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P O L A R I Z A B L E T W I S T O R ^ - M O D U L E S 

C l a u d e S a b b a h 

Abstract. — We prove a Decomposition Theorem for the direct image of an irreducible 
local system on a smooth complex projective variety under a morphism with values in 
another smooth complex projective variety. For this purpose, we construct a category 
of polarized twistor ^-modules and show a Decomposition Theorem in this category. 

Résumé (î -modules avec structure de twisteur polarisable). — Nous montrons un 
théorème de décomposition pour l'image directe d'un système local irréductible sur 
une variété projective complexe lisse par un morphisme à valeurs dans une autre 
variété projective complexe lisse. A cet effet, nous construisons une catégorie de 3)-
modules avec structure de twisteur polarisée et nous montrons un théorème de dé­
composition dans cette catégorie. 

© Astérisque 300, SMF 2005 
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I N T R O D U C T I O N 

Let X be a smooth complex projective manifold and let ^ be a locally constant 
sheaf of C-vector spaces of finite dimension on X. We assume that & is semisimple, 
i.e., a direct sum of irreducible locally constant sheaves on X. Then it is known that, 
given any ample line bundle on X, the corresponding Hard Lefschetz Theorem holds 
for the cohomology of X with values in &\ if & is constant, this follows from Hodge 
theory; for general semisimple local systems, this was proved by C. Simpson [63] using 
the existence of a harmonic metric [13]. The existence of such a metric also allows 
him to show easily that the restriction of -T to any smooth subvariety of X remains 
semisimple. 

In this article, we extend to such semisimple local systems other properties known 
to be true for the constant sheaf, properties usually deduced from Hodge theory. 
These properties will concern the behaviour with respect to morphisms. They were 
first proved for the constant sheaf (cf. [15, 17, 60, 66, 3, 28]) and then, more 
generally, for local systems underlying a polarizable Hodge Module, as a consequence 
of the work of M. Saito [56]. 

Given a local system & of finite dimensional C-vector spaces on a complex man­
ifold X, it will be convenient to denote by v ^ the associated perverse complex 
J^[dimX], i.e., the complex having & as its only nonzero term, this term being 
in degree — dim X. 

The proof of the following results will be given in §6.1. 

Main Theorem 1 (Decomposition Theorem). Let X be a smooth complex projective 
variety and let ^ be a semisimple local system of finite dimensional vector spaces 
on X. Let U be an open set of X and let f : U —± Y be a proper holomorphic mapping 
in a complex manifold Y. Fix an ample line bundle on X. Then 

(1) the relative Hard Lefschetz Theorem holds for the perverse cohomology sheaves 
^'(RfJ.Jr) of the direct image; 

(2) the direct image complex Rfjl^^j decomposes (maybe non canonically) as the 
direct sum of its perverse cohomology sheaves: 

«/.'•'/ ^®pJfri(Rf.p.?{u)[-i\; 



2 INTRODUCTION 

(3) each perverse cohomology sheaf pMJl\Rf*p^\u) decomposes as the direct sum 
of intersection complexes supported on closed irreducible analytic subsets Z ofY, i.e., 
of the form, IC* (PJ^), where Ĵ f is a local system on a smooth open dense set Z \ Z', 
with Z' closed analytic in Z; 

(4) if moreover U — X and Y is projective, then each perverse cohomology sheaf 
p^l(Rf*p^) is semisimple, i.e., the local systems J?? are semisimple. 

Main Theorem 2 (Vanishing cycles). — Let X be a smooth complex projective variety 
and let & be a semisimple local system on X. Let U be an open set of X and let 
f : U —» C be a holomorphic function on U which is proper. Then, for any £ £ Z, 
the perverse complexes gi^lp^pfp^ and g r ^ b / ' ' ^ . obtained by grading with respect to 
the monodromy filtration the perverse complexes of nearby or vanishing cycles, are 
semisimple perverse sheaves on ,/_1(0). 

Remarks 

(1) We note that (1) => (2) in Main Theorem 1 follows from an argument of Deligne 
[15]. 

(2) The nearby and vanishing cycles functors 'ipf and cf)f defined by Deligne [19] 
are shifted by —1, so that they send perverse sheaves to perverse sheaves. They are 
denoted by pipf and p(pf, following M.Saito [56]. 

(3) It is known that the Main Theorem 1 implies the local invariant cycle theorem 
for the cohomology with coefficients in & (cf. [3, Cor. 6.2.8 and 6.2.9], see also [57, 
Cor. 3.6 and 3.7]). If for instance Y — C then, for any k ^ 0 and for t ^ 0 small 
enough, there is an exact sequence 

Hk{rl{t).-r) • Hk{rl{t).-r) T - Id Hku-\t),&), 

where T denotes the monodromy. It also implies the exactness of the Clemens-Schmid 
sequence. 

(4) Owing to the fact that, if # Q is a perverse complex of Q-vector spaces on a 
complex analytic manifold, then J£Q is semisimple if and only if J^c = C 0 Q J^Q is so, 
the previous results apply as well to Q-local systems, giving semisimple Q-perverse 
complexes as a result. 

(5) It would be possible to define a category of perverse complexes "of smooth 
origin", obtained after iterating various operations starting from a semisimple local 
system on a smooth complex projective variety, e.g., taking perverse cohomology 
of a projective direct image, taking monodromy-graded nearby or vanishing cycles 
relative to a projective holomorphic function, taking sub-quotients of such objects. 
The perverse complexes in this category are semisimple. 

(6) A conjecture of M. Kashiwara [34] which was the main motivation for this 
work— asserts in particular that these results should hold when & is any semisimple 
perverse sheaf (with coefficients in C) on X. In the complex situation that we consider, 
they are proved when & underlies a polarizable Hodge Module, i.e., if on a smooth 
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INTRODUCTION 3 

dense open set of its support, the perverse sheaf ,5^ is (up to a shift) a local system 
defined over Q or R underlying a variation of polarized Hodge structures defined over 
Q or R: this is a consequence of the work of M. Saito [56, 58] and [12, 35], and of 
the known fact (see [21]) that, on a smooth Zariski open set of a projective variety, 
the local system underlying a variation of complex Hodge structures is semisimple. 

Let us indicate that the conjecture of Kashiwara is even more general, as it asserts 
that analogues of such results should be true for semisimple holonomic ^-modules 
on smooth complex projective varieties. However, we will not seriously consider non 
regular 0-modules in this article. 

(7) First were proved the arithmetic analogues of these theorems, i.e., for "pure 
sheaves" instead of semisimple sheaves (cf. [3]) and they were used to give the first 
proof of the Decomposition Theorem for the constant sheaf in the complex case. An 
arithmetic approach to the conjecture of Kashiwara (at least for C-perverse sheaves) 
has recently been proposed by V. Drinfeld [24]. 

(8) It should be emphasized that we work with global properties on a projective 
variety, namely, semisimplicity. Nevertheless, the main idea in the proof is to show 
that these global properties can be expressed by local ones, i.e., by showing that each 
irreducible local system on X underlies a variation of some structure, analogous to 
a polarized Hodge structure, called a polarized twistor structure. Extending this to 
irreducible perverse sheaves is the contents of Conjecture 4.2.13. 

(9) It will be more convenient to work with the category of regular holonomic @x~ 
modules instead of that of C-perverse sheaves on X. It is known that both categories 
are equivalent via the de Rham functor, and that this equivalence is compatible 
with the corresponding direct image functors or with the nearby and vanishing cycles 
functors. We will freely use this compatibility. 

Let us now give some explanation on the main steps of the proof. We will use three 
sources of ideas: 

(1) the theory of twistor structures developed by C.Simpson (after ideas of P. De-
ligne), 

(2) the techniques developed by M. Saito in the theory of polarizable Hodge Mod­
ules, 

(3) the use of distributions and Mellin transform, as inspired by the work of 
M. Kashiwara and D. Bar let. 

One of the main objectives, when trying to prove a decomposition theorem, is to 
develop a notion of weight satisfying good properties with respect to standard func­
tors. In other words, the category of semisimple local systems (or, better, semisimple 
perverse sheaves) should satisfy the properties that one expects for pure sheaves. If 
the Hodge structure contains in its very definition such a notion, it is not clear a priori 
how to associate a weight to an irreducible perverse sheaf: one could give it weight 0, 
but one should then explain why p,^fl{Rf^^) has weight i for instance. On the other 
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4 INTRODUCTION 

hand, it is natural to expect that, if a notion of "pure sheaf" exists in the complex 
setting, it should be more general than that of polarized Hodge Modules, and even of 
that of "pure perverse sheaf". Indeed, in the arithmetic situation, one is able to treat 
sheaves with wild ramification (e.g., Fourier transform of pure sheaves with moderate 
ramification). 

The very nice idea of a twistor structure allows one to work with the notion of 
weight. Let us quickly explain it, referring to [64] (see also §§2.1 and 2.2 below) for 
a more detailed presentation. Let (V, V) be a flat holomorphic vector bundle on a 
smooth manifold X, that we regard as a vector bundle H on X equipped with 
a flat connection D, the holomorphic structure being given by the (0, 1) part 
D" of the connection. A twistor structure of weight w G Z on (V, V) (or a variation 
of twistor structures) consists of the datum of a vector bundle .34? on X x P1, 
holomorphic with respect to the variable of P1. equipped with relative connections 
D'',D" (i.e., there is no derivation with respect to the P1 variable), with poles along 
X x {()} and X x {oo} respectively, and such that the restriction of MJ to any {x0} xP1 
is isomorphic to 0:} i ( /r)lk x (see §2.2 for a more precise definition, in particular for 
D'.b"). 

Therefore, a variation of twistor structures on X lives on I x P 1 . One of the main 
properties required for weights, namely that there is no nonzero morphism from an 
object of weight w to an object of weight w' < w. follows from the analogous property 
for line bundles on P1. One can also define the notion of polarization (see loc. cit.). 

The main device to produce a variation of polarized twistor structures on a holo­
morphic flat bundle (V. V) is given by the construct ion of a harmonic metric. It 
follows from a theorem of K. Corlette [13] and C. Simpson [63] that a local system 
& of C-vector spaces on a compact K a hier manifold X •'underlies" a variation of po­
larized twistor structures if and only if it is semisimple. because semisimplicity is a 
necessary and sufficient condition to build on the flat bundle (V, V) associated with 
a harmonic metric. 

The next step closely follows ideas of M. Saito [56], namely it consists in defining in 
its own right a category of "singular variations of polarized twistor structures". This is 
done via the theory of ^-modules, and more precisely via the theory of ^-modules, 
which is a natural extension to X x (P1 \ {oo}) of the theory of &x-modules. In 
order to keep some control on the coherence properties, we are not allowed to use 
C°° coefficients. Therefore, we modify a little bit the presentation of the object 
introduced above, as associated to the left -module (V, V). 

Put n0 = P1 \ {oo} with coordinate z ainUl^ = P1 \ {()}. We can regard as the 
result of a (7°° gluing between ./{ x x<>„ an(l -%xi2x 011 some neighbourhood of X x S, 
where S denotes the circle \z\ = 1. Equivalently, denoting by .// v the dual bundle, 
the gluing can be regarded as a nondegenerate pairing on ^ x x s ^ ^ x x s with values 
in the sheaf of C°° functions on some neighbourhood of X x S which are holomorphic 
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INTRODUCTION 5 

with respect to z. We can restrict this pairing to the holomorphic/antiholomorphic 
object J^G 0 J^G, where we put 

.^{a = Ker [D" : xs — ^ x s ] and ^ = Ker : - % x S ^ % x s ] -

Its restriction to any {:r0} x should define a bundle fjfi (w)rk v. 
We extend this construction to £^x-niodules as follows: the basic objects are triples 

(e/#;, , C), where , #r/ are coherent ^xxi20-niodules (see §§ 0.2-0.3 for the def­
inition of the sheaf .tf). To any .tf\ xou-module is associated a "conjugate" object 

which is a coherent .f^xu -module (here, X is the complex conjugate mani­
fold); now, C is a pairing on ,#|IxS 0^s «^|xxS which takes values in distributions 
on X x S which are continuous with respect to z. A polarization will then appear as 
an isomorphism —^ «#' of ^vxo.()-modules. 

Example. - Given any C-vector space H. denote by H its complex conjugate and by 
Hv its dual. Define H' = Hv and H" = 77. There is a natural pairing (i.e., C-linear 
map) H' 0c H" —> C, induced by the natural duality pairing Hy 0c H —> C. 

On the other hand, consider the category of triples (Hf. Hff ,C), where H',H" 
are C-vector spaces and C is a nondegenerate pairing H' 0c H" —> C; morphisms 

: (H[,H[\Ci) -> (H^H!J,C2) are pairs y> = (y>with ^ : H'2 H[, tp" : 
H'{ -+ H!{ such that C(^'(m'2),7<) = C(7^, <£"(m'i'))-

We have constructed above a functor from the category of C-vector spaces to this 
category of triples. It is easily seen to be an equivalence. 

Under this equivalence, the Hermitian dual H* — H of H corresponds to 
(H\H",C)* (= ( # " , # ' , C*) with C*{m",m/) c= C{m'.m"). and a sesquilinear 
form on H, which is nothing but a morphism -9J : H* —» 77, corresponds to a mor-
phism V : ( # ' , # " , C)* -> (H'.H".C). i.e.. a pair (.S",S") with 5', 5" : -> 
such that C(S'm".~iF) = C(S"n,",mr). 

In order to say that the pairing 6" on ,#|'YxS 0. x s is holornorphic and nonde­
generate, and therefore defines a ''gluing", we should be able to restrict it to {xQ} x S 
for any x0 £ X. "Restriction*"* is understood here under the broader sense of "taking 
nearby or vanishing cycles1*. Hence, in order to "restrict" or , we impose that 
they have a Malgrange-Kashiwara filtration, i.e.. admit Bernstein polynomials. In 
order to restrict the pairing C. we use a device developed by D.Barlet in a nearby 
context, namely by taking residues of Mellin transforms of distributions. 

The main technical result is then the construction of the category of regular po­
larized twistor ^-modules, mimicking that of polarized Hodge Modules [56], and the 
proof of a decomposition theorem in this category (Theorem 6.1.1). 

To conclude with a proof of M. Kashiwara's conjecture for semisimple perverse 
sheaves, one should prove that the functor which associates to each regular polarized 
twistor i^x-module ,C) of weight 0 (the polarization is Id : —+ ./#) the 
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6 INTRODUCTION 

^x-module .#|xx{i} ig an equivalence with the subcategory of semisimple regular 
holonomic -modules, when X is a complex projective manifold. 

We are not able to prove this equivalence in such a generality. However, we prove 
the equivalence for smooth objects, and also when X is a curve. According to a 
Zariski-Lefschetz Theorem due to H. Hamm and Le D.T. [29], and using the Riemann-
Hilbert correspondence, this implies at least that the functor above takes values in 
the category of semisimple regular holonomic Q)x-modules. This is enough to get the 
Main Theorems. 

What is the overlap with M. Saito's theory of polarizable Hodge Modules? The 
main difference with M. Saito's theory consists in the way of introducing the polar­
ization. 

The method of M. Saito is "á la Deligne", using a perverse complex defined over Q 
or M (and the de Rham functor from holonomic .(/-modules to C-perverse sheaves) 
to get the rational or real structure. The polarization is then introduced at the 
topological level (perverse complexes) as a bilinear form, namely the Poincaré-Verdier 
duality. We do not know whether such an approach would be possible for polarizable 
twistor ^-modules. 

Here, we use a purely analytical approach "á la Griffiths", without paying attention 
to the possible existence of a Q- or R-structure. The polarization is directly intro­
duced as a Hermitian form. In particular, we do not use the duality functor and we 
do not need to show various compatibilities with the de Rham functor. This approach 
uses therefore less derived category techniques than the previous one. Moreover, it 
is possible (cf. §4.2.d) to introduce a category of polarizable Hodge .^-modules as a 
subcategory of twistor i^-modules, by considering those twistor ^-modules which are 
invariant under the natural C* action on the category (similarly to what C.Simpson 
does for "systems of Hodge bundles" [61, 63]). This gives a generalization of com­
plex variations of Hodge structures (without real structure). We do not know if this 
category is equivalent to the category one gets by M. Saito's method, but this can be 
expected. A similar category, that of integrable twistor á?-modules, is considered in 
Chapter 7. 

What is the overlap with C. Simpson's study of Higgs bundles [63]? First, no­
tice that we consider objects which can have complicated singularities, so we do not 
consider any question concerning moduli. We are mainly interested in the functor 
sending a twistor ^-module to its associated .^-module by restricting to 2 = 1 (z is 
the standard name we use for the variable on P1). We could also consider its asso­
ciated Higgs module by restricting to z = 0 (see §1.2). In the first case, we at least 
know the image category, namely that of semisimple regular holonomic i^-modules. 
In the second case, we have no idea of how to characterize the image of the functor 
and if an equivalence could be true, similarly to what is done in the smooth case by 
C. Simpson [63] or in a slightly more general case by O.Biquard [4]. 

Let us now describe with more details the contents of this article. 
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INTRODUCTION 7 

In Chapter 1, we give the main properties of ^^-modules. They are very similar 
to that of @x-modules. The new objects are the sesquilinear pairing C, and the 
category Triples(X) (the objects are triples formed with two ^^-modules and a 
sesquilinear pairing between them), to which we extend various functors. We have 
tried to be precise concerning signs. 

Chapter 2 introduces the notion of a (polarized) twistor structure, following 
C.Simpson [64]. We first consider the case when the base X is a point, to get 
the analogue of a (polarized) Hodge structure. We develop the notion of a Lef­
schetz twistor structure and adapt to this situation previous results of M. Saito and 
P. Deligne. Last, we develop the notion of a smooth twistor structure on a smooth 
complex manifold X. The main point of this chapter is to express the notion of a 
twistor structure in the frame of the category Triples, in order to extend this 
notion to arbitrary holonomic -modules. 

Chapter 3 extends to №-modules the notion of specializability along a hyper-
surface—a notion introduced by B. Malgrange and M. Kashiwara for Q)x-module, 
together with the now called Malgrange-Kashiwara filtration- - and analyzes vari­
ous properties of the nearby and vanishing cycles functors. The specialization of 
a sesquilinear pairing is then defined by means of the residue of a Mellin transform, 
in analogy with some works of D.Barlet. All together, this defines the notion of a 
specializable object in the category Triples(X). The category of S-decomposable 
objects, introduced in §3.5, is inspired from [56]. 

In Chapter 4, wre introduce the category of twistor .(/-modules on X as a sub­
category of M- Triples(X). We prove various property of the category of (polarized) 
twistor ^-modules, analogous to that of (polarized) Hodge Modules [56]. We show 
that regular twistor '/-modules induce semisimple regular ^-modules by the de Rham 
functor EDR . 

Chapter 5 establishes the equivalence between regular twistor £F-modules and 
semisimple perverse sheaves (or semisimple regular holonomic ^-modules) on com­
pact Riemann surfaces, by expressing the results of C.Simpson [62] and O.Biquard 
[4] in the frame of polarized regular twistor .(/-modules. In order to establish the 
equivalence, we also adapt results of D.Barlet and H.-M. Maire [2] concerning Mellin 
transform. 

The main theorems are proved in Chapter 6, following the strategy of M. Saito [56]. 
We reduce the proof to the case when X is a compact Riemann surface and / is the 
constant map to a point. In this case, we generalize the results of S.Zucker [72] to 
polarizable regular twistor ^-modules. 

In Chapter 7, we consider the category of integrable twistor .^-modules. This chap­
ter, written somewhat after the previous ones, is an adaptation to the present theory 
of the notion of CV-structure considered in [30]. We mainly prove a "local unitarity" 
statement (the local exponents are real and, in the regular case, the eigenvalues of 
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8 INTRODUCTION 

local monodromies have absolute value equal to one). The interest of such a subcat­
egory should be for the non regular case, where it should play the role of singular 
variations of polarized Hodge structures. 

In the Appendix, we sketch an application of the previous results to Fourier-Laplace 
transform. We analyze the behaviour of polarized regular twistor ^-modules under a 
partial (one-dimensional) Fourier-Laplace transform and we generalize to such objects 
the main result of [52], comparing, for a given function / . the nearby cycles at / = oc 
and the nearby or vanishing cycles for the partial Fourier-Laplace transform in the 
/-direction (Theorem A.4.1). Complete proofs can be found in [55]. 

Since the first version of this article was written, there has been progress in various 
directions. 

(1) In the first version of this article, the category of polarized twistor ^-modules 
was restricted to the local unitary case, mainly because of a lack of proof of Theorem 
6.2.5 in general. This restriction is now unnecessary, due a new proof of this theorem. 

(2) The main progress comes from recent work of T.Mochizuki [48, 49]. Contin­
uing [47], T.Mochizuki generalizes the contents of Chapter 5 in two directions: 

- he considers an arbitrary parabolic structure along the divisor, whereas only a 
natural parabolic structure is considered here, that we call "Deligne type": depending 
on the point of view, one could call the objects defined by T. Mochizuki as "twistor 
^-modules with parabolic structure", or the objects of the present article as "twistor 
.^-modules of Deligne type" (or "pure imaginary" after [49]): the category of polarized 
regular twistor ^-modules that we define here should be (and is, after the work of 
Mochizuki) equivalent to the category of semisimple perverse sheaves, on a smooth 
projective variety, whereas twistor .^-modules with parabolic structure give rise to 
semisimple "perverse-sheaves-with-parabolic-structure": 

he is able to treat the case of the complement of a normal crossing divisor on a 
smooth complex manifold of arbitrary dimension. 

All together, it seems that, according to the work of O.Biquard [4] and J. Jost 
and K.Zuo [31, 32, 73] (revisited in [49]). the proof of of Conjecture 4.2.13, hence 
a proof of the conjecture of Kashiwara for perverse sheaves (and even for perverse 
sheaves "with parabolic structure") with analytical methods, is now complete. 

(3) On the other hand, according to recent results of G.Boeckle and C.Khare [7] 
or of D.Gaitsgory [26], a proof of the conjecture of de Jong used by V.Drinfeld is 
available: therefore, the arithmetic approach of Drinfeld [24] to the conjecture of 
Kashiwara (for perverse sheaves) is also complete. 

(4) Let us also mention a new proof of the decomposition theorem for the constant 
sheaf, obtained by M.A. de Cataldo and L.Migliorini [11]. with methods completely 
different from those developed by M. Saito. We do not know if such methods can be 
adapted to more general local systems. 
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INTRODUCTION 9 

(5) The non regular case of Kashiwara's conjecture is still open. Extending the 
work of C. Simpson [62] and O.Biquard [4] to holomorphic bundles on compact Rie-
mami surfaces with meromorphic connections having irregular singularities would be 
a first step. Some results in this direction are obtained in [53] and [5]. See also [54] 
and [68] for the behaviour with respect to the Fourier-Laplace transform in dimension 
one. 
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CHAPTER 0 

PRELIMINARIES 

0.1. Some signs 

(a) We will use the function 

Z E {±1} 

a^s(a) = (_i)*("-i)/2 

which satisfies in particular 

e(a + 1) = e(-a) = (-l)ae{a), e(a + 6) = (-l)a6e(a)e(6). 

Recall that, on Cn with coordinates ^ = + ¿2/A- (k = 1,. . ., n), we have 

dz\ A • • • A rizn A cbi A • • • A cten = £(ri)(ctei A dz\) A • • • A (cten A <izn) 

and that dzk A = —2i(dxk A ri?/̂ ) • 
(b) We follow the sign convention given in [18, §§0 and 1]. When we write a 

multi-complex, we understand implicitly that we take the associated simple complex, 
ordered as written, with differential equal to the sum of the partial differentials. 

Given any sheaf «if, denote by (God* .if, Ô) the standard semisimplicial resolu­
tion of «if by flabby sheaves, as defined in [27, Appendice]. For a complex («if*,<i), 
we regard God* «if * as a double complex ordered as written, i.e., with differential 
(Si, ( — l)%dj) on God* «if7, and therefore also as the associated simple complex. 

0.2. In this article, X denotes a complex analytic manifold of dimension dim X = n, 
@x denotes the sheaf of holomorphic functions on X and 3>x the sheaf of linear 
differential operators with coefficients in &x- The sheaf (Jx is equipped with its 
natural structure of left Q)x-module and the sheaf u>x of holomorphic differential 
n-forms with its structure of right Q)x-module. 

We denote by X the complex conjugate manifold, equipped with the structure 
sheaf d= &x and by X^ the underlying C°° manifold. 
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The increasing filtration of CJ)\ by the order is denoted by F. &x • Given a filtered 
object (A1.F.A1) (filtrations are increasing and indexed by Z), the associated Rees 
object RpM d= '1/,.̂ ::/'/,.M rJ' is the graded object constructed with the new variable z. 
In particular, we will consider the Rees ring Rf@x'- this is a sheaf of rings on X. The 
filtration induced by F# f#x on &x satisfies F^.f/x — &x for A; ^ 0 and F^ffx — 0 for 
A: < 0, so the associated Rees ring R j.O \ is equal to ()'x\z\. 

We will denote by Tt'x the sheaf Rf^x when we forget its grading, and call it the 
differential deformation sheaf. This is a sheaf of rings on X. In local coordinates 
on X, we denote now by Qx. in Rx the element in l\ y{/x • With such a notation, 
we have 

Rx = 0x[z№n 3r„>. 
where clx. satisfy the relations 

[3x,,gxJ=0 and [0.,,. f(x.z)} =z^. 

One has (forgetting grading) 

Rx/zRx = Rf&x/zRf&x = grF&x = &x[TX], 
where ffx[TX\ denotes the sheaf of holomorphic functions on the cotangent bundle 
T*X which are polynomials with respect to the fibres of T*X —» X; in other words, 
$x[TX] — p*&^{T*xei)(*oc): where /; : ?(7'"Ar —* X denotes the projection and 
oc denotes the section at infinity of the projective bundle. 

The left action of Rx on Ry&x = @x\A is defined by 
dX/(f(x.z)) = z^-. 

OX; 
0.3. Let £1q = C be the complex line equipped with a fixed coordinate z. We will 
denote by £ the imaginary part of z. Put C* = {: / 0}. Let us denote by f2oc the 
other chart of P1, centered at z — oo. 

Let us denote by the product X x Q0 and by /0 the sheaf of holomorphic 
functions on it, by the product X x C*. Let tt : X denote be the natural 
projection. If is a sheaf on !f\ we denote by ,#° its restriction to <%~°. We will 
consider the sheaves 

(x.z)} 
Ox [z] 

(x.z)} and .^•o = On,-* 
Ok H 

(x.z)} 

In local coordinates on X, we have = (SX]..... 9<x„}. 
We will denote by the sheaf of holomorphic vector fields relative to the pro­

jection —> l̂ o7 which vanish at z = 0. This is the ^--locally free sheaf generated 
by o\r, o\r„ . It is contained in -rtj •. 

Dually, we denote by = z~l^Xxn{)/n() c ^Xxttt)/nu \z~l\ the yheaf of holomor­
phic 1-forms on relative to the projection 3£ —>• Hq, which have a pole of order 
one at most along z = 0. We will put ft^- = A^O1,.. The differential d : ilkr -> O^1 
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is induced by the relative differential d — dxxn()/n{)- The natural left multiplication 
of 0/)• on can be written as a connection 

V : .^V —> il y 0 r 

satisfying the Leibniz rule V ( / P ) = df 0 P + / V P . More generally, a left ^^ -module 
./# is nothing but a ^.y-module with a flat connection V : .4% —• Q1^- ^ . Put 
cj^: =f Q7ly. = z~nuJxxi\)/i~i()' This is naturally a right :-module: the action 
is given by uj - £ — —Jifçu), where denotes the Lie derivative, here equal to the 
composition of the interior product i.ç by £ with the relative differential d. 

0.4. We denote by S the circle \z\ = 1 in Q0 D ^oo- For a O\r or ^ - m o d u l e we 
denote by <M\<$ its sheaf-theoretic restriction to X x S. In particular, we will consider 
the sheaves û$:\& and <^V|S- We will simply denote ^ ( ) | s by < ŝ- We will also use 
the sheaves 

^(X.X)xS - &\xxQo)\S ®0S ^(Xxn{))\S 

•,y?( ,V..V)xS - ^(Xxn„)|S ®Ûs «^(Xxî2„)|S-

0 .5. Dis t r ibut ions and currents . — We will need to consider distributions on 
x S which are regular with respect to the variable on S, in order to be able to 

specialize them with respect to the variable of S. Let us introduce some notation. 
Let T be a C°° manifold with a fixed volume form voir (we will mainly use 

(T.volT) = (S,dargz)). For k = 0 , . . . , oc, we denote by ĉ X:uxT the sheaf of Ck 
functions on X]& x T and by ^y- 'XT/ t sneaf of C°° relative (with respect to the 
projection X x T —> T) (n, n) forms of maximal degree, and we put an index c for 
those objects with compact support. We denote by ^^x?xT/T the sheaf on x T of 
distributions which are Ck with respect to T: by definition, given any open set W of 
XR x T, an element of Db*Yi= x t / t ( ^ 0 is a C°°(r)-liiiear map ^ x r / T , : ( ^ ) "> C*CO 
which is continuous with respect to the usual norm on Ck(T) (sup of the modules 
of partial derivatives up to order A') and the family of semi-norms on (^x^xT/t 
obtained by taking the sup on some compact set of W of the module of partial deriva­
tives up to some order with respect to X and up to order A* with respect to T. Given 
a compact set in IF, the smallest order in dx which is needed is called the order of u. 
Such an element u defines a usual distribution on Xr x T by integration along T with 
the fixed volume form V0I7-. 

It is sometimes more convenient to work with currents of maximal degree, which 
are Ck with respect to T. We denote by £X-,xt/t the corresponding sheaf: a section 
on W is a continuous Cyoc (T)-linear map x-r ,.(U') —> Ck(T). In particular, when 
T — S, S)bx..iXS/S (resp. £AV_: xs/s) *s a ̂  (resp. right) module over &^x ~x) s defined 
above. 

SOCIÉTÉ MAT H K M ATIQU K DE FRANCE 2005 
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The regularity of distributions with respect to T is useful in order to get the 
following: 

- The restriction to any subvariety T' of an object of ^bXaxT/T *s wen defined 
and is an object of £)bXr. xT//T/. ^n particular, if T' is reduced to a point, we get a 
ordinary distribution on X^. 

When T = S, if p(z) is any nonzero polynomial, then 
(0.5.1) u e Vb\ y«^(U") and p(z) • u = 0 => u = 0. 

Examples 0.5.2 
(1) If T is the Euclidean space Wp and At is the Laplacian on it, the subsheaf 

Ker At of T-harrnonic distributions in Dbj.xT is contained in Db x x7y7- for any k. 
(2) If Q is an open set in C with coordinate z, the sheaf &bx\xn =f Keidz of 

distributions on Xu x Q which are holomorphic with respect to z is contained in 
Dbx,aXQ/Q for any k. We will also denote by c&X--xli tne sheaf of C°° functions on 
X^ x ft which are holomorphic with respect to z and by (6 the restriction to S 
of ^?'an. 

(3) Let X — D be the open disc of radius 1 and coordinate t. Set £} = C x (—N*). 
For each I g N , 

и, d={ \t\2s\logft\ 
ft 

defines a global section of £>bXx̂  (variable ,s on Q). The order of Ue is finite on any 
domain ft n {Re -TV}, TV > 0. If we set Uf = 0 for £ < 0, we have 

t()trt - !(>,{:, = .s( + l( ,. 

(4) Let X be as above. For S J G l and ^ ^ 1, z/t —1/ zr is purely imaginary, 
so that the function cz't ~1/zt defines a distribution on X^ x S. This distribution is 
a section of £)bx,p_xS/s (it is even a section of T)bx, xs/s if ^ = L). 

Let us denote by f̂ nxg the subsheaf of ^ x S of functions which are holomorphic 
with respect to X. We then have: 

Lemma 0.5.3 (Dolbeault-Grothendieck). Ker[<9x ^bXpxS/S 3)b(o,i),fc i 
^DX^xS/sJ ank 

Xx S 
In the following, we will only use the continuity property with respect to S, and 

we will denote by £Hi \-: y s/s the sheaf 33bx..xS/S. 

0.6. Spencer and de Rham. — The de Rham complex (of 0 .?•') will be usually 
shifted by n = dirnX, with differential (-l)nd. We will denote it by (O"/#. (-1 )"r/). 

Given any k ^ 0, the contraction is the morphism 

(0.6.1) XYAZ ogft\ OX 
WOE e(n - k)uj(Ç A • ) . 
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The Spencer complex (Sp'y (^.^). d) is the complex • ^ o.r A *B^r (with • ^ 0) 
of locally free left .^.^ -modules of finite rank, with differential S given by 

P 0 £1 A • • • A £A 
k 

i=l 
( - i r1pe^6A-AeiA-- -Aa 

i<3 
(-ly^P 0 )ndo;n A 6 A • . • A £ A • • • . 

It is locally isomorphic to the Koszul complex K(:tfy. -dXl,. . . , -5Xr)). It is a resolution 
of O as a left /i^;-module. Under the contraction (0.6.1) 

Lv9: 0 ЛА'(~Ъ: -̂ -> ììn"-k 

the complex {uj%; ®3g.r Sp*y ( ) . r)) = (o;^- 2 ^ ,. A *B,^-,J) is identified with the 
complex (iVy\ (-l)nd). 

Similarly, putting as above n — dimX, the complex (iVgr* ®f/,r , V), with 
differential V given by 

n=& P (-l)ndo;n^ 0 P + (-1) VH-* a VP 

is a resolution of a;#/ as a right ^,^-module. We will use the notation Q ̂ / for A B^-. 
Let us denote by (<f£l+#'0), (-l)nd') the complex #~'an ttr£* with the differ­

ential induced by {—l)nd (here, we assume n+« ^ 0; recall that the exponent an means 
"holomorphic with respect to z"). More generally, let ^n+p'g) = <fj£+p'0) A 7r*<4°'9) 
(the antiholomorphic part does not produce new poles or zeros along 2 = 0) and let 
d" be the usual antiholomorphic differential. For any p, the complex (co^^p'*\ d") 
is a resolution of £V£tp. We therefore have a complex (c?J+*, ( — l)n<i), which is the 
single complex associated to the double complex (6^' ' #'#). { — l)nd',d"). 

In particular, we have a natural quasi-isomorphism of complexes of right 
modules: 

(íí*¿t* <B>0s>. air, Lv9: 0 ЛА'(~Ъ: -^-> 
by sending holomorphic /c-forms to 0)-forms. Remark that the terms of these 
complexes are flat over ()'.>/•. 

0.7. Left and right. — At some places in this paper, it is simpler to work with 
right -modules. The correspondence between both points of view is analogous 
to that for &x-modules. Any left -^./-module gives rise to a right one by 
putting (cf. [10] for instance) <//r = uj$: <&0:r and, for any vector field £, 

(uo 0 rri) • £ = CJ£ 0 rn — CJ 0 £///. 
Conversely, put = fflom@,r (u&:,*dKr)* which has in a natural way the structure 

of a left .^.y-iiio(lule. The natural niorphisrns 

M <ffîom0,r{uj$:,UJ$; &)<v:r «^z), <ffîom0,r{uj$:,UJ$; &)<v:r «^z) M 
are isomorphisms of -modules. 
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If are two left -modules, we have a natural isomorphism of sheaves of 
C-vector spaces 

(0.7.1) u; 0 /// 0 £ i > ~(n — k)uj(^ 
(си (2) fi) ® гп н-> (uj 0 га) (g) r¿, 

which is functorial in ^ and in -/K. 

We note that uj ̂  X (! r • has therefore two structures of right ^^--module, 
denoted by > and 

(uj 0 P) -r Q = uj® (PQ) and (uj 0 P) -iX = u ' Z ® P - u 0 £P, 

for P, £} local sections of j ; and £ a local section of . Recall (cf. [56, Lemme 
2.4.2]) that there is a unique involution i : uj.r %o:r :r —• ^.r 0< :̂- which is the 
identity on ojy 0 1 and exchanges both structures: it is given by uj 0 P i—» (uj(gil) -t P. 

In particular, the isomorphism of right -modules 

wx<ffîom0,r{uj$:, 0^.- AA:e,r) HV* 0^-
0(1 0 01 •/ /' (s(n- k)u(ÇA.)) 0 P 

where the right structure of the right-hand term is the trivial one and that of the 
left-hand term is nothing but that induced by the left structure after going from left 
to right, induces an isomorphism of complexes of right 9£ ̂ -modules 

(0.7.2) i : uj <%; 0 Sp^(^),cJ) (Qn+* 0 ^r,V). 

Similarly, if is any left № yj -module and .^/v = uj,%' ^ is the associated 
right J^r-modulc. there is an isomorphism 

(0.7.3) Mr O R Sp'Ailr).ö) i) ® гп н-> (uj 0 га) (g) 
n + O # . V (1^-0 ^-,V) <g>.̂,. V/ 

given on 0^^- . ®0,r Ak(-).:/• by 

u; 0 /// 0 £ i > ~(n — k)uj(^ A •) 0 ///. 
In the same vein, let be a left -module. Then <M%o-:r has the structure 

of a left and of a right -module: £•(///:-" P) = ((///) >: / ' - / / / >:£P. and (ra(g)P)-f = 
ra® (P£) for any local vector field £. Similarly. 0^; y also has such a structure: 
£ • (P 0 //;) - (£P) 0 ra and (P 0 ra) • £ = P£ 0 /// - P 0 £/»• 

Then, there exists a unique isomorphism 
(0.7.4) (си (2) fi) ® гп н-> 
of left and right -modules, which induces the identity on 0 1 = 10 If £ is 
any local vector field, this isomorphism is given by 

m (& £ = (m 0 l)£ (1 0 m ) £ £ 0 /// — 1 0 
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0.8. Let D be an open disc centered at the origin in C with complex coordinate t. 
We assume that it has radius ^ 1 (this will be always the case later on, as we can 
reduce the size of the disc). The logarithm L(t) is defined as 

Lm = |iog|*i2| = -iog(tf). 

Tt satisfies, for anv k G R. 

(0.8.1) L(T)KT 
D(L(T)-K) 

at. 
utY't 

D(L(T)-K) 

St. 
KUTR1. 

0.9. Let o = q' + in" be a complex number with a' = Re(a:), a" = Im(a). For 
z ec, put 

(0.9.1) a * z = nz + in"(z - l)2/2 = a'z + in"{z2 + l)/2. 

The following properties are easily verified: 

a !—> q: * z is R-linear; 
- for z 0. the expression 

a * z Z 
= «' + ta"(z + l/z)/2 

is "reaP in the sense of the conjugation defined in §1.5.a, i.e., is invariant when we 
replace / with —i and z with —l/z: indeed, using this notion of conjugation, it is the 
"real*" part of a' + iza", namely \[{a' + iza") + {a' + iza")]: 

- if a" — 0 or if zG — ±/, we have (a * zQ)/za = a'; 
We have a • z() = 0 if and only if one of the following properties is satisfied: 

(1) a = 0, 
(2) a ^ 0 is real (i.e., a" = 0 and a' / 0) and zn = 0, 
(3) a / 0 is not real (i.e.. a" / 0) and zC) = i((a!/a") ± yf\ + (a'/a")2) (in 

particular za G /R*); 
in particular, 

a * z0 = 0 and a ^ 0 : 20 G /R, 
z0 = =b/ <̂=̂> a is purely imaginary. 

Let A C C be a finite subset and put A = A + Z. A complex number z0 G f2o 
is singular with respect to A if there exist ai,oy2 G A U Z such that or ^ c*2 and 
(ai — a 2) * ~o = 0. Such a zG is purely imaginary. The set of nonzero A-singular 
complex numbers is discrete in /R*, and 0 is its only possible limit point in ?'R. It is 
reduced to {0} if A C R. We denote it by Sing(A). 

For zQ G r̂ o, denote (C) = Imz0 and set iZo(°) — a' — £0a" = Re (a' + iz0a") (where 
Re is taken in the usual sense). The following lemma will be useful: 

Lemma 0.9.2. Fix z0 G ft0. #4„(a) = 0, then a*zo = 0=> a 0. 
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Proof. Assume first that zQ = 0. The hypothesis is that a! = 0. We then have 
a -k z0 — la"/2. 

Assume now that zQ =̂  0. The hypothesis is that a' = (Qa'f and we have 

ex. * z0 
z0 

a"{Co + i(zo + l/z0)/2). 

If a" ^ 0, this could vanish only if zQ + l/z0 is purely imaginary, hence only if za is 
so, z'.e., 0 ^ 20 = z'Co5 but we would have 0 — Co + i(z() + l/zC))/2 = (Co + 1 /Co)/2 with 
Co £ R*, impossible. • 
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C O H E R E N T A N D H O L O N O M I C ^ - M O D U L E S 

1.1. Coherent and good ^ -modules 

1.1.a. The ring Rx is equipped with a natural increasing filtration (locally given by 
the total degree in o\T;) and the associated graded object is naturally identified with 
the sheaf 

ffx[z][TX] =f p*^p(t*x©i)(*oc)[z], 
where p is as in §0.2. By usual arguments, it follows that Rx is a coherent sheaf of 
rings on X. 

Analogous results hold for which is a coherent sheaf of rings on by re­
placing &x\A with Oj-. 

We can identify the restriction <tf with the sheaf of relative differential operators 
^ r° /c* by 

5,, G ,*V~ — dx, = z-lOx, G 1?..-/:-• 
It follows in particular that, for any zQ ^ 0 and any coherent -module «.,#, the 
cohomology modules of the complex of i^^--modules Li\o,M c= ~—̂  are 
coherent £^x-niodules. Following [62], we put 

SdoiC^O =F JtlzM and EDR(Jt) d= .411 {z - l\4K. 
Then Hdoi(« )̂ is a coherent ffx [TX]-module and Sdr (^) is a coherent f^x-module. 

We note that the datum of a left &x-module M is equivalent to the datum of a 
<^x-module M equipped with a flat connection V : M —» i1lx (8)̂ Y M. Similarly, 
the datum of a (left) <̂ x [^-^]-module M is equivalent to that of a ^x-module AI 
equipped with a (fx-^^r morphisrn 0 : M —» i1lx M satisfying the Higgs 
condition 0 A 6 = 0. 

1.1.b. De Rham and Dolbeault complexes. — Recall that the de Rharn com­
plex DR(A/) of a left @x-module M is the complex Ox+# v (/s M with differential 

V(^„ ./, 0 m) = (-l)ndcjn+/c 0 m + (-1)*^+* A Vra. 
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Similarly, the Dolbeault complex Dol(M) of a &x[TX]-module M is the complex 
nx+* ®#x M with differential (-1)* A 0 (i.e., (-l)n0 A when putting the forms on 
the right). 

Let now .// be a left .'^.--module. Its de Rham complex I)R(.//) is {}'[/• * . // 
with differential 

V(o;n+fc 0 ra) = (-l)ndLun+k ® /// + (-l)kuj7l+k A Vra. 

As DR M is a complex of -modules, we have Li*Zn (DR .>#) = DR(Xz*f/^) if 20 ^ 0 
and Li%(DR^) = Do\(Lr[y//). 

The de Rham complex DR(./#) of a left .^.7 -module is also equal to the complex 
ffx[z][TX] =f p*^p(t*x©i)(*oc)[z], 
We define the de Rham complex of a right 3%$;-module ,/K as - T' 0,^ Sp#̂ -(<̂ ,̂  ). 
Using (0.7.3), we have a functorial isomorphism L)R(, //'') DR(,x#) for any left 

-module 

l . l .c . The sheaf /yP/y comes equipped with an increasing filtration by locally free 
0$r-submodules, indexed by the order in 5,Xl, . . . ,DXn. We can therefore define, as 
usual, the notion of a good filtration on a -module. Following [59], we say that 
a -module ^ is good if, for any compact subset Jfc C 3£, there exists in a 
neighbourhood of Jff, a finite filtration of <•# by -modules such that all successive 
quotients have a good ^,^-filtration. This implies that is coherent. 

1.2. The involutivity theorem 

Let be a coherent ^^-module. The support in T * I x Q0 of the graded module 
associated to any local good filtration of .dt does not depend on the choice of such 
a good filtration and is defined globally (see e.g.. [6. Prop. A:III.3.21]): this is the 
characteristic variety Chart,# of 

For any zQ 7̂  0, denote by Char2o(./#) the union of the characteristic varieties of 
the cohomology ^x-niodiiles of Li* .dZ. There is a natural inclusion Char2o(,.#) C 
C h a r o n (T*X x {z0}). 

Let E(e/#) C T* X be the support of HrjoiÔ O- This is a kind of "characteristic 
variety", but can fail to be homogeneous with respect to the usual C*-action on T*X. 

It is possible to associate a multiplicity to each irreducible component of Chart<#, 
Char2o(.^) or E(«./#) to get a characteristic cycle. 

The definition of Cha r^ , Char^ (../#) or E(,^#) extends to complexes: just take 
the union of characteristic varieties of the cohomology sheaves. 

The support Supp,JZ C X is by definition the closure of the projection of Chai\/# 
in X. This is the smallest closed subset Z of X such that vanishes identically on 
(X \Z) x tt0. 
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Definition 1.2.1. A -module is said to be strict if it has no ^0-torsion. A 
complex of /-modules is said to be strict if each of its cohomology modules 
is so. A morphism p> : —> is strict if the corresponding complex is so, ie., if 
Ker(y? and Coker^? are strict. 

We note that, for a strict .^y-module the restriction L*z<y^ reduces to the 
degree 0 term ^/ (z — z0).^. 

Lemma 1.2.2 
(1) Let be a ffl\%--module equipped with a finite increasing filtration W^dt by 

£%3£ -submodules. If each gr™ ̂  is strict, tlien , // is strict. 
(2) Let (p : ,yY be a morphism of -modules. We assume thai .Jf have 

a finite filtration W by 3%%;-submodules and that (p is strictly compatible with W, i.e., 
satisfies ip(Wk-^) = U'/,- V Pi p)(M). If gr™ ip is strict for all k, then tp is strict. 

Proof. The first point is clear. Let us prove (2). By strict compatibility, the 
sequence 

. .w 
0 — gif Ker 9? —> grf ./# gl'k * gr<f,/K gi f Cokei^ —> 0 

is exact, putting on Ker (¿2 and Coker</? the induced filtration. By strictness of gr^ip, 
and applying (1) to Kercp and Coker^, one gets (2). • 

Theorem 1.2.3. Let «/# be a strict coherent -module. Then and 
Char^ (,./#) (z0 G C*y) are involutive in T*X, and Char\/# is involutive in T*X x 
(with respect to the Poisson bracket z{ , }). 

Proof. This is well-known for the characteristic varieties Char^u(./#) and Chai\/# 
([25], see also [6, A:IIL3.25]). The proof of Gabber's involutivity theorem also applies 
to because is strict (indeed, /z2&$r is a Gabber ring, in the sense of 
[6, A.III.3]). • 

The restriction of Char.^ over {z = 0} is not controlled by the involutivity the­
orem. However, the restriction to {z = 0} of components of Char,/# for which the 
fibre at some zQ 7̂  0 is Lagrangian is a union of irreducible conical Lagrangian closed 
analytic subsets of T*X. 

Definition 1.2.4. A M^c-module is said to be holonomic if it is good and there 
exists a conical Lagrangian variety A C T*X such that the characteristic variety 
Char «/# is contained in A x Hq. A complex ..^* of ̂  ^--modules is said to be holonomic 
if each of its cohomology module is so. 

If is holonomic, then any irreducible component of C h a r ^ is equal to T^X x i\ 
or to T%X x {z0} for some closed irreducible analytic subset Z of X and some zQ G Qo-
In particular, the support of is equal to the projection of Char«^f in X. 
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In an exact sequence 0 —> —> .M —> —> 0 of good -modules, is 
holonomic if and only if and are so: indeed, we have Char(.y#) = Char(«/#/)U 
Char(^#"). 

Proposition 1.2.5 (Restriction to z = z0). — If <JZ is holonomic, then for any zo^0, 
the cohomology modules of L*o^ are holonomic 9>x-modules. Moreover, if ^ is 
strict, E(,y#) is Lagrangian. 

Proof. — Let F#t/# be a good filtration of locally near a point of X x {zQ}. It 
induces a good filtration (F9.^)n(z — z0)^ on the coherent ^^-submodule (z — z0)^ 
as well as on the coherent quotient /(z — z0).^(. the graded module of which is a 
quotient of grF,^Z / (z — z0)grF,jZ. Similarly, grf [Ker(2 — zQ)] is contained in the 
kernel of z — zQ acting on grF^. This implies the first point. For z0 = 0, we have 

dim AT ^ dim (£(..^) is involutive) 

= dim Supp grF(t/# I z,W.) (conservation of the dimension by grading) 

^ dim Supp grF.^/z grF./# 

^ dimX (,/# is holonomic). • 

The variety E (,_,#) is well-behaved in exact sequences only for strict objects in 
general. One has for instance 

Proposition 1.2.6. — Let 0 —-> y/t' —» ./4Z —» ,JZ" —> 0 be an exact sequence of strict 
holonomic -modules. Then E(./#) = E(./#') U E (./#") and the corresponding 
Lagrangian cycles behave in an additive way. • 

Remark 1.2.7. — Analogous results hold for i?x-modules. We leave them to the 
reader. 

Proposition 1.2.8. Let ^ be a strict coherent &-module, the characteristic variety 
of which is contained in the zero section TXX x Q0. Then, 

(1) ,M is 6V -coherent, 
(2) is locally (on ) isomorphic to (y%;o equipped with its natural structure 

of left &o£-o -module, for some integer d, 
(3) there exists a nowhere dense closed analytic subset Z C X such that ,M is 
-locally free on <°Z \ 3?. 

Proof. The first point is clear. As ,/#° is &gro-coherent (hence good as a 3%%,°-
module), the second point follows from [16, Theorem 2.23 (in)] and strictness. The 
third point also follows from strictness. • 

Remark 1.2.9. — Under the assumption of Proposition 1.2.8, there exists locally on X 
a vector bundle E such that — 7r°*E as a &t<%-°-module (indeed, if U is any 
contractible Stein open set of X, any vector bundle on U x C* is topologically trivial, 
hence analytically trivial, by Grauert's theorem). 
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1.3. Examples 
1.3.a. The twistor deformation of an irreducible flat connection to a Higgs 
bundle [63, 64]. — Let X be a projective manifold and let (V, V) be a flat holo­
morphic vector bundle on X. The construction explained in loc. cit. gives an example 
of (and in fact is a model for) a strict holonomic -module. Let us recall the main 
definitions. 

Let Dy = D'v + Dy be the flat connection on H d= ^ <g>̂x V, so that (V, V) = 
(Ker Dv, Dv), and let h be a metric on (H, Dy)- There exist connections denoted D'E 
(of type (1,0)) and DE (of type (0, 1)), and a (l,0)-form Q'E with values in End(H) 
such that, denoting by 0'E the adjoint of 0'E with respect to h, we have, for any local 
sections u, v of H, 

d'h(u, v) = h(D'Eu, v) + h(u, D'Ev), 
d"h(u, v) = h(D'Eu, v) + h{u, D'Ev), 
h(0'Eu,v) = h(u,e'Ev), 

D'v=D/E + 6/E, D'V = D,E + 6'E. 

These objects are uniquely defined by the previous requirements. We note that, by 
applying d' or d" to each of the first three lines above, we see that D'E is adjoint to 
D'E, D"E(d'E) is adjoint to D'E{9'E) and D'ED"E + D'ED'E is selfadjoint with respect 
to h. 

The triple (H,Dv,h) (or (V,V,h), or simply h, if (V, V) is fixed) is said to be 
harmonic if the operator DE-\-6'E has square 0. By looking at types, this is equivalent 
to 

D"i = o, d"e(q'e) = o, e'E a e'E = o. 
By adjunction, this implies 

D'i = o, D'M) = 0, 6%A^ = 0. 

Moreover, the flatness of Dy implies then 

D'E(0'E)=0, D'E(0'E) = 0, D'ED'E + D/ED'E = -(0'Ee'E + 0'E9'E). 

Let E = Ker DE : H H. This is a holomorphic vector bundle equipped with 
a holomorphic End(E)-valued 1-form 6'E satisfying Q'E A 0'E — 0. It is called a Higgs 
bundle and 6'E is its associated Higgs field. 

Remark that 0'E : E —• E Zo Slx can be regarded as a holomorphic map 6'E : 
Bx —̂  End(E) satisfying [0E(£),9fE(r])] = 0 for any vector fields £,77, defining thus 
the structure of a &x [TX]-module on E. Its support in T*X is therefore a finite 
ramified covering of X. 

The previous relations also imply that, if zQ is any complex number, the operator 
DE + z09E is a complex structure on H. Moreover, if zQ / 0, the holomorphic 
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bundle VZo = Kei(DE + z06'E) is equipped with a flat holomorphic connection VZ() = 
D'E + z~l0'E. For zQ = 1 we recover (1/, V). 

Consider the ^?'au-module = ^ J'a" ;;;_ i^ x. n~lH, equipped with a d" op­
erator 

(1.3.1) D"H= D"E + z6E. 

This defines a holomorphic subbundle MJ' (that is, a locally free <^;-submodule 
such that Y/^'AU ®if,,/: = MJ), which is thus strict. Moreover, it has the natural 
structure of a good -module, using the flat connection 

(1.3.2) Df^ = D'E + z-l6'E. 

One has SDOIO^H = (Ei°e) and EDU(./f) = (V, D'v). Clearly, (liar.//7 is equal to 
T^X x Qq (take the trivial filtration). Then ,34?' is a strict holonomic -module. 

Remark. The support E C T*X of a holomorphic Higgs bundle (E,0'E) (regarded 
as a &x[TX]-rnodule) coming from a harmonic flat bundle (H,Dy,h) is Lagrangian 
in T*X, after Proposition 1.2.5. More generally, any Higgs bundle (E,0'E) on a 
projective manifold X satisfies this property, without referring to the existence of a 
Hermite-Einstein metric (i.e., an associated flat harmonic bundle): indeed, restrict 
the standard holomorphic Liouville 1-form on T*X to E and then lift it to a resolution 
E of the singularities of E, which is a projective manifold, as it is a finite ramified 
covering of X: by standard Hodge theory, the lifted form is closed, hence so is its 
restriction to the regular part E° of E; the restriction to E° of the canonical 2-form 
on T*X is thus identically 0 on E°. 

1.3.b. Filtered ^x-modules. — Let (M,F) be a filtered holonomic f^x-niodule 
and RpM the associated graded Rees module. Put = Oy• ®&x[z] RpM. By 
construction, ,/# has no z-torsion and thus is strict holonomic, because C h a r ^ = 
Char(Af) x Q0. 

1.3.c. Variations of complex Hodge structures [63]. — Let H — (&pezHp>w~p 
be a C°° vector bundle on X, where w G Z is fixed, equipped with a flat connection 
Dy — D'v + D'v and a flat nondegenerate Hermitian bilinear form k such that the 
direct sum decomposition of H is /c-orthogonal, ( — \)pi~wk is a metric on Hp,w~p, 
i.e., ( — l)pi~wk is positive definite on the fibres of Hp,w~p for each p, and 

D'v(Hp^-p) c (Hp^-p ® Hp~Uw-p+l) ®ex n]x 
D'Jr(Hp>w-p) C {Hp^u)-p ® Hp+l'w-p-1) 2^-<>~-

where X denotes the complex conjugate manifold. 
Let us denote by Drv = D'E + 6'E and Dv = DE + 6E the corresponding decompo­

sition. Then the metric h defined as ( — l)pi~wk on Hp,w~p and such that the direct 
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sum decomposition of H is /?-orthogonal is a harmonic metric and the objects D'E, 
D"E. 0'E and Q"E are the one associated with (h, Dy) as in example 1.3.a. 

Put Fp = ®q>pH^u,-q. This bundle is stable under D'v. Let FPV = Fp n V 
be the corresponding holomorphic bundle. Consider on the Rees module (&Fpz~p C 
H[z.z~1} = H 0c C[z.z~~l] the holomorphic structure induced by Dy. The holo­
morphic bundle corresponding to it is the Rees module (BpFpVz~p attached as in 
example 1.3.b to the filtered y\-module (V, F'V) (put Fm = F~* to get an increasing 
filtration). 

On the other hand, consider on C[z] 0c H the holomorphic structure given by 
DE + zO'E. as defined in example 1.3.a. 

The natural C[z]-linear map 

C[z] 0c H C[z,z~l] ®CH 

1 0 (©'u„) upz-p 

is an isomorphism onto (BFpz p and the following diagram commutes 

C[z] 0c H ^Fpz~p 

D"E + zB"E D1 

Clzi tor H &Fpz-p 

showing that, in case of complex variation of Hodge structures, the construction of 
examples 1.3.a and 1.3.b are isomorphic. 

1.4. Direct and inverse images of -modules 

1.4.a. Direct images of -modules. — Let / : X —> Y be a holomorphic map 
between analytic manifolds and denote also by / : <3T —> (?¥ the map trivially induced. 
As in the theory of f^x-modules, one defines the sheaves 3 $ a n d & w i t h 
their bimodule structure: the sheaf &<$;^ojf = &0/-i^ f~l&& is a left-right 
(tf.r. f '-^/^-bimodule when using the natural right Z-1^^-module structure and 
the usual twisted left t$-module structure: for any section £ of the sheaf (-) of 
vector fields on -9' tangent to the fibres of tt and vanishing at z = 0 (cf. §0.3), T/(£) 
is a local section of &x 0 / B ^ , hence acts by left multiplication on 
put s.(<p®p) = a^) ® p'+ T№(tp ® p).Rx Y 

The sheaf ££oj,^<%- is obtained by using the usual left-right transformation (see e.g., 
[10] for details). Recall that, if / is an embedding, the sheaves ffl^-^oy and &oy+_%; 
are locally free over /A\y. 

Let us denote by Sp#^_ ,^&) the complex Sp*^-(&w)0/-1^ Ry, where the 
left ^ . r structure for each term is twisted as above (recall that the Spencer complex 
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Sp^r(^r) was defined in §0.6). Then Sp*^-^^ (^>;) is a resolution of &$;^ojs as a 
bimodule, by locally free left -modules. 

Examples 1.4A. — For / = Id : X —> X, the relative Spencer complex Sp*r_ r (<̂ /y-) 
which is nothing but Sp* -̂(€%-) <&&r/: f%<% is a resolution of = 3%$; as a left 
and right ^/r-module. For / : X —> pt, the complex Sp"̂ - t (^r) = S p ^ - ( ^ ) is 
a resolution of ,'#V .pl = If X = 7 x Z and / is the projection, the complex 
3%3C §§@:r A~*Gjoy is also a resolution of f$:%as a bimodule. We moreover have 
a canonical quasi-isomorphism as bimodules 

Sp*r^(^/) A-E.*7M(r) /^.r^.v/). 
Idz : 1 (Sp^(^) <g>^ 

= (*r fVif). A-E.*7M(r) ® /-1 (Sp^(^) <g>̂  
*^-(€%-) <&&r/: f%<% 

f-1 Ry 
f-1 Ry y 

Sp*r^(^/) 
Recall that God* denotes the canonical Godement resolution (cf. § 0.1(b)). Remark 

that, if S£ and & are & -modules and if & is locally free, then the natural inclusion 
of complexes God* (.if) ®&r/- ^ ^ God* (.if is a quasi-isomorphism. 

Definition 1.4.2. The direct image with proper support /-j- is the functor from 
Mod'(-^V) to D+(Modr(^)) defined by (we take the single complex associated 
to the double complex) 

fvJt = fi God* y. SpV^^(^)) 

It is a realization of Rf\ (.# ®j£ /^.r^.v/). 

Remarks 1.4.3 

(1) /t can be extended as a functor from /; f (Mod ' '^ - ) ) to D+(Modr(«^V)). 
(2) Let / : X —> y be as above and let Z be another manifold. Put F — f x Idz : 

X x Z —> Y x Z. Let us denote by /-j- the direct image defined on M o d r X £ ! ( ) ^ ) 
using the relative Spencer complex (z.e., defined with 0,rXsj0fy.f) and regarding 
the action as an extra structure on the terms of f\<Jt, commuting with the 
differentials of this complex. Then there is a canonical and functorial isomorphism of 
functors /-j- Fj. We will not distinguish between both functors. 

Proposition 1.4.4 

(1) Let f : X —> Y and g : Y —> Z be two maps. There is a functorial canonical 
isomorphism of functors (p o / ) | = 9]f]-

(2) / / / is an embedding, then fv£ = / , ( . / / v * , fVif). 
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(3) If f : X = Y x Z —> Y is the projection, we have 
,/t.// = /, God* {JK ®ff;r A - 9 * - / * ) , 

ana7 £/ws complex is canonically arid functorially isomorphic to the relative Dolbeau  
complex f\{JZ(.^<g>^; <c>\r'i\) 

Proof — We have a natural morphism 

S-X Y5Y 
R 

S-Y Z (Y) S-Y Z (Y 
R S-Y Z (Y) 

SPX (X) 
Both complexes are a resolution of by locally free -modules: this is clear 
for the right-hand term: for the left-hand term, remark that it is naturally quasi-
isomorphic to 

AX Y S-z (oy) 0,r Hk{ 0 S p V _ ^ ( ^ ) 

О. У (g) f X/J;>V^r 
^ 0 // 7 '-^ <i 1 /' 1 ̂  (.^ is locally free) 

= äi. «-.st-

Use now the fact that the natural morphism g\f\ God* —> #i God* /j God* is an isomor­
phism, as f\ God* is c-soft, to get the first point. The second point is easy, as ^c£-_^ 
is then /A>,y locally free. For the third point, use Example 1.4.1. The canonical 
isomorphism is obtained by applying f\ to the diagram 

God' (.̂ <g>̂ ; <c>\r'i\) (.^<g>^; <c>\r'i\) 

G o d * / / A ' " •(-).,•/./) 
and by using the fact that, each term <S>#\r being c-soft on each fibre of / , 
its direct images RJ f\(^ ®&:r ) vanish for any j ^ 0. • 

If / is proper, or proper on the support of we have an isomorphism in the 
category I) (Modr(.^)): 

Rf\ ^ , -*V 'A Rf* *V d= U^-
If moreover M is good, then, for any compact set in it can be expressed 
in a neighbourhood of 1 (-/^) as a successive extension of modules which admit 
a resolution by coherent induced -^-modules in the neighbourhood of f~1(JY). 
Arguing for instance as in [42], one gets: 
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Theorem 1.4.5. Let be a good right -module (or bounded complex) and let 
f : X —> Y be a holomorphic map which is proper (or proper on the support of 
Then the object f+.JZ is good and Char/. .// C f[(T\f)'1 Char, # ] . • 

Corollary 1.4.6. If is holonomic and f is proper on the support of then 
f+.dt is holonomic. • 

Remark 1.4.7. Let i : X X' be a closed inclusion. Then a & ^-module 
is coherent (resp. holonomic, resp. strict) if and only if the -module 'W-^ is so. 
Indeed, this is a local property and it is enough to verify it for the inclusion X = 
I x { 0 } ^ I x C . Let us denote by t the coordinate on C. Then z+. # = .//y.-C[dt}. 
the ^^v-act ion on the degree 0 terms being defined as the action of The assertion 
is then clear. 

Remark 1.4.8 (Direct image for a left f% -module). The direct image for left fM$;-
modules is defined as usual by using the standard left-right transformation. It can 
be obtained by a formula analogous to that of Definition 1.4.2, using the bi-module 

We assume that f : X = Z x Y ^ Y is the projection and put n = dim Z = 
dimX/Y. If is a left -module, the direct image f\.^Z can be computed directly 
with relative de Rham complex: 

/ H * = fi God' (îî^yV ®0,-

and, using the Dolbeault resolution. 

/H* = fi God' (îî^yV ®0,-

Remark 1.4.9 (Restriction to z = zQ). If zQ ^ 0, one has Z,*o(/ t.^) = / t (£* o . # ) , 
where the right-hand /f denotes the direct image of f^-modules. 

1.4.b. Inverse images of -modules. — Let / : J -> 7 be a holomorphic 
map and let be a left ^V-module. The inverse image is the object 

<MX^,V Г1-* 

In general, we only consider the case when /' is smooth (or, more generally, non-
characteristic, cf. §3.7). Then, f)y being / xO#-\\<\X, we have the equality /+\/% — 

®f-ifyfJ// ,f~l>JZ with the structure of a left ffl^-module defined as for &%;-̂ <&. 
It is . ^ -good if . / / is .rf^-good. 

Assume on the other hand that is -locally free of finite rank, but make no 
assumption on / . Then f^.JZ = as an ^-module, with the structure of a left 
^^-rnodule defined as above. It is also ^.y -locally free of finite rank. 
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1.5. Sesquilinear pairings on -modules 

1.5.a. Conjugation. — Let us denote by the C00-manifold underlying X and 
by X the complex analytic manifold conjugate to X, i.e., X^ equipped with the 
structural sheaf 0\ of antiholomorphic functions. We note that the conjugate of an 
open set of X is the same open set with a different sheaf of holomorphic functions. 
Recall that the conjugation : &x —> @~x m a kes ff^ a &x-module. Given any 
@x-module &, we denote by its conjugate Ox-module defined by 

• P - Oy v. 

One can extend as a ring morphism @x —• &x ( m local coordinates, dX/ = c%.) 
and define similarly & for &x-modules. 

On the P 1 factor, we will define a geometric conjugation that we also denote by 
It is induced by the involution z 1—• —1/z. For notational convenience, we denote for 
a while by c the usual conjugation functor on P 1 . Given any open set SI of P 1 , denote 
by O its image by the previous involution. Then, if g(z) is a holomorphic function 
on Q, its conjugate y(z) is by definition the holomorphic function c[g{ — l/c(z))) on Q. 
We note that we have 

12 0 = f̂ oo, = and S = S. 

We will now mix these two notions to get a conjugation functor on X x P 1 . We 
continue to denote by c the usual conjugation functor on X x P 1 , but we keep the 
notation on X. Let a : cP1 P 1 or P 1 —> cP1 denote the antilinear involution 
of P 1 defined by 

(t(c(z)) = -1/z or <r(z) = -l/c(z). 

Then, for any open set Q C P 1 , a induces isomorphisms 

c(Q) ^ n. 

We also denote by a the inverse isomorphisms. Define a on X x P 1 so that it is the 
identity on the X-factor. 

We now have a conjugation functor c= f a*c: given any holomorphic function 
f(x, z) on an open set U x Q of X x P 1 , we put f(x, z) = r(/(,r. — l/c(z))); therefore, 

defines a functor, also denoted by as above, which sends ftx^-modules to 
- \ x ( > = x ^-modules and conversely (in particular, dXi = — £_16\.). We note 
also that, if m is a section of on U x it is also a section of c,W, on U xQ, that we 
denote by c(m). and it defines a section m oi — a*c,Jl on U xa~1(Q) = U x a(Q). 

In particular, we have an identification 

&XxQ - <̂ XxQ> ^A'x<U.R.:) = ^X~xQ,(x, — 1 /z) 

by putting as above f(x,z) = c(f(x, — l/c(z))). Similarly, we have ^ x O — <^xxn 
when Q C C*, ^ x ? x S = x S . 3)bxRxS/s = ^^»xs / s 5

 e^c- Be careful, however, 
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that these last identifications are not ^s-lhiear, but are linear over the "conjugation" 

(1.5.1) 
Û S — > = ca*ûs 

X(z)^X{z)=c(X(-l/c{z))). 

1.5.b. Sesquilinear pairings. — We use notation and results of §§0.3-0.5. 
Given two left -modules ^ ' and ,M", we define a sesquilinear pairing between 

and as a &tX ^ s-linear pairing 

С : ML 0 ML 
1 &s | S 

^ b x ? . x S / S ? 

Proof. The assertion is local on ,i£T. According to Proposition 1.2.8, when restricted 
to are ^r-locally free of finite rank and, given any (x0,z0) £ X x S, 
we can find bases e!, e" of „ ,.. ^ satisfying cW = 0, Be" = 0. Lemma 
0.5.3 then shows in particular that C takes values in c^^qg n (and more precisely in 
the subsheaf of functions which are real analytic with respect to X). • 

Example 1.5.4 (Basic holomorphic distributions). Let (3 = 0' + ifi" be a complex 
number such that ft' ^ —N*. We note that there exists an open neighbourhood 
nb/3(S) such that the map nb^(S) —• C defined by z *-* {[3 • z)/z (recall that the 
operation • is defined by (0.9.1)) takes values in C \ (—N*): 

- if f3" = 0, this function is constant and equal to fl'\ 
otherwise, {(3 * z)/z = -k e -N* is equivalent to z = i((/3' + k) / f3" ± 

A/1 + [(/?' + k)/0"}2), k e N*; the solutions belong to zR \ {±i} and do not 
accumulate at ±z. 

Putting s = f3 * z/z in Example 0.5.2(3), we therefore get a section upj, = Ue 
of D b ^ x s / s ; we have upj = \t\2(fj*z)/zL(t)1/£\. Then, the upj satisfy (if we set 
Utf. _i = 0) 

where the left-hand term is equipped with its natural ^ x j^) s ~ s ^ r u c ^ u r e ' Similarly, 
a sesquilinear pairing for right -modules takes values in ^ x S / s -

Remark 1.5.2. —- It is easy to verify that the various functors "going from left to right", 
for ^ V | s - and &{x~x) s-motlnles are compatible, and that they are compatible with 
sesquilinear pairings. 

Lemma 1.5.3. — If^f, are strict holonomic &-modules having their character­
istic varieties Cha i \ /# / 0

; Char , /# / / 0 contained in the zero section, then any sesquilin­
ear pairing C between and ,/^" takes values in c6^'-'^. 

(1.5.5) (tdt - ß-k z)ußj - ни - \. 

Recall that (ft* z)/z = (ft* z)/z, i.e., (ft* z) / z is "rear, where is the conjugation 
defined in § 1.5.a, or equivalently, ft * z — ft *z. Hence u.jj = upj,. Consequently, the 
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Ußj also satisfy 

(1.5.6) (t(5T — ß* z)ußj = Ußj-i. 

Fix z0 G S. Let 1 G C be such that Re((3 • z 0)/z 0 = /?' - /?"(z0 + l/z0)/2 > - 1 . 
Then, there exists a neighbourhood A of z0 in S on which upj defines an element of 
L\ (D x A). If B is a finite set of complex numbers /3 such that 

(1.5.7) ß G B ^ Re(ß*z0)/z0 > - 1 , 
(1.5.8) ßuß2 e B and ßi -ß2eZ=> ßi = #2, 

then the family (//j./ /*./CM °f elements of L\oc(D x A) (with A small enough, 
depending on 5), is free over C°°(D x A): this is seen by considering the order of 
growth for any z G A. 

1.6. The category ^-Triples(X) 

1.6.a. The category Triples(X) and Hermitian adjunction 
Definition 1.6.1 (of .^-Triples (X)) 

An object of Triples(X) is a triple ST = (^ ' , C), where are left 
-modules and 

C : .<s •4s ^̂ Xp.xS/S 

is a sesquilinear pairing. 
A morphism : (,#/,,^f, Ci) (,#2 ? ^2^2) is a pair (<£>', (//'), where ĉ ' : 

a n d ^ : ^\ ~* ^2 a r e -^.r-linear and compatible with Ci,C2, i.e., 
satisfy 

Ci(v?\*) = c 2(., ¥>"*)• 
The Tate twist of an object of Triples(X) is defined, for k G |Z, by 

(.^',.^",C)(fc) LW'.M"AizY2kC) 

Any morphism between triples is also a morphism between the twisted triples (with 
the same twist), and we denote it in the same way. 

The category Triples(X) is abelian. If is an object of Triples (X) and 
X(z) G <̂ (S), the object X(z) • & is by definition the object (^T, , X(z)C). If 
ip : —> £?2 i s a morphism, then it is also a morphism between X(z) • ,5̂  and 
X(z) • 

There are two functors £F i—»• and ^* i—> the first one to the category 
\Iod(.'#;.y.-)()p (opposite category), and the second one to Mod(^^;). The identity 
morphism Idt^ is defined as (Id^/, Id^z»). 
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Definition 1.6.2 (Adjunction). Let & = (M>\ .//". C) be an object of @- Triples(X). 
Its Hermitian adjoint is by definition 

ST* = ( .^ ' , .^",C)* d= W\JK\C*), with C7*(/i,m) d= C(m,/J). 

If (y? = (tp',(p") : ^ —>• ^ is a morphism in Triples(X), its adjoint cp* =f (ip,,,(p/) 
is a morphism <̂>* —• ,5̂ * in Triples(X). 

For k e |Z , we choose a canonical isomorphism: 

(L6.3) ( ( - l ) 2 f e I d ^ , I d ^ ) : -T(k) 3T*{-k)\ 

This isomorphism defines by adjunction an isomorphism ,^*( — k) <9"(k)* which 
is compatible with the composition of twists. These isomorphisms are equal to Id if 
k e Z. 

Remark 1.6.4. We can define similarly the category Triples(X)r: the objects 
are triples (,,-#', ,J/>", C), where are right ^^/-modules and C takes values 
in Cx:P,xS/s- The Hermitian adjoint is defined similarly. 

Given a left triple (./#', C), the associated right triple is (.4K,r ,.4K"V, C7r) with 
,/# / r = cĉ - and similarly for ,/^ / /: moreover. Cv is defined as 

Cr(uj' 0 m, cj" 0 //) = e(n)(£)n • C(rn. Ji)uj' A U77 (n = dim X). 

Going from left to right is compatible with adjunction: (C r)* = (C*) r. 

Definition 1.6.5. A sesquilinear duality of weight w; 6 Z on -y^ is a morphism , 
9 :/H* = fi 

Write ^ = (S', S") with 5', 5" : -> Then is a morphism if and only 
if C, 5', 5" satisfy, for local sections /i a, //2 of 

C(5VI,M2) = (^) 2 u 'C*(MI .5^). 

Let k e |Z . Put y(k) = ((-l) 2 / cS", S"). Then .9 is a sesquilinear duality of weight w 
on ^ if and only if 9(k) : f?(k) -> (.'7(A-))*(-/r + 2k) is a sesquilinear duality of 
weight w — 2k on <tT(k). In particular, 9(w/2) is a sesquilinear duality of weight 0 
on &(w/2). 

We note that J (̂fc) is obtained by composing .9? : 3?{k) —• !?*{—w + A;) with 
the canonical isomorphism chosen above 3?* -^(k)*(k), applied to the (—w + k) 
twisted objects. 

If ,9 : 3? —> w) has weight w, associate to it the sesquilinear pairing on S: 

(1.6.6) hs^ = (iz)~wC o (S" 0 Id) : M'^ 0 ^ —> D b ^ x s / s • 

We note that hs,,9> = ^S.j^O) f° r a n Y & £ We denote this pairing by hs when 9 
is fixed. 
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Definition 1.6.7. A sesquilinear duality of weight w on is said to be Herrnitian 

if it satisfies 

- ( 1 ) " ' / / . i.e.. S' - ( I )"'.<?". 

The exponent w is useful to get that , if ,9 is Herrnitian, then V (k) is Herrnitian 

for any k G ^Z. If y ; : 3? —>• ^*(—w) is Herrnitian, then its associated sesquilinear 

pairing hs../ on S is Herrnitian, i.e., hs = lis-

Remark 1.6.8. ----- Let .y : , T —> , T * be a Herrnitian duality of weight 0. We assume 

that y is an isomorphism. Pu t M — ,9t". Then is isomorphic to the triple 

(M,M,hs) which is self-adjoint and, under this isomorphism, <9J corresponds to 

(Id.//. Id.//) . Indeed, the isomorphism is nothing but 

( S " , I d # " ) : (M\M\C) > {M",,£"Jis)* 

as S' = 5 " by assumption. This trick, combined with a Tate twist by (w/2), reduces 

the study of polarized twistor ^ -modules (cf. Definition 4.2.1) to that of objects of 

the form {(.//..//. C). ( I d V / . Id.//)]-

1.6.b. S m o o t h t r i p l e s . — We say that an object & = (M',M",C) of 

/^-Triples(A') is smooth if and Jt" are O r locally free of finite rank. It 

follows from Lemma 1.5.3 that , for a smooth triple 3?, the sesquilinear pairing C 

takes values in x s . 

Definition 1.6.9 (Inverse image). - Let f . Y —> X be a holomorphic map between 

complex analytic manifolds Y and X. The inverse image by / of the left smooth 

triple & = (M',M",C) is the smooth triple f+3T = {f+M', f+M", f+C), where 

f+M — /*,..# is taken in the sense of ^-modules with connections (cf. § 1.4.b) and 

/ + C ( 1 0 / / / . 1 y in") = C(m',mr) o / . 

Remarks 1.6.10 

The inverse image by / of C by is well defined because C takes values in C°° 

functions on X, and not only in distributions on X. 

The inverse image by / of a morphism is the usual inverse image of each com­

ponent of the morphism. 

- The inverse image functor commutes with Tate twist and Herrnitian adjunction. 

The last remark allows one to introduce: 

Definition 1.6.11 (Inverse image of a sesquilinear duality). — We assume that 3? is 

smooth. The inverse image 

f + y . f+p —> f+^*(-w) 

of a sesquilinear pairing ..9J = (S'.S") : 3? —> ^*(—w) of weight w is the morphism 

(rs'.ps") 
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A Hermitian sesquilinear duality of weight w remains Hermitian of weight w after 
inverse image. 

1.6.c. Differential graded /^-tr iples. — Consider the category of graded 3%-
triples 3? — (Bjtz^i. Morphisms are graded. We will follow the usual convention 
when writing indices: ST5 = 3T~3. For k G Z, put (-X = .7}. k or (&[k])j = ,9J+k. 
The shift [•] and the twist (•) commute. A differential d is a morphism J9 —» ,T[1](£) 
such that d o d = 0, for some e G Z. 

The Hermitian adjunction is defined by = ®7(,5^*)J with the grading (3?*y = 
( ^ ) * . We have (37[k]y = <7*[-k]. 

A sesquilinear duality of weight w on 3? is a (graded) morphism 9 : —» 37* (—w), 
i.e., a family of morphisms -57 3 : - 7 J —> 37~'J*( —w). 

A morphism (/? : 37 —> ^ is self adjoint (resp. skewadjoint) with respect to 
if the following diagram commutes (resp. anticommutes): 

.9 J J (-«') 

J 

KL J 

A differential d is selfadjoint with respect to 39 if and only if 37 is a morphism of 
complexes (37,d) —> (,^*( —w). d*). 

Filtered objects are defined similarly: a decreasing filtration F* 3T of 3? consists of 
the datum of decreasing filtrations F° .73', Fm.9/" such that, for any k G Z, we have 
C(F~kJrl ,73', Fk,73") = 0; then Fk 37 = (.737j F-k+l ,73' ,Fk ,733' ,C) is well defined 
and we have gr^,^ = (gx^ ,737.gxkF,73" ,C) (where we still denote by C the pairing 
naturally induced by C). 

Define the decreasing filtration F* 37* by Fk(,37*) = / F~k+1^', Fk ,73', C*). 
Then gikF(:37*) = (gr^A^)* and, considering the total graded object gYF37, this is 
compatible with the definition above of adjunction for graded objects. 

Lemma 1.6.12. Let (J?,F9) be a filtered 3#-triple, equipped with a filtered differen­
tial d and a filtered sesquilinear duality <37 of weight w. We assume that d is selfad­
joint with respect to 37. Then -37 induces a natural sesquilinear duality of weight w 
on El — 33pH3 (grpF<37) with respect to which the differential d\ : E\ —» E\+ is 
selfadjoint. • 

1.6.d. Direct images in ^-Triples. — The purpose of this paragraph is to de­
fine, for any holomorphic map / : X —> Y and any object 3? = (.733, ,73", C) of 
2%- Triples(X), an object f^37 in the derived category D+(3£- Triples(Y)). Such an 
object is a complex ((^7'*)op. -37"*, C). where the first term is a complex in the 
opposite category Mod(<^V)op (given a complex ..A3* in Mod(,#V). we put ,./Vopk — 
^y-k^ an j seGOnd term a complex in Mod(.^V). Therefore Ck is a morphism 

Sr*[k]{i-w) 
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,/^s k ®),Y^k —» CyRXS/S which is compatible with the differentials, i.e., the following 
diagram commutes: 

yl-k AT Ilk 
/K|S 

ck 

> V̂,xS/S 
d" 

is (/t"J>r (/t"J>r ^KXS/S 

d! 

The complex / t ,^ will take the form ((/t.^')°p, fv^\ f]C), where ,/'t^/, / t ^ " are 
defined in § 1.4.a and (/t-^')°p *s tne corresponding complex in the opposite category. 
We will therefore obtain a family of sesquilinear pairings 

(1.6.13) f\C : .iT-'(/t.<s) ®es «^'( / f^s) —> %xs/s-
We will define /-j-C when / is a projection and when / is an inclusion. For a 

general / , we write it as the composition of its graph inclusion if and of the canonical 
projection pf, and put f\ — Pf]if]-

We will prove 
(1.6.14) /f(^*) = (/t"J>r 
and, whenever / and g are composable, 
(1-6.15) (<7°/)t^ = St(/t^) 
(a) Case of a projection f : X = Z x Y —» Y and left triples. Recall (cf. Remark 
1.4.8) that we have (/f ,/#)S = f\ V;^XS/V, XS -\s ^\s) • Consider the family of 
morphisnis 

(Асу /'(<^x's/n.xS®^|S'<S / ! & . x 8 ® * . , | B ^ s ) ^bv':Xs/s 
defined by 

(1.6.16) (//" ' 0 m!) 0 (if-1 0 /"") e(n + i) 
(2in)n f 

C(m',m")rf-J A7fl+J. 

Lemma 1.6.17 
(1) f..?*' ((f^r^ff-^'J'iC) is an object of D+(®- Triples(y)). 
(2) We have/'(<̂ x's/n.xS®̂ |S'<S . 
(3) If f,g are two composable projections, we have (g ° f)]C — g^(f\C). 

Proof. We have, by &,x Y) s-linearity of C, and up to multiplication by (—l)n, 
(ftC)3 (V(f)" J 1 <g> ra') 0 (//"<•' (8) m") 

s(n + j) 

(2z7r)n (C(m', m")d7f-3-1 + C(Vra', ra") A r;71--7"1) A r/n+J 
e(n+ ?) 
(2i7r)n (C(ra', ra" Wi_J + d'Cfra', ra") A r/1"7"1) A rin+o 
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and similarly 

(/tC)i+1 {(;nn~j~l ® rn') 0 V(//''+-> 0 ra")) 

e(n +7 + 1 
(2i7T)n t}"~J~[ A ((0(mX V///") A //" • i + C(in. m")dij"Y) 

s(n + j + 1) 
(2ill)n 

//" 1 J A (r/"C(y//. •///") Ar/»+J + C^ra")rir7n+->). 

Using that,e(n + j + l) = (-l)n+J s(n +j) = (-1)" '-(n~j). Stokes Formula implies 
that both terms are equal, hence* 1.6.17(1). 

To prove 1.6.17(2), remark that we have* 

(fj('~) •'((//"••' 0 m") ® (7/" "J' 0 7/7/)) (J J) 
(2/7T)" 

C(iri ,m")r)"-i (n-j) 

(-iys(n-j) 
(2/7T)" 

C(iri ,m")r)"-i A //" : 

((/t^)J)* ((//'+J 0 m") 0 (7/-.^ 0 raO). 

the last equality following from ( -1 )+-:(n — y) = s(n + j). 

Last, 1.6.17(3) follows from 

(-l)(M"A-)(R'+'7)5(7n+7/+.y + A:) - (_i)(m+A:)(»+,)£(7/7 + n+j+A:) = e(n+j)£(m+fc). • 

f&J Case o/ a dosed inclusion i : X ^ Y. Consider first the? case* of right triples. 
In this case, ivW> is generated by as a -module. The pairing z+<0 is extended 
by ftf.&-linearity from its restriction to /*.̂ jg 0 0 .^g . where* it is defined as the 
composition of C with the direct image of currents 

£.Y : XS/S ++ > ^V::XS/S 
7/ i > / . . u : 0 i > {//. 0 o /') (0 G Y^(Y x S)) 

For left triples, define i^C in such a way that (i-\C)r = /'f (Cr), where Cr is defined in 
Remark 1.6.4. If X is a submanifold of F defined by Xj = 0 (j G J C {1. . . ., ??,}), we 
identify with 0C C[3:,.;. ;] and we have, for any y G £^n(Y x S/S), 

((/'tC)(/// 0 1, ra" 0 1), cp) = (C(m\rn") 
,e.J -tdx3f\dx3l 

The conclusions of Lemma 1.6.17 clearly hold for the case of closed inclusions. 

Remark. ----- It can be more convenient to write the form -£-dxj A dxj as 

1 dxj dxj 
~2Ïtv ~~z ~¥ 

when checking the compatibilities below. 

ASTÉRISQUE 300 



1.6. THE CATEGORY Triplcs(X) 37 

(c) General case. For a general / , define /-j- as the composition Pf]if] as indicated 
above. One has to check first that this is compatible with the previous definitions 
when / is a projection or an inclusion. This is mainly reduced to checking this for a 
closed inclusion f : X ^ Y. 

Then, to conclude that (go f)^ = g\f\, and to end the proof of (1.6.14) and (1.6.15), 
it is enough to show that, in the following cartesian diagram, 

X X Y 
Id xi 

X X Y' 

P p' 

Y 
i 

Y' 

we have pj o (Id xz')f = HPf-
We leave both computations to the reader. 

1.6.e. The Lefschetz morphism. — Let c G H2(X,C) be a real (1, l)-class (the 
Chern class of a holomorphic line bundle for instance). We will show that it induces, 
for any -module ,73, a morphism 

Lc : -73717 33 —> •73l'2fj,73 

in such a way that, if ST = (,73\J773C) is an object of the category ^-Triples(X) 
or the derived category D(,73- Triples(X)), then Lc induces a functorial morphism in 
^-Triples(F): 

(1.6.18) 9C - (Z/,L;f) f̂ f (-LC,LC) : fj+2—* / / + 2 ^ ( 1 ) . 

It will be enough to apply the following computation to a closed real (1, l)-form 
to G T(X, ^y'1) representing c. 

Let if : X ^ X x Y he the graph inclusion of / and let p : X x Y —> Y be the 
projection. We have }\-7 — p\if^337. So we can replace 37 with i^\77 and assume 
that / is the projection X = Z x Y —> Y. 

Let uj be a real closed (1. l)-form on X. We define : j\„73 —» #[2] as the 
morphism induced by z-1a;A on /j(^w!^ «^0* where n — dimX/F (c/. Remark 
1.4.8). It is a morphism because uj is closed and the morphism induced on the coho­
mology depends on c only. 

We will now show that, as uj is real 2-form, we have a morphism 

S£„ = (L'^LZ) = (-L„,LU) : f\& — /T7+2.^(L). 
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As uj is a real 2-form, we have, by Formula (1.6.16) and using that e(n + j + 2) =e (n+j) 

E(n+j) 

ñC(L'Arr-J-¿ ®m),rr+i ® IJL) 
e(n + j) 
(2гтг)п C(rrhß)z~Luj Л r/n_J~2 Л 77N+̂ ' 

(iz) 2g(n + Л 
(2гтг)" C(rn,Jl)7]n~j-2 A z-1uj Л //" ! •> 

(iz) 2g(n +j + 2) 
(2гтг)п C(m,/¿)r/n~J"2 Л z"1^ Л 77n+J 

ñC(L'Arr-J-¿ ®m),rr+i ® IJL) 

ASTÉRISQUE 300 



CHAPTER 2 

SMOOTH TWISTOR STRUCTURES 

The notion of a twistor structure has been introduced by C, Simpson in [64] (see 
also [65]) in order to extend the formalism of variations of Hodge structures to more 
general local systems. The purpose of this chapter is to review the basic definitions 
in the language of ^-Triples, in order to extend them to -modules. Following 
Simpson, we express the Hodge theory developed in [63] in terms of twistors and 
recall the proof of the Hodge-Simpson theorem 2.2.4. Nevertheless, this theorem will 
not be used in its full strength for twistor f^-modules, according to the method of 
M. Saito. It is useful, however, to understand the main result (Theorem 6.1.1). 

2.1. Twistor structures in dimension 0 

In order to explain such a definition, we will first give details on the simplest 
example, i.e., when X is reduced to a point. We will first give definitions for weight 0, 
then give the way to obtain a twistor of weight 0 from a twistor of weight w: this is 
the analogue of the Weil operator C in Hodge theory. The convention taken here will 
look convenient later on. 

2.1.a. Twistor structures in dimension 0 after C.Simpson [64]. — A pure 
twistor of rank d and weight w is a vector bundle on P1 isomorphic to (<̂ Fi (w))d. 
A mixed twistor is a vector bundle on P1 equipped with an increasing filtration 
W. indexed by Z such that, for each I 6 Z, gr)r./f is pure of weight L A pure twistor 
structure can also be regarded as a mixed twistor structure in a natural way. A 
morphism of mixed twistor structures is a morphism of vector bundles which respects 
the nitrations W. There are no nonzero morphisms between pure twistor structures 
when the weight of the source is strictly bigger than the weight of the target. The 
category of pure twistor structures of weight w is equivalent to the category of C-vector 
spaces, hence it is abelian. The category of mixed twistor structures is therefore 
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abelian and any morphism is strict with respect to W (see loc. ext., and also [17, 
Th. 1.2.10], [56, Lemme 5.1.15]). 

2.1.b. Twistor structures in dimension 0 as objects of Triples. — We will 
give an equivalent definition of twistor structures which will be extended to arbitrary 
dimensions in §4.1. A twistor structure of rank d and of weight w consists of the data 
of two free 73^{)-modules Jff" and 377"' and of a ^s-lhiear pairing 

(2.1.1) c -. y/'s ® .//;: — ffs 

(in other words, ( J f ' , ^ " , ^ is an object of 3$,-Triples(pt) where C takes values in 
&s instead of only ^g), such that (a) and (b) below are satisfied: 

(a) The sesquilinear pairing (2.1.1) is nondegenerate, i.e., its matrix in any local 
basis of 3tf^'s and <7fi^ is invertible, so that the associated 77$-linear morphism induces 
an isomorphism 

(2.1.2) ^ -<s = ̂ om,fhllW', ûQli)s-

(b) The locally free €Yx -module obtained by gluing j ^ / v (dual of chart 
£10) and (conjugate of yf", chart i}^: cf. §1.5.a) using (2.1.2) is isomorphic to 
&Fi(w)d. 

Having chosen 0 and oc on P 1 , the category of twistor structures of weight w is a 
full subcategory of Triples(pt): a morphism <p : . X\) — ( . / / : / . C 2 ) 
consists of the data of morphisms <pf : —> Jtf{. : —> J^" of -modules 
such that Ci(ip'(?ri2) <8> m") = C2{rri'2 <8> v?"(ra")) for any £0 G S and all m'2 G 
m" G Jf?i_z (recall that a(z 0) = — 20 when 20 G S). This category is clearly 
equivalent to the category of semistable vector bundles of slope w on P 1 , or to the 
category of finite dimensional C-vector spaces. 

The notion of a Tate twist is also well defined: recall that , for k G i Z , we put 

(2.1.3) (./73 ./3". C)(k) =f (,/33 ./3'3 (%z)-2kC). 

The weight of (./73 .//". C)(k) is w - 2//. if (./73 .37?". C) has weight w. 

Weil reduction to weight 0. Given a twistor 377 — (,77',./7jn\C) of weight i/;, its 
associated twistor of weight 0 is by definition 37 = -7(w/2) = (.37', ,73", (iz)~wC). 
We note that, if (p : 377\ —>• 372 is a morphism of twistors of weight w then -p> also 
defines a morphism 37\ —> 372. We note also that, for any k G ^Z, the twistors 37 and 
37(k) have the same associated twistor of weight 0. 

Remark 2.1.4. A triple (./7 3 ./7". C) is a pure twistor of weight w if and only of 
one can find C-vector spaces H' C Y(VA). .77'). H" C Y(i\, MJ") of finite dimension 
(equal to rk ./7' = vk./7") such that ./7' = 33il{) £;C H', ./7" = &Ql) ®c H", the 
restriction of R(S,C) to H' <¥)TT" takes values in zwC C T(S, ffs), and induces an 
isomorphism H" -73+ H/v. 
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We can also define the category of mixed twistor structures as the category of 
triples with a finite filtration, such that grj4 is a pure twistor structure of weight L 
If (^'..3f",C) is a mixed twistor structure, then M!' and ,3tf"' are locally free and 
C is nondegenerate. This category is equivalent to the category of mixed twistor 
structures in the sense of Simpson. 

2.I.e. Herrnitian adjunction and polarization. — Recall that the Herrnitian 
adjoint of the triple = (M1' ,C) is the triple ST* = [M'", ,W,C*) 
(cf. Definition 1.6.2). If is a twistor of weight w, then ^ * has weight —w. Recall 
also that (.'7(k)Y = -T*( — k) for k 6 Z and that we have chosen an isomorphism 
(•9(k)Y &*(-k) if k 6 |Z. 

Definition 2.1.5. Let -9 = (M', M". C) be a twistor structure of pure weight w. A 
Herrnitian duality of f7 is an isomorphism .C/J : & —> /?*(—w) which is a Herrnitian 
sesquilinear pairing of weight w in the sense of Definition 1.6.7, i.e.. which satisfies 
,y* = ( 1 )"•./. 

The associated sesquilinear pairing (cf (1.6.6) 

(2.1.6) /78 ( = (iz)-"'C о (S"® Id) : 

is nondegenerate and Herrnitian, i.e., satisfies h&(m,j.L) — hs(fi.rn) for local sections 
//;.// of M^. 

Assume now that w = 0. We therefore have S' = S" d= S. Let be the trivial 
(f̂ ipi-bundle defined in (b) above and consider its conjugate in the sense of § 1.5.a. 
This is the trivial vector bundle obtained by gluing . /{" (chart Qq) and (chart 
^x ) , using the conjugate of the map (2.1.2) (also denoted by C) induced by C, that 
we denote by C. We can define a ff^>\ -linear pairing h : W 0̂ '„,.i —+ 0pi in the 
following way: 

in the chart i\, h is the pairing (5V •) : ®#i2 —• (hi{)> where (. ) is the 
standard duality pairing; 

in the chart Vt^. h is the pairing (.. ~Sl) : .'/{'-' 0 ^ ^ ~/Tn —• ; 
that both definitions agree near S follows from the fact that hs is Herrnitian; 

using C, one can identify hs with hs', for the same reason, h is Herrnitian. 
Let us denote by H the rank d vector space H°(Fl. ). Its conjugate H is canon-

ically identified with /7°(?1. .//"). Therefore, h induces a Herrnitian pairing 

H"S 
S 

H"S oS 

(2.1.7) /7. = nji : II II y C. 

Remark2.1.8. - We have a canonical inclusion H C R(S,J^G) (restriction of sec­
tions). We also have a canonical conjugate inclusion H C T(S,Jff£). Then h can be 
identified with the restriction of T(S, hs) to 7/ 0c 77 by these inclusions. 
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If 3F has weight 0, we say that the Herrnitian duality ,5F : 3F —* 2F* is a polarization 
of if (c) below is satisfied: 

(c) The Herrnitian pairing h defines on H a positive definite Herrnitian form. 

Reduction to weight 0. If 3F has weight w. we say that a Herrnitian duality 
SF : £F —» it;) is a polarization of the twistor structure <T of pure weight ?// 
if y(iv/2) (defined after Definition 1.6.5) is a polarization of 3F(w/2), i.e.. the posi-
tivity condition (c) above is satisfied for the Herrnitian duality V (ir/2) of the twistor 
structure ,-9(w/2) of weight 0. This is equivalent to saying that, if H is defined as 
above with 3F{w/2) and H C FF s 1S Tlie corresponding inclusion, then the restriction 
of hs defined by (2.1.6) to H 0c H is positive definite. 

We note that, if (,^,,5^) is a polarized twistor structure of weight w, then, for any 
k G |Z, (,^(/c), ,y(k)) is a polarized twistor structure of weight w — 2k. 

Under the equivalence above, the category of polarized twistor structures of 
weight w (the morphisms being the morphisms of twistor structures) is equivalent 
to the category of C-vector spaces with a positive definite Herrnitian form (the 
morphisms being all linear maps). In particular we have: 

Fact 2.1.9. — Let SF\ be a subtwistor structure of the polarized twistor structure 
(3F,,5?) (the weight is fixed). Then F induces a polarization on the subtwistor, which 
is a direct summand of (3F, ,5F). • 

2.1.d. Complex Hodge structures and twistor structures (after [64]) 

Consider the example of §1.8.c with X a point. So, let H be a C-vector space 
equipped with a decomposition H — 0-/,///'-"" 0 that we call a complex Hodge struc­
ture. Consider the two decreasing nitrations 

F'P = 0 Hp',w-p' pttq = 0 Htu-q',q' 
p'^p q'^q 

nid the Rees modules associated to these filtrations 

J^ 'V =F E f'vz~v C C[Z, z~l) 0 H 
P c 

.FF" =f 0 F"qz~q C C[z, z~l] 0 H. 
q c 

We will now work with the algebraic variant of twistor structures, where we replace 
< (̂S) with C[z, z~l], Jtf", <FF" are regarded as free C[z]-modules, and where we replace 
,FF]S with si'° = C[z,z~1} 0c[z] jFf \ etc. We have 

jf'= ®((Hp'w-pyzpC[z]) 
V 

^ = E (H^w~pz-J)c[z}) 

3Ff" = 0 (Hp>w-pzp-wC[z]) 
p 

.^•" = 0 (//"""' pzw-pC[z-1]). 

The inclusions 

?F'V = 0 F,pz p C C[z, z~l]0H 0 0 F"qzq = .FF" 
P C q 
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define a semistable vector bundle of weight w on P1. The pairing C is induced by the 
natural C-duality pairing (, ): 

(Hp'w-p)s/zp®Hp'w~pzw-p zwC[z] 

xvzp®yzw-p <*\v)zw. 

Let us now compare the notion of polarization with the usual one. The natural 
inclusion j : H W0 is induced by Hp'w~p y—> Hv'w~p'zp~w. The conjugate inclusion 
j:H<-> is given by HP'W~P ^ HP"W~P (-\)p~w zw~p. 

Let k be a polarization of the Hodge structure as in §1.3.c (with dim A" = 0). 
We regard k as an isomorphism Hp'w~p ^ (HP,W~P)V. Define S' : MJ" -* :73' by 
S' = zwk : Hp-w-pzp-w (HP,w~P)wzp and S" = (-l)wSf = (-z)wk. 

For x,y G Hp-W~p, we have 

hsU(*),m) = (iz)-wC(S"(j(x)),j(y)) 

{iz)-wC(S"{xzp-w),(-l)p-wyzw-p) 

(-lf(iz)-wC(h(x)zp,yzw-p) 

(-l)p}-(k(x),y) 

We therefore recover the usual notion of positivity. 

2.I.e. Graded Lefschetz twistor structures. — Fix e — ±1. A graded Lefschetz 
twistor structure [37 = (-77'\ 373", C), 37\ of weight w G Z and type e consists of 

a finite family, indexed by j G Z, of twistor structures 37j — ,¡7?", Cj) of 
weight ir — ej. so that -7 - ;-y .7,. 

a graded morphism 37? : 37 —> 37(e) of degree —2, such that, for any j , the 
component .if : 37} —• 373_2(e) is a morphism of twistor structures of weight w — sj, 
and that, for any j; ^ 0, JSf-7' : -T7 —> 37_^(ej) is an isomorphism. 

Morphisms <£> are families ) j of morphisms of twistor structures, which are compati­
ble with 37. Remark that J*f - (1/, L"), with L' : JH7! -+ ^ '_2 and L" : J^" -+ ,^_2 
(we forget the index j for ,37). 

Remark 2.1.10. We will follow the usual convention when writing upper indices: 
put 373 = 37_y, then 373 has weight w 3 sj and 33 is a morphism 373 —» ,^J+2(£). 

The primitive part of index j > 0 of .2") is the twistor structure of 
weight w — ej defined as Ker J/fJ+1 : 37j —> r37^1_2(e(j + 1)). We therefore have 

P373 = (L'3 P./7-. P.tfJ'.Cj). 

where P , ^ " = Ker[L//-^1 : ,//// ^ _ 2 ] , and similarly for F/7]. The primi­
tive parts allow one to reconstruct (37,37) up to isomorphism using the Lefschetz 
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decomposition: for any j0, 

(2.1.11) = © ^P.^+2A.(-cA:). = © ^ffc+>P^-+2fc(-e(fe + i)). 

Put .5" = -9*{-w), with the grading ,'7/ = -7_*7-(-u.') and define / ' = ,¥*. Then 
(,i7', „5f') is an object of the same kind as ( 7 . Jzf). Moreover we have 

I'/; = {/jfjp.%y{-w l* j (P.9jr(-w + ej). 

Weil reduction to weight 0. Any graded Lefschetz twistor structure .if) of 
weight u> and type £ = ±1 gives rise to a graded twistor structure -7 of weight 0 and 
a graded morphism .if : ^ —> 3/r]_2 by putting — ./y ((//• — ej)/2) and .if = .if. 
We hence have 

= Ж_п Ж" = Ж". С, - (^)-u,+£JC;. I / = I / , L" = L". 

The category of graded Lefschetz twistor structures of weight 0 is equivalent to the 
category of graded C-vector spaces H = (BjHj of finite dimension, equipped with a 
graded nilpotent endomorphism L : H —> H of degree —2, such that, for any j 0 0, 
L-7' : i7j —•> H-j is an isomorphism. More precisely, the twistor condition on ,9} 
gives vector spaces #J C .//}'. H'f C -vf/' such that C:) : /T • v T7]7 , 2W'-̂ 'C is 
nondegenerate. Put i/7- = and use Cj to identify H'_j with 17*. Define L : Hj -> 
H3-2 as the restriction of L" to H"} . 

We call this situation the case of weight 0 and type 0 (this is not exactly obtained 
by putting w = 0 and e = 0 in the previous case). 

From this equivalence, it is clear that the category of graded Lefschetz twistor 
structures of weight w and type e is abelian and that any morphism is graded with 
respect to the Lefschetz decomposition (2.1.11). 
Polarization. A Herrnitian duality of is a graded isomorphism -9J : -7 —• 
.?*( -tr) which is Herrnitian in the sense of Definition 1.6.7, in other words ( — I t ­
self adjoint, i.e., a family (-/; of isomorphisms 

yj = (S'_i,S"):.?j^.?ÏA-w), 
satisfying l*j = — ( — l)wyj-j, in other words a family indexed by j G Z of isomorphisms 

s'j :^.///. ?ÏA s'j :.//;' ^.//;. 

with S'j = (-l)wS'j, such that, for x G?j^ and y G J^-", we have 

CjiS'.^y) = (izf^Cljix.S^y) d= (izf^C-jiS^x). 

We say that this Herrnitian duality is compatible with .if if .if is skewadjoint with 
respect to 5?, i.e., 

(2.1.12) if* о у + У , 1 - 2 2 о У = 0. 
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This implies that o 57j = ( — l)3y53 o 573 which can be written, using the 
symmetry of 37, as 

(/77 3 o j ^ ' ) * = (-l)w'£:)(,y_3 o (£ = ±1) 

This also implies that 57 is completely determined by its restriction to the primitive 
parts P 37j and can be rebuild using the Lefschetz decomposition. 

Given a Hermitian duality 57 of (37,,53) (that is, a Hermitian duality of 37 com­
patible with J£f), the composed morphism (j ^ 0) 

(2.1.13) (Py)j =f o 533 : P5} Lj 333P373 S 
(jJ)* (w+e) 

is thus a Hermitian duality of P373. We then say that 57 is a polarization oi(37, 55) if, 
for any j > 0, this Hermitian duality (P,57)j is a polarization of the twistor structure 
P37j (of weight (w — £?')) as defined in §2.I.e. 

Example 2.1.14. — Assume that w = 0 and that J^' = Jffj" = .77) and Cy*J = CV.-
for all j , so that 3733 = -'7). Assume also that 33J3 = (Id, Id) for all j . The fact that 
55 is skewadjoint with respect to ,9 means that 53* = -j£f, i.e., L' = -L". The 
polarization (P.y)j on P ^ is the morphism PS73 —• {P37yy (sj) given by 

(L'yL":)) : (L'1P.77I. P-77j.Cj) (P./73.L"ipy7r (iz)-'2£JC-3). 
The positivity condition is that T(S, •) of the Hermitian form (2.1.6) 

Uzy^CAL"3.^) : P^-is P ^ , s —> ^ 

takes values in C and is positive definite, when restricted to PH1 C T(S, Py53\s)-
In other words, P37.j(—sj/2) with its polarization is isomorphic to the twistor 

structure (l\/7rP./7l5izY-,CAL'ri.^)) with polarization (Id, Id). 

The datum of a polarized graded Lefschetz twistor structure (37, Jzf, 57) of weight w 
and type e is therefore equivalent to the datum of one of weight 0 and type 0 plus 
that of w,e, i.e., to the datum of (H, L, w, e, h), where (H, L, w, e) is as above and 
h is a homogeneous sesquilinear form of degree 0 on H (5 H, i.e., corresponds to a 
family of pairings 

// : // , 0 H3 > C 

such that L is skew-adjoint with respect to h and h(LJ»,») is a positive definite 
Hermitian form on PHj for any j ^ 0. 

Remark 2.1.15. The datum of (H,h,L) as above is equivalent to the datum of a 
finite dimensional Hermitian C-vector space (H,h) with a SL2(M)-action: the torus 
C*-action gives the grading, and L comes from the corresponding s^^)-act ion. The 
positivity condition for h(LJ».») on PHj is then equivalent to the positivity of the 
form Ji(W», •) on P , where W corresponds to ( 3\ J) . 
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Remark 2.1.16. The Fact 2.1.9 also applies to graded Lefschetz twistor structures 
of weight w and type e. Indeed, reduce first to weight 0 and type 0. According to 
Remark 2.1.15, it is then a matter of proving that, given (H,h) with an action of 
SL2(M) such that &(•,•) C=f h(W*,*) is positive definite, any SL2(M)-stable subspace 
H' has a SL2(M)-stable fc-orthocomplernent: this is clear. 

Remark 2.1.17. If one forgets the notion of weight and the notion of positivity, one 
can define the category of graded Lefschetz Triples and the notion of Herrnitian 
duality on objects of this category by changing above the words "twistor structure" 
with the words "object of F/f- Triples". 

Remark 2.1.18 (Stability by extension). We assume that we have an exact sequence 
0 —> y —> 3? —» y 0 in the category of graded Triples (morphisms are graded 
of degree 0); assume that each of these objects is equipped with a graded morphism 
j£f of degree —2 and type e, in a compatible way with the exact sequence; lastly, 
assume that (^Vif) and Ĵ f) are graded Lefschetz twistor structures of the 
same weight w. Then so is Indeed, applying the Weil reduction procedure 
above to all objects, one can assume from the beginning that e — 0 and w — 0. We 
have exact sequences 0 —» ST! —> ^ —• 2F" 0 for any j . The locally free <^Fi-module 
corresponding to 3?j is an extension of two free 0Fi -modules, hence is free. We are now 
reduce to consider exact sequences of graded vector spaces 0 —» H' —» H —> H" 0 
with compatible endomorphisms L, such that, for any j ^ 1, L7; : H'3 —> H'_^ and 
Lj : H" —> H'Lj are isomorphisms. Then, L3 : Hj —> H-j is an isomorphism. 

2.1.f. Two results on polarized graded Lefschetz twistor structures. — Let 
y, ,9) and (y, .if', be polarized graded Lefschetz twistor structures of type 

E — ±1 and weight w and w — e respectively. Let c, v be graded morphisms of twistors 
of degree —1 

e:Fj+1 F'j V : Я Fj+1 (E) 

such that Jzf — v o c and i f = c o i;. We assume that c, i; are adjoint with respect to 
y and y*', i.e., for any j , the following diagram commutes: 

J 

and the adjoint diagram anticommutes. 

F-j (-W) 
с г;* 

ОТ I 
С/>1 

j=1 (w+1°) (-w + e). 

Proposition 2.1.19 (cf. [56, lemme 5.2.15]). Under these assumptions, we have a de­
composition y — Im c © Ker v as a graded Lefschetz twistor structure. 
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Proof. — Remark first that each term of the decomposition is stable under 53 '. Apply 
the Weil reduction to weight 0. Now, 37, 37' are graded vector spaces with a nilpotent 
endomorphism 33,33' of degree — 2, and with sesquilinear forms h,h' of degree 0, 
such that 5?. 55' are skewadjoint. There are morphisms c., v of degree —1 such that 
v o c — 53, c o v = 37', and which are adjoint or skewadjoint to each other, as above. 
The proof of [56, lemrne 5.2.15] applies to this case. • 

Fix E±,E2 = 31. The notion of a (polarized) bigraded Lefschetz twistor structure 
(37,55\, 553) of weight w and bi-type (E\,E2) is defined in a natural way, similarly to 
the single graded case: 53\ and 552 should commute and the primitive part in 57j1^2 
is by definition the intersection of Ker J^f1 + 1 and Ker J^'2 + 1. The following lemma 
will be useful in §6.4. 

Lemma2.1.20. Let (53, ,53\, 532^57) be a polarized bigraded Lefschetz twistor struc­
ture of weight w and bi-type (E,E). Put on 37 the grading 53a — ®j+k=e37j^ and set 
35 — 55\ 3552- Then (37,57\ 3552, 53) is a polarized graded Lefschetz twistor structure 
of weight w and type E. 

Proof. — Reduce to weight 0 and bi-type (0,0). We therefore have a Hermitian C-
vector space (H, h) equipped with a SL2(M) x SL2(M) action and a positivity condition 
(cf. Remark 2.1.15). Consider the diagonal SL2(R)-action. Then W acts by W2 = 
(W, W). Now, the positivity of h{W;*) follows from [28, §4.3]. • 

A differential d on (53, 55\, 552, '37) is a morphism of bidegree ( — 1, —1) 

d : 373^n —> :7h l.y-j i(c, 3E2) 

such that dod — 0, which commutes with 55\, 5^2 and is selfadjoint with respect to ¿57. 

Proposition 2.1.21 (M. Saito, P. Deligne, cf. [56, proposition 4.2.2], [28, théorème 4.5]) 
In such a situation, the cohomology Ker<i/Im<i7 with the induced 37\, 572, 57, is 

a polarized bigraded Lefschetz twistor structure (57,57\, 372^37) of weight w and type E1, E2. 

Proof. — We note first that 57 induces a Hermitian duality on Ker d/'Imri. We note 
also that the Weil reduction to weight 0 commutes with taking cohomology. It is 
therefore enough to prove the proposition in the case of a bigraded Lefschetz twistor 
structure of weight 0 and bitype 0, 0 defined as above for the single graded case. This 
is done in loc. at. • 

2.2. Smooth twistor structures in arbitrary dimension 

2.2.a. A smooth twistor structure 37 = (377}', 573", C) (or a variation of twistor struc­
ture) weight w on 375 is a smooth object of ^-Triples(A) in the sense of § 1.6.b such 
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that its restriction to each xQ £ X (in the sense of Definition 1.6.9) is a twistor 
structure of pure weight w. The rank of 37 is the rank of the bundles 533', ,93". 

A polarization is a Hermitian pairing ,53 : —» 53*( —w) of weight w (in the sense 
of Definition 1.6.7) which induces a polarization by restriction to any xQ £ X (in the 
sense of Definition 1.6.11). 

Remark 2.2.1. — We have seen that the sesquilinear pairing C takes values in c3^^, 
according to Lemma 1.5.3. So the restriction to xQ of each component of the smooth 
twistor structure is well defined. It is also nondegenerate and gives a gluing of 5)3'* 
with JT77, defining thus a ^XPL-bundle / on A x P1. 

Lemma 2.2.2 ([64]). — The datum of a smooth polarized twistor structure of weight 0 
on X is equivalent to the datum of a flat holomorphic bundle (V, V) on X with a har­
monic metric h, or the datum of a holomorphic Higgs bundle (E,0'E) with a harmonic 
metric h. 

Proof — Given (H,Dfv,Dy,h) as in §1.3.a. consider the associated operators DE, 
DE. 0fE, 6E. Recall also that -535 = Y5^'iXU 0 ^ H is equipped with connections ZX^ 
and D"^ as in (1.3.1) and (1.3.2). Let .373' C 33 be defined as the kernel of D'f^. As 
we canonically have c33t = -> we can identify the locally free -module H with 
its conjugate and regard h as a ^j^-linear morphism H 53%^ H —> ^x • Consider on 
H the operators 

RV d35 N" D"E l)'t:. c\i clSJ a" a" — pi 
For local sections u,v of H, we therefore have 

d'h(u.T) - //(///,//. r) + /;(//. D'^r) 
h(0'Eu,v) = h(u.Oyc) 

and the (0, 1) analogues. Extend h as 
hs '• 53s ̂  53^ -33$ > '3y'^n 

by ^^|gn-linearity. If we define as above D~ = D"^ and D'5^ = D'M>, the previous 
relations can be written in a more convenient way: 

d'hs(u:v) = hs{D'^u.,v) + hs{u,Dyv) 
d"hs(u,v) = hs(D'^uv) + hs(u.D^v). 

Define ,75" = ,75' and S" = Id, S' = Id. Let C be the restriction to ,75^ 0f/s ^ 
of /is- The X) s"^nearity of C7 is clear from the analogous property of hs- Let us 
verify the 3$^x ^) s-linearity: for a local section r of -7^'s, we have D"^v = 0, hence 
D'-~v — 0; therefore, given zG £ S. for local sections a of ,75^ and of -937z<r, we have 
(using the standard rl; operator on functions). 

d'C(u,v) hs(IS~u,v) + hs(u,D^v) hs{D'*f,u,v) = С{Пжи,Т>) 
The ^''-linearity is obtained similarly, exchanging the roles of u and v. 
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Now we will show that (.FF'. FF '. ( ') is a smooth polarized twistor structure of 
weight 0 on X. Let us denote by ./F the bundle on X xF1 obtained by gluing the dual 

(chart Qq, coordinate z) with the conjugate MJ (chart f^, coordinate z') using 
the isomorphism hs '• FF s —-» -FF'^. As lis induces the isomorphism h : H —> 

(using the natural inclusions HY = 1 0 HY C tv:,-FF^ and H = 1 0 H C tt,./^s)- the 
natural map f^°xpi # —> is an isomorphism and 7r*h (cf. (2.1.7)) is identified 
with h. The restriction of these objects to each xQ G X gives therefore a polarized 
twistor structure of weight 0. Now, as we have ./F — F) 0o,r Ff '. the restriction 
of M" to .:r0 G X is equal to that of M\ and this shows that (.FF', C, ̂ ) with 
/ = (Id, Id), is a smooth polarized twistor structure of weight 0 on X. 

Last, let us show that, by restriction to z = 1, one recovers (V, V). We know that 
D"% = 0, so the Dolbeault complex (.FF 0%-^ Fy'']) is a resolution of ,FF'. As .FF' 
and the terms of this complex are F/q{)-locally free, the restriction to z = 1 of this 
complex is a resolution of -FF"/(z — l),FF'. But we clearly have /(z — \).FF' = H 
and D"Y, = so - 1)-^' = KerD'{, = 1/. Conclude by noticing that the 
restriction of IFto z = 1 is Z)^. 

Conversely, let (^FF''. •FF)".Cbe a polarized twistor structure of weight 0. We 
will assume that M)n = ,FF' and FF! = (Id, Id) (it is not difficult to reduce to this case, 
cf Remark 1.6.8). Put .FFJ = ̂ ' a n 0a,r -FF' and denote by //,s : tf\s ® % - > 
^?°|s 1 ^ne r̂ 5°Js11 ~̂ 110a 1 morpbism induced by C. As it is nondegenerate, we can 
use it to glue FFv (on X x 12q) with -FF' (on X x O^), and obtain a locally free 
F -module FF. 

As (-FF', ,FF'. C) has weight 0. the restriction of FF" to any xQ G X is the trivial 
bundle on P1, thus the natural morphism tt*-....FF —> ./f is an isomorphism and 
H =f 7T*.# is a <*f~ locally free sheaf such that ,jT = cé?^\ 0<é^ H. We define 
the metric //, on H as tïJi, where h is constructed as in §2.I.e. As there is a natural 
inclusion H C 7r....yf s and a conjugate inclusion H C tt^.FFs (induced by the natural 
restriction morphism 7r* —• ttjs*)? the metric h can also be defined as the restriction 
of T(S, hs) to // H (cf. Remark 2.1.8). 

The bundle FF comes equipped with a (1, ())-connection relative to tt : X xP1 —> P1, 
with poles of order at most one along X x {()}: 

D'^ - D' : .FF ^xpl /Fl(X x {0}) 0 .FF. 

Indeed, in the chart Çl0, the -structure on ,%F' defines such a (1, ())-connection on 
,FF (cf. §0.3), hence in a natural way on Mjy. Put the trivial a*âê%, -structure on 
•FF ' = a*cJiïf' (a bundle which is purely antiholomorphic with respect to X because 
of c). Therefore, J^xxQx =f Ç x î î l ®^xn nas a natural connection of type 
(1,0) induced by d'on ^^^n • 
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Let us verify that both ^-connections on ,33^ and 95\s correspond each other under 
the gluing /ig. For rri, fi local sections of -95\s and (f- 5 local sections of ^j^G11, we 
have 

d'hs(vm,ibu) = d'(ip'éC(m,u)) hs (D'(vm),^Jï) + /is {ipm, D'^/Z)), 

as C is ^) s-linear and D'(i 77) = r/' i • cx) /1. 
A similar definition and construction can be done for the conjugate notion, namely 

a relative connection of type (0, 1). with poles along X x {oo}. We denote it by D". 
Composing D' with the residue along X x {0}, we get an endomorphism of H, that 

we denote by —0'-=. According to the relative triviality of M\ we can write D' as 

D' = D^-z-1^.E 

where D'— is a (1, 0)-connection on H = tx^93 . Similarly, write D" = D'5 5 z~16^ = 

D~ - zO" Define also on .55 
E E /->' = a*c(D") = D'E + z-l0'E = D'E - zO'E. 

1>1 = *'c{D') =D"E- —0'E = D>E + z0'E. 

The ffi(X T) s~miearity of C implies that hs is compatible with D'~, -D̂ = on the one 
hand, and with D"~ D~ on the other hand. i.e.. satisfies, for local sections u.v of 
Hcr(S , .^fs ) , 

d'hs(u,v) = ha((D'E + z-Y0'E)u,v) + hs(u, (D~ - Z-%)T7), 

d"hs(u, v) = hs (•/>'/• + zl)%)u. v) + hs ( ". :/>'/. - z#L)v). 

From this and from flatness properties of the connections D', . . . , which is a conse­
quence of the existence of a 33 ̂  or a /^-^-structure, we get all relations needed for 
the harmonicity of h. • 

Remark 2.2.3. Keep notation as in the proof above. Let e be a basis of -33 which 
is orthonormal for hs- Then e is contained in H (and therefore is an orthonormal 
basis for h). Indeed, it defines bases ey and e of -35v and ,35 respectively. The 
orthonormality property exactly means that these two bases coincide near S, hence 
define a basis of ¿33. Consequently, s is contained in H and therefore s is contained 
in H. 

2.2.b. Hodge theory for smooth twistor structures. — Let X be a com­
pact Kahler manifold with Kahler form uj, and let (53,55) be a smooth polarized 
twistor structure on X of weight w, with 33 = (,95' ,.95' .C) and 59 = (S', S") = 
(( —l)u'Id, Id). Let us denote by / : X —> pt the constant map. 

Hodge-Simpson Theorem 2.2.4. — The direct image ( 5)j /j 53,53^ is a graded polar­
ized, Lefschetz twistor structure of weight w and type e — 1. 
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We will be more explicit on the polarization later on. We will restrict to the case 
w = 0. The general case follows easily by changing C to (iz)wC and Sf to ( — \)w S'. 

Proof. - Let us first recall the results of [63, §2] concerning this point. Let 
(H,Dy,h) be a harmonic bundle on X as in §1.3.a, with associated operators D'E, 
D%, 0'E and 0'E. Put Doo = D'E + 0E and D0 = D"E + 0'E, so that Dv = D^ + D0 
(notice that D^. Dn are not of type (1,0) or (0,1)). The main observation is that 
the Kahler identities 

ADv =2A1)oc =2At>q, 
are satisfied for the Laplacian, and that the Lefschetz operator L = uj A commutes 
with these Laplacians. For any zQ G C, let AZo be the Laplacian of D2o d= rDQ-\-z0fD00. 
Then, the Kahler identities proved in loc. cit. for D0 and (which are denoted there 
respectively by D" and D^) imply that 

(2.2.5) A*W = (1 + |*0|2)A3>«. 

It follows that the spaces Harm '̂ (if) of AZo-harmonic sections are independent 
of zQ and that the harmonic sections are closed with respect to any T>Zn. Moreover, 
Harm* (if) is equal to the cohomology of the complex r(X, (S^ 0%>^ if, D2o)). 

The Lefschetz operator induces a s^-structure on the space of harmonic sections. 
Consider the complex 

(c[z]0<Y 0 //:'A,+ z'D^). 

The restriction of this complex to each za G ftQ gives the previous complex. We can 
"rescale11 this complex by the isomorphism 

(2.2.6) 
C[z}0^q 0 H 

C ' y 
z-pC[z}0^q 0 if c az.z-1}®^™ 0 if 

c ^ c v;-
7/p-g 0 77"i i—> z~pif'q 0 m 

so that the differential D0 + 2Doo is changed into = f ) ^ + /9^ . where J),// — 
+ z~l0E and f/̂  = D"E + zQ"E are the restriction of D' w and 1̂ 4= respectively 

to the chart QQ. We have 

O.r 0 / C [ # 4 0 if; D0+ zD^) z-pC[z}0^qz-pC[z}0^q 

It follows that, for 2G 7̂  0, the restricted complex z-pC[z}0^q^%J-;mz-pC[z}0^ 
nothing but the de Rham complex of the fiat holomorphic bundle (VZo, D'E + z~l6'E), 
with T4„ = Ker(DE + 20##) (c/. § 1.3.a), the cohomology of which is the local system 
VZo — KerV2o; and for zQ = 0, the restricted complex is the Dolbeault complex 
{Slx®ex E:0'E). 
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We now come back to the proof of the theorem. Recall that, as l)"y/ defines a 
complex structure on . we have 

® IF.'(X: (^0,^8,1)^)) -^€? ® IF.'(X: (^0,^8,1)^)) -^€?s 

Therefore, after (1.6.16), we can compute /-j- 3F as follows: 

fi? ® IF.'(X: (^0,^8,1)^)) -^€? ® IF.'(X: (^0,^8,1)^)) -^€?s 

and C> = fi hs is the natural sesquilinear pairing 

f¡>hs : H'' (X; (¿p,; 0 , ® IF.'(X: (^0,^8,1)^)) -^€?s 

induced by 

rn -j 0 ra] 0 [//" : i 0 /j, 
£{n+j) 

(2гтг)" X 
//«(///.77) //"~J Ann+J. 

Strictness of fy'ff'. - The cohomology fy'FF' is a coherent ^ 0-module. Let 
us denote by h? its generic rank. We note that, for any zQ G ̂ o? the dimension of 
the space Hj (X, ( ^ J + - 0 ^ - — Dje)\z=Zn) is equal to that of the space of AZo-
harrnonic (n + j)-forms, hence is independent of zQ. It is therefore equal to h? for 
any zQ. Consider now the exact sequence 

Hj f+ H z — z0 Kif H> X. (^-®Ж)и=г) 
kj Hj+1 f+H 

If ki = 0 for some i, then M)% fyW is locally free at zQ and = 0, so fvW is 
locally free at zG for any j < i. As Ji?i f^W = 0 for j » 0, this shows that J^'/j-J^' 
is locally free for any j . 
Twistor condition. We want to prove that, for any j , the sesquilinear pairing f'jC 
is nondegenerate and defines a gluing of weight j . According to the strictness property 
above, it is enough to show the nondegeneracy after restricting to fibres z = zQ for 
z0 G S. Remark also that Drj?\z=Zo = Djj z . The Herrnitian metric h induces 
therefore a nondegenerate pairing of flat bundles compatible with the differential: 

h:(H,DH.Zn)®{H,D11 _J ?ÏA 
Poincaré duality applied to the de Rhain complex of these flat bundles gives the 
nondegeneracy of (f^C)z-Z(). 

Remark. The nondegeneracy can also be obtained as a consequence of the positivity 
proved below, without referring to Poincaré duality. 

Consider now the inclusion 

i : tt-1 -̂' 0 H ST' 
x+m 

M 

sending r]p-n~J~~p0m to z~P7]PI7L~J~P <S)m. We then have /.(Harm™ 3 (H)) C Ker D^. 
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Moreover, we have seen that, for any zQ, the projection of /,(Harmx 3(H)) 
in the de Rham space Hn~3(X; (35x 0 H, DVzJ) if z0 3 0, and 
in the Dolbeault space Hn~^(X: (£x 0 H, DE°+ 0fE)) if zQ = 0, 

is an isomorphism of C-vector spaces. It follows that /,(Harm^~J (Lf)) is a lattice in 
1/ 3(X. (5"" 0 ,75. Dr#r)), i.e., that we have 

?lX«'A»?r<'-n"P-:(-ir-VMm ûQi)(g)L(Raimn-3(H)). 
C 

To get the twistor condition, it is now enough to show that flC induces a pairing 

/(HARM;;. •'"(//)) 0/.(Harmx+J(i7)) z3C. 

This follows from the fact that, for sections r)p,<? 0 m of 5xq 0 H and if2l q,n p 0 ¡1 of 
g>n-q,ri—p ^ -jj w^n p g — n _ 

?lX«'A»?r<'-n"P-:(-ir-VMm :(-ir-VMm,?lX«'A»?r<'-n"P-
Tfte Lefschetz morphism. — The condition on the Lefschetz morphism, defined on 
§ 1.6.e, comes from the same property for uj A on harmonic sections Harmx~J (H), as 
l(uj) = Z~lUJ. 

Polarization. We will follow the notation introduced in §2.I.e. Put 573 = f^3 37. 
This is a twistor structure of weight —j. We have 37j = (M)J,J4?~3\ Cj) with Cj — 
C~3, where ./53 stands for .77'f, (5^7* y,% - /} ^ ). Moreover we have C* ; = 
(c/. Lemma 1.6.17(2)). Hence we can p u t = (Id, Id) : -7, &*jm It clearly satisfies 
,9'* — ,97 r Moreover, 37^ is skewadjoint with respect to ,37.j as in (2.1.12), because 
by construction we have 57* — —57^. Let us verify the positivity condition on the 
primitive part. We are in the situation of Example 2.1.14, with L" = z~1ujA = l(uj)A 
and e = l. 

Consider first a primitive section r/M 0 rnv,q of <5xq 0 H with p5 q — n — j . Then, 
by definition, rf'q is a primitive (p, #)-form. We have i(rjp,q 0mM) — z~p7]p,q 0 mM. 
Taking notation of Example 2.1.14, we want to show that 

{iz)3C 3 (i(uj3 A rf'q 0 mM), i(r^q 0 rnM)) > 0. 

This amounts to showing that 
( - l ) ^ £ n ~ j ) 
V 7 (2/rr)" //(///„ 0, mTT/) r/M A 7?P'9 A uj3 > 0. 

This classically follows from the primitivity of if'q, because, denoting by • the Hodge 
operator, we have e(n - j)ip'~qrf:q A uj3 = j \ • 7/^9 (see e.g., [22, §8.C]) and h is 
positive definite. 

By decomposing any primitive section of 5xq 0 H with respect to an orthonormal 
basis of H, we get the positivity statement for it. 

Given any primitive harmonic section in Harm -̂-7 (H), we apply the previous result 
to any of its (p, q) component, with p 5 q — n — j , to get the positivity. • 
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C H A P T E R 3 

SPECIALIZABLE MA -MODULES 

One of the main tools in the theory of polarized Hodge Modules [56] is the notion 
of nearby cycles (or specialization) extended to ^-modules. It involves the notions 
of Bernstein polynomial and Malgrange-Kashiwara filtration, denoted by V. The 
purpose of this chapter is to introduce a category of ^^•-modules (or ^-Triples) for 
which a good notion of specialization can be defined. 

In §3.1, we recall with details the basic properties of the F-filtrations for 
modules. We follow [51, 46]. 

In §3.2, we briefly review the construction of the Malgrange-Kashiwara filtration 
for coherent ^x-modules (see e.g., [46]). We keep notation of §3.1.a. Recall that this 
filtration was introduced by M. Kashiwara [33] in order to generalize previous results 
by B.Malgrange [40] to arbitrary regular holonomic .^-modules. The presentation 
we give here comes from various published sources (e.g., [51, 46, 56]) and from an 
unpublished letter of B.Malgrange to P. Deligne dated January 1984. 

3.1. V-filtrations 

3.1.a. Let X' be a complex manifold and let X be an open set i n C x l ' . We denote 
by t the coordinate on C, that we also regard as a function on X, and by o\ the 
corresponding vector field. We set Xq = £-1(0) C X (which is open in X') and we 
denote by J^x() (resp. rf$;{)) its ideal in &x (resp. in t?//•). 

Let us denote by V.-tfy the increasing filtration indexed by Z associated with Xq: 
for any (x, z) £ JT, 

VÄ-,(.,,,) = {P e я̂ .,,, I P • -̂0,(ж,г) с ^(хг) Vi e z} 
where we put ^ = @ i f £ ^ 0. In any local coordinate system (x'2,. . . ,xn) = x' 
of X\ the germ P e ,#.r is in Vk-tf.r iff 

D = £*•=(,-, .7') «jl/.r'.-.l./iU^rj,. if fc = 0: 
P = fWQ with Q G IW.r, if k G -N (i.e., Vk@. %-kVoRx KcÄr-í|fe|); 
P = T.^^i.QM with Q? e if fee N VL*r Xq = £-1 Vo Rx = 

£-=о^*--32). 
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Set Vk&sz = VhMx n This is nothing but the J^;0-adic filtration on (5 ̂  • The 
following can be proved exactly as for ^x-niodules (see e.g., [46]): 

VhM&; • Vf'tf.f C 1/,: /-^V with equality for k.£ < 0 or k,£ 3 0. 
- Vk-9.r-.,rt) = ^x ,2r„ for any k G Z. 

( H ^ ^ r ) № = {0}. 

Definition 3.1.1. - Let «/# be a left -module. A V-filtration of ^ is an increasing-
filtration 13..M indexed by Z, which is exhaustive, and such that, for any G Z, we 
have • R ^ / / C RR/,./-//. 

Remarks 3.1.2 

(1) We will identify the sheaf of rings gv^^x c= Vq3#x/V-\f5%x> which is sup­
ported on 53q, with the ring ,̂ .>>0 [/(!/]. still denoting by t5t the class of tdt in gr^ .9x. 
In particular, -#.̂ () is a subring of gr^'stf.?-. The class of tdt commutes with any section 
of 5?x0-

(2) Given a holomorphic function / : X' —> C on a complex manifold X' and a 
5%X'-module we will usually denote by if : I ' ^ I = C x I ' the inclusion of 
the graph of / , by t the coordinate on C, and we will consider F-filtrations on the 
^^•-module if 

3.1.b. Coherence 
Coherence of the Rees sheaf of rings. --- Introduce the Rees sheaf of rings Ry3#x = 
QdkYkMx • qk, where q is a new variable, and similarly Ryf3x' = (&kVk&x • qk\ which 
is naturally a <^--module. Let us recall some basic coherence properties of these 
sheaves on 335. 

Let ,95 be a compact poly cylinder in 33. Then Ry 55 x\595) = Ry{&x{5%3)) is 
Noetherian, being the Rees ring of the J^()-adic filtration on the Noetherian ring 
&$;(J(3) (Theorem of Frisch). Similarly, as 0Arz) is flat on O .•)•{• 9 ) for any (x, z) G 
,95, the ring (Ry&x)(x,z) = Rv^xW) ®*,.(Jr) &xUr.z) is flat on RV0X{.%3). 

Let us show that Ry33x is coherent on 95 Let °9 be any open set in 335 and let 
: [Ry(3 xY\<% ~* {R.y 35 xYy^ be any morphism. Let ,93 be a polycylinder contained 

in 3/. Then, Kei(f(,95) is finitely generated over RyO .>>-{•%') by noetherianity and, 
if Y is the interior of ,53, we have KevLpyy — KcY(f(,53) 55rv@:r(^) {Rv&$;)[y by 
flatness. So Ker^?/ is finitely generated, proving the coherence of R\ Oy . 

Before considering Ry,53y . consider the sheaf 53 x [r, £2, . . . , £n] equipped with 
the F-filtration for which r has degree 1, ^••••Cn have degree 0, and induc­
ing the filtration on 5 y. Firstly, forgetting r, we have Ry(&x[£2, • • • ,£n]) = 
( * v ^ ) f e , • • .,&]• Secondly, 1 4 ( ^ [ r . £ > . . . .,£„]) = £J>0 ^ - ¿ ( ^ ( 6 » • • .,£»])r> 
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3.1. V-F1LTRATIONS 57 

for any A: € Z, hence we have a surjective morphism 

ñv^.*/[&,....£,.] ®cC[r'] • Av(^[r.6,...,í»]) 
ñv^.*/[&,....£,.] ®cC[r'] ñv^.*/[&,....£,.] ®cC[r'] 

If C ^ is any poly cylinder, then (Ryff%: PH) [T', f2, • • • , £n] is Noetherian. 
Therefore, i ?v ' (%^6- • • is Noetherian. 

As I\\ tfy can be filtered (by the degree of the operators) in such a way that, 
locally on S\ gxRy3$$: is isomorphic to Ry (ff,%; [r, £2, • • •, £n])> this implies that, 
if Jf is any sufficiently small polycylinder, then Ryrf-.r^-X' ) is Noetherian. Using the 
previous results and standard arguments, one concludes that Ry.Wy is coherent. 

Good V-filtrations. — Let (, //. (•'., //) be a F-filtered -module. The filtration is 
good if, for any compact set M C JT, there exists ko > 0 such that, in a neighbour­
hood of .'Xy. we have for all A; ^ ko 

1' / , . / / = /A-A"T /,„.// and (7,.// -
0<:.7̂ /c-A:() 

(7,.// -

and any is Vo&%:-coherent. 

The filtration U^W, is good if and only if the Rees module C;kUk. // • qk is coherent 

over ~R.,yffl%;. Equivalently, there should exist, locally on S\ a presentation & b

o r —> 

3£%r V / 0 inducing for each k 6 TL a presentation ик^%-->ик,щ: 
'/.// Л) 

where the filtration on the free modules Vo&%: are obtained by suitably shifting 
.r on each summand. In particular, we get 

Lemma 3.13. Locally on Ж, there exists ко such that, for any к ^ ко, t : —> 
(' . \ . // is bijective. 

Proof. — Indeed, using a presentation o f . . # as above, it is enough to show the lemma 
for 8%°^ with a filtration as above, and we are reduced to consider each summand 

with a shifted s tandard У-flit rat ion U~3?v~. There, we can choose kn such that 
Uko0 R X = Vo R X. 

In a similar way we get: 

Lemma 3.1.4. Let ()?/ be a coherent VQ/^^;-module and let 3" be its t-torsion sub-
sheaf, i.e., the sub sheaf of local sections locally killed by some power oft. Then, locally 
on -9'. there exists i such that 2? P, tl '// ~ 0. 

Proof. Consider the t-adic filtration on Vo-tfj;. i.e., the filtration Vj&,% with j ^ 0. 
Then the filtration t~36^/ is good with respect to it, and locally we have a surjective 
morphism {Vo-tfj)" —• 9/ which is strict with respect to the F-filtration. Its ker­
nel is coherent and comes equipped with the induced ]/-filtration, which is good. 
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In particular, locally on 573 there exists j0 ^ 0 such that Vj+j()<%f — t JVh),535 for 
any j 3 0. For any j ^ 0 we therefore have locally an exact sequence 

(VjM^Y" (vj+jaœr)" t-u+Mw o. 

As t : Vk53x \\--\-7.r is bijective for k 3 0, we conclude that t : / l() 7/ —• 
• x 5/ is so, hence 37 n / /̂ = 0. • 

Proposition 3.1.5. If -9 is a coherent 5$ y -submodule of ,# and \3.<3t is a good 
filtration of .7?, then the Vfiltration U 9..57 d= ,,Y fi 15..37 is also good. 

Proof. It is now standard (it follows from coherence properties of the Rees module 
®kUk,<0 -qk, see e.g.. [44]). • 

Remarks 3.1.6 
(1) It is straightforward to develop the theory in the case of right ,^.r-modules. 

If U i s a V-filtration of the left module then 15 m(uj x 3)f/fr <.7t) =f UJ%; 55e,r 
c/.(,/#) is the corresponding filtration of the corresponding right module. This cor­
respondence is compatible with taking the graded object with respect to 15\. The 
operator — dtt (acting on the left) corresponds to tdt (acting on the right). 

(2) Given an increasing filtration U. (lower indices), we define the associated de­
creasing filtration (upper indices) by Uk = U-k-i- If b( — (<3tt + kz)) • gr[., 7/ — 0 for 
all k G Z. we have bf(tdt - lz) • Wlr.7/ = 0 for all £ G Z. if we put b'is) = b(-s). 

3.1.c. T/-filtration and direct images. — The purpose of this section is to es­
tablish the compatibility between taking a direct image and taking a graded part of 
a ^/-filtered 53 y -module. We will give an analogue of Proposition 3.3.17 of [56]. 

Definition 3.1.7. Let ,75 be a left ^-module equipped with an exhaustive in­
creasing filtration indexed by Z such that V^My; • Ui.Tt C Uk+^-TZ for any 
k,£ G Z. We say that (,77,15 m. 75) is monodromic if, locally on 577 there exists a 
monic polynomial b(s) G C[z][s] such that 

(1) b(-(dtt + kz)) • gi{;\// - 0 for all k G Z. 
(2) gcd(6(.s - kz), b(s - £z)) G C[z] \ {0} for all k 3 £• 

For right 553x-modules, we use the convention of Remark 3.1.6(1). 

Theorem 3.1.8. Let f : X Y be holomorphic map between complex analytic 
manifolds and let t G C be a new variable. Put F = f x Id : X x C —> Y x C. Let ,77 
be a right 53y X£-module equipped with a V-filtration 15 ..37 (relative to the function 
t : X x C —> C). Then 15 .,77 defines canonically and fundorially a V-filtration 
15.,573\FV37). 

We assume that F is proper on the support of .74.v. 
(1) If ,75 is good and 15\,77 is a good V-filtration, then 13 .,351{F^,37) is a good 

V-filtration. 
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(2) If moreover (./^ ,U is monodromic and f^gr11,^ is strict, then one has a 
canonical and furictorial isomorphism of -modules (k G Zj 

••ui (.//'/-.//) = .*"'(/*••{..//). 

gru (<#?lFf..^} is monodromic and strict. 

Remark 3.1.9. In the last assertion, we regard grĵ ../# as a right .^.^ -module, and 
/l is defined as in § 1.4.a. By functoriality, the action of t(5t descends to J^*(/-j-gr^^). 

Proof. — We will use the isomorphism = /-j- for <J{ (see Remark 1.4.3(2)), i.e., we 
take the direct image regarding as a /^,^xc/c equipped with a compatible action 
of oV Put ,¥% = fv4t. This complex is naturally filtered by d= f\U.^. 
Therefore, we define the filtration on its cohomology by 

U.MJ\F^) = U..^\fv£) = image [jf\f^.M) — Mn{f^)]. 

We note that, for any j , f\UrJt is the direct image of Ur/fF regarded as a ^ -xC/c -
module, on which we put the natural action of tdt. 

The relation with the Rees construction is given by the following lemma: 

Lemma 3.1.10. - Let (• V. 4' *) be a V-filtered complex of &<zyxc-modules. Put 
rryf'(.4"#) =f image [^(Uj^9) -> . Then we have 

-//'(/fr- l'V)/<y-torsion - RuSfl(,/V). 

In particular, if RJJ,Y* has ̂ xc-coherent cohomology, then U.,')FJt(,/V°) is a good 
V-filtration. 

Proof. — One has a surjective morphism of graded modules .//'(R[ • —> 
Ru^l(,.4^*), by definition, and this morphism induces an isomorphism after tensor-
ing wit.h C [q, q ~1 ]. • 

Lemma 3.1.11. — If ,J{ is good, then any coherent VQ&&; -subrnodule is good. 

Proof. As a coherent VQ^$:-subrnodule of ̂  induces on any subquotient of a 
coherent Vo^^r-subrnodule, we can reduce to the case when ,M has a good filtration. 
It is then enough to prove that any coherent V§£%%;-subrnodule ,/K of ,/# is contained 
in such a subrnodule having a good filtration. If is a &-coherent subrnodule 
of M which generates then is contained in V^Msc • & for some k, hence the 
result. • 

This lemma allows one to apply Grauert's coherence theorem to each Uj, in or­
der to get that each f^Uj.^f has V^sc-coherent cohomology under the properness 
assumption. We conclude that for each i, j , UjJf?lf\.^ is Vo&$;-coherent. 

In order to end the proof of (1), we need to prove that each t / . J ^ / t ^ *s a good 
V-filtration. We will compute directly the Rees module associated with this filtration, 
in order to get its coherence. Let us first consider the analogue of Lemma 3.1.11. 
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Keep notation of §3.1 .b. The graded ring \{\ .7 r is filtered by the degree in the 
derivatives qdXj and the degree-zero term of the filtration is Ry0$;, with V^t? $; — 
O.r for k 3 0 and = / uO,r for A; ^ 0. 

Let (.77, JJ..77) be a ^-filtered right /^-module and let R,VJ7 be the associated 
Rees module. We therefore have the notion of a good filtration on Ru,37 (by coherent 
graded V^'^.jr-subniodules). If R{j,/77 has a good filtration (or equivalently if Ru,37 
is generated by a coherent graded Ry 7) y.--module), it is R,y53%-coherent and has a 
left resolution by coherent "induced"' graded Ry/7y.--modules, of the form G5)Rv@,r 

Ryffly:, where G is graded RyfJy -coherent. We can even assume (by killing the 
(/-torsion) that each term G®nvff.r Ry/Jfy; has no (/-torsion, or in other words that it 
takes the form R((L 7.or> -7 •)•)• where L is 3y-coherent, having support contained 
in Supp, 37, and equipped with a good I/-filtration (i.e., a good -/y ,,-adic filtration) 
and U.(L 5)&\,/: 33$;) is defined in the usual way. 

We say that RIJ.77 is good if. in the neighbourhood of any compact set ,73 c 
377, R\j<77 is a finite successive extension of graded i^v'^r-modules having a good 
filtration. 

Lemma 3.1.12. We assume that ,77 is a good, f%y -module and let JJ..77 be a good 
V-filtration of ,77'. Then R\j>77 is a good graded Ry/9y-module. 

Proof. — Fix a compact set -Xf C . First, it is enough to prove the lemma when 
has a good filtration in some neighbourhood of .')^. : because a good V-filtration 

induces naturally on any subquot ient of a good ^-fil tration, so tha t 
Ilr- ft' is a subquotient of R\-. //. 

Therefore, assume that ^ is generated by a coherent ^ - / - m o d u l e ,^*, i.e., = 
S i x • Consider the ̂ -fil trationU'^/tf t = V.M^generated by i.e., U'^/tft = V.M^ • 

Then, clearly, Ry&• & = (BkVk^.9: ' -^(lk is a coherent graded Ry&$:-module 
which generates RJJ>./^• 

If the filtration U".4Z is obtained from U'%.M by a shift by -t G Z, i.e., if Ru»M = 

c/Rii',/// CU'^/tft = V.M^ then Ri]n,Jt is generated by the ^ - - c o h e r e n t submodule 

k RV x. F. 
On the other hand, let UJ^ be a good ^-fil tration such that Ru>>^ has a good 

filtration. Then any good ^-fi l tration U.,.M such that Uk-^ CU'^/tft = V.M^ for any A: satisfies 

the same property, because Ri;,/£ is thus a coherent graded submodule of Rjj"^, so 

a good filtration on the latter induces a good filtration on the former. 

As any good F-filtrationU'^/tft = V.M^ is contained, in some neighbourhood of J*T, in the 

good T/-filtration U'm,/M suitably shifted, we get the lemma. • 

To end the proof of Part (1), it is therefore enough to prove it for induced modules 
,77 — L 5)@,r 33,%;, with L coherent over 7J y and Fs l i p p L proper. We will indicate it 

ASTÉRISQUE 300 
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when f : X = Y x Z Y is the projection. We then have 

Uj (L xx2 RX x c Uj\(L®f-ifU/x, f ^ x C ) 0 %xc /^xc 

Uj{L ®f-i^x„f ^ ^ x c ) <8> %xc /^xc , 

because the V-filtration on xc/^xC is nothing but the t-adic filtration. Now, we 
have 

CÇ^9 = limrr y/Uh4" = Rf*Uj(L 0 /~ i^xC r % x c ) 

= C / j ( i l / .L(8 )^xc^xc) , 

if we filter the complex Rf*L by subcomplexes Rf*Uj (L) and we filter the tensor prod­
uct as usual. By Grauert's theorem applied to coherent /$V^rxc-sheaves, Rf\RjjL 
is Rv&WxC-coherent, hence f\Rjj(L 0&,9. is Ry36<&xc-coherent. After Lemma 
3.1.10, we get 3.1.8(1). • 

In order to get Part (2) of the theorem, we will first prove: 

Proposition 3.1.13. Let (- 1 ' . ( ' . . 1 '*) be a V -filtered complex of # xc-m odules. We 
assume thai 

(1) the complex gr'. 4 # is strict and monodromic, 
(2) there exists jo such that for all j ^ jo and all i, the left multiplication by t 

induces an isomorphism t : I:r V' Uj \--V. 
(3) There exists io £ Z such that, for all i ^ i0 and any j , one has <ffi'l(lJp,Ym} — 0. 

Then for any iyj the morphism MJl(JJy Y*) —> Jff%(..y*) is infective. Moreover, the 
filtration r.-yf't. V9) de/med fry 

c>^ ' ( , = image [ - ^ I '* ) > Sr{.Y9)\ 

,su//*//c* g r r - y f r # ) = .^'(grr- f ) 

Proof. It will have three steps. 

Fzrs£ s£ep. — This step proves a formal analogue of the conclusion of the proposition. 
Put 

CÇ^9 = l imrr y/Uh4" anc / Г = lim UryV 

Under the assumption of Proposition 3.1.13, we will prove the following: 
(a) For all k ^ j , UpY* -+ ûÇv* is injective (hence, for all j , ÏÏ~jV* -> is 

injective) and U ^ ' / U ^ Z Ï Ï 9 = U3,,V/U:]^tf\ 
(b) For any k ^ j . :/r (Yy Y*jVk-) is strict. 

(c) -vf'((/j~P-) - liin̂  ./'(f/r^7^.r). 
(d) :yr{U^Ym) -> M'\,/T) is injective. 
(e) .://•>{.?-) = lim .yr(CÇv~'). 
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Define UrW(-y) = image UkjV/Ue,À^jV/Ue,À Then the statements (a) 
and (d) imply that 

rjU Hi (N) Hi(UjN./Uj-1 N. + JTiUj/U^) 

For £ < k < j consider the exact sequence of complexes 

0 —> UkjV/Ue,À^ —> U7,/V/U£,A/m —> XJjjV*/Uk,/V* —> 0. 

As the projective system (U j-^/Y* jUtrivially satisfies the Mittag-Leffier condi­
tion (ML), the sequence remains exact after passing to the projective limit, so we get 
an exact sequence of complexes 

О Uk.N игж- игж*/икл о 

hence (a). 
Let us show by induction on n 3 1 that, for all i and j , 
(b)n .J9;i(l;j--V/Uj is strict (hence (b)); 

Indeed, (b)i follows from Assumption 3.1.13(1). Remark also that, by induc­
tion on n 3 1, 3.1.13(1) implies that, for any //././. ,93l (U£/U(-rl) is killed by 
n U - » + i W + fc*). 

For n 3 2, consider the exact sequence 

- jr'iUj-i/Uj-n) — .^(Uj/Uj-n) + JTiUj/U^) 

^JT+^Uj-r/Uj-n) • 

Any local section of Im^ is then killed by b(dtt + jz) and n i = j - n + i H^tt + kz), 
hence by a nonzero holomorphic function of z. By strictness (b)n_i applied to 
r75'i+l(Uj-i/U3-n), this implies that yij = 0, so the previous sequence of ,95% is exact 
and J^l(Uj/Uj-n) is also strict, hence (b)n. 

By the same argument, we get an exact sequence, for all £ < k < j , 
(3.1.14) 

о Hi (Uk N/ Ul N.) Hi (Uj N./ Nl N) жг(игж*/икж") 

Consequently, the projective system (.W1 (Uj-V/Uh-Y°))( satisfies (ML), so we get 
(c) (see e.g., [37, Prop. 1.12.4]). Moreover, taking the limit on £ in the previous exact 
sequence gives, according to (ML), an exact sequence 

о ж\ик,ж-) ж'(1:г г - ) Jtri(Uj<S*/UkJK*)—+Q, 

hence (d). Now, (e) is clear. 
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Second step. — For any denote by 3f C /Yl (L'j.A'*) the ^-torsion subsheaf of 
.^(JJr,Y*). We will now prove that it is enough to show that there exists j0 such 
that, for each i and each j ^ jo, 

(3.1.15) Jij = 0 

We assume that (3.1.15) is proved (step 3). Let j ^ jo and let /; ^ j . Then, 
by definition of a ^/-filtration, tl~3 acts by 0 on U^JY*/UjjV*, so that the image 
of ^^{UtjV*/UjjV*) in MJl{Ur^*) is contained in and thus is zero. We 
therefore have an exact sequence for any i: 

О —> Ж'Ш;.У) —> Ж'(Ih-У* gr^(t/K-) = ^(grf^-). 
Using (3.1.14), we get for any £ the exact sequence 

0 —> Jtf*(Ut-i^9) —> ^{UIJV) —• J ^ ( g T ^ / R ) —• 0 

This implies that .//"'((./,.. 4'-) -+ JT%./K-) is injective. Put Ut,y/"'(.<V) = 
image \.JY'(Uf. V) Jf%/K#)]. We thus have, for any ije Z, 

gr^(t/K-) = ^ ( g r f ^ - ) . 

Third step: proof of (3.1.15). — Remark first that, according to 3.1.13(2), the multi­
plication by t induces an isomorphism t : UjjY* —> U1-\-,Ar* for j ^ jo, and that (d) 
in Step one implies that, for all i and all j ^ jo, the multiplication by t on JtPZ(Uj^V*) 
is injective. 

The proof of (3.1.15) is done by decreasing induction on i. It clearly hods for i ^ io 
(given by 3.1.13(3)). We assume that, for any j ^ jo, we have = 0. We have 
(after 3.1.13(2)) an exact sequence of complexes, for any £ ^ 0, 

Y 
0 —> Uj,y • Uj,y —> Yj-V/Uj (...v —> 0. 

As /̂ z+1 = 0, we have, for any £ ̂  0 an exact sequence 

.y^(\:y -R#) — > . / ^ ( R , . F ) —> .^ ' (R;R V/Uj.t.A'") —> 0, 
hence, according to Step one, 

Ж'(игЖ')1Ж1(у ,-(•¥•) gr^(t/K-) = ^(grf^-). Ж\иуЖ')Ц1Ж1 (игЖ' ) 
According to Lemma 3.1.4, for £ big enough (locally on JT), the map ^ — 
- ^ ' ( ^ r r#)/^-^/(^> r#) is injective. It follows that -7/' -» 3tfi0~jV*') is injective 
too. But we know that t is injective on ft' [IJ rY*) for j ^ j0, hence = 0, thus 
concluding Step 3. • 

We apply the proposition to = f^y/t equipped with U.JY*. = f\U.,v$- to 
get 3.1.8(2). That Assumption (1) in the proposition is satisfied follows from the 
assumptions in 3.1.8(2). Assumption (2) is a consequence of the fact that is a 
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good ^-filtration and Lemma 3.1.3. Last, Assumption (3) is satisfied because / has 
finite cohomological dimension. • 

3.1.d. Regularity. — We keep notation of § 3.1.a. We can identify the sheaf 33, 
of differential operators relative to the function t (constructed from the sheaf 73x/c 
by the Rees procedure) as the subsheaf of \ 3y3 .r of operators commuting with t. 

We say that the F-filtered -module (<43, U.,3/) is regular along 33$ if, for all 
k G Z, \3k,37 is 3%x/c-coherent near /33- If such a condition is satisfied for some good 
filtration U,,y3(, it is satisfied for any. In an exact sequence, the extreme terms are 
regular along 133 if and only if the middle term is so. 

By an argument analogous to that of Lemma 3.1.11, and applying Grauert's the­
orem, one proves that, in the situation of Theorem 3.1.8, if\^# is good and regular 
along 335 x {0}, then is regular along & x {()}. 

3.2. Review on specializable £^\-modules 

We keep notation of § 3.1.a. A coherent left 73x-module M is said to be specializable 
along Xo if any local section ra of M has a Bernstein polynomial bm(s) G C[s] \ {0} 
such that brn(—dtt)m, G V-\(3$X) 'M (the filtration V.(3$x) is defined as in §3.1.a; we 
usually assume that bm is minimal for this property). 

An equivalent definition is that there exists, locally on X, a good filtration U.M 
and a polynomial bjj(s) G C[,s] \ {()} such that, for any k G Z, we have 

(*) bu(-(d3 5k))-&lkJM = 0. 

Indeed, in one direction, take the ^-filtration generated by a finite number of local 
generators of M; in the other direction, use that two good nitrations are locally 
comparable. 

If we decompose bu(s) as a product &i(s)&2(s) then, putting 

(**) u'k = uk-i + hi-idtt + k))uk, 

we get a new good ^-filtration 13'm with polynomial bjj' = b\(s — 1)1)2{s). Therefore, 
an equivalent definition of specializability is that there exists, locally on X, a good 
K-filtration U9M and a polynomial bu(s) G C[,s] \ {0} satisfying 

(3.2.1) the roots of bjj do not differ by a nonzero integer, 

such that (*) is satisfied. 
For such a good filtration U.M and any a G C, put 

c[aM = UKer[(dtt + a)n : grr M > gru M}. 
n 

We then have vLt\nM = 0 unless a G b^(0) 9 Z, and gruM = 0a^QAf. 
For any k G Z, there are @x{)-linear morphisms 

t : gr%M —> gr[:_{M and - dt : gij'.U g r ^ M . 
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These morphisms are compatible with the decomposition with respect to the gener­
alized eigenvalues of — dtt and induce morphisms 

t : 4^nAI —• V#«-iA/ and - dt : i/>"nM —> $Fft+iA/ 
for any a G C. The first one is an isomorphism if a ^ 0 and the second one if a 7̂  — 1, 
as dft (resp. tdt) is invertible on M if a / 0 (resp. a 7̂  —1). We denote by 
can : r |_ ! 4/ —> 0[7O7\/ the morphism induced by —dt and by var : r,r04/ —> 
the morphism induced by £. 

If U.AI is any good T/-filtration of 71/ defined on some open set of X, with Bernstein 
polynomial bjj, then any other good ^-filtration U^AI, defined on this open set or on 
any subset of it, has a Bernstein polynomial bu>, and this polynomial satisfies by] (0) C 
bvl(0) + Z. If we assume that U.AI satisfies (3.2.1), then any other good ^-filtration 
U'mAI defined on the same (or on a smaller) domain, and satisfying by}(Q) C b^l(0), 
is equal to U.AI. 

Consequently, if AI is specializable, given any section a of the projection C —> C/Z, 
there exists a unique good 1/-filtration U°AI, globally defined on X, such that any 
local Bernstein polynomial b[jn satisfies b'^l(0) C image a. Any morphism between 
specializable 0x;-modules is strictly compatible with the filtration Ua. 

Let £' : C —• R be a R-linear form such that £(Z) C Z. It defines a relation ^£ on C: 
ai ^£ a2 iff /(n 1) < £(0.2)• One usually takes £(a) — Re(a), but we will need below 
(see Proposition 3.3.14) to consider various such linear forms. 

Let rn be a local section of 71/. If brn is the Bernstein polynomial of rn, we define the 
border of rn as ord( (///) = niaxj /(n) | bni(a) = 0}. Define the T^-filtration by the £-
order AI by the following property: a local section in is in AI iff ord/ (//;) ^ k. 
If AI is specializable, this filtration is good. It is the filtration associated to the section 
of C C/Z which has image in {s \ £(s) G [0, 1[}. 

It will be convenient, later on, to regard this filtration as indexed by R with a 
discrete set of jumps, corresponding to the zeros of the possible brn. Let us recall this 
notion. Let AJSI be a finite set in R and put Au = + Z. A good V-filtration of AI 
indexed by A^ is by definition a family 71/ (a G AR) of good U-filtrations indexed 
by Z which satisfy the following properties: 

- ^U.AI C (bhJ.AI if a ^ b, 
(a+1)£/.M = ^U.+iAI. 

For any a G AM, one then defines UaAI c= ^UQAI. If < a denotes the largest element 
of AM which is strictly smaller than a, then one puts gr^M — UaAI/U<aAI. 

If U.AI and U'9AI are two good F-filtrations satisfying (3.2.1), then there are iso­
morphisms tpt[aAI '0jPa7l/ which are compatible with t and —dt. Indeed, by the 
uniqueness above, U and U' can be related by a finite sequence of transformations of 
type (**) for which, at each step, 61 and 62 do not have any common root. It is thus 
enough to prove the assertion when U and U' are as in (**), and gcd(&i,&2) = 1-
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In such a situation, we have an exact sequence 

0 t/fc-iM'-i — U'k/U'k_r — U'JUk-i — o. 

On the one hand, the natural morphism Uk/Uk-\ —> Uk/Uk-i is injective with image 
equal to Ker b2(—dtt + fc), as gcd(6i,£>2) — 1- On the other hand, Uk-i/Uk-2 
Uk-i/Ufk_1 is onto and induces an isomorphism Ker bi(—dtt -\- k — 1) Uk-i/Uk_1. 
The assertion follows. 

As a consequence, taking a section a as above, the modules r,r,v M are globally 
defined, and are independent of a up to a canonical isomorphism. They are equipped 
with the action of a nilpotent operator, locally obtained as the action of —dtt. We 
denote them simply by r/.0 .1/. We note however that, to define can and var, one 
needs an equation {t = 0} for XQ and a corresponding vector field dt. 

Any coherent sub or quotient module of a specializable 9)x-module is so. For a 
specializable 73x-module, 

(1) can : /.'/. \\I —» ipt<oM m onto iff M has no coherent quotient -module 
supported on XQ, 

(2) var : 'ijjtx)31 —* i.'t. is inject ive iff AI has no coherent sub module 
supported on XQ, 

(3) v.();\/ = Im can ©Ker var iff M = M' 0 M" with M' satisfying 1 and 2 and 
M" supported on XQ. 

3.3. The category y2(XA) 

3.3.a. Keep notation of §3.1.a. We will work with increasing nitrations. To get a 
decreasing filtration U* from an increasing one U9, put U@ = U-p-i (see Remark 
3.1.6(2)). 

We will introduce the Malgrange-Kashiwara filtration in the setting of 
modules. When the set A below is contained in R. the presentation can be simplified, 
as the Malgrange-Kashiwara filtration is then defined globally with respect to z, and 
not only locally. For A C C general, the definitions below are suggested by Corollary 
5.3.9. 

The strictness assumption is important, as emphasized yet in Theorem 3.1.8: for 
Hodge modules, it means a good behaviour of the Hodge filtration under the operation 
of taking nearby or vanishing cycles. Moreover, it important to notice that, under 
a strictness assumption, the "nearby cycles" ^tjx-^ are defined globally with respect 
to z. 

Definition 3.3.1. A coherent left .^--module .W. is said to be specializable along 
SCQ if there exists, locally on X, a finite subset A C C and for any local section m 

ASTÉRISQUE 30C 



3.3. THE CATEGORY ,Y2(X,t) 67 

of there exists a polynomial bm(s) = Пае 4 ГЬе^(5 ~~ (a + ^) * z)v"J satisfying 
bm( — (5tt) ' rn £ V /}• • m (for left modules), 

m • />,„(/()/) G ra • V \tf (for right modules). 

An equivalent definition is that there exists, locally on <%\ a good F-filtration 
and a polynomial bu(s) of the same kind, such that, for any к G Z, we have 
(*) bu(-((5tt + kz)) • grI.'.// = 0, rr:.s7;. gif M • bv{tbt - kz) = 0. 
Indeed, in one direction, take the ^-filtration generated by a finite number of local 
generators of ; in the other direction, use that two good filtrations are locally 
comparable. 

Remark that any coherent ^,^-submodule or quotient of ,Ж is specializable if ,Ж 
is so (take the induced filtration, which is good, by Proposition 3.1.5). In particular, 
the category of specializable -modules is abelian. 

If we decompose bu(s) as a product bi(s)b2(s) then, putting 
(**) U'k = C/fc_i + h(-(dtt + kz))Uk, 
we get a new good У-filtration U. with polynomial b\j> = b\(s — l)b-2{s). Therefore, an 
equivalent definition of specializability is that there exists locally a good V-filtration U 
with polynomial bu(s) = Паел(6' — a* z)"<* for some integers vcx and A is contained 
in the image of a section a of the projection С —» C/Z. In other words, (. //. 11т.Ж) is 
monodromic (cf. Definition 3.1.7) with a particular form for b. 

The constructions made in §3.2 can be applied word for word here, provided that 
we avoid singular points with respect to Ac= A + Z (cf. §0.9). Indeed, we need such a 
nonsingularity assumption to get that gcd(&i, b2) is invertible when b\ = 0 and b2 = 0 
do not have common components. In the neighbourhood of such singular points (in 
particular in the neighbourhood of 0), we will need the constructions of the next 
subsections. 

The choice of the generating set A can be changed. Put Л = A + Z and, for 
any z0 G По and a G Л, set £Z(>{&) = — Co a" (recall that Co *= Ini20, so that 
4o(a) = Re(a' + iz0cJ')\ remark also that £Zo(a + 1) = tZo{a) + 1, cf §0-9); set also 
A(zQ) = {a G Л I (Zn{<\) G [0, 1[}. Then, the specializability of is equivalent to the 
local existence of a good ^-filtration 17^"\Ж with polynomial bU(Z())(s) having roots 
in A(zQ). 

3.3.b. It will be convenient to work with filtrations indexed by + Z for some finite 
set С К, that we now define. Let t # be a coherent РД%;-module and 1^ С E be 
a finite set contained in the image of a section of Ш —» M/Z. A good filtration of .Ж 
indexed by 1^ + Z consists of a family (a G IR) of filtrations ^и.,Ж indexed by Z, 
which are good with respect to Ym.tf :>>• and such that one has 
(3.3.2) a + fc^b + £ = > ^\]к,Ж с 
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We denote Ua+k.s% = {a)Uk.// and gvl(l .// = U(l.¥//U<a,£. We can also regard L\. // 
as a filtration indexed by R with jumps at / ; + Z at most. 

Saying that is specializable is then equivalent to saying that, near any (x0, zQ) G 
3K', it has a good filtration indexed by ^„(A) = £Zo(A(z0)) + Z such that, for any 
a G R, 

(3.3.3) 
{a)Uk.// 

( - 0 * * • g i f U " , « # = 0, 

where the integers va only depend on a mod Z. Remark that the set of indices (hence 
the order of the filtration) depends on the point ZQ. This is suggested by Corollary 
5.3.1 below. 

Lemma 3.3.4. We assume that,has, in the neighbourhood of any point (x0,z0) G 
,9,Q, a good, filtration U[z"\// indexed by (Zn(A). satisfying (3.3.3) and such that 
gr[/ is a strict -module for amy a G R. Then. 

(1) for any coherent subrnodule -Y C Jf. the filtration U[Zl)).Y d= U^ytf Pi -Y 
is a good, filtration satisfying the same properties: 

(2) such, a filtration is unique: it is therefore globally defined on some neighbourhood 
of X x (R + iCo); it will be denoted by V}z"\^ arid be called the Malgrange-Kashiwara 
filtration of along X x (R + iQ}): 

(3) this filtration is equal to the filtration by the I\Zn-order along ,9-[); 
(4) any morphism, : —> ..Y between such, -modules is compatible with the 

V{Zn)-filtration: 
(5) the construction of the V^^ -filtration is locally constant with respect, to z; 
(6) near any z() G QQ one has. for any a G (Zu(A). 

M1 Y 
5AZS° 

+EZSD 

with 
4 Z ; 

M (lof Км Uütt + a * z)" 01.v<-» M giJai"") 
giJai"") 

M 

(7) for any a G A, there exists a strict coherent ^y{)-module Ci.n, ft equipped with 
a rnlpotent endornorphism N such, that, near any z() G 

(</;,,„,//. N) ~ (v.'};;;'.//. -{ü,t + « * z)). 

Proof 
(1) The filtration Uy^.Y =f U^Zn\W, H is good (by Proposition 3.1.5) and 

clearly satisfies (3.3.3). For each a G ^(A) . giJai"") -Y is a subrnodule of gr[/(~"\#, 
hence is also strict. 

(2) Let U^z<^ and U'^"^ be two such filtrations on that we can assume to 
be indexed by the same set £Za(X). Locally, there exists £ G N such that, for all 

ASTÉRISQUE 800 



3.3. THE CATEGORY -V~{ À'. /) 69 

a G £Zo(A), one has 
U (zo) 

а / U (zo) 
а 

[У (zo) 
a+l V (zo) 

а + 2 1 -

Let m be a local section of Uac and assume that there exists 6 G ]a, a + ]̂ such 
that ra G U^z<^ \ U^l0\ Then, there exist polynomials Bu(s) and Buf(s), where 
has roots cv ~k z with ^o (a) ^ a and has roots a • 2 with ^o (a) = 6, such that 
Bu(-dtt) • ra G U^}_f C U^"\^ and Bu>(-dtt) • ra G C/^ '0^ . Hence, there exists 

G C[z] \ {0} such that p(z)rn G U'^o). As gr^'(3o)^ is strict, this implies that 
ra G U'^l°\ a contradiction. This shows that ra, G UaZ°\ Exchanging the roles of U 
and U' gives the uniqueness. 

(3) Let us first define the filtration by the £Z(>-order for a filtered module satisfying 
(3.3.3). Let (x0,z0) G 3n and ra G ,/#(Xhj2()). According to the proof of (1), we will 
assume that, locally at (x0,z0), the section ra generates 

There exists a minimal polynomial bin(s) as in Definition 3.3.1 such that a relation 
bm(—<5tt)'m £ V-\3##: • ra is satisfied. The £Zo-order of ra along î o is the largest 
a G R for which there exists a with £Z(>(a) = â  such that a * z is a root of bm. 
Tins defines an increasing filtration of called the filtration by the order. It is not 
necessarily good a priori. Denote it by V^z"\37 and denote by V^Zl,\^ the filtration 
obtained in (2). 

We clearly have V([z°\^ C I // for each a, G R. Let us prove the reverse 
inclusion. We assume that rn has ̂ o-order a. If rn G — V^'\j7 with 6 > a, 
there exists some integer r 5 0 such that 

M-fcO • • • 6m(-3t* + f.z) • m G t^.*. 

We also have 

{a)Uk.// 

Tj'^o) rj{z0) TJ'M VMTj'^o) rj{z0) 

for some vcx ^ 1. If b > a, we deduce from both relations that there exists p(z) G 
C[z] \ {0} such that p(z) • in G V^'K^ and, by strictness of g r ^ " \ ^ , we have 
m G a contradiction. 

(4) It is clear that any morphism between two -modules satisfying (3.3.3) is 
compatible with the filtration by the ^2o-order. The assertion follows then from (3). 

(5) We fix a compact set in X. The constants e, // below will be relative to this 
compact set. We say that the filtration V}z\// is locally constant at zQ with respect 
to z if, for any a G R and any e > 0 sufficiently small, there exists // = 7](z0, a, e) such 
that, for any z G Az„(v) (disc of radius r/ centered at zn), we have 

(3.3.5) V(z) 

v a — e 
V(z) 
a- e 

(Mz) (M)z yd) (Mz) y a+£ (M)z 

By considering Fig. 3.a, one shows that this property is true for the filtration by the 
^z-order, hence the result by (3). 
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4 ( ^ 3 + 1) 
4(^3 + 1) 

4(^3 + 1) 

C^>4(«3) 

Figure 3.A. The set {a e A \ £Z<)(OL) = a} is equal to {ai,a2}. 

(6) Locally on t%\ there exists vcx such that '^^n ^ M Ker(öii + a • г)*» The 
roots of the minimal polynomial of — Qtt on gr^ ° are the a * z for a such that 
£ZQ(OL) — a. By Lemma 0 . 9 . 2 , the various OL*Z0 corresponding to distinct a are distinct, 
hence, if z is sufficiently close to zQ, the roots a • z remain distinct. Therefore one 
has a Bézout relation between the polynomials fôtt + ot* z)"" for a G £~^(a), and the 
decomposition follows. 

( 7 ) Fix z0 6 HQ, set a = £z (a) and fix £. ri > 0 as in (5) so that , moreover, for any 

z G Az(rj) we have £z(a) G ]a — £. a -f- e] If c is small enough, we have gr 
a Mz= 

T / 0 0 Mz \ '(Zo) 
a — E Mz for any z G AZ (rj). By (5), we can compute (zo) 

a+e 
(M) using the 

filtration V}ZK^Z: 

V ^ M O * = Ker [ - (cM + a * 2 ) - : V ^ ^ ) / V ^ ( ^ ) 

V (z) 
a+1 

(Mz) Л/ 'z) 
a+1 

Fix 2 G AZ(Xv). By construction, if /i G A is such that £z(ft) G ]a — e,a -\- e], then 
£Zo(ft) = £Zo(Q) (on Fig- eacn such /3 corresponds to a line cutting the intersection 
of the horizontal strip of width 2s and the vertical strip of width /7). By Lemma 0.9.2, 
if ft 3 we then have ft • zQ 3 a * zo arid this remains true for any z near zQ, so 
that z > (¡3 — a) • 2; is locally invertible. For b G ]a — e,a + e] and 6 7̂  4(a) , the 
operator —((5tt + a*z) acting on gr^U),#. = j . (.-D^I, r\z\.//z (see (6) above for 
the decomposition) can be written, on each summancL as the sum of the nilpotent 
operator — (dtt + ft • z) and of the invertible operator [(ft — a) * z] Id. It is therefore 
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invertible. This implies that 

v f e / ^ ) , c v$a){.#z)/v£e{.#z) c Kj;)£(.^2)/i/a(!)£(.^), 

arid that the natural projection (which is now defined) from ψ(z) 
t,a 

(^)z to V{z) grMa) (Mz) 
is an isomorphism Xz,Zn onto ψ(z) 

t,o 
(Mz) 

In order to show that the various ψ(z) (M) 
t,a 

glue as a sheaf ψt,a (M) on i^o, it 
is enough to show that the family of isomorphisms \z> z is transitive, i.e., \zn z = 
\zna, O \Z, whenever z' G AZ and z" G AZ, n A2. This follows from (3.3.5) which 
holds for z, z', z". 

Remarks 3.3.6. — The strictness assumption in Lemma 3.3.4 is used only near the 
points of Sing A(,#). More precisely, the lemma holds without any strictness assump­
tion if we extend the coefficients by tensoring over <̂r>0 by the ring ^Q0(* Sing A(<y#)) 
obtained by inverting polynomials vanishing on Sing A. If we allow to divide by such 
polynomials, the proof gives the uniqueness of the Malgrange-Kashiwara filtration, as 
well as its coincidence with the filtration by the order. 

Let ,yV be as in Lemma 3.3.4. 
(1) If c/p : ./# —> ,/K is any morphism, then gr]f sends ipt,a^zn i11 V;^a-^0- It 

is globally defined. Let us denote by V;t,«^ : ̂ t^^ —» V^a-7^ the morphism induced 
locally by g r ^ J ^ . 

(2) What prevents the filtration V. to be defined independently of z is that 
Va^(^z) jumps for values of a depending on £, more precisely for a = a' — Qa"', 
a G A. If A C M (e.g., if the local monodromy of the perverse sheaf corresponding 
to EDR(.^0 around 0 is quasi-unipotent or unitary), then the F-filtration is globally 
defined on Otherwise, the natural order on the set £Z(A) may depend on z, as 
shown on Fig. 3.a. One can compare the various Va"\.^z) for z in a neighbourhood 
of zQ if no jump occurs at a for these germs. This explains that, given any a, we 
compare the various V(l±£(.<$z) (see Fig. 3.a). 

If A C 1, then the previous lemma is simpler, as £Z()(a) = a f°r any a ^ A. 
The order does not depend on z0 and the ^/-filtration is globally defined. Moreover, 
i.'\Ay. // = gr^e^ for any a G A. 

In Corollary 5.3.1, we will regard £z(a) as a growth order indexing a parabolic 
filtration. This growth order depends on (. A similar problem occurs when defining 
the Stokes structure of a meromorphic connection of one variable, as for instance in 
[43, p. 56]. 

(3) The nilpotent endomorphism 
(()ft + n • z) : ct.n.// ψt,a M 

is denoted by N. There exists a unique increasing filtration M(N). of by &xQ-
submodules, indexed by Z, such that, for any £ ̂  0, N maps into M^_2 for all k and 
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induces an isomorphism gr̂ 1 giM£ for any £ 3 0. It is called the monodromy 
filtration of N (c/. [20, §1.6]). Each grMc>.0, ^ has a Lefschetz decomposition, with 
basic pieces the primitive parts (£ 3 0) 

P&fi4.a.£ = Ker [ N ' + 1 : g i f 0 t.«.# — g r î W u u r ] 

We note however that gr̂ 1 ut need not be strict, even if ijjt.ot-^ is so. 
(4) By an argument similar to that of the lemma, one shows that t : ipt,a 

'ipt,cx-i^ is injective for a 3 0 an(l : 0t.a<# —* c/.^-u ^ is so for a 3 —1- We 
note that, by Lemma 3.1.3, we also get that t : v£z"\.^ —» V^l"^.^ is injective for 
a < 0, because V . ( i s good. 

We note also that, for any a with Re a / 0 . the morphism t : 0t ,a^|s —> '0t,a-u^s 
is an isomorphism. Indeed, we already know that t is injective. Moreover, as Re a / 0 , 
we have a*z/z 3 0 for any z G S, and therefore fo\ is invertible on V^,a-i'^|s? hence 
the subjectivity of t. 

(5) Recall that if zQ 3 ^ then a • z0 = 0 => a = 0. For such a za and for « / 0 , 
0tt is therefore invertible on C\A^.// in a neighbourhood of zQ. This implies that, in 
a neighbourhood of such a za, we can replace "injective'" with "isomorphism" in (4) 
above. 

(6) There is a diagram of morphisms 

Ct. \-9/ 

can = —üt 
Ct. \-9/ 

var = t 

where var is induced by the action of t and can by that of 5V 
(7) For right -modules. N is defined as the endomorphism induced by the right 

action of fflt ~~ a * z, can by that of 6% and var by that of t. 

Corollary 3.3.7. We assume that ,y# is as in Lemrna 3.3.4 and let zC) G Ho- Let K 
be a compact set of X and let il be an open neighbourhood of zQ such that V}Z°K^ 
exists on K x Vt. Let W C K be an open set. If rn G T(\V x H,,#), there exists a 
finite set A(m) C C and v : A(rn) —> N* such that 

(1) 7 G A(rn) 3tn^\w»xn / 0, 
(2) ^(7) ^ the order' of nilpotency of N on C/.~ • ^ n() x<>-

so that, putting brn(s) = YlieA(m,)(s ~ 7 *ZY^\ one has bm(-dtt) • rn G V-\M%: • m. 

In other words, a Bernstein polynomial exists in a more global setting than in 
Definition 3.3.1. 

Proof. — One can assume that = • rn, according to Lemrna 3.3.4(1). Use 
then that the good filtration ,y • rn is comparable to the Malgrange-Kashiwara 
filtration V^Zti\4K on K x {}. • 
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Definitions 3.3.8 (Strict specializability) 
(1) A specializable SJ#y-module is said to be strictly specializable along t%"0 if one 

can find, locally near any point (x0,z0) G n. a good filtration V^z°\yft satisfying 
(3.3.3) and such that moreover 

(a) for every a G R, gr̂ Uo),># is a strict -module (hence V}z"\j? is the 
Malgrange-Kashiwara filtration of near za); 

(b) / : r/.n. // —» r/>n \.// is onto for h()(a) < (): 
(c) <jf, : i.'i.(X.// —> is onto f°r ^ —1 but a / —1. 

(2) A morphism <p : —» ,4^ between two strictly specializable /i^.--modules is 
strictly specializable if, for any <a G A, the morphisms 'ipt,(*ip are strict. 

(3) The category V'2(X.f) has strictly specializable ftfy -modules as objects and 
strictly specializable morphisms as morphisms. 

(4) Let / : X —> C be an analytic function and let , # be a $ -module. Let 
us denote by /'/• : X ^ X x C the graph inclusion. We say that is strictly 
specializable along / = 0 if / / • .+ . i s strictly specializable along X x {0}. We then 
set •ijJf.a</ft — 4h.(*{if\+'/ft)- These are coherent Btf^ -modules. If / = t is induced by 
a projection, we have, by an easy verification, V'f.o.(/ #) = 7y,+(0/.o, #) for any a. 

Remarks 3.3.9 
(1) As we have seen in Lemma 3.3.4(6). Condition (la) implies that, for every 

a, G R, we have a local decomposition gr); " \ # = ®C>GA> ^ (rv)̂ aV;/.a-
(2) We note that, according to 3.3.6(4), we can replace "onto" with "an isomor­

phism" in 3.3.8(11)) and (lc). Therefore, there is. for any k G Z and near za, a pre­
ferred isomorphism Vv.(V, # ^t>rv+A.,.#, obtained by suitably composing 3.3.8(11)) 
and 3.3.8(1 c); this isomorphism is not globally defined with respect to ~, unless a is 
real. 

Moreover, locally, t : vd~"\df —• V^-l-^- i« al1 isomorphism for a < 0: indeed, it 
is an isomorphism for a <^ 0. as the filtration is l/-good; apply then 3.3.8(11)). 

(3) Conditions 3.3.8(11)) and (lc) are automatically satisfied if we restrict to z ^ 
Sing (A), as we remarked in 3.3.6(5). These are really conditions near the singular 
points with respect to A, as defined in §0.9. 

(4) We assume that ^ and Af are strictly specializable along If p : —• ,Y 
is any ^-linear morphism, it induces a morphism • ilh,™^ ~^ ilh.a^\ by 
Remark 3.3.6(1). According to 3.3.8(lb) or 3.3.8(lc) (and to (2) above), in order to 
get the strict specializability of (p, it is enough to verify strictness of t/jt.a<P for one 
representative a of each class in A/Z, and for a = —1,0. Assume now that <p is 
strictly specializable. Then we have locally gr̂ (~o)</? = :: oCA- (. (o )_.„ i.-t.n^. which is 
therefore also strict. 

(5) Let U(z<>\df be a good F-filtration indexed by 4(J(A) which satisfies (3.3.3), 
3.3.8(lb) and (lc), but satisfies 3.3.8(la) for a ^ 0 only. Then one shows by induction 
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that dt : gr^( o) —• g r ^ ^ i s an isomorphism if a > —1 and therefore 3.3.8(la) is 
satisfied for any a. 

Lemma 3.3.10. — Let Lp : —» ...AA be a strictly specializable morphism between 
strictly specializable modules. Then p> is V-strict, Ker 92 and Coker 92 are strictly 
specializable and, for each a. one has 

ipt^ Ker cp — Ker C/.0 R; and vLa Coker (¿9 = Coker ijjtia(p. 

Proof. Fix z0 and forget about the exponent (zQ). As indicated in Remark 3.3.6, 
the result holds after inverting polynomials of the variable z vanishing on Sing A(.x#)U 
Sing A(,/f/). The assumption on cp is made to control the behaviour near the singular 
set. 

Let us prove the V-strictness of cp. We have to show that, for any a G M, we have 
Irn^n Va,AA = p(Va.^)). As both nitrations Im^ n V.,/¥ and (p(V.,yf)) of Imp are 
good (Artin-Rees for the first one), there exists k G N such that, for any a G R we 
have Impn Va-k,AA C p(Va^)). Therefore, if, for any a, the morphism Va/Va-k((p) 
is strict for the induced V-filtrations on Va/Va-k{^) and Va/Va-k(/-AA), then (£> is 
V-strict. 

Let us now show, by induction on the length of the induced V-filtration, that, for 
any a\ a with a' < a, the morphism Va/Va/(p) is F-strict and that Coker Va / Va> (p) is 
strict. This is by assumption if the length is one. Let a" G ]a',a[ be a jumping index 
and let n be a local section of p(Va.4%) n \'„". V + Vai,•¥. There exists a polynomial 
p(z) such that p(z)-n is a local section of p(Va" .^)-\-Va> -A^, as indicated above. Hence 
the class of p(z)n in Coker Va/Va» (p) is zero. By induction, the previous module is 
strict, hence the class of n itself vanishes, that is. n G p(V" ..4%) + Va/,A^. In other 
words, Va/Va/(p) is V-strict. As a consequence, we have gr^„ Coker Va/Va' (p) — 
Cokergr^„p) for any a" G ]«',«], which is strict by assumption, hence, by Lemma 
1.2.2(1), Coker Va/Va>{p) is strict. This gives the ^-strictness of p. 

Put on Kercp and Coker p the filtration naturally induced by V. This is a good 
filtration satisfying (3.3.3). We know that it satisfies 3.3.8(la) on Kerp (Lemma 
3.3.4(1)), so we call it V.Kerp. By the V-strictness of p that we have just proved, 
we have an exact sequence 

-gi-y Ker y graV. M 
gr VN 

•:\л . I 
о (I 

- grl

f{ Coker LU 

By assumption and Remark 3.3.9(4), Coker gr^p is strict, so U. Coker cp also satisfies 
3.3.8(la). By Lemma 3.3.4, it is equal to the V-filtration on Coker p. Now, 3.3.8(lb) 
and (lc) are clear. • 
Proposition 3.3.11. Let ,4f be a strictly specializable &r>#:-module. 

(a) If <4% = 0 .4%", then .//' and M" are strictly specializable. 
(b) If ,4% is supported on -J)n. then V<o^ = 0 and M — i+V§M. 
(c) The following properties are equivalent: 
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(1) var : '/.()> // —* i/jt^-i^ is injective, 
(2) ,Jt has no proper sub-&%;-module supported on .Yo. 
(3) M has no proper subobject in V'2(X. f) supported on /YQ. 

(d) //can : ipt,-i^ '^t.o^ is onto, then <Yl has no proper quotient satisfying 
3.3.8(la) and supported on i£0-

(e) The following properties are equivalent: 
(1') V{h£= Im can ©Ker var, 
(2') = <YY © ,YY' with <YY satisfying (c) and (d) and supported 

on <YQ-

In (b), one should put an exponent (z()); however, as a consequence of the proof, 
the lattice A is then contained in Z, and therefore the various filtrations V^Z\YY glue 
as a global V-filtration, so that the statement is not ambiguous. 

Proof We work locally near za and forget the exponent (zQ) in the notation. Be­
cause of Properties 3.3.8(lb) and (lc) and Remark 3.3.9(1), we can replace ^/,o with 
gr(3 and 0t,-i with gr^ in 3.3.11(c), (d) and (e). 

(a) For JV = .//' or Jt", put UajY = Va.£ n JY . Then =f U.^f © U.JY" 
is a good filtration of satisfying (3.3.3). As grj;'. Y is a subrnodule of gr* . //. it is 
strict. From Lemma 3.3.4 one concludes that — V.,Yt and it follows that 
and ,Y/Y are strictly specializable with IJ..YY' = V.,£' and = . 

(b) As t is injective on V<0^, one has V<o.^ = 0. Similarly, gv)t • // = 0 for a 0 N. 
As t is injective on grj. , // for A; > 1 (cf. Remark 3.3.6(4)), one has 

V{h£ = Ker [t : ,.// >,//}. 
As dt : gr[ , # —> grJf+1./# is an isomorphism for A; ^ 0, one gets 

.Jt = © V0. //(If - / . l'(K//. 

(c) (cl) (c2): It is enough to show that the mappings 

Ker [t : V0.Y/ V©i./#] 

Ker [t:.4K ,Yt,\ Ker [t : g r ^ - grL',.'//] 

are isomorphisms. It is clear for the right one, since t : V^.w —> V<-\,M is an 
isomorphism. For the left one this follows from the fact that t is injective on gr^, // 
for a / 0 according to Remark 3.3.6(4). 

(c2) ^ (c3): let us verify •<= (the other implication is clear). Let ,T denote the 
t-torsion subrnodule of «/# and the subrnodule generated by 

^ d= Ker [t — 

Assertion 1. — is a subobject of <Yt in ,Y2(X,t). 
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This assertion gives the implication <= because, by assumption, .<7f = 0, hence 
t : —> is injective, so = 0. 

Proof of the assertion. Let us show first that ,5^ is Sjtf -coherent. As we remarked 
above, we have ,% = Ker[£ : gr(J —> gri^,^]. Now, is the kernel of a linear 
morphism between -coherent modules, hence is also -coherent. It follows 
that '7' is -^.y-coherent. 

Let us now show that ST' is strictly specializable. We note that A7§ is strict because 
it is equal to 

Kcv[t : g r ^ # ^ g r ^ , # ] , 
Let £7.,^' be the filtration induced by V.,W on .7'. One shows as in (b) that U<0•(7/ = 0 
and gif/,^ = 0 for a 0 N. Let us show by induction on k that 

Щ..Г = .% + ü, .% + ••• + 

Let us denote by U'k/7' the right hand term. The inclusion D is clear. Let (:/:0, z„) G 
^o- m G Uk&(Xo%Zo) and let £ ^ k such that m G t / , ' ^ }. If £ > k one has 
m G gri^,^]. fi V>_i,#(,_2o) hence G V_i,.#(,_o) D ^'x^Zn) = 0. Put 

/// = ///() • (3/ /// i » • • • - 'ôfttn(. 

with /:m7 = 0 (j = 0. ...,£). One then has t((5{fnif = 0 and, as 

Ct. \-9/ 

.7=0 

(1// - . / :) • //// - (-1 )'/!.:'///, 

and ,5ft is strict, one concludes that = 0. hence m G gri^,^]. „ This implies 
the other inclusion. 

As gr^-T' is strict (because it is contained in gr̂  ,/#), one deduces from Remark 
3.3.6(4) that Of : gr[. .7' —> gTk^1.T/ is injective for k ^ 0. The previous computation 
shows that it is onto, hence f?' is strictly specializable and U.-7' is its Malgrange-
K as h i war a filtr at ion. 

It is now enough to prove that the injective morphism gr^ -7' —» g r j i s strict. 
But its cokernel is identified with the submodule Im[f : gi'X .^f —> grxLv4%] of grL{. //. 
which is strict. • 

(d) If can is onto, then = .tf• • V<{),y£. If ,^7 has a ^-torsion quotient Z7 
satisfying 3.3.8(la), then V<o^ = 0, so l/<o-# is contained in Ker[,^# —> f7\ and so 
is :'A\r • \ <().// - .//. hence -7 _ 0. 

(e) (el) => (e2): Put 

Uih4t' = V<{),JA + (StV-i.JZ and .̂ o = Ker [t : ^ —> ,7t\ . 

The assumption (!') is equivalent to Vq./^K — U^.T/A ® Jft. Define 

£4^' = VkM• ^ o ^ ' and £/fc.^" = Vk:tfy- • 
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for k > 0. As Vk,^ft = Vk-i.^ + dtVk-!^ for k > 1, one has VhJt = UkJt' + Uk,/ft" 
for ^ 0. Let us show by induction on k ^ 0 that this sum is direct. Fix k > 1 and 
let m G Uk^' n canJX^ Write 

ra = m^ . ! + dtnk__1 = vn!'_x + dtnk_1 

with ///'A. ,. n[. , G Uk-i.^f and m/^_1,n/^_1 G lh—\.'ft". One has O^n'^J = 
S t K . ! ] in V,..///V/, j . / / . hence, as 

3* : Vk^JK/Vk-2.^ — Vk./ft/Vk-U/ft 

is bijective for A; ^ 1, one gets canJX^ — [n'lz__A] in Vfe-i . .^ iVk-i^ and by induction 
one deduces that both terms are zero. One concludes that ra G Uk-\./ft' D Uk-\,/ft" = 0 
by induction. 

This implies that = ./0" canJX^ with d= Uk.Uk..ft' and defined similarly. 
It follows from (a) that both ^ft' and ,/ft" are strictly specializable and the filtra­
tions U% above are their Malgrange-Kashiwara filt rat ions. In particular .>ft' satisfies 
(c) and (d). 

(e2) (el): One has V^..//" = 0. Let us show that Inican = g r ^ , ^ ' and 
Ker var = gi*Q .ft". The inclusions Im can C grQ.yft' and Kervar D gr^ .^ft" are clear. 
Moreover gr*,'. ft' n Kervar = 0 as satisfies (c). Last, can : gx\x. ft' —> gx^ ./ft' is 
onto, as ./ft' satisfies (d). Hence g^ ./ft = Im can 0 Ker var. • 

Corollary 3.3.12 (Kashiwara's equivalence). The functor i + induces an equivalence 
between the category of coherent strict -modules (and strict morphisms) and the 
full subcategory Y j/u (A'. /) of rc/'2(X,t) consisting of objects supported on An 
inverse functor is C/.o. 

Proof. It follows from Proposition 3.3.11(b). • 

Proposition 3.3.13 (Strict specializability along {t' = ()}). We assume that is 
strictly specializable along {t = ()}. Put f = tr for r > 2. Then .ft is strictly 
specializable along {/ = 0} and, if we denote by i : {t = 0} X the closed inclusion, 
we have ('0/,a^? N) = (/ + t/v.rfVt<#. N/r) /or anvy a and an isomorphism 

Cf. -1 M 
can f 

vai*/-
фг,0М canJX^ I + 

cany c= cant o(tr l) 1 

O . r-ft< - - c . ,.// 
с a rit 

var¿ 
с a rit 

def ,r_i 
var f — V o var* 
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Proof. — We fix z0 and we forget about the exponent (z0), when working in a neigh­
bourhood of zQ. We can write if,+.^ = (Bken^ ® as a 0C C[u] (c1u)-module, 
with 

g£(m<g)J) - /// m k n 

3*(ra ;•; d) - Co, tu) 0 S - (rtrìm) 0 cW, 

u(rn ®ô) = (tf'rn) 0 (5, 

0:r(m 0 (5) = (Oyin) 0 d\ 

and with the usual commutation rules. For the sake of simplicity, we will write xc 
instead of 0c C[u](du) and V'o-'̂ .y x :: instead of 0C C[w](udu). 

For a ^ 0. Dut 

üuu + a • zY'- Vai f+M С V<aiл+^,w](udu). 
and for a > 0 define inductively 

üuu + a • zY'- Vai f+M С V<aiл+^,w](udu). 

We assume that a ^ 0. Using the relation 

(duu + a • z)(m 0 (5) = - ([(cM + ra • z)m] 0 £ - dt(trn 0 (5)), 

one shows that, if 

£Zo (ra)-ra 

(ütt + (ra) • z)v'-Yra.// С V<raM, 

then 

'̂s0 (cn) = a 
(üuu + a • zY'- Vai f+M С V < a i л + ^ , 

thus (3.3.3) for a ̂  0. 
If mi, . . . , ra^ generate Vra.// over Vo-'tf.?-. then mi 0(5, . . ., m^6 generate Vaif.+^ 

over Vc)^,^xc, as follows from the relation 
((l/tni) 00= ((]// - ni,,//)(//; 0 r)). 

It follows that Vaif,+..4# is Vq^JTxc-coherent for any a ̂  0, hence for any a. 
For any a we clearly have 

Va-iif.+,4% c '#fl:i/,+^ (resp. 1^+1«/,+.^ C V"<a+ii/,+.^ + cluVV^,+-#) 

with equality if a < 0 (resp. if a ^ —1)- as an analogous property is true for ,.4t. 
Therefore, V.ij^.M is a good V-filtration. 

According to Remark 3.3.9(5), it is now enough to prove the second part of the 
proposition, hence we now assume that a ̂  0. 
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We have Vaif^+M — V<aif,+.yft ~rJ2k^o o '̂(Vra./# One shows, by considering 
the degree in du, that the natural map 

i>t,(a*za)/z(Mzo;(,/#). 

6*(mfe®¿ 6*(m f e ®¿) 

is an isomorphism of -modules. The desired assertions follow. • 

Proposition 3.3.14 (Restriction to z = zQ). Let z0 G 17o and Ze£ .M be a strictly spe­
cializable -module with Malgrange-Kashiwara filtration V}z°K/ft near zQ. Put 
MZo = JZ/(z - Z0)M. 

(1) For any a G R, w;e /ia'ue, near zQ, 

v;<̂ (.#) n - Zo).* = (z- z0) • (,/#). 

TTie filtration U.(MZa) naturally induced by V}z°^ on /(z — z0),// is good with 
respect to V.^x (zQ ^ 0) or to V.grF @x (z0 — 0) and, for any a, 

gif (M.J - gr?°"'.*/(z - z0)&vaUa'JC. 

Moreover, gr^(AIZ()) is naturally decomposed as the direct sum (Ba\£^o(a)=a.Vfe^MZo, 
with, 

i>t,(a*za)/z(Mzo;i>t,(a*za)/z(Mzo; 

Last, 
• t ' I/j^^MZo —> i-l'a' .1 is an isomorphism if £Za(a) < 0, 
• : i ,(j~("K\/Zi> —> I/j[Z^1MZo is an isomorphism if £Zo(a) ^ — 1 but a / — 1. 
We still denote by N : ij^^ MZo —> '4^Jy AIZtt the nilpotent endomorphism induced 

by N, and similarly for can and var. 
(2) If z0 / 0, then 

(a) AIZn is specializable along XQ as a -module, 
(b) —(Oft + a* z0/z0) = N/z0 is nilpotent on 'ij)[z^MZo, 
(c) dt : iJ.^q MZn —> ^rty^1MZo is an isomorphism if £Z(>(a) ^ —1 but a ^ — 1. 

(3) //z0 0 Sing A, in particular if zQ 0 zR, £/&e induced V-filtration U.MZo is a 
Malgrange-Kashiwara filtration V}Lz<^ A1Z() (for some R-linear form LZo depending on 
zQ only) and we have 

VYa^z<} =i>t,(a*za)/z(Mzo; 

in particular, 'ijrt~°'MZ(> = i/jt^aAIZo for a G R, e.g., a = —1,0; moreover, N induces 
ZoNZo, can induces za can~o and var induces var2o fwhere ~NZo, can2o, var2o are defined 
in §3.2 /or A/2J. 

Proof. — We work locally near zQ and forget (zQ) in the notation. Let rn be a local 
section of Va(,yft) D(z — zQ).Then m = (z — zG)n where n is a local section of 1 4 ^ 
for some 6. If 6 > a, then n induces a torsion element in gr^,^, hence n G V^.sft 
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by 3.3.8(la). This gives the first assertion. The other assertions are clear (cf §3.2). 
Let us give more details when zQ 0 Sing A. If we fix a, the roots of the minimal 
polynomial of —dtt on gr^f (MZo) are the 7 = (a * zQ)/za where a satisfies £Zo{<y) — a-
If zQ 0 Sing A, then 7 1—> a is a IR-linear form on 7 (because a (a * z0)/z0 is a R-
linear automorphism of C), that we denote by LZi>(^). We note that, as zQ 0 Sing A, 
we have 7 G Z only if a G Z and therefore LZn(%) c Z. The filtration £/. is then equal 
to the Malgrange-Kashiwara filtration associated with LZo (see §3.2). 

If zQ G Sing A \ {()}, the roots of the minimal polynomial of —dtt on gr^(MZo) may 
differ by a nonzero integer, hence the filtration U. is not useful to compute ^t(MZo). 

On the other hand, if z„ G IR*, we have £Z(t = Re and Re(a • z0/z0) = Re(cv), 
so the roots of the minimal polynomial of — ĉ f on gr^(MZ(>) are the a for which 
Re(a) = a. In the case za — 1 (corresponding to the functor EDR), we also have a 
perfect correspondence with can and var. • 

Remark. With the only assumption of strict specializability, we cannot give general 
statements concerning the behaviour of Properties (b) to (e) of Proposition 3.3.11 by 
restriction to z = zQ 7̂  0. We will come back on this in Proposition 4.1.19. 

We can now reformulate Theorem 3.1.8 for strictly specializable modules. Let us 
take notation used in this theorem. 

Theorem 3.3.15. We assume that M is good and strictly specializable along X x 
{0}, and that F is proper on the support of M. Assume moreover that, for any a, 
the complexes fyipt,a^ are strict. Then the &xc-modules ,:/f'l(F^^) are strictly 
specializable along Y x {()}. Moreover, for any a, we have a canonical and functorial 
isomorphism 

ÌHMM
J\FVW,) ж1иУФ,.п,^). 

Proof. W7e can work locally near za G O0 and we forget the exponent (z0). We 
note that, because of Remark 3.3.9(1), the complex J-j-gr^.# is strict for any a G M. 
Let us denote by Ll.MJl(F^.£) the filtration induced by .//^(f-V..//). We can apply 
to it the conclusions of Theorem 3.1.8 (after extending it to the case of filtrations 
indexed by lu +Z). This filtration satisfies (3.3.3) and, by assumption, 3.3.8(la). It 
is therefore equal to the Malgrange-Kashiwara filtration (cf. Lemma 3.3.4). We hence 
have 

g r ^ ' : ( i > / / ) ./'(/K'/.n-
a1 = a 

o\'(j\uLn,//) 

As the image o\'(j\uLn,//) -+ gxvaMn(Fv£) is clearly contained in c,'(F~,//). 
it is therefore equal to it. 

The canonical isomorphism ./'(/K'/.n- //) V\•'/('' (F~, -ff) that we have con­
structed is a priori only defined locally near zQ. However, it is locally independent of 
the choice of zQ: to see this, replace gr^ above with V^^/^a-e f°r e smail enough, 
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and argue as in the proof of Lemma 3.3.4(7). Therefore, it is globally defined with 
respect to z. 

As t : \'a. // —> Va-i.ft is an isomorphism for a < 0, it also induces an isomorphism 
•tf"{hVa.£) •^'{.t\Va-1.//). As JT ' ( / tVa .^) - Jf<(Ft.^) is injective for 
any a and has image Va,YAl(F^,/ft), this shows that MJ%[F^,/ft) satisfies 3.3.8(lb) and, 
by the same argument. 3.3.8(lc). • 

Remark 3.3.16. It is enough to verify the strictness condition of the theorem for 
those a such that Re(cv) G [—1, 0[ and for a = 0: indeed, strictness is a local property 
with respect to z, and one can apply locally 3.3.8(lb) and (lc). 

3.4. Localization and minimal extension across a hypersurface 

3.4.a. Localization of a strictly specializable Stf,$ -module . — Consider the 
sheaf of rings .tfy[t [\. We note that we have .tfj't [] = (\\)-^y)[t 'L as c5t = 
trl(tdt). This ring has a ^-filtration defined by VkM,<r[t~l] = t~kV^,r- One can 
define the notion of a good ^-filtration for a coherent ffir»r [t~ 1]-module as well 
as the notion of specializability. Then Lemma 3.3.4 applies similarly, and shows the 
existence of a canonical V}z,>)-filtration. 

The situation simplifies here, as t : Va~°\<// —> l^l'i , # is an isomorphism for 
any a. It follows that t : 7/Vn.-'# —• 'i/'txx-i-^ is an isomorphism for any a, and we do 
not need to consider the (can. var) diagram. Moreover, strict specializability reduces 
here to Condition 3.3.8(la), as we are not interested in Condition 3.3.8(1 c). 

Lemma 3.4.1. Let.-// be a coherent ftf -module which is strictly specializable along 
t — 0. Then (= ::tfy:[t~l] ,df< is a coherent 8$.$;[t~l]-module which is strictly 

specializable along t = 0. Moreover, the natural morphism —• ytf induces, in the 
neighbourhood of any za G ̂ o, an isomorphism of V^tf-:?;-modules 

Ma < 0. Va

{z"\j/ V}Z">.J?. 

Proof - We have . # = @$• [t 1]<8>/?:ir.^ as a f?$;[t ^-module. Locally, the injective 
map VQ~°\'$ induces, by flatness of ff^:[t~{] over @ , an inject ive map 
fJy};\trx\ ®o:r V^Zo)Jt w which is onto because = J2k>o , so that 

M = 

A-̂ 0 

EA^O S*%(~o)-^> so 

[t~l] 

J/, = EA^O S*%(~o)-^> so 

As gTQ{~°\/ft is killed (locally) by some power of t, we also have = O _•)• .1 l\ <8)&tir 
V^\^. Put then V^.^= t~k 0 Vdz"\^ for any a G [-1,0[ and any k G Z. This 
defines a filtration of ,/#, which has all the properties required for the Malgrange-
Kashiwara filtration. As t : V(^"\yft —>• V^-i*^ is bijective for a < 0, we get the 
required isomorphism. • 
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Lemma 3.4.2. — Let ,47 be strictly specializable along t - 0. Put ,7/ = [f x] 0 ,47. 
Then, " y 

(1) for any a ^ N; we have \.\,a.7/ C ct.n.7/. 
(2) for any a with Rea G [—1,0[, we have r/.r>. //s = <7.n- ^ s -

Proof 

(1) We know, by Lemma 3.4.1, that the inclusion is an equality near zQ if £Z() (a) < 0. 
Fix now a ^ N. Locally near zQ, there exists k G N such that £Za{a ~ k) < 0. We 
have a commutative diagram 

ayM ayM 

tk tZk 

atyM atyM 

where the left vertical arrow is injective, by Remark 3.3.6(4), hence the result. 
(2) Choose k G N* big enough so that £z(a - k) < 0 for any a with Re a G [—1, 0[ 

and any z G S. We note now that, for any £ ^ 0, (a — £) * z / 0 for z G S, as 
Re(o - £) ̂  0 (c/. §0.9). Therefore, as £9* + (a - £) • 2 is nilpotent on r,.n / i-^S-
tdt is bijective on it and thus the map £ : i v.o-/- ~̂  V^a-^-i-^s is onto, so 
that the left vertical map in the diagram above, restricted to S, is onto, as was to be 
proved. • 

Definition 3.4.3 (Nearby cycles). Let ,47 be strictly specializable along t = 0 and 
put ,// = tf.-r'l '] 2,,*,, .//. For a such that Re a G |--1.0|. put 

^t.n-7/ c= t'f.n.7/. 

Remarks 3.4.4 

(1) By the definition of strict specializability, we have, for any a 0 N, a local (with 
respect to z) isomorphism ^t^a.,47 ~ '4h<a<7%, given by a suitable power of t or of cV 

(2) On the other hand, by Lemma 3.4.2(1), we have i[jt^,47 C ^t^^ and 
4Jt,a^\s — ^t,cx'^\s^ f°r any a with Re a G [—1,0[. 

(3) Last, if a is real and in [—1,0[, we have c/.fv, ^ = Y tm M, as £z(a) = a < 0 
for any 2. 

Remark 3.4.5 (Strict specializability along {tr =0}). — Proposition 3.3.13 (forgetting 
the assertion on can and var) applies to strictly specializable 2%$: [t_1]-modules. Re­
mark that, with the notation of loc. cit., the action of u is invertible on i . There­
fore, we deduce that, if Re a G [-1,0[, (^/.Q.#,N) = z+(*fira_|-rcv-]^,N/r), where 
[ra] G Z is such that Re(ra - \ra]) G [-1,0[. 
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3.4.b. Minimal extension across a hypersurface 
Proposition 3.4.6. Let ,47 be a strictly specializable ^^[t^1]-module. In the neigh­
bourhood of any z0 £ f̂ o, consider the -submodule ,7fSz°^ of ,47 generated by 
V^>],£. Then, th e various ,.47SZ°^ glue as a coherent &\%~-submodule ,47 of ,.47, 
which is the unique strictly specializable -submodule of ,47 satisfying 

(1) @x[t-L]®M..r = 
(2) can is onto and var is injective. 

Moreover, the filtration defined, by 

(3.4.6)(*) V^\.7t 
V^O),47 

^GN,fl'<0 °t Vaf 
a' • ( ̂  a 

if a < 0, 
if a ^ 0. 

is its Malgrange-Kashiwara filtration near za. 

Definition 3.4.7 (Minimal extension). - We call the ^^-submodule ,47 of «# given 
by Proposition 3.4.6 the minimal extension of ,47 across t = 0. 

Proof of Proposition 3.4.6. — The question is local on t%\ SO we work in the neigh­
bourhood of some compact set in X and on some disc A2o(//), on which V^z°> ,47 
exists. We denote by A the set of indices of this filtration. 

Let us first prove that ,7t does not depend on za. We have to prove that, if rj is 
small enough, then for any z £ A2<)(//), the germ ,7/z^ is equal to the germ ,47Z""\ 
The problem comes from the fact that V^\7A can fail to induce at z. Fix 
e > 0 such that 

(3.4.8) V^z0,),47 = v__z:\£. 

Then, after Lemma 3.3.4(5) and (3.3.5), we have, for r/ > 0 small enough and any 

(3.4.9) V^\tfz = V{-7]^z = V^^z C V^.rfz-

Therefore, ,47^°^ C In order to prove the reverse inclusion, it is enough to 
show the inclusion 

(3.4.10) V^,4?Z C visJ.4t8 + dtV±zlv^z = + dttV^,47z, 

because if r; is small enough, we have V^lV.47Z C V^Q'\.47Z; equivalently, it is enough 
to show that, for any a £ A and any z ^ zQ near zQ such that £Zo(a) ^ ] — 0[, 
the operator dft is onto on cv.a- //-:. Recall (cf. Lemma 0.9.2) that, if a is such that 
£Zn{a) ~ 0, then a*zQ — 0 if and only if a = 0. Therefore, for any e > 0 small enough 
there exists 77 > 0 such that 

(£Zf>(a) G ] - £, 0[, z £ AZn(rj) and a £ A \ {0}) a * 2 ^ 0. 

z e Д г „ (•//), 
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As — (dtt + OJ * 2) is nilpotent on iijt^,/ftz. the previous choice of 5, 7/ is convenient to 
get (3.4.10). 

Clearly, each ,/ft^Z(>^ is -coherent on the open set where it is defined. Let us 
now show that it is strictly specializable along t — 0. Near zQ, ./ft = ./ftSZa> comes 
equipped with a filtration V}z"\<ft defined by (3.4.6)(*). This ^-filtration is good, 
and ./ft is specializable. This filtration satisfies Properties 3.3.8(la), (lb) and (lc): 
indeed, this follows from the strict specializability of ./ft for (la) with a < 0 and 
for (lb); for (la) with a = 0, notice that gi'Q ( .ft is identified with the image of 

Qt : gr V^'K/V = V^\vV = V̂ .M./ft by construction, hence is strict, being contained in the 
strict module gr^(~°\Jft\ for (lc), this follows from the definition of the ^-filtration; 
apply then Remark 3.3.9(5). Therefore, .dt is strictly specializable. 

Similarly, dt : <. v. \. ft —> I't.o- ft is onto, by construction, as ^t.^./ft is identified 
with 

image [0t : r,. \. ft > i.fA). ft]. 

As t : V ' t ,o^ —• ilh^-i-sft is an isomorphism, we conclude that, for ./ft, var is injective. 
Let us end with the uniqueness statement. Let ..At C ./ft satisfying 3.4.6(1) and 

(2). Then, by Lemma 3.4.1 and 3.4.6(1). V^'K/V = V^\vV = V^.M. As can is 
onto and as t/K satisfies 3.3.8(lc), we have ,At = /A>/}- • V^'K./t near z0, hence the 
desired uniqueness assertion. • 

3.5. Str ict ly S(uppor t ) -decomposable -modules 

Definition 3.5.1. We say that a -module ./ft is 

strictly S-decomposable along ,5£q if it is strictly specializable along and sat­
isfies the equivalent conditions 3.3.11(e); 

- strictly S-decomposable at xa G X if for any analytic germ / : (X,x0) —» (C,0), 
if^./ft is strictly S-decomposable along 3t* x {()} in some neighbourhood of xQ\ 

- strictly S-decomposable if it is strictly S-decomposable at all points xQ G X. 

Lemma 3.5.2 

(1) If ./ft is strictly S-decomposable along {t = ()}, then it is strictly S-decomposable 
along {tr = 0} for any r ^ 1. 

(2) If ./ft = ./ft\ ©./#2? then ./ft is strictly S-decomposable of some kind if and only 
if c/ft 1 and ./ft2 are so. 

(3) We assume that ./ft is strictly S-decomposable and Z is pure dimensional. Then 
the following conditions are equivalent: 

(a) for any analytic germ f : (X.xG) —•> (CO) such that /_1(0)nZ has every­
where codimension one in Z, i^+./ft satisfies both conditions 3.3.11(c) and (d); 

(b) near any xQ, there is no coherent subrnodule of ./ft with support having 
codimension ^ 1 in Z ; 
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(c) near any xQ, there is no nonzero morphism p : ./ft —> ,/Y, with JV strictly 

S-decomposable at x0, such that Imp is supported in codimension ^ 1 in Z. 

Definition 3.5.3. — Let Z be a pure dimensional closed analytic subset of X and let 

../ft be strictly S-decomposable. We say tha t ./ft has strict support Z if the equivalent 

conditions of 3.5.2(3) are satisfied. 

Proof of Lemma 3.5.2. The first point is a direct consequence of Proposition 3.3.13 

and the second one is clear. For the third one, let us show for instance (3a) ^=^> (3c). 

Let p : ../ft —» with ,/V strictly S-decomposable at xQ, such tha t limp C / _1 (0 ) . 

Then 3.3.11(d) implies that Im<p = 0. Conversely, given / such that /_1(0) has 

everywhere codimension one in Z, decompose if^./ft as in 3.3.11(e). Then (3c) implies 

that ,/ft" = 0. • 

We will now show that a strictly S-decomposable holonomic -module can indeed 

be decomposed as the direct sum of holonomic -modules having strict support . 

We first consider the local decomposition and, by uniqueness, we get the global one. 

It is important for that to be able to define a priori the strict components. They are 

obtained from the characteristic variety. 

Proposition 3.5.4. — Let ./ft be holonomic and strictly S-decomposable at xQ, and let 

(Zi,x0)i£i be the minimal family of closed irreducible analytic germs (Zl:xG) such 

that Char~/ft C UiT^.X x f20 near xa. There exists a unique decomposition ./ftXo — 

(Bi^i./ftzj,x() of germs at xQ such that ./ftzux0 — 0 or has strict support (Zl.xQ). 

Proof. We will argue by induction on d i m S u p p , ^ . First, we reduce to the case 
when the support S of ./ft (see after Definition 1.2.4) is irreducible. Let S' be an 
irreducible component of S at xQ and let S" be the union of all other ones. Let 
/ : {X, x0) -> (C, 0) be an analytic germ such that S" C / - 1 ( 0 ) and (S\ xQ) (£ /_1(0)-
Then, according to 3.3.11(e), near xQ, ./ft has a decomposition ./ft. — ./ft' © ./ft", with 
,/ft>' supported on S' and satisfying 3.3.11(c) and (d), and ./ft" supported on S". 

Conversely, if we have any local decomposition ./ft = (&../ftsj, with (St.xQ) irre­

ducible and . fts, (strictly S-decomposable after Lemma 3.5.2(2)) having strict sup­

port Si, then Si C S' or Si C S" and ,ft' = ^s-^s-^s,, Jt" -,s/C s">ftsr 

By induction on the number of irreducible components, we are reduced to the case 

when (S,x0) is irreducible. We can assume that dim S > 0. 

Choose now a germ / : (X,x0) —> (C,0) which is nonconstant on S and such 

that / - 1 ( 0 ) contains all components Z{ except S. We have, as above, a unique 

decomposition ./ft = ./ft,' 0 ./ft" of germs at xQl where ./ft' satisfies 3.3.11(c) and (d), 

and ,/ft" is supported on / _1 (0 ) , by Proposition 3.3.11(e). Moreover, ./ft' and ./ft" are 

also strictly S-decomposable at xQ. We can apply the inductive assumption to jft". 
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Let us show that ,47' has strict support S near xQ: if ,47[ is a coherent submodule 
of ,,47' supported on a strict analytic subset Z C S, then Z is contained in the union 
of the components Z%, hence ,M[ is supported in /_1(0), so is zero. • 

By uniqueness of the local decomposition, we get: 

Corollary 3.5.5. Let be holonomic and strictly S-decomposable on X and let 
(Zi)ie[ be the minimal (locally finite) family of closed irreducible analytic subsets Zi 
such that C h a r c UjT| X x C There exists a unique decomposition ,47 = 0?./#z7 
such that each ,4%zt — 0 or has strict support Z%. • 

A closed analytic irreducible subset Z of X such that <7tz 7̂  0 is called a strict 
component of ,47,. 

Corollary 3.5.6. — Let \,47" be two holonomic 3%gr-module which are strictly S-
decomposable and let (Zt)iej be the family of their strict components. Then any 
morphism, p : --47z. —+ vanishes identically if Zi 7̂  Z3. 

Proof. The image of p is supported on Zt D Z3, which is a proper closed analytic 
subset either of Z% or of Z3, if Z% 7̂  Z3. • 

The following will be useful: 

Corollary 3.5.7. Let ,47 be holonomic and strictly S-decomposable. Then „47 is 
strict. 
Proof. The question is local, and we can assume that .dt has strict support Z with 
Z closed irreducible analytic near xQ. 

First, there exists an open dense set of Z on which ,47 is strict. Indeed, by Kashi-
wara's equivalence on the smooth part of Z, we can reduce to the case when Z = X, 
and by restricting to a dense open set, we can assume that Char „47 is the zero section. 
Hence we are reduced to the case when „47 is f7%'-coherent. If t is a local coordinate, 
notice that „7t'/ft,.47 = c^.. \,7/. as the filtration defined by Uk-47 = t~~k ,77 for k ^ 0 
and Uk„47 = ,4% for k ^ 0 satisfies all properties of the Malgrange-Kashiwara filtra­
tion. Let m be a local section of ,47 killed by p(z). Then m is zero in ,4%jt„.47 by 
strict specializability. As ,47 is &-coherent, Nakayama's lemma implies that m = 0. 

Let now m be a local section of „47 near xQ killed by some p(z). Then • m is 
supported by a strict analytic set of Z near xQ by the previous argument. As ,47 has 
strict support Z, we conclude that m = 0. • 

Let us end this paragraph with a result concerning sesquilinear pairings: 

Proposition 3.5.8. — Let ,47',,47" be two holonomic /7 <j- - module which are strictly 
S-decomposable and let (Zi)iGj be the family of their strict components. Then any 
sesquilinear pairing C : <7/'z^s &fjs • s ~~* , xs/s vanishes identically if 
Z%^Z3. 
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Proof. The assertion is local on X x S, so we fix za G S and xQ G X and we work 
with germs at (x0, zQ). Assume for instance that Zi is not contained in Z3 and consider 
an analytic function, that we can assume to be a local coordinate t by Kashiwara's 
equivalence, such that t = 0 on Z1 and t ^ 0 on Zz. Consider C as a morphism 
^z-\s ~~* ^orn<%,Tjs{J^z,Is' ^bxmxs/s)• Fix local -generators 7n'{,...,m" of 
i | (lo2o). By 3.3.11(b), there exists q ^ 0 such that tqm'k' = 0 for all k = 1, . . ., L 
Let rn' G r̂ ^ and let p be the maximum of the orders of C(m'){rn'k[) on some 
neighbourhood of (xa, zQ). As tp+1+q/tq is we have, for any fc = 1, . . . , 

*P+1+*C(m')(m{;) = ^ r - ' ^ m ' l K ) = 0, 

hence tp+1+q,C(m/) = 0. Applying this to generators of . //'y x̂ z ^ shows that all 
local sections of C{Jt'z. ^ ^ ) are killed by some power of t. 

As jft'z. has strict support Z%, we know from Proposition 3.3.11(d) that 
KccT^̂ Z; (x 2 ) generates yft'z ^. v ) over .tfy. It is therefore enough to show 
that C(v[l°\^ZUx^Zo)) = 0. 

On the one hand, we have C(Vk(z°l^'z^(x^Zo)) = 0 for k <C 0: indeed, by 
Lemma 3.1.3, f : C(V^Za\^'z.{XoZo)) -> C(V^^'z.Zo) is an isomorphism for k < 0, 
hence acts injectively on C(V^z°K/ftZj ^ y ^), therefore the conclusion follows, as £ is 
also nilpotent by the argument above. 

Let now k < 0 be such that C(Vk^ J/Z/ ^ z^) = 0, and let rn' be a section 
of Vk(Zo\yftz^{x^Zo): there exists b(s) of the form Ila|̂ w(a)G[A;,fc-i[(s ~ a * ^ such 
that b(-dtt)m' G V ^ f ^ (To 2 }, hence 6(-Stt)C(m/) = 0; on the other hand, we 
have seen that there exists TV such that tNJrlC{rn') = 0, hence, putting B(s) = 
n^loO5' — £z), it also satisfies B(—dtt)C(rnf) = 0; notice now that b(s) and B(s) have 
no common root, so there exists p(z) G C[z] \ {0} such that p(z)C{rn') = 0. According 
to (0.5.1), we conclude that C(m') = 0. • 

3.6. Specialization of a sesquilinear pairing 

3.6.a. Sesquilinear pairing on nearby cycles. — We keep notation of §§ 1.5 and 
3.1.a, Let Jt' and <£" be two objects of J2(XA) and let 

С : .<S <g> .Ж" Pbv s s 

be a sesquilinear pairing. In the following, we will assume that the -modules are 
also good (in the applications they will be holonomic). The purpose of this paragraph 
is to define, for any a G C, a sesquilinear pairing 

*P+1+*C(m')(m{;) = ^r-'^m ^ b A - ( ) . x S / S -
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compatible with N, i.e., such that, with obvious notation, 

(3.6.1) ^>aC(N[m],p) = (7^)2^aC([m],i%I), 

where N denotes the action of —(dtt + a * z) on t. v.a. Using the notation of Tate 
twist introduced in (2.1.3) and the notion of morphism of 3#- Triples(X) introduced 
in Definition 1.6.1, we will put r./7 = (N',N") with N" = zN and N' = -N" = -zN, 
so that <y¥ is a morphism of 3%- Triples(XQ): 

(3.6.2) ,/K : ilh^(,7/7 ,.47" .C) —> V^a(^/, .^// ,C)(-l) 

which satisfies JV* = — JY 

Remarks 3.6.3 
(1) Once such specializations are defined, we get, according to the compatibility 

with N, pairings 

i>t.aJC : grM^.«-<s ® g r ^ . « . < £ —» 2)bx,)Txs/s • 

In other words, using the notion of graded Lefschetz Triples introduced in Remark 
2.1.17, the graded object 

(gr^Ve,*^, griV/T) =' ( f (grM£^.«. grf ^ , „ . ^ " , t/^^C), grM2^) 

is a graded Lefschetz triple with e = — 1. 
(2) As C is x) s"^mear' ^ easily follows from the definition of tjh^C that we 

know all 4}t,aC as soon as we know them for Re (a) £ [— 1, 0[ and for <r = 0, according 
to 3.3.8(lb) and (lc). 

In order to define the specialization of C. we will use the residue of a Mellin 
transform, that we consider now. 

Let JC1be two objects of ,9/2(X,t) and let C : .^'s 0f/s 3 ^ -> Dbx.,xS/s 
be a sesquilinear pairing. Fix (xQ, zQ) £ XQ X S. For local sections m', rn" of ,.47', ,47" 
defined in some neighbourhood of (x0lz0) in X x S the distribution C(rn',rn") has 
some finite order p on nbxxs(xo, zQ). For 2 Re s > p. the function \t\2s is Cp, so for 
any such s, |£|2sC(ra', ra") is a section of DbA%xS/S on nbxxs(^o^0). Moreover, for 
any relative form V; of maximal degree with compact support on n b x x s K , ^ ) , the 
function 5 (|/;|2sC(ra/, z??/'), is holomorphic on the half-plane {2 Re s > p}. We 
say that \t\2sC(mf, rn") depends holomorphically on s on nb^xs^o, 2G)x{2Res > p). 

Let x(t) De a real C°° function with compact support, which is = 1 near t = 0. In 
the following, we will consider differential forms ij; — <p A x(t) ^d,t A dt. where ip is a 
relative form of maximal degree on XQ X S. 

Proposition 3.6.4. — Let ,47'.t..7t", C be as above. Then, for any (xQ, zQ) <EXQ X S. 
there exists an integer L ^ 0 and a finite set of complex numbers 7 satisfying 
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'0t,7*^(/r y ) 7̂  0 arid 4h^^^r ) 7̂  0, snc/i t//,oi, /or any element m! of *4%[r „ ^ 
and in" of ,/$"v _^ x, ///r correspondence 

(3.6.4)(*) y 
1 

r(s - 7 * • <|t|2sC(ro', m"), y> A X(0 £d* A <£) 

defines, for any s G C, a section of %)bxin;Xs/s on nbx0 xsfe , -o) which is holomor­
phic with respect to s G C. 

The proposition asserts that the distribution 

V? ^ <!<|2sC(m'. m"), V A *(*) A fS> 

extends as a distribution on iibx()xs(^o? zo) depending meromorphically on s, with 
poles along the sets s — —k + j*z/z (k G N), and with a bounded order. We note 
that changing the function \ will modify the previous meromorphic distribution by 
a holomorphic one, as \t\2,s is C°° for any s away from t — 0. The proposition is a 
consequence of the following more precise lemma. 

Lemma 3.6.5. Let {.ra. z()) G XQ X S and let 0,1,0,2 G M. There exist L ^ 0 and 
a finite set of'7 satisfying 

ihn^[Xo,zo) Ï 0, $t„.#"Xtt%-*o) ^ 0, 4,(7) < ai, ¿ ^ ( 7 ) ^ «2, 

such that, for any sections in' G K, . ^ ' ^ ^ and ra" G K2G K2 _Z)y the corre­
spondence 

(3.6.5)(*) y 
x 

T(s - 7 • z/z)L • (|£|2*C(ra', ra"), A 0 ^ A dt) 

defines, for any s G C, a section of £)bx()!RxS/s on nbx0xs(^oi ^o) which is holomor­
phic with respect to s G C. 

Assume moreover thai the class of rn' (resp. rn") in gr^ "°G K2 ^ ̂  (resp. in 

gr̂ 2( "° t#̂ ,o _r )y) zs m ih^x-Tt'^.} Z(>) (resp. in •ipt,tx2</^"r -z ))• Then the product of 
r factors can be indexed by a set of 7 satisfying moreover 

(3.6.5ÏÏ**) 2 Re(7) < ai + «2 or, if a 1 = «2 f== ci, 7 = & 

Proof - Let b7n'(S) = Yl^eA(m')(^ ~ 7 * be the Bernstein polynomial of ra' 
(c/. Corollary 3.3.7), with 7̂ (7) bounded by the nilpotency index L of N. It is enough 
to prove that n 7 E A ( M ' ) ^(s— j + z/z)"^ is a convenient product of F factors. Indeed, 
arguing similarly for rn", one obtains that the product indexed by A(m') Pi A(rn") is 
convenient. It is then easy to verify that Conditions (3.6.5)(**) on 7 are satisfied by 
any 7 G A(m') n A(rn"). Remark that + ^ , ( 7 ) = 2Re(7). 

We note first that, for any local section Q of Vb^V,^,^,), and any C°°-form ift 
on nbxxs(^o,20) with compact support, the form (\t\2s'ijj) • Q is Cp with compact 
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support if 2 Res > p. Applying this to the Bernstein relation Q = brnf(—dtt) — tP for 
mr, one gets 

0 = ([brrA-^tt) - *P]C(m',^) , \t\2s4>) 
(3.6.6) = ( C ( m ' , ^ ) , ( | t | 2» • [brn,(-Vtt) - tP]) 

= 6m/(^s)(C(m/,m77), |*|2*'</>) + <r,(///.77?7). |*|2*9*r/) 
for some //, which is a polynomial in s with coefficients being C°° with compact 
support contained in that of p. As \t\2st is Cp for 2 Res + 1 > p. we can argue by 
induction to show that, for any i[) and k G N. 
(3.6.7) s .—* &m,(*(s - A; + 1)) • • • 6m^(z.s)(|t|2'sC7(m/,̂ 77), 0) 
extends as a holomorphic function on {s | 2 Res > p — k}. Apply this result to 
vb = p A x(t) ^dt A ^ to Set tne lemma. • 
Remark 3.6.8. The previous proof also applies if we only assume that C is ~Y) S" 
linear away from {t — 0}. Indeed, this implies that [bm>(—dtt) — tP]C(m',m") is 
supported on {t = 0}, and (3.6.6) only holds for Res big enough, maybe >̂ p. Then, 
(3.6.7) coincides with a holomorphic distribution defined on {s | 2 Res > p — k} 
only for Res >̂ 0. But, by uniqueness of analytic extension, it coincides with it on 
Re s > p. 

A distribution on XQ X S/S which is continuous with respect to z and holo­
morphic with respect to S can be restricted as a distribution to sets of the form 
s — a • z/z. This restriction is continuous with respect to z. By a similar 
argument, the polar coefficients along s = a * z/z of the meromorphic distribu­
tion (\t\2sC(mf, ra"), • A x(t) ^dt A dt) exist as semi-rneromorphic distributions on 
nbx0xs(^o;2o) (i.e., the exists a polynomial p(z) such that, after multiplication 
by p(z), the distribution is continuous with respect to z). The possible poles are the 
z G S such that there exists 7 as in (3.6.5)(**) with (7 — n — a) • z = 0, n G N and 
n 7̂  0 if 7 = cv. 

Lemma 3.6.9. Let [m'\ be a local section of t.'/_n. //' near {.r(). z(>) and [rn"} a local 
section of Ct.a-ft" nea/r (x0,—z0). Then, the polar coefficients of the distribution 
(\t\2sC(mf, ra"), • A x{t) 2^dt A dt} along s = a* z/z do neither depend on the choice 
of the local liftings in'. in" of [rn'}, [rn"} nor on the choree of x, and take value in 
^AVPXS/S-

Proof. Indeed, any other local lifting of rn' can be written as rn' + p', where p! is a 
local section of V^/'j By the previous lemma. (\t\2sC(p', ra77), •Axtf) ^dtAdt) 
is holomorphic along s = a*z/z. We note also that a different choice of the function x 
does not modify the polar coefficients. 

We want to show that the polar coefficients do not have poles in some neighbour­
hood of S. The possible poles of the polar coefficients, as we have seen above, are 
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such that (7 — n — a) • z = 0, with n G N and n ^ 0 if 7 = a. Now, (3.6.5) (**) shows 
that the only possible 7 ^ a are such that Re (7) < Re (a), hence for any 7, n that 
we have to consider, we have R,e(7 — n — a) < 0, hence 7̂  0. Now, there can be no 
z G S with (7 — a — a) • z = 0 (by § 0.9, we should have z = ±i and 7 — n — a purely 
imaginary). • 

According to this lemma, we get a sesquilinear pairing 

(3.6.10) *P+1+*C(m')(m{;) = 
V;t,a^ 

ÛBX()RxS/S 

([ra/], [m"]) ^ R*ss=a«/z <|*|2sC(m', ra"), • A x(*) A dt), 

where ra', ra" are local liftings of [ra'], [ra;/]. The compatibility (3.6.1) of iih,aQ with N 
follows from tdt\t\2s = (iz)-'2tdt\t\2s (recall that a*z/z is real). 

Definition 3.6.11. For Re a G [—1,0[, the specialized sesquilinear pairing ^t,aC is 
defined as ^ ,aC, according to Remark 3.4.4(2). 

Remark 3.6.12. We have defined a functor V;t,a, and similarly \I>̂ a if Re a: G [ —1, 0[, 
from the category of strictly specializable objects of Triples(X), i.e., objects 27 = 
(.>#', C) such that ,77' and are in y/2(X, t), to the category gg- Triples(X0) 
by putting i/t.n .7 = (*.•/.„. //'. i.'i.n,//,f. i't.<>('). This functor clearly commutes with 
any Tate twist by k G 1/2 Z. 

Remark 3.6.13 (Behaviour with respect to adjunction). As ^dt A dt is real, we 
have r/.0 (C';) = (V^C)*. If & '• 77 —> ??*(—w) is a sesquilinear duality of 
weight on then t.,tAV-7 is a sesquilinear duality of weight on V;t,a^. As 
tpt^S' and ijJt^S" commute with N, we have t/K* o i',_n-7 = R/.0,Y o C/K (recall 
that t/K = (—?'N, Z'N)). Then GR̂ 1 i'tAX-7 is a graded triple in the sense given in § 1.6.c 
and GR^r/.n V' is a (graded) sesquilinear duality of weight w on it. Last, we see that 
grH2,/^ is skewadjoint with respect to gr^V;t,a^; in other words, gr̂ V̂ ,â 7 is a Her­
mitian duality of (GT^H^a^ gr^V^)- Consequently, (2.1.13) defines a Hermitian 
duality on the primitive parts. 

If for instance ,47' = „77" = ,77 and C* = C, so that 5? = (Id, Id) is a Hermitian 
duality of weight 0, we have *.>.a (C)* = ^iQ:(C), and we are in the situation of 
Example 2.1.14. The sesquilinear pairing on the primitive part 

V;t,a^ (*.•/.„. //'. i.'i.n,//,f. i't.<>('). GR^r/.n V GR^r/. 

is given by the formula 

(3-6.14) PiH^C ^ (iz)-(cLnJC((iSy..-.). 

Remark 3.6.15. — We assume that 77 is a smooth twistor. In particular, C takes 
values in C°° functions. Then 7/7,-1^ is equal to the restriction of 27 along {t = 0} 
as defined in Definition 1.6.9. 
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Remark 3.6.16. - Let / = tr for r ^ 1. Let if be the graph inclusion of / and let 
i : {t = 0} ^ X be the closed inclusion. Similarly to Proposition 3.3.13, one shows 
that 'ijJf.aC = i+'i'pUraC. 

3.6.b. Vanishing cycles and sesquilinear pairings. — If ./ft' or ./ft" are sup­
ported on XQ, we have t.'t.nC = 0 for any a. We should therefore also define the 
"vanishing cycle analogue" (pt.oC in order to recover an interesting sesquilinear form 
on 'ipt^,^' <8>&s ipt,o</ft" m any case. We continue to assume in the following that 
./ft' ,./ft" are strictly specializable along {t — 0}. 

The function 1%. In the following, we always assume that z varies in S. Let X($) 
be a C°° function of the complex variable 0 such that \ bas compact support on C 
and X = 1 near 6 = 0. For ,s such that Res > 0. the function 

|0|2(s"1) etz/0-t/0z |^|2(.s-l) %(Q)±.dQ A <Z0 

is continuous with respect to /; and holomorphic with respect to s (notice that the 
exponent tz/0 — t/Oz is purely imaginary, as z G S). It also varies smoothly with 
respect to z. For any p G N, the function 1^. when restricted to the domain 2 Re s > p, 
is Cv in £ and holomorphic with respect to s. 

Define by replacing |0|2(s"1) with 6k0 |0|2(,s_1^ in the integral defining in 
particular, we have 1% — /£,o.o and |0|2(s"1) 2) = ^x( '̂ s + ^' z) ôr any k E Z. 

Remark 3.6.17. •— We can also use the coordinate r = 1/0 to write /^(f, s, z) as 

|0|2(s"1) EFR^WT|RR2(S+1)X(r)èrfrAdr 

where now X is C°°, is = 1 near r = oc and = 0 near r = 0. It is the Fourier transform 
of |rp2(6'+1) £(r) Llp to a scaling factor z: put r — £ + ¿7/ and £/2z = y + ix: then 
J£(T, s, z) = I J E - * ( ^ + ^ ) |RR2(8+1) X(R) RÎ  A c/7/. 

If we denote by & the Fourier transform with kernel etTZ~tT/z ^dr A <ir, then the 
inverse Fourier transform has kernel e~tTZ+tTIz iy-dt A cffi. 

For Re s large enough, using Stokes formula, we obtain 

«х,*-м(М,г) -z(s + k)I$,kj(t, s, z) - zIa^/aeM+u((t, s, z) 
tlx,kj~i{t-s. z) -z(s + ()Ibk.t{t-s, z) - zlm/{ñ,k,t+1(t, s. z), 

with Idx/Q0,k+id, h)x/d~e k P+I e C^°(C x C x S), holomorphic with respect to s G C. 
In particular we get 

\t\2Iç(t, s -l,z) = -s2Iç(t s, z) + • • • 

where • •" is C°° in (t.s,z) and holomorphic with respect to s G C. This equality 
holds on Re s > 1. This allows one to extend 1% as a C°° function on {t ^ 0} x C x S, 
holomorphic with respect to 5. 
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For Re s > 1, we have 

dtI^(t,s,z) = -I%-i,0(t,s,z) and dtI%(t,s,z) = -I%,o-i(t,8,z), 

hence 
tdtIx = zsIx + z!dx/de,i,o and tdJx = zsIx + zIdx/de,o,i • 

By analytic extension, these equalities hold on / 0} x C x S. 
Definition of<fit,oC — Let ra/, ra" be local sections (near (x01z0) and (x0, —zQ) with 
z0 e S) of V ^ ' , Vq,£" lifting local sections [ra'], [ra"] of ̂ ,o^', '0t,ô "- Using the 
previous properties of i^, one shows as in Lemma 3.6.5 that, for any test form cp on 
3£q and any compactly supported C°° function x(t) such that x = 1 near t = 0, the 
function 

.s ^ (^(t, S, z)C(ra', ra"), ̂ A \ (/)£<// A <£) 
is holomorphic for Re s big enough and extends as a meromorphic function of s with 
poles at most on s = 0 and on sets s = ̂  * z/z with Re 7 < 0. 

We put 

(3.6.18) <&,oC([m'], K7]), y>) =f Res,=0 <C(ra',ra^), y> A Ix(t, s, z)X(t)£dt A 
This residue does not depend on the choice of x and X, nor 011 tne choice of the 
representatives m'.m" in Vq.^Z', V(><#" (cf. Lemma 3.6.9), and defines a section of 
^^x0Exs/s- As we can take x an(l X reaA? one obtains that 4)t,o(C*) — (4>t$Cy. 
Arguing as for Ct.nC. one gets the analogue of (3.6.1). We define then 

(3.6.19) ^ . о . ^ = ^ . о ( . / Л . ^ " , С ) = (Мч,0.£',4чя^''At.oC) 

and we have a morphism <.Af : <f>t$2? —> (j)t,Q^( — l) in Triples(X0). 

Remark 3.6.20. - Let us explain the definition of (ftt.oC. Consider the one-variable 
distribution with compact support (xC(ra/, m"), ĉ ). Its Fourier transform is a dis­
tribution of the variable r, that we localize near r — 00 and to which we apply the 
functor 0^,-1, to obtain 4>t,oC. This procedure is similar to a microlocalization with 
respect to the variable t. 

The morphisms ffan and far. — We define 

'6an — (var, i can) and Var — (—i can, var). 

Once they are known to be morphisms in Triples(Xq), they clearly satisfy 
Var-o %"am — , c&an o Var = ,yf̂ >, 0. 

Lemma 3.6.21. — The morphisms ffan and Var are morphisms in 3%- Triples (Xq): 

^,o^(l/2) ^UVt.-i^- (-1/2) ^ , o ^ ( l / 2 ) ^ U V t . - i ^ -
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Remark 3.6.22 (Behaviour with respect to adjunction). Let ,5? : SF —>• &*(—w) 
be a sesquilinear duality of weight w. Using the canonical isomorphism (1.6.3) 
(0t,o^(l/2))* 0t,o^*(-l/2) given by (Id,., ().//"• - Id,., ().///). we get a commu­
tative diagram 

0t,-i-^ — >vbt^^(-w) 

Van Yar 

0 , ,o^(-l /2) : > otA):7~(-w - 1/2) 

and an adjoint anticommutative diagram. 

Proof of Lemma 3.6.21. — Let us show that ^an is a morphism in Triples (XQ), 
the proof for %r being similar. Let [mQ] (resp. [m"_x\) be a local section of tyts^' 
(resp. ^ - i ^ " ) . We have to show that 

(3.6.23) Ress=0 z(C(m/0,mffl), ip A dtIx(t, s, z)X(t)^dt A dt) 

= Res,s=_! {C^.m'A), ip A t\t\2sX(t)^dt A dt). 

We can replace (5tIx(t, s, z) with — Ix.i,Q(t,s — 1?^), so that the left-hand term in 
(3.6.23) is 

(3.6.24) Res,s=_i (C(m'0, m7^), <̂  A (-^,1)0(*, 5, z))X(t)^dt A cffi). 

Let us denote by T the one-variable distribution (xC(m/0, m'f^, cp) obtained by 
integration in the XQ direction. It has compact support by definition of x- Therefore, 
its Fourier transform &T is a C°°-function of r, z, which has slow growth, as well as 
all its derivatives, when r —* oc. The function in (3.6.24) is then written as 

(3.6.25) — 2 .TL(T.Z) -r'1 \T\-2{SJRL) x(r)izdT A dr. 

On the other hand, the function in the RHS of (3.6.23) is 

(T,t\t\2sX(t)^dtAdt) = {^T,^~l(t\t\2sx(t)^dtAdI)) 
(3.6.26) 

£T(r, Z) • ^'l(t\t\zsx)izdr A dr 

(in order to get this expression, we replace x with x2 in (3.6.23), which does not 
change the residue, as previously remarked). 

The function IX}ifo(r, s, z). - Let us state some properties of the function 

Tx,iAT,s,z)d^ &-\t\t\*°x)-
(1) Let us denote by Ix^,e(r,s,z) (kj. £ Z) the function obtained by integrating 

\t\2stkt. Then, for any s e C with Re(s + 1 + (k + £)/2) > 0 and any z e S, the 
function (r,s,z) i—* IX^J(T, s, z) is C00, depends holomorphically on s, and satisfies 
limr_,oo ^x-^^(r's'2) = 0 locally uniformly with respect to s, z (apply the classical 
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Riemann-Lebesgue lemma saying that the Fourier transform of a function in L1 is 
continuous and tends to 0 at infinity). 

(2) We have 

(3.6.27; 
i~Ix,k,e = -z{s + k)Ix,k-ij zIdx/dt,k,£ zIdx/dt,k+i,ei 

i~Ix,k,e = -z{s + k)Ix,k-ij Z^dX/dt,k,£ zIdx/dt,k+i,ei 
where the equalities hold on the common domain of definition (with respect to s) of 
the functions involved. We note that the functions Idr,k,e an(l ^dx/ot,kj are on 
P1 x C x S, depend holomorphically on s, and are infinitely flat at r = oo (because 
tkt?\t\2sdtjx ig C°° in t with compact support, and holomorphic with respect to s, 
so that its Fourier transform is in the Schwartz class, holomorphically with respect 
to s). 

It follows that, for Re(s + 1) + (k + £)/2 > 0, we have 

(3.6.28) 
rdTIx,k,e = ~z(s + k + !Kx,M ~ zIdx/dt,k+i,ei 

TdTIx,k,e = -z(s + e+l)îx,k,e - zld /dlkA+1. 

(3) Consider the variable 0 = r_1 with corresponding derivation 8Q — —r2dT, 
and write Ix,k^(9, s, z) the function Ix,k,e in this variable. Then, for any p ^ 0, any 
s 6 C with Re(s + 1 + (A: + £)/2) > p and any z £ S, all derivatives up to order p of 
Ix,k^{6, z) with respect to 6 tend to 0 when 6 —> 0, locally uniformly with respect-
to s, z (use (3.6.28) and (3.6.27)); in particular, IX^J{T, s, z) extends as a function of 
class Cp on P1 x {Re(s + 1 + (k + tj/2) > p} x S, holomorphic with respect to s. 

The function /x,i,o(f? s, z) is C°° in r and holomorphic in s on {s | Res > —3/2}. 
Using the function xiT) as above, we conclude that the integral 

(3.6.29) ^T(r , Z) • ^~1(t|t|25x)(l - X(r))^dr A 

is holomorphic with respect to s for Res > —3/2. It can thus be neglected when 
computing the residue at s = — 1 . The question reduces therefore to the comparison 
of IX,\$(T,S,Z) and r-1 \T\~2iyh+1̂  when r —> oo. 

Put JX,I,0(T,.S,^) = r |r|2('s+1) TX^0(T,S,Z). Then, by (3.6.28), we have 

<9Jx,i,o 
дт ~JdX/dt,l,0i 

—dJxio 
дт Jdx/dt,0,\5 

and both functions Jax/at,i,o and Jdx/dt,o,i extend a« C°° functions, infinitely flat at 
r = oo and holomorphic with respect to s G C. Put 

Kx(r,s,z) = -
• 1 

/o 
_^x/ôt,i,o(Ar, s, 2) + Jdx/dt,o,i(AT, ,S, Z)] dA. 

Then iv^ is of the same kind. 
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Lemma 3.6.30. ----- For any s in the strip Ke(s + 1) G ] — 1, —1/4[; the function r \-
J-x i.o{j-, z) satisfies 

lim Jx,i.o(r, s,2) 
r—>oc 

r(a + 2) 

Proof. — We can assume that X is a function of \t\2, that we still write x(K|2)-
For simplicity, we assume that X = 1 f°r 1*1 ^ 1- Then the limit of Jx,uo is also equal 
to the limit of the integral 

J(T,S,Z) = 

r—>oc 
h(p)p2^dp, as Jj = -J_L , dt dt 

- т л т -
By a simple change of variables, we have 

J(T, ,S, z) = 2 
r—>oc 

e22lmaii|ü|26' î-duf\du. 

Using the Bessel function J±i(x) = ^ j02n e /r sm u(. : 'flrfy. we can write 

J(r, S, Z) = 2z 
p << r 

J_i(2p)p2<*+1>dp 

_2-2(.s + l)2 
p^2|r| 

h(p)p2^dp, as Jj = - J _ L 

For Re(,s + 1) G ] — 1, —1/4[, the limit when |r| of the previous integral is equal to 
22(s+1>r(s + 2)/T(-s) (cf. [71, §13.24, p. 391]). • 

From Lemma 3.6.30, we can write, on the strip Re(.s + 1)6] — 1/2, —1/4[, 

(3.6.31) JX,1,O(T,S,*) = - Z T - 1 M - 2 ( S + 1 ) U* + 2)  
T(-,S) •Kx(r,s,z) 

where KX(T, S, Z) = -z r"1 |r|~ ^ is C°° on C x C x S, infinitely flat at r = oo 
and holomorphic with respect to s. For any p ^ 0, apply (oVoV)p to the previous 
equality restricted to r 7̂  0 (where both sides are C°° in r and holomorphic with 
respect to s; preferably, multiply both sides by y(t))? to get, for s in the same strip, 

ÎX<1,0(T,S + P,Z) = -ZT-1\T\-2{S+P+1) Tjs+p + 2) 
r ( - s - p ) 

(dTdr)p KX(T, S ,Z) 

where the last term remains infinitely flat at r = oc. It follows that (3.6.31) remains 
true on any strip Re(s + 1) G ]p — 1 /2,p—l/4[ with p ^ 0 and a function instead 
ofATx. 

Choose p such that the two the meromorphic functions considered in (3.6.23) are 
holomorphic on the strip Re(s -f 1) G ]p — 1/2,/; — l/4[. The difference between 
T(s + 2)/T( — s) times the function in the LHS and the function in the RHS coincides, 
on this strip, with a holomorphic function on the half-plane {5 | Re s > —3/2} (taking 
into account (3.6.29) and Kx^). It is then equal to it on this whole half-plane, hence 
has residue 0 at s = — 1. • 

ASTÉRISQUE 300 



3.6. SPECIALIZATION OF A SESQUILINEAR PAIRING 97 

Let us emphasize two cases: 
(1) Let us denote by i the inclusion {t = 0} X. Remark that, if and 

are in ,y2(X, t) and are supported on {/ = ()}, so that ,/7' = and .Jt" = i >.Z/(". 
then any sesquilinear pairing C on . <S) &s. -#j g is equal to ?'++Co for some sesquilinear 
pairing C0 on <-#o|S x/,s .^ jg . Indeed, by ^(Y-^)S-linearity, C is determined by its 
restriction to .>#o|S ®*?s ^o |s ; conclude by using that *C('m0, ra0') — C(tm'0, mj) — 0. 

We have = r,.n, and = iha-^"- Moreover: 

Lemma 3.632. — TTie pairing <fit^C is equal to CQ. 

Proof. - By definition, as \ (0) = 1, we have for Res ;> 0, 

( C ( m X ) , 9 A Jy(t, a, z)X(t)^dt A = <C0(m'0, < ) , ^) • 7^(0, s, 2). 

As x(0) = 1, we have Res.s=0 Ix(0, s, z) = 1. 

(2) We assume that can is onto. 

Lemma 3.6.33. Let m/0.uiQ be local sections of VQ.^', VQ.JK" lifting local sections 
K ] , K ] ofiH^'Ah^". Then 

<&,0C(K], [m{f]), •) = Res^o ^Qr^Cin^.mll).. A y ( / )^ / / A dt). 

Proof. There exists a local section [rn"_i] of ^ ¿ , - 1 . ^ " such that [rag] = ican[m/i1]. 
We have 

\t\^C(m'().rn'¿), л (/t"J>r л <Й) (\t\2°C(tm'0,tm'¿) Ax(t)^-dt Adt) 
(|f rsC(tmo, îNm'lj), • A \{t)^dt A 

<(-t3t<|*|28)C(tmG, m'^) , . A X{t)£dt. A d<> + ./(*. z) 

-iz(s + l)(\t\2sC{trn'0,m'L1), • A \{t)^dt A dt) + J(s, z) 

-(iz)-\s + l^Citrn^rn'^),. A xW^dt A dt) + J(a, 2), 

where J(s, z) is nieromorpliic with respect to s and has no pole along s = —1. There­
fore, as &t0C(K],Kfl) = 0t,oC(K]Jcan[m^]) = (ir)" V ^ i C ( w K ) , R ^ ) , 
we get 

<0t,oc(K],K]),.) (z^)"1 Hes.s _, <|/|2sT(//H().///,/1). . A xWizdt A (it) 

Res,=_! — ( I t l ^ ^ f m ^ m J ) , . A X(t)±dt A ^ 

Ress=0 — (\t\2*C(m'0, ///[(). • A x(t)édt A r//). 

Corollary 3.6.34. Let & = (,^',.^",C) 6e an ofy'ec* o//^-Triples (X). ITe assume 
that M', M'' are strictly specializable along {t = 0}. T/ie following properties are 

equivalent: 
(1) 0t = lindane Ker %r m Triples(X), 
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(2) ^ = ^ 8 5 2 in Triples (X), with f72 supported on {t = 0} and <7{ being 
such that its c&an is onto and its "Var is injective. 

Proof. ----- The part for ./ft',./ft" is Proposition 3.3.11. That <fit,oC decomposes is 
proved as in Proposition 3.5.8. • 

3.6.c. Direct images and specialization of sesquilinear pairings. — We take 
the notation used in Theorem 3.1.8. 

Corollary 3.6.35. Let & - (./ft',,/ft" ,C) be an object of <%- Triples (X x C). 
We assume that ./ft',./ft" satisfy the conditions in Theorem, 3.3.15. Then, for 
any a with Re a G [-1,0[, we have ^t^^l(F\^) = ,^'l(f^t^^)- Moreover, 
we have <f>t^^%(F^^) = J4?l(f}4>t,o^) and, with obvious notation, ffanj?,(Ft,.T) — 
J^ifrVan), rar^(FiS)=,^HM'rar). 

Proof. Apply Theorem 3.3.15 for ./ft',./ft" and c6?an, "Var. It remains to controlling 
the behaviour of ript,aC, <t>t.oC under F+. Now the result is a direct consequence of 
the definition of ipt,aC, (f>t,oC, as we can compute with local sections of Va./ft,', Va./ft", 
knowing that, for [/ft = ./ft,' or ./ft", the filtration V.Myi(Fv^) is ^l(f^V../ft). • 

3.7. Noncharacteristic inverse image 

3.7.a. Noncharacteristic and strictly noncharacteristic 0?,$-modules along 
a submanifold. — Let ./ft be a holonomic &gc-module with characteristic variety 
Char./# contained in A x where A C T I is Lagrangian. Let Z C X be a 
submanifold of X and denote by i : Z X the inclusion. We say that ./ft is 
noncharacteristic along Z if T^X f l A c T^X for some choice of A as above. 

Locally on Z, we can choose a smooth map t = (t\, . . ., tp) : X —> Cp such that 
Z = £_1(0) and we can regard t as a projection. We can therefore consider the 
sheaf &str/CI> °f relative differential operators with respect to the projection t. The 
following is classical and easy: 

Lemma 3.7.1. — If ./ft is noncharacteristic along Z, then ./ft is (locally on Z) <% in­
coherent. If Z has codimension one, then ./ft is regular along Z. 

Proof. — Indeed, if ./ft is noncharacteristic along Z, then any local good filtration 
F.^/ft of ../ft as a ^^-module is such that grF .^ft is grF&$;/cp-coherent. • 

Definition 3.7.2. — The -module ./ft is strictly noncharacteristic along Z if it is 
noncharacteristic along Z and the (ordinary) restriction (7 % §§e:r -^z is strict. 

Remark3.7.3. — If / : Z —*• X is any morphism between smooth complex manifold, 
we can similarly define, for a holonomic & ̂ --module ./ft, what "(strictly) nonchar­
acteristic with respect to /" means. Decompose / as en embedding followed by a 
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projection. Then ,77 is always strictly non characteristic with respect to the projec­
tion. Hence, in practice, it is enough to check this property for embeddings. 
Lemma 3.7.4. — Let Z be a smooth hyper surf ace. We assume that ,77 is strictly non-
characteristic along Z. Then, 

(1) ,77. is strictly specializable along Z, 
(2) we have (/ -2 Cg)̂ ;r . 77xZ = >77\Z. 

Proof. - We can work locally on X. We assume that Z is defined by a local equation 
t = 0. As ,77 is noncharacteristic along Z, Lemma 3.7.1 shows that y77 is specializable 
and regular along t — 0, and we can choose as a good ^/-filtration the filtration given 
by = J7, V-k-uJZ = th,77 for k ^ 0 and w), , 7/ = 0 for a 0 -N* (here the 
filtration is independent of the choice of zQ as the indices are real). The restriction 
i^ ,77 is equal to g r ^ , ^ and is still holonomic with characteristic variety contained 
in A0 x where A0 is the image of h\Z by the cotangent map T*z : T*X\Z T*Z. 
Moreover, the action of t(5t on gr^P-# vanishes, because for a local section rn of ,77,, 
dtm is also a local section of ,77. 

With the assumption of strictness of „77lt,77, we conclude that ,,77 is strictly spe­
cializable and regular along Z. In such a situation, the ^/-filtration defined above 
is the Malgrange-Kashiwara filtration and we have rj)t^\,.77 — grx^1,77 = ,77/t,.77. 
Moreover, t : ,/77 is injective, because ,77, — V-\,77, (cf. Remark 3.3.6(4)), i.e., 

0& <77\Z = ,77\Z. 
Last, remark that can and var are both equal to 0, as v\)t^,77 = 0. • 

An adjunction morphism. — Let 7r : X —+ X be a proper analytic map between 
complex analytic manifolds, which is an isomorphism almost everywhere (say that TT 
is a proper modification of X). We assume that TT = p o where i : X X x P1 is 
a closed inclusion and p : X x P1 —• X is the projection. Let ,77 be an holonomic 

-module which is strictly noncharacteristic with respect to TT. By Lemma 3.7.4, 
7T+,77 is a holonomic /7 ,,-module. 

Lemma 3.7.5'. - Under these conditions, there is a natural adjunction morphism i : 
,77 -» TT%TT+,77. 

Proof. Put 7i = dimX = dimX. The right «^^--module associated with 1x^,77 
is .fr ?>7T \ () R TT'1 ,77. Using the contraction isomorphism (0.6.1), we identify the 
complex 

UJ %r 0 7T l,.77 7Sp>^: UJ £r <S> TT XJ7 r—>ocr—>ocr—>oc 
with the de Rham complex 

0& <77\Z = v\)t^,77 = 0. 
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of the (inverse image of) the left .^sr-module yft r , the right /^/^-structure 
being trivially induced by that on -tf . Using the isomorphism (0.7.4), this complex 
is isomorphic to the de Rham complex 

iT±* 0 7T-\M,9; ® * , . Jf) ~ 0 7T-1 (J%x ®f,,r ./ft). 

We now have a morphism 

iT±* 0 7T-\M,9; ®*,. Jf) ~7T-1 (J%x ®f,, yft(X(^Zop ./ft(Xo^Zoy 

//(7. z)^dt A dl .—> (C(rn',m"), 0 A //(/. z)j^ 

hence a morphism ./ft1' —> TT+ (-K^ ./ft)1'. 

3.7.b. Noncharacteristic inverse image of a sesquilinear pairing. — Con­
sider first the case of the inclusion of a smooth hypersurface Z = {t = ()}. If C is a 
sesquilinear pairing, then i/^t.-iC is defined by the formula of Definition 3.6.11. We 
note that, by applying the same argument as in Lemma 3.6.5, for any local sections 
m! of «/#' and rn" of ./ft". the function C (rn' .rn" ) .y?, —- (s) has at most simple poles at 
s = — 1, — 2, . . . and no other poles. 

If !7 = (./ft', ./ft", C) is an object of Triples (X) with .ft'..//" holonomic, and if 
./ft', ./ft" are strictly noncharacteristic along XQ, then one can define i+ as i/;t>_i< \̂ 

The following result will be useful in the proof of Theorem 6.1.1 (cf. §6.4(3)). 

Proposition 3.7.6. We assume that ./ft is strictly noncharacteristic along the smooth 
hypersurface Z C X. Let j : X \ Z X denote the open inclusion. Given any 
sesquilinear pairing C° : j*./ft\s 0#s j^-^s —* ^^A\ZxS/s- there exists at most one 
sesquilinear pairing C on ./ft\s which extends C°. 

Proof The question is local on X x S. so let xG 6 Z, z() G S. We assume that 
we have a coordinate system (t, x') such that Z = {t = ()}. We can consider relative 
differential forms of maximal degree, namely forms //> = a • dx' A dx' where a is a 
section of ^ x S . Let rn', m" be sections of yft(X(^Zop ./ft(Xo^Zoy We assume that C 
is a sesquilinear pairing on ./ft. Then, for a relative differential form 0 of maximal 
degree supported in nb(x0,z0), (C(m', m"), ih) is the section of Db^xS/Sr where 
D = {\t\<R}, defined by 

//(7. z)^dt A dl .—> (C(rn',m"), 0 A //(/. z)j^dt A dt) . 

We can regard (C(m/',m"),ip) as a distribution on with values in the Banach 
space C°(S), using the formula above. 

We assume that we have two extensions C1.C2 of C°. For m',m" as above, put 
u = Ci (rn', m") — C2{m', rn"). It is then enough to prove that, for any relative form vb, 
the distribution {u, 0) on the disc is equal to 0: indeed, for any test form ip supported 
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in nb(xQ, z0), we can write ip = 1/ A \. for some relative form ip and some test form x 
on the disc; then, (u,(p) = ((it,'0),x) — 0-

Let us denote by p the order of the distribution u on nb(x0, zQ). We have 
(3.7.7) M) 

O^a+b^p 
yft(X(^Zop ./ft(Xo^Zoy 

for some Xa^(vb) G z •> where 5q G xs/s denotes the Dirac distribution at 
t = 0. Let us show that all \a,b(il>) vanish identically. This is true if 0 vanishes at 
order ^ p + 1 along {£ = 0}. We can therefore assume that i/j does not depend on t,t. 
Using the Bernstein equation for ra', we obtain, for a convenient choice of TV, 

B(tdt) • rn = 
N 

k=0 
(tdt - kz) \ - rn' = tp+l ] 

J 
yft(X(^Zop ./ft(Xo^Zoy 

According to (3.7.7), the coefficient of d^djSo in B(tdt) • (u,0;) is fjJa(z)Xa^('4))^ with 
fia(z) invertible on S. On the other hand, for any j : by (3.7.7) applied to 0 • P3, 
tp+l (u, %/j • Pj) = 0, hence tp+1(tdt)J (u, V' • Pj) = 0. Therefore, all Xa,h(vj) vanish. • 

3.7.c. Specialization along two normally crossing divisors. — We will need 
the results below in the proof of Theorem 6.1.1, §6.4. The result is an adaptation of 
[56, §§3.5.11 3.5.18]. 

We assume that we are in the following situation: let Y = Y\ U Y2 be a normal 
crossing divisor in a smooth manifold X and let 77 = (,77', ,77", C) be an object of 
77,- Triples(X). We assume that . 77'.. 77" are holonomic with characteristic variety 
contained in A x fi0, for some Lagrangian variety A C T*X. Assume also that 
,77', ,77" are strictly noncharacteristic along Y\, Y2 and Z — YiDY2 in a neighbourhood 
of Z. We will work in local coordinates near a point of Z: we put Y\ = = 0}, 
Y2 = {x2 = 0}. 

Lemma 3.7.8. Under these conditions, for ,77 = ,77' or .77" and near each point 
of Z, 

,/77 is strictly specializable along Y\ and Y2, 
- 'ipXj,cx<77 vanishes for a 0 —N* and j = 1,2, 

V x1, - 1 M = M — ^/x\.77 is strictly specializable along {x2 = 0} and conversely, 
- we have ̂ 2,-1^x1,-1«^ = '0;ri,_i'0x2,-î  = *771 x\x2,77, 
for any local sections rn' of ,77' andtn" of .777, the two-variable Mellin transform 

(C(rn', ra"), |.Ti|2'Sl |.T2|262 <p(x)) has only simple poles along lines s\ = — 1 — k, s2 = 
-l-£, k,£ G N and no other poles, 

- we have V̂ 2,-iV;*i,-î  = '0x1.-iV;x2,-î . • 
We now will compute the specialization of 77 along X\X2 — 0. Let us denote by / 

the monomial x\x2 and let if : X —> X x C be the graph inclusion. Let t be the 
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coordinate on C, so that if(X) = {t — f = 0}. We assume that ./ft' — ./ft" = yft and 
that 5? = (Id, Id) is a Herrnitian duality of weight 0 on &. 

Lemma 3.7.9. Under the same conditions, for ./ft — ./ft' or yft", the &xc~module 
i^+yft is strictly S-decomposable along {t = ()}, we have vbf^cx../ft = 0 for a 0 Z and 
there are local isomorphisms 

PgrfV;/,-iMT y.+ 'P-XL-l-/^ © iy2. + 'i/'.T2,-l.^ if (' = 0, 
iz. + i'xi-l'tl'xo.-l-/? i/e = i. 

Last, the sesquilinear pairing on the primitive part given by Formula (3.6.14) coincides 
with the corresponding specialization of C. 

Proof. - We will only insist on the computation of ^t.-iC, as the computation of 
ijjt(if^,/ft) is done in [56]. We have if^./ft — (BkeN-'ft 0 9ffe5(t- x\x2) with the usual 
structure of a ^t^xc-niodule. By loc. cit., we have V-i(ifi+./ft) = j - • (./ft 0 5) and, 
for k ^ 0, 

y_i_fc(z/i+^) = tkV-X(ip^/ft), V^k(rf,+,/ft) 
£<:k 

^V^ip^./ft). 

Moreover, (tSt)2 vanishes on grL'1(i/,+.y#) and the monodromy filtration is given by 

M-2V-i(if,+.^) = Vl2(«/,+.//)-
M^v.^(if.+.//) = mt • v-l(if,+.//) + v-2{if,+^), 

MoV-i(i/.+.#) = • ((an,x2).<0 ® ô), 
MoV-i(i/.+.#) = • ((an,x2).<0 ® ô), 

These formulas lead to the isomorphisms given in the lemma. It is also clear that can 
is onto, and one shows that var is injective, identifying therefore vbt^(i f, + */ft) with 
gr^I1V;t,-i(v,+^)- This gives the strict S-decomposability of .yft along {/ = 0}. 

Let us now compute Formula (3.6.14) for £ — 0, 1. For that purpose, let ra/, rn" be 
local sections of ./ft. They define local sections rn' 0 5 and rn" 0 5 of V-\(ifi+,/ft). 

Assume first that £ = 1. For a local section p of we have to compute 

(zz)-1Res,s=_1 ifi+C({-itnt)mf 0 6, ra" 0 S)ì\t\2sx(t)<p A ^dt A dtj. 

Then it is equal to (see also the computation of (3.8.2) below) 

Ress=_i(s + l)(C(ra/, rn"), |x*ix'2|2's x(xix2)^), 

that we have to compare with Res,sl = -\ Res,S2 = -1(C(rn', rn"),\xi\ "1\x2\ ' X{xl«x2)9?)• 
By Lemma 3.7.8, both residues coincide. 

Assume now that £ = 0 and take rn', rn" G (x\. x2)./ft. If rn' = x\m and m" = x2p, 
then the function (C(m,Jl), \xix2\2s+l x(XIx2)^) bas no pole at s — —1, after Lemma 
3.7.8. If for instance ra/ = x\rn and rn" = x\p, then (iy2,+'0X2)_iC(m, /1), cp) and 
Ress=_i (C(m,p), \xi\2s+2 \x2\23 x{x\x2)^) coincide. • 
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3.8. A local computation 

Let 77 — (,77',,,<77", C) be a smooth twistor structure (cf. § 2.2) on a complex mani­
fold X. The purpose of this paragraph is to compute the nearby cycles of (,77', ,77", C) 
with respect to a function / which takes the form f(x1,........xn) = x1....xp for some 
local coordinates x\,. . . , xri on A and for some p ^ 1. The goal is to show that, first, 
77 is strictly specializable along / = 0, and to compute the primitive parts in terms 
of the restriction of 77 to various coordinate planes, in the sense of Definition 1.6.9. 
As, by definition, these restrictions are smooth twistor structures, this will imply that 
the primitive parts are so. The computation is local on X. 

For £ ^ p, denote by /{ the set of subsets / C {1,. . . ,p} having cardinal equal 
to £. For / £ /7 . denote by IC its complement in {1,. . . ,p} and by ij the inclusion 
{X! = 0} ^ X. 

Proposition 3.8.1. Let 77 be a smooth twistor structure of weight w on X. Then, 

(1) the 77, -triple 77 is regular and strictly specializable along f — 0 (with a set A 
of eigenvalues contained in X), and is strictly S-decomposable along f = 0, with only 
one strict component; 

(2) for a £ [—1,0[, we have -7 = 0 unless a = — 1 and, for any £ ̂  0, there is 
a functorial isomorphism 

•Je /, . , 0 PgrfV^i(^)(^/2) , 

where M.'0/,«̂  denotes the monodromy filtration. 

Proof. Let us begin with the trivial smooth twistor ,5̂  = (77$;, 77 , C) where C is 
trivially defined by C(l, 1) = 1. Except for the computation of 0/C, this is proved in 
[56, § 3.6]. We will recall some details in order to compute i/ifC. We put y? = xp+1 for 
j = 1,. . ., n — p. If 6 denotes the ^^xc-generator of if,+77 , we have the following-
relations: 

tô = f(x)d. XldXiô = -(tdt + z)ô, dy7 - 0, t 
p 

ô = (-t(5t)pS. 

This shows that S £ V i (/'/•. _ O j) and that gr^(i/,+ ^ ) = 0 for a 0 Z. Regularity 
along {£ = 0} is also clear. It can be shown that V-\(if= Vo(7?^;xc) • o~ 
and that any local section of V \ (//•. s 7J has a unique representative modulo 
V-2(if+@%;) of the form 

k=0 

da-l 

k=0 

g(xiriahy)x-^-tdtfPa-i(-tdt)(tô), 

with Pa^(s) = n L i n K ^ a , - i ( ^ - ^ ) (see [52]), da^ = #{z | a% - 1 ^ 0 } , 
7c(a) = {i | a« = 0} and g holomorphic in its variables. One can also show that 
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sections of P g r ^ g r ^ z ^ + ^ r are uniquely represented by elements of the form 

/C{l,...,p}a7e(N*)' 
l/M+i 

g{xIr.,y)x-JaiPai-Xl{-^t){t5) 

which can be rewritten as 

/C{l,...,p} 6/GN7 
\i\=t+i 

g(xI,.y)db

t4x714,6). 

It can be shown that, for j G P\ 

S,, [g(xi,,y)dbx;(xJ^tS)] = c5Xj(5(x7..y))&x\(xJutS) mod M,_!. 

One then gets an isomorphism 

g(xI,.y)db

t4x714,6) S,, [g(xi,,y)dbx;( 

.</!>/ .„U>:.[:x, ''/-V;. ifì+C(xj,ó. 

One can compute similarly Pgr^gr^ //•. ( O (see [56, 51, 52]) and can, var, and 
prove in that way that & i s strictly specializable and strictly S-decomposable along 
{/ = 0}. 

Let us now show that the previous isomorphism is an isomorphism of ^-triples, 
once the left one is twisted by (£/2), i.e., the corresponding C is multiplied by (iz)~£. 
Fix J G K e + 1 and, for any test form tp with support contained in the fixed coordinate 
chart, put (f = (f>j A Ylit J ^~dxj A dxj. On the one hand, we have 

(ij+ijC(\,l),<p) -
{*.j=o\jeJ} 

y i 

On the other hand, according to Example 2.1.14, as N" = zN = if'i)t. we have to 
compute 

(3.8.2) ( г * ) - ' R e s « . , ifi + C{(-itât)eXjljtô, Xjljtô), \t\2sx(t)<p A £dt A dt). 

Remark first that 

(3.8.2) (iz) 1 Res6.=_i ifì+C(xj,ó. xjrô),(idtt)l(\trx(t))<p A £dt A dt) 

)(г*)-'Res«., (s + 1 )'•(/>., r(.r7.-rf. .,>•<*). |f |2*x(% A ^ i t A dt) , 

as the term containing derivatives of x will n°t create any residue. Putting r = t — j , 
we have 

|trx(*)y>A^d*Acft 
2^ dr A rir 

l / r x ( / ) v , 

and, by definition of . 

(3.8.2) = Res, j )(г*)-'Res«., 
A k/-12 l/l2s *(/)*> • 

ASTÉRISQUE 300 



8.8. A LOCAL COMPUTATION 105 

The integral has a pole of order f. + 1 at s = —1 produced by 

k/f'V./ A 
x AJK 

^dxj Л dx j 

and the coefficient of the pole is .=0|j6/} This gives (2) for //•. j O . 
If now is any smooth twistor, remark that, for ./ft — ./ft' or ./ft", we have 

ip+./ft — ,-ft (&e,r ifs+(j%: with its usual twisted structure of 3&r<?;-module, and that 
the action oft and df comes from that on if^ff^;. As ./ft is assumed to be --locally 
free, the filtration of if^+./ft defined by V^«/,+.># = yft V(X(if,+l?r<$;) satisfies 
all properties of the Malgrange-Kashiwara filtration. It is then easy to deduce all 
assertions of the proposition for ./ft from the corresponding statement for if^&y;. • 
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POL ARIZ ABLE T W I S T O R ^ - M O D U L E S 

4.1. Definition of a twistor f^-module 

We will follow the inductive method of [56, § 5.1] to define the notion of (polarized) 
twistor f^-module. 

Let X be a complex analytic manifold and let w G Z. We will define by induction 
on d G N the category MT^ fj(Xw) of twistor @x-modules of weight w on X, having 
a support of dimension ̂  d. This will be a subcategory of the category Triples(X) 
introduced in §1.6. We will also define the full subcategory MT^d(X,w) of regular 
twistor @x-modules 

Definition 4.1.1 (Twistor f̂ -modules). The category MT ̂ d(X,w) is the full subcat­
egory of Triples(X) for which the objects are triples (./ft', ./ft", C) satisfying: 
(HSD) ./ft', ./ft" are holonomic, strictly S-decomposable, and have support of dimension 
^ d. 
(MT>o) For any open set U C X and any holomorphic function f : U —> C, for any a 
with Re(a) G [—1,0[ and any integer £ ̂  0, the triple 

»#*,,«(.#',.///", C) l8f (gr^f.a(.//'), gif* ,,„(,//"), grf^f,aC) 

is an object of .\n\. r/ \(U. w + £). 
(MTq) For any zero-dimensional strict component {xQ} of ./ft' or ./ft", we have 

цХоН{Ж',Ж",С0) цХоН{Ж',Ж",С0) 
where (MJI, MJ", C0) is a twistor structure of dimension 0 and weight w. 

Regular objects can be defined similarly: 

Definition 4.1.2 (Regular twistor ^-modules). — The category MT^(X, w) is the full 
subcategory of ffi- Triples(X) for which the objects are triples (./ft1, ./ft", C) satisfying: 
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(HSD) ,777, ,7t" are holonomic. strictly S-decomposable, and have support of dimension 
<: d. 
(REG) For any open set U C X and any holomorphic function / : U —> C, the 
restrictions ,7^^, ,.7^'lj are regular along {/ = 0}. 
(MT>o) For any open set U C X and any holomorphic function / : U —> C, for any a 
with Re(cv) G [—1,0[ and any integer £ 7 0. the triple 

gr/M*f,«(.^',.^".C)^f (gTM^/.rt(.#').glf*/,fv(.^'').glfI*/.cvC') 

is an object of MT^_, (U, w + C). 
(MTq) For any zero-climciisional strict component {x0} of or .Jf,". we have 

цХоН{Ж',Ж",С0) ••iu„) + (-#".-#"',C0) 

where (./71. ./7". C()) is a twistor structure of dimension 0 and weight w. 

Clearly, MT^(X, w) is a full subcategory of MT^r/(X, w). Let us justify all under­
statements made in the definition of the category MT(X, w). We note that we have 
used the ^ functor of Definition 3.4.3. Remark first: 

Proposition 4.1.3. If (Tt'.,7/".C) is an object ofUT^d(X,w), then ,7/' and ,7t" 
are strict, as well as gr^V/V** '̂* &vY'il)f.a</^" for any analytic germ f, any a G C 
and, any £ G Z. In particular, 'i\)j^.7f7 (if id Wf^.7/-" aire strict for any a G C. 

Proof Set ,7/ = .77' or ,77". The strictness of ,7/. follows from (HSD), after 
Corollary 3.5.7. The strictness of gr)1^ f^,77 for Re a G [-1,0[ is by definition. To 
get the strictness of gr̂ I'0/,a<̂ ' for any r> 0 N. remark that the property is local 
with respect to z. Use then the filtration V}Z(^ and its graded pieces, and use the 
isomorphisms t or (3f to increase or decrease He <\. depending whether £Z(,((*) < 0 or 
£Zo(a) ^ - 1 , if a p . 

Let us show the strictness of gr̂ 1 (.•f\(X.7/ for a — 0 (hence for any a G N). We 
can assume that ,M has strict support. If / = 0 on the support of ,7t, then the 
monodromy filtration is trivial and the strictness of V;/.o-^ is a consequence of the 
strictness of ,7t, by Kashiwara's equivalence 3.3.12. Otherwise, we know by [56, 
Lemma 5.1.12] that var : ( ^ o ^ , M.) —» (V/. M. |) is injective and strict, i.e., 
induces an injective morphism after grading. Therefore, each gr^V/^^ is strict. 

The strictness of V;/,fV«̂  follows then from Lemma 1.2.2. • 

We note also that we have locally finite strict S-decompositions ,77' — ^dz^7f7z, 
and — (&z"<7t'z'n where Z' belongs to the set of strict irreducible components of 
,7t' and Z" to that of ,7t". For any open set U C X, the irreducible components 
of all Z' n U form the set of strict components of .Tt'^, and similarly for ,7t". For 
/ : U —•» C, we have 'ipf,a^z' = 0 for any a 0 N if / vanishes identically on the strict 
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component of yft'^j, and has support of codimension one in Z^ otherwise. The 
support of rbf^./ft'^ has therefore dimension ^ d — 1. 

According to Proposition 3.5.8, the component Czf,z" °f C on yft'z,^ ^z"\s 
vanishes unless Z' = Z". We denote therefore by Cz the component of C when 
Z = Z' = Zn is a common strict component of ./ft' and yft11. We thus have a 
S-decomposition 

(4.1.4) (.#', C) = (BzWz, .*z, Cz) 

indexed by the set of strict components of ./ft' or ./ft". We will see below (Corollary 
4.1.6) that the set of strict components is the same for yft' and yft", and that each 
(./ft'z,yft'z, Cz) is ft twistor ^-module of weight w. 

With such a notation, (MTo) is concerned with the zero-dimensional strict com­
ponents, which are not seen by (MT>o). Assume for instance that we work with 
right -modules. Take local coordinates x\,. . . yxn at xQ. Then (MT0) says that 
M' (x n) = M^' 0C C I g x 1 3 , , J , yft'(Xa} = JfT" 0c C[9X1,..., üxJ and C{Xo} is ob­
tained by ~x) s-linearity from its restriction to Jft^'s <g>&3 ¿ft^'¿. There, it is equal 
to C0 • 5Xol where 5X() denotes the Dirac current at x() and CQ : J4f^'s ©«̂ s —• ífs is 
given by (2.1.1). 

It is easy to see now that the set of zero-dimensional strict components is the 
same for yft' and ./ft"\ if {xQ} is not a strict component of yft" for instance, then 
yft"x i = 0 and thus .ft " = 0. As CQ is nondegenerate, this implies that 3ft, ' = 0, 
therefore yft^x y = 0 and {x0} is not a strict component of yft'. 

We will now give the basic properties of twistor i^-modules. 

4.1.a. Locality. — For any open set U C A, there exists a natural restriction 
functor (and a regular analogue) 

MT^(¿(X, w) -^U MT<d(C/,«i). 

Moreover, if (yft', ./ft", C) is any object of Triples(X) such that, for any open set U 
of a covering of A, (Jft, yft", C)w is an object of MT^d(U, w), then (yft', ./ft,", C) is 
an object of the category MT^(X,w;). 

4.1.b. Stability by direct summand 

Proposition 4.1.5. If (,/ft\ ./ft", C) = (.£[ © yft,!2, ./ft,'x' © yft!{, C1 © C2) is an object 
of MT^d(Xpw), then each (. ft'}. .ft". C,) (i = 1,2) also. Moreover, regularity is 
conserved. 

Proof - The property of holonomicity restricts to direct summands, as well as the 
property of strict specializability (3.3.11(a)) and, as Property 3.3.11(e) also restricts 
to direct summands, it follows that strict S-decomposability restricts too. It is easy 
to see that (REG) restricts to direct summands. Then argue by induction on d for 

SOCIÉTÉ M AT HEM AT IQ U E DE FRANCE 2005 



110 CHAPTER 4. POL ARIZ ABLE TWISTOR -̂MODULES 

(MT>o). For (MTQ), use the fact that a direct summand of a trivial holomorphic 
vector bundle (on P1) remains trivial. • 

Corollary 4.1.6. — If'(./ft'\.Mh\C) is an object of the category MT^(I,u')7 then the 
strict components of ./ft' and ./ft" are the same and the S-decomposition (4.1.4) holds 
in MT^d(X, w). Moreover, MT^(I ,KI) is the direct sum of the full subcategories 
MT^)(X, w) consisting of objects having strict support on the irreducible closed an­
alytic subset Z C X of dimension ^ d. 

Proof. We assume that there is a strict component Z' of ./ft' which is not a strict 
component of ./ft". Then we have an object (./ftz, ,0,0) in MT^¿(A,i¿;), according 
to the previous proposition. Argue now by induction on dimZ', the case dim Z' = 0 
having being treated above. Let / be the germ of any smooth function such that 
/_1(0) D Z' has codimension one in Z'. By induction, we have ijjf^./ft^, — 0 f°r anv 
a 0 N. By Kashiwara's equivalence on some open dense set of Z'', we can assume that 
Z' = A, that ,/ft'z, is Ü-coherent, and we can choose for / a local coordinate t, so 
that we conclude that ./ft'z,lt./ft'z, = 0. By Nakayama's lemma, we have ./ft'z, = 0 near 
t = 0, hence ,/ft'z, = 0 by definition of the strict support. This gives a contradiction. 

The remaining statement is easy. • 

4.I.e. Kashiwara's equivalence. — Let i denote the inclusion of X as a closed 
analytic submanifold of the analytic manifold X'. Then the functor z+ induces an 
equivalence between MT(X,w) and MTx(^ ' ,^) (objects supported on A), which 
induces an equivalence between the regular subcategories. 

Remark 4.1.7. — It follows from Remarks 3.4.5 and 3.6.16 that, if (MT)>0 is satisfied 
for some holomorphic function / , it is satisfied for all fr, r ^ 1. Therefore, it is 
enough in practice to verify (MT)>0 for holomorphic functions which are not a power. 
A similar reduction holds for strict S-decomposability in (HSD), according to Lemma 
3.5.2(1). 

4.1.d. Generic structure of twistor f^x-modules 

Proposition 4.1.8. Let (./ft',.,ft",C) be an object ofMT(X,w) having strict support 
on the irreducible closed analytic set Z C X. Then there exists an open dense set 
Z' C Z and a smooth twistor structure (.ft'. .ft". C) of weight w on Z', such that 

M", c v =цХоН{Ж',Ж",С0) c). 
Proof. — Restrict first to a smooth open set of Z and apply Kashiwara's equivalence 
to reduce to the case when Z = X. On some dense open set of A, the characteris­
tic variety of ,/ft' and .yft" is contained in the zero section. By Proposition 1.2.8(3), 
.yft' and yft" are <^r-locally free on some dense open set X' of A, and by 1.2.8(2), 
putting ./ft = ./ft' or ./ft", we have ./ft.° — V^i<yft° with respect to any local coordi­
nate t. Consequently, ^t^yft is supported on {z = 0} if a 0 —N*, hence vanishes 
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because of strictness (cf. Proposition 4.1.3). We thus have ^/t^ = gr^vJt and the 
monodromy filtration on it is trivial. Moreover, this is a &%;0-locally free module and, 
after Remark 3.6.15, ^ ( _ i C is the restriction of C to t — 0, so we can continue until 
we reach a twistor structure of dimension 0. Therefore, ( # , ^ " , C ) is a smooth 
twistor structure according to the definition given in §2.2. • 

4.I.e. Morphisms 
Proposition 4.1.9. There is no nonzero morphism (in Triples(X)) from an object 
in the category MT(X,w) to an object in MT(X/w') if w > ID' . 

Proof. - - Let (f : (M[, , C\) —> (</$2l -^2-> C2) be such a morphism. According to 
Corollary 4.1.6, we can assume that both have the irreducible closed analytic set Z as 
their strict support. As the result is clear for smooth twistor structures (there is no 
nontrivial morphism from (w) to &f>i(w') if iv > ?//), it follows from Proposition 
4.1.8 that the support of Im(^ is strictly smaller than Z. By definition of the strict 
support (cf. Definition 3.5.3), this implies that Imip = 0. • 

Proposition 4.1.10. The categories MT(X,w) andMT^'^X/w) are abelian, all mor­
phisms are strict and strictly specializable. 

Proof. It is analogous to that of [56, Prop. 5.1.14]. Let us indicate it for 
MT ( 1 ,(A\ w). the case of MT(X, ID) being similar. Introduce the subcategory 
MTW ( r )(I,«;) of /^-Triples(A). the objects of which are triples with a finite fil­
tration W. indexed by Z such that, for each £, grf is in MT ( r ) ( I ,w + t). The 
mor phisms in MTW ( r )(X, w) are the morphisms of Triples(X) which respect the 
filtration W. Consider both properties: 

(a^) №T<d(X,w) abelian, all morphisms are strict and strictly specializable; 
(bci) MTW^(X, w) abelian and morphisms are strict and strictly compatible with 

the filtration W. 
Remark first that (ao) follows from Kashiwara's equivalence of §4.1.c and the 

corresponding result in dimension 0 (cf. §2.1.b). 

(â ) (hci). We note first that, by Proposition 4.1.3 and Lemma 1.2.2, the objects 
in MTW^(J,'u;) are strict -modules. According to Proposition 4.1.9 and [56, 
Lenime 5.1.15], (a^) implies that the category MTW<^(X, w) is abelian and that mor­
phisms are strictly compatible with W. Using Lemma 1.2.2 once more, we conclude 
that all morphisms are strict. 

(hd-i) => (arf) for d ^ 1. The question is local. Let p> = (<p',ip") : (£[,^[',CX) -> 
(/^r^!^) be a morphism of pure twistor ^-modules of weight w. According 
to Proposition 4.1.9, we can assume that all the ^^--modules involved have strict 
support Z (closed irreducible analytic subset of X) of dimension d. We will first show 
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that Kei(f and Coker (/? are also strictly specializable, S-decomposable and have strict 
support Z. 

Let / be the germ of an analytic function not vanishing identically on Z, that we 
can assume to be a local coordinate t, using the graph embedding of / and according 
to Kashiwara's equivalence of §4.I.e. By (bc/_i), V;ua^ is strict if a ^ N, according 
to 3.3.8(lb) and (lc). We will show below that 

Vyt$p' and ipt^T0" are strict (hence so are ipt,k^pf and tyt,ky>" 101 any & £ N, 
according to 3.3.8(lc)), 

can is onto for Kerc// and Kerc^/', and 
var is injective for Coker and Coker cp". 

The first assertion will be enough to show that p' and p" are strictly specializable, 
hence Ker <p', . . . , Coker p" are also strictly specializable (Lemma 3.3.10). The two 
other assertions will insure that these modules satisfy Properties 3.3.11(c) and (d), 
hence are strictly S-decomposable along {t = 0} and have neither sub nor quotient 
module supported on Z n {/ = 0}. Applying this for any such / implies that 
Ker ipf, Coker p" are strictly S-decomposable and have strict support Z. Now, 
Ker p> , . . . , Coker p" are clearly holonomic and regular along {t = 0}, hence they are 
also strict (cf. Corollary 3.5.7). We now have obtained that p is strict and strictly 
specializable. 

Let us come back to the proof of the previous three assertions. As var is injective 
for yft' and ./ft", we identify i/jt,o<pf to the restriction of ^t,-ipf on ImN C ijjt^-iyft^ 
and similarly for p". By the inductive assumption, the morphism 

,y : ^H,-i.K/'ih,-i^k-y-iCk) — ( f c - i . # ^ . - i . < ' , ^ , - i C t ) ( - l ) 

is strict, for k = 1,2 and Iu\-/V is an object of MTW^_1 (Aq, W). Using once more 
this inductive assumption, the restriction of fi/;t.-ip 011 bn. Y is strict, hence the first 
point. 

In order to show the other assertions, consider the following diagram of exact 
sequences (and the similar diagram for p')\ 

0 IIH.-I Kcrp" > ih.-y^fti' 
ih.-i^" > iU.-\yfti > 4h.-\ Coker p" -> 0 

can Ni can N2 can can 

0 —> ipt,o Ker p" ibt.o 
ibt.o 

ibt.o ibt.o Coker p" -> 0 

var var var var 

0 ^,_iKer^ ibt.o 
ibt.o 

ibt.o • Coker p" -> 0 
We have to prove that the left up can is onto and that the right down var is injective. 
This amounts to showing that ImNi n Ker y'jt^ip" = Ni(Ker i/jt^np") (because this 
is equivalent to Im can D Ker i})t^p" — can(Ker i/jt,op")) and ImN2 n Im^f = 
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N2(1111 V - ^ . - i T h i s follows from the lemma below applied to the germs of the 
various sheaves. 

Lemma 4.1.11. — Let E\,E2 be two Z-modules, equipped with nilpotent endomor-
phisms N1, N2. Let A : E\ —» E2 be a morphism commuting with Ni,N2, which is 
strictly compatible with the corresponding monodromy filtrations M(Ni), M(N2). Then 

Im N1 fl Ker A = N1 (Ker A) and Im N2 fl Im A = N2 (Im A). 

Proof. By the characteristic property of the monodromy filtration and by the 
strict compatibility of A, we have M(Ni) fl Ker A = M(N1( Ker A) and M(N2) D Im A = 
M(N2| im a)- Moreover, each gr^A decomposes with respect to the Lefschetz decom­
position. It follows that the property of the lemma is true at the graded level. 

Let us show the first equality, the second one being similar. By the previous remark 
we have 

ImNi nKerAnM(Ni)/, = Nx ( Ker A n M(Ni ),+2) +I111N1 fl Ker A n M(Ni)/_j, 

and we can argue by induction on £ to conclude. • 

To end the proof of (bf/_j) (ar/), it remains to be proved that Ker if and Coker Lp 
satisfy (MT>o). It follows from the abelianity of M T W ^ ^ X i i ' ) and from the 
strict specializability of ip that \I>,<0. Ker (p and tytn Coker ip (with Ren e [—1, 0[) are 
in MTW^J^ (X, w) and. as we have seen in Lemma 4.1.11. the weight filtration is 
the monodromy filtration. This gives (MT>q), concluding the proof of Proposition 
4.1.10. • 

Corollary 4.1.12. Given any morphism, (p : ^ —> !J2 between objects of MT(X, w) 
and, any germ f of' liolomorphic function on, X, then, for any a 0 N, the specialized 
morphism f\a(p is strictly compatible with the monodromy filtration M# and, for each 
£ £ Z, grf[^f\a(p decomposes with respect to the Lefschetz decomposition, i.e., 

M(Ni)/_j, 
e 

k:Z>0 
Kenp = Kergrf*f.a^ ((' > 0), 

0 • Kenp = Kergrf*f.a^ ((' ^ 0). 

In particular we have 
gif Kenp = Kergrf*f.a^ 

and similarly for Coker, where, on, the left side, the filtration M . is thai induced 
naturally by M. vI;/.n -̂ 1 or, equivalently, the monodromy filtration of ,/V acting on 

Ker (p = Ker ^L(,p. • 

Corollary 4.1.13. If is in MT^d(X, ty), then the Lefschetz decomposition for 
grf^t^J (with Re(a) e [-l,0[j holds in M T ^ - i ( X , ^ + £)• 
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Proof. — Indeed, J3 : grY^t,a^ —• gr̂ i2̂ t,a,Ŝ ( —1) is a morphism in the category 
MT^_I(X,KJ + £), which is abelian, so the primitive part is an object of this cate­
gory, and therefore each term of the Lefschetz decomposition is also an object of this 
category. • 

4.1.f. Graded Lefschetz twistor 33x—modules. — Given e = ±1, we can define 
the category MLT<^(X, w;e) of graded Lefschetz twistor -modules as in §2.1.e: 
the objects are pairs (33, 3ft), with 3? — ©^-, and 33} are objects of MT^f|(I, w — ej); 
3ft is a graded morphism 333 —> ^_2(^) of degree —2, such that, for j 3 0, 3ft3 : 3?j —» 
^-j(ej) is an isomorphism. We note that, by Proposition 4.1.10, P 33} is an object of 
MT^(X, w — ej) and the Lefschetz decomposition of 33} holds in MT^(/(X, w — ej); 
moreover, the category MLT<cfi(X, w; e) is abelian, any morphism is graded with re­
spect to the Lefschetz decomposition, and moreover is strict and strictly specializable, 
as follows from Proposition 4.1.10. 

More generally, for any k 3 0 and e = (ci, . . . , sk) — (±1, . . ., ±1), we can define 
the category MLT<̂ fj(X, w; e) of fc-graded Lefschetz twistor S^x-modules: the objects 
are tuples (33,3ft), with £ft = (3ftx, . . . ,,33k), 33 = 3)jeIy^j: each 33j is an object in 
MT^d(X,w — Y2i£iJi)i the morphisms Jfj should pairwise commute, be of /c-degree 
(0,. . ., —2, . . ., 0) and for any j with jt 3 0, 3ftI' should induce an isomorphism from 
33j to the component where ji is replaced with —jp the primitive part P-33j, for 
ji,. . . , fk 3 0, is the intersection of the Ker J?f/' + 1 and we have a Lefschetz multi-
decomposition, with respect to which any morphism is multi-graded. The category is 
abelian, and any morphism is strict and strictly specializable. 

Lemma 4.1.14. Let (^9,3ft) he an object of the category MLT^d(X, w; s). Then, 
for any a with Re(oj) G [—1, 0[, the specialized object ( g r ^ t ? c ^ , (gr^^£,a«if, 
is an object of MLT^d_i (X, w; (e,-1)) and P^grf^t^^j = grf^t^P^^j, where 
P^ denotes the multi-primitive part with respect to ,5ft. 

Proof. — The lemma is a direct consequence of the strict compatibility of the ^t_oc3ftl 
with the monodromy filtration M(,/K), as follows from Proposition 4.1.10. • 

Lemma 4.1.15. The category MLT<cfi(X, w; s) has an inductive definition analogous 
to that of M T ^ ( I , w), where one replaces the condition (MT>0) with the condition 
(MLT>0), asking that ( g r ^ , a ( , T , 3ft), N) is an object of MLT^-i (X, w; (e, -I)), 
and the condition (MT0) with the analogous property (MLT0). 

Proof. — According to the previous lemma, it is enough to show that, if (33,3ft) 
satisfies the inductive conditions, then it is an object of MLT^r/( A, w; e). This is 
done by induction on d, the case d = 0 being easy. One shows first that each 33j is in 
MT^d(X, w — J2£iji) for any j and that (A^3ft-' is an isomorphism from ^t,a<^j 1° 
^t,a^ji,...,-ji,...jk ôr any * = 1« • • • 7 7̂ any j with ji 3 0, any local coordinate t and 
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any a G C. Considering the decomposition with respect to the support, one deduces 
that Jiff' is an isomorphism from ^ to 77jl _7\?_^-A.. • 

Remark 4.1.16 (Regularity). Similar results hold for the category MLT^(X, w; s) 
of graded Lefschetz regular twistor -modules and its multi-graded analogues. 

4.1.g. Vanishing cycles. — Let 77 be an object of MT^(X, w). By definition, 
for any locally defined analytic function / . the object (ijjf._i -7. M.(- ¥)) is an object 
of MTW^/(X,w). 

Corollary 4.1.17 (Vanishing cycles, cf. [56, Lemme 5.1.12]). For such a .7, the ob­
ject (o/.o-^.M.(-!')) is in MTW^H.V. ir) and (gr^O/.o-T. grM2- t ) is an object of 
MLT<^d(X. w: —1). Moreover, the morphisms 7an, far are filtered morphisms 

(</>,_,,Г. М.(.Ж)) <éan ((pf.0-7(-l/2),M.-i(,V)) 

(0/.o.^(-l/2),M._1(./K)) •Гаг (V;/.-1.n-l),M.-2(^)), 

hence are morphisms in MTW(X, w), and similarly for gr^ c£an and gr^}l %r. 

Proof. We can assume that ,T has strict support on an irreducible closed analytic 
subset Z of X. If / = 0 on Z, then the result follows from Kashiwara's equivalence 
and Lemma 3.6.32. 

Assume now that / ^ 0 on Z. The object (pj\o^( —1/2) is equipped with a filtration 
W.^f.o^ naturally induced by M#(e/K)'0/,-i^. As such, according to Lemma 3.6.21, 
it is identified with the image of-¥ : (V/-. > )) -> (/.7. , .7(- l ) .M. 2(. r )). 
hence is an object of MTW(A\ w), because this category is abelian. 

The result now follows from [56, Lemme 5.1.12], which gives in particular that 
W.0f,oS = M.-i{..Y)<j>JM&. • 

Remark 4.1.18 (Regularity). Starting with an object .1 of MT(r)(I, w). we con­
clude that (gr^'o/.y/.. L) is an object of MLT(r) (V, w). 

4.1.h. Behaviour with respect to the functors HDR and Ho0i 
We can now give a statement more precise than Proposition 3.3.14 concerning the 

restriction to z = zD. and in particular the behaviour of the monodromy filtration and 
the property of S-decomposability. 

Proposition 4.1.19 (Restriction to z = za). Let (.¥'..//". C) be an object o/MT(X, w) 
Put .7? = .77 or .77". Fix zG G tt0 and put MZo = ,7//(z - zQ\dt. 

(1) // .7/". C) is in MT(r)(X, w) and zG ^ 0, then Mz<> is a regular holonomic 
^7x -module. 

(2) Let f : U —> C be a holomorphic function on some open set U. 

SOCIETE MATHEMATIQUE DE FRANCE 2005 



116 CHAPTER 4. POLARIZABLE TWISTOR -̂MODULES 

(a) For- any a 0 N, the restriction to z = z() of the rnonodrorny filtration 
M.'0/,a<̂  o/N is the rnonodrorny filtration of its restriction N on •ijrf"^MZo. 

(b) lUe assume that f is a projection t. that can is onto and var is injective. 
Then, can : V;t^-i^2„ —> V'J'o'̂ ^w, ^n^o and var : 'i/)^ AIZa —• V'/'-i^^o .̂s 
injective. 

(3) lUe assume that zG 0 Sing A. T//,cr/, 7\/~o is a strictly S-decomposable holonomic 
3>x-module. If has strict support Z (irreducible closed analytic subset of X). then 
so lias the restriction to z = zG. 

Proof 
(1) Using the definition of regularity as in [45. Def. (3.1.12)]. one shows by induction 

on dim Supp MZ() that MZn is regular. 

(2a) This is a consequence of the strictness of gr̂V-'t.cv̂  proved in Proposition 
4.1.3. Indeed, by strictness, the filtration M. ip^'^MZn naturally induced by M.̂ '/.a:-̂  

satisfies grf}'(J^z'^MZa = gr^1 il\f\a.,/3 / (z — 0̂)gi|r0/.a, # . and then satisfies the char­
acteristic properties of the rnonodrorny filtration of the restriction of N. 

(2b) That can remains onto is clear. In order to show that var remains injective by 
restriction, we will use that ?/>,..-u^/ ImN is strict: indeed, N : i -^ M ---> Vt - 1 M 
is part of a morphism in MTW(A, u>), hence its cokernel is strict. This implies that 

Im X/(z - 2„)ImN m.-,. f t /(z-z0)ii^1.) t - 1 M) 

is injective and therefore 

ImN n (.:• - : J r , ,.// = (z - ,:0)ImN. 

Let rn be a local section of V't.o^ such that trn G (z — 2o)'0t.-i.̂ - As can 
is onto, there exists a local section rn' of • < / ' / . s u c h that rn = —Dfrn'. Then 
Nra' G (z — z0)'i/)t^i.yft. By the strictness property above, we have Nm' = N(z — za)rn" 
for some local section rn" of V-V.-i-^ and hence t[m — (z — z())( — dtm")} = 0. As var 
is injective, we have rn G (z — zo)'0£,ô , ^s was to be proved. 

(3) We assume that zQ 0 Sing A and that , # has strict support Z. We will show 
that MZ() is strictly S-decomposable and has strict support Z (the definition of these 
notions for -modules are given in [56]: they are also obtained by doing z = 1 in the 
corresponding definitions for ^^-modules). Let / : (A. ,r()) —• (CO) be an analytic 
germ which is nonconstant on (Z, 0). Using the graph embedding of / , we can assume 
that / is a coordinate t. By Proposition 3.3.14. we have ij)\^lMZi) = 'tpf^-iMZo and 
vb\z^MZu = ilhA)hIZ(), can restricts to za canCo and var restricts to var2(;. Therefore, 
the conclusion follows from (2b). • 
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4.2. Polarization 

Definition 4.2.1 (Polarization). — A polarization of an object 27 of MT^(J , iy) is a 
sesquilinear Hermitian duality ,5^ : ^ —» 27* (—uj) of weight io (c/. Definition 1.6.7) 
such that: 

(MTP>o) for any open set U d X and any holomorphic function f : U —» C, for any 
a with Re(a) € [—1,0[ and any integer £ ^ 0, the morphism (Pgr^^ /^J?^ induces 
a polarization of f^27, 

(MTP0) for any zero-dimensional strict component {xG} of or we have 
5? — i{Xo}+S*0, where <5f0 is a polarization of the zero-dimensional twistor structure 
(J?",J>r",C0). 

Remarks 4.2.2 

(1) We note that Condition (MTP>o) is meaningful because of Remark 3.6.13. 
(2) Conditions (MTP>o) and (MTPo) imply that the components Sf and S" = 

( — l)wS' of ,y are isomorphisms ,77" ,777: indeed, one can assume that 27 has 
only one strict component; by induction on the dimension, using a local coordinate, 
one obtains that S' is an isomorphism on a dense open set of the support; by definition 
of the strict support, S' is thus an isomorphism. 

We will denote by MT^(I5u;)(p) the full subcategory of MT^d(X,w) of polar­
izable objects, and similarly for MT^(X, w)^. According to Proposition 3.5.6, we 
have a S-decomposition 

(4.2.3) (,777, m", c, y) = e z ( ^ , ,77'i, cz, yz). 

The following proposition is easy: 

Proposition 4.2.4 

(1) In the situation of Proposition 4.1.5, if a polarization ,57 is the direct sum, of 
two morphisms ,9\ and J72, then each y\ is a polarization of (771, ,77", C7i). 

(2) Corollary 4.1.6 holds for M T ^ ( I , w)^ or MT^(X, u>)(p). 
(3) Kashiwara's equivalence of §4.1.c holds for MT(X,w)(p) or MT(r)(X, w)^. 

4.2.a. Semi-simplicity 

Proposition 4.2.5. — If is a subobject (in the category MT(A, w)) of a polarized 
object (27 ,,57), then ,57 induces a polarization 57\ of 27\ and (27\,S7\) is a direct 
summand of (27,,57) in MT(X,w)(pK In particular, the category MT(X,w)(p^ is 
semisimple (all objects are semisimple and morphisms between simple objects are zero 
or isomorphisms). 
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Proof. — By induction on the dimension of the support, the result being clear if the 
support has dimension 0 (see Fact 2.1.9). We can also assume that 57 has strict 
support a closed irreducible analytic subset Z of X. Put 57 = (S', S") and S = S' or 
S". Consider then the exact sequences 

0< 575 (-w\ ,57* (-w) %*(-w) -0 

L1 57 \l 

o > srx ,57 > sr2 > 0 

where 572 is the cokernel, in the abelian category MT(X, w), of 57\ t—> 57. We want 
to show first that is an isomorphism. This is a local statement. Take a local 
coordinate t such that Z (¡7 {t = 0} and apply ^t,a to the previous diagram (Re(<r) £ 
[—1,0[). According to Corollary 4.1.12, the exact sequences in the following diagram 
remain exact, if M. denotes the monodromy filtration of N: 

0< grf* t^^(-w) (^,0-T(-l/2).M. (^,0-T(-l/2).M._1(..r)) 

gif^t^y I gif^t^y I 

0 >glVM /̂:.n-̂ l gV^^t.a-r >gTf^Ua,% 0 

Using the inductive assumption, we conclude that each g r ^ ^ a ^ i is an isomorphism, 
hence ^t,a^i too. Arguing now as in Remark 4.2.2(2), we conclude that 57\ is an 
isomorphism. 

We now have a decomposition ,775 = ,772 0 S(.77") and ,77" = ,775{ 0 S~x(.77'2) 
and we have by definition a decomposition S — Si 0 5*2, where 5*2 is the isomorphism 
such that S2l is the restriction of S~l to ,.772. 

It remains to be proved that we have a decomposition C = C\ 0 C2. By definition, 
we have C(m'2, n") = 0 for local sections m2, n" of ^77^s an<̂  ^ l j s resPectively. It is 
enough to show that C(Sm", S~ln'2) = 0 for local sections rn",n2 of ^77"^ and ^^is 
respectively. This is a direct consequence of the fact that 57 is Hermitian. • 

Remark 4.2.6 (Regularity). — The same result holds with regular objects. 

4.2.b. Polarized graded Lefschetz twistor ^-modules. — Let (57,57) be an 
object of MLT(X, w; s). A polarization 57 is a graded isomorphism 57 : 57 —> 
57*(—w) which is Hermitian, i.e., satisfying .57* = ( — \)557_j, such that each 57% 
is skew-adjoint with respect to 57 (i.e., 57* o ,57^ — —,57^_2X. o ,57t for any i — 1,.. ., k 
and any 7) and that, for each j with nonnegative components, the induced morphism 

57-jo5?ll -"57f7 : P^^j (^/.-,^.M.(,#))P^^jP^^j 

is a polarization of the object P^^j of MT(X, w — ^ 
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Lemma 4.2J. The categories MLT(A, u>; s)(p) and MLT(r) (X, w; e)^ have an in­
ductive definition as in Definition 4.2.1. 

Proof — This directly follows from the commutativity of P^ and gr^1^^ shown in 
Lemma 4.1.14. • 

We also have, using Remark 2.1.16 in dimension 0: 

Lemma 4.2.8. — The conclusion of Proposition 4.2.5 holds for MLT(A, w;e) ^ and 
MLT(r)(A,K;;s)^). • 

Corollary 4.2.9. Let (.33,y;,,$ft) be an object of MLT(A, w; e)^ with strict 
support Z. Let f : U —* C be a holomorphic function ^ 0 on Z. Then 
(grf 0S^33 ,<9J ,3ft),,33) is an object of MLT{X,w + l ; s , - l ) (p \ A similar re­
sult holds for regular objects. 

Proof — Apply the Lefschetz analogue of Corollary 4.1.17 and Lemma 4.2.8. • 

Proposition 4.2.10. The conclusions of Propositions 2.1.19 and 2.1.21 remain valid 
for graded Lefschetz (regular) twistor 3$[\-modules. 

Proof — We will give the proof for non regular objects, the regular case being similar. 
Let us begin with Proposition 2.1.19. First, we remark that c(i^+i), Ker C 33- are 
objects of MT(1, w — ej), according to Proposition 4.1.10. 

Let us show that line and Kerv are subobjects of 33' in MLT(A, uv,e). We can 
assume that 33, 33' have strict support Z. Choose a local coordinate t such that 
codim^({£ = 0} D Z) = 1. We know that c or v and gif1 \I>/.n commute (Proposition 
4.1.10). It follows that, by induction, Coker3ft3 : e(.7,\T j) —> c(&-j+i) is supported 
in {t = 0}, hence is equal to 0, as 33' has strict support Z. Argue similarly for Kerv. 

By Lemma 4.2.8, line and Kerv decompose as direct sums of simple objects in 
MLT(A, w; s), so their intersection is an object in the same category. By the same 
argument as above, using induction on the dimension, the intersection Im cHKer v van­
ishes. Similarly, the direct summand of Imc0Kcn; in 33' is an object of MLT(A, w; e) 
and also vanishes by induction. We therefore have a decomposition 33' = Imc0Ker?; 
in MLT(A, w; s). 

Let us now consider Proposition 2.1.21. So, let [fK33n^n)j^Ip, 3ft\, 3ft^) be an object 
of MLT(A, w; £1.62)^ with a polarization 3/. Let d : :7jx.u -> ,33:n__l^2__l(£l + e2) 
be a differential in Triples(A), which commutes with 3ft\ and Jzf2 and is selfadjoint 
with respect to 3ft. As both source and target of d are in MT(X,w — Siji — E2J2), 
d is a morphism in this category, hence is strict and strictly specializable (Proposition 
4.1.10) and we have, for any germ / of holomorphic function any a with Re(a) £ 
[-1,0[ and any £. 3 0, 

Pgrf^f JKeid/ Imd) Ker(Pgi|%/>ad)/ Im(PgT?*fiad) 
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(cf. Corollary 4.1.12). By induction on the dimension of the support, we can assert 
that (Pgr \̂&/,Q(Ker d/ Imd), Pgrf ^ f ,a^. P&f^f^) is an object of the category 
MLT(X n /_1(0), VJ + i, e) and we conclude with Lemma 4.2.7. • 

Corollary 4.2.11 (Degeneration of a spectral sequence). Let ,33* be an object of the 
category (^-Triples (X)) equipped with a Herrnitian duality ,3ft : 33* —• (33*)* (—w) 
and with 3ft : 33* ,33* [2}(l) and ,33 : 33* -» A3* (~\) which commute and are 
skewadjoint with respect to ,33. We assume that ,,ft is nilpotent and and that each 
term E\3~% of the spectral sequence associated to the rnonodrorny filtration ofMm(„ft) 
is part of an object 

,:y3°3(33*)1 ,3ft3 (grM,^#), JfigT™^, .^ft3g^_%3ft, ,3ft3 gr^) 

of MLT(X, UK - 1 , l)(p). Then, 
(1) the spectral sequence degenerates at E-2, 
(2) the filtration W.,3ft3 (,33*) naturally induced by \1.33* is the rnonodrorny filtra­

tion M. associated to ,7ft3 ,/V : 3ft3(33*) ,:y3°3(33*)1 
(3) the object 

UJ.^ft3g^_%3ft, , 
, g r M ^ - \3 gxM,.ft33/}. gx^\.ftft3.ft) 

is an object of MLT(X, w;-1, l)(p). 
A similar result holds for regular objects. 

Proof. We know (Lemma 1.6.12) that the differential d\ is selfadjoint with respect 
to ftft3^},'/. Moreover, dx : Aft"3 (g^lt33*) -> -/A3 (g\^r7* ) is a morphism between 
objects in M T ( X , w A j — i). From the analogue of Proposition 2.1.21, we deduce that 
(E2°~l) is part of an object of MLT(X, w; —1 , l)'p). Now, one shows inductively that 
dr = 0 for any r ^ 2, by applying Proposition 4.1.9. This gives the result. • 

4.2.c. A conjecture 
We now restrict our discussion to regular objects. For the non regular case, we 

lack at the moment of results in dimension one. 

Theorem 4.2.12. — We assume that X is a complex projective manifold. The functor 
which associates to each object (33,,33) in MT^(X,w)(p^ the regular holonomic 33x~ 
module E D R ^ ; / (restriction to za = 1) takes values in the category of semisimple 
regular holonomic 33x-modules. 

Proof -— We can assume that 33 has strict support the irreducible closed analytic 
subset Z C A . We know that S D R ^ " is regular holonomic and has strict support Z, 
according to Proposition 4.1.19. This means that there exists a dense Zariski open set 
Z° C Z and a local system Aft of finite dimensional C-vector spaces on Z° such that 
the de Rham complex of H D R . ^ " is isomorphic to the intersection complex IC*Jzf up 
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to a shift. We want to show that the local system Jzf is semisimple. We will argue by 
induction on climZ, starting from dim Z — 1. 

The case when Z is a smooth curve is a corollary of Theorem 5.0.1 proved later in 
Chapter 5, as a consequence of results of C. Simpson and O.Biquard. 

Let us now consider the case when Z is singular. Let us denote by v : Z —* Z the 
normalization. We can assume that Z° is an open set in Z. It is therefore enough to 
construct an object (-7. 7) in MT^(Z,w)^p^ which coincides with (77, y) on Z°. 
The singular points of Z being isolated, this is then a local problem on Z, as we 
can glue local solutions to this problem with the solution (^, y)\z° on Z°- The 
noncharacteristic inverse image pJr(y,y) by the projection p : Z x X —» X is an 
object of MT^ (Z x X, w)^. Choose a family of local equations t\, . . . , tn of the graph 
G(y) C Z x X of v : Z X. Then the object Pgif^u (• • • P g r ^ „ p + ( e ^ , y)) 
gives a local solution to the problem. 

Assume now that dim Z ^ 2. According to [29, th. 1.1.3(h)], it is enough to show 
that the restriction of ,j£f to a generic hyperplane section of Z° is semisimple, because 
for such a hyperplane, F\(Z° n H) —> i\\(Z°) is onto. Now, the (noncharacteristic) 
restriction of (.7. 7) to a generic hyperplane H still belongs to MT^(X fl H,w)^p\ 
because it can be locally expressed as Pgv^i/^ j ( . / . . / ) for a local equation t of H. 
We therefore get by induction the semisimphcity of .^j^on^, hence of J2f. • 

Conjecture 4.2.13. The functor above is an equivalence. 

This assertion should also hold when X is compact and Kahler. Its proof would give 
a proof of the conjecture of M. Kashiwara recalled in the introduction, for semisimple 
perverse sheaves or regular holonomic f^-modules. 

Remark 4.2.14. When the conjecture holds, the functor sends a simple object in 
the first category in a simple object of the second one. This will be the case when X 
is a compact Riemami surface, as a consequence of Theorem 5.0.1. 

4.2.d. Polarizable Hodge f^-modules and polarizable twistor i^-modules 
One can develop a theory of Hodge f^-modules along the lines of this chapter. We 

will indicate the main steps. 
In dimension 0, polarized Hodge i^-modules correspond to polarized complex 

Hodge structures as in §2.1.d. 
In general, replace the category of ̂ /^-modules with the category of graded RF@X~ 

modules, the morphisms being graded. Strict objects correspond to ^x-modules 
equipped with a good filtration (by the Rees construction). In order to define graded 
^-Triples, consider sesquilinear pairings C taking values in VbxR 0c^[2;, z~1]. 

In the definition of specializable graded RF^X-modules, one should insist on the 
fact that the ^-filtration is graded. Therefore, if = Ri-M for some well-filtered 
i/.v-module A/, and if all 0/;«^ are strict, then Af is specializable along {/ = 0} 
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and Vbf^,/^ = Rp'ijjfiCXM, where the filtration F on i.-f.a M is naturally induced from 
that of M as in [56]. 

At this point, the definition of a complex Hodge ^-module is obtained by working 
in the category of graded ^-Triples when considering Definition 4.1.2. It is very 
similar to the category considered by M. Saito. 

The polarization is introduced as a graded isomorphism between both Rp&x-
modules entering in the definition of a complex Hodge ^-module. 

The graded analogue of Conjecture 4.2.13 asserts that the category of complex 
Hodge .^-modules is equivalent to that of admissible variations of polarized complex 
Hodge structures. It would follow from a direct comparison with the category of 
complex Hodge modules constructed by M. Saito, by the results of [56, 58]. 

Another approach is indicated in Chapter 7. 
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CHAPTER 5 

POLARIZABLE REGULAR TWISTOR ^-MODULES 
ON CURVES 

In this chapter we will prove: 

Theorem 5.0.1. ----- Conjecture 4.2.13 is true when X is a compact Riemann surface. 

This is nothing but a reformulation of some of the main results in [62]. Never­
theless, we will give details on the reduction to this result, as this is not completely 
straightforward. Moreover, we will use the more precise description given in [4]. 

We will begin with the detailed computation of a basic example when dimX = 1. 
It corresponds to "nilpotent orbits'* in dimension one. It was considered in detail in 
[62] and [4]. 

5.1. A basic example 

Let [3 G C and put f3' = Re /i, ¡3" = Im (3. Let V° be a C-vector space of dimension 
d equipped with a s^-triple (Y, X, H) and with a positive definite Hermitian form such 
that X* = Y, Y* = X and H* = H. Fix an orthonormal basis v° = . . ., v%) of 
eigenvectors for H and let iv, G Z be the eigenvalue of H corresponding to v°. It will 
be convenient to assume that the basis v° is obtained as follows: fix an orthonormal 
basis uj,. . . , vf, of Ker X made with eigenvectors of H; for any j = 1,. . . , k, consider 
the vectors 

(5.1.1) .^ft3g^_%3ft, , 

for £ — 0,. . ., wj, where c3^ is some positive constant; the basis (v°is orthogonal, 
and one can choose cjj (with Cj& = 1) such that the basis is orthonormal. 

All along this section 5.1, we denote by X the unit disc centered at 0 with coordi­
nate t and by X* the punctured disc X \ {t = 0}. Let H = 0 C V° be the trivial 
C°°-bundle on X and let v = (ui,. . ., vci) be the basis such that v% = 1® v°. We still 
denote by Y, X, H the corresponding matrices in this basis and by H the restriction 
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of the bundle H to the punctured disc X*. Put on H the logarithmic connection Dy 
such that 

D'¿v = 0. 

D'vv = v • (Y + /iId)y. 

Put L(t) = |log ̂ | as in §0.8 and let e be the basis obtained from v by the change of 
basis of matrix 

P=\t\-fiL(t)-^2ex, 
that is, 

( Е Ь . - Ч ) = (n......vd)-P(t). 
Put on H\x* the Herrnitian metric h such that £ is an orthonorrnal basis. Put Af.^ft3g^_%3ft, , = 
^ ; a n . ^ f t 3 g ^ _ % 3 f t , , It has a basis e(z) = v • Rz G T w i t h 

Rz(t) = L(t)-W V r e - ) " - " L(/)H/2. for * G X*, z G Q0-

Put e = e(0). One also has e(z) — e • Qz with 

Qs(t) = L(t)-fV2(|i|W"e-xyLWW2. 

The metric h and the connection Dy on allow to define operators D'e, D"E, 6'E and 
0£ (see §1.3.a and [63]). 

Proposition 5.1.2. — For any ft G C we have: 
(1) the metric h on H is harmonic; 
(2) the basis e(z) is holomorphic with respect to the holomorphic structure on J4? 

defined by D'E + zQ"E; 
(3) the action of zD'E + 6'E defines a left 3ft-module structure on the free Oy[\ /f]-

module M = û$r[l/t] - e(z) C .p.ft (where j : X* ^ X denotes the inclusion) and 
.sft is strict and strictly specializable (cf. §3.4.a,); 

(4) the minimal extension ,/ft of ,/ft across t = 0 is strict holonomic; 
(5) using notation of §2.2.a on X*, the sesquilinear pairing hs ' Aftfs Aft's ~* 

fé^*An extends to a sesquilinear pairing 

C : ,fts 0 .fts —> Db.v,ys/s • 

Proof. We will use the following identities: 

(5.1.3) 

L(t)±H/2YL(^H/2 = L(t)^Y 

L(t)±H/2XL(0^H/2 = L(t)±1X 

eYHe-y = H + 2Y 

exIIr x = H - 2X 

exYe~x = Y + H - X 
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and. from(0.8.1). 

(5.1.4) Ut)H/2t d(ut)-m) 
dt 

Ut)H/2t d(ut)-m 
dt 

H/2 

Write in the basis s 

D've = e Л/"" 
t 

D^e = e-M"j. 

One has M' = i\d \ P ]YP + P~ltdtP and M" = p-ltdjP. According to the 
previous identities, one gets 

(5.1.5) M' ft T, , Y - H/2 

(5.1.6) M" 9H/2 Х + Н/2 
L(t) 

(5.1.7) M" 1 dt -(M/ + M//*)-2V y t ,'TId + L?ÏÏ 
dt 
T 

(5.1.8) M" ~(M'* +M")di 
2V ; t 

' -J"H . X dt 
T 

Die = (L>'¿ - 0'¿)e = e - ^ I d + ^ 
2 Lf t 

Now, the matrix of + ¿6^ in the basis e(z) is zero (which gives the second point): 
indeed, we have e(z) — v • Rz = e • P^1 Rz and 

(5.1.9) P~lRz = \t\r-'^"c- 'XL(I)U/2 d^Ap(t,z). 
The matrix of D"E + zO'l in s is 

+ iz/3" 
2 Id (H/2 + zX) dt 

T 

hence in the basis e(z) the coefficient of (-S is 
v ! t 

(5.1.10) 13' + izp" 
2 Id+L(*) M" H/2 + 2X 

Ht) 
e-2XL(^2 

/3' + ?'z/3" 
2 

Id H/2 
L(t)' 

But 

ezX(H/2 + 2X)e"2X = e2adX(H/2 + zX) 
- zX + cca,lx(II/2) - zX + H/2 - zX = H/2, 

hence the result. 
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On the other hand, the matrix of zD'E + 6'E in the basis e(z) is computed in the 
same way: it is equal to 

ft" \ 
i1 + z2) + zß') Id +Y dt 

7 
[(/?*s)Id+Y]y. 

Therefore, &<%-[l/t] • e(z) is a left .'̂ .y -module, which gives (3). By definition, one 
has 

(5.1.11) tdte(z) = e(z) • z) Id+Y] . 

Moreover, putting z = 0 shows that the matrix of 0^ in the basis e = e(0) is holo­
morphic, hence h is harmonic. We have obtained 5.1.2(1) and (2). 

Consider the filtration — / k O .•}• • e(z). This is a good filtration with re­
spect to V9&$r[l/t\ and, for any k G Z, we have grĵ .v# ~ M°reover5 putting 
a = —[3 — 1, the operator cM + (a -f k) * z is nilpotent on gr^e/#. Near any z0 G 
the filtration V^Zo\/ft =f U9-ez (ay<rff satisfies all the properties of the Malgrange-
Kashiwara filtration, hence is equal to it. This shows 5.1.2(3). The lattice A consid­
ered after Definition 3.3.1 reduces here to a + Z. 

Although the filtration V^z°\/ft is only locally defined with respect to z() when the 
imaginary part a" is not 0, the module i/Jt.a+k*^ (for k G Z) is globally identified 
with Uk/Uk-i. 

Consider the minimal extension ^ of across t = 0. By the results of §3.4.b, it 
is strictly specializable along t — 0. It is strict, because t # is so. Near zQ G n0, ^ is 
the -subrnodule of generated by t~~kz<>e,(z).: where kZo G Z is chosen such that 
kZo+eZo(a) G [-1,0[. 

is holonomic because its characteristic variety is contained in (T^DUTQ D) x £}0 
(by an extension argument, reduce to the case when Y = 0). Remark also that the 
support S(,y#) of SdoI^ is contained in the curve tr = if3"/2: near zQ, the classes 
of t~~~kz» e3(z) (j = l , . . . ,d) generate E d o I ^ over &D[TD]\ these classes satisfy the 
equation 

det ((tr - t(3"/2) Id -Y) • t k^c:}((Y) = 0 (j = 1,.. ., d). 
Let us end by proving (5). It will simplify notation and not be restrictive to 

assume that Re/3 G ] — 1,0], that is, putting a = —/3 — 1, Re a G [—1,0[. Fix zQ G Oo. 
In the local basis t~kz(>e(z) of near zQ, the matrix - with entries 
C^'^ = hs(t~kzr>Ci(z),t~kz»ej(z)) defines a Y* s sesquilinear pairing. 

Let A(z) be the matrix defined by (5.1.9), so that e(z) — £ • A(z), where e is the 
/i-orthonormal basis constructed previously. Put 

C = tA(z)-A(z). 

Formula (5.1.9) shows that 

(5.1.12) C =kZo+eZo(a) • L(0H/2e-ïYex/~'L(f)H/2 ^ |f|2(0«>/* . B. 
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The matr ix C(z,,) can be written as \t\-2kz»C. When t -> 0, each \C^l))\ behaves 

therefore like \t\2£'"^-k^L(t)k for some k G Z. By definition, we have 4o(/3 - E 

] — 1,0], so tha t kZo+eZo(a) is kZo+eZo(a)and defines a distribution depending analytically on z 

near za G S. 

We hence define C on . ^ s ^ ^ ' s ^ s as the unique (if it exists) ^ Y Y s"nnear pairing 

such tha t C(f~kz()Ci{z),t~kz<>ej(z)) is the L\oc extension of C\*°^ as a distribution. 

Uniqueness is clear, as wTe are given C on generators. It will also allows us to glue 

along S the various local constructions. It remains to prove the existence. 

If one chooses a basis v° = (VJJ)JJ as in (5.1.1), the matrix C^z°^ is block-diagonal, 

(j{z0) _ ^.(j5<>\ \Ye can therefore easily reduce to the case when Y has only one 

Jordan block. 

Under such an assumption, is f$,%-generated by t~kz<>e,\(z). As we have 

t~kz°e^jri(z) — [tdt — (P — kZn) * z]et~kz<>ei(z), we first have to verify that we indeed 

have, as distributions. 

[m - (¡3 - kZo) * z f \ t d t - ((3 - kZo) * z { c[\a) = c5lA+e„. 

We know that this holds on A* as C°° functions. It then holds as distributions for 
the L\oç extensions (cf. Example 1.5.4). 

We note now that we have a local presentation of ^ (recall tha t Re ¡3 G ] — 1, 0]): 

&3L 
•[tât-{(3-kZo)*z]d kZo 

0 if f3& Z, 

Rx 
0 if f3& 

Six Six 0 if 3 = 0. 

Indeed, we have a surjective morphism of the cokernel to and it is enough to show 

tha t the cokernel has no f-torsion, which can be seen easily. Therefore, C will be well 

defined if we show that C[]a) satisfies [tdt - (f3 - kZo) • z^C^ = 0 (when f3 0 Z) or 

d^tdtY1'1^^ = 0 (when j3 = 0). 

By construction, this holds on X*, so that we can write as C°° functions on A*: 

Cf{'> = C{t-k-e1,t-k'oe1) = |í|2((/s-fcs„)«)/= 
d-1 

k=0 

1 = -H. / k! 

for some integers a&, with a^_i = 1. By definition of the extension C[^\ this also 

holds as Lloc functions on X. Apply now Example 1.5.4. • 

Remarks 5.1.13 

(1) In particular, we have C - ^ = 0 for i + j > d and, in the expression (5.1.12) 

for Ciz"\ the coefficients of the negative powers of L(t) vanish. This can also be seen 

using the relation 

( ,x - : \ x - i - n - i ^ ••< 1 = -H. :) 1 = - H . 
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(2) As we assume that Re i £ ] — 1,0], the entries of C take value in 2)bxKxS/s-
Moreover, the sesquilinear pairing c,.n( ' on ft,ftt# can be directly computed by 
using C 

We will end this paragraph by proving: 

Proposition 5.1.14. - Put a = —fi — 1. Then, for any £ > 0, the object 

(Pgif \t\2W*z>'z P g r J * * * , ^ ) , P^.a„C, ^ = Id) 

is a polarized twistor structure of weight £ in the sense of § 2.1.b. 

Proof — Keeping notation as above, we have L v.-. - ft = 0 if 7 ̂  a mod Z and 
tyt^y./ft ~ ^ o has basis [e(z)]. The matrix of /'N = - i()tt + a * z] in this basis is 
— zY. We compute 'ipt^C on ^t^.d£ with the help of the matrix C. 

For simplicity, we will assume that Y has only one Jordan block, of size d. There­
fore, PgrxlvF,.0(,//) = 0 if £ / d - 1 and has dimension 1 if £ = d - 1. 

It is a matter of verifying (see Formula (3.6.14)) that the expression 

(5.1.15) (iz)-(d^ -Re^Mz/z |t|2sC((7Nyy-1ei,ËR)x(*)^Adî, 

(for x £ C£°> \ = 1 near t = 0) considered as a function of z, is a positive constant. 
Put Yd~xei = yd.ed- As zN acts as — ?Y, the expression (5.1.12) for C implies that 

CdA = \t\2Ui*zVz(-z)d-lyd/(d-l)\, 

hence C((z'N)rf-1e1,eT) = (-i)d~lydCd,i = \t\2W*z>'z(iz)d-lyl/(d - 1)!. We therefore 
have 

(5.1.15) (d-l)\ Kes.s=tt*2/2 \t\2W*z>'z(iz)d-lyl/(d 
г dt dt 

Now, use that 

Res,s=0 VxM^f A | = 1. 

5.2. Review of some results of C.Simpson and O.Biquard 

In this section, X denotes a compact Riemann surface and P a finite set of point 
of A. We also set A* = X \ P and we denote by .ftp the ideal of P (as a reduced 
set). 

5.2.a. By a meromorphic bundle on X with poles on P we mean a locally free 
^x(*P)-niodule of finite rank. Let V be such a bundle. A meromorphic connec­
tion on V is a C-linear morphism V : V r2y >l o v V satisfying the usual Leibniz 
rule. We denote by M the meromorphic bundle V with connection V, regarded as 
a left Q>x-module. There is an equivalence between the category of semisimple reg­
ular holonomic i^x-modules with singularities at P and strict support A, and the 
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category of semisimple meromorphic bundles with connection having regular singu­
larities at P: in one direction, associate to the .'/y-module 71/ the meromorphic bundle 
M = &x (*P) ®ffx A/; in the other direction, use V to put the structure of a regular 
holonomic module on V and associate to M the minimal extension M C A/, i.e., the 
biggest .^A -submodule of 71/ having no quotient supported in a finite set of points. 

We note also that, by the Riemarm-Hilbert correspondence, these categories are 
equivalent to the category of semisimple representations of 7T\(X*). 

If we are given a decreasing filtration 71/* of A/, indexed by a finite set C ] — 1, 0], 
by @x-locally free submodules Mb such that M / Mb is supported on P for any b G BR 
and on which the connection has at most logarithmic poles, we say, following [62], 
that (A/,A/*,V) is a filtered regular meromorphic connection. The filtration can be 
extended to indices in BR + Z by putting AIb+k = ,fkAIb. 

5.2.b. We assume that A/ has only regular singularities. Consider the canonical 
filtration of A/ (i.e., the Malgrange-Kashiwara filtration, in dimension one): it is 
indexed by + Z for some finite set A G C, putting A^ = {Rea | a G A}. We 
will use the increasing version of it: each VaAI is a locally free &x-module which 
coincides with A/ on X*, and on which the connection acts with only simple poles, 
such that the eigenvalues of the residue have real part in [— (a + 1), — a[. We will also 
consider the decreasing version V'AI. by putting Vb = VL(̂ +i) and gr^ = gr^b+1^ 

(see Remark 3.1.6(2)), so that the eigenvalues of the residue of V on VbM have real 
part in [6, b + 1[. 

The degree of a filtered regular meromorphic connection (A/, A/*, V) is defined as 

deg(A/. A/V V) = degA/° 

j:£Pte[o,i[ 

òdimgròA/.7;. 

By the residue formula we have: 

Lemma 5.2.1. If M* is the canonical filtration V*M of AL then deg(A/, A/#) = 0. 

Say that a filtered regular meromorphic connection (A/, A/*) is stable if any nonzero 
sub meromorphic connection (TV, V), equipped with the induced filtration TV* = TV n 
A/*, satisfies 

deg(TV,TV*) 

rkTV 

deg(A/, A/*) 
rkA/ 

Owing to the fact that the filtration induced on TV by the canonical filtration of A/ 
is the canonical filtration of Ar, and according to the previous lemma, we get: 

Lemma 5.2.2. If A/* is the canonical filtration of M, then (A/, A/*) is stable if and 
only if M is irreducible. • 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005 



130 CHAPTER 5. POL ARIZ A BLE REGULAR TWISTOR ^-MODULES ON CURVES 

5.2.c. Let V be a holomorphic bundle on X* and let h be a herrnitian metric on 
II = c£f£* <&&x* V. Say that h is moderate if the subsheaf V of j*V consisting of 
sections of j*V, the /i-norm of which has moderate growth near P, is a meromorphic 
bundle on X. If we are given a meromorphic extension AI of V, we also say that /i is 
moderate with respect to AI if ]/ = AI. The parabolic filtration V* of F is then the 
filtration by the order of growth: in a local coordinate t near xQ G P, 

V t^laGj . K J l i m l t r^lkWII, 0 for £ > 0 and £ < 1}. 

A criterion for the coherence of the parabolic bundles is given in [62, Prop. 3.1], after 
[14]. 

Let now (H,Dy) be a fiat bundle on X*. Following loc. cit., say that h is tame 
with respect to (H, Dy) if the /i-riorm of flat sections of V grows at most polynomially 
near P. If h is tame and harmonic, C.Simpson has shown [62, Th. 2] that h is mod­
erate, that each term of the parabolic filtration is ^-coherent and is logarithmic with 
respect to the connection V. The object (H. Dy ,h) is then called a tame harmonic 
bundle. It therefore defines a filtered meromorphic bundle with connection (AI, AI9). 

We say that the tame harmonic bundle (P, Dy. h) has Deligne type if the parabolic 
filtration AI* is the canonical filtration of 71/. 

The category of tame harmonic bundles (morphisms are compatible with Dy and 
bounded with respect to the metrics) is semisimple, as well as the full subcategory of 
tame harmonic bundles of Deligne type (loc. cit., Th. 5). 

We will now use: 

Theorem 5.2.3 ([62]). Let (AI, AI*) be a filtered regular meromorphic connection. 
Then (AI, AI*) is poly-stable, each summand having degree 0, if and only if there 
exists a Herrnitian metric h on AI\x* which is tame with respect to AI, with associated 
parabolic filtration AI*, and such that (AI x~ • V. h) is harmonic. • 

By the previous lemmas, if we assume that AI* is the canonical filtration, then 
we can replace in the previous theorem the word "poly-stable" by "semisimple", and 
forget about the condition on the degree, which is automatically satisfied. 

Corollary 5.2.4. — The functor (H, Dy, h) i—> (AI, AI*) from the category of tame har­
monic bundles to that of log-filtered meromorphic connections induces an equivalence 
between the subcategory of tame harmonic bundles of Deligne type to that of semisimple 
meromorphic bundles with a regular connection (or equivalently, semisimple regular 
holonomic @x-modules having strict support X). • 

5.2.d. Let AI be a simple meromorphic bundle on X with poles on P and a regular 
connection; it is isomorphic, locally near each point of P, to a direct sum, indexed 
by ß G C with Re/3 G ] — 1,0], of meromorphic bundles with connection as in §5.1. 
Let us denote by (V, V) the restriction of AI to X*. Let AI* denote the (decreasing) 
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Malgrange-Kashiwara filtration of AI. Hence (AI, M*) is a polystable regular filtered 
meromorphic bundle with connection of degree 0 (Lemmas 5.2.1 and 5.2.2), to which 
we can apply Theorem 5.2.3. 

Choose a model (also called standard) metric hstd on V which is equal, near the 
singular points, to a corresponding direct sum of metrics as in Prop. 5.1.2. The 
Malgrange-Kashiwara filtration AI* of AI can be recovered from this metric by mea­
suring the order of growth of the norm of local sections of M (this is easily seen on 
the simple basic example). 

The result of C.Simpson is then more precise than Theorem 5.2.3: it asserts (see 
[62, Tli. 6(2)]) that there exists a harmonic metric h which is comparable with hstd 
near P. 

It will be even more convenient to use the construction made by O.Biquard in [4] 
which gives a more precise description of the relationship between h and hstd. 

We keep notation of §§ 1.3.a and 2.2. Let us denote by B^C {/3 G C | Re /3 G [0,1[} 
the finite set of eigenvalues of the residue of V on Af°/Afl. and let B be the set 
obtained from B' by adding —1 to any ¡3 G B' such that Re/3 ^ 0: for [3 G B, we 
have Re/3 G ] - 1,0]. 

The following result is also valid for general tame harmonic bundles or poly-stable 
filtered regular meromorphic connection of degree 0 that we will not consider here. 

Theorem 5.2.5 ([4, §§9 and 111). - Let (H, Dy, h) be a tame harmonic bundle on X* 
of Deligne type, or equivalently, let M be a simple meromorphic regular connection 
on X with singularities at P. For each puncture in P, there exists, on a small disc 
D centered at this puncture, an h-orthonormal basis s of cáJ^i (3 V on D* such that 
the matrix of Dy in this basis can be written as 

a r, (it * rff dt 
M'— + M"^ 

t t 

rlf 
(AJ'std + P ' ) ~ 

(M"8td + P")y, 

where Af,sUi. :\///st(1 are direct sums indexed by f3 G B of matrices (5.1.5) and (5.1.6), 
and P' ,P" are of some Holder type (see loc. cit.). • 

5.2.e. Sketch of the proof of Theorem 5.0.1. — In § 5.3, we prove a reconstruc­
tion result, namely, starting from a tame harmonic bundle of Deligne type (H, Dy, h), 
we associate to it a polarized regular twistor -module (<z7,J7?)h - («>#,,/#, C, Id) 
of weight 0 which coincides with that given by Lemma 2.2.2 on X* and such that 
S D R . # = AI is the minimal extension of the meromorphic bundle with connection 
defined by h. 

In §5.4, we show that the correspondence (<7, \-+ (H, Dy, h) on X* of Lemma 
2.2.2, starting from a polarizable regular twistor f^x-rnodule of weight 0, gives rise 
to a tame harmonic bundle of Deligne type. Moreover, we show that , J?) and 
(y,y)h constructed in §5.3 are isomorphic, at least locally on X. 
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Both results are enough to conclude. Indeed, it is enough to prove Theorem 5.0.1 
for objects having strict support X. The functor "restriction to z — 1" sends po­
larized regular twistor .^-modules to semisimple regular holonomic .^-modules, ac­
cording to §5.4. It is essentially surjective. according to §5.3. By the equivalence of 
Lemma 2.2.2 and Corollary 5.2.4. any morphism <p : M\ —-> A/2 lifts to a morphism 
ij) : (f?\. ,C/J\ )\x* ~> -¥J2)\x* m a unique way. Moreover, it induces a morphism be­
tween the meromorphic extensions .ft\ —> .-#2. which is compatible with the parabolic 
filtration constructed in Corollary 5.3.1, because p> respects the canonical filtration. 
i.e., the parabolic filtration of the harmonic metric. 

By the construction of §5.3.b. (h extends then as a morphism (f7\, .c/\ )\x —» 
(-^2, --̂ 2)h• Therefore, by the local isomorphism proved in §5.4, 0 also extends (in a 
unique way) as a morphism (-%..y\) (-'̂ 2 • ) • hence the full faithfulness of the 
functor. • 

5.3. Proof of Theorem 5.0.1, first part 

In this section, we will prove that any semisimple regular holonomic (3x-module is 
of the form EDR.^" where .ft" is part of an object of MT(r)(X,0)^. 

Let A/ be a simple regular holonomic -module and let A/ be the associated 
simple meromorphic bundle with regular connection as in §5.2.d. We fix a harmonic 
metric as given by Theorem 5.2.5. and we will work locally near a point of P. with a 
local coordinate / centered at this point. 

5.3.a. Construction of the O'j [1/^-module .ft and the filtration V.,3ft 

In this paragraph. X will denote an open disc with coordinate /. 
Let us denote by j : X* x ^ X x Q() the open inclusion; denote as above by 

.3' the product X x For z G {}(). recall that ( demotes its imaginary part; denote 
also by AZt)(fj) the closed disc centered at z() of radius // > 0; recall that H(A2o(r/)) 
denotes the corresponding Banach space1 of holomorphic functions. For short, we will 
denote by ,ftz the germ at (0, z) G ft' of the ^-module ,33. 

The first step consists in defining a ^•[l/f]-module and the parabolic filtration 
V* ./ft on it. As we will see below, the parabolic filtration is only locally defined on 3Z . 
What is possible to define globally are the graded pieces, or even the -i/rf 

Let us first state a consequence of Theorem 5.2.5. 

Corollary 5.3.1 
(1) Let ,33 C j*,ftftf be the subsheaf of local sections of j*,3ft', the n*h-norm of 

which has moderate growth along {()} x Then .ft is &x[1 /t]-locally free and is 
strictly specializable along t = 0 (cf. §3.4/ 

(2) For any zo G let (Vb.yftz<j)i>eR be the "parabolic filtration" of the germ ,/ftZo 
associated with ir*h near za, i.e., Vh,33Z(> is the set of germs m G </ftZa which satisfy 
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\t\~b+£ \\m\\n,h bounded near (0, zQ) for any e > 0. Then, this filtration coincides with 
the Malgrange-Kashiwara filtration )(>dfz„)-

(3) The Malgrange-Kashiwara filtration moreover satisfies: 

(a) each V(Zo)(^z(>) is < r̂,(o,z(J)-locally free of finite rank, 
(b) the monodromy filtration M.(N) (cf. Remark 3.3.6(3)) of the nilpotent 

endomorphisrn N — —(tdt — ft * z) : //z„) —» Wt(<^z0) is such that each 
graded piece gr̂ 1,N) //Zr)) is &niuZo-locally free for any £ and any p. 

For the proof, we will need Lemma 5.3.2 below, analogous to [4, p. 79]. Let us recall 
some notation: we put T)'z = zD'E + 0'E and D" = D'E + z0E. By Theorem 5.2.5, 
we write T)'z (resp. T)'z) as the sum of 3Xstd (resp. T)zstd) plus a perturbation which 
is controlled. We denote with the same letter the action of these connections on 
endomorplhsms of H with values in differential forms. 

Lemma 5.3.2 (Local killing of the perturbation P"). In the situation of Theorem 
5.2.5, for any zQ G QQ, there exists rj > 0 and a matrix Q(z°\t,z) of functions 
X* -> R(AZo(rj)) such that 

(1) theR(AZo(n))-norms of'L(t)sQ^(t,z), L^V^Q^ (t, z) andL(t)sT>'zQ(z<>\t, z 
remain bounded when t —> 0, for some S > 0; 

(2) in the basis ef{z<'\z) c= s • (Id +Q{z»\t, z)), the matrix of is the standard 
one, namely [A/"atd + (z - l)(M//std + Mf«td*)/2]dt/t. 

Sketch of proof ̂ . — It is a variant of loc. cit. The basis e of Theorem 5.2.5 is de­
composed in subfamilies for ft G B. Given any matrix P, we denote by P.-i,..il 
its (fti,ftj)-block. We will first use the following property of P = P' or P" given in 
loc. cit.: there exists S > 0 such that 

(i) for any ft G B, the matrix function h(t)l+6 Pp,p(t) is bounded on X*. 
(ii) if .i, / ^ G the matrix function L(t)2+6 Pf3i ,,3j(t) is bounded on X*. 

(The second condition corresponds to the case denoted by I ^ 0 in loc. cit.). 
We will also need a better estimate, the proof of which will be indicated in §5.B.a: 

there exists E > 0 such t hat 
(iii) if ft" ^ ft", the matrix function \t\~£PfJi:.fjj (t) is bounded on X*. 

Let us now fix zQ G QQ. It will be convenient to work with the basis s(z) — e • e~zX. 
In this basis, the matrix of T)"z = D"E + zQ"E can be written as [Std"(z) + b"(t, z)]dt/t 
where 

Std"(z) - ®(j -{()' + iz[3")/2]l<i+li/2L{t) 

6"(f, z) = r.*x [P" + (z - 1)(P" + P'*)/2]e"*x. 

(•̂ I thank O.Biquard for explaining me his proof and the referee for noticing a missing point in a 
previous proof. 
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We look for Id +w(£, z) such that 

(5.3.2)(*) - du -[Std" (z),u(Lz)] - b"(t,z){ld+u(t,z)). 

Then Id+Q(z°\t,z) = e~zX(Id+u(t, z))ezX will be a solution to 5.3.2(2). 
We can now argue as in [4, pp. 78-79]. As both operators adStd/;(z) and adH 

commute, we can decompose any d x d matrix u as u - 07 i^7 '^ , where u^1^ 
belongs to the 7(z)-eigenspace of adStd/;(z) and the ^-eigenspace of adH. Let 
us denote by E$,£ (DR, H(AZo (r/))) the Banach space of matrices u of functions 
DR H(A2o(r/)) on the punctured disc of radius R such that the entries of 
ulr<l satisfy ||L(t)(5^7,̂ (t)||H^A ^ ̂  bounded on DR and, if 7(2) is not constant, 

IH*l"e|x7,1lH(Aao(r7)) bounded. 
For a matrix ?/7'^ in the (7,^) eigenspace of (ad Std//(z), adH) and for n G Z, put 

ТШ)УШ) =í-"|í|-R°TL(í) f/ 2 

w I I R-e 7 L(w) -e/2 м(7̂ )_1 
J 2 71 

dw A dw 
t - w 

We note that 7 = 7(2) is a function of z which takes the form (f3[ — f3'2)+iz({3'{ — p'^), 
for Pi,@2 in P- Then, either z —> 7(2;) is not constant, i.e., /3" 7̂  Z^', or it is constant 
and belongs to ] — 1, 1[. We define n~(z \ £ G Z by the property 

í-"|í|-R°TL(í)f/2 

G [ - i , o [ i f 7 W ^ o , 

-1 if 7(z) = 0 and £ ̂  - 1 , 

0 if 7(2) = 0 and ^ ̂  - 2 . 

The radius 77 > 0 is chosen such that, for any 7 with 7(«) not constant and 7(^0) G Z, 
then Re7(2) + £ G ] Re7(2^), Re7(z0) + 1[. Consider the operator 

y : u © 7 , ^ ^ [ ( 6 % + 6/,)(7'°]. 

We then obtain as in loc. cit. that, if R is small enough, the operator ^ sends 
Es.e {Dft, H(AZo (r/))) into itself, and is contracting. The fixed point u is solution of 
(5.3.2)(*), where the derivative is taken in the distributional sense on DR. 

We note that the only assumption of a logarithmic decay of vS1^ would cause 
trouble if j(za) G Z and 7(2:) non constant. This is ruled out by the stronger decay 
in \t\£ (Property (hi)) in such a case. 

The first two properties of 5.3.2(1) directly follow from the construction, as 
£^(Id+iO = -(Id+u)6". 

The matrix of T>z in the basis e(z) can be written as [Std'(2:) + b''(t, z)]dt/'t, with 
Std'(z) - ©/3 [{z(3' + ?:/?")/2Id+(Y + 2H/2)/L(*)] and V satisfying (i) (hi). We note 
that, for u G E5,E(D*R,YIZ(i(&(r)))), we have ||L(*)1+(5[Std'(z), u] ||H^ (A(r/)) bounded 
(and a similar property for [Std"(z), u}). In order to obtain the desired estimate for 
T)zQ^Zo\ it is therefore enough to show that L(t) d'u(t, z) remains bounded when 
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t —> 0. This is obtained by an argument of elliptic regularity which closely follows 
that of [4]. Details are given in §5.B.b. • 

Proof of Corollary 5.3.1 

Identification of the parabolic filtration. — Fix zQ G and work in a neighbourhood 
of zQ as in the previous lemma. We denote by Q^z°^ the corresponding matrix. For 
PeB, let qf3xa G Z be such that £Zo(qp,c0 + P) =f Qp,ca + P' ~ CoP" belongs to [0, 1[. 

The basis s of Theorem 5.2.5 is decomposed into subfamilies sp for p G B, 
so that M/Std, A/"std are block-diagonal matrices. Recall that we set Ap(t,z) = 
e,zX\t]f3'+lzfr,L(t)ll/2 and we put z) = ®/3eB4fl(£, z). We also define similarly 
the diagonal matrices Afj(t,z) = \t\f3'+%zfj" L(t)u/2 and A(t,z) = (D(3eBAf3(t,z). Last, 
put 

(5.3.3) eM = e-(Id+QM(t))A(t,z) e"M -A(t,z) 

(defining therefore also e"^")), where Q^Zo\t) is given by Lemma 5.3.2. For any j , 
we have c{fu) = |£ |^+^L(^V2^(*«) for some p3 G 5 and w3 G Z. 

According to 5.3.2(2), the computation following (5.1.9) shows that the basis e'^z°\ 
defined by 

(5.3.4) cfjz"] =tq^^e(f°\ 

is holomorphic. As the base changes £ i—• e and e H—> s have moderate growth along 
{0} x Q0, we conclude that, near zQ, the s h e a f s is nothing but the & [l/t]-locally 
free sheaf generated by e^z'^ in j*J$?'. This gives the first part of (1). The strict 
specializability follows from the proof of (2) and (3) below. 

We note that the basis e^Z(>^ can also be decomposed into subfamilies 

e ' f = { e ^ \ 0j =0} (pe B) 

so that 

(5.3.5) C(3 sp-(ld+Qfj) 
C(3 

tkU\Z Ap. 

For b G R, denote by y$ the locally free ^-module generated by the sections 

t7^e^o) with rij G Z such that 40(n7 + /3J) G [6, b + 1[. We note that, for any k G Z, 

we have Uh+kM = tkU\Zo).4Z. 

We will now show that induces on ,-#2o the parabolic filtration (defined in 
the statement of Corollary 5.3.1). 

Formula (5.3.3) shows that each element tkejZ<>^ of eSz°^ has parabolic order equal 
to £Zo(h + Pj) exactly, according to the logarithmic decay of Q^Z(,\t) given by Lemma 
5.3.2. 
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Conversely, let rn — in¡1"1 ({~"] G ./ftZ(i with m,j holomorphic and rn3 ̂  0 => 
ra7(0, z) ^ 0. We can assume that m3 ̂  0 rn,({). z) ^ 0 for z ^ zQ in a neighbour­
hood of zQ. Put b — mmy.m /() £z,Xni ftp])- We will prove that rn has order b. Clearly. 
rn has order ^ b. It is then enough to prove that, for any e > 0, \t\~h~E \\rn\\ is not 
bounded in any neighbourhood of (0, zQ). There1 exists only one k £ Z and /3 G B such 
that, for any C G [Co? Co + v] with // small enough, £z(k + /3) achieves the minimum oi 
{£z(rij + Pj) | rrij / 0}. We note that £z(k + .i) ^ b if C G [Co, Co + r/] and that, unless 
P is real, the inequality is strict if C Co (see Fig. 3.a on page 70). Let us denote by J\ 
the set of j for which this minimum is achieved. Put w — max^j, Wj and denote 
by J the set of j G J\ for which this maximum is achieved. Let mj(0, z) be the vector 
having entries /// y (0. z) for j G J and 0 otherwise and put m,/(0, z) = e~zXmj(Q, z). 
Then an easy computation shows that 

(5.3.6) !MI'.„. 
Çe[Ç„.ç„+r,] 

\t\2t>«+»L(tr \\mj{0,z)f . 

This gives the assertion. 
Computation ofO'z. We now compute the matrix &z of T)'z in the basis e^2'^. We 
note first that, by flatness, the matrix of T>' in the basis e'^Z(^ takes the form 

(5.3.7) C(3 ( ®/i [(<7/5,C„ + /?) * * Id + Y/3] ) + z) 
dt 

with P(t,z) holomorphic on {t ̂  0} x nb(2:0). 

Assertion. - The matrix P(t, z) satisfies: 

P(t, z) 
if U,(*J,,Ç„ + /U £Zl,(Q(h-^o ft fik)i then Pp,hpk/t is holomorphic near 

(0,zo): 
lt *zAclftj^uftP'i) > <-zt){<l{h-Xo+ fik), then Pfii4ik is holomorphic near (0, zQ): 

if Pi - h-
if Wj ̂  — 2, ^en Pp. pk/t is holomorphic near (Q,z„); 
if Wj ̂  u'k — 3, Pp.- pk is holomorphic near (0,zo)-

Proof of the assertion. We will prove that the matrix P(t, z) satisfies the following 
property, for some S > 0 small enough and z G nb(z0): 

lim ЪС)6\Ф»^»+^-С1)* ) -(^-с»+^-<^)ь(*) 1 + ( ^- и , ">/ 2 Р^, л («, z) = О, 

from which the assertion follows. Using notation of Lemma 5.3.2, this, in turn, is 
equivalent to the fact that the matrix of T>'z in the basis e(z)(Id+u) takes the form 
[Std'(z) + c!(t,z)]dt/t with ||L(*)V(M)r#/*||H (A(r/)) bounded. We know, after [4], 
that the matrix of 2X in the basis s(z) takes the form [Std'(2:) + b'(t,z))dt/t, where 
b'dt/t satisfies the previous estimate and Lemma 5.3.2 implies that the functions 
t i—• \\L(t)su(t, z)\\R (A(r/̂  and t i > \\'L(t)6T)'zu(t. z)||R (A(r;̂  are bounded. On the 
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other hand, we have c'(t.z)d.t/t = (Id +-//) ['D'.u + b'dt/t. Both terms in the right-
hand side satisfy the desired property. • 

End of the proof The assertion above shows that Uy, yW- is stable under tdt. 
Moreover, the matrix of tdt on Uy )/Uy ^ is block-lowertriangular, if we order the 
families ejf'^ with respect to the £z<)-order, each block corresponding to a value of 
V<z0 ((1/3X<> + ft)- Each diagonal block is itself block-diagonal with respect to the various 
ft with £z<> (qn.Co + ft) fixed. This shows that each graded piece gr\r .W< is ^-locally 
free near za, hence Uy y// satisfies the properties of Lemma 3.3.4. Therefore, is 
strictly specializable along t = 0 and Uy yW- — Vy ydt. 

Last, let WmgiJy ,W- be the weight filtration of 0^Y^. It also follows from the 

previous properties that it is decomposed with respect to ®</̂ Li'Co+/̂ ^ and each sum-
mand Wmyrfli+'\ // satisfies the properties characterizing the monodromy filtration 
of N = tdt ~ (qp.c„+ft)*z. It is therefore equal to it and N : ̂  c''+^,# ^ i^'<<M* 
is conjugate to Y#. This proves 5.3.1(3). • 

Remarks 5.3.8 

(1) Although the bases e(c<,) are defined only locally with respect to z. the classes 
of their elements in the various bundles gr̂ 1 / . / / are globally defined on QQ. We 
note that these bundles are holomorphically trivial on 12o. More precisely, for any 
£ G Z and any ft G B. there exists a basis e of gr̂ 'V r. as a ^u-niodule, uniquely 
determined from the basis e of Theorem 5.2.5, such that (ec> f)p^B.eez lifts locally to 
bases e^Z(,\ 

In order to prove this statement, it is enough to characterize the inverse image in 
i;'/;/0. // of gr?xlr^-// nonr za. 

First, a section rn of VyZ"^'J\/f near (0, zQ) has a class in gYy^tJ\.// contained in 
'ijit if and only if, for any j . denoting by rij G Z U {+oc} the order of its coefficient 
rrij on along t — 0. we have £z,\n) + > t'z()(ft) if /̂ j 7̂  and at least one 
/ / / , ( ( ) . 0 with ft:j = J. 

When this is satisfied, the class of rn has M-order £ if and only if. for any j with 
ftj = ft. -nij(0.z) = 0 if Wj > £ and rrij(0,z) ^ 0 for at least one j with = ft and 
/ry = /. 

Both assertions are proved as in the proof of Corollary 5.3.1. This criterion can be 
translated in terms of order of growth: the class of m is in .W, iff for any z'G ^ zQ 
and sufficiently near z0, the norm ||m|2=2/J| has growth order £z^(ft), and this class 
has M-order £ iff moreover this norm grows as \tfz<>^^L(t)e/2. 

With this criterion in mind, one observes that two meromorphic bases given by 
Formula (5.3.3) for different choices of Q(~") give rise to the same classes in the 
various gr̂ 1 (//.//. so these classes can be glued when za varies in QQ. By definition, 
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the basis e° is adapted to the Lefschetz decomposition of gr^Y^, hence to that of 
gr^N. In particular, the whole basis of grxl t'f. // can be recovered from its primitive 
vectors. 

(2) We also have an asymptotic estimate of \\7n\\7T^h as in Formula (5.3.6) for C G 
[Co _ ViCo]- It u«ey a maybe distinct pair (i_. A-_). subject however to the relation 
ez„(k-+P-) -/,,.(/>' i ••*)• 

By restriction to z = za, we also get a criterion for a nonzero local section rn° 
of MZo\ Let us denote by U*MZu the filtration induced by V*z yJt (cf. Proposition 
3.3.14). Let us denote by N the corresponding nilpotent endomorphism on grbJAlZa, 
which is the direct sum of the various —((3ft + i * zQ) for (3 such that (Zn(-3) — b, 
and let M.gr̂ Af~o be its rnonodrorny filtration, that we lift as MmUtMZ). Restrict 
the basis efz°^ to a basis e° of AIZo, and write rn° = rri°(t)tUj e°. We assume that 
ra?^0 => ra°(0)/0. Put b = ininy-,,,l;/() /-„(//,- + .i,). We denote by Jf the set of j 
such that the minimum is achieved, we put w — maxje,/» w} and we denote by J° 
the set of j G Jf such that the maximum is achieved. We then have the restriction of 
Formula (5.3.6): 

(5.3.6)*,, | |m° | |*~ |t|2bL(tr||m^(0)|r. 

Moreover, rn° is in UbMZo and its class in gr^rgr^A/2o is nonzero. 
(3) For any z0 G Ho, it is possible to find a matrix Q(z) which is holomorphic with 

respect to z and is invertible for any z near zCJ, so that, after changing the basis eSz<^ 
by the matrix Q(z), the residue at t = 0 of the matrix of zDE + is block-diagonal, 
each block corresponding to eigenvalues (3 * z taking the same value at zQ, and is 
lower-triangular, each diagonal sub-block corresponding to a given [3. 

Assume moreover that zQ 0 Sing A, in particular zD ^ 0. Then, there exists a 
neighbourhood of z0 such that, for any z in this neighbourhood and any (3\, 02 G B, 
the differences (f3i ~ fi2) * z/z G Z <=> ft\ = [32. 

One can therefore apply the same arguments as in the theory of regular mero­
morphic connections of one variable with a parameter to find, near any (0, zQ) with 
z0 0 Sing A, a basis e^z"> = e^Zo) • y(t, z) of . //. with ?((). zQ) invertible, in which the 
matrix of ZDE + 0'E is equal to 

e[aJ*z)id+Y/3]^. 

If now z0 G Sing A \ {0}, we first apply a classical "shearing transformation", which 
is composed by successive rescalings by powers of t and invertible matrices depending 
holomorphically on z for z near za: so that, for any two eigenvalues f3\ * z, 02*z of the 
"constant1' part (i.e., depending on z only) of the matrix of z DE + 0fE, the difference 
is not a nonzero integer. Then it is possible to find a base change y(t,z) as above, 
such that the new matrix of ZDE + 0'E does not depend on t, is holomorphic with 
respect to z and is lower triangular with eigenvalues (3 * z for the new set of /3:s. 

ASTÉRISQUE 300 



5.3. PROOF OF THEOREM 5.0.1, FIRST PART 139 

We note that in both cases, is, locally with respect to z, an extension of rank 
one /¿1-modules with connection. 

5.3.b. Construction of the -module , # and the filtration \ #, // 

Let us return to the global setting on the Riemami surface X. The -module 
«/# is defined as the minimal extension of across its singular set P (cf. Def. 3.4.7). 

Corollary 5.3.9. — is a regular holonomic &-module which is strictly specializ­
able along t = 0 and has strict support equal to X. 

Proof. Let us show that is good. On \ M = is ^-coherent. Let 
x G P. If K is any compact set in {x} x £20, then <^\K is generated by the sheaf of 
local sections rn which satisfy \\m\\7r*h ^ C\t\~N for N = NK large enough, as this 
sheaf contains V>~v.4ftZa for any zQ G K. This sheaf is -coherent, as follows from 
Corollary 5.3.1, hence is good. 

By definition, on AZO (r/), the F-filtration V*7, restricted to indices in Z, is good; 
hence is regular along {:r} x QQ for any .i; G P, as each V£ is -coherent. 

Last, as is ^-coherent on S£ \ /3 ,̂ its characteristic variety is the zero section 
on hence is contained in (T^XUTpX) x Q0: in other words, is holonomic. 

The strict specializability along t = 0 follows from Proposition 3.4.6 and the fact 
that is a minimal extension implies that it has strict support equal to X. • 

We will end this paragraph by proving: 

Lemma 5.3.10. The restriction to z = 1 of the 3#-module is equal to M. 

Proof. Consider first the restriction of to z — 1. We will show that is is equal 
to M (with connection). On the open set X* = X \ P, this was shown in the 
proof of Lemma 2.2.2. We know by 5.3.1(1) Jdiat .^l(z- \)M is 0X (*P)-locally 
free. It is therefore enough to prove that .dt'/1 (z — \),Jf, and M define the same 
meromorphic extension, or equivalently that /(z — 1).^ C M. By the construction 
of the metric /i, M is the subsheaf of j*V (where j : X* X is the open inclusion) of 
sections, the /i-norm of which has moderate growth. Now, Formula (5.3.3) computed 
at zC) — 1 shows that the //-norm of the basis ej^^ has moderate growth, implying 
therefore the required inclusion. 

We note that the same formula shows that the filtration V*7 =ly^ restricts to the 

canonical filtration V*M of M. Recall now that the minimal extension M C M is 
the sub-l^x-module of M generated by V>~1 M. By construction, we therefore have 
Ml(z — 1),# C M. As M is simple, both ^-modules coincide. • 
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5.3.c. Construction of the sesquilinear pairing C 
We have to define a sesquilinear pairing C on ,^jS -^|S with values in 

X)bx^xS/s, which has to extend h-s defined on X*. We will construct C with values 
in the sheaf £)b1J--|s of distributions which are holomorphic with respect to z. 

We first define C locally with respect to S and then show that it glues along S. So 
we fix z0 G S and a compact disc A neighbourhood of za, that we assume to be small 
enough. We denote by A° its interior. In the following, we will denote by H(A) the 
Banach space of continuous functions on A which are holomorphic on its interior. 

Consider the basis e^z"^ of V/^~1,// defined near za by a formula analogous to 
(5.3.3): we have e!\Zn) = ^̂ y |f|/̂  + ̂ /^L(/)-;/2ej(^)> with f^n. + ft.) G ] _ 1.0]. 
Consider similarly the basis e^~z"^ of V^ZXyft defined near —z0, with £-Z()(vk + f%) G 
] — 1,0]. We note that, as \za\ = 1, we have a(z()) — —zG and Ima(za) = — £0, using 
the notation of § 1.5.a. 

The entries of the matrix of //a in these1 bases can be written as 
(5.3.11) t^ltfj+i^J .rk\f;fft'l^'/z .L(f)("', + "'A.)/2 . a . k ^ 
with \\(ij.k(t)IIH(A) ~̂  0 i f / A- and ||«7.A.-(^)||H(a) l°cairy bounded, when f. —-> 0. As 
we have ^„("./ + > - 1 and £-Z()(vk + /4) > - 1 . we also have Re(n7 + + iz/^') > 
- 1 and Re(^ + /% + ifi"Jz) > -1 for any z G A. if A is small enough. Therefore, the 
entries of the matrix of hj\ are in Lloc(X, H(A)). hence, as Vy~\/ft is (f-locally 
free, h/± defines a sesquilinear pairing 

Лд •• V (>7'.#|A « у , А V>; .V^ k (A, — LlJX.R(A)) 
by O,r 0 (^V-liiiearity. 

As L^^AT, H(A)) is contained in the subspace Ker 0Z of L\oc(X x A°), this defines 
similarly Ca° 011 V^1.^^ 0#^o V^~j-^k(A°) by O.r 0 <0^-linearity. 

Assertion 1. h/± is \ 0-^y a 0 ^ ^>^V|^(A) -linear a/ad Ca° I o-#V a: 0 ^ o 
V(.-^.y>(A)-//:7^Y//'-

Assertion 2. Ca° can 6e extended by Y A° -linearity as a well-defined sesquilin-
ear pairing on ,#|Ao 0̂ AO .#|a(A°)-

At this stage, we cannot prove the assertions, as we do not have any information on 
the derivatives of the functions ahk introduced above. We need a more precise expres­
sion for /?A: that we will derive in Lemma 5.3.12 below, using techniques analogous 
to that of [1], that we recall in §5.A. 

Fix zC) G S, and let A be as above. We will also assume that A is small enough 
so that A n Sing A C {±i}. Let /// be a section of Vy~1,// on W x A and /1 a 
local section of V^T^y^ °n W x ^"(A), for some open set W C X. If brn denotes 
the Bernstein polynomial of m, we consider the set A(m) introduced in Corollary 
3.3.7, and take a minimal subset A'(m) C A(rri) such that A(rn) C A'(m) - N. Put 
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A!(m, p) = Ar(m) fl A'(hi), so that A'(rn, /1) - N contains all the 7 such that 7 • z/z 
is a root of and bfl. We also set 1^' (in. //) = { — a — 1 | a G A'(ra,//)}. 

Lemma 5.3.12. There exist integers £q ^ 0 anri TV ^ 0, such that, for any local 
sections rn, ¡1 as above, we have 

(5.3.12)(*) (z + \/z)Nh±{m,-fi) 
d€B'{m,n) 

¿0 

(=0 
fßAt)\t\*ß*z),z 

uty 
l ! 

on some punctured neighbourhood X* of 0 G X7 where the fpj are C°° functions 
X -> H(A). 

The proof of the lemma will be given below. 

Proof of Assertion 1. Let us prove the Vb«^r|A-linearity of /i^, the conjugate 
linearity being obtained similarly. Let ra, /i be as in the lemma. The real part of the 
exponents in (5.3.12)(*) are > —1 , as Re(.i* zn)/zu — £Zn(¡3) + £-Z(>((3) for any zQ G S. 
For a section P of Vb^r|A> we have to show that u d= P-h^(m, JI) — hj\(Prn, ~p) — 0. 
But on the one hand, u is supported on {t = 0} as /IA is known to be Vb^&-|A~lmear 
away from {£ = 0} by the correspondence of Lemma 2.2.2. On the other hand, using 
(5.3.12)(*) and (1.5.5), (z + l/z)Nu is L\oc. Therefore, (z + l/z)Nu = 0 and, by 
(0.5.1), u = 0. 

We note that Formula (5.3.12)(*), when restricted to A° and applied to the bases 
e(2»)_e(-3,^ gives coefficients fpj which are in C°°(X* x A°) and holomorphic with 
respect to z. This still holds for any local sections 711,11 on X x A°, by 0 
linearity. Then the argument for //A can be applied to CA° • D 

Proof of Assertion 2. Any local section rn of on X x A° can be written, by 
definition, as X^>o ^i'mi-> where rrij are local sections of ~^ <4%Z() on X x A°. There­
fore, in order to define ( A- (ra. /7). we write ra = 5Z/>o ̂ 1 in j . ll — Ylkz>o llk, and 
put 

CA° (/»• /i) 
DÌ 

fßAt)\t\*ß*z),z 

This will be well defined if we prove that 

DÌ 
DÌ iìì , = 0 

DÌ 
ö/C'A-(///y •///,) = 0 for any /././, G V ^ ^ ^ - ^ 

and a conjugate statement. 
Set = • ̂ o O^CA0(ra,. ///J and ?i = (z + l/z) 7/ for X big enough. After Lemma 

5.3.12, there exists X ^ 0 and a set B' satisfying Properties (1.5.7) and (1.5.8) in 
Example 1.5.4, such that u can be written as 

u 

DÌ DÌ 
cpj^Ußj + gßj:(t)ußj 
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where cp^j are constants and cj.JJ. are C°° on X x A° and holomorphic with respect 
to z. The condition ]Cĵ >o ̂ trnj = ^ implies that there exists L ^ 0 such that tLu = 0, 
as CA° is Vo^^r-linear. By taking L large enough, using the freeness of the family 
(uP,e) an(i (1-5.5), one obtains that the coefficients gp^ and c.uvanish identically, 
hence u = 0. This implies that u = 0. • 

Let us now show that the construction of C glues along S. So, fix zQ and A as 
above, and denote by C(Zo) the sesquilinear pairing constructed above. Let z G SD A°. 
We will show that C(2) and CY(2o) coincide on 0 .d£-z. 

By (3.4.8) and (3.4.9), they coincide on V~J)~e,^z 0 V^y0^f_2, for some e > 0, 
as both are Lj^ there and as they coincide with hs away from t = 0. As both are 
^ (x x) £"imear? they also coincide on 

[V^-e^+üttV^-K*,] [V^-e^+üttV^-K*,] 

which contains xJtz 0 V( ;̂2)1^_z by (3.4.9). Last, by Pft^Xx) ^-linearity, they 
coincide on ,/ftz 0 ,/^-z. • 

Proof of Lemma 5.3.12. We will use the method developed in [1], using the exis­
tence of a "good operator" for ra or ¡1, which is a consequence of the regularity property 
(REG). Fix local sections ra, /i as above. By (5.3.11), h^(m,~j2) can be considered 
as a distribution on X with values in H(A) which, restricted to A*, is C°°. Let us 
denote by p its order in some neighbourhood of t = 0 on which we work. As ra, \i are 
fixed, put, for any N ^ 0, 

h^(m,~j2) 
(z + l/z)N(h±(m,JI), \t\2stkx(t) —altAdt) if k ^ 0, 

(z + l/z)N(h±(m,TX), \t\2stlklx(t) £dt A dt) if k ^ 0, 

for every function \ G ^ ^ ( X , H(A)). Then, for any such x, on the open set 2 Res + 
\k\ > p, the function s i—• -^^x(*) takes values in H(A) and is holomorphic. In the 
following, we fix R G ]0, 1[ and we assume that \ = 0 f°r W > Ft- We wnl De mainly 
interested to the case when \ = 1 near t = 0. Applying Theorem 5.A.4 to the family 
(̂ x*Ar(s))fc wlii Slve tlie result. We will therefore show that the family {^^N (S))K 
satisfies the necessary assumptions for some N big enough. We will assume that 
k ^ 0, the case k ^ 0 being obtained similarly, exchanging the roles of rn and /i. 
Arguing exactly as in Lemma 3.6.5 and Remark 3.6.8, we find that ^^^(s) extends 
as a meromorphic function of ,s G C with values in H(A), with at most poles along 
the sets s = 7 • z/z, with 7 G A(rn, fi) — N. Moreover, we can choose N big enough 
so that all polar coefficients of .y^N(s) (for any k) take values in H(A). We will fix 
such a N and we forget it in the notation below. We put h/± = (z + l/z)Nh/\. 
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5.3. PROOF OF THEOREM 5.0.1, FIRST PART 143 

By the regularity property (REG), there exists an integer d and a relation 

-cVr ' • m 
d-i 

j = 0 
a:)(t)(-dtty) -m 

for some sections a, of l^xxA- It follows that, for any \ as above, we have 

(s + k)d-J?W{s) 
d-l 

3=0 
a:)(t)(-dtty) (s). 

where the Xj only depend on the at and \\ as //a is a priori &(x~X) A~nnear awaY 
from t = 0 only, this equality only holds for Res >̂ 0; by uniqueness of analytic 
continuation, it holds for any s. Applying the same reasoning for /1 we get 

sd-SW(s) 
d-i 

3=0 

1 + N +1*1 

For n'\n" ^ 1, we therefore have 

(s + fc)dTIVn" -^\s) 
(d-l)n' (rf-l)n" 

3'=0 3"=0 
(s + k)j sj y£jn,, , „00, 

where the functions Xnf ,n" ,j',j" omy depend on Xi n\nf\ j ' , j " and the ag. As the 
current h^(m. Jl) has order p. there exists a constant CXJl' jt» j ' j» such that, if 2 Re s+ 
\k\ > p. we have 

\k\)"R2*°'+W. 
H(A) Cx,n.,n»J'J» • (l + \s\ + \k\)"R2*°'+W. 

Let n ^ 0. By summing the various inequalities that we get for n' + n" ^ n + p, we 
get the existence of a constant CXifl such that, if 2 Res + |A;| > p, we have 

1 + N +1*1)" tqP(t 
H(A) 

Cx,n.,n»J'J» 

Let us now extend this for 2 Res + \k\ > p — q for any q G N. For this purpose, 
consider now a Bernstein relation 

Q 

f = 0 
brn(-dtt + lz) - m = tqP(t tdt) • m 

and put 6 = deg6m. Fix \ as above. We therefore have 

q 

( = 0 
a:)(t)(-dtty)N +1*1)  qd-1 

3=0 
a:)(t)(-dtty)N +1*1)  

for some C°° functions depending on x, Q and j . By the previous reasoning, we get 

(1 + \s\ + \k\ + q)" m = tqP(t n" ,j',j 
H(A) 

(s + fc)dTIVn" -^\s) 
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Applying Theorem 5.A.4, we now find that there exists a finite family (fp,e)p.e,g 
of C°° functions X —> H(A), g being infinitely flat at t = 0 and ft G B(m,fi), such 
that we have on AT*, for \ = 1 near t = 0, 

hAt)\t\2(^• z)£ 
k\ 

/7,*(*)l*r(7*z)/2 
(PXV/r 

g(t) 

Remark 5.3.13. We now give a more explicit statement when rn and /i locally lift 
sections of irt.(,,//. In such a case, arguing as for (3.6.5)(**), we have for some £ ^ £Q, 
putting ft — — a — 1, 

\(/)//A((/^ -P*z) 
£ 

k=0 
PgrY%f;t,a^^ k\ 

+ t 
k=0 

hAt)\t\2(^ k\ 
¿0 

Re 7>Re/i fc=U 
/7,*(*)l*r(7*z)/2 A;! " 

The integer £ + 1 is smaller than or equal to the index of nilpotency of N on [rn] or [/i]. 
Moreover, each cp^k is divisible by (z + 1/ z)N, as the polar coefficients of the function 
^x°o(s) along s = a*z take value in H(A) for A small enough (cf. Lemma 3.6.9). 

If ra, ¡1 locally lift sections of PgrY%f;t,a^^ then, applying (tdt — ft • z)£ to both 
terms and noticing that, for z G S, we have Re(7 * z/z) = Re 7, gives 
(5.3.13)(*)\t^z)/z(l-rr(t)) \ ( / ) / / A ( ( / ^ -P*z)em,Ti) =c;3.w\t^z)/z(l-rr(t)) 

and r(t) tends to 0 faster than some positive power of \t\. 

5.3.d. Proof of the twistor properties for (,#.̂ #,(7, Id) \t^z)/z(l-rr(t)) 

We will show that the properties of Definitions 4.1.2 and 4.2.1 are satisfied for 
the object (,̂ #, C, Id) when one takes specialization along a coordinate t. This is 
enough, according to Remark 4.1.7. 

Corollary 5.3.9 shows that satisfies Properties (HSD) and (REG) of the category 
MT^(X,0) of Def. 4.1.2. 

We will now show that, for any ft G B and £ G N, the sesquilinear form P^\ tC 
defines a polarized twistor structure on (PXV/r •//. BXV^(. //) with polarization 5? 
(Id. Id). 

By Definition 3.4.3, we can replace with and use the basis e° (with its 
primitive vectors) introduced in Remark 5.3.8(1) to compute P^f^C. We will do 
the computation locally on small compact sets A as in §5.3.c, so that we can lift the 
primitive vectors to c|''"'. If we only use the dominant term in Formula (5.3.3) when 
computing PtyPfC/\o (e[z"\. ej ^ ) , we recover the computation made in Proposition 
5.1.14. Therefore, in order to conclude, we only need to show that the non dominant 
term in (5.3.3) does not contribute to P^f (eej~Z'^)- Here also, the estimate 
given by (5.3.11), Formula (5.3.3) and Lemma 5.3.2 is not strong enough to eliminate 
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the non dominant term in the computation of Pt', (C"A • arid we use Lemma 5.3.12 
and Remark 5.3.13. 

If rj*"'\r(. "",) locally lift primitive sections of weight L Formulas (5.3.11) 

and (5.3.13)(*) for CA° ((¿3/, — 1 * z)1 <\""]. < {} ""') give the same dominant term 
C(i,w\t?{'3*z)/z• As l*l-<JfW -» 0 for somo S > °> the remaining term in (5.3.13)(*) 
does not contribute to the computation of the residue in Definition 3.6.11. Dividing 
now by (z + l/z)N gives the desired result. • 

5.4. Proof of Theorem 5.0.1, second part 

5.4.a. Let (.7\ . / ) be a polarized regular twistor ^v-module of weight 0. We will 
assume that it has strict support X and that J/,' = =f ,4C, ,9' = (Id, Id). 
Its restriction to the complement X* — X \ P of a finite set of points is therefore 
a smooth twistor fy\-module of weight 0 (Proposition 4.1.8) and corresponds to a 
harmonic bundle (H.DyJi) on X* in such a way that C — hs (Lemma 2.2.2). Put 
AI = EDR(,//r) and AI = *?x(*P) ®#x By definition we have AI\X* = V = 
Ker Dv. We will show that the Hermitian metric // is tame with respect to AI and 
that its parabolic filtration is the canonical filtration of 71/. 

We now work locally near a point of P, restricting X when necessary. We will 
mainly work with .<// instead of ,<#. Remark first: 

Lemma 5.4.1. For any za G Qo (if id anV a < 0, the 6-module Va~n\//t is locally 
free on the open set where if is defined,. 

Proof. Recall that, for a < 0, we have V^Z,,\W. = V}z"\// near any za G ft0 
(cf. Lemma 3.4.1). 

By the regularity assumption, Va'.^l is @-coherent. Moreover, on t ^ 0, it is 
& $ -locally free, being there equal to which is there a smooth twistor ^-module. 
As t is injective on v}Zu\// when a < 0 (cf. Remark 3.3.6(4)), it follows that V([Z°\^ 

has no --torsion. It is therefore enough to show that vd~"\df/t.V(^"\^ is 
locally free. By Proposition 4.1.3. each V̂ ,™-̂  is ^-20-locally free. As grj, ( = 
ea|^o(«)=«'0/,â  near zQ. it follows that gr^U°\^, hence V(\z°\^/tV(1z°\<$, is ffQ()-
locally free. • 

The proof will now consist in constructing bases e and s as in §5.3. However, it 
will go in the reverse direction. Indeed, we will first construct local bases eSZ(^ of 
V<q\^ near any za G S. We then construct local bases e^z"^ using Formula (5.3.3) as 
a definition. Then we glue together these local bases and we recover an orthonormal 
basis of the bundle H with respect to the harmonic metric /?, in such a way that a 
formula like (5.3.3) still holds. 
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5.4.b. We will first recover precise formulas for the sesquilinear pairing (7, as in 
Lemma 5.3.12, starting from the definition of a regular twistor .^-module. Fix zQ G S 
and let A = AZo(v) be a small closed disc centered at zQ on which the V^z°\^ is 
defined. On X*, C = hs takes values in 0 .̂ . If the radius q is small enough, we 
can assume that h/± is a C°° function X* —> H(A), that can be written as a power 
series cn(t)(z ~ zo)n, where each c7, (t) is a C°° function on X*. 

Lemma 5.4.2. We assume that rn lifts a section of '0/„ai./#|A. an(l ii a section of 
^.o,-<^V(A)-. Then. 

(1) z/ai = a 2 (==f ^ tt77^ /2 (== — ^ — 1, we have, for some I G N and any t G X*7 

(5.4.2)(*) //,.//) = |^|2(/J")/2L(0f + r(t)) 

with Crn.ji, G H(A); r(i) takes values in H(A) and there exists S > 0 such that 
lim^0L(*)*||r(*)||H(A) = 0 ; 

(2) if ai c\2, there exists 5 > 0 such that, for any £ G Z, 

(5.4.2)(**) liml^-^ || |/:| — -Uv;/̂ 0̂ ) 1 7 - 1 ^ ^ ^ ^ i V ^ ) L ) — ( r r 7 ^ I I = ° ' 

Proof. Lemma 5.3.12 and Remark 5.3.13 apply in this situation, as the argument 
only uses Lemma 3.6.5 and the regularity property (REG). If a.\ = a2 = a, we get 
that, near t = 0, one has, for some £ ̂  0 and some N ^ 0, 

(z + l/zfhMm-JI) = \tf**/*L(t)f((z + l/z)Nc(rn^) + r(t)h 

where c(rn,Jl) is in H(A) and there exists S > 0 such that linv,_>o 11rr(t)11 )̂ = 0. 
Therefore, r(t) = (z + l/z)Nr(t) where r takes values in H(A), and (by the maximum 
principle) we also have linit^ 0 ||'K )̂ II H( A) = •̂ 

If Qi ^ OJ2, then the same argument as in Remark 5.3.13 shows that, near t — 0 
and if the radius 7/ > 0 of A is small enough, we have 

(z + l/z)Nh±(m,JJ,) 
j 

k=0 
f^t)\t\2^*z)/zUt)k, 

where the first sum is taken for 7 G A such that 2 Re7 > £Z{)(fh) + £-z(>(/h)^ an-d 
/7,fc : X H(A) are C°°. This shows that (5.4.2)(**) holds for (z + l/z)NhA(rn, JI,), 
and one concludes as above that it holds for h&(tn. /7). • 

5.4.C Construction of local bases e^Z(^ of V^\^. — By definition, for any a 
with Ren G i-1.0; and £ G N. the triple (Pg\f^L(,.//. Pgr}1®Ln.//. PVLnJC) is a 
twistor structure of weight 0 with polarization (Id, Id) (cf. Remark 3.6.13). Choose 
therefore a basis e°aU of Pgrf = Pgvf^ t^.£ (cf. Remark 3.4.4(2)) which is 
orthonormal for P^tjajC\ when restricted to nb(S): this is possible according to the 
twistor condition (cf. §2.1). Extend the basis e°n {, ( as a basis e°a t = (e"x £ w)we"i OI> 
grM'0t,a<̂  for which the matrix -Ya of N is as in the basic example of §5.1. 
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Fix now z0 G Oo- Locally near zQ, lift the family e(([ t ̂  defined as above, as a 
family °^ l°cal sections of V^"^(yy^Z(). Similarly, extend the family in a 

family e^t = (efy]w)wez so that, putting ft = -a - 1, the lift of (-N)Je°, where e° 
is any element of e°a (> e and j ^ £, is (tdt — ft * z)3e. 

Last, for any q G Z, put e[*+q £ = t~qe^(^. By choosing ga so that £Z()(a + £ 
[— 1, 0[, we get a basis of V^\/$ near 20 (this -module is known to be &%;-locally 
free, cf. Lemma 5.4.1), as it induces a basis of (f)5||Q||H(A) M. M4 

Let e{Zo) be any other local c^ -basis of J{ inducing e° on EagrMVv(,a}^ 
near zQ. Define the matrix P by the equality e!^°^ — e^Z(^ • (Id -\-P(t. z)), and recall 
that the matrix A(t,z) was defined just before Formula (5.3.3). Using the definition 
of the monodromy filtration and of H and denoting by A a sufficiently small closed 
disc centered at zQ, one easily gets: 
Lemma 5.4.3. There exists S > 0 such that \imt-+oL(t)s \\A~lPA\\H(A) = °-

Define then, for t / 0, the basis e{z<,) by e{Zo) = £{Zo) • A(t,z). We note that, if 
— e^Zn\ld +Q(t. z)) is defined similarly from another basis e'^'^ then, according 

to Lemma 5.4.3, we have 

(5.4.4) liniL(f)5||Q||H(A) =0-

5.4.d. Orthonormality with respect to C. — Fix now zQ G S. Recall then that 
0~(zo) = —z0. Using Lemma 5.4.2, arguing first at the level of primitive vectors as in 
Remark 5.3.13, one gets: 

Lemma 5.4.5. The matrix C^z"^ of li^ in the bases ê ±A'̂  takes the form 
ld+R(t,z), and there exists 5 > 0 such that limt_>0 L(t)5 \\R(t, z)||H(A) = 0. • 

In other words, the pair of local bases e^^1^ is asymptotically orthonormal for h&, 
with speed a negative power of L(t). We note that, if s^±2o) is defined similarly from 
another basis e'^'^ then, according to Lemma 5.4.3, £/(±~°) has the same property 
(maybe with a different 5). 

5.4.e. Globalization of the asymptotically orthonormal local bases 

For any r G [0,1], let Sr denote the circle of radius r in f2o- For any such r, cover 
Sr by a finite number of open discs Az<> (zQ G Sr) on the closure of which the previous 
construction applies. One can assume that the intersection of any three distinct such 
open discs is empty. On the intersection A/y of two open sets Al and A7, the base 
change s{i) = sU) • (Id +Qi;)(t, z)) satisfies \\mt^"L(t)8 \\Ql3(t, )̂||H(Ay) = 0 for some 
S > 0, according to Lemma 5.4.3 and (5.4.4). 
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Lemma 5.4.6. There exists 8 > 0 and C° matrices /{¡{1. z) on D* x At, holomor­
phic with respect to zy such that lim^o L(f )d~ ||Rt (t. z)||H(A .) = 0 and Id +Qij(t. z) = 
{1&+Rj{t,z)){l<:\+Ri(t,z))-1 on X* x Air 

Proof. — We consider the family (Id +Qij(t. z ));; as a cocycle relative to the covering 
(Ai)i with values in the Banach Lie subgroup of GL^(C°(X*)) of matrices U such 
that U — Id G Matrj(C^(X*)), where d is the size of the matrices Q (generic rank 
of and C^(X*) is the Banach algebra of continuous functions <p on AT* such 
that IlL^)^!!^ < +oc, with the corresponding norm IHI^^- By changing S, one 
can moreover assume that \\Qij;|| s < 1 for all i.j. Clearly, this cocycle can be 
deformed continuously to the trivial cocycle. Hence, by standard results (cf. [9]), the 
Banach bundle defined by this cocycle is topologically trivial. It follows then from 
a generalization of Grauert's theorem to Banach bundles, due to L. Bungart (cf. [8], 
see also [38]) that this bundle is holomorphically trivial. The trivialization cocycle 
takes the form given in the lemma if one chooses a smaller S. • 

According to Lemma 5.4.6, the basis e^'^ defined by = • (Id +Ri(t, z)) is 
globally defined on some open neighbourhood nb(Sr). 

Let A0 be the closed disc centered at 0 and of radius 1 in QQ . Cover Ao by a finite 
number of nb(Sr) on which the previous construction applies. We assume that the 
intersection of three distinct open sets is empty. Apply the previous argument to get 
a basis e globally defined on Ao such that, according to Lemma 5.4.5, the matrix C 
of hs takes the form Id +i?(t, z) on A* x nb(S) with lim^0 Hf)6 z)\\00 = 0. 

Lemma 5.4.7. If X is small enough, there exists a dx d matrix S(t,z) such thai 

S(t,z) is continuous on A* x nb(Ao) and holomorphic with respect to z, 

- lim^o l|£(M)||H(Ao) = °> 
- Id+R(t,z) = (Id+S*(t:z)) • (Id+S(M)). 

As usual, we denote by 5* the adjoint matrix of S (where conjugation is taken as 
in § 1.5.a). 

Define the continuous basis £ of ^v*xnb(A„) by £ = £f • (Id +S(£, z))~l. In this 
basis, the matrix of C is equal to Id, after the lemma. This means that e is a contin­
uous basis of H and that it is orthonormal for the harmonic metric associated with 
(t7,y) on AT*. Moreover, near any zQ G S, the base change between the local basis 

and £ take the form of Formula (5.3.3) (we only get here that the corresponding 
Q(ZO) tends to 0 with t, and not the logarithmic speed of decay). Arguing as in Re­
mark 5.3.8(2), we conclude in particular that, when zQ = 1, the V-filtration of M is 
equal to the parabolic filtration defined the metric h obtained from C, as was to be 
proved (2). • 

(2̂ I thank the referee for indicating that a previous proof was not complete. 
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Sketch of proof of Lemma 5.4.7. We regard Id +/7(/. z) as a family, parametrized 
by X, of cocycles of P1 relative to the covering (nb(Ao), nb(Ao)) • At t = 0, this 
cocycle is equal to the identity, hence the corresponding bundle is trivial. By the 
rigidity of the trivial bundle on P1, this remains true for any t small enough. More 
precisely, arguing for instance as in [41, Lemme 4.5], there exist unique invertible 
matrices E; continuous on X x nb(A0) and £" continuous on X x nb(A0), both 
holomorphic with respect to z, such that E'^voc) = Id and Id I R(l. z) = £" • E'. 
Set E0(t) = £'(¿,0), which is invertible, and £' - Eo"1^'; hence £'(t,0) = Id and 
Id+i2(£, z) — TJ" • £0 • Moreover, these matrices are all equal to Id at t = 0, by 
uniqueness. 

Recall now that, as we have reduced to = (Id, Id) and the weight equal to 0, the 
sesquilinear pairing satisfies C* = C, hence R(t, z) satisfies R* = R. We thus have 
Id+R(t,z) = £'* • £* • £"*. 

As £'*(£, oc) = Id, we have, by uniqueness of such a decomposition, X/* = E/;. 
Moreover, = EQ (in the usual sense, as no z is involved). 

As E0|t=o = Id, we can write locally E0 = T*T and put Id +S = TE'. • 

It remains to explain that (-/../') is locally isomorphic to (^,,5^)/2 constructed in 
§5.3, where (HJi) is defined in §5.4.a, as asserted in the sketch of §5.2.e. What we 
have done above is to show that, starting from a polarized twistor ^-module , ..5?) 
on a curve X, we can recover the properties that have been proved by Simpson and 
Biquard for (H,h). As we have similar bases e/z°^ on which we can compute the 
connection and the //-norm of which has moderate growth at t — 0, locally uniformly 
with respect to z, we conclude that the localization of ^ is equal to defined by 
Cor. 5.3.1(1). Then, the corresponding minimal extensions are the same. Last, the 
gluings C coincide away from the singular point P, hence they coincide locally near 
any zQ £ S on V<Q\ as they take values in L\oc there, and therefore they coincide on 

by v") s_miear^y- D 

5.A. Mellin transform and asymptotic expansions 

We will recall here, with few minor modifications, some results of [2]. Fix a finite set 
B C C such that no two complex numbers in B differ by a nonzero integer. Let A be 
any compact set in QQ \ {0}, which is the closure of its interior. We keep the notation 
of §0.3 concerning H(A). We note that the set KB = {{ft * z)/z \ (3 G B and z G A} 
is compact. 

Definition 5.A.I. ~ For a C°° function / : C* —> H(A) satisfying 

(i) / = 0 for \t\ ^ R (for some R > 0), 
(ii) / has moderate growth at t = 0, i.e., there exists a0 G M such that 

j™|*|2<7" II/(*)IIH(A) = o, 
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the Mellin transform with parameters k\ k" G N is 

jrf'k"\8) 
c 

\t\2Hk'?"f(t)±dtAdt. 

We note that Ĵ A' ,fc \s) is holomorphic in the half-plane 2 Re s + k' + A:" > cr0 — 2. 
It is clearly enough, up to a translation of s by an integer, to consider the functions 
t#fk,0\s) and <^f0,k\s) for /c G N. For the sake of simplicity, we will denote, for any 
k G Z, 

^ f } ( s ) 
^0)(S) if k ^ 0, 
^0)(S) if k ^ 0. 

Definition 5.A.2. Let P be as above and i? G IR+. 
(1) Recall (cf. §0.8) that we put L(t) = L(t) = |log |£|2|. A C°° function f : C* -* 

H(A) has Nilsson type B at t = 0 if there exist L G N and, for any ¡3 G /3 and 
£ G [0, L] n N, C°° functions //M : C H(A) such that / can be written on C* as 

/(*) 
^0)(S) 

hAW\2{**z)/*W-

(2) Let J = (J?{k)(s))kez be a family of meromorphic functions of s G C with 
values in H(A), i.e.. of the form (p(s)/ip(s) with tp. ijj : C —-» H(A) holomorphic and 
-0 ^ 0. We say that ,y has type (B, R) if there exist 

a polynomial b(s) equal to a finite product of terms s + n + (¡3* z)jz with 
n G N and (3 G P, 

for any TV G N, any a G M+, a constant c7(7V, a, /?), 
such that, for any k G Z, satisfies on the half plane Res > —a — 1 — \k\ /2 

t#fk,0\s^0)(S) [̂0,<r]nN&(S+ 1̂1 +Z/) C(iV, 
H(A) ^ C(iV, (j,i?)P2Res+lA;L 

Remarks 5.A.3. - Let ,y be a family having type (B,R). 
(1) We note that, Kb being compact, there exists CJO such that ^^k\s) is holo­

morphic in the half plane Res > o~q — \k \ /2 for any k G Z; in particular, given a half 
plane Res > a, there exist only a finite number of k G Z for which has a pole on 
this half plane; moreover, the possible poles of J^A)(.s') are s — — \k\ — n — ((3 * z)/z 
for some n G N and (3 G -£>, and the order of the poles is bounded by some integer L. 

(2) If <9 has type (B,R) with some polynomial 6, it also has type (B,R) with any 
polynomial of the same kind that b divides. This can be used to show that the sum 
of two families having type (B, R) still has type (B, R). 

(3) The polar coefficients of at its poles can. as functions of z, have poles 
for some purely imaginary values of z. However, there exists a polynomial \(z) with 
poles at iM at most, such that all possible polar coefficients of A • </(k\ for any k G Z, 
are in H(A). 
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Theorem 5.A.4 ([1,2]). — The Mellin transform f \-> (.ĵ A-) (*)) A._ gives a one-to-one 
correspondence between C°° functions f : C* —-» H(A) of Nilsson type B at t — 0 and 
having support in \t\ ̂  R, and families of meromorphic functions ( j ^ ^ (s))keZ : C —• 
H(A) of type (B,R) having polar coefficients in H(A). 

Proof. - We will only indicate the few modifications to be made to the proof given in 
loc. cit. Given a family {--̂ ^ {&)) keZ of type (B, R), each J?(k\s) being holomorphic 
in a half plane Res > a0 — \k\ /2, there exists a (7°° function / : C* —> H(A) which 
has moderate growth at t — 0 and vanishes for \t\ ^ R, such that ,J?(k\s) - ,f^k\s) 
for all k G Z and Res > o~o. AS the polar coefficients are in H(A), one can construct 
as in loc. cit., using Borel's lemma, a function g(t) = J2p a:9/3,\t\2^*z^z~L(ty, the 
functions gpj : C —» H(A) being C°°, such that the family ('^f-g(s))keZ nas type 

and all funct ions ^fjg(s) are entire. 
Fix z0 G A and choose an increasing sequence (al)ie^ with lim?; = +oc, such that 

no line Re s = o~i contains a complex number of the form n — (/3*z0)/z0, for n G Z and 
ft G B. Thus, there is a neighbourhood V(zQ) C A such that the distance between the 
lines Reus = o% and the set {n — {ft* z)/z \ n G Z, ft G B, z G V{zQ)} is bounded from 
below by a positive constant. Let Hi^. be the half plane Res > —al — 1 — |A;| /2 and 
let D be the union of small discs centered at these points n— {ft*z0)/z0 (small enough 
so that they do not cut the lines Res = at). On Hxk \ D, |rLye[o a-,]nN + 1̂1 + 
is bounded from below, so we have an estimation on this open set: 

(1 + |A:| + H ) " 11^^(5)11 ^ C'(N,<Ti<R)R2IUia+W 
II J J IIH(U(20)) 

By the maximum principle, (s) being entire, this estimation holds on H{^- This 
implies that ||/ — g\\n^v^ ^ = 0{\t\a>) for any i. By compactness of A, we have 
11/ - #HH(A) = °(\f\a) for "any a > 0, so / - g is C°° and infinitely flat at t = 0. We 
can therefore change some gpj to get the decomposition of / . • 

Remark 5.A.5. — It is not difficult to relate the order of the poles of <ffk\s) with the 
integer L in Definition 5.A.2(1). In particular, if ,f^k\s)/T{s + \k\ + 1) has no pole 
for any k, then one can choose L = 0 and B = {0} in 5.A.2(1). 

5.B. Some results of O.Biquard 

The results in this section are direct consequences of [4], although the lemma in 
§ 5.B.a is not explicitly stated there. They were explained to me by O. Biquard, whom 
I thank. 

5.B.a. Better estimate of some perturbation terms. — We indicate here howT 
to obtain a posteriori better estimates for the perturbation terms P',P" of Theo­
rem 5.2.5, that is, Property (iii) used in the proof of Lemma 5.3.2. 
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One starts with the holomorphic bundle E on the disc X equipped with the har­
monic metric h and the holomorphic Higgs field 0'E. The Higgs field takes the form 
0'£td + R(t)dt/t, where 0f£td is the Higgs field for the standard metric hsid as in the ba­
sic example of §5.1. Recall that the iff /2 are the eigenvalues of 0Etd. It is proved in 
[4] that the perturbation R(t) satisfies R(0) = 0 (this argument was used in the proof 
of the assertion after (5.3.7)). Moreover, the metric h can be written, as the product 
h = hstd(ld +?;) where v is a section of the Holder space C|+* for any t) e [0, 1[ (cf. [4, 
p. 77]). Using an argument similar to that of [62. Th. 1 (Main estimate)], one gets: 

Lemma (O.Biquard). If ft" ^ ft", then the component of v and its logarith­
mic derivatives with respect to t are 0(\t\n) for some rj > 0. • 

(An analogous statement also holds for general parabolic weights.) 
To prove Property (iii), one argues then as follows. First, the operators DE and 

D'gxui coincide, as the holomorphic bundles E and Estd coincide. Let us denote by 
£std an /}std_orthonormal basis of E and by e an //-orthonormal basis obtained from 
£std ky the Gram-Schmidt process. Then the base change T from esid to e satisfies 
JT.^.j, I = 0(|f|r;) for some rj > 0, if ft" ^ ft", after the lemma. It follows that, 
in the basis s, the matrix of D"E is obtained from the standard matrix by adding a 
perturbation term satisfying (i) (iii) of the proof of Lemma 5.3.2. By adjunction, the 
same property holds for D'E. 

Consider now the Higgs field. As R(t) is holomorphic and R(0) — 0, we see, 
arguing as in the proof of the assertion after (5.3.7) but in the reverse direction, that 
the matrix of 0'E in the basis sstd differs from that of 0Eid by a perturbation term 
which is 0(\t\£) for some e > 0. Then, according to the lemma, in the basis e the 
matrix of 6'E differs from the standard one (5.1.7) by a perturbation term satisfying 
(i) (iii). By adjunction, the same property holds for 6E. • 

5.B.b. Elliptic regularity. — We give details on the argument of elliptic regular­
ity used at the end of the proof of Lemma 5.3.2. Recall that DR denotes the disc of 
radius R < 1 equipped with the Poincaré metric. We will now use the supplementary 
property that P = P\ P" satisfies, according to [4]: 

(iv) P belongs to the Holder space Cf+(5 for any d e [0,1[, that is, L(t)1+ò\P belongs 
to the Holder space C*(D*R), where the dist ance is taken with respect to the Poincaré 
metric. 

(In fact, this is also true for the first derivatives of P, and we can replace 1 + 5 with 
2 + 5 for the components with ftt ^ ftJ: but we will not use these properties.) 

For each component uS1^'^ of the matrix u obtained in the first part of Lemma 
5.3.2, we have 

(5.B.1) а»иы*и) + 7 ( z ) l t ( 7 ( s M : 
dt 
T 

í_ 

2 
0f£td 

dt 

T eCt{DRMAz,M)), 
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after (iv) and Formula (5.3.2)(*), taking into account that the norm of dt/t is L(t). 
Moreover, we know that ,/(^~)-') G Lf (DR. H(AS„ (//))) and that, if 7(2) 0, that 

u (y (x) E e L™6(DR,K(&z„(//)))• 
The idea in loc. cit. is to apply regularity properties of an elliptic differential 

operator locally in the upper half-plane with the hyperbolic metric and to use the 
homogeneity property of this operator with respect to the isometries of the hyperbolic 
plane to extend the corresponding inequalities to a fundamental domain covering the 
punctured disc DR (recall that we assume that R < 1). 

For t G D*R: we put t — e~T with r — s — 10 and s — L(£). The metric on the 
half-plane M - {s > 0} is (ds2 + dO2)/s2. The covering M -> D{ is denoted by q. On 
a fixed hyperbolic ball B0(i(A0) C HI of radius aQ ^ 1 and center (eA<\ 0) with AQ G R, 
we have, by a standard property of the Cauchy kernel for (*) and by elliptic regularity 
of the operator d" + ^{z)df for (**) (see e.g., [69, Chap. XI]), two inequalities for any 
v) e ](),![, 

(*) \Mc»(B„o/2(A<>)) ^ Co(^)( | | ( ^ +7(^)^)C,)||^(B(;o(A(j)) + \\v\\L^{BM) ) 

and 

(**) Wd'V\\c»(Bai>/l(A„)) 
< M -> D \\(d" +l(z)dT)(v)\\c<l(BaiiMAo)) + \\v\\c<>{B^MAo))). 

Here, we use that s = L(t) and s-1 are bounded on the fixed balls, so that 
II• IIĉ (Ba (A0)) computed in the hyperbolic metric is comparable with the same 
expression computed with the Euclidean metric, where the usual elliptic inequalities 
apply. 

If if : H —•» EI is a hyperbolic holomorphic isometry, we have (p*(d"v + j(z)vdr) = 
{d" + /y(z)df)(v o ip). If we choose such an isometry sending the point (eA°,0) to 
(e1. 0). we obtain that the inequalities (*) and (**) also apply on the balls of radii 
aQ/4, aQ/2, aC) centered at (e^O), with the same constants Co(d) and Ci(d). 

Moreover, given ó > 0, there exist constants c\ = ci(#, aQ) and c2 = C2('#, a0) such 
that, for any A G M, we have 

CiC6A \HCi)(BajA)) ^ \Hci(BUti(A)) ^ W'\\c»(Ba(>(A)) 

(see [4, p. 54]). 
Choose now a sequence An and R'', R" > 0 such that 

D*R„ C q(\jBatt/4(An)) C D*R, C ?(U5fl()(4)) C 
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For a function u on D% with values in H(A2o(r/)), we have 

IMIcj'(D^) < c2(ïï1a0/2)supeàA" \\u o q\\c»(B(lo/2(An) 

^C0(i))c2№aO/2)supe^' 
n 

\\(d" + -r(z)dr)(u°q)\\L„{BiiM) 

\\UO<I\\L^(B„„(A„)) 

< Co(ll(^' + 7(3)rir)(W)||L?(D.} + \MLT(D,n) )• 
with Cn = ci($, a0)c9(^, aa/2)Co('â). Similarly, 

IK«llcï'(D-„) ^ ^ ( 1 1 ( ^ + 7 ( ^ ) 0 0 1 1 ^ ^ . , ) + Hc<>(D',) ) 

Coming back to u^',f\ we have ||u^J^ || LOC ^ < -f-oo by construction and thus 

||(d" + 7(2)cff)(w^'^)||L?c( } < +oc after the Lf version of (5.B.1) (recall that 

11dl/h(t)t || = 1). The first inequality above gives H'u/7'̂  ||c;^D* ^ < +c*o for any 

t) G ]0,1[. Now, (5.B.1) implies that ||(d" + -y(z)dr)(u^^)||C,:,(I)! } < +oo and the 

second inequality above gives then \\d'i.SlJ) H^,^* ) < +oc, so that, in particular, 

\\dfu^J^||LOC^ < +oc, which is the desired statement. • 
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C H A P T E R 6 

T H E DECOMPOSITION T H E O R E M 
FOR POLARIZABLE R E G U L A R T W I S T O R ^ - M O D U L E S 

6.1. S ta tement of the main results and proof of the Main Theorems 

Theorem 6.1.1. — Let f : X —» Y be a projective morphism between complex analytic 
manifolds and let (-7.V) be an object o / M T ( r ) ( I , u , f p ) . Let c be the first Chern 
class of a relatively ample line bundle on X and let S£c be the corresponding Lefschetz 
operator. Then (-;, f\7. .¥r. f\Y) is an object of MLT ( r ) (Y, w; l ) ( p ) . 

Remark 6.1.2. — At the moment, Theorem 6.1.1 is proved for regular twistor ^-mo­
dules only. Regularity is used in the proof of the case when dim X — 1 and / is the 
constant map (case denoted by ( 6 . 1 . 1 ) ^ 0^ in §6 .2 below). The reduction to this case, 
done in §§6 .3 and 6.4, does not use the regularity assumption. It seems reasonable 
to expect that the techniques of [53] and [5] can be extended to obtain ( 6 . 1 . 1 ) ^ 0 ^, 
hence Theorem 6 . 1 . 1 . in the non regular case as well. 

Theorem 6.1.3. Let X be a complex manifold and let (-7. V ) be a smooth polarized 
twistor struct/are of weight w on X, in the sense of §2.2.a . Then (i^,<5^) is an object 
ofUT{v)(X,w) (p). 

Proof of Main Theorem 1 (see Introduction). - Let X be a smooth complex projec­
tive variety and let & be an irreducible local system on X. Let AI — &x ®<c^ be the 
corresponding //y-module. It follows from the theorem of K. Corlette and C. Simpson 
(cf. Lemma 2 .2 .2) that AI underlies a smooth polarized twistor structure of weight 0 
and, from Theorem 6 .1 .3 , that AI = S D R . ^ " where .^f" is the second term of an 
object (.7.-7) of M T ( r ) ( X . 0 ) ( P ) . 

Let U be an open set of X and let / : U —• Y be a proper morphism to a 
complex analytic manifold Y. Then / is projective. Any ample line bundle on X 
will be relatively ample with respect to / . From Theorem 6 .1 .1 , we conclude that 
(® if] X> ®if\yLr) is an object of MLT ( r ) (Y. 0. l ) ( p ) . In particular, each f],% is 
strictly S-decomposable. By [15], we also know that f\^\u — ®if\^\u-

By restricting to z = 1, we get (1 ) and (2) in Main Theorem 1. We also get (3) , 
according to Proposition 4.1.19. 
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Assume now that U = X and Y is projective. By the Lefschetz decomposition, we 
can apply Theorem 4.2.12 to conclude that f^M is semisimple as a regular holonomic 
&Y-module. • 

Proof of Main Theorem 2 (see Introduction). The argument is similar. Starting 
with an irreducible local system & on A, we can assume that it underlies a object of 
MT(r)(A, 0)(p). So does grf^f^ by Proposition 4.1.19, and we can apply Theorem 
4.2.12 to get semisimplicity, hence Theorem 2. • 

The remaining part of the chapter is devoted to the proof of Theorems 6.1.1 and 
6.1.3. We closely follow [56, §5.3]. The proof of Theorem 6.1.1 is by induction on the 
pair 

(dim Supp •<y. dim Supp f(-7))-
As (6.1.1)(0 0) is clear, it will be enough to prove 

(6.1.1)^ 0̂  when Supj) -7 is smooth (Section 6.2), 
- (6.1.1)(n.m) (6.1.1)(,l+1>m+1) (Section 6.3). 
- (6.1.1)^(n„1)0) and ((6.1.1)(1()) with Suppsmooth) => (6.1.1)(n>()) for n ^ 1 

(Section 6.4). 

6.2. Proof of (6.1.1)^ (̂  when Supp is smooth 

Let X be a compact Riemann surface and let / : X —» pt be the constant map. 
We will argue as in [72]. Let (-^, y) = (é:. ,^. C. Id) be a polarized twistor left @x-
module of weight 0 on X (cf. R emai'k 1.6.8). For the proof of (6.1.1)Q Q\, it will be 
enough to assume that it has strict support A. Let us denote by the localization 
of\<# with respect to the singular set P. As (-T. -cf)\x* is a smooth twistor structure, 
it corresponds to a flat bundle with harmonic metric //. and we have a metric n*h on 
• ^ r - (cf. §5.3.a). 

Fix a complete metric on X* which is equivalent to the Poincaré metric near each 
puncture xa G P, with volume form vol. Extend it as a metric on the bundle B,^*, 
and therefore on f>\-.. so that \\d,t/z\\ = \\dt\\ = \t\L(t). On the other hand, put on 
y '* the product metric (Poincaré on X*, Euclidean on QQ) to compute the volume 
form Vol. Recall that, in a local coordinate t near a puncture, we have 

(6.2.1) |ff L(t)w/2 G L2(vol) a > 0 or a = 0 and w < 0. 

Put Mz<> = .£/(z - z0).£. 

6.2.a. The holomorphic L2 de Rham complex. — Let us denote by C 
the subrnodule consisting of local sections which are locally L2 with respect to 

7r*/i. Formula (5.3.6), together with (6.2.1). shows that (by switching from /3 to a) a 
local section rn = ]T • rnjin'>e^n) of ,d is in .#(2)^0 if arid only if. for any j , either 
£z(>(rij + ftj) > 0 (and therefore /.,(/>, + .ij) > 0 for any z near za) or n, + ft3 = - 1 
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(that is. (z(nj + — —1 for any z near zn) and w-t $J 0. According to Remark 
5.3.8(1). this is equivalent to saying that /// is a local section of V^']"\//. the class 
of which in ^Y\_\'"\// is contained in M(K•/.-1 - //. where M. denotes the monodromy 
filtration of N. In particular, we have a natural inclusion «-#(2) C . //. globally defined 
with respect to z. 

Similarly, the sheaf (Q\- !So\ <70{2) <>f L2 local sections of <SV/Y .7/ consists, 
near za. of local sections (dt/tz) c<) ?//. where in is a local section of V^]"\// the class 
of which in grLj "],// is contained in M_2 </' / .-F^- We1 also have a natural inclusion 
(12 2ox • ^)\2) ^ ^ ox • 7/. as follows from the following lemma: 

Lemma 6.2.2. Let in be a local section of V}_]"\ //. the class of which rn gr!_\ " \ / / 
is contained in M_2gr)_i'" - //• . Then tn/t is a local sect ion of .7/. 

Proof. We denote here by M.gr^j ' -7/ the direct sum of the monodromy filtrations 
of N on each •</'/.n-7/ with i Zi)((\) = — 1. We1 want to show that m/t = 0///i +//2- where1 
//•i is a local section of \ // and //2 a local section of V^H'Kz/. As t : \ j ,7^ M —> 
V<1 \-7/ is bijective. this is equivalent to finding n\ as above and a local section //3 of 
\ '!'"[. // such that m = f(3///i + //3. Equivalently. the class of /// in gr* , "'. // has to 
be contained in image1/Of. For the component in f/'/.-i.//. this is equivalent to saying 
that it is contained in image(N). Now. that M_2*,-,/.-F <̂  is contained in image(N) 
is a general property of the monodromy filtration: indeed, we have1 M_2 = N(MQ). 
as N : gr̂ r —> gr£!_2 is onto for any k ^ 0. For the component in any ipf.a.7/ with 
o ^ —1. notice1 that /(1/ : V\AX.// C/.N-^ is an isomorphism, by Lemma 0.9.2. and 
therefore sends bijectivcly M iCi.,,-// to itself. • 

The d(\scription above clearly shows that the connection V on . // sends . //{•>_, into 
(121,- <r:̂  x <^)(2) and defines the holomorphic L2 de Rham complex DR(,#)(2)- There1 
is a natural inclusion of complexes 

DR(V/)(2) <—• DR,//. 

Remark 6.2.3 (Restriction to z = Note that MZi> = . ///(.: - is also the 
localization of MZ) along P. as O,y\*P\ is /> -Hat. A similar computation can 
be made1 for the subsheaf of local sections of AIZII the norm of which is L2 with 
respect to the metric // and the: volume1 form vol. Denoting by U.MZ> the filtra­
tion induced by V}z"\// (cf. Proposition 3.3.14). this subsheaf is equal, according to 
Formula (5.3.6)^ in Remark 5.3.8(2), to M()U-iMZn, which is the inverse image in 
U-{MZit of Mogr^M,,,. Similarly. (12\. :-)0x MZ(>){2) =tt[x(\ogP) 7 AI_2f/_\MZ(>. 

We1 note howeveT that the derivative of a section of \l()U-\MZ() can fail to be1 
L2. If wê  denote by MZ(>.(2) fh<' subsheaf of L2 sections of MZn with L2 derivative, 
we identify MZa^2) with the subsheaf of local sections of MoU-iMZt> the class of 
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which in Mç)gru_]MZ() have a-components in Al-2'i/>l^MZn for any a ^ — 1 such that 
40(«) = -l. 

According to Proposition 4.1.19(2a) and the previous remarks, we have a natural 
inclusion of complexes 

DR(.#)(2)/(.: - z„)DR(./7){2) — DR(A4„)(2). 

Moreover, for the same reason, the holomorphic L2 de Rham complex DR(A/2J(2) 
(or the Dolbeault complex if z() — 0) is a subcomplex of DRMZ>: indeed, it is clear 
by the same Proposition that the term in degree —1 is the restriction to z = za of a 
submodule of «/#; for the term in degree 0, use Lemma 6.2.2. 

Proposition 6.2.4 

(1) The natural inclusions of complexes DR(,#)(2) > DR.^ and, for any z(}, 
DR,(A/C(J(2) ^ DR^4()- d't'e quasi-isoinorphisiris. 

(2) The natural inclusion of complexes 

DR(.#)(2)/U - ^)DR(.//)(2) ^ DU: U -

is a quasi-isornorphism. 

Proof As the morphisms are globally defined with respect to z. the question is 
local near any z(). It is also enough to work locally near a singular point of in A, 
with a local coordinate t. We will therefore use the V^'^-filtration. 

Let us begin with the first part of (1). We then have1 

DR,# = {() —> V{J{\jt ^- i\xr X V^-l// —> ()}. 

because locally this complex is nothing but 

o — vl*{\# v^-Kœ — o. 

and for any a > — 1, the morphism 3/. : gr* ' " . # —» g r ^ / i s an isomorphism 
(cf Definition 3.3.8(lc)). 

As .df, is contained in , ^ (being its minimal extension across t — 0), we have 
isomorphisms t : V^'K^ V<l\.dt and t : V ^ H ^ tV^'K^ C V ^ ' u ^ 
and. by Formula (3.4.6)(*). we have V^"\W = DfV_[]"\// + V^'K//. Therefore, the 
previous complex is quasi-isomorphic to the complex 

0 —> Y[_]'.// — ^ /(l/\'(î"j-// + Vi-lrf —> 0. 

We therefore have an exact sequence of complexes: 

0 —> DR(.#)(2) —> DR . # —> C# —• 0. 
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where C* is the complex 

0 
?z„ (rv) = -l 

JZJ°?)(H ©•0_," ) .^/MOVLI > .#) 

-fO, 

f:()fn) = -l 

tdt'ijk^.^ ( N ^ 7 ) ^ / M _ 2 v ^ i ' ) ^ # ) —>o 

111 order to prove the first statement of Proposition 6.2.4, we arc left with showing 
that 

(a) fdt '• Va —» tdt'ijk^.^ is an isomorphism for any (\ / —1 such that 
4 » i. 

(b) the morphism 

(Nvf r)^/M_2^
("j'),#) (Nvf r ) ^ /M_ 2 ^

( " j ' ) , # ) 

is an isomorphism. 
For (a), use Lemma. 0.9.2 to conclude that tx5t is invertible on the corresponding 

<0a*S. 
For (b). the surjectivity is clear. The injectivity follows from the injectivity of 

N : gr^1 -> gî 'LA f o r k > 1 and the equality M_2 = N(M0) that we have yet seen in 
the proof of Lemma 6.2.2. 

The second part of 6.2.4(1) is proved similarly: consider the complex C* analogous 
to C \ where one replaces v])\^n\^ with /M^'^a""1arid tDt'ij^

z<>\^ with 
/(1/ t.'n'"]< ///M -2< 'o"'S- //: then, as we have seen in Remark 6.2.3, the* analogue of (a) 
remains true for C*\ by restriction to z — za one gets the desired statement. 

Now, 6.2.4(2) is obtained from 6.2.4(1) by restricting to z = za. • 

6.2.b. The L2 complex. — Keep notation of § 2.2.b. We will define the L2 complex 
with z0 fixed, and then for z varying near za G ÌÌQ. Recall that we ])ut T>Z — T)Q + Z'D00 

and VZN = 'D() + z()V^. 

Fix z0 G Let us recall the standard definition of the L2 complex JZJ°?)(H .T) Z(>) 
on X. Let us denote by j : X*' X the inclusion, and by L\ov v* the sheaf on X* 
of L/ o c functions. Then (H. T)Z „) is the subsheaf of j * [LlH.x* X tf] 
defined by the following properties: a section u of the previous sheaf is a section of 
. 2 ^ (#.©_.„) iff 

the norm ||?'|.v*|| of '?|v* with respect to the metric h on and the metric on 
8X* induced by the Poincaré metric on X* which is a local section of j*L\ov v*—is 
a section of L2

oc Y(vol), 
T>Z(>v\x*, which is taken in the distributional sense, is a section of L\i)V Y* 

(f{tl ® H, and ||D=O7'|x* || is a local section of L2

ov x(vol). 
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The L2 condition can be road on the coefficients of r j \ * hi any //-orthonormal basis 

of H or. more generally, in any L 2-adapted basis in the sense of Zucker. According to 

[72, Lemma. 4.5], the restriction to z — z() of the basis e"^z"^ introduced in Formula 

(5.3.3) is L 2-adapted, and therefore, as e{z,i) is obtained from e"^z,,) by a reseating 

(the matrix A in (5.3.3) being diagonal), it is also L 2-adapted as well as the basis 

e,{Zti) dehned in (5.3.4). 

We now consider the case when z belongs to some neighbourhood of zn. Let U be 

an open set of X, put c7* — U D A^*. In the following, we only consider functions on 

open sets of ?%\ the restriction of which to is Ll

]{H. with respect to the volume 

form Vol. 

Say that such a function ^ on some open set U x O C ^ is holomorphic with 

respect to z if its restriction to U* x Q satisfies dz^p = 0 . 

Say that a local section v of j * ( A ^ . r« '.:\<r>^.„ T T - 1 ^ ' ; < n~lH) is a section of 
. ^ • 2 ) ( ' / A D , ) if 

( 1 ) v\.?:* is holomorphic with respect to .:. i.e.. in any local basis of H the coeffi­

cients v.j of C:y- satisfy ()- cj = 0; it is therefore meaningful to consider c ( v - ) | x * ; 

(2) the norm z)\x* | | * ' ( • • ~ ) | A ' * (with respect to the metric /; on H and the 

metric on r ^ Y * induced by the Poincaré metric on A"*) is L2 locally uniformly in z. 

i.e., on any open set U x i} on which /' is defined, and any compact set A' C £2, we 

have xuvzeK \\v(*. z)||2>voI < + oc: 

(3) T L T J ^ - * . which is taken in the distributional sense, takes values in L^.-sections 

and satisfies (2) (and clearly (1). as T>Z coniiiiutcs with 0Z). 

The L2 condition can be read on the coefficients in any L 2-adapted basis. Formulas 
(5.3.3) and (5.3.4) show that, near any (.r.z()) with ./• G P (the singular set of . / / 
in X ) , the bases e(z"} and e/(z"} are L 2-adapted. 

In particular, for any z() G ilo. there is a restriction morphism 

CZ*2)(.7c". T>Z) (я. ŒX„). 

Theorem 6.2.5. Let (:7. .7) = (.#..#. C. Id) 6c a polarized twistor left 9X-module 
of weight 0 on X. 77/,cn /Ac natural inclusions of complexes 

DR (.//),,) DR (.//),,) 

and, for any za G i1(J, 
DR(M,„) ( 2 ) 

DR(M,„)(2) 

arc quasi-iso'rrurrphisrns compatible with restriction to z = c0. 

We will use the reseating (2.2.G) to define1 the1 inclusion, as explained in §G.2.f. 
Let us begin with the analysis of the L2 complexes CZ*2)(.7c". T>Z) and .7J*2)(H. Î L J . 
We will use1 the basis e/(c,,) or its restriction to z — za that we1 denote in the same 
way. The norm of any element <°̂7'[ m TU0 subfamily (ii G D. t G Z) is 
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|f|M^c',+J) L(f)'/2(1 + o{l)), where o(l) = L(t)-* for some S > 0. Recall that q;iX<> 
is chosen so that fz„(<Li.<;,> + • ^ (<"/• proof of Corollary 5.3.1). The* proof 
of Theorem 6.2.5 will occupy §§6.2.c 6.2.f. It will be* given for z variable. The* 
compatibility with restriction to z = z(i will be* clear. 

Remarks 6.2.6 

(1) We* will not follow' here* the proof given by Zucker (a dichotomy Dol-
beault/Poincaré lemma) for two reasons: the* first one is that we* do not know 
how to adapt the* proof for the Poincaré lemma near points zC) £ Sing A; the second 
one* is that we want to put a parameter z in the proof, and have a proof which is 
"continuous with respect to z'\ in particular near z = 0. However, the proof of the 
Poincaré lemma given by Zucker does not "degenerate" to the* proof of the* Dolbeault 
lemma. 

(2) We note that DR(A/~J(2) = DR MZn has cohomology in degree - 1 only if 
zQ 0 Sing A, as a consequence of Proposition 4.1.19(3), but this can fail to be* true if 
z0 e Sing A. 

We put Vz = ; /;/. + 0'E and VI = D"E -f so that T)z = Vz + VI. Recall 
that the* basis e,(z"] is holomorphic with respect to VI, and that Vz acts by zd' + Oz. 
where the* matrix 01 is ele*fineel by (5.3.7). Taking the* notation of (5.3.7) we will 
decompose 01 as 

<-»; = e;,liag + e';.Il!lp. with 
^Z(>\ ®I-)(<lH.C. + ft) * ~ l'I 

^Z(>\ [Y + P(t,z)]'f 

with Y = (fp)^Y^). We* will regard Y and P as operators and not matrices. We index 
the basis e,(<z,,) by /1 f. A', where* ( denotes the weight with respect to Y and A' is used 
to distinguish the various elements having the same /i, L Then we have*, for any /1 L A*. 
Y(C'J7A-) — r/l/~2 A- ail(b according to the assertion after (5.3.7), 

A^f-2 h-
JKL AZE 

pAj.x.k.H (^ Z) 

|f|M^c',+J) L(f)'/2(1 + o{l)), 

(6.2.7) 
A^f-2 A^f-2 

pAj.x.k.H (^ Z 

pA.-yj.x.k.s^- --)• 

Â f-2 h-
Vz = ; /;/. + 0'E 

A^f-2 
pAj.x.k.H (^ Z 

where the functions pA.-yj.x.k.s^- --)• pAj.x.k.H (^ Z) are holomorphic. It follows that the 
L2 norm of (~Xaiil is bounded. As a consequence, in the basis e'^Z(>\ the L2 condition 
on derivatives under T)z can be replaced with an L'2 condition on derivatives with 
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respect to the diagonal operator 

(6.2.8) = rb-l/"2L(r)k/'2-1ll'U = diag. 

6.2.c. Hardy inequalities. — We will recall here the basic results that we will 
need concerning Hardy inequalities in L2. 

Let J = ] A 5 [ c M be a nonempty open interval and v. w two functions (weights) 
on I. which are measurable and almost everywhere1 positive1 and finite. Let u be a C1 
function on I. 

Theorem 6.2.9 (L2 Hardy inequalities, cf. e.g., [50, Th. 1.14]). There is an inequality 

ll'U • //?||2 ^ CII/// • cj!2. 

with 

C 
sup 

B 
w(t)2 dt r 

A 

v(t)-2 dt if lini u(.r) = 0. 

sup 
•r6/ 

r 
.1 //?||2 ^ v(tr2 dt if lim n(./-) = 0. 

Corollary 6.2.10. Take A = 0 arid B = R> 0, wzM /?,<!. Lei (6, A') £ R x Z. We 
assume that (b,k) / (0, 1). Given g(r) continuous on [0.R]. put 

f(r) 
/ <t(n)df) 
/o 

if h < 0 or ///; = 0 and k ^ 2. 

'niiii(/t'.e-̂ /2'') 
<j(f>) (lP if b > 0 or if 6 = 0 and k ^ 0. 

/̂Tn £/?,c second case, we set e k^2b = + oc '// 6 = 0 and k ^ 0; this is the limit case of 
b > 0 arid k < 0 /r//c// b -> 0+J 

T/ic/i tAcre crises a constant C(R.b.k) > 0. ,sv/,c// /ftai limfo_0+ C(R.b.k) < + oc 
</7/c// A' 7̂  1 ana7 lim^o C(R.b.k) < +oc </7/c// k ^ 2. such that the following 
inequality holds (we consider L2([0, R]: dr/r) norms) 

||/(r)-r''L(r)t/2-' 2. <//'/, C(7î.6.Â:)||.9(r)-r''L(r)A-/2-1 •'•L(r)||2(ir/r 

C\\fi(r)-rb+iL(r)k^\\2(lr/r. 

Proof. We will choose the following weight functions with respect to the measure 
dr: w(r) = rb-l/"2L(r)k/'2-1 and v(r) = r''+l/'2L(r)A'/2. Assume first b > 0. 

(1) If R ^ r"A'/26. z.c. A-/26 ̂  L(R). we1 have thus lim,._wf_ f{r) = 0. We will 
show the finiteness of 

sup 
re [o.R] 

f (r)-rb+iL(r)k^\\2(lr/r p-2'"lL(p)-" dp. 
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After the change of variable* y = L(/;) we* have* to e*sl iniate* 
SS 

.г 
R)k-[) du 

У2 

R 

M fi) 
c2lryy-kdy. 

The function c 2by yk is decreasing on ]L(R), +oc[, hence the first integral is bounded 
by c~2bxxk~1, and the second one by e2bxx~k(x — L(R)). Here, we can therefore take 
C(R,b. k) = 1. 

(2) Assume now k/2b > L(i?) > 0. and k / 1. hence* k ^ 2. We have 

f(r) <j(p) dP-
h/2b 

We will have* to consider the two cases r G ](), c~k/2b[ and r G ]c A'/26. R{. 
(a) If r G ]{). e~k'/2b[. we have to bound the* same* expression as above, in the 

same conditions, after replacing L(R) with A726, and we can therefore e'hoose 
C = 1. 

(b) If /• G ]c~k/2b. R{. we want to estimate 
-k/' 
L (R) 

e-2byyk--2d!J-rk/2b 
/ <>2byy-kdy. 

The* function e~2l>uyk is increasing, and an estimation analogous to the previous 
one would give a constant C having a bad behaviour when b —» 0+. We will 
thus use* that e~2by is decreasing. As k ^ 2. we have, for the* second integral. 

-k/'2b 

J j-
<>2b"y-kdy rk 

k - 1 
(xl~k -(k/2b)^k) (>kxi-k 

k - 1 
For the* first one we have 

X 
um 

(-2% *-2 r f <f.-26l,(R) (;/•*-1 -L{R)k-[) 
k - 1 

R2b {xk~[ - L(R)k~l) 
k - 1 

so that the product is bounded by 
ekR2b 

(k-l)2 
(l-iMRyx)'-1) ekR2b 

(k-l)2 
(= C(R.b.k). 

which has a gooel behaviour when /; —» 0+. 
(3) If k/2b > L(R) > 0. and k = 1. the trick of part (b) above eloes not apply, 

because the function log is increasing, though the* function was decreasing if 
k ^ 2. The constant that we* get eloes not have* a good behaviour when b —> 0+, which 
could be* expect eel. as we elo not have* a good Hardy inequality if /; = 0 and k = 1. 

When b = 0 and A; / 1. the proof above degenerates to give the corresponding-
inequalities. 

Consider now the case when /; < 0. 
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(1) We assume that (^-2)/2\b\ ^ R te_ k ^ 2(1 - |/;| L(i?)). which is satisfied in 
particular whenever k ^ 2. Then the function r~2/"y//'~2 is increasing on }L(R). + oc[. 
An upper bound of 

L (R) '2l'"yk-2 du <-""V-' ̂  
tr 

is given by 
(a: - L(i?))e-26'r.rA:-2 • c2lKvx-k+2x-x = (1 - L(i?)/.r) ^ 1. 

This situation degenerates when /; —> 0 . to the analogous situation when 6 = 0 and 
A- ^ 2. 

(2) If e '̂"2)/2L6L < R. i.e.. k < 2(1 - |/;|L(/?)) we find a constant with a bad 
behaviour when ?;—>()_. • 

6.2.d. Proof of Theorem 6.2.5: vanishing of -Xt'2. — As in [72], we will express 
L2 functions of / = rc/79. holomorphic in z. as Fourier series \L(/)//2L(/)~ un(r. z)ein0. where 
each ?/.„. is holomorphic with respect to c when c is not fixed. The L2 condition will 
be recalled below. 

Lemma 6.2.11 (Image of £>'.')• Let ^ = \L(/)//2L(/)~^.i.,.k(l. 2)c^;[ f A f be a local sec­
tion o / J ^ i T . T L ) . with ^jj.kit.z) = J2neZsp.u.k.n(r.z)ein0. Then, if all coeffi­
cients cptf./'.A-.o('>*- ~) vanish, identically for any (j. C such that fZn {qii.c,, + (1) = 0 and 
(. ^ - 1 , ^crc exists a /oca/ section 0 o / ^ 0 ^ . / . ! ) , ) sac/i cp = £>^' = 

77/,c .same assertion holds after restriction to z = z(). 

Let us now be more precise1 on the L2 condition: f (t. z)e/\~(n\. is a local section 
of .\L(/)//2L(/)~̂2){.̂') iff \ f(t.z)\L(/)//2L(/) \L(/)//2L(/)1 is in If2 {d0 dr/r). locally uniformly 
with respect to z. A similar statement holds for sections in \L(/)//2L(/)~01 "̂ (2) expressed 
with logarithmic forms d.t/t and df/t, using that the norm of each of these form is 
L(0-

Proof of Lemrna 6.2.11. We have to solve (up to sign) tdjijhjj.k — ^fiij.k- if 'li'a.e.k 
is the coefficient of C^JA- dt/t in 0- We will argue as in [72, Propositions 6.4 and 
11.5]. Put u = (J^jj.k and c - W./.A-. and a = a,((r.:)e"f r = r,,(r. s)eM*. 
We are then reduced to solving for any // G Z 

|-(r-^// ,(r .c)) = 2r-"-1r/,(r.2) cV 
with an L2 condition. If we put /„(/•. z) = r~nun(r. z) and ry„(r. ~) = 2r~n~xvn(r. z). 
this condition reads 

\\fn(r.z)r''+(--(''^-+,i)L(ry/2\\ < C |L ( r . -)r<<+'+M</.<.c„+.̂ L(,.)</2+i II 
II 112.f/r/r II 112,dr/r 

uniformly for z near z(). If n + ( Z(X(Li..c(> + /̂ ) / u- this remains true for 2 near zC) and 
we apply Corollary 6.2.10. If n + C^XVJ.C,, + ^) = 0. we thus have ('z<>(<Li.c(, + ft) = 0 
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and = 0. as £z<> (qfj^() + ft) G [0. 1[. If moreover- £ ̂  0, we* also apply Corollary G.2.10, 
as the constant can be* chosen uniformly with respect to z for z near z() (notice that, 
if £z(<!(•}x<> + ft) ̂  ^ tnc- sign of this function changes at z = za, hence the condition 
on (). 

If we consider the ease when z = za is fixed, then the only condition is A / —1 
when 4„(^,c, + ft) = °- D 

We will now show that the L2 complexes ^2){JT\VZ) and &'2)(H,T>Za) have 
no .yf/2. By Lemma 6.2.11 we are reduced to showing that, for any ft with 
4„ (<//*,£, + 7) = 0, any section f\r, z)e'fiLk f A f of J^(22)( '̂) with ^ - 1 belongs 
to the image* of T)z. We will distinguish two cases. 

(1) If (qj.c,,, + ft) * -o / 0. we remark that 

d" f(r.z) т ) , dt dt i „ . L.. dt dt 

and a similar computation for d''if'(/'. z)dt It), so that 

(zd' + d")(f(r<z)z dt 
T nr. 4 ) 0. 

We will prove* the assertion by increasing induction on L It is true* for ( <C 0. as 
the* section is the* equal to 0. For arbitrary £ 7 —1. it is enough to show that 
01 niip(/('/', z)(,-\i ( k(ttft) belongs to lva(Dz. This is true by induction for the part 
/(/•. '.)\(('ilJt.) j A | . Consider now the image under P(t.z)dt/t and its coefficient 
on r ; . A , f A f By (6.2.7). 

if 7 ^ ft, the coefficient is p(t, z)f(r,z) if Cz0(<hX<>+l) > ̂ „(<//3.c„+#) = °-
and t.p(t. z)f(t\ z) if «c„ ((/->.+ ") ^ PztA(Li-C„, + — «̂ f°r Koine holomorphic 
function p(t.z). In the* first case, we* have £z,A(hX<> + 1') ^ ]0- 1[< so we apply 
Lemma 6.2.11. In the second case, we have t:z<,((hXo + l) = ̂  an(l the coefficient 
in the Fourier series of f/;(f. z)f(r, z) corresponding to n = 0 is zero, so we* can 
apply the same lemma. 

If -> = ft. the coefficient is p(t.z)f(r.z) if A ̂  A - 3 and tp(t. z)f{r. z) if 
A ^ A —2. In the second case*, the* coefficient in the Fourier series of tp(t, z)f(r\ z) 
corresponding to n — 0 is zero, so we can apply Lemma 6.2.11. In the first 
case, we* apply the same argument to (/;(f, z) — p((), z))f(r\ z), and the inductive 
assumption for p({). z)f(r. z). 

(2) If ((/ j.<t, + /i) * Co = 0. knowing that £z„(cltf.C> + ^) = ^ ̂  follows from Lemma 
0.9.2 that we have in fact qfj.<;0 + ft = 0. and therefore* q^^(i = 0 and = 0 by definition 
of q:j.c,0- hence {q^.c,,, + /i) * £ = 0. As we* also have* £z(qtj^a ft- ft) = 0. we can reduce 
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to d = —I (see the proof of Lemma 6.2.11). We write 

/ ( ' • • • - > < ) . I.A­
rft 

т 
dt 
t D &{U.yS!.T>z) dt 

7 &{U.yS!.T>z) 
dt 
t 
x ^, , , dt dt 

-f(r.z)P(t.z)e{)AÂ.jAj. 

as Ye(u.A- = rn. i./,- If is therefore enough to show that f(r.z)P(t.z)e[]A t . y A y 
belongs to the image of T)z. which is proven as above using Lemma 6.2.11 and (6.2.7). 

6.2.e. Proof of Theorem 6.2.5: computation of 'l. — By the result of § 6.2.d, 
the L2 complex is quasi-isomorphic to the complex 

(6.2.12) 0 —> &{U.yS!.T>z) - ^ - > KerT>\ —> 0. 

Lemma 6.2.13. Any local section tpd.t/t + çdt/t of Ker Vl C .£?(!2)(jr. T>z) can be 

written as the sum of a term in Im T)z and a term in V"z{^[l-{)\.ye.V"z)).  

Proof Write 
dt\ 

x ^, 
V"z{^[l-{)\.ye.V"z)). z,) kfk 

and put (̂o.o) (resp. ^p^()A))) the sum of terms for which £z<)((liX<> + /̂ ) = ^ and n = 0 
(resp. the sum of the other terms). We claim that there exists a section r/̂ (o.o) of 
^'))('^\ 1>z) such that D'///̂ (o.o) = (f^(0A))dl/t. First, the existence of ij^(o.o) in 
^^(.W. T)"z). i.e.. without taking care of Dlz/^oA)). is obtained as in Lemma 6.2.11. 

We wish to show that Tt'jq^^)^ belongs to ,^f^{)\-/^') or. as we have1 seen, that 

^diag'teco.o) belongs to .̂ ({21)"f))(-̂ ). It is therefore enough to show that the ^ ( 0 , 0 ) -

part of //̂ (0,o) belongs to / / ' ^ (-^ ). We have1 

^ (̂ 7 (̂0,0)) ^'0)(.J^. 2X') I / dt\ 

V"z{^[l-{)\.ye.V"z)). .£?(!2)(jr. vz \y(U.Q) y J 

^ ('•>((>.0) y ) (^'0)(.J^. 2X') vU-.nilpY'(0.0)y j + (0. 0)-terms. 

By considering the ^ ( 0 . 0)-part wo get 

(^^(o.()))/(0,)) ^" (VV(O.O)-T1) ((_)c,riilpV(0.())y) ̂ (0.0)" 
According to Lemma 6.2.11. the second term of the right-hand side1 is a section of 
V"z{^[l-{)\.ye.V"z)). We conclude that then1 exists v € ^'0)(.J^. 2X') such that 

(^^(o.()))/(0,)) = ^ + Û; 
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with oo = f k ooijj^.(jf^"^\. dt and each oo^j„k is a distribution such that djujpj,k = 0. 
i.e., T>"uO = 0; hence each uojj.k i« a holomorphic function. We note now that each 
OO^JM^JI dt belongs to j2flV°\-^. £>")• Indeed, the L2 condition is that 

\t^e.(.k\ ||^,7!A-II : /s(9,.o,+^) + iL(r//2 ^ , A.| G Llc(dOdr/r), 

which is clearly satisfied as 

/0 r 2 M , , . ^ ) + 2 L ( r ) 

(Ir 
V < + ЭС 

if z is sufficiently close* to za so that l:z((lrf,cn + /̂ ) > —1 (recall that /.~0(r//AG> + /̂ ) £ 
[0. 1[). We can now conclude* that T>'zV^(o.o) *s a section oi .5?^^ {M') and that 

dt dt 
1>'7 + ÇT 

'-^'//(n.n) + V T 
dt 

(̂o.o) -=-; 
in other words, we* are reduced to the* case when <p — ̂ (o,o)-

Let 7 be such that (</>>,c, +7) = 0. We* claim that, for any A £ Z and k, 
the coefficient (P • < )̂7,a,k,o i>s a linear combination of terms op^j^.o with (J ̂  A + 3, 
coefficients being holomorphic functions of z in a neighbourhood of c„. 

Indeed, by (6.2.7) and by the assumption op = (p({) 0\, we have 

^(/h.A.K,o(r,.) y, x, r 
//;(/*. .:)^ i/.A-.o if ft / 7 or ,/i = 7 anel < A ! 2 

p(t, z)(f(jj,k..o if 7 = 7 and A ^ A + 3, 

for some holomorphic function /;(/. ; ) (depending on /i, 7, L A, A;, «). Therefore, a 
nonzero coefficient not depe*iiding 011 0 in the* Fourier expansion appears only in the 
second ease, by taking /;((), ^y?/^ .A\o-

Consider now the component on e^'x\.(-j- A ^ of the relation T)"^ d,t/t) + 
Vz(^dt/t) = 0. when (;Z(>(<li.C> + 7) = 0. We get 

(6.2.14) 1 
2 'à,.Vva.k,o('>'< ~) 

( ^ r i ~ * ̂ )(̂ ;.A./,•.()(/•• -)) ' <p7,A + 2,K.,()(r, - ) + ( ^ * V̂ )7,A,k,0-

We know, by Lemma 0.9.2, that either 7 * za 7̂  0, so 7 * 2 is invertible* for 2 near z0, 
or 7 - 0 anel hence 7 • z = 0. We will show by decreasing induction on A that 

-r~- .A./.-.0 ( I - -)^7(.Xl 
r/7 
7 ^ ( / h . A . K , o ( r , . ) e ; ( x l ) 

1 
2 •c)r(?/7,A,K,()(rS^))e,|xi T 

for some section //7,a,k,()(^S-)^^ A K OI*'^72)(^\^z)- This will be enough to conclude 
the proof of the lemma. 

Assume first that 7 • z() ^ 0. Then (6.2.14) allows us to write 

(7 * 2)(^7.a.k.() 
1 
2 rdr VS.A.K.C) - ~ 7̂.A.k...() ~ 

m 2̂ 
C7»(z)ty>,A+m.K.O 
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with ('rn(z) holomorphic near za and c2 = 1. Let us denote by (7 * ¿')y/7.A.h\o the term 
between brackets. The L2 condition to be satisfied is 

(6.2.15) |'/h.A.K.()(^^)|/^(i/---°'+")L(/-)A/2-1 G L2H.(dr/r) 

and we have* by assumption 

|VS.A.k.(.('-.=)|'-í=("^•+-'L(/-)V2 6 £L(rfr/r) 

|^-.A.h,o(r. ''L(r)L(r)A/2 G A/2 G ¿L-(*-/v)L(r)A/2 G 

I'h,A+,„.„,()('•• =)|r''("-<»+^L(r)(A+""/2~1 G Lijdr/r) for any m > 2. 

Clearlv. tht'sc conditions imply (G.2.15). Moreover, we have 

,̂наК('ь.А.,.о'ч.11) -rdr + о * z ('/~,-A.».0)<S,A.k. J 

'-..A./.-.u 
~~ 

(~)'/-..Л + -т.л-,() dts 
T's 

dt 

T' 
and this satisfies the condition as /// ^ 2. 

Consider now the case* when 7 — 0. Then (6.2.14) allows us to write, with a small 
change* of notation. 

'•'0.A-2. 1 
2 

r Q r '•'0.A-2.K.O ~~ -yÜ.A-2.K.() " 
/// ^ 1 

r,„(.~)//().A+m.K.() 

Let us denote by //O.A.k.O fb^ term between brackets. We have by assumption 

|v(),A-2.K.o(/'.~)|L(/-)(A-2,/2 G I2or(^7'') 

|V().A-2.k.()(/-^)|L(/")ÍA~2,/2 G ¿L-U/r/r) 

|//ü.A + m.K.()(/-.̂ )|L(/-)(A+m,/2"1 G ¿2nc.(¿/'//-) for any //; ^ 1. 

Clearly, these conditions imply the* L2 condition for //o.A.K.oro A\,-- namely 

|/A).A.,-.u('-.=)|L(r)A/--' G ¿n,,(f/'V'-)-

Moreover, we* have* 

©;.cliaJ//ü.A.K.O^:i.) 1 
2 

/'̂ •(//o.A.K.oĵ o.A.K y - ^Ü.A.k.O^O.A.k y • 

which is L2 by assumption. 

6.2.L End of the proof of Theorem 6.2.5. — First, it easily follows from Lemma 
6.2.13 that the natural inclusion of the* complex 

0 —• Ker D"° —̂> /Al:{)\:/r) fl Ke*rD* —> 0 

in the complex (6.2.12) is a quasi-isoniorphism. We* note that .5?^ ' (W) n Ker = 
^((9),0)(-^;) H Kerl)"1. A section of each of the* sheaves in this complex is therefore 
holomorphic away from / = 0. by the* usual Dolbeault-Grothendieck lemma. The* I2 
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condition implies that the coefficients in the bases e^c,,) or ef^Za) d.t/t have moderate 
growth at t = 0. hence are meromorphic. The complex DR(, fY)(2) *s therefore isomor­
phic to the previous compk-x shifted by 1. the mor])hism being given by the identity 
on the term of degree — 1 and by the multiplication by z (the resealmg) on the term 
of degree 0. • 

6.2.g. End of the proof of Theorem 6.1.1 on a Riemann surface 

Strictness of f\-7. Let (.7.V) = (,//.,//. C. Id) be a polarized twistor regular 
.^v-module of weight 0. as in Theorem 6.1.1. 

Corollary 6.2.16. The complex f\.// is strict. 

Proof. Argue as in the proof of Hodge-Simpson Theorem 2.2.4. For any z() G 
f\AIZ(> has finite dimensional cohomology. It follows from Proposition 6.2.4(1) that 
each DR(i\/c<J(2) has finite dimensional hypercohomology on À" and. by Theorem 
6.2.5. so does j *(.//. One can therefore apply Hodge Theory to the complete 
manifold X* and the Laplace operator AC). As this operator is essentially indepen­
dent of z() by (2.2.5). -j0-hariiionic sections are c-harmoiiic and XL-closed for any z. 
Moreover, they have finite dimension. 

As f].// has (Oon-cohcront cohomology. we can now conclude with the same argu­
ment as in the smooth case1 (see the part of the proof of the Hodge-Shnpson Theorem 
2.2.4 concerning strictness). • 

Remarks 6.2.17 

(1) Let AI be an irreducible holonomic rS\-module with regular singularities. We 
have DIli\/jV* — L[l]. where L is an irreducible local system on A*, and DR M — 
.;*L[1] is the intersection complex attached to the shifted local system DR Al \ • — L[l}. 
if j : X* — X \ P X denotes the inclusion. In particular, DR AI has cohomology 
in degree —I only. Consequently, if AI ^ O \ • i.e.. if L ^ Cv*, we have 

H l(X.DU AI) = It{){X.j,L) = 0. 

and. by Poincaré duality and using that the dual AIV is also irreducible, we have 
Hl {X. DR AI) = 0. Therefore. f)M = f\]Af. 

(2) Let now -7 — {.//..//.(1. Id ) be a polarized twistor regular .^v-module of 
weight 0. If we assume that -7 is simple and has strict support A', and if .7 is 
not equal to the twistor .^-module associated to O y. then fj-7 = fì]-'7: indetti, by 
Remark 4.2.14. we know that the restriction AI of .// at z() = I is simple and not 
equal to 0\\ then, by the remark above, the restriction f\M at z() = 1 of f\.// has 
cohomology in degree 0 only: as f\.// is strict, it must have cohomology in degree 0 
only. We note also that all sections of / j \ 7/ are primitive with respect to the* Lefschetz 
morphism associated to any metric on X. 

SOCIHTK M ATHÉM ATIQri-; DK KRA.MCK 200." 



170 CHAPTER (j. THE DECOMPOSITION THEOREM 

The twistor condition. We can assume that & is simple and has strict support X, 
and we also assume that f7 is not equal to the twistor ^-module associated to 0\r 
(otherwise the result is clear). We want to prove that the twistor condition is satisfied 
for f\-T — /|3/7. First, the harmonic sections Harm1 (X, H) with respect to any 
Az<> form a lattice in H° (X. DR(,-#)(2)): this is proven 1 as in § 2.2.1). replacing the 

de Rham or Dolbeault complex with the* L2 complex, anel using Theorem 6.2.5. 
Then the polarization property is proved as in §2.2.1). with the simplification that all 
harmonic sections are* primitive*. • 

6.3. Proof of (G.l.l)^,^,,, (0.1.1)f„ + 1.,„ + ]) 
Let / : X —>• Y be a projective morphism between complex manifolds anel let 

(/7,,yy) = (.//..//.( ' . Icl) be an object of MT(r)(X. ())'' (it is easy to reduce to the 
case of weight 0 by a Tate* twist). We* assume that it has strict support a closed 
irreducible analytic set Z C X. Put // -f 1 = dim Z and m + 1 = elim/(Z). Fix a 
relatively ample line bundle on X anel let c be* its Chern class. 

We know by Corollary 1.4.6 that the* /•!. // are* holonomic. Le*t t be a holomorphic 
function on an open se*t V C Y anel put g = t o / : f~l(V) —> C. We assume that 
{/ = 0} n f(Z) has everywhere* codimension one in f(Z). We will now show that the 
j}.W are strictly S-decomposable along t — 0. by proving that the other conditions 
fe)r a twistor object are* also satisfied. 

Consider first (dif^g^../T for R.e(cv) E [—1.0[ (resp. '•D//j0<<7.o-'̂ ) with its nilpote*nt 
endomorphism /|- Y anel monodromy filtration \\%(f\- f )• anel the nilpotent Lefschetz 
endomorphism .CZJC. 

Claim 6.3.1. For any o with Re a G [—!.()[. the object 

<V [gif1/|*,y.«(-^)-KiVM/|*s.,>(-^)- fr 

is an object of MLT(r)(K «•:-1.1)'''1. Similarly. 

gif1/|*,y.«(-^)-KiVM/|*s.,>(-^)-(/7,,yy) L r  

is an object of MLT(r) (V, w; -1. l)(p). 

Sketch of proof. By the inductive assumption for cv / 0 anel using Corollary 4.2.9 
if a = 0, we know that 

e Г / ' g i f Ф и . „ ( . r ) , . « g i f Ч , . „ ( . У ) , / t U \ j í ? (K «•:-1.1)'''1. 

(resp. ...) is an object of MLT(l)(K w: - 1 . 1 (p). Then we can apply Corollary 4.2.11. 

ASTERISQUE 300 



6.4. PROOF OF (f).l.1)(<-.(„_n.,,) & ((6.1.1)(] ()) WITH Supp .9 SMOOTH) ((>.1.1)(„ ()) 171 

As a consequence, we get the strictness of f'^ihaY/ for any a with Re a G [—1, ()[, 
hence that of j^il\jAy,W for any rv 0 N. as this is a local property with respect to z. 
Similarly, we get the strictness of f^ihgA). //. hence that of f^ij\j^.// for any cv G N. 

Applying Theorem 3.3.15. we conclude that the are regular and strictly spe­
cializable along t — 0. By Corollary 3.G.35. we have f^g^n.7 — ^iAXfly7 for any n 
with Ren G [—1.()[ and f^cj)gA)f7 — </>t .of'y'7. 

Now. Condition (MLT>o) along t = 0 is satisfied for q)?;/|/;F, because of the 
claim. According to Remark 3.6.22. strict S-decomposability along t = 0 follows 
then from Proposition 4.2.10. i.e.. the analogue of Proposition 2.1.19: indeed, 
as /,'. \ commutes with 77JC, it is enough to prove the S-decomposability of the 
primitive (relative1 to .$fr) modules /\fl.. //: apply then Proposition 4.2.10 to the 
objects gr^v^Pfii.T.y) = grMP/t'0,;.-1(/7..y') and gi-M<j>aA)Pf;(.?..</') = 
grMPf̂ 0gA)(.7, .cy'). which arc polarized graded Lefschetz objects according to 
the claim, to got. that grM e/̂ .o P / j — Im gr Y>an (& Ker gr Va,r use then that 
can : (Vv-iP/f# .M.) - (<^.0P/f # . M._,) and var : (6gA)Pfl,*7. M.) 
(V'V/,_. j P / | « M . _ i) are1 strictly coni])atible with the monodromy filtrations 
(cf. [56. Lemma 5.1.12]) to get that o</A)PfL // = Im can ' j > Ker var. hence the 
S-docomposability of f\.,77 and then, as in Proposition 3.5.8. that of fyf. • 

6.4. Proof of (6.1.1)̂ <c(„_i) o) and ((6.1.1)^ {y with Supp L7 smooth) 
(6.1.1)(//(}) for /; ^ 1 

We will argue as in [56. § 5.3.8] by using a Lefschetz pencil. Let (:7, Y) be a po­
larized regular twistor .^-module of weight w on a smooth complex projective variety 
and let c be the Chern class of an ample lino bundle on X. Wc assume that .7 has 
strict support Z. which is an irreducible closed n-dimensional algebraic subset of X 
(n > 1). It is not restrictive1 to assume that c is very ampk1, so that, by Kaslhwara's 
equivalence, we can further assume that X = P^ and c = C\(ff^N (1)). Choose a 
generic pencil of hyperplanes in PN and denote by X C X x P1- the blowing up of FN 
along the axis A of the pencil. We have the following diagram: 

(6.4.1) 
A x P1 = A 

We note also that the restriction of TT to any / 1 (t) is an isomorphism onto the 
corresponding hyperplane in X. Put c! — c\(ff¥\ (I)). Using R,emark 1.6.8. we will 
assume that /7 has weight w = 0 and that (.7.//) = ((.#.,/f. C). (Id. Id)). 

The proof will take five steps: 
(1) We show that TT+(Y,Y) satisfies (HSD), (REG), (MT>0) and (MTP>0) along 

f~x(t), for any t eF\ 
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Choose the pencil generic enough so that the axis A of the pencil is noncharac­
teristic with respect to . Then the* inclusion 7 : X A" x P1 is noncharacteristic 
for \)' .// (cf. §3.7): this is clear away from .4: if the* characteristic variety A of ,/f is 
contained in a union of sets T^.X x with Z, C Z closed, alge*braie- and irreducible, 
then, if A is noncharacteristic with respect to each Z-}. so is A and therefore A" near 
any point of A- with respect to each Z, x P1. Tin* characteristic variety of 7R+,# is 
contained in the union of sets T~ X x wlu*re Z, is the blow-up of Z, along A H Z,. 

Moreover, for any t G P1. the inclusion A x {t} c—• A is noncharacteristic for 
7T+,# = 7 ' / / . / / : by the* choice* of .4. for any Z, as above*, the* intersection of 
T*x{/}(AxP[) with 7Z x ;:; (AxP1) is contained in the zero-sect ion of 7^*( A x P1). As 
we have T*Xx{t}(X xP1) = (r*7)"17;*x{/} A. it follows that T*Xx{l]XnT% X C T^X. 

This impli(*s that, for any t G P1. the* inclusion f~~x(t) c—> X is noneharact erist ic 
for 7r+,# ii(*ar any point (.r0.f) G A x {r}. 

Therefore. ne*ar each point .v() of the axis of the* pencil, c/• / " ' ( • / . - / ) is identihed 
with i\j(.7. V). where* g — 0 is a local equation of the livperplaiu* / = t near :r(l\ argue* 
as in the beginning of the* proof of Lemma 3.7.4 to show that TT . // is specializable 
along / = t anel that there* exists a good Infiltration for which grLj-^ = ^tyZ/\ 
this module is equal to ft = <.\y. // as .// is assume*d to be strictly nonchar­
acteristic with respect to (j = 0: it follows that ~ ' . // is so with respect to / = /: a 
similar argument is use*el to identify the* sesquilinear pairings: the* iele*ntifie'ation of the 
ses({uilinear dualities eause*s no problem, as they all are* equal to (Id. lei). 

Using the* idenfifieation above* near the* axis, and the* properties assume*d for V) 
on anel away from the* axis, we* get all properties for TT4 (.7. V) along any fibre / 1 (t) 
(regularity follows from Lemma 3.7.1). This concludes (1). 

(2) As A cuts Z in codimension 2. the support of ~ . // is the* blow-TIP Z of Z anel 
the* fibres of <dl have* dimension // — 1. According to Step (1) and to Assumption 
(6.l.l)(n__l ()). we* can argue* as in §0.3 to obtain that ( ,-/'. TT ' (-T. •/ ). .c/'r) is an 
object of the category AfLT(r) (P1. w: 1)(,)) with ir = 0. Let us denote by a. the 
constant map on the* space1 •. Them, by assumption (i.e.. by the* result of §0.2). 
(G-y 6>/ + 7r+ (.7. •'/). ,£fr. .C/J(.') is a polarizexl bigraele*cl Le*fse-he*tz twistor structure 
of weight w = 0. It. follows from Le*mma 2.1.20 that 

( J A( : r(l 11 „ft'. -• .:/))..</•. , .</'<,) 

is a pe)larize*el graeleel Lefselietz twistor structure e>f we*ight w — 0. By using the* same 
arguments as in [15]. one* shows that the* Le*ray spectral se*e{uene-e* 

/))..</•. , .</'<,) (r*7)"17;*x{ 

ele*gene*rate*s at E-2- 1 here*fore*. the* Lerav filtration Le*r* aft 7r+ -7 attaelieel to this 
spe*ctral seemenee* satisfies in partieailar the fbllenving pre)pe*rties: 
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(a) £T{(n.4+7r+.T = +{(n.4+7r+.T = 0 for j / -1,0. 1; 
(b) .7;A~' : Lor1 n vA' TT"-/ -> Lor1 r/A72 TT+-'7(A- + 1) is an isomorphism for 

any A' 7 0 (bocauso LeT1 = gr^,.); 
(o) Ker .77 : ak~ tt+:7 a1'-'2-' .7(1) is contained in Lor° ak- n+ .7 for 

any A' (bocauso .2f,.> : gr̂ (!rc/A~ 7r+/7 —> gr^,///^27r+-7(1) is an isomorphism). 
We conclude from (2a) that the object (QA-<7.a~ +TT+-7,^. + .£7) is an (extension of 

graded Lefschetz twistor structures of weight w = 0 and. by Remark 2.1.18, is itself 
such an object (this argument is similar to that used in [28. Th.5.2]). 

(3) We now prove that 7r+7r7.7 decomposes as a direct sum, one summand be­
ing -7. and moreover that (-7.-7) is a direct summand of (tt{^tt+ -'7. 7r+7r+.y'). We 
follow the proof given in [56. ^5.3.9]. 

Everything has to be done along A only, as n is an isomorphism outside of A. 
Let (j he a local equation of a hyperplane containing A. Then 7r7# is strictly non-
characteristic along both components of fj o TT = 0 and their intersections, so we 
can apply Lemma 3.7.9. Arguing as in Claim 6.3.1 (this is permissible due to the 
inductive assumption (6.1.1)(<(//_]) o) • as the fibres of n : Z Z have dimension 
^ // - 1). we conclude that (fyini+7r+ (-7. V). 7/7) satisfies (HSD). (REG). (MLT>()) 
and (J\ILTP>()) (sex1 Loumia 4.2.7) along <y = 0. Wo can cover A by finitely many open 
sots where we can apply the1 previous argument. After [15]. the complex tt+tt+ .7 de­
composes as ;.b;7r+7r~!~.'7[—/] and clearly 7r̂ 7r+-7 is supported on A if / =̂  0. Wo note1 
that, as Y2 = 0. 7[7r+(-7.-7) = P7i\tt+ (-7. .9) satisfies (HSD). (REG). (MT>()) 
and (MTP>o) along a = 0. Wo will identify (-7.-7) with a direct summand of it. 

Put ir(\n + .7 = (.//()..//(). Co). It decomposes as (V/,..//,. C, ) <.|. (VA../A. Cj) 
with . //•_> supported on A and . h a s no submodule nor quotient supported on A 
(use1 the S-decomposability along any q = 0 as above). After lemma 3.7.5. there1 is an 
adjunction morphism .7/. —• ,<//(). This morphism is an isomorphisni away from A, and 
is injective. as .7/ has no submodule1 supported on A. Its image1 is thus contained in 
. # i . and is equal to ,7/\. as , 7/\ has no quotient supported on A. Therefore. . # — ,7f\. 
That C = C\ follows from Proposition 3.7.6. ap])lieid to any germ of hyperplane 
containing A. It remains to consider the1 polarization: notice that ~ " -'/ — (Id. Id), 
and that 7r̂ 7r+.7 = (Id. Id), as (TT^TT+.T)* = 7r<[. ( T7~ . 7 ) * = TT^TT+.T: hence the 
identification of the1 polarizations. 

(4) As 7£c> vanishes on -7. we1 conclude from Stop (3) that (av.+ -7. 7ZJC) is a direct 
summand of (a ^ ~ ' .7. .7;. + .77)- From Stcq> (2) and [15] we1 have1 a (non canon­
ical) decomposition a ^+n+-7 ~ ;i /.fA +7r+ -7[—A']. Therefore, this decomposition 
can bo chosen to induce a decomposition ei\^77 ~ /,e/Av . -7r A 7 In particular. 
(^A'f'v +-7, ,7J.) is a graded Lefschetz twistor structure of weight w — 0. being a 
direct summand of the graded Lefschetz twistor structure (QA:«A~ :7 ...7JC + ,77). 
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(5) It remains to show the polarization property. In order to do so, we will use 
the Fact 2.1.9 in its graded Lefschetz form given by Remark 2.1.16. Let us denote by 
P'aft-+(0A./{>+.T) the ^-primitive part oUi%x +{^kfk

+n+-T). that is. the kernel of 
.ifr> acting on the* previous space. Then Pq '= ( P ' a ^ i + (cba-/+7T+ ), j£fr) remains a 
(simply) graded Lefschetz twistor structure of weight tr = 0, polarizexl by the family 
of sesquilinear dualities all, + fk7r^-7'. 

According to Remark 2.1.16, we get the desired property if we show that 
(a) (©A:aA

x- + , .Sfr) is a. sub graded Lefschetz twistor structure of Pq, 
(b) the polarization of Pq induces the family (ak

x + -7y)k-
By definition, for k ^ 0. P(ix\7 is the kernel of ^ A ' + J acting on •/ V

A'. -7. It fol­
lows from (2b) that /\/ V

A . J n Ler1 aftk'+n+:7 = {()}. On the other hand, e/ v

A ' t .7 is 
contained in Ler° (i~gk 7T+/7* as ,£fr/ vanishes em nx

k

+.'T anel accoreling to (2c). There­
fore, Pax

k

+-T is containeel in g'i'L(M.̂ "~A' TT+ and me)re pre*cise*ly in the biprimitive 
part KerJ^./ n K e r ^ ' + 1 c «|, ^/7/A 'TT+.7. This gives (5a). 

As we* assume* that / = (Iel. Id) anel -7 = -7*. the seseniilinê ar duality ak

x + J/' is 
nothing but the ielentification {ak

x +-7)* = a~x

k^.7 eleeluceel from (1.6.14). Similarly, 
the* seseaiilinear eluality on Pq is ineluceel from the* iclc*iitificatioii (all, + , / + 7 r + . ' 7 ) * — 
a|p, +f+k7r+:7. That the fbrme*r ide*ntification is ineluce*el by the latter is a consequence 
of Lemma 1.6.17(2) anel (3). • 

6.5. Proof of Theorem 6.1.3 

We will prove* it by induction on elim A. The result is clear when elim X — 0. It is 
easy if elim A = 1: by Remark 4.1.7, it is enough to verify Properties (HSD), (REG). 
(MT>o) anel (MTP>o) along any ceMHxlinate; as ne*arby cycles rexluce* then to e)relinary 
restriction, the result is ele*ar. 

Let elim A = n ^ 2 anel let (/7-9) be* a smooth twistor strue'ture of weight w on A. 
It is enough to consiele*r the case when w — 0 anel ,9J — (Iel, Id). By the computation 
of Proposition 3.8.1 anel by ineluetion on elim A", we* know that Properties (HSD). 
(REG). (MT>o) anel (MTP > ( )) are* satisfied along any fune'tion like* x\ • • • xv and, by 
Remark 4.1.7, along any monomial (.xq • • -xp)r. 

Let t : U —> C be any nemconstant holemiorphic function em a connected open 
set U of A". Let n : U —+ U be a rese l̂ution of singularities of t: there exist local 
coordinates near each point of U se> that t o TT is a monemiial when expressed in these 
coordinates. It is a projective* morphism. Chexxse* a re*lative*ly ample line bunelle em U 
anel demote by c its Chern class. We assume* that Properties (HSD). (REG). (MT>o) 
anel (MTP>o) are satisfiexl for the* inve*rse image n+ -7 along ton = 0. Then, by 
the argument of §6.3, they are* satisfiexl for ^in'+n+.T along / = 0. In particular. 
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TT\TT+ 77 is strictly S-(leconiposable along t = 0. We denote by .7' = 
its coniponei.it not supported by t = 0. Remark that, for Re(o) £ [—1.()[, we have 
^t.n^' = /̂.a7r+7r+-7. Remark also that 7£c acts by 0 on /7', as it acts by 0 on -7 
and .7 = T away from t = 0. It follows that (-7'..7' = (Id. Id)) satisfies (HSD). 
(REG), (MT>0) and (MTP>0) along t = 0. 

The natural adjunction morphism —» TT^TT^ ,77 of Lemma 3.7.5 is injective, as 
is ĉ;>> -locally free, therefore it is an isomorphism onto Moreover. C" = C + C{, 

where C\ takes values in distributions supported on t = 0. Therefore1, for Re(a) £ 
[-1,0[, we have V'/.̂ C" = 7/.aC, and (/7. ,7) satisfies (HSD), (REG). (MT>0) and 
(MTP>()) along t = 0. 

To end the proof, we now have to consider the case1 when the function / is any 
monomial. By a multi-cyclic covering, we can reduce this monomial to a power 
(x\ • • • xp)r and we can apply the first part of the proof to the reduced monomial. We 
are therefore reduced to proving that, if TT is the covering 

X = C" Y = C" 
(•ri.:r2 Xn) i • (Xki = y\.X2 Vk) 

then, if (-7.-7) is a smooth polarized twistor structure on Y. it is a direct summand 
of 7r̂ 7r+(-7, ,7). Indeed, we can assume (by induction on the number of cyclic cov­
erings needed), that 7r+(-7.-7) satisfies (HSD). (REG). (MT>()) and (MTP>0) along 
t o tt = 0. Wo will conclude1 as above that TT+TT+(-7. .7') does so along t = 0. and 
therefore so does (-7.-7). 

Put 7r* f7\?• = 7 (7 whore <7 denotes the sheaf of functions having trace1 zero 
along TT. Similarly, put 

— :X) ~-.-0.r (l.v\ 
ГА* • si1 ГА* 7 7r*^V V'/.^C" = 7/.aC 

whore i1{ is the sheaf of relative 1-forms having trace 0 along IT and f7$-'[x\\^k-2 *s tlio 
sheaf of polynomials of degree 7 A' — 2 in x\ with coefficients depending on .7*2 v„ 
only. We1 note that the relative differential e/ : © <7 —> ( —- 7 ^ 7 ] 0 is 
diagonal with respect to the direct sum decomposition. 

We1 will compute TT+ by using the diagram 

X c - > CxX > Y 

U'i A\rA' 1 x*',») '—> U i'-.r-i ï'n) I—> in. A\rA' 1 x . ,xn). 
Then, TT^ ,77 = <7R £ ^ - 1 ^ 7r with its left /^•-structure (given by o\r, (1 7m) = 
A\rA' 1 x ///. c/. §1.4.1)). and 7r+7r7# is the complex 

V'/.^C" = 7/.aC .#[r]. 7 7r*^V .#[r]. 
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with 
dr 

Vzv(f <8> nirJ) = (If r/j m.rJ + — '; 
/ S ( 3 9 , m r ' - m r ' + ' ) ] . 

As Vw is compatible with the direct sum decomposition corresponding to the trace, 
we have a decomposition of -modules 

• x')f(xi. .r')f/.(-j'(/:+c, 
We will now show that this decomposition is orthogonal with respect to C ^ 
TT^TT^C. It is enough to show that, for compactly supported (n. n) forms ip(yi.x') — 
X(yi.r')dyi Adyx r\U%2d*J A^.c 

(6.5.1) ^+(/:+c,)° m] ; (1 m] d.v\ 
ax 

if % //)).̂ (//!..r/) 0 
if /' e C? and. for 0 ^ (' <: k-2. 
(6.5.2) A c/Jj dx} 

2 
(1» w) dx 

dx 
{.v[g{.v') ftp, (1» w) = 0. 

The left-hand term of (6.5.1) is. up to constants. 

C(m.p) ip(yi.x')f (x), x) dx'i A dxi A dtji A dijl A n>=2 dJ'.i A '^''i 
Vzv(f <8> nirJ 

= C(m./7) x (y- x')f(xi. .r')f/.(-j' A c/Jj % 

.7 = 2 
r/.ry A /7.r, = 0 

as tiv / = 0. The argument for (6.5.2) is similar. 
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CHAPTER 7 

INTEGRABILITY 

This chapter is concerned with the notion of integrability of a twistor í/̂ -moelule, 
a notion which is directly inspired from [30]. where it is called a CV-structure^. 

We define the* notion of integrability of a -module. We analyze the behaviour of 
such a notion with respect to various functors, like direct image* by a proper morphism, 
inverse image, specialization. This notion is then extended to the category <j#- Triples, 
i.e.. we elefine the notion of integrability of a sesquilinear pairing between integrable 
/tfj--modules. We* also analyze* its behaviemr with respect to the previous functors 
extended to the category Triples. Last, we extend Theorems 6.1.1 anel 6.1.3 to the 
corresponding categories of integrable objects. 

It could seem a priori that this notion is useless when the* underlying manifold is 
projective or affine: a variation of smooth polarizable* twistor structures on a com­
pact Kahler manifold (i.e., a flat, holomorphic vector bundle with a harmonic metric) 
is integrable if and only if it underlies a variation of polarized Hodge1 strue'tures. 
I alse) conjecture that the* same result liolds for a flat holemiorphic vecte)r bunelle on 
a pmictureel compact Riemiann surface with a tame harmonic metric. In any case, 
a consequence of this integrability property is that, in the* tame* or regular case, the 
eigenvalues e)f le>cal memexiremiies have abseflute value equal te> one. 

Nevertheless, this integrability prope*rty seems te> be* the* right generalization of the 
notiem e>f a variatie)ii e)f polarizeel Hexlge* structure* whe*n irregular singularities oceair. 

7.1. Integrable ¡tf$ -modules and integrable triples 

7.1.a. Integrable ¿#^ -modules. — Let , # be a Ü$ -module eciuippeel with a 
flat relative connection V,r/(2U as above. We* say that is integrable if V#//c»() 

conies from a (absolute*) flat meromorphic connection V having Poincaré rank one 
along z — 0, i.e.. such that zV has coefficients in the sheaf of logarithmic 1-forms 

(1)uCV" is for Cecotti-Vafa. 



178 CHAPTER. 7. INTEGRABILITY 

Ql^-(log{z = ()}), i.e.. has holomorphic coefficients when expressed in any local basis 
dx \..... dxri. dz/z. 

In the following, we demote1 by 0Z the operator z2Dz. using here the notion of 
geometric conjugation of § 1.5.a. This should not be confused with the corresponding 
operator using the usual conjugation on z. The latter will not be usee! in this chapter. 
We consider the sheaf of rings !tf• (0Z) generated by ftfand dz. with the following 
commutation relations: 

|3S.3„J - s 9 „ . («,./(:...•)] ,2 Of 
dz 

z,.г). 

Let , # be a /^,^--module. We say that in integrable if the /^.^ -structure extends 
to a (<9¿)-structure; in other words, if .7/ is equipped with a (fx-linear operator 
Dz : . // —> . //. which satisfies the1 previous commutation relations with the action of 
itf;?-. The integrable /^jr-modules are the ¿>V-modules equipped with an absolute 
flat connection having Poincare rank e)nei along z — {). 

We note that, if , # admits a ¿L-action. it admits a family of such actions 
parametrized by C: for A £ C and in G .//. put Oz*\rn = (0Z — Xz)m, 

Examples 7.1.1 

(1 ) Let , / / be a locally free1 Ù'^.--module equipped with a flat moroinorphic con­
nection V having pole along the1 divisor z = 0 at most, and having Poincaré rank 
one there1 (i.e.. :V has logarithmic poles along z — 0 ) . Then is a. coherent holo­
nomic <^;JT-module (with characteristic variety equal to the zero section in the relative 
cotangent bundle (T*X) x Qo). Moreover, it is integrable by definition. 

Examples of such objects are constructed in [23] by partial Fourier transform of 
regular holonomic modules on X x A1, equipped with a lattice (i.e.. a ^-coherent 
submodule) when a noncharacteristic assumption is satisfied. 

(2) Le1! AI be a coherent 7v-moelule eeiuippeel with a good filtration FmAI. Con­
sider the Rees module R^AI d= (bkFkzk on the Rees ring RF^X- After teiisoring over 
(fx [z] by (f :>}-. on gets a coherent f/?< :>)--module . W. with Char AI x 120 as characteristic 
variety. As F.AI is increasing, there1 is a natural action of zdz on R.yAI, hence an 
action oidz. Therefore1, , / / is an integrable1 coherent /^.^--module. 

7.1.b. Integrabil i ty of a sesquilinear pairing. — A sesquilinear pairing between 

two /^e^--modules M" ... M" is a ^X'Y) s~mloar morphism 

C : - //'H f)os • —f ^ ^ v , x s / s • 

Let ,/# be1 an integrable itf^--module. On ,#js- we can consider the action of zdz. 
defined as the action of (l/z) • dz. 

Define the action of zc)z on c(''xxs usmg polar coordinates, namely, if z = |z| e/6\ 
zdz<p(x.O) —H f)os We therefore have a natural action of zOz on the sheaf of 
distributions 1)b\\ x s • 
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Let ,99ft ,,9fft' be integrable ^-modules and let C : C*V/S ..99"^ —> Db.Y.xS/s 
be a sesquilinear pairing. We say that the sesquilinear pairing is integrable if the 
following equation is satisfied in £>bxRxS (recall that Db \ . xs./s is naturally included 
in Db.v.vs): 

(7.1.2) zdzC(;m'.m") = C(zdzrn'\m") - C(m'.zdzm") 

for any local sections tn'.in" of . ^ g , . ^ ^ . Although the right-hand term is in 
DbA-,xs/s- the left-hand term has a priori a meaning in £>bx-xs only: the inte­
grability condition implies that it belongs to Dbx,xs/s-

7.1.c. The category ft/ int-Triples(A). — We say that an object ft? = (,99ft, . C) 
of ft/- Triples(A) is integrable if are integrable, /.e.. equipped with a Re­
action, and C is integrable, /'.c, compatible with it, i.e., satisfying (7.1.2). There is 
a family, parametrized by C, of ^-actions on ft/\ for any À G C, consider the action 
by dz — Xz on and the action of dz — Xz on ,9/'. We say that such actions are 
equivalent. 

Let ./\. .̂ 2 be two integrable triples, each one equipped with an equivalence class 
of (9 c-act ions. We say that a morphism op : -?\ —» is integrable if it commutes with 
some representatives of the ¿L-aetions. Then, for any representative of the R~-action 
on ft?\, there is a unique representative of the -action on ft/-i such that op commutes 
with both. 

Given two objects ft9\,ft/2 in //- Triples(A), denote by Honi^Ti,^) the set of 
morphisms in ft/- Triples(A) between these two objects. If ft?\, are objects of 
^iiit-Triples(A). denote by Homi l l t • •%) C Hom(^,^2) the set of integrable 
morphisms between them. The category ft/ int-Triples(A) is abelian. 

The adjunction functor is an equivalence in f/ int-Triples(A). There is a notion 
of sesquilinear duality, which has to be a morphism in ,/int-Triples(A) between •? 
and ./ft 

We note that the Tate twist is compatible with integrability: if (7.1.2) is satisfied 
by C. it is satisfied by (iz)~2kC for k G \% if we change the choice of the <9~-action 
on ,99' and , and replace* it with the action of dz — kz and dz + kz respectively. 

Example 7.1.3. Let •/ be integrable. Then its adjoint -9* is also integrable. Let 
w e Z and let .y be a sesquilinear duality of weight w on ft?, i.e.. a morphism 
ft? —> ft?*( — w) in Triples (AT). We say that ft/ is integrable if y is a morphism in 
Hommt(-7.:7*(-7/0). 

Let -ŷ  be integrable and equipped with a sesquilinear duality ft/ of weight w. 
There is a family, parametrized by R, of ¿\-actions for which (ft?. ,9) satisfies the 
same properties: for any À G M. consider the action by dz — Xz on ,99' and the action 
of dz - À2; on 
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7.1.d. Integrability and direct images. — Let / : X —-> Y be a holomorphic 
map. The direct image1 functor for Y y --modules is defined in 1.4. a. mimicking the 
corresponding functor for .7 v-modules. The1 direct imago for objects in ttf- Triples(À") 
is defined in §l.G.d of loc. cit. Integrability is well-behaved with respect to the direct 
image1 functor of (right) /.i^--modules or triples: 

Proposition 7.1.4. Let be a 'right !tf:>>-- module which is (right) integrable. Then 
each right -module RJ f\.// is right integrable. If (.//'.,//" .C) is an object of 
/^int-Triples(X), then .^/t(.#/. C) is an object of /7int-Triples(y) for any 
j e Z. 

We note that uoy is an integrable right /7.>>--module, and that the usual right,—deft 
transformations for --modules also transforms right integrability into left integra­
bility. 

Proof. Remark first, that Itf.r is an integrable1 leT't :7.•/•-module. The left action of 
0Z is locally defined by 

<9,(0,.,L A • • • A (5,..; ) = A-0,.M A • • • A d.Vik 

On the other hand, the sheaf (-)j- (vector fields relative te) the projection —> i\) 
which vanish along z — 0) is equipped with a loft action of 0Z: simply put. in some 
local coordinate system (.c\ rn) on X. ()-_(().<• ) = cel.,,. Similarly, the exterior 
product is eeiuippeel with such an action, such that 

<9,(0,.,L A • • • A (5,..; ) = A-0,.M A • • • A d.Vik 

It. follows that each term of the1 Spencer complex (Sp* -̂(O\?•). S) is a left :tfj-{dz)-
module. One checks that the differential S commutes with the1 Y,>r (cL)-action. 

If, W is a right /7,r(0z)-module and - V is a left .?(<9c)-nu)dule. then ,#<g//y. •¥ 
is a right (cL)-module. Similarly. . ^ ' • ' .r .V remains equipped with a right 
action of 0Z defined by 

(/// //) • dz = m0z "/. n — m :•: dzn. 

Lot / : —> \'r l>ei a holomorphic map. The1 relative Spencer complex Sp*y_^ :/') 
is a complex of left /̂ .>r (cK)-inodules and right / - m o d u l e s . 

If .// is a right Y j-(Zh)-module. then .// '/..# r SpV-^.y (<̂ V ) remains equipped 
with a right -module structure and a right action of 0Z. It is in fact a complex 
of right (<9~)-modules. 

Theses properties remain true after taking a Godement resolution. Therefore, the 
action of 0Z is compatible with the1 construction of direct images given in § 1.4.a. hence 
the first part of the proposition. 

The integrability of the various fjc : f\.//' :cùs #Jf,.//" DbY:,xS/s is 
then easy to get. • 

ASTÉRISQUE :i(J0 



7.2. INTEGRABLE SMOOTH TWISTOR STRUCTURES 181 

Remark 7.1.5 (Integrability of the Lefschetz morphism). Let us consider the situa­
tion of §1.6.e. We have a Lefschetz morphism : fl .7 -+ fft2-'7(l). By the 
previous proposition we know that, if -r7 is hitegrable, f^ £7 and fft' f7 are so. We 
claim that .ifr G Hoiiiint (fl77. fl.+2.7(1)): in the* case of a projection, for instance. 
7£c : ( — L^iLu), where is z~~1ouA and uo is a closed real (1.1) form on A with 
class c; use that z~1(c)z — z) — Dzz~l. 

7.2. Integrable smooth twistor structures 

7.2.a. Preliminary remark. — We assume that X — pt and that (.7/'. ,7/",C) 
defines a twistor structure of weight 0, that is. ,7/' .,7/" are locally free <^u-modules 
of finite rank and C takes values in i/$ (cf. § 2.1 .b). Saying that ,7/'. ,77" are integrable 
means that they are equipped with a connect ion having a pole of order ^ 2 at 0. and 
no other pole, or equivalently, that they are equipped with a ¿\-action. Then, saying 
that C is integrable ineans that (7.1.2) is satisfied when C is regarded as taking values 
in ^sx. via the restriction fJ's ~^ ^s0-

The matrix of C in local bases of .7/'..77" which are horizontal with respect to 
0Z is therefore constant when restricted to S. As it is assumed to be holomorphic 
in some neighbourhood of S. it is constant, and C satisfies (7.1.2) in á's- In other 
words, if we regard C as a gluing between the* dual bundle ,W7y and the conjugate 
bundle ,7i" on some neighbourhood of S. C is integrable if anel only if the previous 
isomorphism is compatible? with the connections. Conversely, such a property clearly 
implies integrability of C. 

We say that (,7f, ,77" ,C) is an integrable twistor structure of weight 0 if it is a 
twistor structure of weight 0, if .7¿',,77" are integrable, anel C is integrable*. 

We say that (.//'. .<#", C) is an integrable twistor struct are of weight w if it is 
obtained by a Tate twist ( — w/2) from one with weight 0 (cf. § l.G.a for the definition 
of the Tate twist in this context). 

Example. Let us show that a complex Hodge structure defines an integrable twistor 
structure. We take notation of §2.1.d, anel we assume for simplicity that w = 0. 
We define the R¿-action on C[z, z~l] cK>c H as the* one induced by the natural one 
on C[z, Let us show for instance that .7óJ" is stable under this action. For 
mq G F"q, we have dzmqz~q = —qmqz~qJrl and we have to show that mq G F"q~l, 
which follows from the fact that F"* is decreasing. The other compatibilities with the 
<9¿-action are verified similarly. 

7.2.b. Characterization of integrable twistor structures. — We assume that 
A = pt. Recall (cf. § 2.1.b) that a twistor structure (JT', , C) of weight 0 defines a 
vector bundle -7Í on P1 which is isomorphic to the trivial bundle, obtained by gluing 
•7ily with -7/ " using C in some neighbourhood of S. There is an equivalence between 
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the category of twistor structures of weight 0 and the category of finite dimensional 
C-vector spaces; one functor is 

(.//'.C) i—* ./? —> H d= n?1..//"). 

and the quasi-inverse functor is 

H i * 9f def 7/ 0c ^ (-^(), -^W • C), 

where C comes from the identity Id : H S —> -^js-

Lemma 7.2.1. 77¿e twistor structure (.//"'. / ". C) of weight 0 ¿5 integrable if and 
only if the corresponding bundle 9^ is equipped with a meromorphic connection V 
having a pole of Poincaré rank at most one at 0 and at infinity, and no other pole. 

Proof. — Indeed, if (,97', C) is integrable, the bundles ,97' and MJ" are equipped 
with a meromorphic connection having a pole of Poincaré rank at most one at 0 and 
no other pole. Therefore so has .// '". Similarly. 7/" has a connection with a pole of 
Poincaré rank at most one at infinity. Integrability means that, via the gluing, both 
connections coincide on some neighbourhood of S. The converse is also clear. • 

Let (9/7'. -97", C) be an integrable twistor structure of weight 0. By the corre­
spondence above, we have 347' — H 0c Integrability means that there exist 
endomorphisms Uo.Q. of H such that, for any element m of H. we have 

dzm = (i/o - zQ - z2Uoc)m G M". 

In ,9?" = Hy ® c ¿h„ we have, for any // G Hv. 

dzti = C - z l Q - z2 fU0)fi G 9ft". 

The category of integrable twistor structures of weight 0 is therefore equivalent to 
the category of tuples (77, UQ, Q, U^) and the morphisms are the homomorphisms of 
vector spaces which are compatible with (cV Q. U^). 

We assume that (9ft'. 9ft". C) is equipped with a Herrnitian duality ,9ft We will 
suppose that -79' = -9a" and y = (Id, Id). This defines a Herrnitian pairing h : 
H 0 H —» C. The compatibility of y with the c^-action means that Q is self-adjoint 
with respect to h and Uoc is the adjoint of UQ. 

If y is a polarization, i.e., if /?, is positive definite, the eigenvalues of Q are real, 
and Q is semisimple. We decompose H as 

H = 0 0 # л + р 

ae [o.i [pez 

with respect to the eigenvalues a + p of Q. If we put Hp- p = ®ae[o,i[^a+P' we get 
a polarized complex Hodge structure of weight 0 on H. 

Remark 7.2.2. According to Example 7.1.3, if we change Q in Q + Aid with A G R, 
we get an equivalent <92-action on ((,97'. ,7ft".C). -.9). 
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7.2.C. Characterization of integrable smooth polarizable twistor structures 

Let (ÜT, Dy, h) be a harmonic flat bundle, with a positive Hermitian metric h and a 
flat connection Dy — DE + 9E, where 0E is the Higgs field. It corresponds to a smooth 
polarized twistor structure (J^7, -si?'', C) of weight 0 with polarization Y = (Id. Id) by 
the following rule: consider the Vf 'an-module .ffî = Vf̂ 'an x _ i <¿ ^ TT-1//, equipped 
with the d" operator 

(7.2.3) D > = D"E + zO'E. 

This defines a holomorphic subbundle M}' — KerD'i^. Moreover, it has the natural 
structure of ffl ̂ -module, using the flat connection 

(7.2.4) D'M = D'E + Z le'E. 

The integrability property means that the connection on /f comes from an inte­
grable absolute connection, that we denote with the same letter, which has a pole of 
Poincaré rank at most one along X x {0}. The connection thus takes the form 

D[/r =D'E + d!z + z-r0'E y2 y U°° )dz 

D"^ = D"E + < + z0"E, 

where i/o, U,^, Q are endomorphisms of the C°° bundle H and dz means the differential 
with respect to z only. The compatibility with the polarization means that Uoc 
is the h-adjoint of UQ and Q is self-adjoint. Knowing that the relative connection 
DEX-z~l9'E + z6E is integrable, the integrability condition is equivalent to the following 
supplementary conditions: 

(7.2.5) 

[0'EMn}=0, 

D'¿(U0) = 0, 

D'E(Uo)-{0'E,Q]+e'E = 0, 

D'E(Q) + [0'E,UX]=O, 

as the other conditions are obtained by adjunction. In particular. UQ is an endomor-
phism of the holomorphic bundle E, which commutes with the holomorphic Higgs 
field 0'E. 

Corollary 7.2.6. Let (H.Dy.h) be a harmonic flat bundle. Then it is integrable if 
and only if there exist endomorphisms UQ,Q of H, Q being self-adjoint with respect 
to h, satisfying Equations (7.2.5), where U^ denotes the h-adjoint o/c70. • 

Remarks 7.2.7 

(1) Equations (7.2.5) are the equations defining a CV-structure in [30], if one 
forgets the real structure, i.e., if one forgets Equations (2.50-52) and (2.59) in loc. cit. 

(2) For an integrable smooth twistor structure, the various local systems 
Ker{DE + z~le'E + zo0'¿) C H, for z() e C*, are all isomorphic to Y =f Ker IV-
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(3) It is a consequence of the equations for a fiat harmonic bundle that the Higgs 
field BE satisfies 

0'E -()'[, - I)V(A 

and therefore defines a class in Hl (X. End (.if)). We note now that Equations (7.2.5) 
imply in particular that, putting A = — (UQ — Q — U~^). we have 

0'E -()'[, - I)V(A). 

i.e.. the class of 0'E - 0E in Hl(X, End(.£?)) is zero. Moreover, Q is the self-adjoint 
part of A and — UQ + is its skew-adjoint part. 

(4) For instance, if the polarized smooth twistor structure is associated to a vari­
ation of polarized complex Hodge structures of weight 0, wo have UQ = 0 = U^, and 
Q is the endomorphism equal to pld on Hp~p. 

Corollary 7.2.8 (Rigidity on a compact Kahler manifold). Let (77. Dv, h) be an inte-
grable flat harmonic bundle on a compact Kahler manifold X. Then the corresponding 
UQ is constant, and Q defines a grading, so thai, (77. Dy. h) corresponds to a variation 
of polarized complex Hodge structures of weight 0. 

Proof. - We know that UQ is an endomorphism of the holomorphic Higgs bundle 
(E.0'E). By the equivalence of [63. Cor. 1.3]. it corresponds to an endomorphism 
of the flat bundle Ker Dy. This bundle is semi-simple, hence can be written as 
®J(VJ,DVj)p>, with Pj e N, where each (Vj<DVj) is simple and (\). /V,.) ^ {Vk,DVk) 
for j / A". Then, any morphism (V). D\-) —* (Vk. Dyk.) is zero for j -=£ k and equal to 
est • Id for j = k. By the correspondence quoted above, the same property holds for 
UQ on the stable summands of the polystable Higgs bundle (E,0'E). In particular. UQ 
is constant, and so is U^. 

Equations (7.2.5) reduce then to 

DE(Q) = 0, and [0'E.Q}=O'E. 

The eigenvalues of Q are thus constant and the eigenspace decomposition of Q is 
stable by DE- Let 77r>+p be the eigenspace corresponding to the eigenvalue a + p of Q, 
a e [0. 1[, p € Z. Then 0'E(H(X+P) C 77A+/,_1 ft Vt\. If we put Hp^p = e„€[0,i[ff«+P, 
we get a variation of polarized complex Hodge structures of weight 0. • 

Conjecture 7.2.9. Let X be a compact Riemann surface, let P C X be a finite 
set of points, and let (V.Vy) be a semisimple holomorphic flat bundle on X \ P. 
Let us denote by (77. Dy.h) the tame harmonic, flat bundle associated with it as in 
[62, 4]. Then, if (H.Dy,h) is integrable, the endomorphism UQ IS compatible with 
the parabolic filtration defined by h near each puncture. 

With the same argument as in Proposition 7.2.8 we get: 
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Corollary 7.2.10 (Rigidity on a punctured Riemann surface). If Conjecture 7.2.9 is 
true, the corresponding integrable tame harmonic flat bundle corresponds to a varia­
tion of polarized complex Hodge structures of 'weight 0 on X \ P. • 

7.3. Integrabil i ty and specialization 

Let X' be a complex manifold, let X be an open set in C x X'. and let t be the 
coordinate on C. Put X0 = £_1(0) D X. We use definitions of §3.3. 

7.3.a. Specialization of integrable /tfj -modules 

Proposition 7.3.1. Let.// be a 3? -module, which is strictly specializable along zf{). 
We assume that .// is integrable. Then, for any a G M and any za G Í2(>, we have 
dz\raZ"\/f C Va"';\# and. for any a G C sue//, í//,a¿ f~o(a) = a. we have dz\piA^7/ C 
dz^t^.W. where 0Z is regarded as acting on gr„ ( "],¥/: in other words, each •</'/..«« ̂  
is an integrable -module, 

Proof We will need the following lemma: 

Lemma 7.3.2. — A local section rn of.// near (x.za) is in vd~"\// iff is satisfies a 
relation 

B(l(—ütt)'tn — n 

ivhere n is a local section of V(l~' .W< and Bn(s) ~ \\~ (s — 7 * z)^<, the product being 
taken on a finite set of'7 such that 0 ( ) ( l ) ^ a -

Proof. The ''only if* part is clear. We assume that m is a local section V ^ w , \ # for 
some b > a satisfying such a relation with the polynomial Da(s). Then the class of m 
in gif V (2 n) is killed by £ „ ( - 9 , 0 and £ , , ( -0 ,0 , where Bb(s) = {[Js - i * zY'\ the 
product being taken on a finite set [i such that ( ( )̂ = b. Therefore, the class of 
rn is killed by a nonzero polynomial in z, and by strictness, the class of in is zero in 
er,V < =" ).#. 

Let in be a local section of V^~"\#. and let bm(*) be the minimal polynomial such 
that bm(—dtt)'tn = tPtn where P is a section of V b ^ r • We know that frm is a product 
of terms s — 7 * 2 with d-Z(Xl) ^ ft-

The following leninia is easy to prove: 

Lemma 7.3.3. - Let k e Z and let P be a local section ofdz\raZ"\/f Then [0Z,P] is a 
local section of Vk&y (and does not depend on dz). • 
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We then have 

bm(-Ütt)dzm •• dzbm(-Ütt)in + uni Q G l'Ó^V 
дЛРт + Qm 

tPdzm + Rm R G , 

Therefore, there exists À: ̂  0 such that, if we put Bk(s) — Yli=o °m(s ~~ ^z)i wc have 
Bk(—^tt)dzrn G VaZo\tâ. Apply then Lemma 7.3.2 to get that 0zm is a local section 
of VaZ"\^. This gives the iirst part of Proposition 7.3.1. 

Let us denote by d~ the induced operator on grj We now want to show that, 
for any a G C with 40(«) = a. U„ Ker [(dtt + a*z)'" : gi^(~(>\// —> gr^(~°\^f] is stable 
by cL. The point is that dz does not commute with fttt + a*z, but [dz, (cl^ + a*^)'1] is 
a polynomial in (1/ / — n • with polynomial coefficients in £, and therefore commutes 
with dtt + a • z. Let m be a local section of gr^ " \ # killed by (cV -f a • z)n. Then 

(0ti + a • z)ndzm = -[0z. (ütt + ov • ¿)nl™ (0ti + a • z)ndzm 

and certainly + a * z)2ndzrn - 0. 

Corollary 7.3.4. Let ôe « strictly specializable y/r$;[t~l}-rriodule (as defined in 
§3.4y) 'which is integrable. Then the minimal extension ,94 of .W across 9\) is inte­
grable. 

Proof. By definition, we have V<0a\/f — V<0"\df. therefore? this is stable by the 
dz-action, according to the proposition. One shows similarly that all Va,""\/^", defined 
in loc. at., are stable under the dz-action. • 

Remark 7.3.5 (S-decomposability). We assume that .97 is strictly specializable 
along .9\) and integrable. Then the morphism var of Remark 3.3.6(6) commutes with 
the cL-action, but the morphism can does not. However, Imcan is stable by the 
¿Vaction, because dzdt — dt(dz + z). Similarly, if ,97 is strictly decomposable along 
J9Q. its strict components are integrable, as can be seen from the proof of Proposition 
3.3.11(e). As a consequence, if .9¿ is integrable and strictly S-decomposable, its strict 
components are integrable. 

Remark 7.3.6 (Local unitarity). -•— When working with twistor ^-modules, we are led 
to consider the graded modules gr̂ V*.a«-# with respect to the rnonodrorny filtration 
M.(N) of the nilpotent endomorphism N = ~(t)tt + a • z). A priori dz is not 
compatible with the monodromy filtration, therefore we would need a new assumption 
to insure that this compatibility is satisfied. However, we will see below that when 
dim A = 1 and if all gr̂ C/.o- // are strict, this compatibility is automatically satisfied, 
as a consequence of the fact that the complex numbers a to be considered in the 
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various Bernstein polynomials are real. We will see in §7.4.b that this property 
extends to integrable twistor ^-modules. We call it local unitarity. 

When a strictly specializable ¿J^:-module is locally unitary, the various y(z<^-
filtrations glue together when z0 varies in Í2Q and we forget the exponent z0. Moreover, 
if a = a is real, we then have grrvY,̂  = ^iu-.a-Y/. Last, we have ( Z{,((\) = a and 
a * z — za. 

Lemma 7.3.7. We assume that X is a disc with coordinate t. If is an integrable 
strictly specializable 3t -module such that each gi-flyljiAV<S is strict, it is locally uni­
tary. 

Proof. Fix a G C. As each gr̂ V-V.**^ is 0'nu-free, there exists a basis e of 'tpt.Q^ 
for which the matrix Y of N has the Jordan normal form, in particular is constant 
and nilpotent. Let us denote by A(z) the matrix of dz in this basis. Then 

dze = e- A(z), -ütte = e • [(a • z) Id +Y]. 

Therefore. 

-d3<5tte e • [(a*z)A(z) + A(z)Y + z2d(a * z)/dzld]. 

-dtt(Oz + z)e = e • [(a • z) Id +Y] [A(z) Y z Id 

As the operators dz and dtt satisfy the commutation relation dzdtt = dtt(dz + z), we 
must have 

z[zd{a • z)/dz -a*z] Id = [Y, A{z)} + zY. 

thus, taking the trace, we get that a must be such that, for any z G C, zd(a* z)/dz — 
a*z. But z<)((\ * z)/i)z - a*z + ia"(z2 - l)/2. Therefore, if ct.„.// / 0, a must be 
such that a" = 0. i.e.. a must be real. • 

Let us now go back to dim A" 7 1-

Lemma 7.3.8. - If ,Yf is strictly specializable along t = 0 and locally unitary, then, if 
is integrable, so is each gr|rtpLa.^. 

Proof. We now have dzN = N(6\ + z), hence the kernel filtration KerNA' and the 
image filtration ImNA' of N are stable by dz. As the monodromy filtration M.(N) 
is obtained by convolution of these two filtrations (cf. [67, Remark (2.3)]) it is also 
stable by dz. • 

7.3.b. Specialization of sesquilinear pairings. — The definition of specializa­
tion of a sesquilinear pairing involves the residue of a distribution depending mero-
morphically on a complex variable s along a set having equation s = a * z/z. for a 
fixed complex number e\ and for z varying in S. In general, the compatibility of taking 
the residue along such a set and the action of dz is not clear. However, as soon as we 
assume local unitarity. i.e., a G M, then a • z/z = (\ does not depend on z and the 
compatibility is clearly satisfied. We therefore obtain: 
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Proposition 7.3.9. Let !7 be an object of hit-Triples (X). We assume that 
the components .Wd ,.4/," are strictly specializable and locally 'unitary along t = 0. 
Then 't/'f ,a ft? is integrable for any o G E. Moreover, the 'morphism •¥ : C/.n-^ —• 
'*/v.<v-̂ "( — l) 7s integrable. 

Proof. It remains to explain the* integrability of • •¥ defined by (3.6.2). Wc* have 
<A' = (N', N") with N" = /s^/f + o) = -N'. Then we argue as in Remark 7.1.5. 
using that z(0z + z) = dzz. • 

7.4. Integrable polarizable regular twistor .^-modules 

7.4.a. A preliminary lemma on twistor /-modules. — Let (,<#;'. ,//n'.C) be 
an object in MT^(/(I. »'). Put , # = ,// ' or Let / be holomorphic functions 
on some open set U of A. Then .// is strictly specializable along / = 0 and. for 
any a G C, c/-.n. // is equipped with a nilpotent endomorphism N. Let us denote by 
M.(N) the corresponding monodromy hit rat ion. Them each M/V'/\0.# is strict and. 
by definition of MT. each gi'/X1 '.'/•.,,.// is also strict. 

Let g be another holomorphic function. By definition, each gr̂ 1 r/-.,>, is strictly 
specializable along g = 0. By induction on /. this implies that each M/0/-.a.# is so. 
and. for any lj G C. we have exact sequences 

0 —> r(/.,AI, , c ,n . / / (0ti + a • z)ndzm c(, ̂ gifV/.a-# - • 0. 

Let us denote* by M.(cry.,̂ N) the monodromy filtration of the* nilpotent endomor­
phism on Cf/.j'C/'.a-7/. Then, according to the previous exact sequence and to the 
uniqueness of the monodromy filtration, we have* 

M.U',,. ,N) = r . j M . r / , , / / . 

Ill particular, each gif1 u\h,iC/.a-7/ is strict, being (*qual to c^jgif1 C/.a-7/. 
Let now fi fp be holomorphic functions and let o\ (\p be complex num­

bers. Under the same* assumption on ,<# wc* obtain similarly: 

Lemma 7.4.1. For any / G Z and for any j = 1 p, </'/;,r>;- • • • c/i ,o, gî 1 C/.o-^ 
is strict and strictly specializable. and we hare 

glfV'/,.a, • • • .̂/'1.o1 Q'/.0-# = C/;.a/ • • • C'/i.o^l"/ C/.a-#. 

7.4.b. Integrable twistor ^/-modules 

Proposition 7.4.2. - Let (.//'..//".C) be an object in MT^fi(X.w). We assume that 
it is i/ntegrable. i.e., is also an object of hit-Triples(AT). Then ,<#' and ,//" are 
locally unitary. 

Proof. Let / be a holomorphic function defined in some open set U C X. We 
assume that there exists o G C \ R such that C/.0<# / 0 for ,W = ,W or Ji = .W". 
Let í G Z. By assumption, gr|I'</>/\a,# is strictly S-decomposable. For any strict 
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component Z of its support, let (grJVIV'/',a^)z be the corresponding direct summand. 
It is enough to show that each (gr̂ V'/\a-/^0z is zero, and also that its restriction 
to dense open set of Z is zero. We can assume that the characteristic variety of 
(gr^14;f,a^)z is equal to T%X x O0 near a general point x0 of Z. Therefore, near 
such a point, by Kashiwara's equivalence Cor. 3.3.12 and Prop. 1.2.8, (grj[0/\«<<#)z 
is the direct image by the inclusion Z X of a locally free -module. 

Let fi. • • • . fp be holomorphic functions near x() inducing a local coordinate system 
on Z. By induction on p. using Lemma 7.4.1 and Proposition 7.3.1. one shows that 
the ^ - m o d u l e -V d= V'/,,.™,, • • • V\fl .a , V'/,,».̂  (with = . W or J/") is integrable. 
By Lemma 7.4.1. for any £ G Z, gr;xl. I ' is strict and is supported on xa. By Kashi­
wara's equivalence Cor. 3.3.12, we can apply the same argument as in Lemma 7.3.7 
to conclude that gi'^-Y = 0 for any L as we assume a g R. Therefore, applying once 
more Lemma 7.4.1. we obtain that Vfp,(\n • • • <•'/•, .n , (gr;xl <.'/-.0. //)z — 0. Near x0, Cft is 
nothing but the usual restriction to f} = 0, therefore the restriction of (gr̂ 1 # )z 
at xn is zero. But (gr^V'/Vv-#)z is (the direct image of) a locally free û:%-module, 
hence, by Nakayama. (gr̂ 1 V'/'.a-^Oz — 0 near xQ, a contradiction. • 

From Lemma 7.3.8 and Proposition 7.3.9 we get: 

Corollary 7.4.3. Let (.Y/',.£".C) be an object of MY^d(X. w) and let f be a holo­
morphic function on some open set U of X. Then, for any a G [—1. 0[ and any £ G Z, 
the object gr;M/. 7.n (.//'..//". C) of MT<:d(U. in 4- /') is integrable. • 

We note that, according to Proposition 7.4.2. we do not have to consider V'/'.a for 
a G C \ R. and that the two functors and (cf. Definition 3.4.3) coincide. 

We define the category of integrable twistor .{ -̂modules MTint<c(/(A, w) as the sub­
category of MT^f/(X, w) having integrable objects and integrable morphisms. By 
the previous corollary, it is stable by taking gr^I\E'/,0. It shares many properties of 
MT<-f¿(Á". w) (cf. §4.1): it is abelian. it is local, it satisfies Kashiwara's equivalence, 
it is stable by direct summand in int-Triples(A). However, it is a priori not stable 
by direct summand in Triples(X) or in MT<cc/(A. 7/'). 

The subcategory MTJ^A. w) of regular objects is defined similarly. Last, the 
category MLT-!t(A, w) of graded Lefschetz objects is defined as in ^ 4.1 .f. 

7.4.C. Integrable polarizable regular twistor i/^-modules. — Let tY be an 
integrable twistor i^-module of weight ir as defined above. We say that a polarization 
of !7 is integrable if it is an integrable morphism -Y —> :7*( — w). 

It is now clear that the two main theorems of Chapter 6 have the following inte­
grable counterpart: 

Theorem 7.4.4. - Let f : X —> Y be a projective morphism between complex analytic 
manifolds and let (,Y.Y) be an object of M T ^ A , w)Y). Let c be the first Chern 
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class of a relatively ample line bundle on X and let j£fc be the corresponding Lefschetz 
operator. Then (0;/+^, J&?c, ®,/f-^) ¿5 an ofyec* 0/ MLT^(y, w; l)^ p ) . • 

Theorem 7.4.5. Let X be a complex manifold and let (f7,y) be an integrable 
smooth polarized twistor structure of weight w on X, in the sense of §7.2.c. Then 
(&.y) is an object of MT^j (X, w)^K • 
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MONODROMY AT INFINITY AND 
PARTIAL FOURIER LAPLACE TRANSFORM 

In this appendix, we sketch an application of the results of the main text to partial 
Fourier-Laplace transform. Afore precisely, we analyze the behaviour of polarized reg­
ular twistor ^-modules under a partial (one-dimensional) Fourier-Laplace transform. 
We generalize to such objects the main result of [52], comparing, for a given function 
/ , the nearby cycles at / = oc and the nearby or vanishing cycles for the partial 
Fourier-Laplace transform in the /-direction (Theorem A.4.1). 

Fourier-Laplace transform can be seen as a way to produce non regular singularities 
from regular ones. Moreover, if a general theory of polarizable twistor ^-modules, 
including non regular ones, would exist, then Fourier-Laplace transform in dimension 
one should be an involution (up to sign). Here, we only analyze the regular part in 
the partial Fourier-Laplace transform. 

The complete proofs can be found in [55]. 

A.l . Exponential twist 

A.l.a. Exponential twist of an object of /^-Triples. — Let t : X —» C be a 
holomorphic function on the complex manifold A. If </# is a left ¿^.--module, i.e., 
a ü;¿.--module with a flat relative meromorphic connection V ^ / Q 0 . the twisted 
module FW = ® £ _ i / /~ is defined as the 0$ -module «-# equipped with the twisted 
connection ellz o V^yn0 o e~llz. If J4 is integrable (cf. Chapter 7). then so is í # : 
just twist the absolute connection V. We note that, if V has Poincaré rank one. so 
has the twisted connection. 

Let C : ,/#|g <8>¿5v,s «#|g —> 3)bxPxS/s be a sesquilinear pairing. Then FC d= 
exp(zt—t/z)C is a sesquilinear pairing f ^ j ' g 0 . ] s f ^ j g —> Dbx^xS/S^ ¿.e., is x Y) g-
linear. 

If /7 = ( ,^ / . .# / / .C) is an object of int-Triples(A), then so is F{7 =f 

(FW.FW". FC). Exponential twist is compatible with Tate twist and adjunction (as 
zt-t/z = zi + zt is "reap). 

If if : -7\ —> /̂ 2 i« a morphism. then p induces a morphism p : h:7\ —•» 
In particular, if ,9 is a sesquilinear duality of weight w on ,9. then <9J induces a 
sesquilinear duality of the same weight on h97. 
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A.l.b. Exponential twist of flat and Higgs bundles. — We will now give 
an explicit description of the exponential twist in the case of smooth triples, using 
the language of Higgs bundles. Let H be a (7°°-bundle on X equipped with a flat 
connection Dy = D'v + d" and a Hermitian metric h. Let us denote by V = Kerc/" 
the corresponding holomorphic bundle, equipped with the holomorphic connection 
W . Using the function t we twist the connection Dy and define 

FDV = el o Dy o ( '. i.e.. 11)[ = I)[ - dt. F = d". 
",h = e2Re'h. 

Using definitions in [62, 63]. we have: 

Lemma A. 1.1. — //' the tri/ple (H.Dy.h) is harmonic on X. then so is the triple 
(H. FDy. Fh). 

The Higgs field is given by the formulas 

F0'E = 0'E - dt. F0'E = 0'E - dt. 

and the metric connection FDE = FD'F + FDF by 

FDE = crJ o DE o e\ i.e., FD'F = D'F. FD"F = D"F + dt. 

Lemma A. 1.2. If C) denotes the smooth polarized twistor struct are of 
weight 0 corresponding to the harmonic bundle (II. Dy. h) then, using notation of 
§ A.l.a, the triple (FY/, FW<. fC) is the smooth polarized, twistor structure of weight 0 
corresponding to the harmonic bundle (H. hDy. f'h). via the correspondence of §2.2.a. 

Proof Consider the ^~Jc'(in-module ./f ~ VT.?*an :-;7r-!^^ TT 1H, equipped with the 
d" operator 

(A. 1.3) D" = FD" + zFe'L 

We got a holomorpliic subbundle F-?f = Kor FD"#, C M' equipped with a 
action, i.e.. a relative connection FV:r/n{l- obtained from the connection ' /)'„ = 
FD'E + z~lF0'E. We have by definition 

(A.1.4) 
FD' = expff lz) o D'y, o expyt/z). 
FD"X. = cxp (( - - 1)7) o D"x o exp ((1 - z)t). 

Wo have an isomorphism 

( •#Vf/ :oV,r / ! ! ( lor ' / : ) 
•exp((;-l)7) 

D" = FD" + zFe'L 

and, via this isomorphism. FC — FhFy// ^TZTT- corresponds to ezt+zt • 
/f s '• IS 

F0'E = 0'E 
D'F. FD"F = 
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A.2. Par t ia l Fourier-Laplace t ransform of -modules 

A.2.a. The set t ing. — We consider the product A1 x A1 of two affine lines with 
coordinates (t.r). and the compactificatioii P1 x P 1 . covered by four affine charts, 
with respective coordinates (t.r). (t'.r). (t.r'). (t'.Tr). where we put t' — l/t and 
T' = 1/r. We denote* by oc the divisor {t = oc} in P 1 . defined by the equation t' = 0. 
as well as its inverse* image in PL x P 1 , and similarly we consider the divisor o c c P 1 . 
We* will use* the* picture described below. 

т'={) 
f (x) (x . x) 

г = () (0.0) (?с.0) 
T=0 t' = 0 

Let Y be* a complex manifold. We* put X = YxFl, X = YxP1 anel Z = YxP1 x P 1 . 
The* manifolds Â  and Z are equipped with a divisor (still denoted by) oc. and A" and Z 
are equipped with oc. We* have projections 

(A.2.1) 

Let be a left -nioelule*. We* denote by ,W- the* localized module /^^[oc] <g>:# r 
Then / ;+ .^ is a le*ft •% [*oc]-nioelule. We consider its localization 

/;+,//[*ос1 = ,í#M*(oc U 55)1 С ,̂-Г*оо1 Р 

We denote by p+,#[*oc] ® £ 'r ' - the [*(oc U oc)]-moelule p'. //[*7c.] equipped 
with the 1 wist eel action of .rf ? ele*scribeel by the exponential factor: the* M.^-action is 
unchanged, anel, for any local section ni of . # , 

in the chart (/. r) , 

(A.2.2) 
S,(m ® £~tT/z) = [(a, - r)m] ® £~tr/c. 

dT(rn ® £~tT/z) = In, (g> £-'rC 
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in the chart (f'. r). 

(A.2.3: 
ÔV(m ft £-/r/s) - [(9,, + r/f'2)?//] 0 £Wr/c 

0r(//> 0 £~/r/c) = -//>/V ft £ /_ c 

in the chart (t,Tr). 

(A.2.4) 
fl,(m 0 £"fr/c) = [(0, - l/r')m] ft £"/r/c 

aT/(m 0 £" 'r^) = fm/r'2 0 £~/r/z. 

in the chart (£',7-'), 

(A.2.5) 
0^(m® £-/r/2) - [(ÔV + l/r'f'2)m] 0 t~iT'ft 

oV(m 0 £-/r/5) = m/, V2 2 £"/r/c 

Definition A.2.6. The partial Fourier-Laplace transform <^ of ,M is the complex of 
,p[*oo]-modules 

yî+Q;̂ //[*5£] 0£-fr/c). 

A.2.b. Coherence properties. — We will give* a criterion for the /^.^[*oc]-
coherence of .ftft when is -coherent. As p is proper, it is enough to give a 
coherence criterion for :% d= p+,//[*oc] c< £~/:r/0 

Proposition A.2.7. - Le£ 6e a coherent SJ?y -module. Then ?W is [*oc] -
coherent. If moreover /'5 /yoori, £//,en so is a//r/ therefore .9/ = p+'f4K is 
ftj? ^[^oc]-coh.erent. 

Proof. - Coherence is a local question near t' = 0 (otherwise it is clearly satisfied) 
and it is enough to show that 'fW is locally finitely generated over f$ [*oc]. Choose 
local generators in, of ,<# as a № .^-module. It is a matter of proving that, for any 
k G N. (<ty///,•) ft lriTlz and /' kin, ft £-tTlz belong to [*oo] • (m, 0 £~/r/z). 

Let us first compute in the chart (t'.r). We will use Formula (A.2.3). Up to a 
sign, the second term above is 0̂ (m.y- ft £~tT//z). The first one can be* written as 
('d^ntj) ft L~fTlz = (5V - rO; )*'(///> ftj £-/T/c). The* computation in the chart (t',r') 
is similar, using (A.2.5), as r' acts in an invertible way. 

The functor 1—> is exact and. for the property of being good, it is enough 
to show that if is a -coherent subrnodule generating .W- on a compact set 
X C X. then p*&[*oc] 0 £""/r/'- generates .V/ on /; 1 (•*'): this follows from the 
previous computation. • 

Remark A.2.8. When is good, we can compute the Fourier-Laplace transform 
in an algebraic way with respect to / and r: we regard <y*.# as a coherent module 
over q*3?y:[*oc] = -tf.y \j\('6f). Then q*y// is the complex 

q*-ft[T] d< T ,U.//[r]. 
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whore the right-hand term is in degree 0. In particular, the cohomology modules of 
this complex are FJ#<&[r](c5r)-coherent. (Cf. for instance [23, Appendix A] for an argu­
ment). Moreover, this complex has cohomology in degree 0 only, and the cohomology 
is identified with as a -module; the action of r is induced by that of 0/, and 
that of 5V by that of -t. 

Remark A.2.9 (Integrability of the Fourier-Laplace transform) 
Let ,YY be a coherent ÍY :$ -module. We assumes that . # is integrable (cf. § 7.1.a). 

Then 0 £-TT/z -s integrable as a -Y ¿ -modulo. If moreover is good, then, 
using part of Proposition 7.1.4. we obtain the integrability of. // as a :Y ̂ module. 

A.2.c. Fourier-Laplace transform of a sesquilinear pairing. — We will now 
forget the oc divisor on Z or X, and still demote by Z or X the sets X x A1 and 
Y x A1. 

We assume that .Y/Y.Y/" are good -modules. Let C : 0//s .Y/"^ —• 
X>b\, xs/s t)e a sesquilinear pairing. We will define a sesquilinear pairing between 
the corresponding Fourier-Laplace transforms: 

C : .^fg 0f/e — 2)b.i?xS/s 

Firstly, define the sesquilinear pairing ]YC : p+.^s p+,#|g —> 2)b^xS/s ni 
the following way: local sections m!,m" of p+,Yf's, p+ .Yf'g can be written as 7/7/ = 

0/. ® m'j. m" = Y 'm'j with <pi. V'; holomorphic functions on ^ and m',-r m'j 
local sections of . #|'s.,-#| g; put then 

(A. 2.10) </;+C(7/;\//7").^) def 
'•.7 

p+,Yf's, 2)b^xS/s 

for any (relative to S) form <̂  on Z x S of maximal degree with compact support 
contained the open set of Y where 11Y111" are defined. That the previous expression 
does not depend on the decomposition of m'. m" and defines a sesquilinear pairing is 
easily verified: it is enough to show that, if (PT (x) m/- = 0, then the right-hand term 
in (A.2.10) vanishes; but, by flatness of Y^ over p~x&.r, the vector 0 — ((PT)Z can be 
written as J2k akVk< where each 7//, = (?//,../)?- is a vector of <£>V-relations between the 
rn'j in and a A- are local sections of (j use then the Yj -linearity of C. 

Secondly, extend C as a sesquilinear pairing C on ,#|'S &Y/s - g with values in the 

sheaf of tempered distributions, that is. with poles along oc. Define similarly p+C 
(which is nothing but p+C). Such a distribution can be evaluated on forms CP which 
are infinitely flat along oc. 

Remark that, for z e S. we have |r~*r-*r/~| - 1. The following lemma is standard 
(it is proved in the same way as one proves that the Fourier transform of a (7°° 
function with compact support is in the Schwartz class): 
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Lemma A.2.11. Let <p be a C°° relative form of maximal degree on Z x S with 
compact support. Then j eztT~tT/z{p js C10C with compact support on X x S and is 
infinitely flat along oc. • 

For local sections ni'.in" of/;+, #|g./;+,#,g written as above and for <p as in the 
lemma, it is meaningful to put 

r C ( m ' , m " ) , 9 > = (\nrl.n^) 
V 

eziT~lT/z0ril3p 

This defines a sesquilinear pairing y'C : ^ g ccs —+ 3)b .̂, xs/s- We can now 
define C = p(\J(\ 

Remark A.2.12 (Behaviour with respect to adjunction). The formula above clearly 
implies that ( T = '^(C*). We hence have (C)* = C*. 

It is possible to define C at the algebraic level considered! in Remark A.2.8. We 
note first that C defines a sesquilinear pairing q*C on 

'/-//s Vus g 

which takes values in the sheaf on YR X S of distributions on Y& x A1 x S which 
are tempered with respect to the /-variable. Recall that q*. //', q*.W are [t] (0/)-
modules and that their Fourier-Laplace transforms arc* the same* objects regarded as 

[T] (e3T)-modules via the correspondence 

(A.2.13) T< >Df. 0r < > -t. 
Let us denote by F the usual Fourier transform with kernel exp(ztr — tr/z) ~dt Adt 

for : G S. sending /-tempered distributions on Yj- x A1 x S which are continuous with 
respect to z to r-tempered distributions on x A1 x S which are continuous with 
respect to z. 

We define then q*C on 

ziT~lT/z0ril3M" (s) 

as the composition F oq*C. That ey*C is ^/«/[r](0r) "7,[r] (0r/-linear follows from 
the fact that (A.2.13) and its conjugate* are the transformations that F eloes. 

Lemma A.2.14. The analytization of q*C is equal to C defined as Pt (C. 

Remark A.2.15 (Integrability of the Fourier-Laplace transform of a sesquilinear pairing) 
Let be good -modules which are* integrable. We assume that the 

sesquilinear pairing C is integrable (cf. § 7.1.b). Then is integrable anel. by Propo­
sition 7.1.4. the pairing C is also integrable. 
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A.3. Partial Fourier-Laplace transform and specialization 

As we are only interested in r ^ oc, we continue to forget the divisor 5c and still 
denote by Z or f£' the complement of this divisor. 

A priori. Proposition A.2.7 does not restrict well to T = TG (of course, the problem 
is at t' = Q). Indeed, we do not have a relation like dr(rn 0 E~tT/z) = -m/t' Y E~tTY 
to recover the polar part of (g> g-tT»/z from the action of $ . For instance, taking 
TQ = 0, even with nice assumptions, .Y£ is not known to be -coherent. We will 
introduce below an assumption which implies the -coherence of ,Yt %Z~tT°lz when 
r0 ^ 0. For the coherence at r = 0, we will need to consider the specialization at 
r — 0 of '?Yt-, and hence to prove first its strict specializability along r = 0; for that, 
we will also need the same assumption. Let us introduce some notation. 

Let us denote by i^ the inclusion Y x {oc} ̂  X. We will consider the functors 
0r.a and i/H'.n introduced in Lemma 3.3.4, as well as the functors ^ r , a and Sfrt',a 
of Definition 3.4.3. We will denote by N r.N f/ the natural nilpotent endomorphisms 
on the corresponding nearby cycles modules. We denote by M.(N) the monodromy 
filtration of the nilpotent endomorphism N and by grN : gr^1 —> gr^L2 the morphism 
induced by N. For I ^ 0. Pgr^1 denotes the primitive part Ker(grN)^M of gif1 and 
PM( the inverse image of Pgr^1 by the natural projection M? —> gr|T. Recall that, in 
an abelian category, the primitive part Pgr^1 is equal to Ker N/(Ker N H ImN). We 
will also denote by , # m i u the minimal extension of , # (cf. §3.4.b). 

Proposition A3.1. - We assume that is strictly specializable and regular along 
t' = 0 (cf. Definition 3.3.8 and §3.1.d). Then, 

(i) for any r0 / 0. the /Yr?--module , # ® £-tT»/z %$ lY ̂ --coherent; it is also strictly 
specializable (but not regular in general) along t' — 0, with a constant V-filtration, so 
that all Yt',cx('Y/ CC £ _ / r"/~) are identically 0. 
Assume moreover that ,Y/ is strict. Then. 

(ii) the PY/2 -module (= p+,Yf ($£~tT/Z is strictly specializable and regular along 
r — r0 for any TA C A1; it is equal to the minimal extension of its localization along 
T = 0; 

(iii) if T0 Y 0, the Y-filtration of'^Y alonq r — rn = 0 is (lirea by 

YkYfr 1% ifk > - 1 , 
(r-T0)-k+v'?W ifk ^ - 1 ; 

we have 

4'T-T.,.Y'% 
0 if a 0 -N - 1. 
•#® £-tT-/z if a e - N - 1. 

(iv) If TA = 0. we have: 
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(a) for any a / — 1 with Re a C [—1.0[. a functorial isomorphism on some 
neighbourhood of D (=f {\z\ ^ 1}; 

( ^ / ^ I D ; n t ; (VV,a.^(-^a)|D:Nt,): 

where Da is the divisor 1 -i if a' = — 1 and ay/ > 0, the divisor 1 • ( — /') z/o/ = —1 
and a" < 0, and the empty dins or otherwise; 

(b) for a = 0, a functorial isomorphism 

(^V.o^.NT) •/oc.+ ^ V . - i ^ . N ^ ) 

(c) /or a = —1, two functorial exact sequences 

0 > ¿00.+ Ker\r > Ker Nr > .#mill > 0 

0 —> -^mhi —> Coker NT —> 2oc.+ Coker —> 0, 

z n du c in g is o m o rp his ms 

/ -x . .. KerNf/ KerNr fl ImNr C Ker NT 

.^min ^ KerNr/(KerNr nIuiNr) C CokerNT 

such that the £/ie natural morphism KerNr —» Coker Nr induces the identity on 
^nun-

Proof See [55]. 

A.4. Partial Fourier-Laplace transform of regular twistor f^-modules 

The main result of this appendix is: 

Theorem A.4.1. - Let = (.//'..//" X\V) be an object of MT(r) (A, u>)(p). 
Then, along r — 0, and are strictly specializable, regular and S-decomposable 
(cf. Definition 3.5.1). Moreover, ̂ T^(f7..y). with Re a <E [-L0[. and 0r.o(-^i^) 
induce by grading with respect to the monodromy filtration M.(Xr). an object of 
MLT^(A. w; — l)^p). 

(Cf. Chapter 4 for the definition of the categories MT^ and MLT^.) In particular, 
all conditions of Definition 4.1.2 are satisfied along the hypersurface r = 0. 

This theorem is a generalization of [52. Th. 5.3]. without the Q-structure however. 
In fact, we give a precise comparison with nearby cycles of (-/.-/') at t — oc as in 
[52, Th.4.3]. 

In order to prove Theorem A.4.1, we need to extend the results of Proposition 
A.3.1 to objects with sesquilinear pairings. 

Let ,9 = (M',, M", C) be an object of PJ- Triples(A). We have defined the object 
= {•?//'.•?•//" .*C) of ^-Triples(Z). If we assume that (M',, M", C)are strict and 

strictly specializable along t' = 0, then rr*# . : W are strictly specializable along r = 0. 
Then, for Re a C [-1,0[, ^T.a ^ is defined as in §3.6. Recall (cf. (3.6.2)) that we 
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denote by JVT : VT.„'*-7 -> ^T,fV^7(-l) the morphism (-zNT,?;Nr). If a = - 1 (more 
generally if a is real) we have fyT aY9 — 'i/jr,a^^. We also consider, as in §3.6.b, the 
vanishing cycle object (pT.o''^zT. 

It will be convenient to assume, in the following, that .Yt' = ^niin aRd = 
^min' with, such an assumption, we will not have to define a sesquilinear pairing on 
the minimal extensions used in Proposition A.3.1(iv), as we can use C. 

Proposition A.4.2. For ,9 as above, we have isomorphisms in Triples(X) : 

(^r,a^^,,/K-) >iooA*t'^,<*i>) with Re a G [-1,0[, 
JVT : VT.„'*-7 -> ^T,fV^7(-l) 

and an exac£ sequence 

0 —> '¿ ,̂4. Ker. 4^ —> KercfÇ —> ,9 —> 0 

inducing an isomorphism Pgif} Vv,_i'#c7 > 

CorollaryA.4.3. We assume that ,9 is an object o/MT(r)(I,w) ("resp. (,^,,5^) 
¿5 an object of MT(r) (X, n;)(p)). Then, for any a e C Re <r £ [-1.0[, 
(^r,a^^,,/K-) induces by gradation an object of MLT^ (X, w: — 1) (Vesp. an object of 
MLT(r)(X,w;-l)(P);. 

Proof of Proposition A.4.2 ana7 Corollary A.4.3. See [55] 

For the proof of Theorem A.4.1, we first reduce to weight 0, and assume that w = 0. 
It is then possible to assume that (¿9. rY) — (,-#, C, Id). W7e may also assume that 
,W has strict support. Then, in particular, we have = <̂ #min, as defined above. 

According to Corollary A.4.3 (and to Proposition A.4.2 for 0T,o), we can apply the 
arguments given in §6.3 to the direct image by q. • 

Notice that we also get: 

Corollary A.4.4. Let {•/..'/) = (.^', C, S?) be an object of MT(r)(X, n;)(p) 
Then, we have isomorphisms in Triples (A); 

(^r,a^^,,/K-) (¿9. rY) VÛ / - 1 with Re a e [-!.()[, 
aY9 — 'i/jr,a^^.e [-!.()[ 
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A.i{(. z). 125, 135 
a*z. 17 
6m, 64, 67 
bu, 64, 67 
C (sesquilinear pairing), 30, 4C 
<̂ C\ 196 
C*, 32 
(̂ an, 93 
can. 72 
FC, 191 
£x- xs/s- 13 
Char.#, 20 

(conjugation), 29 
C, 195 
DE, 23, 48 

192 
D /r. 24, 48 
DV', 23 
^Dy, 192 

178 
o\ 12 
D, 198 
^JV^XS/S, 13 

Do, Doc. 2X, 51 
DR(A/). 19 
DR(.#j(2), 157 
DR(M3(,)(2)! 158 
DR(.//), 20 

e(->), 135 
e'^^. 135 

11 
£-'/=, 191 

Z~tTlz, 193 
./+,#, 26 
>tC, /t/7, 35 
/+.#, 27 
/+.//, 28 
>+C, /+-5/', 33 
God, 11 

192 
24 

.//'. 40, 47 
//. 40, 49 
(H, Dy), 23, 48 
hs, 41, 48 
/ (rescaling), 51 
X*2)(.jf .'!>:). 160 
.̂ •2)(if,X)ZO), 159 
A, Sing(A), 17 
Lc, y;.. 37 
L(t), 17 
':'//. 191 

194 
./^. .//' . 15 
.^.81 
./7. 194 
A/2o, 79 
M(N)., 71 
MT^(X,iu), MT^(Xw), 107 
MLT^(X,w;e), MLT^(x\ e), 114 
MT̂ </(X,iy)(i>), MT^(Xu>)(p). H7 
MTW(r'(X,w), 111 
N, 71 
. 1 . 88 
£20, 12 
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их, 11 
и.у - 13 
iìl

r. 12 
О';.. 12 
#s, 13 
Ох, 11 

12 
Pgrf, 72 13 
Pgrf, 72 
Pgrf, 72 
/V,.o.,f. 91 
г/-.,. V/. 73 Pgrf, 72 13 M. 38 
Ф/.п. / / . 82 

Ф/.п.//. 87, 91 
V/,v./C. 88 
У?- Triples. 31 
¿tf int-Triples, 179 
.rf г. 12 
'̂ (A'.X)xS' 1 3 

•»',У 25 

S. 13 / . -У (/с). 32 
-y2(X,í), 73 
£(.//), 20 
Sp.y 15 
Р̂.г/ ."j • 25 

SuppV/. 20 
.7, .7*. -7(/c), 31 Fr. 191 
6>E. 23 

Ф/.п.//. 192 
В ^ . 12 
/ar\ 93 
var, 72 
\ ">.//. 68 

Ф/.п.//. 55 
Л' :. 11 
X. 11 
У. 12 
.r\ 12 
— Dol- -DR - 19 
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