
that C' is integrable means that (7.1.2) is satisficd when ' is regarded as taking values
in ‘¢g*. via the restriction Og — 6g°.

The matrix of C' in local bases of .Z'..#"" which arc horizontal with respect to
d. is therefore constant when restricted to S, As it is assiimed to be holomorphic
in some neighbourhood of S. it is constant, and ' satisfies (7.1.2) in Os. In other
words, if we regard (' as a gluing between the dual bundle .Y and the conjugate
bundle .#” on some neighbourhood of S, ' is integrable if and only if the previous
isomorphism is compatible with the connections. Conversely, such a property clearly
implies integrability of C".

We say that (#'..#".C) is an integrable twistor structure of weight 0 if it is a
twistor structure of weight 0. if . Z/..#"" are integrable. and C' is integrable.

We say that (#7..2".C) is an integrable twistor structure of weight w if it is
obtained by a Tate twist (—w/2) from one with weight 0 (¢f. §1.6.a for the definition
of the Tate twist in this context).

Example. Let us show that a complex Hodge structure defines an integrable twistor
structure.  We take notation of §2.1.d, and we assume for simplicity that w = 0.
We define the 9,-action on Clz, :"] e H as the one induced by the natural one
on Clz.z7']. Let us show for instance that " is stable under this action. For
my € F"1, we have 0.m,z"9 = —qn,z 9" and we have to show that my € FL
which follows from the fact that F’* is decrcasing. The other compatibilities with the
O.-action are verified similarly.

7.2.b. Characterization of integrable twistor structures. — We assume that
X = pt. Recall (¢f. §2.1.h) that a twistor structure (77, 27", C') of weight 0 defines a

vector bundle ## on P! which is isomorphic to the trivial bundle, obtained by gluing
A with 277 using (7 in some neighbourhood of S. There is an equivalence between
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the category of twistor structures of weight 0 and the category of finite dimensional
C-vector spaces; one functor is

(A A" .C) — A — H (P, ),

and the quasi-inverse functor is

o def =%

H— = H ¢ Opr — (.}VM S, . C).

where C' comes from the identity Id : ,S — %‘(5

Lemma 7.2.1. — The twistor structure (7,27, C) of weight 0 is integrable if and
only if the corresponding bundle A is equipped with a meromorphic connection v
having a pole of Poincaré rank at most one at O and at infinity, and no other pole.

Proof. — Indeed, if (527, 277, C) is integrable, the bundles .77 and 7" are equipped
with a meromorphic connection having a pole of Poincaré rank at most one at 0 and
no other pole. Thercfore so has .#”V. Similarly. " has a connection with a pole of
Poincaré rank at most one at infinity. Integrability means that, via the gluing. both
connections coincide on some neighbourhood of S. The converse is also clear. O

Let (27, 2" ,C) be an integrable twistor structure of weight 0. By the corre-
spondence above, we have " = H ®¢ Og,. Integrability means that there exist
endomorphisms Up. Q. U~ of H such that. for any element m of H. we have

D.m = (Uy — 2Q — 22U ) € A",
In 57" = HY @¢ Oq, we have, for any p € H".
Dopi=("Ux —2'Q = 22'Up)p € A",
The category of integrable twistor structures of weight 0 is therefore equivalent to
the category of tuples (H, Uy, Q, U~ ) and the morphisms are the homomorphisms of
vector spaces which are compatible with (U,. Q. Ux).

We assume that (77, 77", C) is equipped with a Hermitian duality .. We will
suppose that .#’ = 7" and . = (Id.1d). This defines a Hermitian pairing h :
H @ H — C. The compatibility of . with the d;-action means that @ is self-adjoint
with respect to h and U is the h-adjoint of Uy.

If .7 is a polarization, i.e., if h is positive definite, the eigenvalues of () are real,
and @ is semisimple. We decompose H as

H = (\b ’J If(y-&-p
ael0,1] peEZ

with respect to the eigenvalues oo +p of Q. If we put H? 7P = G,cppaHatp, we get

a polarized complex Hodge structure of weight 0 on /.

Remark 7.2.2. According to Example 7.1.3, if we change @ in Q + A 1d with A € R,
we get an equivalent J.-action on ((Z'..#".C). 5.

ASTERISQUE 300



7.2. INTEGRABLE SMOOTH TWISTOR STRUCTURES 183

7.2.c. Characterization of integrable smooth polarizable twistor structures

Let (H, Dy, h) be a harmonic flat bundle, with a positive Hermitian metric 2 and a
flat connection Dy = Dg+60g, where 0 is the Higgs field. It corresponds to a smooth
polarized twistor structure (#”, 2. C) of weight 0 with polarization . = (Id.1d) by
the following rule: consider the ¢ -module 7 = ¢ ;5" ¢, 14 = 7' H, equipped
with the d” operator

(7.2.3) " = D + 207,
This defines a holomorphic subbundle J#” = Ker D’,,. Moreover. it has the natural
structure of Z 4 -module, using the flat connection

3 A N _—1pt
(7.2.4) e = D+ 27 0%.
The integrability property means that the connection on .#’ comes from an inte-

grable absolute connection, that we denote with the same letter, which has a pole of
Poincaré rank at most one along X x {0}. The connection thus takes the form

Dy =Dy+d +2 0+ (%’ - Q - Uoo>(lz
D', = D%+ d + 207,
where Up, U, Q are endomorphisms of the C> bundle H and d, means the differential
with respect to z only. The compatibility with the polarization means that U
is the h-adjoint of Uy and @ is self-adjoint. Knowing that the relative connection
Dg+z" 10, +2z0% is integrable, the integrability condition is equivalent to the following
supplementary conditions:
[0, Ug] = 0,
D/I{T(U()) =0,
D (Uo) = [0, Q] + 0 = 0,
Dp(Q) + [0 Ux] = 0.

as the other conditions are obtained by adjunction. In particular. Uy is an endomor-

(7.2.5)

phism of the holomorphic bundle E. which commutes with the holomorphic Higgs
field 67;.
Corollary 7.2.6. Let (H, Dy .h) be a harmonic flat bundle. Then it is integrable if
and only if there exist endomorphisms Uy, Q of H, Q being self-adjoint with respect
to h, satisfying Equations (7.2.5), where Uy, denotes the h-adjoint of Uy. O
Remarks 7.2.7
(1) Equations (7.2.5) arc the equations defining a CV-structure in [30], if one
forgets the real structure, i.e.. if one forgets Equations (2.50-52) and (2.59) in loc. cit.
(2) For an integrable smooth twistor structure, the various local systems
Ker(Dg + 2z, '0% + z,0):) € H, for z, € C*, are all isomorphic to .Z 4 Ker Dy
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184 CHAPTIER 7. INTEGRABILITY

(3) It is a consequence of the equations for a flat harmonic bundle that the Higgs
field O satisfies
Di (0 — 01 = 0.

and therefore defines a class in H'(X. End(.Z)). We note now that Equations (7.2.5)
imply in particular that. putting A = —(Uy — Q — U ). we have

0 — 01 = Dv(A).

i.c.. the class of 0, — ), in H'(X.End(.Z)) is zero. Moreover. @ is the sclf-adjoint
part of A and —Uy + U is its skew-adjoint part.

(4) For instance, if the polarized smooth twistor structure is associated to a vari-
ation of polarized complex Hodge structures of weight 0. we have Uy = 0 = U4, and
Q is the endomorphism equal to pId on HP =7,

Corollary 7.2.8 (Rigidity on a compact Kihler manifold). Let (H., Dy, h) be an inte-
grable flat harmonic bundle on a compact Kdhler manifold X . Then the corresponding
Uy is constant, and Q defines a grading, so that (H. Dy . h) corresponds to a variation
of polarized complex Hodge structures of weight ().

Proof. - We know that Uy is an endomorphism of the holomorphic Higgs bundle
(E.0),). By the equivalence of [63. Cor.1.3]. it corresponds to an endomorphisin
of the flat bundle Ker Dy, This bundle is semi-simple, hence can be written as
&, (V. Dy,)P7 . with p; € N, where cach (V, Dy)) is simple and (Vj, Dyv,) % (Vi.. Dy,)
for j # k. Then. any morphism (V;. Dy ) — (V.. Dy, ) is zevo for j # k and equal to
cst - Id for j = k. By the correspondence quoted above, the same property holds for
Uy on the stable summands of the polystable Higgs bundle (E. 0%). In particular. U
is constant. and so is U,
Equations (7.2.5) reduce then to

Dp(Q) =0, and [0;.Q) = 0.

The eigenvalues of @ arc thus constant and the eigenspace decomposition of ) is
stable by Dg. Let H, ), be the eigenspace corresponding to the eigenvalue a+p of Q.
a€ 0.1, p€ Z. Then 0 (Hayy) C Hoppor 2 Q5. I we put H? 7P = @ cr01Hatp
we get a variation of polarized complex Hodge structures of weight 0. O

Conjecture 7.2.9. Let X be a compact Riemann surface, let P C X be a finite
set of points, and let (V. V) be a semisimple holomorphic flat bundle on X ~ P.
Let us denote by (H. Dy . h) the tame harmonic flat bundle associated with it as in
(62, 4]. Then, if (H, Dy, h) is integrable. the endomorphism Uq is compatible with
the parabolic filtration defined by h near each puncture.

With the same argument as in Proposition 7.2.8 we get:
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7.3 INTEGRABILITY AND SPECTALIZATION 185

Corollary 7.2.10 (Rigidity on a punctured Riemann surface). If Conjecture 7.2.9 is
true. the corresponding integrable tame harmonic flat bundle corresponds to a varia-
tion of polarized complex Hodge structures of weight 0 on X ~ P. ]

7.3. Integrability and specialization

Let X/ be a complex manifold. let X be an open set in € x X/, and let ¢ be the
coordinate on C. Put Xo = ¢ (0) N X. We use definitions of §3.3.

7.3.a. Specialization of integrable 7 ,--modules

Proposition 7.3.1. - Let .7/ be a % -module which is strictly specializable along 2
We assume that .2 is integrable. Then, for any a € R and any z, € Qqy, we have
GR V("" n C V:,(:”)‘// and. for any o € C such 1‘/)(11‘ (. () = a. we have D0y o.M C

Dothy o . where 0. is regarded as acting on “l " in other words. cach 4

s an integrable %y -module.
Proof. We will need the following lemimas:

Lemma 7.3.2. — A local scction m of A near (x.z,) is in Ve iff is satisfies a
relation

B (=0it)m =n

where n is a local section of V7 4 and B,(s) = H 5= *z)", the product being
taken on a finite set of v such that €. (v) < «.

Proof. The “only if” part is clear. We assume that m is a local section Vb(;“), # for
some b > a satisfving such a relation with the polynomial B, (s). Then the class of m
in 01 L s killed by B, (=0t) and By, (=0;t). where By(s) = [],(s — 3 x z)”*. the
pIU(lll(,L being taken on a finite set 3 such that ¢, (;3) = b. Therefore, the class of
m is killed by a nonzero polynomial in z. and by strictness. the class of m is zero in

(z0)
gry . O

Let m be a local section of L’:,(:") # . and let by, (s) be the minimal polynomial such
that b, (—0¢t)m = t P where P is a section of Vo %2, We know that b, is a product
of terms s — v * z with ¢, (v) < a.

The following lemma is easy to prove:

Lemma 7.3.3. Let k€ Z and let P be a local section of Vii#y-. Then [0.. P is a
local section of Viu# 2 (and does not depend on 0. ). O

SOCIETE MATHEMATIQUE DE FRANCE 2005



186 CHAPTER 7. INTEGRABILITY

We then have

bm(—Utt)azm 5;1),,,1(—@1‘,))'1 +Qm Qe WAy
J.tPm + Qm

tPO.m+Rm Re VoA,

Therefore, there exists k = 0 such that, if we put B (s H/ 0 bm (s — £z), we have
Byp(—0,t)d.m € Ve Apply then Lemma 7.3.2 to g_,(\,t that d.m is a local section
of V{,(z”).//. This gives the first part of Proposition 7.3.1.

Let us denote by 0- the induced operator on gr(“";”' 7. We now want to show that,
for any « € C with ¢, (o) = a. U, Ker [((),t+ur*z)" : UIV( Y — gr(‘;’(:“).///} is stable
by .. The point is that 9. does not commute with 9+ v+ z, but [(‘)~ (Ot +axz)"] is
a polynomial in 0;t + o x = with polynomial coefficients in z. and thercfore commutes
with 0;¢ 4+ v % z. Let m be a local section of gl(‘l()// killed by (9;t + cvx z)™. Then

(Ot + vk 2)"Dem = —[0,. (Ot + v % 2)" | = Zp YOt + vk z)Tm
J

and certainly (0;t 4 o % 2)2"d.m = 0. O

Corollary 7.3.4. Let .# be a stric ty specializable £ - [t ~1]- m()(]ul( (us defined in
§3.4) which is integrable. Then the minimal extension .4 of . 7 across 2o is inte-
grable.

Proof. By definition. we have l(((,’) = V("" # . thercfore this is stable by the
d.-action, according to the proposition. One shows similarly that all V.l defined
in loc. cit., are stable under the 9.-action. O

Remark 7.3.5 (S-decomposability). We assume that . is strictly specializable
along 2o and integrable. Then the morphism var of Remark 3.3.6(6) comnutes with
the J,-action, but the morphism can does not. However, Imcan is stable by the
d.-action, because 9.9, = 0,(9. + z). Shmilarly. if .# is strictly decomposable along
2. its strict components are integrable. as can be seen from the proof of Proposition
3.3.11(¢). As a consequence, if . is integrable and strictly S-decomposable, its strict
components are integrable.

Remark 7.3.6 (Local unitarity). When working with twistor Z-modules. we are led
to consider the graded modules grl\l'u’m”. # with respect to the monodromy filtration
M, (N) of the nilpotent endomorphism N = —(d;t + a = z). A priori. J. is not
compatible with the monodromy filtration. therefore we would need a new assiumption
to insure that this compatibility is satisfied. However. we will see below that when
dim X = 1 and if all gr?'u’v,_w/// are strict, this compatibility is automatically satisfied.
as a consequence of the fact that the complex numbers a to be considered in the
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various Bernstein polynomials are real. We will see in §7.4.b that this property
extends to integrable twistor Z-modules. We call it local unitarity.

When a strictly specializable Z»--module is locally unitary, the various V(2)-
filtrations glue together when z,, varies in €y and we forget the exponent z,. Morecover,

if &« = a is real. we then have gl'(‘;,/// = .o #. Last, we have (. (o) = « and
* = (.

Lemma 7.3.7. We assume that X is a disc with (‘007'(11'7‘1(#() t. If .# is an integrable
strictly specializable £ »--module such that each g.,l t/r, w A is strict, it is locally uni-
tary.

Proof. Fix a € C. As ecach gri\['g"ii,,/// is Oq,-free, there exists a basis e of ¢y (.4

for which the matrix Y of N has the Jordan normal form. in particular is constant
and nilpotent. Let us denote by A(z) the matrix of 9. in this basis. Then

dD.e=e-A(z), —Oite=e-[(axz)Id+Y].
Therefore,
~0.0ite = e [(ax2)A(z) + A(2)Y + z20(a % 2) /0= 1d].
~0it(0. + 2)e = e [(axz) Id+Y][A(z) + = Id].

f

As the operators 9. and 0, satisfy the commutation relation 0.0,t = 5#(5: +z). we
must have

zz0(vx 2)/0z —ax 2] Id = [Y. A(2)] + =Y.
thus, taking the trace. we get that o must be such that, for any z € C, zd(axz)/dz =
axz. But ~() (xz /(), = a*z+ia”(z2 = 1)/2. Therefore, if ¢y .# # 0, & must be
such that o” = 0. i.e.. a must be real. O

Let us now go back to dim X > 1

Lemma 7.3.8. - If ./ is strictly specializable along t = 0 and locally unitary. then, if
A is integrable, so is cach grMyy o 4.

Proof. We now have 9.N = N(c‘_); + z), hence the kernel filtration Ker N¥ and the
image filtration Iim N* of N are stable by d.. As the monodromy filtration M, (N)
is obtained by convolution of these two filtrations (cf. [67. Remark (2.3)]) it is also

stable by 0,. O

7.3.b. Specialization of sesquilinear pairings. — The definition of specializa-
tion of a sesquilinear pairing involves the residue of a distribution depending mero-
morphically on a complex variable s along a set having equation s = a % z/z. for a
fixed complex number «v and for = varying in S. In general, the compatibility of taking
the residue along such a set and the action of J- is not clear. However, as soon as we
assime local unitarity. i.e., o« € R, then «vx z/z = « does not depend on z and the
compatibility is clearly satisfied. We therefore obtain:
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Proposition 7.3.9. Let 7 be an object of #int-Triples(X).  We assume that
the components 4", .#" are strictly specializable and locally unitary along t = 0.
Then vy o7 is integrable for any o € R. Morcover. the morphism A @ V.o 7 —
Ut o7 (—1) s integrable.

Proof. It remains to explain the integrability of .47 defined by (3.6.2). We have
A = (N.N”) with N” = jz(;t + o) = —N’. Then we argue as in Remark 7.1.5.
using that z(J. + 2) = d.=. O

7.4. Integrable polarizable regular twistor -modules

7.4.a. A preliminary lemma on twistor 7-modules. — Let (.#'..#".C) be
an object in MT ¢ (X w). Put.# = .#" or .". Let f be holomorphic functions
on some open set U of X Then . is strictly specializable along f = 0 and. for
any o € C, vy .7 is equipped with a nilpotent eudomorphism N. Let us denote by
ML (N) the corresponding monodrony filtration. Then caclh Nyovy . #7 is strict and.
by definition of MT. cach gr;\jlx{,-.(,,// is also strict.

Let g be another holomorphic function. By definition. cach grM oy .. 7 i3 strictly
specializable along ¢ = 0. By induction on (. this implics that cach Ny . 7 is so.
and. for any 4 € C. we have exact sequences

0 — Vg Nyl — Gy Nl — vy et ol — 0.
Let us denote by M, (¢, 3N) the monodromy filtration of the nilpotent endomor-

phism on ¢y 3¢y #. Then. according to the previous exact sequence and to the
uniqueness of the monodromy filtration. we have

Moy N) = vy Ny, 7.

In particular, each gr‘;“(, g3 U o A 1s strict. being equal to ¢ ',,“;gl';\l(,'f;(\‘ .
Let now fi..... fp be holomorphic functions and let ay... .. «v,, be complex num-
bers. Under the same assumption on .4 we obtain similarly:

Lemma 7.4.1. For any ¢ € Z and for any j = 1..... Py S, (,‘f]‘(,lg_‘,'l'f,\lL‘fA,\///
is strict and strictly specializable. and we have

My . i o= v My,

gl} Cfiay Ufa Ufa: = froog U o B L ‘f.“,//. O

7.4.b. Integrable twistor “-modules
Proposition 7.4.2. - Let (#'..#".C) be an object in NIT<g(X.w). We assume that
it is integrable. i.c.. is also an object of #int-Triples(X). Then &' and .#" are

locally unitary.

Proof. Let f be a holomorphic function defined in some open set U € X. We
asstnme that there exists o € C N R such that vy . # # 0 for . # = . 4" or H =.4".
Let £ € Z. By assumption, ;.’;1’;\[1/[/;,,.// is strictly S-decomposable. For any strict
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component Z of its support. let (grMu's ,.4) 7z be the corresponding direct summand.
It is enough to show that cach (@M, . # )z is zevo. and also that its restriction
to dense open set of Z is zero. We can assumce that the characteristic variety of
(gl‘?ll,,’ﬁfﬂ.///)z is equal to 75X x €}y near a general point ., of Z. Therefore, near
such a point, by Kashiwara's equivalence Cor.3.3.12 and Prop.1.2.8, (grﬁ\‘[g"{/.ml/)z
is the direct image by the inclusion Z — X of a locally free @y -module.

Let fi.--- . f, be holomorphic functions near @, inducing a local coordinate system
on Z. By induction on p. using Lemma 7.4.1 and Proposition 7.3.1. one shows that
the 2, -module . 4+ < syoy U o U A (With o = " or A7) is integrable.
By Lemma 7.4.1. for any ¢ € Z, gr}. 4" is strict and is supported on x,. By Kashi-
wara's cquivalence Cor.3.3.12, we can apply the same argumment as in Lemma 7.3.7
to conclude that grﬁ\l. 4" = 0 for any £, as we assume o € R. Therefore, applying once
more Lemma 7.4.1. we obtain that g, o, - U ) (gl'g\ll;“‘/_“«//)z = 0. Near .r,, ¢y, is
nothing but the usual restriction to f; = 0. therefore the restriction of (gri\luf{/;“, ay:
at x, is zevo. But (grMiy..#) 7 is (the direct image of) a locally free @ »-module.
hence. by Nakayama. (gr}\['z,/’{/;(,.///)z = () near ax,, a contradiction. O

From Lemma 7.3.8 and Proposition 7.3.9 we get:

Corollary 7.4.3. — Let (/.77 .C) be an object of NT < (X.w) and let f be a holo-
morphic function on some open set U of X. Then. for any o € [—=1.0[ and any ¢ € Z,
the object exM oy (.. C) of MT<q(U.w + ) is integrable. O

We note that. according to Proposition 7.4.2. we do not have to consider ¢y, for
« € C~ R, and that the two functors ¢ and ¥ (¢f. Definition 3.4.3) coincide.

We define the category of integrable twistor Z-modules M Ty <4 (X. w) as the sub-
category of MT ¢ (X, w) having integrable objects and integrable morphisms. By
the previous corollary. it is stable by taking grMW, .. It shares many properties of
MTcq(X.w) (¢f §4.1): it is abelian. it is local. it satisfies Kashiwara's equivalence,
it is stable by direct sunnnmand in % int-Triples(X). However, it is a priori not stable
by direct summand in %- Triples(X) or in MT ¢ (X, w).

(1

The subcategory MT; ((X.w) of regular objects is defined similarly.  Last. the

category MLT!)

o (XLw) of graded Lefschetz objects is defined as in §4.1.1.

7.4.c. Integrable polarizable regular twistor “-modules. — Lect .7 be an
integrable twistor Z-module of weight w as defined above. We say that a polarization
of .7 is integrable if it is an integrable morphism .7 — .7*(—w).

It is now clear that the two main theorems of Chapter 6 have the following inte-
grable counterpart:

Theorem 7.4.4. - Let f: X — Y be a projective morphism between complex analytic
manifolds and let (.7 ..%) be an object of l\[Ti(l';z(X. w)P) Let ¢ be the first Chern
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class of a relatively ample line bundle on X and let £, be the corresponding Lefschetz
operator. Then (&, f{ T, L. @ f{.7) is an object of RVILTi(;i(Y, w; 1)), O

Theorem 7.4.5. — Let X be a complex manifold and let (.7..) be an integrable
smooth polarized twistor structure of weight w on X, in the sense of §7.2.c. Then
(7..%) is an object of MTF")(X, w)®), O

int
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Appendix

MONODROMY AT INFINITY AND
PARTIAL FOURIER LAPLACE TRANSFORM

In this appendix. we sketch an application of the results of the main text to partial
Fourier-Laplace transform. More precisely. we analyze the behaviour of polarized reg-
ular twistor “-modules under a partial (one-dimensional) Fourier-Laplace transform.
We generalize to such objects the main result of [52], comparing, for a given function
f. the nearby cycles at f = oc and the nearby or vanishing cycles for the partial
Fourier-Laplace transform in the f-direction (Theorem A.4.1).

Fourier-Laplace transfori can be seen as a way to produce non regular singularities
from regular ones. Norcover, if a general theory of polarizable twistor Z-modules,
including non regular ones, would exist. then Fourier-Laplace transform in dimension
one should be an involution (up to sign). Here, we only analyze the regular part in
the partial Fourier-Laplace transform.

The complete proofs can be found in [55].

A.1. Exponential twist

A.l.a. Exponential twist of an object of #-Triples. — Let t : X — C be a
holomorphic function on the complex manifold X. If .Z is a left %, -module, i.e.,
a Oy -module with a flat relative meromorphic connection V 2 /q, . the twisted # »-
module Y7 = .# £ 1/* is defined as the @, -module . # equipped with the twisted
connection e'/* o Voa, © e=t* It . is integrable (¢f. Chapter 7). then so is 1'7#:
just twist the absolute connection V. We note that. if V has Poincaré rank one. so
has the twisted connection. _

Let C //I/S ®6,s 7{% — Dby, xs/s be a sesquilinear pairing. Then For
exp(zt—t/z)C is a sesquilinear pairing {'f%/l'soo(, 9'\SW — Dby, xs/s. e IS A v 5y 5
linear.

If .7 = (#'..#4".C) is an object of #int-Triples(X), then so is L7 ef
(P’ Far" TC). Exponential twist is compatible with Tate twist and adjunction (as
2t —t/z =zl +Zt is “real”).

If o : 71 — 75 is a morphism. then ¢ induces a morphism ¢ : £ — 7.
In particular, if .7 is a sesquilinear duality of weight w on 7, then .% induces a
sesquilinear duality of the same weight on 77 .



192 APPENDIX. PARTIAL FOURIER-LAPLACE TRANSFORNM

A.1.b. Exponential twist of flat and Higgs bundles. — We will now give
an explicit deseription of the exponential twist in the case of smooth triples, using
the language of Higgs bundles. Let H be a C™-bundle on X equipped with a flat
connection Dy = D{, + d” and a Hermitian metric i, Let us denote by V' = Kerd”
the corresponding holomorphic bundle. equipped with the holomorphic connection
Vi . Using the function t we twist the connection Dy- and define

FDv =etoDyoe™'. ie. D =Dl —dt. "D} = d’.
Fp = 2Retyy,

Using definitions in [62, 63]. we have:

Lemma A.1.1. - If the triple (H. Dy .h) is harmonic on X. then so is the triple
(H. "Dy "h).
The Higgs field is given by the formulas
o =0 —dt. T =0} —di.
and the metric connection "Dy = "D+ DY by
FDF; =¢to Dpgo e i.e., FD',; = D/,_;. F /[’ = D/,Q + dt.

LemmaA.1.2. - If (.. #.C) denotes the smooth polarized twistor structure of
weight 0 corresponding to the harmonic bundle (H. Dy . h) then. using notation of

§A. 1o, the triple (Y, Tt FC) is the smooth polarized twistor structure of weight 0
corresponding to the harmonic bundle (H.¥Dy-.Fh). via the correspondence of §2.2.a.

Proof. -~ Cousider the 25" -module 27 = ¢ 5" 1y > 7~ VH. equipped with the
d" operator

We get a holomorphic subbundle £77 = Ker"D", < 7 cquipped with a #5-

action. .e.. a relative connection I'V‘,A/QH. obtained from the connection I‘Df,/, =

FD. + 271, We have by definition
(A L4y [-'D,/// = (‘X[)(f/:) o D(// o (‘X])(—-f/:)A
h Dy = exp (= = 7)o Dly 0 exp (1~ 2)T).

We have an isomorphisim

cexp ((z = 1)t)

(A e 0V 4, 0e7!7) (AN e sa)

and, via this isomorphism. fC' = Fh, ., + corresponds to e*** . h_, —r =
AT H @A

C:?«\»Etcv. O
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A.2. Partial Fourier-Laplace transform of /# , -modules

A.2.a. The setting. — We consider the product Al x Al of two affine lines with
coordinates (1.7). and the compactification P! x P!, covered by four affine charts.
with respective coordinates (t.7). (#.7). (t.77). (#'.7"). where we put ¢/ = 1/t and
7 = 1/7. We denote by oc the divisor {t = oc} in P'. defined by the equation # = 0.
as well as its inverse image in P! x P!, and similarly we consider the divisor 3¢ C P!
We will use the picture described below.

7'=0 i
(0.~) (>x.x)
>
=0 [(0.0) (~>.0)
=0 1'=0

Let Y be a complex manifold. We put X = Y x P!, X =Y %P and Z = Y xP! <P,
The manifolds X and Z are equipped with a divisor (still denoted hy) oc. and X and Z
are equipped with 3. We have projections

4

p P
/
%

Y

X X
N
Y

Let . be aleft #_, -module. We denote by .v/7t11<‘ localized modwle (# y-[x<] @, 2 .
Then pt.7 is a left 2 y x> ]-module. We counsider its localization
prA X = Ay (o U] gy a0 A
We denote by p' /;7[*35] 2 71T/ the 0y [+(> U )]-module p*, /7[*%] equipped
with the twisted action of % » described by the exponential factor: the %, -action is
unchanged, and, for any local section m of .7,
in the chart (f.7),
Oi(m e &717/2) = [0y — T)m] w & 173,

(A.2.2)
O (m & 8_”/’:) = —tmx &1/
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in the chart (¢, 7).
Dp(m e €775 = (B + 7/t im] 2 &717/=,
Dr(me E71T/3) = —m /i 2 £717/%,
in the chart (¢, 77),

D &) = (0 — L/ )] 0 & 1T/E,
Op(mmen &717/2)y =t f77% o €717/,

in the chart (¢/,77).

(A.2.3)

(A.2.4)

Op(m E77/3) = [0y + 1/7'¢"2)m] = €717/,
(A.2.5) ~
Dp(m @ €773y = m's"? = e/,

Definition A.2.6. - The partial Fourier-Laplace transform 1 of 4 is the complex of
K 5+[¥50]-modules
P+ //[*oc}w e=IT/=y,

A.2.b. Coherence properties. — We will give a criterion for the # {x3C)-
coherence of .# when .4 is A p-coherent. As pis proper. it is enough to give a

coherence criterion for 7// = 1)4r %) g—it/z,

Proposition A.2.7. —  Let . # be o coherent £ -module.  Then /// 15 ‘/g[*:x:]
coherent.  If moreover .4 is good, then so is 77 . and therefore . = = D s
%7[*&‘»]-(01,,«”,,”%.

Proof. - Coherence is a local question near 7 = 0 (otherwise it is clearly satisfied)
and it is cnough to show that 77 is locally finitely gencrated over 2 »[¥C]. Choose
local generators mj of . as a # ,-module. It is a matter of proving that. for any
ke N (0km;) e /= and ¢/ ~Fm; o 717/ belong to Ay [x3X] - (@ E77/7).

Let us first compute in the chart (#.7). We will use Formula (A.2.3). Up to a
sign, the second term above is 0% (m; o E~'7/#). The first one can be written as
(Okmj)® &717/% = (0p — 702)"(1n; 0 €7'7/7). The computation in the chart (¢, 7')
is similar, using (A.2.5), as 7/ acts in an invertible way.

The functor . # — 7# is exact and. for the property of being good. it is enough
to show that if .Z is a @, -coherent submodule g(\n(\mtim' # on a compact sct
KA C 2. then p*Z[xxX] v E717/F generates 74 on pT (#): this follows from the
previous computation. O

Remark A.2.8. When .7 is good. we can compute the Fourier-Laplace transform
in an algebraic way with respect to t and 7: we regard g,. # as a coherent module
over qu Ry x| = Ao [t](0;). Then gu.# is the complex

(1*.//7[7’] —af—i—r (- /7[7'].
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where the right-hand term is in degree 0. In particular, the cohomology modules of
this complex are Ay [7](0;)-coherent. (Cf. for instance [23. Appendix A] for an argu-
ment). Morcover. this complex has cohomology in degree 0 only. and the cohomology
is identified with q*g/7a‘s a Zy-module; the action of 7 is induced by that of 9;, and
that of 0, by that of —t.

Remark A.2.9 (Integrability of the Fourier-Laplace transform)

Let .4 be a coherent Z »--module. We assune that .4 is integrable (ef. §7.1.a).
Then 1)'*,,/760 E~'7/% is integrable as a Zy-module. If morcover .4 is good, then,
using part of Proposition 7.1.4. we obtain the integrability of A as a A 7~module.

A.2.c. Fourier-Laplace transform of a sesquilinear palrlng — We will now
forget the ¢ divisor on Z or X. and still denote by Z or X the sets X x Al and
Y x Al

We assume that .7, #" are good #y-modules. Let C //S Reg - //l’é -
Dby.xg/s be a sesquilinear pairing. We will define a sesquilincar pairing between

the corresponding Fourier-Laplace transforms:
R -y 2 ~
(O '//\s Hos '//\s - QbX;xS/S‘

Firstly. define the sesquilincar pairing ptC @ p™. //‘b @og pT // — Dby xS/s in

the following way: local sections m’.m” of p ,///‘S.,p //S can l)o written as m/ =
I | "o Dy ! e oo ol P ; "
D0 cmiom! =37 ey om! with ¢, ¢ holomorphic functions on 2" and mj.m/

local sections of . //I/S“'//?/é: put then

(A.2.10) (pTCm’ .. ) (QZ<('("”;~T’Q/)~ /C’>,E¢>~
IAJI . 1)

for any C™> (relative to S) form ¢ on Z x S of maximal degree with compact support

contained the open set of 2 where /. m’ are defined. That the previous expression

" and defines a sesquilinear pairing is

does not depend on the decomposition of in’.m
casily verified: it is enough to show that, if Y, ¢; ¢sm} = 0, then the right-hand term
in (A.2.10) vanishes: but, by flatness of @5 over p~10 -, the vector ¢ = (¢;); can be
written as ZA, apng. where each n = (n,.); is a vector of @ y--relations between the
mi in . Z" and ay are local sections of @ 4 ; use then the @y -hnmllh of .

bccon(ll\' extend (" as a sesquilinear pairing C on. //s Rog - // with values in the

sheaf of tempered distributions. that is, with poles along ~o. Define similarly ptC'
(which is nothing but p*('). Such a distribution can be evaluated on forms ¢ which
are infinitely flat along ~c.

Remark that. for z € S, we have <'”T_'T/:| = 1. The following lemma is standard

(it is proved in the same way as one proves that the Fourier transform of a C'™>

function with compact support is in the Schwartz class):
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Lemma A.2.11. Let @ be a C™ relative form of marimal degree on Z X S with
compact support. Then ],, AT/ s O with compact support on X xS and is
infinitely flat along oc. |

For local sections m’.m” of 1)4“,//"5.1)*.%/‘[% written as above and for ¢ as in the
lemna, it is meaningful to put

> N lof ~ —_ = .
T m"). o) = Conlomly. | T R o).
b ! J j¥
Jp

i

This defines a sesquilinear pairing 7C' 7//i/S “ s '?ﬂ‘/é — Dby «s/s. We can now

define (' = 17(1”?(7.

Remark A.2.12 (Behaviour with respect to adjunction). The formula above clearly
implies that (7C)* = 7(C*). We henee have (C)* = O,

It is possible to define € at the algebraic level considered in Remark A.2.8. We
note first that C' defines a sesquilinear pairing ¢.C' on

s //|'S s (e //"é

which takes values in the sheaf on Ye x S of distributions on Ye x Al x S which
are tempered with respect to the t-variable. Recall that .. &7, qu. #"" ave Ay [t]{0)-
modules and that their Fourier-Laplace transforms are the same objects regarded as

Ry [T](0+)-modules via the correspondence
(A.2.13) T 0r. Oy — —t.

Let us denote by F' the usual Fourier transform with kernel exp(/:F——fT/:y#(/f/\(ﬁ
for = € S. sending t-tempered distributions on Yz x Al x S which are continuous with
respect to z to 7-tempered distributions on Y: x Al xS which are continnons with
respect to z.

We define then @ﬁ on

e ———

(1*,,//‘/8 s qw//"é

as the composition F o q.C'. That ¢.C' is #.4[7)(0,) + A [7){0,)-lincar follows from
the fact that (A.2.13) and its conjugate arve the transformations that F does.

Lemma A.2.14. The analytization of ?[*C/; is equal to C defined as ﬁT’(' O

Remark A.2.15 (Integrability of the Fourier-Laplace transform of a sesquilinear pairing)

Let .. .#" be good 4, --modules which are integrable. We assume that the
sesquilinear pairing €' is integrable (¢f. §7.1.h). Then “C' is integrable and, by Propo-
sition 7.1.4, the pairing C'is also integrable.
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A.3. Partial Fourier-Laplace transform and specialization

As we are only interested in 7 # oc. we continue to forget the divisor 5¢ and still
denote by Z or Z' the complement of this divisor.

A priori, Proposition A.2.7 does not restrict well to 7=7, (of course, the problem
is at ' =0). Indeed. we do not have a relation like 0, (m @ E717/%) = —m/t' w0 £717/*
to recover the polar part of . H etz hom the action of # 4. For instance. taking
7, = 0, even with nice assumptions, A is not known to be R -coherent. We will
introduce below an assumption which implies the % ,--coherence of . Y 6’/8_'”/* when
7, # 0. For the coherence at 7 = 0. we will need to consider the specialization at
7 = 0 of 77 . and hence to prove first its strict specializability along 7 = 0: for that,
we will also need the same assunption. Let us introduce some notation.

Let us denote by i the inclusion Y x {oc} < X. We will consider the functors
Vr.o and Yy o introduced in Lemma 3.3.4, as well as the functors W, and ¥,
of Definition 3.4.3. We will denote by N,. Ny the natural nilpotent endomorphisms
on the corresponding nearby cycles modules. We denote l)v M, (N ) the monodromy
filtration of the nilpotent endomorphism N and by grN : grM — g,l 2 tho 111011)1115111
induced by N. For £ = 0. PgrM denotes the primitive part }\or(g,lN) M of grM and
PN, the inverse image of PgrM by the natural projection M, — g_,l Recall that. in
an abelian category, the primitive part Pgrd! is (‘(111(\,1 to Ker N/(Ker NN ImN). We
will also denote by . //mm the minimal extension of . 7 (¢f. §3.4.D).

Proposition A.3.1. -— We assume that .# is strictly specializable and reqular along
"=0 (¢f. Definition 3.3.8 and §3.1.d). Then,

(1) for any 1, # 0. the A5 -module M ENTl s X y--coherent; it is also strictly
specializable (but not regular in general) along t' = 0. with a constant V -filtration, so
that all ¢y (A > 8*”"/7) are identically 0.

Assume moreover that .# is strict. Then.

(il) the Xy -module 7#
T =7, for any 7, € Al: it is equal to the minimal extension of its localization along
T =0:

(iii) if 7, # 0. the V-filtration of 7# along T — 7, = 0 is given by

def o
= ptoat &'/ s strictly specializable and reqular along

Vi lw = 4 if k= —1.
(7 s
we have
P 72 b fag-N-1.

M @& ffae -N -1,
(iv) If 7o = 0. we have:
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(a) for any o # —1 with Rea € [-1.0[. a functorial isomorphism on some
neighbourhood of D ot {]z] < 1},
(U, o 75.N2) i o (O e (= Do) . Niv ).
where Dq, is the divisor 1-i if o = =1 and o” > 0. the dwisor 1-(—1i) if o’ = —1
and o < 0, and the empty divisor otherwise;
(b) for a« =0, a functorial isomorphism
(’U‘TV‘TA()"?;’//- N;) it ('Q'f’.—-le’/;_: Ny ).
(¢) for o = =1, two functorial exact sequences
0 — ix 4+ KerNy — KerN, — //Znin —0
0— ,,%,i,, —— Coker N, — i 4 Coker Ny — 0,
inducing isomorphisms
ine 4+ Ker Ny == Ker N, NIm N, C Ker N,
‘Z{\l;li]l = Ker N, /(Ker N, nIm N, ) C Coker N,

such that the natural morphism Ker N, — Coker N, induces the identity on

. %/'min .
Proof. See [55]. O

A.4. Partial Fourier-Laplace transform of regular twistor “-modules
The main result of this appendix is:

Theorem A4.1. - Let (7..%) = (#'..4".C..%) be an object of NTW (X, w)®).
Then, along T = 0, A and A" are strictly specializable, reqular and S-decomposable
(¢f. Definition 3.5.1). Moreover, \I/T‘,k(./’7\. 5//\) with Rea € [=1,0[. and (/)7-_0(.'/7\. ;\)
induce, by grading with respect to the monodromy filtration M,(N;). an object of

MLT®) (X w:; —1)®),

(Cf. Chapter 4 for the definition of the categories MT® and MLT)) In particular,
all conditions of Definition 4.1.2 are satisfied along the hypersurface 7 = 0.

This theorem is a generalization of [52. Th. 5.3]. without the Q-structure however.
In fact, we give a precise comparison with nearby cycles of (.7,.%) at t = oc as in
(52. Th.4.3].

In order to prove Theorem A.4.1, we need to extend the results of Proposition
A.3.1 to objects with sesquilinear pairings.

Let 7 = (4'..#".C) be an object of #- Triples(X). We have defined the object
FT = (Zn' 7w FC) of #-Triples(Z). If we assume that .#',.#" are strict and
strictly specializable along t' = 0. then 72", 77" are strictly specializable along 7 = 0.
Then. for Rea € [—1,0[. ¥, %7 is defined as in §3.6. Recall (¢f. (3.6.2)) that we
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denote by .45 : ‘I’Tﬂ?? — \I/T,(,?f7(—1) the morphism (—iN,,iN,). If a = —1 (more
generally if «v is real) we have ¥, 77 = Vr.a” 7. We also consider. as in §3.6.b, the

vanishing cycle object ¢r.0%7.

It will be convenient to assume, in the following, that .#' = #];, and A" =

A7 o with such an assumption, we will not have to define a sesquilinear pairing on

‘min*

the minimal extensions used in Proposition A.3.1(iv), as we can use C.

Proposition A.4.2. For .7 as above, we have isomorphisms in %- Triples(X):
(\I/T_(Y??..W;) ey (U o T ). Ya# —1 with Rea € [~1,0],
(607 T  N2) = i s (Vo 1 T N).

and an exact sequence

0 — ine.s Ker. .44 s Ker. A, — 7 — 0

inducing an isomorphism Pgrf}"z/y,._,lyl7 = 7.
Corollary A.4.3. We assume that 7 is an object of MTY (X w) (resp. (7,.7)
is an object of MT"(X,w)®) ).  Then, for any o € C with Rea € [~1,0],
(U, o ZT7 .. A7) induces by gradation an object of MLT™) (X, w: —1) (resp. an object of
MLT® (X, w; —1)®)).
Proof of Proposition A.4.2 and Corollary A.4.3. See [55]. O
For the proof of Theorem A.4.1, we first reduce to weight 0, and assume that w = 0.
It is then possible to assume that (.7, %) = (#..4 . C,1d). We may also assume that
A has strict support. Theun, in particular. we have .Z = . #,,. as defined above.
According to Corollary A.4.3 (and to Proposition A.4.2 for ¢, (), we can apply the
arguments given in §6.3 to the direct image by g¢. O
Notice that we also get:
Corollary A.4.4. Let (7..%) = (#',.#".C,.) be an object of MTW (X w)®).
Then, we have isomorphisms in %- Triples(X):
(‘ljr.u'?-%) — (Vp o 7. M), Va#—1with Rea € [-1.0],
(0r0 7. A7) — (Vo217 M), O
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