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O N L A N G L A N D S F U N C T O R I A L I T Y 

F R O M C L A S S I C A L G R O U P S T O G L n 

by 

D a v i d S o u d r y 

Abstract. — This article is a survey of the descent method of Ginzburg, Rallis and 
Soudry. This method constructs, for an irreducible, automorphic, cuspidal, self-
conjugate representation r on GL n (A) , an irreducible, automorphic, cuspidal, generic 
representation <r(r), on a corresponding quasi-split classical group G, which lifts 
weakly to r. This construction works well also for all representations of G L n ( A ) , 
which are in the so called "tempered" part of the expected image of Langlands func-
torial lift from G to G L n . 

Résumé (Sur la fonctorialité de Langlands des groupes classiques à G L n ) . — Get article 
est une exposition de la méthode de descente de Ginzburg, Rallis et Soudry. Cette 
méthode construit, pour une représentation irréductible, automorphe et cuspidale r 
telle que r = r*, une représentation irréductible, automorphe, cuspidale et générique 
CT(T) d'un groupe classique quasi-deployé G (qui dépend de G L n et r) , telle que r 
corresponde à cr(r) par la correspondance fonctorielle faible (« weak lifting »). Cette 
construction est valable aussi pour toutes les représentations de G L n ( A ) qui appar­
tiennent à la partie dite « tempérée » de l'image de la correspondance fonctorielle de 
Langlands de G à G L n . 

Introduction 

In these notes, I survey a long term work, joint with D. Ginzburg and S. Rallis, 

where we develop a descent method, which associates to a given irreducible auto­

morphic representation r of G L n ( A ) , an irreducible, automorphic, cuspidal, generic 

representation crT on a given appropriate split classical group G, such that a v lifts 

to TV,, for almost all places z/, where r v is unramified. Of course, not every r is ob ­

tained in such a way. We have to restrict ourselves to r which lies in the expected 
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336 D. SOUDRY 

(conjectural) image of the functorial lift from G to G L n , restricted to cuspidal repre­

sentations a of G ( A ) . We restrict ourselves even more and consider only generic a. 

This also applies to quasi-split unitary groups G. Here A denotes the adele ring of a 

number field F. Thus, for example, let E be a quadratic extension of F, and let r 

be an irreducible, automorphic, cuspidal representation of GI^n+iCAjs), such that 

its partial Asai L-function L 5 ( r , Asai, 5) has a pole at s = 1. Then we construct 

an irreducible, automorphic, cuspidal, generic representation o~r of C/2n+i(A), which 

lifts weakly (i.e. lifts at all places, where r is unramified) to r . Here, £ / 2 7 1 + 1 is the 

quasi-split unitary group in 2 n + 1 variables, which corresponds to E. We regard it as 

an algebraic group over F. Note that ar would probably be a generic member of "an 

L-packet which lifts to r". Of course, aT is a generic member of the near equivalence 

class which lifts to r . 

The basic ideas of our descent method (backward lift) can be found in [GRS7, 

G R S 8 ] . A more detailed account appears in [GRS1], where we also start focus­

ing on the descent from cuspidal r on G L 2 n ( A ) , such that LS(T, A 2 , s ) has a pole 

at s = 1, and L( r , 1/2) ^ 0, to ^-generic cuspidal representations a on the meta-

plectic cover of S p 2 n . We complete the study of this case (for non-cuspidal r as 

well) in [GRS2 , G R S 3 , G R S 4 , G R S 6 ] . In [GRS9], we consider the lift from 

(split) S02n+i to GLi2n- I review this last case in Chapter 1 of these notes. Here 

we can prove more; namely, that the generic cuspidal representation aT is unique up 

to isomorphism. This is achieved due to a "local converse theorem" for generic rep­

resentations of S02n+i(&), over a p-adic field fc, proved in [Ji.So.l]. In Chapter 2, 

I review integral representations for standard L-functions for G x G L m (valid only for 

generic representations). The integrals are of Rankin-Selberg or Shimura type. They 

are certain Gelfand-Graev, or Fourier-Jacobi coefficients applied to Eisenstein series 

or cusp forms. In Chapter 3, I review the descent from G L n to G in general, and in 

Chapter 4, I illustrate various proofs through low rank examples. 

This survey is the content of a minicourse that I gave at Centre Emile Borel, IHP, 

Paris, when I took part in the special semester in automorphic forms (Spring 2000). 

I thank the organizers H. Carayol, M. Harris, J. Tilouine, and M.-F. Vigneras for 

their invitation, and I thank my audience for their attention. 

Frequently used notation 

F - a number field. 

A = Ap - the adele ring of F. 

Fv - the completion of F at a place v. 

Ov - the ring of integers of Fu, in case v < 00. 

Vv - the prime ideal of Ov. 

qv = \OvjVv\. 

SOm(F) = {ge GLmiF^gJg = J } , where J = ^ 
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F R O M CLASSICAL GROUPS T O G L N 337 

Let M + denote the group of positive real numbers. Let i : R + —> A* be defined 
by i(r) = {xu}, where for all finite places v, xv — 1, and for each archimedean place 
v, xv = r. We denote z ( R + ) = A + . For an irreducible representation r, ujr denotes 
its central character. Sometimes we denote by Vr a vector space realization of r . 
When r is an automorphic cuspidal representation, we assume that r comes together 
with a specific vector space realization of cusp forms, which we sometimes denote 
by r as well. Finally, given representations T I , . . . , r r of GLni(Fu),..., GLnr(Fu) 
respectively, we denote by T\ X • • • x r n the representation of G L n ( F I / ) , n = n\ H hn r , 
induced from the standard parabolic subgroup, whose Levi part is isomorphic to 
G L n i (Fjy) x • • • x G L n r and the representation T\ 0 • • • (g) r r . 

1. T h e weak lift from S 0 2 n + i to G L 2 n 

In this chapter we survey the results on the weak lift from S02n+i to G L 2 n , obtained 
after applying our descent method (backward lift). Together with the existence of this 
weak lift for generic representations [C.K.PS.S . ] , we obtain a fairly nice description 
of this weak lift, which turns out to be not weak at all. 

1.1. Some preliminaries. — Let a = ®av be an irreducible, automorphic, cus­
pidal representation of S 0 2 n + i ( A ) . For almost all i/, GV is unramified and is com­
pletely determined by a semisimple conjugacy class [av] in L S 0 2 n + 1 = S p 2 n ( C ) , so 
that L{<JV,S) = det(/2n — %8(lv)~1' Let i be the embedding S p 2 n ( C ) C G L 2 n ( C ) . 
Then the conjugacy class ^ (a^) ] in G L 2 n ( C ) determines an unramified representa­
tion rv of G L 2 n ( ^ ) > such that L{TV,S) = L(al/^s). The unramified representation 
rv is called the local Langlands lift of av. This notion (of local Langlands lift) is 
conjecturally defined at all finite places and is well defined at archimedean places. 
For an archimedean place z/, av is determined by its Langlands parameter, which is 
an admissible homomorphism (pu : Wu S p 2 n ( C ) from the Weil group of Fv. The 
local lift of GV is the representation rv of G L 2 n ( ^ i / ) , whose Langlands parameter is 
i o {pu : Wv —• G L 2 n ( C ) . (For finite places i/, where ov is not unramified, av is 
conjecturally parameterized by an admissible homomorphism from the Weil-Deligne 
group (pv : Wv x S L 2 ( C ) S p 2 n ( C ) , and an irreducible representation ru of GL2n{Fv) 
would be a local lift of ov, if rv corresponds to the homomorphism i o ^ , under the 
local Langlands reciprocity law for G L 2 n , now proved by Harris-Taylor [H.T.] and 
by Henniart [H].) A n irreducible, automorphic representation r = (g)r^ is a weak lift 
of cr, if for every archimedean place v and for almost all finite places v where GV is 
unramified, rv is the local lift of ov. Using the converse theorem for G L m [ C P S . ] 
and L-functions for S02n+i x GL^ constructed and studied by Shahidi [Shi], the ex­
istence of a weak lift from S 0 2 n + i to G L 2 n was established for globally generic cr, by 
J. Cogdell, H. Kim, I. Piatetski-Shapiro and F. Shahidi. 
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338 D. SOUDRY 

Theorem ([C.K.PS.S.]). — Let a be an irreducible, automorphic, cuspidal, generic rep­
resentation o / S 0 2 n + i ( A ) . Then a has a weak lift to G L 2 n ( A ) . 

Here we remark that a weak lift of a is realized as an irreducible subquotient of the 
space of automorphic forms on G L 2 n ( A ) . Moreover, by the strong multiplicity one 
property for GL2n [J-S.], all weak lifts of a are constituents of one representation of 
GL2n(A) of the form n x • • • x r r , where are (irreducible, automorphic) cuspidal 
representations of G L m . ( A ) , m i 4- V mr = 2n and the set { n , . . . , rr} is uniquely 
determined. In particular, if a has a cuspidal weak lift, then it is unique. We are 
going to describe the image of the above weak lift, starting with its cuspidal part. 

1.2. T h e cuspidal part of the image. — Let a be an irreducible, automorphic, 
cuspidal, generic representation of S 0 2 n + i ( A ) . Assume that a has a cuspidal weak 
lift r on G L 2 n ( A ) . As we just remarked, r is uniquely determined (even with multi­
plicity one) . Clearly T „ = % (and uTv = 1), for almost all v. By the strong multiplicity 
one and multiplicity one properties for G L 2 n , [J-S.], [Sk], we have r = f, i.e. r is 
self-dual. (Similarly, uT — 1). Let 5 be a finite set of places, including those at 
infinity, outside which a and r are unramified. We have 

Ls(a xr,s) = LS(T x r, s) = Ls(r x r, 5), 

and hence Ls(o~ x r, s) has a pole at s = 1. Recall that 

LS(T XT, s) = L 5 ( r , s y m 2 , s ) L 5 ( r , A 2 , s ) . 

By Langlands' conjectures, one expects r to be "symplectic", and so the pole of 
LS(T x r, s) at s = 1 should come from Ls(r, A 2 , s). 

Theorem 1. — Let a be an irreducible, automorphic, cuspidal, generic representa­
tion o / S 0 2 n + i ( A ) . Assume that a has a cuspidal weak lift r on G L 2 n ( A ) . Then 
LS(T, A 2 , S) has a pole at s = 1. 

Proof. — Let us express the pole at s = 1 of Ls(a x r, s) through a Rankin-Selberg 
type integral which represents this L-function [Sol], [G.PS.R.] . It has the form 

(1.1) / r , a ) = f ^a(g)E^(fT^g)dg, 
S 0 2 n + i ( F ) \ S 0 2 n + i ( A ) 

where (pa is a cusp form in the space of <r, J5?(/ T ) 5,-) is an Eisenstein se­
ries on split S 0 4 n ( A ) corresponding to a if-finite holomorphic section / T j S in 
I n d p ^ ^ r l d e t - I 5 - 1 / 2 , where P2n is the Siegel parabolic subgroup of S 0 4 n . 
denotes a Fourier coefficient along the subgroup 

Nn = j u = Ç HN+2 y'^j e S 0 4 n zeZn^ = y •. j j , 
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with respect to the character 

Xti, : u i—• il)(zi2 + ^23 + • • • + ZN—2,n—1 + 2/n- l ,n+l — 2/n-l,n+2)-

Here ^ is a fixed nontrivial character of F \ A . The stabilizer of xv> inside 

/ ' » - 1 \ / / N _ ! \ 

I s o 2 N + 2 I is the subgroup of all I 9 I, where g fixes the vec-

tor 

/ °\ 
i 

- l 

V 6 / 

(inside F 2 n + 2 ) . This defines (split) S02n+i and its embedding (over F) inside S 0 4 n , 

all implicit in the definition of £((pa, /r ,s) - For a suitable choice of data, 

(1.2) - z5& x r $ « M -
where R(s) is a meromorphic function, which can be made holomorphic and nonzero 

at a neighbourhood of a given point SQ- We consider so = 1. Since r is unitary, 

L 5 ( r , A 2 , 2 s ) is holomorphic at s = 1. We conclude from the last equation that 

£ ( ^ f f , / r , s ) j and hence J5?(/ r > s, • ) , has a pole at 5 = 1 (for some choice of data). This 

implies that the constant term of 2 ? ( / T j S , I ) , along the radical of P2n> has a pole at 

s = 1, for some decomposable section, and this has the form 

(1.3) « / ) + n « ( « ) ^ . 

for some finite set of places S' containing S. By [K, Lemma 2.4], M(fr"}) (the 

corresponding local intertwining operator at / ) is holomorphic for Re(s ) ^ 1. We 

conclude that LS (r, A 2 , 5 ) has a pole at s = 1. Since L(TU,A?,S) is nonzero for 

(each s and) each 1/, LS(T, A 2 , s) has a pole at s = 1. • 

(1) For each place 1/, L ( T „ , A 2 , S ) is holomorphic at s = 1. We thus may replace 

LS(T, A 2 , s) by LS'(T, A 2 , 5 ) , for any S' and even by L( r , A 2 , s). 

(2) If cr is not (globally) generic, C(<p<n fr,s) 1 S identically zero. 

The argument in the last proof proves the second direction of the following propo­

sition. (The first direction is easy and appears in [GRS1, p . 814].) 

Proposition 2. — Let r be an irreducible, automorphic, cuspidal representation of 

GLfc(A), k ^ 2. Assume that the central character of r is trivial on A+>. Let so € C 

be such that Re(so) ^ 1- Then E(fTiS,') (similarly constructed on S02fe(A) >) has a 

pole at so (as fTi3 varies), if and only if k is even, so = 1, and L(r, A 2 , 5) has a pole 

at s = 1. 
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Prom this proposition we conclude 

Theorem 3. — Let a be an irreducible, automorphic, cuspidal, generic representation 
of SC>2n+i(A), and let r be an irreducible, automorphic, cuspidal representation of 
GLfc(A), k ^ 2, such thatujr\k+ = 1. Then Ls(axr,s) is holomorphic for Re(s ) > 1, 
and if Ls(a x r, s) has a pole at so, such that Re(so) = 1> then k is even, so = 1 
and LS(T, A 2 , S ) has a pole at s = 1. (S, as usual, is a finite set of places, outside of 
which both a and r are unramified.) Finally, if r is an automorphic character of A*, 
then Ls(a x r, s) is entire. 

Proof. — As in the proof of Theorem 1, we can express Ls(a x r, s) using global 
integrals (see [G], [Sol], [G.PS.R.]) . We will review them in more detail later. 
They involve the Eisenstein series E(fT,s, •) on S02fc(A) when k > 2, so that, as in 
Theorem 1, if Ls(a x r, s) has a pole at So, Re(so) > 1> then E(fT,s, •) has a pole at 
so 5 and by Proposition 2, we get what we want. In case k = 1, the global integrals 
turn out to be entire, and then it is easy to conclude that Ls(cr x r, s) is entire as 
well. • 

Let us start now with an irreducible, automorphic, cuspidal representation r of 
G L 2 n ( A ) , such that L ( r , A 2 , 5 ) has a pole at s = 1. As we have seen in Theorem 1, 
this is a necessary condition for (a cuspidal) r to lie in the image of the weak lift 
from S 0 2 n + i ( A ) . If r is a weak lift of a generic a, then by (1.2) > C ( ^ ? / r , s ) has a 
pole at s = 1 (for suitable choice of data), and hence (see (1.1)) there is a non-trivial 
L 2 -pai r ing between (the space of) a and 

(1.4) ^ ( r ) = S p a n { R e s s = 1 E*"1 (fT,„ O l g o ^ A ) } -

Now we note that cr^(r) can be defined as in (1.4) for any cuspidal r, such that 
L ( T , A 2 , S ) has a pole at s = 1. O~^(T) is a space of automorphic functions on 
S 0 2 n + i ( A ) . The descent map r \-> cr^(r) is the main vehicle, which will lead us 
to the description of the functorial lift from S02n+i to G L 2 n - One of the main theo­
rems is 

Theorem 4. — Let r be an irreducible, automorphic, cuspidal representation of 
G L 2 n ( A ) . Assume that L ( r , A 2 , 5 ) has a pole at s = 1. Then a^(r) is a nonzero, ir­
reducible, automorphic, cuspidal, generic representation o / S 0 2 n + i ( A ) ; which weakly 
lifts to r. Every other such representation has a non-trivial 1?-pairing with G^[T). 

Guidelines to the proof 

(1) o~ip(r) is cuspidal: put, for short eT(h) = R e s s = i E(fT,s,h). We have to show 
that all constant terms of ef , along unipotent radicals (of parabolic subgroups) in 
S02n+i , vanish. Consider then the constant term of eT along the unipotent radical of 
the standard parabolic subgroup of S02n+i , which preserves a p-dimensional isotropic 
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subspace, 1 ^ p ^ n. This constant term (evaluated at h = I) equals [ G R S 1 , 

Chapter 2] 

(1.5) J2 [ eiNn-^~l\jx(3)dx, 

7 € Z P ( F ) \ G L P ( F ) T

J 

where Zp is the standard maximal unipotent subgroup of G L P , Cp is a certain unipo-

tent subgroup inside the Levi part of P2n> /? is a certain Weyl element of S 0 4 n , and 

îy = ( h(2n-P) ^ ) . e^T

Nn-p^ ) i s the Fourier coefficient of eT along 

Nn-p = iu= ( h(n-P)+2 y'^ \ e SO^n z e Z n + P _ i j , 

with respect to the character 

n+p-2 
X ^ ' V ) ' U 1 v ( ^ , ¿ + l ) ^ _ 1 ( 2 / n + p - l , n - p + l ~ 2 / n + p - l , n - p + 2 ) . 

As for the case p = 0, X ^ 1 p ) is fixed by S 0 2 ( n - p ) + i > appropriately embedded in SCUn, 

and we may consider 

<fy W ^ P a n i e r l s o 2 ( N _ P ) + 1 ( A ) / ' 

The cuspidality of cr^(r) is implied by 

(1.6) < r $ ° ( T ) = 0 , V 0 < f c < n . 

This is proved using just one place. First, note that the residues e r are square 

integrable. Next, take an irreducible summand n of the space of the residues 

e r . At a place i/, where 7iv is unramified, 7r„ is the spherical constituent of 

I n d p ^ ^ ^ rv\det «I 1 / 2 . One shows, using Bruhat theory, that the corresponding 

Jacquet modules vanish 

(1.7) W ^ ^ " 0 , V ° < f c < n -

This depends only on the fact that (unramified) rv is self-dual and u T v = 1. 

(2) cty(r) is nontrivial: this depends only on the fact that r is (globally) generic. 

We can relate the ^-Whittaker coefficient of cr^(r) to that of r . 

(3) Write cr^(r) = 0 a ¿ - a direct sum of irreducible (cuspidal) representations. 

Each summand a¿ weakly lifts to r. This follows from the fact that at a place v, 

where nv (as in (1.7)) and rv are unramified, JN ^F ^ (nv) , which surjects on 

cr¿ ) t /, shares its unramified constituent with that of I n d ^ ^ T j 1 ^ 1 ^ /xi j £ / <g> • • • <g> / x n > 1 / , 

where I? is the Borel subgroup of SC>2n+ij and 7v is the unramified constituent of 

Mi,!/ x • • • x / x n ? I / x x • • • x fji^l on G L 2 n ( ^ l / ) (/¿¿i/ are unramified characters of F*). 
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(4) Decompose (Тф(т) into a direct sum фсг^ of irreducible cuspidal representations. 
Each summand Gi has a non-trivial Impairing with о ^ ( т ) , and so by definition ( (1 .4)) , 
C((pa., / T , s ) ф 0 (see (1 .1)) . By Remark (2) , after the proof of Theorem 1, cr* must be 
generic for all i. 

Note that since Gi is generic, it has a weak lift r' on G L 2 n ( A ) [C.K.PS.S . ] . By 
the strong multiplicity one and multiplicity one properties for G L 2 n ? we must have 
т' = т. In particular, r „ is the local lift of Oi,v at infinite places as well. 

(5) о~ф(т) is multiplicity free: if G{ and Gj acting in subspaces V(Ji,V(Tj are isomor­
phic summands, choose an isomorphism (of representations) T : Vai —• Va., such that 
T((p) — ip has a zero ^-Whittaker coefficient for all cusp forms <p G Vai. This follows 
from the uniqueness up to scalars of a Whittaker functional. The argument of (4) 
applied to G[ acting in {T(<p) — (p \ cp G Va.} shows that Gi must be globally generic. 
This is a contradiction, unless T = id. 

(6) сгф(т) is irreducible: it follows from Cor. 4 in Sec. 6 of [C.K.PS.S.] that for any 
two summands Gi, Gj, and any place v, we have an equality of local gamma factors: 

l(cn,v x V, 5, фи) = 7 ( ^ > x V, 5, фи), 

for any irreducible representation 77 of GLk{F„), к = 1 , 2 , . . . By the local converse 
theorem (for generic representation of S 0 2 n + i ( ^ ) of [Ji.So.l], we conclude that 
<7 i } 1 / = cr J ? i y, for all finite places v. For archimedean v, we already know that Gi,v = G^V 

(both representations have the same Langlands parameter as r v , for v archimedean). 
We conclude that Gi = Gj, and by (5) Gi = Gj, and so G^{T) has only one irreducible 
summand (appearing with multiplicity one) i.e G^(T) is irreducible. • 

1.3. Description of the image in general, and endoscopy. — In general, an 
irreducible, automorphic, cuspidal, generic representation G of SCbn+i (A) weakly lifts 
to an irreducible automorphic representation r of G L 2 n ( A ) , which is a constituent of 
an induced representation of the form 

J i | d e t - | Z l x ••• x Sj\det-\Zj x n x • • • x rg x ^ | d e t - | ~ Z j ' x ••• x Si\det-\~Zl, 

where R e ( z i ) ^ • • • ^ Ke{zj) ^ 0, and each of the representations Si, is irreducible, 
automorphic, unitary, cuspidal, or an automorphic character of the idele group, so 
that their central characters are trivial on A + , and also т$ = %, for i = 1 , . . . , £. We 

have (for appropriate S) 

LS(GXSUS) = Y[Ls(Si x S u s + Zi)Ls(ôi x Sus - z{) Д Ls(n x î b s ) . 

This product has a pole at s = 1 — z\. (It comes from Ls(Si x Si, s + z\). Note that 
R e ( l — z i ) , R e ( l — z\ ± zi) ^ 1, so that the other factors in the product do not cancel 
this pole.) Prom Theorem 3, we conclude, in particular, that S\ is not a character 
of the idele group, z\ — 0 and S\ = <Ji, but then LS(G X 61, S) has a double pole at 
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s = 1, which is impossible. (The global integral which represents ¿$^SuA?2s) m v ° l v e s 

the Eisenstein series on S02/d ( A ) , induced from 8\ and the Siegel parabolic subgroup. 

This Eisenstein series can have at most simple poles for Re(s ) ^ 1/2.) We conclude 

that "there are no ¿¿-s", and 

T = Ti X T 2 X • • • X T£, 

where r¿ are irreducible, self-dual, automorphic, cuspidal, such that (again by Theo­

rem 3) LS(TÍ, A 2 , S) has a pole at s = 1, and also r¿ ^ T¿, for 1 ^ i ^ j < (We just 

need to repeat the last argument.) Note that for any irreducible, automorphic, unitary 

representations T I , . . . , T£ (on G L ^ ( A ) , . . . , GLk£(A) respectively) the representation 

TI x • • • x T£ is irreducible. This proves 

Theorem 5 . — Let a be an irreducible, automorphic, cuspidal, generic representation 

of S 0 2 n + i ( A ) . Then a weakly lifts to a representation (on GL2n(A)J of the form 

T = T\ x • • • x T£, where T I , . \ . , T ¿ are pairwise different irreducible, automorphic, 

cuspidal representations of GL2m ( A ) , . . . , G L 2 n ¿ ( A ) , ni + — • + n¿ = n, respectively, 

such that LS(TÍ, A 2 , s) has a pole at s = 1, for 1 < i < £. 

Conversely, let r be an irreducible representation of G L 2 n ( A ) of the form just 

described in Theorem 5. We can apply the same procedure as in Sec. 1.2 (case 

£ = 1) and construct cr^(r) - an irreducible, automorphic, cuspidal, generic repre­

sentation of S 0 2 n + i ( A ) , which lifts weakly to r. For this, we consider the Eisen­

stein series on S 0 4 n ( A ) corresponding to a X-finite, holomorphic section / T > £ in 

I n d | ° 4 T l ( A ) r i | det • | s i - 1 / 2 0 . . . 0 T € | det • | ^ ~ 1 / 2 5 w h e r e ¿ = . . . , 5 ¿ ) and Q is the 

standard parabolic subgroup of SC>4 n, whose Levi part is isomorphic to GL/2m x • • • x • 

GL2n£- Denote this Eisenstein series by E{fT^h). As in [GRS4, Theorem 2.1], we 

can prove that the function 

( s i - l ) ( s 2 - l ) ( s i - l ) E ( f T t s , h ) 

is holomorphic at s = ( 1 , 1 , . . . , 1 ) and is not identically zero, as the section varies. 

Consider 

R e s s = i E(fTi8, h) = l i m ( s i - 1) (se - 1 )£7( / T , a , ft), 
s—+l ~ 

where 1 = ( 1 , . . . , 1 ) . These residues generate a square integrable automorphic repre­

sentation of S 0 4 n ( A ) . Consider, as in (1.4) 

O > ( T ) = S p a n i R e s ^ i ^ ' ^ / r ^ O l s o ^ ^ A ) } . 

Theorem 6. — Let r = T\ X T2 X • • • x m be the irreducible representation o / G L 2 n ( A ) ; 

induced from Ti 0 • • • 0 r^, where T I , . . . , r¿ are pairwise inequivalent irreducible, auto­

morphic, cuspidal representations on GL2m ( A ) , . . . , GL/2 n ¿(A) respectively, n\ H h 

n£ = n, such that for each 1 ^ i ^ £, LS(TÍ, A 2 , s) has a pole at s = 1. Then cr^(r) is 

a nonzero, irreducible, automorphic, cuspidal, generic representation of S 0 2 n + i ( A ) ; 
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which weakly lifts to r. Any other such representation has a non-trivial L2-pairing 

with a^p ( T ) . 

Proof — The nontriviality of cr^(r) is shown exactly as in case £ = 1. As we men­

tioned in the proof of Theorem 4, only the fact that r is generic is important here. 

The cuspidality of CF^{T) is shown as in case £ = 1, only we need also to use induction 

on £. Let a be an irreducible summand of a^(r). Then 

J cpa(g) R e s 1 = i E^(fT^ g)dg £ 0, 

S C W i C F ^ S O a n + i C A ) 

as the data ipa and / r , « vary. In particular 

£(<P*JT,8) = J <P*(9)E+{fT&9)dg £ 0. 

S 0 2 n + 1 ( F ) \ S 0 2 n + i ( A ) 

As in (1.4), also in this case the integrals C((pa, fr,s) represent 

Ui=i Ls{axrusi)  

^<^«pLs(Ti x T 7-,s. + s. ?-)nLi L 5 ( T ; , A 2 , 2 S 0 ' 

for generic a. Moreover, as in case £ = 1, if a is not (globally) generic, then the last 

two integrals above are identically zero. The rest of the proof is now exactly as in 

Theorem 4. In particular, the irreducibility of a^(r) follows from the local converse 

theorem in [Ji.So.l]. • 

As a corollary, we obtain that generic cuspidal representations of S 0 2 n + i ( A ) satisfy 

the strong multiplicity one property. 

Theorem 7. — Let G\ and 02 be two irreducible, automorphic, cuspidal, generic rep­

resentations of S 0 2 n + i ( A ) . Assume that G\,V = 0*2,», for almost all places v. Then 

U\ = (72-

Proof — Both G\ and 02 weakly lift to the same representation r on G L 2 n ( A ) . r 

has the form as in Theorem 6. By Theorem 6, a\ and 02 have non-trivial L 2-pairings 

with <X0(r). In particular G\ = ( r ) = 02. • 

Example. — Consider the group S 0 5 ( A ) = P G S p 4 ( A ) . Every irreducible, automor­

phic, cuspidal, generic representation of P G S p 4 ( A ) has a unique weak lift to G L 4 ( A ) . 

The image of this lift consists of all irreducible, automorphic, cuspidal representations 

r of G L 4 ( A ) , such that L 5 ( r , A 2 , s ) has a pole at s = 1, and of all representations 

of the form T\ X T2, where T\ and T2 are different, irreducible, automorphic, cuspidal 

representations of G L 2 ( A ) , each one having a trivial central character. 

Remark. — In [Ji.So.l, Ji.So.2] a Langlands reciprocity law is established for generic 

representations of S 0 2 n + i ( ^ ) (y finite). Theorem 6.3 of [Ji.So.2] says (in above 

notation) that if a weakly lifts to r, then at all places 1/, ov locally lifts to rv in the 
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sense that both GV and rv correspond to the same Langlands parameter (which is 

symplectic). 

Finally, if a (as before) does not lift to a cuspidal representation of G L 2 n ( A ) then, 

as in Theorems 5,6, it lifts to a representation r = T\ X • • • x as in Theorem 6. 

By Theorem 4, each T$ is the lift of Gi = G^{ji) on S 0 2 n i + i ( A ) . Thus a is the 

(generalized) endoscopic lift of G\ 0 • • • 0 &e on S 0 2 m + i ( A ) x • • • x S 0 2 n * + i ( A ) . This 

lift is compatible with the L-group map 

S P 2 n i (C) x • • • x S p 2 n , ( C ) S p 2 n ( C ) . 

Conversely, let GI,...,G£ be irreducible, automorphic, cuspidal, generic represen­

tations of S 0 2 m + i ( A ) , . . . , S02n*+i(A) respectively. Consider the lifts of G{ to 

G L 2 n i ( A ) , n = Tn x ••• x i = 1 , . . . , £ Denote d = { r ^ } ^ = i - Clearly, if 

dnCi> = 0 for all 1 ^ i 7̂  %' ^ £, then r = x f = 1 r^ = x \ = 1 x j L i r u n e s m the image 

of the lift from S 0 2 n + i ( A ) , and hence cr^(r) is an irreducible, automorphic, cuspidal, 

general representation of S 0 2 n + i ( A ) , which is the lift of o\ 0 • • • 0 at. Summarizing 

Theorem 8. — Let a be an irreducible, automorphic, cuspidal, generic representa­

tion of S 0 2 n + i ( A ) . Assume that the lift of a to G L 2 n ( A ) is not cuspidal. Then 

there exist irreducible, automorphic, cuspidal, generic representations o\, GI,..., at 

on S 0 2 m + i ( A ) , S 0 2 n 2 + i ( A ) , . . . , S 0 2 n £ + i ( A ) respectively, n\ H Yni = n such that 

a is the lift of G\ 0 • • • 0 G£. The set {cri, 0 2 , . . . , cr }̂ is unique up to permutation and 

up to isomorphism. 

Conversely, let G\, G2,..., G£ be irreducible, automorphic, cuspidal, generic repre­

sentations of SC>2ni+ i (A) , . . . , S 0 2 n £ + i ( A ) respectively, n\ + • • • + ne = n. Consider 

the sets {Ci}j=1 as above. IfCidCj = 0 for all 1 < i ^ j < £, then there is a unique 

up to isomorphism, irreducible, automorphic, cuspidal, general representation G of 

S 0 2 n + i ( A ) , which is a lift of G\ 0 • • • 0 G£. Otherwise, cuspidal data on S 0 2 n + i ( A ) 

can be specified, so that G\ 0 • • • 0 G£ lifts to a constituent of the corresponding induced 

representation. 

Example. — Let c r i , . . . , c r n be pairwise different irreducible, automorphic, cuspidal 

representations of P G L 2 ( A ) . Then, up to isomorphism, there is a unique irreducible, 

automorphic, cuspidal, generic representation G of S 0 2 n + i ( A ) , which is the lift of 

G\ 0 • • • 0 GN. 

1.4. Base change. — Let us compose our descent map r 1—> G^(T) ("backward 

lift") with the base change lift for G L 2 n - Let E/F be a cyclic extension of odd prime 

degree p. Let G be an irreducible, automorphic, cuspidal, generic representation of 
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S 0 2 n + i ( A ) . Let r be the lift of a on G L 2 n ( A ) . We would like to follow the diagram 

cy' = v^(rf) i > T' = bc(r) 

S02n+i(AE) < GL 2 n (A£; ) 

base change 

S 0 2 n + i ( A F ) • G L 2 n ( A F ) 

a ~ cr^(r) < > r 

Here T' = bc(r) is the base change lift of r [A.C. ] . The top arrow of the diagram exists 

if we show that r ' lies in the image of the lift (restricted to generic representations) 

from S 0 2 n + i ( A £ ) . The image is described in Theorems 5,6. This is indeed the 

case. For this, choose a nontrivial character rj of A*F/F*NE/FA*F, and a generator e 

of G&\(E/F). Starting with a generic a on S 0 2 n + i ( A i ? ) , we know that its lift r on 

GL2n(A j p) has the form T\ X • • • x rg as in Theorem 5. Since bc(r) = bc{r\) x • • • x bc(rg), 

we have to analyze each representation bcfa). There are two cases according to 

whether is isomorphic or not isomorphic to r\ (8) rj. If r% ^ Ti <8) r/, then 6c(r^) = Oi 

is cuspidal and e-invariant. We have 

Ls(6i,A
2,s) = L[Ls(Ti,A

2®r1

h,s). 

It is a theorem of Shahidi [Sh2] that each factor in the last product is nonzero at 

5 = 1, and since Ls(ri, A 2 , 5 ) has a pole at s = 1, we conclude that Ls(0i,A2,s) has 

a pole at s — 1. If Ti — Ti® 77, then p\2rii, and 

6 c ( r i ) = f l i x e f x - . . x 0 f \ 

where Oi is cuspidal, such that Oi ̂  Of. We have 

[Ls(n, A2, a ) ]" = J ] Ls(n,A2 ®V

k,s) = Ls{bc{r), A2, s) 
1 n 

= J ] Ls(ef x6f,s)L[Ls(ef,A2,s). 

6^j<k^£ j=0 

We conclude that the last product has a pole of order p at s = 1. It is easy to see that 

Oi is self-dual. (This follows from the self-duality of r» and the fact that p is odd. ) In 

particular, Of ^ Of, for 0 ^ j < k ^ p. We conclude that Y[PjZl Ls(0f, A 2 , s) has a 

pole of order p at s = 1, and hence Ls(0l, A 2 , 5 ) has a pole at 5 = 1, for 0 < j < p — 1. 

Finally, it is easy to see that in 

bc(r) = bc(n) x . . . x bc(n) = X Oix( X f P X 0 f ) Y 
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all factors are different. This shows (by Theorem 6) that r' = bc(r) is in the im­

age of the lift from S 0 2 n + i ( A £ ) . The representation a' = cr^r') is an irreducible, 

automorphic, cuspidal and generic, and it is a base change lift of a. Summarizing 

Theorem 9. — Let E/F be a cyclic extension of odd prime degree. Then there is 

a base change lift from irreducible, automorphic, cuspidal, generic representations 

of S02n+i (Ai? ) to irreducible, automorphic, cuspidal, generic representations of 

S02n+1(AE). 

Conclusion. — The descent map (backward lift) r *-* cr^(r) is a very powerful tool. 

This chapter demonstrated the nice results obtained for SO271+1 using the descent 

map. The ideas and methods are general and apply to other quasi-split classical 

groups G. The definition of O\/ ,(T) (for appropriate r ) is intimately related to global 

integrals (of Rankin-Selberg type, or of Shimura type) representing the standard L-

function for G x G L * . These integrals are available, and we will survey them in the 

next chapter. These integrals suggest the construction of cr^(r) , which arises as a 

natural object; it is constructed so that Ls(a^(r) x r, s) has a pole at s = 1. The 

representation cr^(r) is defined by taking certain Gelfand-Graev, or Fourier-Jacobi 

coefficients of the residue at 1 of a certain Eisenstein series induced from r. The 

study of ( r ) is now the study of these Gelfand-Graev, or Fourier-Jacobi coefficients 

of the residual Eisenstein series induced from r. The three main problems concerning 

CTTP(T) are the following (for appropriate r, i.e. in the expected image of the lift from 

G to G L J V , for appropriate N.) 

(1) Show that ( r ) / 0. 

(2) Show that ^ ( r ) is cuspidal. 

(3) Show that each summand of cr^(r) weakly lifts to r . 

In Chapters 4-6, we will indicate how to prove these properties through low rank 

examples. In this way we construct examples of generic cuspidal representations a on 

G, which weakly lift to a given r in the expected image. Similarly, we get examples 

of (generalized) endoscopy and base change. Once the existence of the weak lift from 

G to GLJV is established (and not much is missing for the proof by converse theorem 

to be completed) then our examples above give the general case. 

Note added in proof. — Recently, the existence of the weak lift of cuspidal generic 

representations on G to GLJV has indeed been established. See [ C . K . P S . S . l ] . 

2. L-functions for G x GL^, where G is a quasi-split classical group 

(generic representations) 

In this chapter, we survey the global integrals (of Rankin-Selberg type, or of 

Shimura type) which represent the standard L-functions for generic representations 

on G x GLfc. Note that these L-functions were obtained by Shahidi [Shi] using the 
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Langlands-Shahidi method. However, the integrals we present here relate the fact 

that Ls(a x r, s) has a pole at s = 1, and the fact that a has a nontrivial Impairing 

with the descent applied to r . 

We'll first present the notions of certain Gelfand-Graev models and Fourier-Jacobi 

models, which enter in the definitions of the global integrals. 

2 .1 . Gelfand-Graev models. — Let F be a field of characteristic different than 2. 

(Eventually we'll be interested in a number field F or in its completion in one of its 

places.) Let E be either F or a quadratic extension of F. Denote by x i—> x the 

nontrivial element of Gal(E/F) in case [E : F] = 2. If E = F , we agree that x = x 

on F. Let V be a finite dimensional vector space over E, equipped with a non-

degenerate bilinear form ( , ) , which is either symmetric, or anti-symmetric in case 

E = F, and is Hermitian in case [E : F] = 2. Let H = H(V) be the connected 

component of the isometry group of (V, ( , ) ) . We assume that H acts on V from the 

left. 

Assume that 

(2.1) V = Vt+ + W + Vf, 

where are isotropic subspaces of dimension which are in duality under ( , ) 

(i.e. ( , ) restricted to x Vf is non-degenerate), and W = (V^ + + Vf)1-. Let Pe 

be the parabolic subgroup of H, which preserves . Write its Levi decomposition 

P£ = Met< Ui. 

Let us write the elements of H in matrix form, following the decomposition (2.1). 

Then (with evident notation) 

(2.2) Me = { ( 9 h ] g eGL(V+), h €H(W)}, 

(2.3) Ut = j u = iw y' j € H \ . 

Fix nonzero vectors WQ £ W, vQ € V£ . Define for u € Ut (written as in (2.3)) the 

following rational character 

x , „ n . „ r ( u ) = («-«to.«o )• 

We have 

(2.4) S t a b M , ( X ^ - ) = { ( 9 h

 g m ) e H | h • w0 = w0l g* • v£ = } . 

Thus, if Wo is anisotropic, then h • WQ = wo means that h G H(WQ f l W ) , and if wo 

is isotropic, then h • wo = wo means that h lies in the parabolic subgroup Pw,w0 of 

H(W), which fixes the isotropic subspace E • WQ (and also h • wo = wo)> Put in this 

case (i.e. (wo,wo) = 0) 

pw,w0

 = i h e pw,w0 \h-w0 = wo}. 
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The condition g*v$ = VQ in (2.4) means that g lies in the so called "mirabolic" 

subgroup of GL(V^~). Let us insert more coordinates. Choose a basis {vi,... , ^ } of 

and a dual basis {v-e,... , V - i } of Vf {i.e. {vi,v-j) = dij, for 1 ^ i , j < £). We 

assume that v$ = v-£. We identify G L ( V ^ ± ) with GLe(E) using these bases. Note 

that for g G GLe(E), g* = wetg~1we, where we = ^ .• ^ , and g*v-e = v-£ means 

that g G ( n , * m ) . Let Ze be the standard maximal unipotent subgroup of GLe(E). 

Put 

Z* = lz= ( iw ) \ z e Z e \ , 

L ^ = f % 0

i n n (wo, wo) ¿0 

\PW,w0i (w0,w0)=o' 

N£ = Zelie, 

Re.wn = NeLw.wn • 

Fix a nontrivial character ip of F. Put I\)E — otrE/F- Let ipeiWo be the following 

character of Ne 

Фе,у,0(2-и) = <ф2е(г)<фЕ(Х -(и)) =rl>E(y]zili+1)'il>E((u-woìvi )). 

Assume now that wo is anisotropic. (This precludes symplectic groups H.) Let F 

be a local field, and let a be an irreducible (smooth) representation of H{WQC\W). We 

say that an irreducible (smooth) representation n of H has a Gelfand-Graev model 

with respect to {Re,WQ;o;ip) if 

(2-5) KomRitVJQ (TT, ipe,W0 ®d)^0. 

(ipe,w0 may be viewed as a character of Re,Wo by trivial extension.) 

Now assume that F is a global field, that t/j is a non-trivial character of F\A 

(A = Ap), and that 7r is an automorphic representation of acting in a space of 

automorphic forms V*. Put, for cpn G K-

(2.6) ipV-°(h)= j vÁvh)^Wo{v)dv. 

Nt(F)\Nt(A) 

Note that (pi'^frh) = (pie'w°(h), f o r 7 G ff^n^F. We call the Fourier coefficient 

(2.6) the Gelfand-Graev coefficient of ipn with respect ipe,wo-

Let a be an automorphic representation of H{w± fl W ) A (acting in a space of 

automorphic forms Va). We say that 7r has a global Gelfand-Graev coefficient with 

respect to (Re,Wo; 0 , if (the following integral converges absolutely and) 

(2.7) K<P*,V>~) = J <pÍ',wo(9)<P~(9)dg¿0, 

H ( tD¿-lW) F \H ( tu¿-rW )A 
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as y?^ varies in Vn and (fa varies in Va. The corresponding Gelfand-Graev model of n 

is the space of functions on i f A spanned by the functions h —» b(7r(h)(pnj ipa), as (pn 

varies in and ipa varies in Va. In practice, one of (IT, a) will be cuspidal and the 

other will be "Eisensteinian". 

2.2. Fourier-Jacobi models. — We continue with the previous notations. Assume 

that wo is isotropic and that ( , ) is not symmetric (i.e. i f is either symplectic or 

unitary). Write 

W = Ew0 + W' + Ew-o, 

where W-o is isotropic, (wo,W-o) = 1 and W — (Ewo + Ew_o)xC\W. Put ve+i = wo, 

V-^+x) = w-o, Vf+l = S p a n { ^ i , . . . , ^ , ^ + i } , V^~ 1 = S p a n { v _ ^ + i ) , t ; _ £ , . . . , i ; - i } 

and identify, as before, G L ( V ^ ^ 1 ) with GLe+i(E). Using these coordinates, an element 

of lit has the form 

( LA Y * * * \ 
1 0 0 * \ 

and 

V>£,wo\y>) = WE{ye). 

Note also that an element of Lwtw0 has the form 

y l x

9 \ j , geH(W). 

The unipotent radical of Lw,w0 is isomorphic to the Heisenberg group of W, Hw = 

W 0 F. Note that Ne\Ne+1 = Hw- Fix an isomorphism j : Ne\Nt+i —> Hw- Let 

F be a local field. Let be the Weil representation of Hw * S p ( W ' ) . If i f is a 

symplectic group, then H(W') = Sp(W). If i f is a unitary group, then so is H(W'), 

and we embed H(W') inside S p ( W ' ) (W viewed over F). This requires a choice of a 

character 7 of E*, such that l\F+ = ^ E / F ~ the non-trivial quadratic character of F*, 

associated to E. See [Ge.Ro.]. Denote, in this case, by oty, 7 the restriction of uo^ 

to the image of H(W'). Put = UJ^ in case i f is symplectic (thus denoting here 

7 = 1 ) . 

Let a be an irreducible representation of i f ( W ' ) , in case i f is unitary, and of 

H(W')£, e = 0 , 1 , in case i f is symplectic, where 

H(w'Y = 
ÍSp(W), e = 0 

\sp(W'), e = l ' 

Then o ; ^ > 7 0 a is a representation of x i f ( W ' ) in case i f is unitary, and of 

Hw x H(Wf)1~€ in case i f is symplectic. Let R^w denote RelWo in case i f is 

unitary, or e = 1 , and iV^+i • S p ( W ' ) in case e = 0 . We view ipe,w0 as a character of 

R^WQ by trivial extension. 
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Let 7r be an irreducible representation of H in case H is unitary and of H1 £ — 

H(V)1~£ in case H is symplectic. We say that TT has a Fourier-Jacobi model with 

respect to {Re,Wo ; ^ , 7 , cr) if 

(2.8) H o m f l ~ (tt, fa <g> ( o ^ , 7 <8> a)) ^ 0, 

where we shorten the notation in this case: ipt — ipe,Wo, Re = Re,w0- Here is a short 

table which summarizes the above cases. 

tt # ( F ) - u n i t a r y Sp(V) S p ( V ) 

a # ( W ) - m n t a r y Sp(W) Sp(W) 

Re Re Re ^ i - S p ( W ' ) 

Note that Rg = Nex\ (HW' x H(W')) (using the isomorphism j : Ng\Ne+i W w ) -

Assume now that F is a global field and that ^ is a non-trivial character of F \ A . 

Let LJ^J be the Weil representation of S p ( W ' ) A , and in case H is a unitary group, fix 

a character 7 of E*\A*E, such that 7 | A #

 =LOE/FI a n d denote by aty ) 7 the restriction 

of oty to the image of H(W')A determined by ( 7 , ip). Denote, as before, = uo^ in 

the symplectic case. Denote, for a Schwartz function 0 in a Schrodinger model of uty, 

by 6^ the corresponding theta series. 

Let 7r be an automorphic representation of in case H is a unitary group, or of 

in case H is symplectic. 

Put, for £ Vn 

(2.9) <p+'«>+{h) = j <fAvh)^1(v)0^1^1(J(v)h)dv 

Nt+1(F)\NT+1(A) 

Recall that ij)g is extended trivially to iVg+i and j is the isomorphism Nt\Ni+\ ^+ 

rlw'(We keep denoting by j its composition with N¿+1 —• Ni\Ng+\.) Note that 

<pp«'+(rh) = ^ ^ * ( / » ) , V r € ff(W>. 

(pfe,J^ is called a Fourier Jacobi coefficient of ipn with respect to aty j 7 (and </>). Let a 

be an automorphic representation of H(W')& in case i f is a unitary group, and of 

H(W')% in case H is symplectic. We say that 7r has a global Fourier-Jacobi model 

with respect to (Rg\ 7 , cr) if (the following integral is absolutely convergent and) 

(2.10) j <PÏ<«>+(g)<P*(g)dgïO, 

H(W')F\H(W')A 

as (fn and (pa vary in K- and respectively. (In both cases, local, or global, repre­

sentations of metaplectic covers are assumed to be genuine.) In practice, we will take 

one of (7r, cr) to be cuspidal and the other to be "Eisensteinian". 
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In the following remark, we relate the above models to degenerate Whittaker mod­

els, as formulated in [ M . W . ] . It is meant just for completeness sake, and may be 

skipped at a first reading. 

Remark. — The equivariance properties with respect to JV̂  or iVg+i of the models just 

introduced are special cases of the general set-up of degenerate Whittaker models. To 

relate to the terminology [ M . W . ] , we have to choose a nilpotent element / in Lie ( iJ) , 

and a one parameter subgroup (p of H, such that 

(2.11) Ad(y>(*)) • / = t~2 ' / , Vt £ F*. 

We realize 

Lie(H) = {Ae EndE(V) \ (Avuv2) + (vuAv2) = 0, Vvuv2e V}, 

and write its elements in matrix form following (2.1). Consider again the rational 

character X-WQV- oiUg. Clearly, there is a unique element fi(wo) € Hom(V^~, W ) , 

such that 

(2.12) X _ . ( e x p ( V w ) ) = « ( ( f ^ f Z o y 0 e ) • ( " ' o i l ) ) 

( = 2 t r ( / i ( r t f o ) o y ) ) . 

Here, we think of y as an element of Hom£(VF, V^) etc. Identifying Hom(V^ + , W) and 

W x • • • x W [i times), using the basis {v\,..., V(}, it is clear, by the choice V-t = VQ , 

that fi(wo) is identified with an £-tuple of the form ( 0 , . . . , 0, WQ). Let 

/ zi 0 0 \ 

fe,W0 = A(™o) 0 , 0 ) € Lie(H), 
\ 0 fi(woY*tJ 

/ 1 0 \ 

where zg — \ \ 1 •. j (and /i(u>o) = ( 0 , . . . , 0, WQ)). Note that 

r I 0 x2 \ 1 

(2.13) 2tr Z f o =xi + hxe-i. 

{ \ 0 xt-i / , 

Prom (2.12) and (2.13) we have, for S e Lie(A^) , 

^ , ™ 0 ( e x p 5 ) = t/jE(tr(fe,Wo • 5 ) ) . 

Next, we have to explain what was our choice of a one parameter subgroup tp of H. 

Let 

/ae(t) \ 

\ ae(t) J 
where 

o / ( t ) = d i a g ( « M , t M - 2 , t M - 4 , . . . , t 2 ) . 
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If wo is anisotropic, we choose ip = y>£, and if WQ is isotropic, we choose 

¥>(*) =
 Iw' t _ , 

Note that (2.11) is satisfied. Now decompose 

Lie(jff) = 0 Lie(ff)<, 

where 

Lie(H)i = {Se Lie(H) \ Ad <p(t)> S = f 5, V* G F*}. 

Clearly, if wo is anisotropic, then 

Ue(Ne) = 0 Lie(H)i = © Ue(H)i. 

If wo is isotropic, then 

Lie(iV* • Center (L W l w 0 ) ) = 0 Lie( i f )^ , 

and 

L i e ( J V m ) = 0 Lie(H)i. 

(Note that Ni • Center(Lw,w 0) = j " 1 (Center (Hw)) , where j is the composition of 

Ni+1-+Nt\Ni+1-^>Hw). 

2.3 . T h e global integrals: overview. — The general form of the global integrals 

is just an application of a global Gelfand-Graev model, or a global Fourier-Jacobi 

model to an Eisenstein series on or on H^~€, in case H is symplectic, induced from 

a cuspidal representation on a maximal parabolic subgroup of H. The global model is 

taken against a cuspidal representation a on H(WQ Pi W)A, in case wo is anisotropic, 

on H(W')A, in case H is unitary, or on H(WF)£

A, in case H is symplectic. Thus, in 

(2.7) and in (2.9) , 7r is an Eisenstein series induced from a cuspidal representation 

r (g) do on a parabolic subgroup, whose Levi part is isomorphic to GL& xH(Wk), 

where V = + Wk + V ^ - , as in (2.1). With normalized Eisenstein series, these 

integrals represent Ls(a x r, s ) , the partial standard L-function for H(WQC\W) x GL^, 

(resp. H(W) x ResE/F GL^, resp. H{W')£ x GLk) provided a and o~o are related 

through an appropriate global Gelfand-Graev model (resp. Fourier-Jacobi model) . 

For example, if Wk is a subspace of w$ f l W , in case Wo is anisotropic, or a subspace 

of W, in case wo is isotropic, then a should have a global model with respect to a 

subgroup Rf,w'Q C H(WQ fl W) (resp. H(W)), whose reductive part is isomorphic to 

H(Wk), on which we take <7o- In this generality, the global integrals were studied in 

[G.PS.R.] for orthogonal groups H. Special cases were treated in [Ge.Ro.] (Fourier-

Jacobi model for TT cuspidal on C/2,1) and in [N] (Gelfand-Graev model for n cuspidal 

on S03 ? 2 (actually on G S p 4 ) ) . We will be interested here in the case where the bilinear 

form has maximal Wit t index (i.e. [ ^d im^ V ] ) . Thus, if E = F, H is split and if 
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[E : F] = 2, H is the quasi-split unitary group in d i m ^ F variables. In this case, 

we will apply the above global models to ir - an Eisenstein series induced from the 

Siegel parabolic subgroup and a cuspidal representation r on ResE/pGLk- We will 

choose wo, (when anisotropic), such that H(WQ n W) is quasi-split or split. Again, 

with normalized Eisenstein series, the integrals (2.7) and (2.9) represent Ls(a x r , s ) . 

These cases were studied in [Sol, So2, So3] (H - even orthogonal) and in [GRS3] 

(H symplectic or metaplectic). The case where H(WQ D W) is of rank one less than 

k was studied in [ C P S . ] (H orthogonal). The remaining cases are treated similarly 

and will appear in detail in future works. We will summarize them here. In these 

cases, except for H = C/2fc+i» these integrals are identically zero, unless a has a global 

Whittaker model (with respect to an appropriate character). Finally, we also consider 

the cases where n is cuspidal on H (resp. on H 1 - 6 , when H is symplectic) and a is 

an Eisenstein series on H(WQ D W ) , when (wo,wo) ^ 0 (resp. on i J ( W ' ) 1 _ £ , when 

H is symplectic, or H(Wf), when H is unitary and wo is isotropic). This Eisenstein 

series is induced from the Siegel parabolic subgroup and a cuspidal representation r on 

ResE/F G L n (n = [ | dim(^Q- Pi W ) ] , or \ d i m ( W ' ) . Again, in these cases, except when 

H(WQ CiW) or H(W) are C/2n+i, the integrals (2.7), (2.9) are identically zero, unless 

7r has a global Whittaker model (with respect to an appropriate character) and then 

they represent LS(TT X r, s) once the Eisenstein series is normalized. These cases were 

studied in [G] (H - split orthogonal) and in [GRS3] (H symplectic or metaplectic). 

The cases where k = n were studied in [G.PS.] , [T], [W] . The remaining cases (H 

unitary, k > n) are treated similarly and will appear in detail in future works. We 

will summarize them here. 

From now on, we assume that ( , ) has Wit t index \ d im^ V . We will denote 

r = d imj^F, and H = Hr. We realize V as the column space Er and represent 

i i i \ 
( , ) in terms of the matrix I .• I where e = ±1; 6 = — l i s reserved just for 

symplectic groups. Hr is realized as a matrix group. We denote by Pr the Siegel 

parabolic subgroup of Hr. Its Levi part is isomorphic to KesE/F G L [ r / 2 ] . 

2.4. T h e global integrals: Gelfand-Graev models. — It remains to specify 

wo- We do this in the following table. W r i t e = ( 0 / ^ , 0 ) , where 0 denotes a zero 

row vector in £ coordinates. Recall that for 

/Z y X v 
v = ^ i w y'm) eNe (z G Zi), 

(2.14) *l>£,wo(v) = il>E(z)ipE(ye - w'o) = ^ ( X ^ M + i +ye'Wo)i 

where ye denotes the last row of y. In the following table (2.15) we indicate the choice 

of twf

0. We also write £ in terms of m + 1 = dim# W and r = d im^ V. 
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Here, we also denote = Hm, so that in all cases except (3) , a = — 1. In 

case (3) , S O ^ = (a G F * ) , denotes the quasi-split orthogonal group with 

respect to the symmetric form, whose matrix is 

/ Wn-1 \ 

\ 0 -2a i 

\Wn-l J 

bukfynvios 

Note that S O ^ } ^ S 0 2 n , if and only if 2a e (F*)2. (In this case we may replace Case 
(3) by Case (3 ' ) . ) We denote by ipe,a the character (2.14). Let r be an irreducible, 
automorphic, cuspidal representation of GLfc(A#) (k = [ r /2]) . We consider now all 
cases except case (4) . Denote 

PT,S — l n a P r ( A F ) r l a e t \E 

Let £ T ) S be a holomorphic if-finite section for p r > s and denote by EHr(€r,s,h) the 

corresponding Eisenstein series on Hr(AF). Let a be an irreducible, automorphic, 

cuspidal representation of Hm\Ap) (a = — 1 for all cases except (3 ) ) . Fix an F-

isomorphism Hffl H(WQ n W ) , and denote by i m , r its composition with the 

inclusion H(WQ f l W) HR. Define, for a cusp form (pa in the space of cr, 

(2.16) 
bioerno - / 

Я<?> (F)\Htt) (Ар) 

<P*(9)Üt£'' ( Í T , « , *m,r(fl))dfl. 

These integrals converge absolutely and are meromorphic in 5. For Re(s ) large 

enough, the integral (2.16) equals an Eulerian integral which depends on the ip-

Whittaker coefficient of (pa. [For example, for HR = U2k (H^ = £/2n+i) a n < ^ 

Re(s) > 0, 

(2.17) C{<pCìZr,.)= J Wl(g) 

NAF\U2U + I(^F) 

/ 
Mex(n+1)(AE)xhe(AF) 

ßk,n / n + 1

 / n ° + 1 l> \ imA9) il>E(xtfn+i)d{x,e)dg 

where N is the standard maximal unipotent subgroup of [/2n+i? 

Wl(g)= J ^ ( u g ^ i ^ d u 

NP\NAP 

is the ip-Whittaker function of (pa = *pE ( YlT=i W M + I ) ) î ^t,** W l s t n e com­

position of £ r , s with the ^> - 1 -Whittaker coefficient on r, i.e. 

nvyrgn 
/ d T , s { { l ° . ) h ) ï , E { z ) d z ; 

Zk(E)\Zk(kB) 

ASTÉRISQUE 298 

file:///Wn-l


FROM CLASSICAL GROUPS TO G L n 357 

(3k,n is the Weyl element 

/ 0 J n + 1 0 0 \ 
/ 0 0 0 h \ 
1/^ 0 0 0 I 
\ 0 0 I N + 1 0 / 

and hi = {A e Mt(E) | t(Awt) + (Awt) = 0 } ] . The integrals (2.16) are identically 

zero, unless the -0-Whittaker coefficient of ipa is nontrivial as a function on Hm\Ap)-

Thus a has to be globally ^-generic. (This is not the condition one gets in case (4) . 

This is why we exclude it now.) Assume then that a is -0-generic. For decomposable 

data, the Eulerian integral of (2.16) has the form 

(2.18) c ( ^ ) = m ^ I 0 y 

Here S is a finite set of places of F , including the ones at infinity, outside which 

a, r and the components of (pa, £ r ? s are unramified. R(s) is a finite product of "local 

integrals" (over 5 ) , where data can be chosen so that R(s) is holomorphic and nonzero 

at a neighborhood of a given point SQ. LS(T, 5, z) is the partial L-function which enters 

in the normalizing factor of Ejjr (Cr,s, h). Let us summarize this in the following table 

Ls(a x r, s) for the group LS(T, 5,2s) 

S 0 2 n + i x GL f c , k > n L 5 ( r , A 2 , 2 s ) 

U2n+i x Res j B / j p(GLfc), k > n LS(T, Asai, 2S) 

S O £ ? x GL f c , k ^ n LS(T, s y m 2 , 2 s ) 

(2.19) 

Next, we may take a cusp form on H and an Eisenstein series on H%\ We go 

back to table (2.15) and assume now that case (2) is excluded, and also in case (3) 

we consider a = — 1 (and so we may replace (3) by (3 ' ) ) . Let a be an irreducible, 

automorphic, cuspidal representation of Hr(A). Let r be an irreducible, automorphic, 

cuspidal representation of G L n ( A # ) , and consider the Eisenstein series EHm(^T,si g) 

corresponding to a iif-finite holomorphic section £ r ? s for p^™. Define, for a cusp form 

(Pa- in the space of a 

(2.20) C(<p*,£t,8) = j <ptl'-HimA9))EHm(ZT,s,9)dg. 

Hm(F)\Hm(AF) 

As before, for Re(s ) large enough, the integral (2.20) equals an Eulerian integral 

which depends on the ^-Whittaker coefficient of (pa. [For example, for Hr = t/2fc+i 
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(Hm = U2n) and Re(s ) > 0 

(2.21) £fo> f f , Cr,,) 

NAF\U2n(AF) М(к 

— n)Xn 

W & 1к_пУ •Än.fctan.afc+i i i / ) ) (,C{g)dxdg, 

where, for g G GLfc(A#), we denote g = ^ 1 „, ̂ , u>n,fc = ^ / f c n

 I n ^ . N denotes the 

standard maximal unipotent subgroup of U2n. The remaining notation is as in (2.17).] 

As before, £ ( < / ? a , £ T j S ) is identically zero, unless the i/j-Whittaker coefficient of ipa is 

non-trivial (as a function on i f r ( A ) i ? ) . Thus, assume that a is globally ^-generic, and 

then for decomposable data the Eulerian integral of (2.10) has the form 

(2.22) C { v , ^ , ) = R(s)<^JLlA, 

as in (2.18). L 5 ( r , 6, 2s) is given by (2.19), switching roles of k and n. More precisely 

Ls(a x r, 5) for the group LS(T, 5,2s) 

S 0 2 f c + i x G L n , k ^ n L 5 ( r , A 2 , 2 5 ) 

U2k+i x R e s £ / F ( G L n ) , k ^ 2n I / 5 ( r , Asai, 2s) 

S0 2 /c x G L n , A; > n Ls(r, s y m 2 , 2 s ) 

(2.23) 

2.5 . T h e global integrals: Fourier-Jacobi models. — We use the notation of 

Sec. 2.2, where wo was already chosen. We will denote by H(Wf)~ the group H(Wf) 

in case H is a unitary group, and in case H is symplectic H(W')~ = H{W')E, e = 0 ,1 . 

The cases we consider appear in the following table (r = dimE V) 

g ~ = ff~ dimEW = m + 2 I H(W) ~ Hm H~ 

(1) Sp2k 2n + 2 k - n - 1 S p 2 n S5 2 n 

(2) S^>2k 2n + 2 k - n - 1 S p 2 n S p 2 n 

(3) U2k 2n + 2 k - n - 1 U2n U2n 

(2.24) 

Let r be an irreducible, automorphic, cuspidal representation of GLfc(A#). Denote 

by pr,i
k the representation of H2k(Ap)~ induced from r | d e t - | s _ 1 / 2 on the Siegel 

parabolic subgroup in cases (1) , (3) . In case (2) we replace r by 7^ -r, where 7 ^ is the 

Weil factor. Let £T,S be a If-finite holomorphic section for pTiS, and let En~k ( £ r , s ? h) be 

the corresponding Eisenstein series. Let a be an irreducible, automorphic, cuspidal 

representation of H2U(AF). Fix an F-embedding j2n,2k : H2N —• H2K, so that the 
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image of J2n,2fc is H(W). Define for a cusp form (pa in the space of a 

(2.25) Ц<р*,Ф,£т,,) = J M9)Ete^(tr,sj2nM9))d9. 
H2n(F)\H2n(AF) 

As before, this integral equals an Eulerian integral, for Re(s) ^> 0, and it depends on 
the ^-Whittaker coefficient of ipa. [For example, for H2k — U2k (^2n = f^2n), we get, 
for Re(s ) > 0, 

(2.26) С&^ф^г,*) 

= j W$M J ^ ( " М Г'"'"}* l ) < 2 » , 2 f c ( f l ) ) 

i V A F \ C / 2 N ( A F ) M ( F C _ _ N ) X N ( A B ) X H F C _ N ( A F ) ^ / F C ~ N ' 

(xK-N,0; Im(yk-nA)g)(j)(en)d(x, y)dg. 

Here we assume that E = F[y/p\, and W$a (g) is the Whittaker coefficient of (pa (at g) 
with respect to the non-degenerate character of Np\N&F given by 

u ~ ^ ( T T I A + T I 3 3 + . . . + t l n _ l i n + ! ^ ) ; a f c > n = / f c o / o " о V . 
V \ 0 0 -Jpln 0 / 

We regard E2n as a symplectic space over F with respect to the form (vi,V2) = 
—2Im(i?i, ^2). (i*ra denotes the "imaginary" part: Im(a + y/b) = b.) This defines 
w ^ - i ) 7 - i , realized in 5 ( A ^ ) . Finally, 0 G 5 ( A ^ ) and £ n = (0, . . . , 0 , 1 ) . The rest 
of the notation is as in (2.17).] Thus, assume that a is globally ^-generic. For 
decomposable data the Eulerian integral of (2.25) has the form 

(2.27) &£r,*) = R(s)Ls(a,r,s) 

where Ls(a, r, s) is given by the following table 

Eisenstein series 
cr on T on E(£T,S, •) on Н2к Ls(cr, r, s) 

(!) Sp2n GLk Sp 2 f c ь^(г,Д^^ Т(г!л2 ,25) 

( 2 ) S P 2 n GL f c Sp 2 f c L ^ m ^ l ) 

(3) U2n ResE/FGLk U2k

 Ll$j£$ 

(2.27) (k > n) 

In case (1) there is no canonical way to attach an L-function to cr x r . At places 

v where a is unramified (and ip normalized) we write the unramified characters cor­

responding to av in the form 7 ^ • \iv, where \iv is an unramified character of F*. 

W e write the parameter of av as a conjugacy class in S p 2 n ( C ) (constructed from the 

[iv{Vv)±x)' Another choice 7 ^ « » / would yield a different conjugacy class. This ex­

plains the dependence on ip in L^(a x r, s). The function R(s) in (2.26) can be chosen 

to have the same properties as in (2.18), (2.22). 
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Finally, as in the previous case (Gelfand-Graev models) we may reverse the roles 

of H~ and # 2 n . We go back to table ( 2 . 2 4 ) and consider now an irreducible, au­

tomorphic, cuspidal representation a of H~(Ap) and an irreducible, automorphic, 

cuspidal representation r of G L n ( A # ) . Consider the Eisenstein series EH^n(^r,s,g) 
on H2U(KF) corresponding to a holomorphic If-finite section £ r ? s for p r , l n . Define for 

a cusp form (pa in the space of a, 

( 2 . 2 8 ) С(<Р*,Ф,£т,в) = J 
4-,M(F)\H,N(XF) 

vten'4hnA9))EH?n(tÍT,s,9)dg. 

Again, for Re(s) large, the integral ( 2 . 2 8 ) equals an Eulerian integral which depends 

on the ^-Whittaker function of (pa. [For example, for H~ = U2k (H^ = U2nj and a 

on £/2fc(A/r), and r on G L n ( A i ? ) , we get for Re(s) ^> 0 

( 2 . 2 9 ) ¿ ( ^ , 0 , 6 - , , ) 

- I I 
NAF\U2n(AF) M{k_n)xn(AE) 

Wt((^Ik_n)
Awn,khnA9)) 

(g)<f>(xk-n)Çt,s1 (g)dxdg 

Here W$a is as in ( 2 . 1 6 ) . For g G Res^/jrGLfc, we denote g = (g

 g*) G U2k- For 

x G M ( f c _ n ) x n , Xk-n denotes the last row of x ; wn^ = ( j f c _ n

 / n ^ - The rest of the 

notation is as before.] 

Assume that a is globally ^-generic. Then for decomposable data 

( 2 . 3 0 ) £ ( < A x , </>, £r ,a ) = R(s)Ls(a, r, a). 

Ls(cr,T,s) is given by the last column of table ( 2 . 2 7 ) (where we switch the roles of 

2£(£ r , s , •) and o). 

In ( 2 . 2 5 ) , ( 2 . 2 8 ) the case k = n is missing. Here, for a ^-generic cuspidal represen­

tation G on H2n(Ap) and a cuspidal representation r on G L n ( A # ) , we consider 

( 2 . 3 1 ) £ ( < ^ , 0 , £ r , s ) = y ^ { g ) 0 i - i n - i ( 9 ) E H ^ r ^ 9 ) d ^ 

H2N(F)\H2n(AF) 

where, as before, for H2n = ^2n, H^n — U2n, and for i?2n = S p 2 n , if cr is on f Z | n 

then the Eisenstein series is on £ , £ = 0 , 1 . For Re(s ) ^> 0 , we obtain as in the 

previous cases (for decomposable data) 

£(<Ar, 0, £Tls) = R{s)Ls(a, r, s ) , 

as in the last two cases. 
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3. O n the weak lift from a quasi-split classical group to G L w 

We construct examples of cuspidal generic representations on a given quasi-split 

classical group G , which weakly lift to automorphic representations on GLJV (ap­

propriate N) in the expected image of this lift. The methods are those of Chapter 

1, constructing a descent map (backward lift), as suggested by the global integrals 

reviewed in Chapter 2. We use the notation of Chapter 2. 

3 .1 . T h e cuspidal part of the image of the weak lift from G to GL;v 

Let G be a group of the form H(VJQ n W) or H(W')~, as in table (2.15) (without 

case (4) ) , or table (2.24). (For the moment d im^ V is not so important.) Let N be the 

degree of the standard representation of LG°. The Langlands conjectures predict the 

existence of a functorial lift from irreducible, automorphic, cuspidal representations of 

G A f to irreducible automorphic representations of GLN(AE)- Let a = (g>ov be such 

a representation, and assume that a has a weak lift to an irreducible automorphic 

representation r of G L J V ( A # ) , where the notion of a weak lift is similar to the one 

explained in Sec. 1.1. It is clear that r* = r v , and u}Tu\F* = 1> for almost all 

except in case (3) of (2.24), when 2a is not a square in F*, in which case, u)Tv is the 

quadratic character associated to 2a. Here r* = r'v and r'v is the composit ion of rv 

with the automorphism x \-> x of Ev over Fv. (If E = F, then x = x, and r* = % . ) 

We conclude that c ^ r | A . = 1? except in case (3) of (2.24), when 2a is not a square, 

in which case u r is the quadratic character, associated to 2a. Let us assume that r 

is cuspidal. Then by the strong multiplicity one and multiplicity one properties for 

G L J V , we conclude that r* = r, and we also have that Ls(a x f , s ) = Ls(r x r, s) has a 

simple pole at s = 1, for an appropriate finite set of places S. (In case G is metaplectic, 

we have to fix i/;, a nontrivial character of F\Ap and consider L^(cr x f, s) instead.) 

Assume further that a is globally ^-generic. Then we can use the global integrals of 

Sections 2.4, 2.5 to represent the partial L-function of a twisted by r , and consider 

its pole at s = 1. Let H be the group in the first column of (2.15) or (2.24), which has 

a Siegel parabolic subgroup whose Levi part is isomorphic to G L J V . Now consider the 

integrals (2.16) or (2.25) which represent the above L-function. Note that if G is not 

a unitary group, then f = r, and we take the Eisenstein series on H&F corresponding 

to p^s. If G = £/2n+i, T = T 7 and we take p^,s. If G = U2n we take p ^ 0 7 a . For 

decomposable data the integrals above are of the forms (2.18) or (2.27) respectively, 

and we can choose R(s) to be holomorphic and nonzero at s = 1. Looking at the 

quotients (2.18) in table (2.19) and in table (2.27), we see that the denominators are 

holomorphic and nonzero at s = 1. Since Ls(a x f, s) (resp. L^(a x r, s) if G is 

metaplectic) has a pole at s = 1, we conclude that the global integral C(<Pa,€?lS)
 m 

(2.18), C(<pa,4>,iT,s) in (2.27), cases (1) , (2) , and £ ( y > a , & £ r ® 7 | J , ) in (2.27), case 3 

has a pole at s = 1. This pole then comes from the Eisenstein series which appears 

in C((fa,...). Therefore, we expect that the (partial) L-function Ls(r,{3,s) which 
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appears in the normalizing factor of this Eisenstein series to have a pole at s ~ 1. 

The following table summarizes the various cases, when we take N = N2n. (In table 

(3.1) , Nk = k in cases (1) , (2) , (4) , (5) , and Nk = k + 1 in cases (3) , (6) .) 

G ResE/F GLNK H = HGik LS(T,/3h,S)  

(1) S 0 2 n + 1 GLK S02k L s ( r , A 2 , 2 s - l ) 

(2) S 0 2 n GL* S 0 2 f c + 1 L s ( r , s y m 2 , 2 s - 1 ) 

(3) U2n+i R e s B / F G L f e + i U 2 k + 2 LS(T', Asai, 2s - 1 ) 

(4) S ^ 2 n GL* Sp 2 f c Ls(r,s - i ) L s ( r , A 2 , 2 * - 1) 

(5) U2N R e s £ ; / F GL f e U2K LS(T' <g> 7 , Asai, 2s - 1 ) 

(6) S p 2 n G L f c + 1 S ^ 2 f e + 2 L 5 ( r , s y m 2 , 2 s - 1 ) 

(3.1) 

Case (2) in table (3.1) includes both split and quasi-split even orthogonal groups. 

We now proceed exactly as in case (1) , which was proved in Theorem 1. The constant 

term of the Eisenstein series mentioned before, evaluated at / , is the sum of the section 

evaluated at / and the corresponding intertwining operator, applied to the section, 

and evaluated at / . The first summand is holomorphic, and hence the pole at s = 1 

occurs for the second summand, which for decomposable data, equals as in (1.3) to 

a finite product, over a finite set of places S of local intertwining operators times a 

quotient of of the form L ^ ^ ^ $ - ) ' e x c e P * m c a s e (^) °^ table (3-1) (P = PHG,2U)^ 

where it is LLS(*~+¥)^ • I*1 a ^ cases, it is easy to see that the denominator 

of the last quotient is holomorphic and nonzero at s = 1. By [K, Lemma 2.4], the 

local intertwining operators above are holomorphic and nonzero for Re(s ) ^ 1. (Note 

that the standard module conjecture needed in loc. cit. is needed here just for 

(ResE/F GL2n){Fv) or (Res^/^r G L 2 n + i ) ( ^ / ) , and hence is valid.) We conclude that 

L 5 ( r , /3, s) has a pole at s = 1. Summarizing 

Theorem 10. — Let a be an irreducible, automorphic, cuspidal representation of GAF • 

Assume that a is globally ^-generic, and that a has a weak lift to an irreducible, 

automorphic, cuspidal representationr ofGLN2N(&E)> a s ^n table (3-1)- Thenr* = r, 

the partial L-function L 5 ( r , /3# G 2 n , s) has a pole at s = 1, and ^ T | A * = 1, except in 

case G = S O ^ , when 2a is not a square, in which case u r is the quadratic character 

asociated to 2a. 

We conclude in exactly the same way, using the global integrals of Sec. 2.4, 2.5, the 

analogs of Proposition 2 and Theorem 3. 

Theorem 11. — Let a be an irreducible, automorphic, cuspidal representation of G&F. 

Assume that a is globally -generic. Let r be an irreducible, automorphic, cuspidal 

representation of G L & ( A ^ ) , k ^ 2, such that uT\^A^+ — 1. Then Ls(a x r, s) 
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(resp. L^(a x r, s) if G is metaplectic) is holomorphic for Re(s ) > 1 and if it has a 

pole at so, such that Re(so) = 1, then so = 1 and LS(T,/3H,S) (table 3.1) has a pole 

at s = 1. The same assertions hold true, if r is an automorphic unitary character of 

the idele group, which is trivial on ( A i r ) + , except in cases (1), (4)- In case (1), we 

know that Ls(a x r, s) is entire, and in case (4), the L function (with respect to xfj, 

where a is globally ^-generic) may have a pole for Re(s ) > 1, and then it must be at 

s = 3 /2 , and r must be trivial. 

W e remark that the last case of Theorem 11 occurs when a is a theta lift with 

respect to ip from a generic cuspidal representation of S 0 2 n - i ( A ) . 

Start now with an irreducible, automorphic, cuspidal representation r of G L J V ( A # ) , 

(N = iV~2n) such that wT\A* = 1? except in case r is on G L 2 n ( A i r ) , where we allow 

uT to be either trivial or quadratic. If the quadratic character is associated to 2a , 

then in the following, the Gelfand-Graev coefficient is taken with respect to S O ^ . 

Assume that Ls(r,/3, s)(/3 = /3HGI2TI) has a P 0 ^ e at s = 1 (notation of table (3 .3)) . 

By Theorem 10, these are necessary conditions that (cuspidal) r needs to satisfy in 

order to be in the image of the weak lift from generic cuspidal representations on GAF . 

(The second condition implies r* = r . ) If r is a weak lift of a (generic, cuspidal) on 

G A f , then by (2.18), (2.27), £ ( ^ a , ^ ? s ) has a pole at s = 1 in cases ( l ) - ( 3 ) of Table 

(3.1), C(ip, 0 ,Cr,s) has a pole at s = 1 in cases (4) , (6) , and £(<£, </>, £T'<g)7,s) has a pole 

at s = 1 in case (5) (as data vary). Thus, the Gelfand-Graev coefficient (resp. the 

Fourier-Jacobi coefficient) of the residue at s = 1 of the Eisenstein series which appear 

in the global integrals has a non-trivial L2(GF\GAF)-pairing against a. This leads us 

to define 

r S p a n { R e s s = 1 E ^ " 1 ' 1 ^ , , , . ) | G A j p } , G = S 0 2 n + i 

S p a n { R e s s = i EH

n,1(£T',s, ')\G } , G = S 0 2 n , ^ 2 n + i 
^ ( T ) = < 1 <f> k p ~ 

S p a n { R e s s = i EH

n~lf
 ' ( £ r ' ® 7 , * > ')IGA F^' G = S p 2 n ^ 2 n 

S p a n i R e s ^ ! ^ ' 1 1 ' ^ ^ , - ) ! ^ } , G = S p 2 n 

(3.2) 

Our main theorem is 

Theorem 12. — Let r be an irreducible, automorphic, cuspidal representation of 

G L J V ( A # ) , with central character, as above. Assume that L 5 ( r , /3, s) has a pole at 

5 = 1. (We use the notation of table 3.1, with N = N2n,0 = 0HG)2n)' Assume also 

that n > 2, in case G = S O n ? n . Then 

(1) a v , ( r ) ^ 0 

(2) The representation ( r ) of GAf is cuspidal. 
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(3) Let a be an irreducible summand of a^(r). Then a is globally ^-generic, and 

Gv lifts to r v , for almost all finite places v. (If G — S p 2 n 7 ov lifts to rv with respect 

to ip„). 
(4) Every irreducible, automorphic, cuspidal, tp-generic representation a of G&F, 

which lifts weakly to r has a nontrivial L2-pairing with a^(r). 

(5) a^p ( r ) is a multiplicity free representation. 

Remark. — The guidelines to the proof are similar to those of Theorem 4, except that 

the proof of (1) in case G is even orthogonal or symplectic is not direct. In these cases, 

we show, once we fix that there is ¡3 € F*, such that a^^{r) ^ 0, where cr^^(r) is 

defined as in (3.2) only that the coefficient (Gelfand-Graev, or Fourier-Jacobi) of the 

residual Eisenstein series induced from r is taken with respect in case G = S02n, 

and in case G = S p 2 n , we take in (2.9) a residual Eisenstein series, induced from r, 

on Sp4n(A), instead of <p, and O^_0, instead of (7 = 1 ) . In the first case we 

obtain a non-trivial cuspidal representation 0^/3(r) of H^iA) (see table (2.15)) , for 

which the following Whittaker coefficient is nontrivial 

( z x y \ 
/2 * J I • 1p(z12 + Z23 + ' • ' + 2 n _ 2 , n - l + ^n-1 ,2) . 

/ Wn-l\ 

Here z E Zn-1 ( A ) , and we write the elements of , with respect to ( 1 -2/3 ) • 

Let cr be an irreducible summand of c r ^ ^ r ) , which is globally generic with respect 

to the character (3.3). Then it has a weak lift to r, and hence, uT(t) = (2/3, t) (Hilbert 

symbol) . This implies that cr^(r) is non-trivial. In the second case, ( G = S p 2 n ) , 

o'ip,p(r) is a (nontrivial) automorphic cuspidal representation of S p 2 n ( A ) , which is 

globally ^ - g e n e r i c . Let cr be such an irreducible summand of c r ^ ^ r ) . Examining 

the unramified parameters of cr, we show that 

rSfrr «\ - LS(TXX0,8) s 

Here, X/3 = ( A (Hilbert symbol) . If xp 1> this implies that Ls(a, s) has a pole at 

s = 1. By [GRS5] , we conclude that cr is a theta lift (with respect to an appropriate 

character) of a generic cuspidal representation n on split S 0 2 n ( A ) . We have 

LS(T,s)=Ls(irxXp,s)Ls(l,s), 

and hence Ls(r, s) has a pole at s = 1. This is impossible, and so xp = 1> *- e- 0> ( T ) 

is nontrivial. 

3 .2 . T h e image (in general) of the weak lift from G to G L J V — Let a be an 

irreducible, automorphic, cuspidal generic representation of G A f • Assume that a has 

a weak lift to G L J V , and that it lifts to an irreducible, automorphic representation r, 

which as in Sec. 1.3, is a constituent of 

(3.4) <Si| de t - \ Z 1 x • • • x Sj\det .\z* x n x • • • x rt x 5*| det . | "* ' x • • • x £*| de t - \~ Z l 
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where Re(zi) ^ • ^ Re (z j ) < 0 , the representations Si,Tk are irreducible, automor­

phic and unitary, with central characters which are trivial on ( A F ) ^ , and r» = r*, 

for 1 < i < £. If Si (resp. Tfc) is on G L R ( A ) , r > 1, we assume it is cuspidal. 

Consider Ls(a x ¿ 1 , 5 ) . As in Sec. 1.3, we see that Ls(a x ¿1 ,5 ) has a pole at 

s = 1 — z\. (If G is metaplectic, consider L^(a x ¿1 ,5 ) ) . By Theorem 1 1 , except in 

case G is metaplectic, and 5i = 1, we have z\ = 0 and Ls(5I,/3HG R,, s) has a pole at 

5 = 1. Here ¿1 is on G L r ( A # ) , and r ; = r in all cases of Table ( 3 . 1 ) , except cases ( 3 ) 

and ( 6 ) , where r' = r — 1. Note that since Ls(5I,/3HG r , , s ) has a pole at s = 1, we 

must have ¿1 = 5J . (For example, in case of a unitary group, and 77 = ¿1, 

( 3 . 5 ) L 5 (7/ 0 7/, 5) = L 5(77, Asai, s)Ls(rj <g> 7 , Asai, 5), 

and since one of the factors on the r.h.s. of ( 3 . 5 ) has a pole at s = 1, LS(77 ® 77', s) has 

a pole at 5 = 1, which implies that rf = 77, i e . 77* =77). We conclude that L 5 ( c r x ¿1 , s) 

has a double pole at s = 1. This is impossible, and we conclude that ( 3 . 4 ) has the 

form 

Ti x • . • X Ti, 

and repeating the last argument, we conclude that LS(T{, @HG R,, s) has a pole at s = 1, 

for i = 1 , . . . , £, and also that Ti ^ Tj , for 1 ^ i ^ j £ Here r$ is on G L r i ( A # ) . 

Finally, in case G is metaplectic, we see from Theorem 1 1 , that it is possible to have 

¿1 = 1, and z\ == — | , and as we remarked before, in this case a is a (I/J) theta lift 

from a cuspidal generic representation of S 0 2 n - i ( A ) , so that by Section 1.5 , the lift 

of a to G L 2 n ( A ) has the form | | - 1 / 2 x T\ X • • • x T£ X | | x / 2 , where T{ are as before, 

each one with its exterior square L-function having a pole at s = 1. This proves 

Theorem 13. — Let a be an irreducible, automorphic, cuspidal, generic representation 

of GAf- Assume that a lifts weakly to an irreducible automorphic representation r of 

GLjv 2 n (A£ ; ) as in Table (3.1). Then except in case (4), r has the form T\ X • • • x T£, 

where for 1 < i < £, Ti is an irreducible, automorphic, unitary representation of 

G L r i ( A # ) , cuspidal in case ri > 1, such that T% = Ti, ujT\k* = 1, except in case 
F 

G = S O ^ , in which case uT = X2a- The partial L-function Ls'(ri,PHg has a 

pole at s = 1, and Ti ^ Tj, for all 1 < i ^ j ^ £. In case (4), either r has the form 

above, or it has the form | | - 1 / 2 x n x • • • x T£ X | I 1 / 2 , where the product of the Ti is 

in the image of the lift from generic cuspidal representations from (split) S 0 2 n - i ( A ) 

to G L 2 n - 2 ( A ) . 

We consider the converse to Theorem 1 3 , except the last case mentioned there. 

Let T\,..., T£ be £ different irreducible, automorphic, unitary representations of 

G L r i ( A E ) , • • • , G L r £ ( A £ ) respectively, and r» is cuspidal, if > 1, and such that 

7*1 H h ri = N = N 2 n (as in table ( 3 . 1 ) , r* = ri, and Ls(Ti,0HG r , > s) has a pole 

at s = 1, for i = 1,... ,£. Let r = T\ X • • • x T£. Assume also that UJTI = 1, except 
F 

in case N is even, and E = F, where we also allow uT to be quadratic, and if it is, 
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say, X2a, then, in the sequel, we'll take the Gelfand-Graev coefficient with respect 

to S O ^ . If r is a lift at almost all finite places of an irreducible, automorphic, 

cuspidal, ^-generic representation a on G A f , then by ( 2 . 1 8 ) , ( 2 . 2 7 ) , C((pa,Cri,s) has 

a pole at s = 1 in cases ( l ) - ( 3 ) of Table ( 3 . 1 ) , C(ipa,<f>,^itS) has a pole at s = 1 in 

cases ( 4 ) , ( 6 ) , and £(y><r,0,£r?<g>7,s) has a pole at s = 1 in case ( 5 ) , as data vary, and 

i = 1 , . . . ,£. Consider the Eisenstein series on H = Hc,2n (Table ( 3 . 1 ) ) induced from 

T~I | | S l - 1 / 2 x • • • x TI | | s * - 1 / 2 and the standard parabolic subgroup of whose Levi 

part is isomorphic to ResE/FGLRI x ••• x R e s # / ^ G L r £ . Denote it, for a If-finite 

holomorphic section £ T ) g by EH(£T,S, •) where s = ( s i , . . . , s ^ ) . We can show that 

(si — 1 ) (se — 1)EH(£T,S, ') is holomorphic and nontrivial at s = 1 , . . . , 1 ) . Denote 

the value at ( 1 , . . . , 1 ) by R e s ^ . ^ i ) EH(£T,S, *)> and now define cr^(r) on G A f exactly 

as in ( 3 . 2 ) . Our main theorem in its most general form is 

Theorem 14. — Fix the group G. Let N = N2n as in Table (3.1). Let T — T\ X • • -xre 

be the irreducible representation of GLN(Ae) induced from T\ (g) ••• <g) T£, where 

T i , . . . are pairwise inequivalent, irreducible, automorphic, unitary representations 

of G L r i (AE),..., G L ^ A t f ) respectively, Ti is cuspidal in case r* > 1, such that 

7*1 H h re = N, r* = Ti, and Ls(ri, (3HG R,, s) has a pole at s = 1, for i = 1 , . . . , £ . 

Assume that the central character of r is as above. Then 

(1) < ^ ( r ) ^ 0 . 

( 2 ) The representation a^fr) O / G A F is cuspidal. 

( 3 ) Let a be an irreducible summand of a^(r). Then a is globally ip-generic, and 

av lifts to r v , for almost all finite places v. (If G — S p 2 n , ov lifts to rv with respect 

to ^u). 

( 4 ) Every irreducible, automorphic, cuspidal, ^-generic representation a of G&F, 

which lifts to r at almost all finite places, has a nontrivial L2-pairing with a^(r). 

( 5 ) cr^(r) is a multiplicity free representation. 

Assume, for simplicity that w T i L = 1, for each i in the last theorem. Then for 
F 

each n, we may apply Theorem 1 2 and consider the cuspidal ^-generic representation 

0%I>{TX) on a corresponding group Gi(AE)- Let Oi be an irreducible summand of a^{Ti), 

i = 1 , . . . , £, and let a be an irreducible summand of cr^(r) (CJI , . . . , erg, a are all ip-

generic). Then G\ 0 • • • ® at (on Gi(AE) x • • • x Ge(AE)) lifts at almost all finite 

places to a. Both representations lift at almost all places to r on GLN(AE). These 

are examples of (generalized) endoscopy. The following table summarizes the various 

cases, where we stay a little vague in specifying central characters, and in specifying 

even orthogonal groups and base change lifts to even unitary groups. (So far, for 

simplicity, we constructed only lifts from U2n to ResE/E G L 2 n , with central character, 

whose restriction to AE is trivial.) Here, as above, oi is an irreducible summand of 
0~if;(Ti). 
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TI 0 • • • <S> re pole condition o\ <g> • • • <8> <Jt cr 

on for n on • on 

GL r i(AE) x . . . x GL r <(Ab) G i ( A F ) x • • x G*(A F) G ( A F ) 

G L 2 n i ( A F ) x ••• x G L 2 n £ ( A F ) Res s=i L s(r*, A 2 , s) ^ 0 S 0 2 n i + i ( A F ) x • • • x S 0 2 n £ + i ( A F ) S 0 2 ( n i + . . . + n i ) + i ( A F ) 

G L 2 n i ( A F ) x • • • x G L 2 n t ( A F ) x Ress=i L (ri,sym , s) ^ 0 S 0 2 m ( A F ) x • • • x S 0 2 n t ( A F ) x Sp 2 ( n i + . . . + m 2 r + 1 _( . r ) (A F ) 

x G L 2 m i + i ( A F ) x • • • x G L 2 m 2 r + 1 + i ( A F ) x S p 2 m i (A F ) x • • • x S p 2 m 2 r + 1 (A F )  

G L 2 n i ( A F ) x ••• x G L 2 n t ( A F ) x Res s = i L s (n,sym 2 , s) ^ 0 S 0 2 n i ( A F ) x ••• x S 0 2 n t ( A F ) x S 0 2 ( n 1 + . . . + m 2 r + r ) ( A F ) 

x G L 2 m i + i ( A F ) x • • • x G L 2 m 2 r ( A F ) x S p 2 m i (A F ) x • • • x Sp 2 m 2 T , (A F )  

G L n i (AE) x . . . x GLn,(Atf) Res s=i L s (r/ , Asai, s) ^ 0, £ / n i ( A F ) x • • • x *7 n £ (A F ) Uni+--n£ (A F ) 

if m = 1 (mod 2) 

Res5=i Ls(rl <g> 7, Asai, s) / 0, 

if m = 0 (mod 2) 

G L 2 n i ( A F ) x . . . x G L 2 n , ( A F ) Res s = i L 5 ( r i ? s - ±)Ls(n, A 2,2s - 1) ^ 0 § 5 2 n i ( A F ) x ••• x § 5 2 n £ ( A F ) S p 2 ( n i + . . . + n £ ) ( A F ) 

(Table 3.6) 
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Example. — The functorial lift Us —• R e s ^ / ^ G L s is completely known from the 

work of Rogawski [R]. The cuspidal part of the image is the set of all irreducible, 

automorphic, cuspidal representations r of GLS(AE), such that r* = r and ^ r | A * = 1 -

In this case, this is equivalent to LS(T', Asai, s) having a pole at s = 1. In this 

case, using the multiplicity one property for cuspidal representations on US(AF) [R] 

it follows that CT^(T) is an irreducible, automorphic, cuspidal, generic representation 

of US(AF), which lifts to r . cr^(r) is the generic member of the L-packet on US(AF), 

parametrized by r. The following representations occur in the non-cuspidal part of 

the image of the lift above, restricted to generic representations. 

( 1 ) x 7r, where 77 is an automorphic character of U\(AF) and /x^ is the character 
of K*E defined by ^(x) = rj(x/x). The representation TT is on G L ^ A ^ ) , and it is 
irreducible, automorphic, and cuspidal such that 7r* = 7r, O ^ L . = 1 and Ls(ir' <g) 

F 
7, Asai, s) has a pole at s = 1. The representation a^{\ij) x 7 r ) 1 S a n irreducible, 
automorphic, cuspidal, generic representation of ^ ( A ^ ) , which lifts to fxv x n. 

( 2 ) fj,m x [im x n m , where {771,772,773} are three different automorphic characters 
of U\{AF)- The representation cr^^m x x ^ 3 ) is an irreducible, automorphic, 
cuspidal, generic representation of US(AF), which lifts to fim x fim x 77^3. See [G.J.R.] , 
[Ge .Ro .So l , G e . R o . S o 2 , Ge.Ro.So3] . 

In the remaining part of this paper, we will illustrate the proof of Theorem 1 2 

through (low rank) examples. 

4. Illustrations of Proofs in Low Rank Examples 

4 .1 . A n observation on unramified factors of residual Eisenstein series 

Fix the group G. Let N = i V 2 n as in Table ( 3 . 1 ) . Let r be an irreducible, au­

tomorphic, cuspidal representation of G L a t ( A ^ ) , such that r* = r, ^ r | A . = 1 ? and 

LS(T, / ? H G ) 2 n > s ) has a pole at s = 1. Consider the residue at s = 1 of the Eisenstein 

series on HG,2TI(AF) induced from r'(S>7-1 det - | 5 - 1 / 2 . Denote this residual representa­

tion by ET. (In all cases, except case ( 5 ) in Table ( 3 . 1 ) , 7 = 1. Also r' = r in all cases 

except cases ( 3 ) , ( 5 ) . ) We abuse notation and think of Er also as the space of auto­

morphic forms spanned by the residues. So, for example, when we refer to a constant 

term of ET, we mean that we consider this constant term applied to all automorphic 

forms in (the space of) ET. It is easy to check that ET consists of square integrable 

automorphic forms. Indeed, ET is concentrated along the Siegel parabolic subgroup 

(i.e. all constant terms, with respect to unipotent radicals of standard parabolic sub­

groups, other than the Siegel parabolic subgroup, vanish on E T ) . The constant term 

of ET along the Siegel radical has one exponent, which is negative. Now use Jacquet's 

criterion for square integrability [J]. Consider an unramified factor 7ru at a place v 

of (an irreducible summand of) ET. By our assumption on r, we have r* = rv and 
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o v j ^ = 1. Since 7V is unramified, we see that rv is the unramified constituent of 

a representation of G L ^ F ^ ) induced from the Borel subgroup and an unramified 

character o f the torus of the form 

d i a g ( t i , . . . , t 2 n ) ' — • Mi (p-) • • • ( r 0 - ) , if TV = 2n 

d i a g ( t i , . . . , t 2 n + i ) 1 — • M I I T - ^ J • "Mn r 1 - , if iV = 2n + l . 

Recall that if F = F , £ = £, for t E F . If [E : F ] = 2 and ^ is a place which 

splits in F , then Fj, = Fv © F „ , (a, 6) = (6, a) and the characters [i{ are given 

by pairs of characters of F*. Let Q be the standard parabolic subgroup of H = 

HG,2U, whose Levi part is isomorphic to (ResE/F G L 2 ) n in cases (1) , (2) , (4) , (5) of 

Table (3.1) , or to (ResE/F G L 2 ) n x H0 where H0 = U2 in case (3) and H0 = S L 2 

in case (6) . (In case (6) we should really take the inverse image in S p 4 n + 2 > a ^ each 

place v. GL2(Fu)
n x <SL2{FV)). Denote by 7 t M 1 v . m / X t i the unramified constituent of the 

representation p M 1 , . . . , M n of H(FV) induced from Q{FU) and the character (/¿1 • det) <g) 

• • • ® ( / / n * det) . (In cases (3) and (6) of Table (3.1), it is trivial on H$(FU). In case (6) 

we also have to multiply by 7-0). Denote fJ>j(t) = p>j(t). Denote by u the simple Weyl 

reflection in 0 4 n , which flips the two middle coordinates in the diagonal subgroup. 

Proposition 15. — Using the notation above, let rv be the unramified representation of 

GLN(E„), corresponding to the unramified character H.l). Then irv = 7 ^ / ^ . . . ^ / ^ , 

except in case 1 of Table 3.1, with n odd, where we have 7iv = n%limm.jtJLn (outer conju­

gation). 

Proof. — Denote by p r £ ® 7 „ the representation of H{F„) induced from the Siegel 

parabolic subgroup and r£ ® 7 „ | I 1 / 2 . (We have to modify by 7^ in case (6) .) Consider 

first cases (1) , (4) , (5) in Table (3.1). In case (1) , assume for simplicity that n is even. 

Here pT> <g>7i/ is induced from the following character of the Borel subgroup 

(4.2) d i a g ( * i , . . . , *2n, *2n\ • • • > h *) 

—> ^ 7 , ( ^ - ) | « 1 * 2 „ | 1 / 2 • • • • • ß ' n l v ( f - ) \ t n t n + ^ 

This character is conjugate, under a suitable Weyl element of i f , to the character 

(4.3) d i a g ( £ i , . . . , t 2 n , *2n » • • • > * i X ) 

nxxkldys 
t i 1/* 

¿2n 
ß'nlAtntn+l) T^— > 

and this character is conjugate, under a suitable Weyl element of G L J V , to the char­

acter 

(4.4) d i a g f t i , . . . , t 2 n , t2l,..., tx

 1) 

•—> HilAhti) — V>n1n{t2n-it2n) — 
l2 t 2 n 
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Thus 7iv is the unramified constituent of the representation f]^ilu^_^nlu induced from 

the character of the Borel subgroup defined by (4.4). Clearly r ? ^ ^ , . . . , ^ ^ maps onto 

P y x 7 S i n c e the last representation is still unramified, we conclude that 7iv 

is the unramified constituent of p ^ ^ , . . . , ^ ^ . (If n is odd in case (1) , we get that 

TTv = tt^/ where u is as above.) In case (2) the proof is the same, only that 

in (4 .2) - (4 .4) , the left hand side is d i ag (£ i , . . . ,^2n, l?*2n »• • • ̂ l " 1 ) a n ( ^ ^ n t n e right 

hand side there is no change except that /4 = flu l'v = 1- In case (4) the proof 

is the same, only that in (4 .2)-(4 .4) the l.h.s. is d i ag (£ i , . . . ,£2n+i>?2n+i> • • • >^i 

The r.h.s. of (4 .2)- (4 .4) remains the same. In case (6) , the l.h.s of (4 .2)- (4 .4) is 

d i a g ( t i , . . . , £2n+i, *2~n+i> • • •' ^ r 1 ) ' a n ( l i R the r-h.s. w e have to multiply by 7^(£i 

*2n+i) ( a n d take /xj = ¿¿»,7,, = ! ) • n 

4.2 . Nonvanishing of ^ ( r ) : Case G = C/3, H = UQ, r — on G L ^ A ^ ) 

Let r be a irreducible, automorphic, cuspidal representation of G L 3 ( A # ) , such 

that r* = r, co r | A « . — 1, a n d Ls(rf, Asai, s) has a pole at 5 = 1. (Actually, the 

last condition is equivalent to the first two conditions). The proof that cr^(r) ^ 0 

consists of two steps. First, we introduce (in (4.8)) a unipotent group V of U§, and 

a certain character ipy of V / ? \ V A f , and prove that the Fourier coefficient along V , 

with respect to t/jy, is nontrivial on (the space of) Er (Proposition 16). To do so, 

we prove that this nontriviality is equivalent to the nontriviality of another Fourier 

coefficient on ET. This last Fourier coefficient is along a unipotent subgroup ¡7, and 

with respect to a character tyu of UF\UAF- The group U is almost the maximal 

unipotent subgroup of UQ. It "misses" just one root subgroup, namely the simple 

root which lies in the Siegel radical. The character tpu is the restriction to UAF of 

the standard nondegenerate character determined by Thus, the nontriviality of 

the (U,ipu) coefficient on Er follows from the fact that r is (globally) generic. In 

the second step we show that the nontriviality of the (V, ? /v) coefficient on ET is 

equivalent to the nonvanishing of a^{r). We develop for these proofs (and for the 

sequel) a tool that we call, for lack of a better name, "exchanging roots". In practice, 

it enables us to conclude that an automorphic representation, realized in a given space 

of automorphic forms, has a nontrivial (Vi,VVi) Fourier coefficient, if and only if it 

has a nontrivial (V2 ,Vv 2 ) Fourier coeffiecient, where the unipotent groups Vi, V2 are 

generated by root subgroups, and the passage from V\ to V2 is by "deleting" a certain 

root subgroup, and "replacing it, in exchange", with another certain root subgroup 

(outside V i ) . The characters Vv* a r e equal on the subgroup generated by the roots 

common to Vi and V2, and extend trivially to "the rest o f V*. 

Let H = UQ, and let P be the Siegel parabolic subgroup. Let pr>,s = 

I n d p ^ A F ^ r ; | d e t - | s _ 1 / 2 , and consider for a holomorphic, if-finite section £ r / j 5 of 

pT',s, the corresponding Eisenstein series F ( £ r / ) 5 , / i ) on UQ(AF). We know that 

^(£r ' , s , h) has a simple pole at s = 1, as data vary. Recall that the space of G^[T) 
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is spanned by the ^ } - Fourier coefficients of R e s s = i E(£T'i8, •) along N\. Let us 

repeat the definitions in this case 

(4.5) n 1 = {U = w ) eU6y 

For u e Ni(AF) as in (4.5), 

(4.6) il>i,i(u) = IPE(V2 - 2/3). 

The stabilizer of ^ 1 , 1 inside (1 u4 \ is 

И ( \ ) e Щ h 
nbrgbvzi 

We fix an F-isomorphism i : [/3 L. The representation cr^(r) of US(AF) acts in 
the space of automorphic functions spanned by 

(4.7) 0 i — • J Ress=1E(Çr>,s,ui(g))i;h{(u)du. 

i V i ( F ) \ i V 1 ( A F ) 

In this section we show that (4.7) is not identically zero. Consider the following 

subgroup of UQ 

(4.8) V=[v= ( h î2a' \ e £ / 6 } , 

and the following character of VF\VAF 

ipv(v) = II>E(CLII - «22) . 

Let us denote by ET the residual representation of UQ(AF) acting in S p a n { R e s s = i £ ? ( £ T / ) S - ) } . 

Proposition 16. — The Fourier coefficient of ET with respect ipy along V F \ V A F is 

nontrivial, i.e. 

J R e s s = i E ^ ^ v ^ ^ d v £ 0. 

VF\VAf 

Proof. — Let 

U 1 U U ' 
7 / , _ 0 0 0 1 
W — 1 0 0 0 

Write v in (4.8) in the form 

(4.9) v = \ 1^~é-ï . 
V ' 1 — c — a 

1 1 n I 
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Then 

(4.10) ( la *_ 0 b *_\ 
1 -d 0 -b \ 

n 1 ! A 0 

Oc * l a * I 
0 - c 1 - â / 

0 1 / 

(zeroes elsewhere). Let V 7 = wVw x . Then by (4.10), the elements of V have the 

form 

( 4 . H ) v'=(z

yp)eUe, 

where z is upper unipotent, x, y are upper nilpotent (such that X23 = £12,2/23 = — 2/12)-

The conjugation (4.10) takes the character ipy to the character ipy of V p \ V ^ , defined 

by 

^ v ( v ' ) = ^ ( ^ 1 2 + ^23) 

(t/ is o f the form (4.11)) . Since R e s s = i E(£r>iS,w • v) = R e s s = i E(€T'i8,v) and 

R e s s = i E^r^s^whw'1) = J B T ( i y ~ 1 ) ^ R e s s = i £ ( £ r ' , s , • ) ) W > 

what we have to prove is equivalent to 

(4.12) y R e s s = 1 E(£T>ta,v')il>y}(v')dv' £ 0. 

We will now "exchange roots" in V in (4.12), in the sense that (4.12) is equivalent to 

(4.13) j R e s s = 1 E(^^r)^\r)dr £ 0, 

D F \ D A F 

where 

( 1 a * 7 /3 * \ 

1 * 0 0 - 3 1 >| 

i 1 -s 7 € ^ .1' ^ D ( r ) = + 5 ) * 

Note that D is obtained from V by exchanging c and — c with the zeroes in coordinates 

(1,4),(3,6) in (4.10). This is done as follows. Let 

Z = ( 1 1 * ) G ResE/FGL3, m ( Z ) = { ( % * ) G *76 | z G z } 

X 0 = j ( ° 0 ^ t ) j e + e = o | , X = {x G R e s ^ / F ^ ^ | w3x + £ ( w 3 z ) = 0 } 

= { ( / 3 *) I x G X } , = [l(x) = (i3

 / 3) I x G X } . 

Denote 

^ = { ? ( % * ) } . ^ - { l ( ° « j ) | . « - o } . * » - { < ( ' • - , ) } 

C = m(Z)e(X0)Y
13. 
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Then it is easy to check that С is a group, (it is a subgroup of V) and that the 
following properties are satisfied. 

(i) Let грс = Ф У \ П • Then Y and X 1 1 normalize С and (their adele points) 

preserve фс-

(ii) [ I n , F 1 2 ] c C 
22 12 

(iii) The characters ,фс(ху%~1У~1) on Xp-\Xj^ (resp. on Y F \YAP) as у (resp. x) 
^2 12 12 

varies in YF (resp. X ^ 1 ) are all characters of Xp-\X]^ (resp. YF \ Y A F ) . 

V'X11 = D Y 1 2 

x ^ ^ 
(4.15) у, = c y 1 2 CX11 = D 

С 

Let us check (iii), for example. We have 

(А ЛСС\ (J3 \ (h x \ ( h \ (h - x \ _ f h-xy xyx \ 
\^'±yjJ \У h J \ h ) \ -y h J \ h ) ~ \ -уху h+yx+yxyx J 

Now, for у = (°^"^)' x = =
 C ° t ) ' = ^ ' а П С ^ ^ e n c e ( ^ -16 ) e ° x u a ^ s (note that 

?(?/) G F 1 2 , ^ (x ) E X 1 1 ) ( % * ) , where z = i ^ o ) - Hence фс applied to the 

l.h.s. of (4.16) equals ipgl{ct), which represents a general character of t (resp. c ) , as с 
(resp. t) varies. 

Let us explain now the equivalence of (4.12) and (4.13). Put e^(h) = R e s s = i E(£r'jS, h). 

We have 

J ez{v')il>y}(v')dv' = 

VFWLF 

/ / „ ( „ W M * * 

- l u l l B*(cé ( ' 0 J y^xl)-\\^c\c)dtdcdy 

T / 
D = CX11 T F 1 2 V T 7 X 2 

Y F \ Ap 
A ( E i ? DF\Dkp 

niyuroehks 

Here, for r = c£ (* o J e C X 1 1 = £>, Vc,A(r) = ^ ( A t ) ^ c ( c ) . Let y 0 € y " . Then 

e^(ry) = e^(yory) = e^yory^1yoy)• Recall that j/o normalizes £ > A F ) and it preserves 

D F . Also, for r = c • x , x 6 . X ^ , c € C A f , y^xyo = [VQX,X]X € C A F ^ A f > and 
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Uo lcVo £ with V c ( c ) = ^C{VQ lcyo)- Thus, for each y0 £ F ^ 2 , we have 

J e^y0ry)ipc^x(r)dr = J eî(ry0y)ipc^(y0

1ry0)dr 

DF\DAp changeable D p \ ^ 
r^yQ ry0 

= J j e^(cxyoy)^x([y0

1,x]x)i;c

1(c)dcdx. 

*"V*ii . CF\CAF 

12 

We could take even a variable y \ £ YF , A £ E, and get the same results. Take 

y \ = £ ( o A ) • Then for x = £ o _ ^ , we have seen in (4.16) that ^cix([y\1jx]x) = 

^ ( - A t ) ^ ( A t ) = 1. Put il)D{xc) = V>c(c). We get that the l.h.s. of (4.12) equals 

J ^2 J ef:(ryxy)ilJDl{r)drdy = J j e^ry)^{r)drdy. 

ypXYll y x e y l p 2 D F \ ° * F y f F DF\DAF 

Thus, we have shown that 

(4.17) J et(v')^y}(v')dv' = J f e^ry)^-\r)drdy. 

KWJlF Yl2

F DF\DAF 

We claim that the r.h.s. of (4.17) is not identically zero, if and only if 

j e z ( r ) ^ \ r ) d r ^ Q , 

DF\DAF 

which is (4.13). Indeed, assume that the r.h.s. of (4.17) is identically zero. Apply 

the convolution operator JAe <j>{t)ET{£ ( o _ ) )d£, for <j> £ S(AE). We get (denoting 

rteverh 
)=№)) 

nbuebier 
ф(х)ес (r[y, х]ху)фЕ)

1 (r)drdydx 

' I 
rrrl2 vil 
У А Р Ap 

p(x)^D([y,x])dx J e^ry^j^i^drdy 
Dp\DAfr 

= J Ф(У) j е$(гу)фр(г)<1гау. 

In the one before last integral, we changed variable r »—> r[y, x] 1x Recall that 
IPD\XU = 1- In the last integral, </>(y) = JXLL <f)(x)ipD([y,x])dx. This is a Fourier 

Ap Ap 

ASTÉRISQUE 298 



FROM CLASSICAL GROUPS TO G L n 3 7 5 

transform of </>, since x i—• ipD{[y,%\) is a general character of x, as y varies. Thus, 

(for all 0 

v 1 2 

1 A P 

q(y) 

D F \ D A F 

e^{ry)il)D

l{r)drdy = 0, 

for all $ e S(XlF). This is equivalent to (4.13). In the passage from (4.12) to (4.13) 

we "exchanged" F 1 2 and X 1 1 . (see (4.15)). 

We have to prove (4.13). Let 

X 2 2 = { < ? ( ° t o ) \t + t = 0}. 

Then X 2 2 normalizes D and preserves ipo. Put D = D • X 2 2 , and extend ^ to D, 

by making it trivial on X 2 2 . Denote this extension by ipp. Let 

X 2 1 = 
• / 0 0 0 \ 

^ f t o o ] 
. \ o - t o / 

t = t 

Then one can check that X 2 1 normalizes D and preserves ipp. Let D+ = D • X 2 1 , 

and extend t/^ to a character ipD+ of D+, by making it trivial on X + 1 . In order to 

prove (4.13), it is enough to prove 

(4.18) 

D+p D+p 
R e s s = i E{£T,,s,r)^\{r)dr ^ 0 

Let 

X 2 1 = 
- / 0 0 o> 
£ { t 0 0 

. \ 0 - t 0 y 
t = -t] 

We can "exchange" in (4.18) y 1 3 by X 2 1 . More precisely, this is done as follows. Let 

C+ = m{Z)£{X)Xf. This is a subgroup of D+. Put ipc+ = tpD+ \ c + . Then 

(i) Y and X2} normalize C + and preserve ipc+. 

(ii) [X21,Y12]cC+ 

13 13 
(hi) The characters tl)C+{xyx~ly~l) on X 2 1

F \ X 2 1

A i ? (resp. on Y F\Y Kp) as ?/ 
2 3 13 13 

(resp. x) varies in F F (resp. X 2 1

F ) are all characters of X 2 1

F \ X 2 1

A f (resp. YF\Ykp). 

D+X2} = UY13 

X2i t3 

D+ = C+Y13 u = c+x21 

Y13 
C+ 

X2} 
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Extend i/>c+ to a character ipu of U by making it trivial on X2}. As before, ( 4 . 1 8 ) is 
equivalent to 

( 4 . 1 9 ) j R e s s = i г)1>Цх(r)dr ф 0 . 
UF\UAF 

Note that r G U&F has the form 

( l a * * * * \ 

1 6 * * * \ 
1 ? f : J g c / 6 ( A f ) 

and 

^ ( R ) = ^ £ I ( a + b). 

U is a subgroup of the standard maximal unipotent subgroup N oi UQ. Extend 

ij)u to to on 7VA f by making it trivial on the Siegel radical S. Clearly ( 4 . 1 9 ) 

will follow from the nonvanishing of the Fourier coefficient of R e s s = i E(£T'iS, •) with 

respect to I^N along Np\N&F> This last Fourier coefficient is just the constant term 

of R e s s = i E(£r/i3, •) along 5 , followed by the Whittaker coefficient for the Levi part 

of the Siegel parabolic subgroup. Writing the constant term of Res 5 = = i E(£T'jS, •) in 

terms of the intertwining operator, we see that the last Fourier coefficient is just 

a Whittaker coefficient applied to r' with respect to the standard nondegenerate 

character defined by ipE, which is, of course, not identically zero. This completes the 

proof of Proposition 1 6 . • 

We now conclude that (T^{T) ^ 0 . For this, let 

T -( 1 , 4 -J-
Then, by Proposition 1 6 , 

( 4 . 2 0 ) / R e s s = 1 7 - 1 t r y ) ^ v ) A > ^ °-

Note that for v G V A f of the form 

( 4 . 2 1 ) ( 1 0 a b * * \ 

l e d *_ *_ \ 

1 0 —d —b I 
1 

1 c—a d—b * * 
RV~^'l)/y = 1 0 — d-\-b —b 
' 1 1 - c + ä - ä " 
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Change variables in (4.20), c ^ c + a , d ^ d + 6. Let be the character, which takes 

v in VAF of the form (4.21) to i/j(a — b — d). Thus 

(4.22) j R e s s = i v ^ ^ d v £ 0. 

VF\VAF 

Change variable in (4.22), c H - > C + d (v of the form (4.21)) . Consider the following 

subgroups. 

J = { ( h ^ l ) e v \ x = (äbä)} 

k=jkd louerhhu 

H 
hjiie1 

Put = ^ | J . Then 

(i) The subgroups K, L normalize J and preserve i\)j. 

(ii) [K, L]<z J 

(iii) The characters i/jj(xyx~1y~1) describe general characters of x in Kp\KAp 

(resp. y G LF\LAF) as y varies in Lp (resp. as x varies in Kp). 

Note that V = JK. Denote Uf = JL, and extend ipj to a character of £/', by making 

it trivial on L. Now "exchange" K and L in (4.22). We get that 

(4.23) J R e s s = i E(ZT>,a,r)rl>j}}(r)dr & 0. 

u'F\uAp 

Note that r 6 Uf

Ap has the form 

/ 1 t o 6 * * \ 
r 1 d d *_ *_ \ 

1 0 - _ d - 6 
' 1 d - â I 

V 1 i7 and 

Фи' (r) = ФЕ a - b ) • ФЕ((1). 

This means that the l.h.s. of (4.23) is the integration (4.7), which defines cr^,(r), 
followed by the Whittaker coefficient with respect to Î(JE along i ( iV) , where N is the 
standard maximal unipotent subgroup of G = U3. In particular cr^(r) 7̂  0, and we 
also showed that the ipE-Whittaker coefficient of <J^(r), as a representation of ^ ( A ^ ) 
is nontrivial. 
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4.3 . T h e tower property: Case H = S p 8 , r— on G L 4 ( A F ) , G = S p 4 

Let r be an irreducible, automorphic, cuspidal representation of G L 4 ( A F ) , such 
that LS(TJ A 2 , S ) has a pole at s = 1, and L ( r , | ) ^ 0. (This implies in particular 
that r = r and u)T = 1). Let i7 = S p 8 , and let P be the Siegel parabolic subgroup 
of H. Let pT^s = I n d ^ F r | d e t - | s _ 1 / 2 , and consider the corresponding Eisenstein 
series E(£T^S, h) on S p 8 ( A F ) , for a holomorphic, if-finite section £ T j S . i £ ( £ T ) S , h) has a 
simple pole at s = 1, as data vary. Recall that the space of cr^(r) is spanned by the 
Fourier-Jacobi coefficients of type ( ^ i , 1, </>) of R e s s = i E(£T,S, •) along N2. We repeat 
the definitions in this case 

(4.24) { / l i * * * \ л 

у = I и у' * J e Spg > . For v e N2(AF) as in (4.24), 

Ф1 (v) 85ndr 

The group N2 surjects onto the Heisenberg group H in five variables by 

j(v) = (y;t), 

for v e N2, as in (4.24). Let u^-i be the Weil representation of S p 4 ( A j p ) ix HAF, 
acting on S(A2

7), corresponding to the character Denote, for 0 G S(A2

7), the 
corresponding theta series by 0^_1(-). The representation oy,( r ) of S p 4 ( A i ? ) acts in 
the space of automorphic functions spanned by 

(4.25) 5 — j H e B . = i ^ ( í r , . , « j ( í 7 ) ) ^ - i Ü ( « ) 3 í ) ^ r 1 ( « ) d « -

N2(F)\N2(AF) 

Here g is the projection of g in Sp 4 (A/?) onto S p 4 ( A F ) , and we extend j to an em­

bedding of S p 4 ( A F ) • HAF inside S p 8 ( A F ) by j(g) = ( % ) . 

In order to prove that ( r ) is cuspidal, we have to show that the constant terms 

along unipotent radicals (of parabolic subgroups of S p 4 ) vanish on G^{T). The tower 

property that we reveal when we compute these constant terms is that they are 

expressed in terms of "deeper descents" o^(r) (k < n = 2) , which in our case 

means k = 0 ,1 . Here <J^\r) is simply the "space" of ^-Whittaker coefficients on 

the group "Sp 0 (Aj?)" which by definition is { 1 } , of the residue representation ET 

(acting on S p a n { R e s s = i E(£TjS, • ) } ) . Since the ^-Whittaker coefficient of E(£T,S, •) is 

holomorphic at s = 1, the last space is zero dimensional, i.e. <J^\T) = 0. The space 

c^\r) is the space of automorphic functions on Sp 2 (A i r ) = S L 2 ( A F ) spanned by 

9 ^ j R e s s = i E i ^ u j ' i g ^ e ' ^ i j ' i u ^ i ^ d u . 

N3(F)\N3(AF) 
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Here cp e S(Ap), and (•) is the theta series corresponding to the Weil representa­

tion U/^_I of S L ^ A j r ) k W ( A j ? ) , where Hf is the Heisenberg group in three variables. 

The group N3 is 

(4.26) N3 = {u= (z i2x') eSp8 z e Z 3 = f1**)}. 

For u e N3, as in (4.26), tp2{u) = ip{z12 + z23), and j'(u) = ( X 3 I , X 3 2 ; 2 / 3 I ) (the 

surjection N3 -> H'). Finally, for g e S L 2 ( A F ) , j'(g) = (h 9 ^ ) . 

There are two standard unipotent radicals of maximal parabolic subgroups of S p 4 : 

R = \ ( 1 1 x' ) e SP41, S = 1) e S p 4 } . 
Proposition 17 

(a) The constant term of elements of cr^(r) along R is a sum of certain integrals 

of elements of ( r ) . 

(b) The constant term of elements of ( r ) along S is a sum of certain integrals 

of elements of ( r ) . 

We conclude that if c r ^ ( r ) = 0, then the elements of 0\/ ,(T) are cuspidal, in the 

sense that their constant terms along unipotent radical are all zero. Note, as we 

explained before that ( r ) is zero. In general, we may consider ( r ) for A: ^ 2n. 

This is a representation of Sp 2fc(A/r). The constant terms of the elements of o~^\r) 

along unipotent radicals turn out to be sums of elements of c r ^ ( r ) , for j < k. The 

tower principle says that there is a first index ko, such that &^°\T) ^ 0, and then 
alp°\T) 1 S cuspidal. We actually prove that ko = n. 

Proof of Proposition 17(a). — Put, for short eT(h) = R e s S = I E(£TiS, h). We consider 

с(ег,ф)= J j eT(vj(r))e*_1(j(v)r)ìp1

1(v)dvdr. 

RF\RAF N2(F)\N2(AF) 

Since R splits in S p 4 , we identify R as a subgroup of S p 4 . Let 7 = 1 h ^ I. 

Denote the right 7-translate of e r by 7 • e r . We have 

(4.27) с(ет,ф)= f j 7-e T (7«j(r)7" 1 )e$-iÜ(«)»-)V ' r 1 (t;)dt;dr. 
RF\R^ N2(F)\N2(AF) 

Consider the group jN2j(R)^f We have 

7 ^ 2 J ( Ä ) 7 ~ 1 = T L Z X , 
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where 

T = {( 7272is)€Sps}' z = {( */2

2. )eSp8h = (^}} 
HC%JGSP8}' *={(l7M;)eSp°}-

The integral (4.27) becomes 

J J J J 7 -CT(*-^-x)«J- i ( (0 , t34 ,*3B,*38;«36) (^3 i ,0 ,0 ,0 ;0 )7 (x ) ) 

- X " F \ ^ A F ZF\ZAF LF\LAF TF\TAF 

(4.28) "ijj-1(z23)dtdedzdx. 

Here j is an isomorphism of X with i?. It is the inverse to the conjugation by 7 

composed with j . The theta series in (4.28) equals 

(4.29) £ E 
i7 i6F 7726F 

(тд, 0 ,0 ,0 ; 0)(0 , *34, *35, «ss; tse)(*3i , 0 , 0 , 0 ; 0)3(х))ф(0, щ). 

The inner sum in (4.29), as a function (¿34, ¿35, ¿38, ¿36), is left Tp invariant, for fixed 

7/1, ¿31, a;. In (4.28), we may interchange the 7 > \ T A f integration and the summation 

over rji e F. Now change variable t H-> £~*t£m, where 

/ ¿ 1 \ 
m 1 

V - r / i O l / 

In (4.28), 7 e r ( £ • ̂  • 2 • x ) becomes jeT(t • (A?i^) • • a:), and in (4.29), the inner sum 

becomes Y,mzF ^ - 1 ((0, ¿34, ¿35, ¿385 t3e){Vi +¿31,0,0,0; O)j(x)0(0,7/2). Now collapse 

JL F\L A F E ^ F ^ t o / l ^ L a f , where 

MC'-J e S p s j . 

We get 

(43o> I I I I 
XF\XAF ZF\ZAf LF\LAF TF\TAF 

jeT(t z-x) -ф 1(z23) 

J2 и*-*-((0,*34, tas,ha; *зе)(*31,0,0,0;0)](х))ф(0, r))dtdldzdx. 

Note that 

^ - ф ' Ч я ) М О , 7 7 ) =(p(0,rj). 
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We can conjugate x "back to the left" in (4.30) to get 

J J J 7er(u-e- z)^2 u^p-i ((0,1x34, ^385 u>36) ( 4 i , 0 ,0 ,0 ; 0)) 

ZF\ZAF L f \ L A f UF\UAF

 V E F 

(4.31) (j){^,ri)il)-1{z23)duMdz, 

where U = T • X. Now take (j) = fa <g> fa, fa G S(AF). Denote b y a / ^ the Weil 

representation of S L ^ A ^ ) -H'(AF). Then 

uty-i ((0,1x34, W35, ^385 w 3 e) ( 4 i , 0 ,0 ,0 ; 0))<£(0, rj) = fa {£31)^-1 ((1x34, ^35; u36))fa(r]). 

For such 0, (4.31) equals 

J ФЛУ) J J J ieT(ue1zey)ef^1((us4ius5]Us6W 1{z23)dudi1dzdy. 
AF ZF\ZAF LF\LA UF\UAF 

Denote 

Фг * beT)(h) = J фг(у) • (jeT)(h£y)dy. 
Ar 

Then 

(4.32) c ( e T , 0 i ® 0 2 ) 

= j j у (0 i * ЫrЖue1z)в^1Ш)Ф~1(z23)dud£1dz 

ZF\ZAF 1 А Ш UF\UAF 

Here i(tx) = (1^34,1x35; 1x36). As we did in the previous section, we can exchange in 
(4.32) the subgroups L1 and 

'ГЦ \ 
V = < 1 h G S p 8 > . 

1 0 * 1 

Л х?/ Denote Z ' = VZ and let V'z' denote the character of Z'AP, which is trivial on VAF 

and takes z in ZAF to ip(z23)- As in (4.17), we get that 

(4.33) c ( e T , 0 1 ® ^ 2 ) 

= 1 1 J Ф1*{1ет){иг'е)в^{и))^^')аиаг'М1. 

Consider the function on F\AF 

(4.34) f.—> У J ^ 1 *(7e T)(uir ,x^ 1)^i(*(ti))^ 1(*')d«i2 ,» 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005 



382 D. SOUDRY 

where x1=12358 

Write the Fourier expansion of (4.34) (evaluated at zero) 

(4.35) J2 j ф1*{1ет){чМ1)9,*11{з\и))^\и)аи, 
X e F ' N3(F)\N3(AF) 

where A = y h j . See the paragraph before the statement of Proposition 17 for 

notation. Note that in (4.35) we did not include the constant coefficient, since it will 
contain as an inner integration the constant term of (pi * ( 7 e r ) along the radical of 
the standard parabolic subgroup of S p 8 , which preserves a line. This constant term 
is clearly zero. Note that the summand in (4.35), corresponding to A, is an element 
of <J^\T) evaluated at A. We proved 

(4.36) c ( e T , 0 0 ( / > 2 ) 

- E / / 
¿i - N3(F)\N3(AF) 

ф1 * (7e T ) (uX¿ 1 )eJ? 1 Ü
, (u) )^J 1 («)d«d¿ 1 -

This completes the proof of Proposition 17a. • 

4.4 . Vanishing of c r ^ ( r ) , for k < n: Case H = SOg, r - on G L ^ A / ? ) 

Let r be an irreducible, automorphic, cuspidal representation of G L ^ A ^ ) , such 

that Z / 5 ( T , A 2 , S) has a pole at 5 = 1. Let H = SOg, and let P be the Siegel parabolic 

subgroup of H. Let p T ) S = I n d p *
F r | d e t - | S ~ 2 5 and consider, as before, the corre­

sponding Eisenstein series E(£r^Syh). It has a simple pole at s = 1, as data vary. 

Recall that the representation cr^{r) of S C ^ A j r ) acts in the space spanned by the 

functions 

(4.37) gi—• j R e s s = i E(^TtS,ui(g))xp1

1_1(u)du, 

where 

(4.38) JVi = [u = ( 1 h v' ) G S 0 8 } 

/ 0 i , - i ( ^ ) = ip(v3 — V4) (for u G iVi, as in (4.38)) . The isomorphism i sends SO5 onto 

15dfbdfg 
S S 0 8 л 

dfgd dgdygf 

As explained in Section 1.2 and in the previous section, the constant term on 

O~<4>(T) with respect to the radical (in SO5) R = | ^ j 3 x ' ^ G SO5J is expressed in 

terms of (T^\T), and the constant term on cr^(r) with respect to the Siegel radical 
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(in SO5) is expressed in terms of c r ^ ( r ) , which is just the Whittaker coefficient on 
(Res s = = i JE(£ T j S , • ) ) , and is known to be trivial. See the guidelines to the proof of 
Theorem 4. We will show 

Proposition 18. — For T as above, H = SOg, we have 

- i 1 } ( T ) = 0 . 

Proof. — The proof is using just the fact that at one unramified place rv is self-
dual, and has a trivial central character. Fix such a place v. By Proposition 15, the 
unramified constituent 7r„ of pTl,i = Indp^v rv \ det «I 1/ 2 is the unramified constituent 

of a representation of the form p^^i ~ ^^q^ № ° det®//2 ° det. Here \i\,n>2 are 
unramified characters of F*, such that rv is the unramified constituent of the rep­
resentation of G L 4 ( F I / ) induced from the standard Borel subgroup and its character 
defined by 

d i a g ( * I , . . . , tu) I—• Mi ( r ( t ^ ) • 

Q is the standard parabolic subgroup of H, whose Levi part is isomorphic to 
GL(2) x G L ( 2 ) . If cr^\r) is nontrivial, then the Jacquet module with respect to 
(N2{Fl/), ( V v ) 2 , - i ) , Jjv 2(f i /),(^ i /)2 >-I(Pa*I.M2) i s nontrivial. Thus, the proposition will 
be proved if we show that 

( 4 - 3 9 ) J JV 2 ( i^ ) , (Vv)2 , - i (P/xi,/x3) = ° -

We use Bruhat theory. Let Q2 be the standard parabolic subgroup of iJ, 

whose Levi part is isomorphic to GL2 x S O 4 . We first analyze JN2(FU)I(I/>„)2 - 1 

^ R e s Q 2 ( ^ ) ( I n d Q ^ F ^ ^ 77 ® 7r)^, where 77 — ¿¿1 o det and 7r is an irreducible repre­

sentation (later to be specified as Ind/i2 o det) . We apply Bruhat theory to study 

Resg 2 ( J p l / ) ^ I n d g ^ F ^ r] ® 7r). This restriction has a filtration of Q2(FU) - modules, 

with subquotients parametrized by Q2\H/Q2. The quotient Q2\H is isomorphic 

to the variety Y2 of two dimensional isotropic subspaces of the (column) space F8 

(equipped with the quadratic form preserved by H). Let { e i , . . . , e 4 , e _ 4 , . . . , e _ i } be 

the standard basis of F8. Let — Span{ei ,e2J be the standard two dimensional 

isotropic subspace. The isomorphism Q2\H = Y2 is given by Q2h i—• h~1 • X^2\ The 

orbits of Q2 in Y2 are parametrized by r = d i m ( X n X ( 2 ) ) , and s — d i m ( X f l ( X ^ ) ± ) , 

X G Y2. Note that 0 ^ r ^ s ^ 2. A representative is 

Xr,s = S p a n j e i , . . . , e r ; e 3 , . . . , e 2 + s _ r ; e _ ( r + 1 ) , . . . , e _ ( 2 + r _ s ) } . 

Choose (a Weyl element, for example) wr,s G H, such that wrjX^ = Xr,s. The 

corresponding subquotients for R e s Q 2 ( ^ ) ^ I n d ^ T ^ 77 <g) tt) are 

Г - l n d c Q 2 Ì K )  

i r , s - m a j 
^)№ r i S nQ2(F„) : » 7 ® 7 r - 4 2 r r , s • < r l / 2 -
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(The factor S l/2 appears in order to make the induction normalized.) Consider, for 

example, the case r = 1, s = 2 . Here, we have 

( 4 . 4 0 ) 

/ /an ai2 x\\ X12 #13 #14 yn yi2 \ ' 
/ 0,22 0 X22 #23 #24 2/21 2/ii \ 

bll bi2 bi3 614 #24 #14 

_1 c l l c 12 &13 #23 #13 

W1^Q2(Fu)Wl^ n Q 2 ( ^ ) = < C21 C 2 2 6 i 2 #22 *'l2 G ^ f : = L ™ 
bii 0 2 ^ 

a22 a12 

IV ari1/ J 
1 / 2 

The representation £ 1 , 2 = (77 ® 7r • <SQ2 ) ^ 1 2 takes elements of the form ( 4 . 4 0 ) to 

( e n 0 x'23 C12 \ 

T T s ? • 
C21 0 x22 C22 / 

Let us prove that JN2(FU)^)2,-1^1,2) = 0 . Fit I \ 2 into an exact sequence 0 —> 

S2 —> Tit2 —> Si —> 0 , where S2 is the subspace of functions in I \ 2 supported inside 

( a * * \ 
b J in Q2{FU), such that a lies in the open 

Bruhat cell of GL2(-F I / ) . The support of these functions (in I \ 2 ) is compact modulo 

L>i2(Fu). Si is the space of smooth functions on the complement of Q, inside Q2(FU), 

where left Li^{Fu) - translations act by ( 4 . 4 1 ) , and the support is compact modulo 
£i,2(-Fi/)- Thus, we have to show that JN2(FU),(^U)2,-I (Si) = 0 ; i = 1 , 2 . Let / G Si. 

We show that 

( 4 . 4 2 ) J (^)2,-i(n)f{x2(t) ( / 2 k ^ ) n)dn = 0 , 

N2{VUM) 

for all k G S 0 4 ( O F J , * € F „ ; 

X 2 ( t ) = • 

V 1
 1 / 

The support of the integrand in t depends on / , so we may take M large enough so 

that, in the support of / , 

( / 2 s 2 ) ^ ) ( / 2 - i

/ 2 ) e w M ) > 
for all k G SO^Oi?^ ) - Making a change of variable in n , we may assume that t = 0 

in ( 4 . 4 2 ) . Consider now the subintegration in ( 4 . 4 2 ) on # 1 ( 2 ) , \z\ ^ qff, where 

x1z=1235462 

It gives 

j V v 4 * ) / ( * i ( * ) ( í a * J a ) " ) d * = ( У Vv4^) / ( ( ' 2 * J n ) = 0 
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Here we used that £1,2(^1 ( 2 ) ) = id. This shows that JN2(FU),(^U)I, 1 ( ^ 1 , 2 ) = 0. 
Let / G 52- We have to show that 

(4.43) j ( ^ ) ^ , 1 _ i ( n ) / ( x 2 ( t ) (W k

 w*) rc i (6)n)dn = 0, 

N2{VuM) 

where w = As before, we may assume that £ = 6 = 0. Now consider the 

subintegration on 

y(u) = ^ 1 /4 u ' ^ . 

The corresponding disintegration (with 6 = 0) is 

/

/ / 1 0 u f c - 1 0 * \ x 

lp-l(u2-U3)f({ 1 /4 Ofcu ' j ( W k

w * ) n ) d u 

= y ^ • 1 ( « 2 - t i 3 ) d u . / ( ( U , f c ^ ) n ) = 0 . 

This proves that JN2(FU),0/>„)2-I№) = 0- Similar arguments imply that r cannot be 

1 or 2. Thus, r = 0. Similar arguments imply also that for r = 0, s cannot be 0 or 2. 

Put wo,i = w i - Then 
r / a n 0 0 0 0 X14 0 0 \ ' 

/ a 2 i a 2 2 0 x 2 2 x2z x 2 4 y 0 \ 
¿11 ¿12 ¿13 ¿14 x'2A x'14 

e n c i 2 ¿ i з x'23 0 
(4.44) w1 Q2W\C\Q2 = \ C2i c 2 2 &i 2 x 2 2 o G H > : = Za 

¿^ 1

1 o o 
a22 0 

, \ a 2 i / 

The representation £1 = ((77 0 7r) • S Q 2 ) W I takes an element of the form (4.44) to 

(4.45) 
i hi 
' a n M — Г 

\ О ц / 

( a 2 2 #23 #22 2/ \ 
c 2 2 c 2 i x 2 2 \ 
C12 e n x'23 I • 

a22

X/ 

Here a; = ^ 1

 x ^ . 

As before, we consider appropriate analogs S ^ S ^ of the spaces S i , S 2 , and it re­
mains to show that 

(4.46) f ( ^ ) 2 ~ , - i ( n ) / ( ( a ^ a : ) n ) d n = 0, 

N2(V~M) 

for k G S O ^ O p ^ ) , and ot\ = / 2 , <̂ 2 = (1 1 ) ; / is in 5 { , 5 2 (respectively). In case i = 2, 
we consider the subintegration on xi(z), \z\ ^ g ^ , and we get ( f\z\<qM ,4}v1(z)dz) • 
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( k a* ) n ) = ^ ' ^ n c a s e * = a S a m consider y(u), and the subintegration 

(4.47) f ^ v

 1(u2 - u3)f ( ( ^ fc

 / 2 ) 2 / f a ) n ) * z 

= y ^ X ( w 2 - u3)f[y{uk l ) (*2 k njdu. 

uG(V~M)* 

Now take in (4.47) the subintegration onu= {0,u2,u3,U4)k, \ui\ ^ g ^ . We get 

(4.48) / jlzonkd253 / 1 U3 U2 * \ / , j v v 

( 1 ' » * • 
We must have fc^j^J = ^ * J > otherwise the du4-integration results in zero. 

For such k, the vanishing of (4.48) follows from the fact that, by induction, n = 

I n d g ? ^ } /x 2 odet has zero Jacquet modules with respect to N£ = 

i2 v' J 1—• tp(avi — a 1v2) (which in this case is easy to see, since 

these are Whittaker characters). This completes the proof of Proposition 18. • 

4 .5 . Unramified parameters of cr^(r) : Case H = S O s , G = SO5 and r on 

GL4(Ai?) . — We keep the notation of Section 4.4. Prom the explanations at the 

beginning of Section 4.4, it is clear that the next proposition determines the unramified 

parameters of (any summand of) a ^ ( r ) at the place v. 

Proposition 19'. — We have an isomorphism of SOb(F u)-modules 

JN1(FU),(^U)1^1 ( i n d ^ ^ / z i o det 0// 2

 0 de t ) ) =" I n d | ° 5 ( n ) //i 0 / i 2 

Here B is the standard Borel subgroup of SO5. 

Proof. — The method is the same as in Section 4.4. Again consider 77 = / ¿ 1 o det on 

GL2(FU) and n = I n d g ? ^ ^ \i2 o det. Let Qi be the standard parabolic subgroup of 

H which preserves an (isotropic) line. We analyze R&SQ1(FV) ^ I n d g ^ F ^ 77 0 7r) using 

Bruhat theory. So consider Q2\H/Q\. Identify, as in Sec.4.3, Q2\H = Y2. The orbits 

of Q i in Y2 are determined by / = dimpfnXt 1)), and 5 = dimpfnp^ 1 ))- 1 ) , X G Y2. 

Here = F e i . Note that 0 < r ^ l ^ $ < 2 . 

If r = 1, then e i G X, and since X is isotropic, we get that X C (X^ 1))- 1 , and 

so s = 2. Thus, we may take as a representative X = X^2\ The corresponding 

subquotient of Resg^j? , ) ^ I n d g ^ F ^ 77 0 7r) is 

r l l2 = I n d c % $ & ) Ш « Т 1 ® * ) • Sgs-W 
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We have 

( 4 . 4 9 ) Q I N Q 2 = 

/ ai * * * * 
F a-2, * * * 

A2 * 
e H Ò G S 0 4 

and (77 (g) 7TÌ • (j3/2 takes an element of the form ( 4 . 4 9 ) to 

| a i a 2 |
5 / 2 / / i ( a i a 2 )7 r (6 ) . 

Clearly, for / in the space of Ti j 2 , and M ^ > 0 , 

( 4 . 5 0 ) 

J V ! 0 P - M ) 

( ^ ) r , 1 - i W / ( ( 1 * 1 ) ^ ) ^ = o, 

for any k G SOe(i^) . Indeed, / ( ( 1 * I J nj = f ( 1 k ^ J , for any n G i V i ^ ) . This 

shows that ^ A ^ F ^ . O M I . - I C ^ M ) = 0 . Thus, we may assume that r = 0 . If s = 2 , we 

may take the representative X = Span{e 2 ,es}. The corresponding representative in 

Q2\H/Qi can be taken to be w2 = I 1

 x (so that t u j 1 ^ 2 ) = X ) . 

Let T 2 = Ind 
W21Q2(Fl/)w2nQ1(Fl/y (V ® T T ) ^ 2 ) 1 " ^ " 1 7 2 - We have 

(4.51) W21QiW2 N Q I = 

a 0 x z e 
b y v z' 

c y' x' 
b* 0 

a"1 

eH 
C G S 0 2 

6 G G L 2 

1 /2 

The representation £ 2 = ((77 0 TT)^Q 2 )™2 takes an element of the form ( 4 . 5 1 ) to 

(4.52) \detb\^2M(detb)nu C X 
a"1 

where u — 
' 1 > 

1 
1 

1 ) 
Consider, for / in the space of T 2 , M > 0 , and k G SOe(CV), 

(4.53) 

N1 (P-M) 

^)r,1-iW/((1*1)^)^ = o, 

Consider the subintegration of ( 4 . 5 3 ) on n(v) = ( i6 v' ) , where v = ( 0 , 0 , 1 1 3 , . . . . ue)k, 

\ui\^q™. By ( 4 . 5 2 ) , we get 

( 4 . 5 4 ) 

J 
^ I /

1 ( ( 0 , 0 ^ 3 , . . . , Î X 6 ) / 

0 N 

i 
- 1 

Ò > 

1 143 1*4 —lt3U4 
1 0 -U4 

1 —U3 
1 

( ( 1 fc 1 ) n ) ^ U ' 

We must have 
0 

i 

- 1 

ó 

* 
1 * 

^ 0 
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otherwise the d(u$,u§)- integration results in zero. For such k, 

I \ 
k _\ = ( _f-i ) , \a\ = 1. 

Thus (4.54) becomes (up to q2M) 

(4.55) У / x схз с*4 —1*3«4 \ / / 1 \ \ 

^ГЧаиз - а-Ч*4)тг" 1 ? J / ( ( fcjn)d(ti3,ti4), 
which is zero for M large enough, exactly as in the end of Sec. 4.3. (This is a place 

to apply induction. Recall that n = I n d g ? ^ f ^ /¿2 0 det.) Note that k,n,a may be 

taken in compact sets, which depend on / only. Finally, let r = 0, s — 1. Here, a 

corresponding representative is w\ = ^ ̂  h 1 ) ^ x

 1 ^ . Let 

1 w 1

1 Q 2 ( F u ) w 1 n Q 1 ( F u ) K K > Q2 > 

We have 

(4.56) wx

 1 Q 2 ^ i П Q i = { / а О 0 ж 0 \ \ 

/ b у z x' \ I с ^ о I e н с e SO4 > . The representation £1 = ((77 0 7r) • £g' 2 ) W l takes an element of the form (4.56) to 

b 5 / 2 /b\ 

(4.57) - w(£W(c), 
where 7r £ (c) = 7r(ece~1), e — ^ x

 1 ^ . Using the same methods as before, we prove 

^ V i ( F „ ) , ( i M i . - i ( T l ) - ^ Q u S ^ l ® 7 r e | s O a ( F v ) ' 

where is the standard parabolic subgroup of SO5, which preserves an isotropic 

line. Finally, it is easy to see that 7 r e | S 0 3 ^ ) — I n d ^ ? 3 ^ 1 ^ / / 2 , for IT = I n d g ? ^ f ^ ¿¿2 0 

det. Here B' is the standard Borel subgroup of SO3. This completes the proof of 

Proposition 19. • 
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