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ON LANGLANDS FUNCTORIALITY
FROM CLASSICAL GROUPS TO GL,

by
David Soudry

Abstract. — This article is a survey of the descent method of Ginzburg, Rallis and
Soudry. This method constructs, for an irreducible, automorphic, cuspidal, self-
conjugate representation 7 on GLn(A), an irreducible, automorphic, cuspidal, generic
representation o(7), on a corresponding quasi-split classical group G, which lifts
weakly to 7. This construction works well also for all representations of GLyn(A),
which are in the so called “tempered” part of the expected image of Langlands func-
torial lift from G to GLn.

Résumé (Sur la fonctorialité de Langlands des groupes classiques 8 GL,,). —  Cet article
est une exposition de la méthode de descente de Ginzburg, Rallis et Soudry. Cette
méthode construit, pour une représentation irréductible, automorphe et cuspidale 7
telle que 7 = 7*, une représentation irréductible, automorphe, cuspidale et générique
o(t) d’un groupe classique quasi-deployé G (qui dépend de GLn et T), telle que T
corresponde & o(7) par la correspondance fonctorielle faible (« weak lifting »). Cette
construction est valable aussi pour toutes les représentations de GLn (A) qui appar-
tiennent & la partie dite « tempérée » de ’'image de la correspondance fonctorielle de
Langlands de G & GLx,.

Introduction

In these notes, I survey a long term work, joint with D. Ginzburg and S. Rallis,
where we develop a descent method, which associates to a given irreducible auto-
morphic representation 7 of GL,(A), an irreducible, automorphic, cuspidal, generic
representation o, on a given appropriate split classical group G, such that o, lifts
to 7, for almost all places v, where 7, is unramified. Of course, not every 7 is ob-
tained in such a way. We have to restrict ourselves to 7 which lies in the expected
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336 D. SOUDRY

(conjectural) image of the functorial lift from G to GL,, restricted to cispidal repre-
sentations o of G(A). We restrict ourselves even more and consider only generic o.
This also applies to quasi-split unitary groups G. Here A denotes the adele ring of a
number field F. Thus, for example, let E be a quadratic extension of F, and let T
be an irreducible, automorphic, cuspidal representation of GLg,+1(AE), such that
its partial Asai L-function L°(7,Asai,s) has a pole at s = 1. Then we construct
an irreducible, automorphic, cuspidal, generic representation o, of Us,41(A), which
lifts weakly (i.e. lifts at all places, where 7 is unramified) to 7. Here, Uan+1 is the
quasi-split unitary group in 2n+ 1 variables, which corresponds to E. We regard it as
an algebraic group over F. Note that o, would probably be a generic member of “an
L-packet which lifts to 7”. Of course, o, is a generic member of the near equivalence
class which lifts to 7.

The basic ideas of our descent method (backward lift) can be found in [GRS7,
GRS8]. A more detailed account appears in [GRS1], where we also start focus-
ing on the descent from cuspidal 7 on GLg,(A), such that L9(7,A?%, s) has a pole
at s = 1, and L(7,1/2) # 0, to 1-generic cuspidal representations o on the meta-
plectic cover of Sp,,. We complete the study of this case (for non-cuspidal 7 as
well) in [GRS2, GRS3, GRS4, GRS6]. In [GRS9], we consider the lift from
(split) SO2,41 to GLa,. I review this last case in Chapter 1 of these notes. Here
we can prove more; namely, that the generic cuspidal representation o is unique up
to isomorphism. This is achieved due to a “local converse theorem” for generic rep-
resentations of SOg,41(k), over a p-adic field k, proved in [Ji.So.1]. In Chapter 2,
I review integral representations for standard L-functions for G x GL,,, (valid only for
generic representations). The integrals are of Rankin-Selberg or Shimura type. They
are certain Gelfand-Graev, or Fourier-Jacobi coefficients applied to Eisenstein series
or cusp forms. In Chapter 3, I review the descent from GL, to G in general, and in
Chapter 4, I illustrate various proofs through low rank examples.

This survey is the content of a minicourse that I gave at Centre Emile Borel, IHP,
Paris, when I took part in the special semester in automorphic forms (Spring 2000).
I thank the organizers H. Carayol, M. Harris, J. Tilouine, and M.-F. Vignéras for
their invitation, and I thank my audience for their attention.

Frequently used notation
F — a number field.
A = Ap — the adele ring of F.
F,, — the completion of F' at a place v.
O, — the ring of integers of F,,, in case v < oco.
P, — the prime ideal of O,,.
Qv = |0u/ Pyl

1
SOm(F) = {g € GL(F)|lgJg = J}, where J = ( )
1

ASTERISQUE 298



FROM CLASSICAL GROUPS TO GL, 337

Let R* denote the group of positive real numbers. Let i : Rt — A* be defined
by i(r) = {z.,}, where for all finite places v, z, = 1, and for each archimedean place
v, x, = r. We denote i(RT) = A . For an irreducible representation 7, w, denotes
its central character. Sometimes we denote by V, a vector space realization of 7.
When 7 is an automorphic cuspidal representation, we assume that 7 comes together
with a specific vector space realization of cusp forms, which we sometimes denote
by 7 as well. Finally, given representations 71,...,7, of GLy, (F,),...,GLy. (F,)
respectively, we denote by 71 X - - - X 7, the representation of GL,(F,), n = ni+- - -+n,
induced from the standard parabolic subgroup, whose Levi part is isomorphic to
GL,, (F,) x -+ x GL,_(F,), and the representation 71 ® - - - ® 7.

1. The weak lift from SOg2,.; to GLg,

In this chapter we survey the results on the weak lift from SOg,, 1 to GL2,, obtained
after applying our descent method (backward lift). Together with the existence of this
weak lift for generic representations [C.K.PS.S.], we obtain a fairly nice description
of this weak lift, which turns out to be not weak at all.

1.1. Some preliminaries. — Let 0 & ®o, be an irreducible, automorphic, cus-
pidal representation of SOgz,41(A). For almost all v, o, is unramified and is com-
pletely determined by a semisimple conjugacy class [a,] in £ SO3, ., = Spy,(C), so
that L(o,,s) = det(l2n, — g, a,)~!. Let i be the embedding Sp,,(C) C GLa2,(C).
Then the conjugacy class [i(ay)] in GL2,(C) determines an unramified representa-
tion 7, of GLg,(F)), such that L(7,,s) = L(o,,s). The unramified representation
Ty is called the local Langlands lift of o,. This notion (of local Langlands lift) is
conjecturally defined at all finite places and is well defined at archimedean places.
For an archimedean place v, o, is determined by its Langlands parameter, which is
an admissible homomorphism ¢, : W, — Sp,,, (C) from the Weil group of F,,. The
local lift of o, is the representation 7, of GLg,(F,), whose Langlands parameter is
topy, : W, — GL2,(C). (For finite places v, where o, is not unramified, o, is
conjecturally parameterized by an admissible homomorphism from the Weil-Deligne
group ¢, : W, x SLy(C) — Sp,,,(C), and an irreducible representation 7, of GLap (F),)
would be a local lift of ¢, if 7, corresponds to the homomorphism i o ¢, under the
local Langlands reciprocity law for GL2n, now proved by Harris-Taylor [H.T.] and
by Henniart [H].) An irreducible, automorphic representation 7 & ®7,, is a weak lift
of o, if for every archimedean place v and for almost all finite places v where o, is
unramified, 7, is the local lift of o,. Using the converse theorem for GL,, [C.PS.]
and L-functions for SO2,4+1 X GLj, constructed and studied by Shahidi [Sh1], the ex-
istence of a weak lift from SOgy, 1 to GL2, was established for globally generic o, by
J. Cogdell, H. Kim, I. Piatetski-Shapiro and F. Shahidi.
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338 D. SOUDRY

Theorem ([C.K.PS.S.]). — Let o be an irreducible, automorphic, cuspidal, generic rep-
resentation of SO2n+1(A). Then o has a weak lift to GLa,(A).

Here we remark that a weak lift of o is realized as an irreducible subquotient of the
space of automorphic forms on GL5,(A). Moreover, by the strong multiplicity one
property for GLa, [J.S.], all weak lifts of o are constituents of one representation of
GL2,(A) of the form 7 X --- X 7., where 7; are (irreducible, automorphic) cuspidal
representations of GLyy,,(A), m1 + -+ + m, = 2n and the set {7,..., 7} is uniquely
determined. In particular, if o has a cuspidal weak lift, then it is unique. We are
going to describe the image of the above weak lift, starting with its cuspidal part.

1.2. The cuspidal part of the image. — Let o be an irreducible, automorphic,
cuspidal, generic representation of SO2p,41(A). Assume that o has a cuspidal weak
lift 7 on GLg,,(A). As we just remarked, 7 is uniquely determined (even with multi-
plicity one). Clearly 7, = 7, (and w,, = 1), for almost all v. By the strong multiplicity
one and multiplicity one properties for GLgy,, [J.S.], [Sk|, we have 7 = 7, i.e. T is
self-dual. (Similarly, w; = 1). Let S be a finite set of places, including those at
infinity, outside which o and 7 are unramified. We have

L%(o x 1,8) = L%(1 x 7,8) = L% (T x 1, 8),
and hence L%(c x 7, s) has a pole at s = 1. Recall that
L5(r x 1,8) = L5(r,sym?, s) L5 (7, A%, 5).
By Langlands’ conjectures, one expects 7 to be “symplectic”, and so the pole of

L3(r x 7,8) at s = 1 should come from L%(7, A?, s).

Theorem 1. — Let o be an irreducible, automorphic, cuspidal, generic representa-
tion of SOgp4+1(A). Assume that o has a cuspidal weak lift 7 on GL2,(A). Then
L5(1,A2,5) has a pole at s = 1.

Proof. — Let us express the pole at s = 1 of LS(0 x 7, s) through a Rankin-Selberg
type integral which represents this L-function [Sol], [G.PS.R.]. It has the form

(L) Lo, fra) = / 0o (9) B (fr,0,9)ds,

SO2n+1(F)\ 802n+1(A)
where ¢, is a cusp form in the space of o, E(frs,:) is an Eisenstein se-
ries on split SOg4,(A) corresponding to a K-finite holomorphic section fr, in
Ind304"® 7| det -[*=1/2, where Py, is the Siegel parabolic subgroup of SO4,. E¥

Py, (A)
denotes a Fourier coefficient along the subgroup

z oy e 1 *
Nn-——{u=( Int2 y:)ESOAm zEZn_1=( )},
0 1

z
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FROM CLASSICAL GROUPS TO GL, 339

with respect to the character

Xy i ur— Y(zi2+ 223+ + 2Zn—2,n-1 + Yn-1,n+1 — Yn—1,n+2)-
Here ¢ is a fixed nontrivial character of F\A. The stabilizer of x, inside
(In-l SO2n+2 ) is the subgroup of all (In_l g In_1>’ where g fixes the vec-

tor

n—1

0
i
-1

0

(inside F?"*2). This defines (split) SO2n+1 and its embedding (over F') inside SOgs,
all implicit in the definition of L(y,, fr,s). For a suitable choice of data,

L%(0 x T,5)
(1.2) L(po, fr,s) = I5(r, A2, 25)
where R(s) is a meromorphic function, which can be made holomorphic and nonzero
at a neighbourhood of a given point sg. We consider s9 = 1. Since 7 is unitary,
LS(7,A%,2s) is holomorphic at s = 1. We conclude from the last equation that
L(po, fr,s), and hence E(f;s,-), has a pole at s = 1 (for some choice of data). This
implies that the constant term of E(f; s, I), along the radical of Psy, has a pole at
s = 1, for some decomposable section, and this has the form

LS’(T A%)25—1)
®) A%
(13) Fra+ 11 MU =I5 50y

R(s),

for some finite set of places S’ containing S. By [K, Lemma 2.4], M( fﬁ:’s)) (the
corresponding local intertwining operator at I) is holomorphic for Re(s) > 1. We
conclude that LS,(T, A2s) has a pole at s = 1. Since L(7,,A2,s) is nonzero for
(each s and) each v, LS(r, A2, s) has a pole at s = 1. O

Remarks

(1) For each place v, L(7,,A?,s) is holomorphic at s = 1. We thus may replace
L5(1,A2,s) by LS (r,A?, s), for any S’ and even by L(r, A2, s).

(2) If o is not (globally) generic, L(¢q, fr,s) is identically zero.

The argument in the last proof proves the second direction of the following propo-
sition. (The first direction is easy and appears in [GRS1, p. 814].)

Proposition 2. — Let T be an irreducible, automorphic, cuspidal representation of
GLk(A), k > 2. Assume that the central character of T is trivial on AY,. Let s € C
be such that Re(so) = 1. Then E(f.s,-) (stmilarly constructed on SOzx(A)) has a
pole at so (as frs varies), if and only if k is even, so = 1, and L(t,A%,s) has a pole
at s =1.
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340 D. SOUDRY

From this proposition we conclude

Theorem 3. — Let o be an irreducible, automorphic, cuspidal, generic representation
of SO2n+1(A), and let T be an irreducible, automorphic, cuspidal representation of
GLk(A), k > 2, such that ""TIA;Q, = 1. Then L%(o x 1, s) is holomorphic for Re(s) > 1,
and if L%(o x 7,s) has a pole at so, such that Re(so) = 1, then k is even, so = 1
and L5(1,A?,s) has a pole at s = 1. (S, as usual, is a finite set of places, outside of
which both o and T are unramified.) Finally, if T is an automorphic character of A*,
then L°(o x T,s) is entire.

Proof. — As in the proof of Theorem 1, we can express LS(o x T,s) using global
integrals (see [G], [Sol], [G.PS.R.]). We will review them in more detail later.
They involve the Eisenstein series E(frs,-) on SOgx(A) when k£ > 2, so that, as in
Theorem 1, if LS(o0 x 7, ) has a pole at so, Re(so) > 1, then E(f,s,-) has a pole at
S0, and by Proposition 2, we get what we want. In case k = 1, the global integrals
turn out to be entire, and then it is easy to conclude that LS(c x T, s) is entire as
well. O

Let us start now with an irreducible, automorphic, cuspidal representation 7 of
GL2,,(A), such that L(r, A%, s) has a pole at s = 1. As we have seen in Theorem 1,
this is a necessary condition for (a cuspidal) 7 to lie in the image of the weak lift
from SOgp4+1(A). If 7 is a weak lift of a generic o, then by (1.2) L(¢s, fr,s) has a
pole at s = 1 (for suitable choice of data), and hence (see (1.1)) there is a non-trivial
L2-pairing between (the space of) o and

-1
(1.4) 0y (1) = Span{Res;=1 EY" (frs ')ISOan(A)}'

Now we note that o,(7) can be defined as in (1.4) for any cuspidal 7, such that
L(t,A% s) has a pole at s = 1. oy(7) is a space of automorphic functions on
SO2n+1(A). The descent map 7 +— oy (7) is the main vehicle, which will lead us
to the description of the functorial lift from SOg,41 to GL2,. One of the main theo-
rems is

Theorem 4. — Let T be an irreducible, automorphic, cuspidal representation of
GL2n(A). Assume that L(T,A%,s) has a pole at s = 1. Then oy (7) is a nonzero, ir-
reducible, automorphic, cuspidal, generic representation of SOgyn+1(A), which weakly
lifts to 7. Every other such representation has a non-trivial L%-pairing with oy (7).

Guidelines to the proof

(1) oy(7) is cuspidal: put, for short e,(h) = Resg=1 E(fr,s, ). We have to show
that all constant terms of e,’/.’_l, along unipotent radicals (of parabolic subgroups) in
SO2,,+1, vanish. Consider then the constant term of e, along the unipotent radical of
the standard parabolic subgroup of SOy, +1, which preserves a p-dimensional isotropic
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FROM CLASSICAL GROUPS TO GL, 341

subspace, 1 < p < n. This constant term (evaluated at h = I) equals [GRS1,
Chapter 2]

(15) ) [ e Gapas,

YEZp(F)\ GLp(F) ZP(A)

where Z, is the standard maximal unipotent subgroup of GL;, Z,, is a certain unipo-

tent subgroup inside the Levi part of Pa,, § is a certain Weyl element of SOy, and
¥

-1
5= I2(2n-p) eS-N“’”"b ) is the Fourier coefficient of e, along
v
[
Ny,_ p = {u = ( Iz(n p)+2 y*) €S0y, | z € Zn+p_1},
z
with respect to the character
n+p—2
Xf/}n—p) U — ’gb_l( Z Zi,i+1)’(/1_l(yn+p—1,n—p+1 - yn+p—1,n—p+2)‘
i=1

As for the case p = 0, Xfp"_p ) is fixed by SOz(n—p)+1, appropriately embedded in SOy4y,,
and we may consider

(n=p), \ _ Np_p,pp~?
Oy (7') = Span{e-(r i )ISO2(n—p)+1(A)}‘

The cuspidality of oy (7) is implied by
(1.6) o)1) =0, YO<k<n.

This is proved using just one place. First, note that the residues e, are square
integrable. Next, take an irreducible summand 7 of the space of the residues
er. At a place v, where m, is unramified, m, is the spherical constituent of
Indio“("lfﬁF)) 7,|det-|*/2. One shows, using Bruhat theory, that the corresponding
Jacquet modules vanish

(1.7) JNk(Fu)vx’(ka) (m,)=0, V 0<k<n.

This depends only on the fact that (unramified) 7, is self-dual and w,, = 1.

(2) oy(7) is nontrivial: this depends only on the fact that 7 is (globally) generic.
We can relate the ¢-Whittaker coefficient of oy (7) to that of 7.

(3) Write oy (1) = @o; — a direct sum of irreducible (cuspidal) representations.
Each summand o; weakly lifts to 7. This follows from the fact that at a place v,
where 7, (as in (1.7)) and 7, are unramified, J Na(F) Xy (my), which surjects on

0;,v, shares its unramified constituent with that of Inds?z";”(F”) Py ® - @ pn,y,

where B is the Borel subgroup of SOgn+1, and 7, is the unramified constituent of
Paw X oo X by X i, X X ul',l, on GLy, (F,) (piy are unramified characters of F¥).
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342 D. SOUDRY

(4) Decompose oy (7) into a direct sum @o; of irreducible cuspidal representations.
Each summand o; has a non-trivial L2-pairing with o (7), and so by definition ((1.4)),
L(Po;s fr,s) £ 0 (see (1.1)). By Remark (2), after the proof of Theorem 1, o; must be
generic for all 4.

Note that since o; is generic, it has a weak lift 7/ on GL2,(A) [C.K.PS.S.]. By
the strong multiplicity one and multiplicity one properties for GL2,, we must have
7/ = 7. In particular, 7, is the local lift of o;, at infinite places as well.

(5) oy(7) is multiplicity free: if o; and o; acting in subspaces V;,, V,, are isomor-
phic summands, choose an isomorphism (of representations) 1" : V;, — V,, such that
T(p) — ¢ has a zero 1-Whittaker coefficient for all cusp forms ¢ € V,,. This follows
from the uniqueness up to scalars of a Whittaker functional. The argument of (4)
applied to o} acting in {T(p) — ¢ | ¢ € V,,} shows that o; must be globally generic.
This is a contradiction, unless 7' = id.

(6) oy(7) is irreducible: it follows from Cor. 4 in Sec. 6 of [C.K.PS.S.] that for any
two summands o;, 0;, and any place v, we have an equality of local gamma, factors:

'7(0-1',1/ X 1n,s, "l’r/) = ’)’(Uj,u xn, 3,¢u),

for any irreducible representation 7 of GL(F,), k = 1,2,... By the local converse
theorem (for generic representation of SOg,41(Fy) of [Ji.So.1], we conclude that
0i,v = 05y, for all finite places v. For archimedean v, we already know that o; , = 0,
(both representations have the same Langlands parameter as 7,, for v archimedean).
We conclude that o; = 0, and by (5) 0; = 0;, and so oy(7) has only one irreducible
summand (appearing with multiplicity one) i.e o4 (7) is irreducible. O

1.3. Description of the image in general, and endoscopy. — In general, an
irreducible, automorphic, cuspidal, generic representation o of SOgy,+1(A) weakly lifts
to an irreducible automorphic representation 7 of GL2,(A), which is a constituent of
an induced representation of the form

S| det |7 x -+ x 8| det ¥ x 7 X - X 7 x &;|det-| 7% x - x & | det |7,

where Re(z1) < -+ - < Re(z;) < 0, and each of the representations d;, 7% is irreducible,
automorphic, unitary, cuspidal, or an automorphic character of the idele group, so
that their central characters are trivial on A}, and also 7; =7, for i = 1,...,4. We
have (for appropriate S)
J 14
LS(0 x 81,8) = [ L5(6: x 81,5 + 2:) L5 (8 x 81,5 — 22) [ [ L5 (7 x b1, ).
i=1 i=1

This product has a pole at s = 1 — z;. (It comes from L%(§; x 31, s+ z1). Note that
Re(1—z1), Re(1 — 21 £ 2;) > 1, so that the other factors in the product do not cancel
this pole.) From Theorem 3, we conclude, in particular, that §; is not a character
of the idele group, z; = 0 and §; = 31, but then L°(o x 61, ) has a double pole at
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FROM CLASSICAL GROUPS TO GL, 343

s = 1, which is impossible. (The global integral which represents L%%‘Z—j%‘%;% involves
the Eisenstein series on SOq, (A), induced from d; and the Siegel parabolic subgroup.
This Eisenstein series can have at most simple poles for Re(s) > 1/2.) We conclude
that “there are no §;-s”, and

TET X Ty X+ X Ty,

where 7; are irreducible, self-dual, automorphic, cuspidal, such that (again by Theo-
rem 3) L%(7;, A%, s) has a pole at s = 1, and also 7; # 7;, for 1 < i # j < £. (We just
need to repeat the last argument.) Note that for any irreducible, automorphic, unitary
representations 7, ..., 7 (on GLg, (A),...,GLg,(A) respectively) the representation
71 X -+ - X 7p is irreducible. This proves

Theorem 5. — Let o be an irreducible, automorphic, cuspidal, generic representation
of SOz, +1(A). Then o weakly lifts to a representation (on GLg2,(A)) of the form
T =T X+ - X Ty, where 11,:..,7¢ are pairwise different irreducible, automorphic,

cuspidal representations of GLay, (A),...,GLan,(A), n1 + - -+ + ng = n, respectively,
such that L°(1;, A%, s) has a pole at s =1, for 1 <i < 4.

Conversely, let 7 be an irreducible representation of GLg2,(A) of the form just
described in Theorem 5. We can apply the same procedure as in Sec.1.2 (case
£ = 1) and construct oy(7) — an irreducible, automorphic, cuspidal, generic repre-
sentation of SOgzp41(A), which lifts weakly to 7. For this, we consider the Eisen-
stein series on SO4,(A) corresponding to a K-finite, holomorphic section fr s in
Ind%(i“"m) ri|det [1712 ® ... ® 7| det -|*¢1/2 where s = (s1,...,5¢) and Q is the
standard parabolic subgroup of SOy, whose Levi part is isomorphic to GLgap, X - %
GL2y,,. Denote this Eisenstein series by E(frs,h). As in [GRS4, Theorem 2.1], we
can prove that the function

(s1=1)(s2— 1)+~ (se = 1)E(frs,h)
is holomorphic at s = (1,1,...,1) and is not identically zero, as the section varies.
Consider
Resﬁzl E(fﬂé’ h) = ‘li_'H}(sl - ]‘) """ (S[ - I)E(fT,gv h)7

where 1 = (1,...,1). These residues generate a square integrable automorphic repre-
sentation of SO4,(A). Consider, as in (1.4)

-1
0y (1) = Span{Ress—1 E¥ (frs, ')|Sozn+1(A)}'

Theorem 6. — Let 7 = 11 X T X - - - X ¢ be the irreducible representation of GLay (A),
induced from 71 ® - - - ® ¢, where 11, ..., T are pairwise inequivalent irreducible, auto-
morphic, cuspidal representations on GLap, (A), ..., GLay, (A) respectively, nq +-- -+
ng = n, such that for each 1 < i < £, L5(7;, A2, s) has a pole at s = 1. Then oy (1) is
a nonzero, irreducible, automorphic, cuspidal, generic representation of SOgn+1(A),
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344 D. SOUDRY

which weakly lifts to T. Any other such representation has a non-trivial L?-pairing
with oy (7).

Proof. — The nontriviality of o, (7) is shown exactly as in case £ = 1. As we men-
tioned in the proof of Theorem 4, only the fact that 7 is generic is important here.
The cuspidality of o, (7) is shown as in case £ = 1, only we need also to use induction
on £. Let o be an irreducible summand of oy (7). Then

Po (g) Res_§=_l_ Ew(fr,ga g)dg ?_é 0,
SO2n+1(F)\ SO2n+1(A)
as the data ¢, and fr s vary. In particular

L(po, frs) = / 2o (0)E¥ (fr,5,9)da £ 0.
8O02n+1(F)\ 8O02n+1(A)
As in (1.4), also in this case the integrals £(ps, fr s) represent
Hf___l L%(o x 7, 8i)
Ticicice LS (ri x 75,80 + 85) TTicy LS (i, A2, 25;)
for generic 0. Moreover, as in case £ = 1, if o is not (globally) generic, then the last
two integrals above are identically zero. The rest of the proof is now exactly as in

Theorem 4. In particular, the irreducibility of oy (7) follows from the local converse
theorem in [Ji.So.1]. O

As a corollary, we obtain that generic cuspidal representations of SOg,,+1(A) satisfy
the strong multiplicity one property.

Theorem 7. — Let o1 and o2 be two irreducible, automorphic, cuspidal, generic rep-
resentations of SOgn+1(A). Assume that 01, = 02, for almost all places v. Then
o1 = os.

Proof. — Both o1 and o2 weakly lift to the same representation 7 on GLgy,(A). 7
has the form as in Theorem 6. By Theorem 6, o1 and o2 have non-trivial L2-pairings
with oy (7). In particular o1 & oy (1) & 05. O

Example. — Consider the group SO5(A) = PGSp,(A). Every irreducible, automor-
phic, cuspidal, generic representation of PGSp,(A) has a unique weak lift to GL4(A).
The image of this lift consists of all irreducible, automorphic, cuspidal representations
7 of GL4(A), such that LS(r,A?,s) has a pole at s = 1, and of all representations
of the form 7 X 72, where 71 and 72 are different, irreducible, automorphic, cuspidal
representations of GL2(A), each one having a trivial central character.

Remark. — In [Ji.So.1, Ji.So.2] a Langlands reciprocity law is established for generic
representations of SO2,+1(F,) (v finite). Theorem 6.3 of [Ji.So.2] says (in above
notation) that if o weakly lifts to 7, then at all places v, o, locally lifts to 7, in the
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sense that both o, and 7, correspond to the same Langlands parameter (which is
symplectic).

Finally, if o (as before) does not lift to a cuspidal representation of GLg,,(A) then,
as in Theorems 5,6, it lifts to a representation 7 = 73 X -+ X 7¢, as in Theorem 6.
By Theorem 4, each 7; is the lift of o, = oy(7;) on SOgp,+1(A). Thus o is the
(generalized) endoscopic lift of 01 ® - - - ® g¢ on SO2p, +1(A) X -+ - X SO2p,+1(A). This
lift is compatible with the L-group map

Sp2n1 (C) Xoeee X Sp2ne ((C) B Sp2n((c)

Conversely, let o1,...,0¢ be irreducible, automorphic, cuspidal, generic represen-
tations of SOg2n,+1(A),...,8024,+1(A) respectively. Consider the lifts 7; of o; to
GL2p, (A), 73 = Tia X+ X Tig;, © = 1,...,€. Denote C; = {'r,-,-}g":l. Clearly, if
CiNCy =@ foralll <i#1i < then =X len = X fle X §i=17'1;j lies in the image
of the lift from SO2,41(A), and hence o4(7) is an irreducible, automorphic, cuspidal,
general representation of SOg,+1(A), which is the lift of 07 ® -+ ® 0y. Summarizing

Theorem 8. — Let o be an irreducible, automorphic, cuspidal, generic representa-
tion of SOap41(A). Assume that the lift of o to GL2,(A) is not cuspidal. Then
there exist irreducible, automorphic, cuspidal, generic representations o1,02,...,0
on SO2p, +1(A), SO2n;+1(A),...,S02n,+1(A) respectively, n1+---+mne = n such that
o is the lift of 01 ®--- ®0¢. The set {01,02,...,04} is unique up to permutation and
up to isomorphism.

Conversely, let 01,02, ...,0p be irreducible, automorphic, cuspidal, generic repre-
sentations of SOgpn,+1(A),...,SO02,,+1(A) respectively, ny + --- + ng = n. Consider
the sets {C;}i_, as above. If C;NC; = @ for all 1 < i # j < £, then there is a unique
up to isomorphism, irreducible, automorphic, cuspidal, general representation o of
SO2n+1(A), which is a lift of 01 ® -+ @ 0¢. Otherwise, cuspidal data on SOgp41(A)
can be specified, so that o1 ®- - -® oy lifts to a constituent of the corresponding induced
representation.

Example. — Let 01, ...,0, be pairwise different irreducible, automorphic, cuspidal
representations of PGL2(A). Then, up to isomorphism, there is a unique irreducible,
automorphic, cuspidal, generic representation o of SO2p+1(A), which is the lift of
o1® - Qop.

1.4. Base change. — Let us compose our descent map 7 — o4(7) (“backward
lift”) with the base change lift for GL3,,. Let E/F be a cyclic extension of odd prime
degree p. Let o be an irreducible, automorphic, cuspidal, generic representation of
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SO2n+1(A). Let 7 be the lift of 0 on GL3,(A). We would like to follow the diagram

o' =oy(7") ———— 7' =be(7)
SOzn_H(AE) — GLG(AE)

base change

SO2041(A ) ————— GLan(Ap)

0~ oy(T) 4 >T

Here 7/ = bc(7) is the base change lift of 7 [A.C.]. The top arrow of the diagram exists
if we show that 7/ lies in the image of the lift (restricted to generic representations)
from SOg,+1(Ag). The image is described in Theorems 5,6. This is indeed the
case. For this, choose a nontrivial character n of AL /F*Ng,rA%L, and a generator ¢
of Gal(E/F). Starting with a generic ¢ on SOgp+1(AF), we know that its lift 7 on
GL2,, (AF) has the form 71 X - - - X 74 as in Theorem 5. Since be(7) = be(m) % - - - X be(7y),
we have to analyze each representation bc(7;). There are two cases according to
whether 7; is isomorphic or not isomorphic to 7; ® . If 7; # 7; ® i, then be(r;) = 0;
is cuspidal and e-invariant. We have

p—1

L5(0;, A%, 8) = [[ L°(m:, A’ @ 1", s).

k=0
It is a theorem of Shahidi [Sh2] that each factor in the last product is nonzero at
s =1, and since L%(7;, A2, s) has a pole at s = 1, we conclude that L5(6;,A?, s) has
a pole at s =1. If 7, = 7, ® 1, then p|2n;, and

be(r;) = 0; x 65 x -+ x 65
where 6; is cuspidal, such that 6; # 6;. We have

p—1
L5 (ri, A%, )P = [] L5 (ri, A2 ® P, 5) = L (be(r), A, )
k=0
= JI 156 x6',s HLS (65 A%, s
0<i<k<e

We conclude that the last product has a pole of order p at s = 1. It is easy to see that
0; is self-dual. (Thls follows from the self-duality of 7; and the fact that p is odd.) In

particular, 05 # 65*, for 0 < j < k < p. We conclude that 15 o L5( g5’ , A2, s) has a

pole of order p at s = 1, and hence LS(97 A?%,s)hasapoleat s=1,for0<j<p—1.
Finally, it is easy to see that in

be(t) = be(my) X -+ X be(Te) = T#>T<i®ngi % (n=>r<i®n (ji; 05:‘)),
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all factors are different. This shows (by Theorem 6) that 7/ = be(r) is in the im-
age of the lift from SO2,4+1(Ag). The representation ¢’ = oy (7') is an irreducible,
automorphic, cuspidal and generic, and it is a base change lift of 0. Summarizing

Theorem 9. — Let E/F be a cyclic extension of odd prime degree. Then there is
a base change lift from irreducible, automorphic, cuspidal, generic representations
of SO2n+1(AF) to irreducible, automorphic, cuspidal, generic representations of

SO2n+1(AE).

Conclusion. — The descent map (backward lift) 7 +— oy (7) is a very powerful tool.
This chapter demonstrated the nice results obtained for SOs,; using the descent
map. The ideas and methods are general and apply to other quasi-split classical
groups G. The definition of oy (7) (for appropriate 7) is intimately related to global
integrals (of Rankin-Selberg type, or of Shimura type) representing the standard L-
function for G x GL,. These integrals are available, and we will survey them in the
next chapter. These integrals suggest the construction of oy (7), which arises as a
natural object; it is constructed so that LS(oy(7) X 7,s) has a pole at s = 1. The
representation oy (7) is defined by taking certain Gelfand-Graev, or Fourier-Jacobi
coefficients of the residue at 1 of a certain Eisenstein series induced from 7. The
study of oy (7) is now the study of these Gelfand-Graev, or Fourier-Jacobi coefficients
of the residual Eisenstein series induced from 7. The three main problems concerning
o4(7) are the following (for appropriate 7, i.e. in the expected image of the lift from
G to GLy, for appropriate N.)

(1) Show that oy (1) # 0.

(2) Show that oy(7) is cuspidal.

(3) Show that each summand of oy (1) weakly lifts to 7.

In Chapters 4-6, we will indicate how to prove these properties through low rank
examples. In this way we construct examples of generic cuspidal representations o on
G, which weakly lift to a given 7 in the expected image. Similarly, we get examples
of (generalized) endoscopy and base change. Once the existence of the weak lift from
G to GLy is established (and not much is missing for the proof by converse theorem
to be completed) then our examples above give the general case.

Note added in proof. — Recently, the existence of the weak lift of cuspidal generic
representations on G to GLy has indeed been established. See [C.K.PS.S.1].

2. L-functions for G x GLj, where G is a quasi-split classical group
(generic representations)

In this chapter, we survey the global integrals (of Rankin-Selberg type, or of
Shimura type) which represent the standard L-functions for generic representations
on G x GLg. Note that these L-functions were obtained by Shahidi [Sh1] using the
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Langlands-Shahidi method. However, the integrals we present here relate the fact
that L%(o x 7,5) has a pole at s = 1, and the fact that o has a nontrivial L2-pairing
with the descent applied to 7.

We’'ll first present the notions of certain Gelfand-Graev models and Fourier-Jacobi
models, which enter in the definitions of the global integrals.

2.1. Gelfand-Graev models. — Let F be a field of characteristic different than 2.
(Eventually we’ll be interested in a number field F' or in its completion in one of its
places.) Let E be either F' or a quadratic extension of F. Denote by z +— T the
nontrivial element of Gal(E/F) in case [E : F| =2. If E = F, we agree that T =z
on F. Let V be a finite dimensional vector space over E, equipped with a non-
degenerate bilinear form (, ), which is either symmetric, or anti-symmetric in case
E = F, and is Hermitian in case [E : F] = 2. Let H = H(V) be the connected
component of the isometry group of (V,(, )). We assume that H acts on V from the
left.
Assume that

(2.1) V=Vt+wW+V,

where Vf are isotropic subspaces of dimension ¢, which are in duality under (, )
(i.e. (, ) restricted to V;* x V, is non-degenerate), and W = (V;* + V,7)+. Let P,
be the parabolic subgroup of H, which preserves V;’. Write its Levi decomposition

PgZMg KU@.

Let us write the elements of H in matrix form, following the decomposition (2.1).
Then (with evident notation)

(2.2) Me={("» ) |geGLV ) he HW)Y,

IV£+ vy T
(2.3) Ug={u=( Iw o )eH}.
IVI—

Fix nonzero vectors wg € W, vy € V, . Define for u € Uy (written as in (2.3)) the
following rational character

X oz (8) = (6 0,07 ).
We have
g . _
(2.4) StabMt(Xwo‘vo_)={( hg*) eH|h.w0=w0, g v =}

Thus, if wp is anisotropic, then h - wy = wo means that h € H(wg N W), and if wp
is isotropic, then h - wg = wo means that h lies in the parabolic subgroup P, of
H(W), which fixes the isotropic subspace E - wo (and also h - wo = wp). Put in this
case (i.e. (wp,wp) = 0)

P‘}V»wo = {h € Pw,w, | h-wo = ’wo}.
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The condition g*v, = vy in (2.4) means that g lies in the so called “mirabolic”

subgroup of GL(V,"). Let us insert more coordinates. Choose a basis {v1,...,ve} of

V;" and a dual basis {v_¢,...,v_1} of V;~ (i.e. (vi,v_5) = 8;, for 1 < 4,5 < £). We

assume that vy = v_,. We identify GL(Vei) with GL,(FE) using these bases. Note
1

that for g € GLy(E), g* = we'g ™ wy, where w, = .+ |, and g*v_¢ = v_¢ means

1
that g € (s=7). Let Z; be the standard maximal unipotent subgroup of GL,(E).

0---01
Put
= {p= (') |22,

I _ JH(wg nW), (w0, wo) # 0
e P s (wo,wp) =0

Np = Zghy,
Ry o = NeLwwg -

Fix a nontrivial character 1 of F. Put ¥g = ¢ otrg/p. Let 1., be the following
character of Ny

£-1

oo (2 0) = V7, (NP5 Xy o () = (D 23041 ) (- w0, 07)).
=1
Assume now that wyg is anisotropic. (This precludes symplectic groups H.) Let F

be a local field, and let o be an irreducible (smooth) representation of H(wg "W). We
say that an irreducible (smooth) representation 7 of H has a Gelfand-Graev model
with respect to (Rgw,; 0, ) if

(2.5) Homg, ,, (7, Ye,wo ® o) #0.

(ve,w, may be viewed as a character of Ry ., by trivial extension.)

Now assume that F' is a global field, that ¢ is a non-trivial character of F\A
(A = AF), and that 7 is an automorphic representation of Hy, acting in a space of
automorphic forms V. Put, for ¢, € V;

(26) o= [ eaobugl ).
Ne(F)\Ne(A)

Note that ¢2¢* (yh) = et (h), for v € H(wgNW)p. We call the Fourier coefficient
(2.6) the Gelfand-Graev coefficient of ¢, with respect g, .

Let o be an automorphic representation of H(w' N W), (acting in a space of
automorphic forms V,). We say that 7 has a global Gelfand-Graev coefficient with
respect to (Rew,;0,%) if (the following integral converges absolutely and)

(2.7) b(pr, po) = / O¥e" (g)00 (g)dg # O,
H(wg-NW)p\H(wg-NW)a
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as @, varies in V. and ¢, varies in V,;. The corresponding Gelfand-Graev model of 7
is the space of functions on Hy spanned: by the functions h — b(7(h)¢r, ¥s), 88 @x
varies in V; and ¢, varies in V,. In practice, one of (m,0) will be cuspidal and the
other will be “Eisensteinian”.

2.2. Fourier-Jacobi models. — We continue with the previous notations. Assume
that wp is isotropic and that (, ) is not symmetric (i.e. H is either symplectic or
unitary). Write

W = Fwgy + W’ + FEw_y,
where w_g is isotropic, (wo, w_o) = 1 and W' = (Ewo+ Ew_o)-NW. Put vp41 = wo,
v_(e4+1) = w_o, Vi, = Span{vi,...,ve, ves1}, Vi1 = Span{v_(g41),v—¢,...,v-1}
and identify, as before, GL(VfH) with GLg4+1(F). Using these coordinates, an element

of Uy has the form

Ipy =
10
w

* * *

*
0
u= Iy 0
1

IS

and
Pe,wo (1) = YE(Ye)-
Note also that an element of Ly, has the form
I

1:{’ , g€ HW).
I,

The unipotent radical of Ly, is isomorphic to the Heisenberg group of W/, Hy» =
W' @ F. Note that Ny\Ngy1 = Hy. Fix an isomorphism j : Ng\Ngy1 — Hw. Let
F be a local field. Let wy be the Weil representation of Hy » §f)(W’ ). fHisa
symplectic group, then H(W') = Sp(W’). If H is a unitary group, then so is H(W’),
and we embed H(W') inside Sp(W') (W' viewed over F). This requires a choice of a
character v of E*, such that v| .. = wg/r — the non-trivial quadratic character of ™,
associated to E. See [Ge.Ro.]. Denote, in this case, by wy , the restriction of wy,
to the image of H(W’). Put wy,1 = wy in case H is symplectic (thus denoting here
v=1).

Let o be an irreducible representation of H(W'), in case H is unitary, and of
H(W")¢, e =0,1, in case H is symplectic, where

)

Sp(W’), e=1
Then wy , ® 0 is a representation of Hy x H(W’) in case H is unitary, and of
Hw+ x H(W')'~¢ in case H is symplectic. Let Ry, ~denote Re., in case H is

unitary, or € = 1, and Ngy - §f)(W’ ) in case € = 0. We view 1, as a character of
Ry, by trivial extension.
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Let 7 be an irreducible representation of H in case H is unitary and of H'~¢ =
H(V)'~¢ in case H is symplectic. We say that 7 has a Fourier-Jacobi model with
respect t0 (Rgwo; ¥,7,0) if

(2.8) Hompy (7, 1¢ ® (wy,y ® 7)) # 0,
where we shorten the notation in this case: ¥y = Y¢w,, Re = Rew,. Here is a short

table which summarizes the above cases.

7w | H(V)-unitary | Sp(V) §f)(V)

o | HW')-unitary | Sp(W’) | Sp(W')

Ry | Re R, Ney1 - Sp(W")

Note that Ry = Ny x (Hw x H(W')) (using the isomorphism j : No\Ngy1 — Hw).

Assume now that F is a global field and that v is a non-trivial character of F'\A.
Let wy be the Weil representation of éf)(W’ )a, and in case H is a unitary group, fix
a character v of E*\A}, such that = “g/r, and denote by wy 4 the restriction

A*
of wy to the image of H(W’)a determirfed by (,%). Denote, as before, wy,1 = wy in
the symplectic case. Denote, for a Schwartz function ¢ in a Schrodinger model of wy,
by 03277 the corresponding theta series.

Let 7 be an automorphic representation of Hy, in case H is a unitary group, or of
HA"E, in case H is symplectic.

Put, for ¢, € V,

@9 e = [ ealoh @6 - (k)
Nep1(F)\Net1(A)

Recall that 1, is extended trivially to Nyi; and j is the isomorphism Ng\Np41 AN
Hw:. (We keep denoting by j its composition with Ngy1 — Ng\Ng4+1.) Note that

RO (rh) = ¥ (h), Vre HW)r.

%o % is called a Fourier Jacobi coefficient of ¢, with respect to wy 4 (and ¢). Let o
be an automorphic representation of H(W'), in case H is a unitary group, and of
H(W'); in case H is symplectic. We say that 7 has a global Fourier-Jacobi model
with respect to (Rg;,7, o) if (the following integral is absolutely convergent and)

(2.10) / P8 7?(9)ps(9)dg # O,
HW')p\H(W')a

as ¢, and ¢, vary in V; and V, respectively. (In both cases, local, or global, repre-
sentations of metaplectic covers are assumed to be genuine.) In practice, we will take
one of (m,0) to be cuspidal and the other to be “Eisensteinian”.
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In the following remark, we relate the above models to degenerate Whittaker mod-
els, as formulated in [M.W.]. It is meant just for completeness sake, and may be
skipped at a first reading.

Remark. — The equivariance properties with respect to Ny or Nyt of the models just
introduced are special cases of the general set-up of degenerate Whittaker models. To
relate to the terminology [M.W.], we have to choose a nilpotent element f in Lie (H),
and a one parameter subgroup ¢ of H, such that

(2.11) Ad(p(t))-f=t"2-f, VteF*
We realize
Lie(H) = {A € Endg(V) | (Av1,v2) + (v1, Ave) =0, Voui,v2 € V},

and write its elements in matrix form following (2.1). Consider again the rational
- of Up. Clearly, there is a unique element fi(wo) € Hom(V,", W),

character Xwavo

such that

0, ¥y = (7] 0 vy =
(2.12) XwO o= <exp ( ow v )) =tr ((fl(wo) Oow ) . < Ow y'))
7o 0Op 0  fi(wo) O O¢
(= 2tr(f1(wo) 0 y)).
Here, we think of y as an element of Homg (W, V,') etc. Identifying Hom(V,", W) and

W x---x W (£ times), using the basis {v1, ..., v}, it is clear, by the choice v_; = vg,
that fi(wp) is identified with an ¢-tuple of the form (0,...,0,w§). Let

Ao o 0)eLie(H
= 1(Wo
fe,wo ( 0 fi(wo) 51) € le( )’

0

10
where zp = [ '-. (and f1(wo) = (0,...,0,wy)). Note that

t,
0z
0 z2
(2.13) 2tr | 20 .. =21+ -+ Tp-1.
’ 0?320—1

From (2.12) and (2.13) we have, for S € Lie(N),
wl,wo(exl) S) = wE(tr(ff,wo : S))

Next, we have to explain what was our choice of a one parameter subgroup ¢ of H.
Let

ag(t)
t) = I € H,
we(t) ( w al(t),>

where
ae(t) = diag(t?, 2672 ¢2-4 .. 1?).
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If wp is anisotropic, we choose ¢ = ¢y, and if wy is isotropic, we chovse
tae(t)
t

o(t) = e,
t~la,(t)*

Note that (2.11) is satisfied. Now decompose
Lie(H) = & Lie(H);,

where
Lie(H); = {S € Lie(H) | Adp(t) - S = t'S, Vt € F*}.
Clearly, if wg is anisotropic, then
Lie(N,) = @ Lie(H); = @ Lie(H);.
i>2 i>1
If wo is isotropic, then
Lie(N - Center(Lw,y,)) = € Lie(H);,
i>2
and
Lie(Nz+1) = @ Lle(H)z
i>1
(Note that N, - Center(Lw,w,) = j~!(Center(Hw-)), where j is the composition of
Nep1 — Ne\Nep1 — Hwr).

2.3. The global integrals: overview. — The general form of the global integrals
is just an application of a global Gelfand-Graev model, or a global Fourier-Jacobi
model to an Eisenstein series on Hy, or on H A"s, in case H is symplectic, induced from
a cuspidal representation on a maximal parabolic subgroup of H. The global model is
taken against a cuspidal representation o on H(wg N W),, in case wy is anisotropic,
on H(W'),, in case H is unitary, or on H(W')%, in case H is symplectic. Thus, in
(2.7) and in (2.9), 7 is an Eisenstein series induced from a cuspidal representation
T ® 0p on a parabolic subgroup, whose Levi part is isomorphic to GLx x H(Wy),
where V = V;t + Wi + V7, as in (2.1). With normalized Eisenstein series, these
integrals represent L5 (o x 7, s), the partial standard L-function for H(wg NW) x GLy,
(resp. H(W’) x Resg,p GLg, resp. H(W’')® x GLj) provided o and op are related
through an appropriate global Gelfand-Graev model (resp. Fourier-Jacobi model).
For example, if Wy, is a subspace of wg N W, in case wy is anisotropic, or a subspace
of W', in case wy is isotropic, then o should have a global model with respect to a
subgroup Ry .y C H (wg- N W) (resp. H(W')), whose reductive part is isomorphic to
H(Wy), on which we take 0. In this generality, the global integrals were studied in
[G.PS.R.] for orthogonal groups H. Special cases were treated in [Ge.Ro.] (Fourier-
Jacobi model for 7w cuspidal on U 1) and in [N] (Gelfand-Graev model for 7 cuspidal
on SO3 2 (actually on GSp,)). We will be interested here in the case where the bilinear
form has maximal Witt index (i.e. [ dimg V]). Thus, if E = F, H is split and if
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[E : F] = 2, H is the quasi-split unitary group in dimg V variables. In this case,
we will apply the above global models to m — an Eisenstein series induced from the
Siegel parabolic subgroup and a cuspidal representation 7 on Resg,/r GLx. We will
choose wp, (when anisotropic), such that H(wg N W) is quasi-split or split. Again,
with normalized Eisenstein series, the integrals (2.7) and (2.9) represent LS (o x 7, s).
These cases were studied in [Sol, So02, So3] (H - even orthogonal) and in [GRS3|
(H symplectic or metaplectic). The case where H(wg N W) is of rank one less than
k was studied in [G.PS.] (H orthogonal). The remaining cases are treated similarly
and will appear in detail in future works. We will summarize them here. In these
cases, except for H = Usg41, these integrals are identically zero, unless o has a global
Whittaker model (with respect to an appropriate character). Finally, we also consider
the cases where 7 is cuspidal on H (resp. on H'~¢, when H is symplectic) and o is
an Eisenstein series on H(wg N W), when (wo,wo) # O (resp. on H(W’)!~¢, when
H is symplectic, or H(W'), when H is unitary and wyp is isotropic). This Eisenstein
series is induced from the Siegel parabolic subgroup and a cuspidal representation 7 on
Resg/r GLn (n = [1 dim(wg NW)), or 1 dim(W’'). Again, in these cases, except when
H(wg NW) or H(W') are Uapn1, the integrals (2.7), (2.9) are identically zero, unless
7 has a global Whittaker model (with respect to an appropriate character) and then
they represent L°(m x 7, s) once the Eisenstein series is normalized. These cases were
studied in [G] (H - split orthogonal) and in [GRS3] (H symplectic or metaplectic).
The cases where k = n were studied in [G.PS.], [T], [W]. The remaining cases (H
unitary, k > n) are treated similarly and will appear in detail in future works. We
will summarize them here.

From now on, we assume that (, ) has Witt index [% dimg V]. We will denote
r =dimgV, and H = H,.. We reallize V as the column space E™ and represent

1
(, ) in terms of the matrix where ¢ = £1; € = —1 is reserved just for
€

symplectic groups. H, is realized as a matrix group. We denote by P, the Siegel
parabolic subgroup of H,.. Its Levi part is isomorphic to Resg,r GL[/2)-

2.4. The global integrals: Gelfand-Graev models. — It remains to specify
wo. We do this in the following table. Write ‘wg = (0,'wy, 0), where 0 denotes a zero
row vector in £ coordinates. Recall that for

zZ Yy x
v=("mwyv)eN (z€2),
-1
(2.14) Geswo(0) = V() (e - wh) = ve( D ziirr + e wh),
i=1
where y, denotes the last row of y. In the following table (2.15) we indicate the choice

of twf. We also write £ in terms of m + 1 = dimg W and r = dimg V.
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H=H, |dmgW =m+1 ¢ t) VE(ye - wh) H(wt n W)= H)
(1) SOz 2n+2 k—-n-1] (0,...,0,1,-1,0,...,0) | ¥(¥e,n+1 — Ye,n+2) SO2n+1
2) Uk 2n + 2 k-n—-11(0,...,0,1-1,0,...,0) | ¥E(Ye,n+1 — Ye,n+2) Usnt1
3)  SO2k+1 2n+1 k—n 0,...,0,1,0,0,0,...,0) | ¥(yen + a¥e,n+2) SO3,,
(3")  SOaks1 on+1 k—n 0,...,0,1,0,...,0) P (Yent1) SOan
(4) Uszkt1 2n+1 k—n (o,...,0,1,0,...,0) VE(Ye,n+1) Usn,

Table (2.15)

“1D OL SdNOY¥YD TVIISSVIO WOHA
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Here, we also denote HS V) = H,,, so that in all cases except (3), @ = —1. In
case (3), SO;Z) = Héﬁ), (a € F*), denotes the quasi-split orthogonal group with
respect to the symmetric form, whose matrix is

(wp277) (=)

Note that SOS? 2 SOgy, if and only if 2a € (F*)2. (In this case we may replace Case
(3) by Case (3’).) We denote by 1, the character (2.14). Let 7 be an irreducible,
automorphic, cuspidal representation of GLx(Ag) (k = [r/2]). We consider now all
cases except case (4). Denote

H.(A ~1/2
pf{; =IndPr((A:))‘r|det-|E /2,

Let & s be a holomorphic K-finite section for p, s and denote by Eg, (&, h) the
corresponding Eisenstein series on H,.(Afr). Let o be an irreducible, automorphic,
cuspidal representation of HY) (AF) (@ = —1 for all cases except (3)). Fix an F-

isomorphism H,(,f‘ ) S H (w()L N W), and denote by i, , its composition with the
inclusion H(wg N W) — H,. Define, for a cusp form ¢, in the space of o,

(216)  Lentd= [ OB Eaimel9)ds
HY (F\HD (Ar)

These integrals converge absolutely and are meromorphic in s. For Re(s) large
enough, the integral (2.16) equals an Eulerian integral which depends on the -
Whittaker coefficient of ¢,. [For example, for H, = U (H,(,? ) = Uzn+1) and
Re(s) > 0,

(217) L(poErs) = / WY (9)
Nap\Uzn+1(AF)
I, x 0 y
-1 .
3 (ﬂk‘n< BTN f/)zm,r(g)) YE(Te,n+1)d(, €)dg
I,

Mgy (n+1)(Ag)xhe(AF)

where NV is the standard maximal unipotent subgroup of Usp, 41,
W@ = [ eolugvitwd
NF\NAF
is the - Whittaker function of @, (¢N(u) — Y ( YT ui,,-ﬂ)); £27" (h) is the com-

position of &, s with the 1)~1-Whittaker coefficient on 7, i.e.

&= [ (52 W)

Zx(E)\Zk(AE)
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Bk, is the Weyl element

and hy = {A € My(E) | *(Aw¢) + (Awg) = 0}]. The integrals (2.16) are identically
zero, unless the -Whittaker coefficient of ¢, is nontrivial as a function on H) (AF).
Thus o has to be globally 1-generic. (This is not the condition one gets in case (4).
This is why we exclude it now.) Assume then that o is 1-generic. For decomposable
data, the Eulerian integral of (2.16) has the form

L3(o x 7,5)

(2.18) L(pg,&r,s) = R(S)m-

Here S is a finite set of places of F, including the ones at infinity, outside which
o, T and the components of ¢,, &, s are unramified. R(s) is a finite product of “local
integrals” (over S), where data can be chosen so that R(s) is holomorphic and nonzero
at a neighborhood of a given point sg. L(7,d, z) is the partial L-function which enters
in the normalizing factor of Ey, (7,5, k). Let us summarize this in the following table

LS(o x T,5) for the group L5(t,4,2s)

SO2p,41 X GLg, k>n| L%, A% 2s)

Uznt1 % Resg/p(GLg), k>n | L5(t, Asai,2s)

SO x GLy, k> n | L3(r,sym?,2s)

(2.19)

Next, we may take a cusp form on H and an Eisenstein series on H,(,f‘ ). We go
back to table (2.15) and assume now that case (2) is excluded, and also in case (3)
we consider ¢ = —1 (and so we may replace (3) by (3’)). Let o be an irreducible,
automorphic, cuspidal representation of H,(A). Let 7 be an irreducible, automorphic,
cuspidal representation of GL,(Ag), and consider the Eisenstein series Ep, (¢, 9)
corresponding to a K-finite holomorphic section &, s for pﬁ{ 7. Define, for a cusp form
o in the space of o

(220)  L(porbrs) = / Y (i (0) Bty (Erver 9)dg.
Hp (F)\Hm(AF)

As before, for Re(s) large enough, the integral (2.20) equals an Eulerian integral
which depends on the -Whittaker coefficient of ¢,. [For example, for H, = Usgq1
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(Hm = Usy,) and Re(s) > 0
(2.21) L(¢o:ér,s)

N -1
- [ we (5 a) Bukisnann@) €2 @)dads,
Nap\Uzn(Ar) Mx_nyxn(AE)

where, for g € GLx(Ag), we denote § = (g 1 ), Wpk = (Ik—n In ) N denotes the
standard maximal unipotent subgroup of Us,,. gThe remaining notation is as in (2.17).]
As before, L(po,&r,s) is identically zero, unless the ¢-Whittaker coeflicient of ¢, is
non-trivial (as a function on H,(A)r). Thus, assume that o is globally ¢-generic, and
then for decomposable data the Eulerian integral of (2.10) has the form

L3(o x ,5)

(222) E(‘Pav&‘r,s) = R(S) LS(’T 5 25) s

as in (2.18). L5(r,6,2s) is given by (2.19), switching roles of ¥ and n. More precisely
L5(o x 1,s) for the group | L5(r,6,2s)
SO2k+1 X GL,, k>n LS(T,A?,25s)
Uzk+1 X Resg/p(GLn), k > 2n | L°(t, Asai, 2s)
SOz X GLy, k>n | L

n | L%(7,sym?, 2s)

(2.23)

2.5. The global integrals: Fourier-Jacobi models. — We use the notation of
Sec. 2.2, where wy was already chosen. We will denote by H(W')™ the group H(W’)
in case H is a unitary group, and in case H is symplectic H(W')~ = H(W')%,e =0, 1.
The cases we consider appear in the following table (r = dimg V)

H~ = H dimEW:m+2| L |H(W’)2Hm| HY

1 SPak 2n+2 k—n-1 SPar, SPan

(2) §I;2k 2n+2 k—-n-1 Spar, Span

3) Uak 2n + 2 k—n-1 Uan Uapn
(2.24)

Let 7 be an irreducible, automorphic, cuspidal representation of GLx(Ag). Denote
by piz* the representation of Hox(Ap)™ induced from 7|det-|*~/2 on the Siegel
parabolic subgroup in cases (1), (3). In case (2) we replace 7 by vy - 7, where 7y, is the
Weil factor. Let &, s be a K-finite holomorphic section for p,,s, and let Egy; (&r,s, h) be
the corresponding Eisenstein series. Let o be an irreducible, automorphic, cuspidal
representation of Hy, (Ar). Fix an F-embedding jop ok : Hon — Hag, so that the
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image of jon 2k is H(W’). Define for a cusp form ¢, in the space of &

@2)  Ladbd= [ @B (Gndnan(0)do

Han (F)\Harn(AF)
As before, this integral equals an Eulerian integral, for Re(s) > 0, and it depends on
the 1-Whittaker coefficient of ¢,. [For example, for Hy;, = Uy (H3,, = Uap), we get,
for Re(s) > 0,

(226) »C(Soow ¢a €T,S)

Iien o 0y
= / WY (9) / §f,;1(ak,n ( hp oo )izn,zk(g))

Nap\Uzn(AF) Mk—nyxn(AE)Xht_n(AF) Te=n
Wy=1 -1 (Tk—n, 0; Im(Yx—n,1)g)$(en)d(z, y)dg.

Here we assume that E = F[,/p], and WY (g) is the Whittaker coefficient of ¢, (at g)
with respect to the non-degenerate character of Np\ Ny, given by

Oﬁln 0 0

Un,n+1 0 0 (O ¢
u+— Yg (Ulz +ugz + -+ Un—1n + 2\/p o Qkn =\ o o "
-n
P 0 0 —ypl. 0

We regard E?" as a symplectic space over F' with respect to the form (vy,vp) =
—2Im(vi,v2). (Im denotes the “imaginary” part: Im(a + v/b) = b.) This defines
wy-1.-1, realized in S(A%). Finally, ¢ € S(A%) and e, = (0,...,0,1). The rest
of the notation is as in (2.17).] Thus, assume that o is globally 1-generic. For
decomposable data the Eulerian integral of (2.25) has the form

(2.27) L(po,b,Er,5) = R(s)L5 (0, T, 5)
where L°(0, 7, s) is given by the following table

Eisenstein series
oon H3, T on E(&rs,) on Hy, L%(o,1,8)

—~ LS( XT, )
(1) Sp2n GLk SPak Ls(r,sf%()yL;(j,Az,Zs)

—~ LS ,

(2)  Span GL SPak, m};’;ﬁ%

S -1
(3) Uar Resg,r GLy Uak %é%
(2.27) (k>mn)

In case (1) there is no canonical way to attach an L-function to ¢ x 7. At places
v where o is unramified (and 9 normalized) we write the unramified characters cor-
responding to o, in the form <y, - ., where u, is an unramified character of F);.
We write the parameter of o, as a conjugacy class in Sp,,, (C) (constructed from the
po(py)*1). Another choice 7y, a. would yield a different conjugacy class. This ex-

plains the dependence on % in LS (o x7,8). The function R(s) in (2.26) can be chosen
to have the same properties as in (2.18), (2.22).
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Finally, as in the previous case (Gelfand-Graev models) we may reverse the roles
of HY and H3,. We go back to table (2.24) and consider now an irreducible, au-
tomorphic, cuspidal representation ¢ of H.(Ar) and an irreducible, automorphic,
cuspidal representation 7 of GL,(Ag). Consider the Eisenstein serles EH~ (ér,5,9)

on H3 (AFr) corresponding to a holomorphic K-finite section &, s for pf z». Define for
a cusp form ¢, in the space of o,

(2.28) L(pg,¢,&r,s) = / Sogemd’(j%,r(g))EH;n (ér.5,9)dg
Hzp (F)\H2n(AF)

Again, for Re(s) large, the integral (2.28) equals an Eulerian integral which depends
on the ¢-Whittaker function of ¢,. [For example, for H; = Uy (H3,, = Usz,) and o
on Usk(Ar), and 7 on GL,(AFr), we get for Re(s) > 0

(229) L(po:¢&r.s)
- / / WY, ((’x ,k_n)A@n,kan,r(g)>
Nap\Uzn(Ar) Mxe_nyxn(AB)
Wy -1 (9)9(k—n)EY, (9)dadg
Here W‘;/’a is as in (2.16). For g € Resg,/r GLi, we denote g = (g gt) € Uyg. For

T € M(kx_n)xn, Tk—n denotes the last row of x; wnx = (Ik_n In ) The rest of the

notation is as before.]
Assume that o is globally 1-generic. Then for decomposable data

(2.30) L(¢os$,&r,s) = R(s)L5 (0, 7,9).

L5(o,7,s) is given by the last column of table (2.27) (where we switch the roles of
E(&;s,-) and o).

n (2.25), (2.28) the case k = n is missing. Here, for a ¢-generic cuspidal represen-
tation o on Hj,(Ar) and a cuspidal representation 7 on GL,(Ag), we consider

@3)  Lemdbd= [ a0 ()P o),
Hon(F)\H2n(AF)

where, as before, for Hg, = Us,, H2n = Usp, and for Ha, = Sp,,, if o is on HS,
then the Eisenstein series is on Hj, ¢, € = 0,1. For Re(s) > 0, we obtain as in the
previous cases (for decomposable data)

L(pa,$,&r,s) = R(s)L5 (0,7, 5),

as in the last two cases.
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3. On the weak lift from a quasi-split classical group to GLy.

We construct examples of cuspidal generic representations on a given quasi-split
classical group G, which weakly lift to automorphic representations on GLy (ap-
propriate V) in the expected image of this lift. The methods are those of Chapter
1, constructing a descent map (backward lift), as suggested by the global integrals
reviewed in Chapter 2. We use the notation of Chapter 2.

3.1. The cuspidal part of the image of the weak lift from G to GLy

Let G be a group of the form H(wg N W) or H(W')™, as in table (2.15) (without
case (4)), or table (2.24). (For the moment dimg V' is not so important.) Let N be the
degree of the standard representation of ZG®. The Langlands conjectures predict the
existence of a functorial lift from irreducible, automorphic, cuspidal representations of
Gap to irreducible automorphic representations of GLy(Ag). Let 0 & ®0, be such
a representation, and assume that ¢ has a weak lift to an irreducible automorphic
representation 7 of GLy(Ag), where the notion of a weak lift is similar to the one
explained in Sec.1.1. It is clear that 7 = 7,, and wr, = 1, for almost all v,

P
except in case (3) of (2.24), when 2« is not a square in F}, ‘in which case, wr, is the
quadratic character associated to 2. Here 7, = 7., and 7,, is the composition of 7,
with the automorphism z — Z of E, over F,,. (If E = F, then T =z, and 7} = 7,,.)
We conclude that w, = 1, except in case (3) of (2.24), when 2a is not a square,

A
in which case w;, is thquuadratic character, associated to 2. Let us assume that 7
is cuspidal. Then by the strong multiplicity one and multiplicity one properties for
GLy, we conclude that 7* = 7, and we also have that LS (0 x 7, s) = L°(7 x 7, s) has a
simple pole at s = 1, for an appropriate finite set of places S. (In case G is metaplectic,
we have to fix v, a nontrivial character of F\Ar and consider L;‘i(a X T, 8) instead.)
Assume further that o is globally -generic. Then we can use the global integrals of
Sections 2.4, 2.5 to represent the partial L-function of o twisted by 7, and consider
its pole at s = 1. Let H be the group in the first column of (2.15) or (2.24), which has
a Siegel parabolic subgroup whose Levi part is isomorphic to GLy. Now consider the
integrals (2.16) or (2.25) which represent the above L-function. Note that if G is not
a unitary group, then 7 = 7, and we take the Eisenstein series on Hy, corresponding
to pHy. If G = Uzny1, 7 = 7/ and we take pZ .. If G = Ua, we take pflg . For
decomposable data the integrals above are of the forms (2.18) or (2.27) respectively,
and we can choose R(s) to be holomorphic and nonzero at s = 1. Looking at the
quotients (2.18) in table (2.19) and in table (2.27), we see that the denominators are
holomorphic and nonzero at s = 1. Since LS(c x T, s) (resp. Lfb(a x 71,8) if G is
metaplectic) has a pole at s = 1, we conclude that the global integral £(yp,,&75) in
(2.18), L(¢s,9,&r,s) in (2.27), cases (1), (2), and L(ps, ), Ergy,s) in (2.27), case 3
has a pole at s = 1. This pole then comes from the Eisenstein series which appears
in L(¢s,...). Therefore, we expect that the (partial) L-function L5(r,(3,s) which
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appears in the normalizing factor of this Eisenstein series to have a pole at s = 1.
The following table summarizes the various cases, when we take N = Na,. (In table
(3.1), Ny =k in cases (1), (2), (4), (5), and Ny = k + 1 in cases (3), (6).)

G Resg/r GLn, | H=Hgx L3(t, B, s)
(1) SO2n+1 GL% SO, LS(1,A%,25 - 1)
(2) SOa, GLg SO2k41 L3(7,sym?,2s — 1)
(3) Uznt1 | Resg/p GLi41 Uskt2 L3(7', Asai, 25 — 1)
(4)  Spy, GLy Spar | LS(r,8 — L)LS(1,A2,25 — 1)
(5) Usn Resg/r GLg Usk L5(17" ® 7y, Asai, 25 — 1)
(6)  Span GLk+1 §)Zk+2 L3(r,sym?,2s — 1)

3.1)

Case (2) in table (3.1) includes both split and quasi-split even orthogonal groups.
We now proceed exactly as in case (1), which was proved in Theorem 1. The constant
term of the Eisenstein series mentioned before, evaluated at I, is the sum of the section
evaluated at I and the corresponding intertwining operator, applied to the section,
and evaluated at I. The first summand is holomorphic, and hence the pole at s =1
occurs for the second summand, which for decomposable data, equals as in (1.3) to
a finite product, over a finite set of places S of local intertwining operators times a
quotient of of the form %—Tﬂ’ﬁﬁé—), except in case (4) of table (3.1) (8 = BHg 2n)s
LS(T,S—%)LS(T,Az,Z;—yl) ’

LS(r,5+%)L5(T,A2,2s)
of the last quotient is holomorphic and nonzero at s = 1. By [K, Lemma 2.4], the
local intertwining operators above are holomorphic and nonzero for Re(s) > 1. (Note
that the standard module conjecture needed in loc. cit. is needed here just for
(Resg/p GLa2,)(F,) or (Resg/r GL2n+1)(Fy), and hence is valid.) We conclude that
L3(r, 3, s) has a pole at s = 1. Summarizing

where it is . In all cases, it is easy to see that the denominator

Theorem 10. — Let o be an irreducible, automorphic, cuspidal representation of Gay..
Assume that o is globally 1-generic, and that o has a weak lift to an irreducible,
automorphic, cuspidal representation T of GLn,, (Ag), as in table (3.1). Then1* =T,
the partial L-function LS(r, BHg 2n»S) has a pole at s = 1, and w, =1, except in

A%
case G = SO, when 2a is not a square, in which case w, is the quadratic character
asociated to 2a.

We conclude in exactly the same way, using the global integrals of Sec. 2.4, 2.5, the
analogs of Proposition 2 and Theorem 3.

Theorem 11. — Let o be an irreducible, automorphic, cuspidal representation of Gy .
Assume that o is globally 1-generic. Let T be an irreducible, automorphic, cuspidal
representation of GLx(Ag), k > 2, such that wT'(A,;)* = 1. Then L%(c x T,5)
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(resp. Lg(a x 7, 8) if G is metaplectic) is holomorphic for Re(s) > 1 and if it has a
pole at so, such that Re(so) = 1, then so = 1 and L5(t, Bu,s) (table 3.1) has a pole
at s = 1. The same assertions hold true, if T is an automorphic unitary character of
the idele group, which is trivial on (Ar)L, except in cases (1), (4). In case (1), we
know that L%(c x 7,5) is entire, and in case (4), the L function (with respect to 1,
where o is globally 1)-generic) may have a pole for Re(s) > 1, and then it must be at
s =3/2, and T must be trivial.

We remark that the last case of Theorem 11 occurs when o is a theta lift with
respect to ¢ from a generic cuspidal representation of SOz,_1(A).

Start now with an irreducible, automorphic, cuspidal representation 7 of GLy (Ag),
(N = Na,) such that w, Ap = 1, except in case 7 is on GL3,(AF), where we allow
wr to be either trivial or quadratic. If the quadratic character is associated to 2c,
then in the following, the Gelfand-Graev coefficient is taken with respect to SO3,,.
Assume that L5(1,3,5)(8 = Brg,.) has a pole at s = 1 (notation of table (3.3)).
By Theorem 10, these are necessary conditions that (cuspidal) 7 needs to satisfy in
order to be in the image of the weak lift from generic cuspidal representations on G, ..
(The second condition implies 7* = 7.) If 7 is a weak lift of o (generic, cuspidal) on
Gay, then by (2.18), (2.27), L(¢s,&7,s) has a pole at s = 1 in cases (1)—(3) of Table
(3.1), L(p, ¢,&7,5) has a pole at s = 1 in cases (4),(6), and L(yp, ¢,&'g~,s) has a pole
at s = 1 in case (5) (as data vary). Thus, the Gelfand-Graev coefficient (resp. the
Fourier-Jacobi coefficient) of the residue at s = 1 of the Eisenstein series which appear
in the global integrals has a non-trivial L2(Gr\Ga, )-pairing against o. This leads us
to define

( Ynlia
Span{Res;—1 Eg" """ (&r,s, -)|GAF 1, G =S02,41
") Span{Res;=1 E;/;"'l(grl,s, ')'GAF }, G = SO02,, U2n+1
Oy \T) = -1 —_~
Span{Res;=1 E;/}"‘“Wb(&/@%s, ')IGAF }, G =Spay,, Usn
-1
| Span{Rese=1 Ey™"* (65, )|g, }: G = Spy,
(3.2)

Our main theorem is

Theorem 12. — Let T be an irreducible, automorphic, cuspidal representation of
GLn(AE), with central character, as above. Assume that L°(t,3,s) has a pole at
s = 1. (We use the notation of table 8.1, with N = Nan, 8 = BH ,,). Assume also
that n > 2, in case G = SOy .. Then

(1) oy () #0
(2) The representation oy (7) of Ga, is cuspidal.
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(3) Let o be an irreducible summand of oy (7). Then o is globally v-generic, and
oy lifts to 7, for almost all finite places v. (If G = §I;2n, o, lifts to T, with respect
to ¥, ).

(4) Every irreducible, automorphic, cuspidal, 1¥-generic representation o of Gy,
which lifts weakly to T has a nontrivial L?-pairing with oy (T).

(5) oy(7) is a multiplicity free representation.

Remark. — The guidelines to the proof are similar to those of Theorem 4, except that
the proof of (1) in case G is even orthogonal or symplectic is not direct. In these cases,
we show, once we fix 9, that there is 8 € F*, such that oy g(7) # 0, where oy, g(7) is
defined as in (3.2) only that the coefficient (Gelfand-Graev, or Fourier-Jacobi) of the
residual Eisenstein series induced from 7 is taken with respect 11’;,,1@7 in case G = SOq,,
and in case G = Sp,,,, we take in (2.9) a residual Eisenstein series, induced from 7,
on Spy,(A), instead of ¢, and 0$_ﬁ, instead of 03_1 (y = 1). In the first case we

obtain a non-trivial cuspidal representation oy, g(7) of Hég)(A) (see table (2.15)), for

which the following Whittaker coefficient is nontrivial

zzxT Y
(3.3) ( Iz f) — P(z12 + 223+ - + Zn—2n—1 + Tn-1,2)-

Wn—1
Here z € Z,,—1(A), and we write the elements of Hég), with respect to < Ry ) .
Wn -1

Let o be an irreducible summand of oy g(7), which is globally generic with respect
to the character (3.3). Then it has a weak lift to 7, and hence, w,(¢) = (26, t) (Hilbert
symbol). This implies that oy (7) is non-trivial. In the second case, (G = Spy,),
oy,3(7) is a (nontrivial) automorphic cuspidal representation of Sp,,(A), which is
globally 1#-generic. Let o be such an irreducible summand of oy g(7). Examining
the unramified parameters of o, we show that

s L5(r x xp,5)
L>(o,s) )
Here, xg = (8,t) (Hilbert symbol). If x5 # 1, this implies that L3(o,s) has a pole at
s = 1. By [GRSS5], we conclude that o is a theta lift (with respect to an appropriate
character) of a generic cuspidal representation 7 on split SO2,(A). We have

LS(T, s) = LS(7r X Xﬁ,s)LS(l,s),

and hence L5(7,s) has a pole at s = 1. This is impossible, and so xg = 1, i.e. o(7)
is nontrivial.

L3(1,s).

3.2. The image (in general) of the weak lift from G to GLy. — Let o be an
irreducible, automorphic, cuspidal generic representation of G4, . Assume that o has
a weak lift to GL, and that it lifts to an irreducible, automorphic representation 7,
which as in Sec. 1.3, is a constituent of

(34) &y|det | x --- x &;|det [ x 7 X -+ x ¢ x 8| det |7 x --- x §f|det |7
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where Re(z1) < --- < Re(z;) < 0, the representations §;, 7x are irreducible, automor-
phic and unitary, with central characters which are trivial on (Ap)%, and 7, = 7},
for 1 <4 < 4. If §; (resp. 7x) is on GLr(A), r > 1, we assume it is cuspidal.

Consider L%(o x 81,5). As in Sec.1.3, we see that LS(c x 8y, s) has a pole at
s =1—z;. (If G is metaplectic, consider L3 (s 61,5)). By Theorem 11, except in

case G is metaplectic, and §; = 1, we have z; = 0 and L® (6lvﬂHc,w3) has a pole at
s = 1. Here 4, is on GL.(Ag), and ' = r in all cases of Table (3.1), except cases (3)
and (6), where 7’ = r — 1. Note that since LS(SI,ﬂHGJ,,s) has a pole at s = 1, we
must have d; = 6f. (For example, in case of a unitary group, and n = 31,

(3.5) L5(n®1',s) = L (n, Asai, s)L(n ® v, Asai, 5),

and since one of the factors on the r.h.s. of (3.5) has a pole at s = 1, LS(n®7/, s) has
a pole at s = 1, which implies that 7/ = 7, i.e. n* = n). We conclude that L% (o x 81, s)
has a double pole at s = 1. This is impossible, and we conclude that (3.4) has the
form
T1 X =+ X Ty,

and repeating the last argument, we conclude that L (;, 8 Ho s s)hasapoleat s =1,
fori=1,...,¢, and also that 7; # 75, for 1 < i # j < £ Here 7; is on GL,, (Ag).
Finally, in case G is metaplectic, we see from Theorem 11, that it is possible to have
61 =1, and 21 = —3, and as we remarked before, in this case o is a (1) theta lift
from a cuspidal generic representation of SOsz,_1(A), so that by Section 1.5, the lift
of o to GL2,(A) has the form | |71/2 x 7y x --- x 7y x | |/2, where 7; are as before,
each one with its exterior square L-function having a pole at s = 1. This proves

Theorem 13. — Let o be an irreducible, automorphic, cuspidal, generic representation
of Gap. Assume that o lifts weakly to an irreducible automorphic representation T of
GLn,, (Ag) as in Table (8.1). Then except in case (4), T has the form 71 X « -+ X 7y,
where for 1 < i < £, 7; is an irreducible, automorphic, unitary representation of
GLri (Ag), cuspidal in case r; > 1, such that 7} = 7;, wr = 1, ezxcept in case

= S0O%,,, in which case w; = X2o. The partial L functzon L (7i, BH, ,,s) has a
pole at s =1, and 7; # 75, for all 1 < i ;é j < L. In case (4), either T has the form
above, or it has the form | |~Y/2 x 1y x -+ x 74 x | |2, where the product of the 7; is
in the image of the lift from generic cuspz’dal representations from (split) SO2p—1(A)
to GLG_z(A).

We consider the converse to Theorem 13, except the last case mentioned there.
Let 71,...,7 be £ different irreducible, automorphic, unitary representations of
GL, (AE),...,GL,(Ag) respectively, and 7; is cuspidal, if 7, > 1, and such that
r1+ - +1rg =N = Ny, (as in table (3.1), 7* = 7;, and LS(ThﬂHG'T;»S) has a pole

ats=1,fori=1,...,¢. Let 7 =7 X --- X 75. Assume also that w,

AL = 1, except

in case N is even, and F = F, where we also allow w, to be quadratic, and if it is,
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say, Xz2a, then, in the sequel, we’ll take the Gelfand-Graev coefficient with respect
to SO3,. If 7 is a lift at almost all finite places of an irreducible, automorphic,
cuspidal, i-generic representation o on Ga,, then by (2.18), (2.27), L(¢s,&5,,s) has
a pole at s = 1 in cases (1)—(3) of Table (3.1), L(¢s,®,&,,s) has a pole at s =1 in
cases (4),(6), and L(¢s, #,&r/@+,s) has a pole at s = 1 in case (5), as data vary, and
i=1,...,£. Consider the Eisenstein series on H = Hg 2, (Table (3.1)) induced from
71 | [17Y/2 x -+ x 15 | [*¢=1/2 and the standard parabolic subgroup of H, whose Levi
part is isomorphic to Resg/p GL,, X -+ x Resg/r GLy,. Denote it, for a K-finite
holomorphic section &;5 by Ep(&r3,-) where § = (s1,...,8¢). We can show that
(s1—1)«---- (s¢—1)En(&r3,-) is holomorphic and nontrivial at §=1,...,1). Denote
the value at (1,...,1) by Res(;,.. 1) En(&r3,-), and now define oy (7) on Ga, exactly
as in (3.2). Our main theorem in its most general form is

Theorem 14. — Fix the group G. Let N = N, as in Table (3.1). Let T=71X---XTg
be the irreducible representation of GLn(Ag) induced from 1 ® --- @ Ty, where
T1,...,Te are pairwise inequivalent, irreducible, automorphic, unitary representations
of GL,,(Ag),...,GL,(AEg) respectively, 7; is cuspidal in case r; > 1, such that
ri+--+r=N, 7} =1, and LS(Ti,ﬂHc,r,_,s) has a pole at s =1, fori=1,...,L.
Assume that the central character of T is as above. Then

(1) oy (r) £0.

(2) The representation oy (7) of Gay is cuspidal.

(3) Let o be an irreducible summand of oy (7). Then o is globally v-generic, and
oy lifts to 1,, for almost all finite places v. (If G = §f)2n, o, lifts to 7, with respect
to ).

(4) Every irreducible, automorphic, cuspidal, 1-generic representation o of Gap,
which lifts to T at almost all finite places, has a nontrivial L?-pairing with oy (7).

(5) oy(T) is a multiplicity free representation.

Assume, for simplicity that w, = 1, for each i in the last theorem. Then for

A®
each 7;, we may apply Theorem 12 aIJ;d consider the cuspidal 1/-generic representation
oy (7:) on a corresponding group G;(Ar). Let o; be an irreducible summand of oy (7;),
i=1,...,¢ and let o be an irreducible summand of oy(7) (01,...,0¢, o are all y-
generic). Then o1 ® -+ ® g¢ (on Gi1(Ap) X -+ x G¢(AF)) lifts at almost all finite
places to 0. Both representations lift at almost all places to 7 on GLy(Ag). These
are examples of (generalized) endoscopy. The following table summarizes the various
cases, where we stay a little vague in specifying central characters, and in specifying
even orthogonal groups and base change lifts to even unitary groups. (So far, for
simplicity, we constructed only lifts from Us, to Resg,r GLa2n, with central character,
whose restriction to A is trivial.) Here, as above, o; is an irreducible summand of

oy (Ts).
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1® QT
on
GL,,(Ag) X - -+ x GLr,(AE)

pole condition

for m;

01Q---Qo0¢ 4
on — on
G1(AF) X -+ X G¢(AF) G(AF)

GLz2n, (AF) X - -+ X GL2n,(AF)

Ress=1 LS(T,‘, Az, s) 75 0

SO2n,+1(AF) X -+ - X SO2n,+1(AF)

SO2(n; +--4ny)+1(AF)

GL2n, (AF) X - - X GLan, (ArF)X
X GL2m1 +1(AF) X e X GL2m2r+1 +1(AF)

Ress—1 L5(,sym?,s) # 0

SOzﬂ1 (AF) X+« X SOz2n, (AF)X
X SPom, (AF) X -+ X Spypm, ., (AF)

sz(nl +-tmory1+r) (Ar)

GL2n, (AF) X -+ X GLan, (Ar) %
X GL2m, +1(AF) X -+ X GLom,, (AF)

Ress=1 L5 (73, sym?, s) # 0

SOz2n,; (AF) X - -+ X SOz, (AF)x
X SPaym, (AF) X -+~ X SPym, (AF)

S02(n, +--4mar+r) (Ar)

GLn, (AE) X -+ X GLy,(AE)

Ress=1 L5(7], Asai, s) # 0,
if n; =1 (mod 2)

Ress—1 L5 (1] ® v, Asai, s) #0,

if n; =0 (mod 2)

Un, (AF) X -+ X Un,(AF)

Un1+""ﬂe (AF)

GLGl (AF) X e X GLin(AF)

Rese=1 L5 (1i,8 — L)LS(7;,A%,25 — 1) £ 0

(Table 3.6)

SPan, (AF) X -+ X Spy,,, (AF)

Sp2(n1 +--+np) (AF)

“1D OL SdNOYD TVIISSVIO WOHA
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Example. — The functorial lift U3 — Resg,r GL3 is completely known from the
work of Rogawski [R]. The cuspidal part of the image is the set of all irreducible,
automorphic, cuspidal representations 7 of GL3(AEg), such that 7* = 7 and w,

A%L=1"
In this case, this is equivalent to L%(7’,Asai,s) having a pole at s = 1. In Fthis
case, using the multiplicity one property for cuspidal representations on Us(Ar) [R]
it follows that oy (7) is an irreducible, automorphic, cuspidal, generic representation
of Us(AF), which lifts to 7. oy(7) is the generic member of the L-packet on Us(Ar),
parametrized by 7. The following representations occur in the non-cuspidal part of
the image of the lift above, restricted to generic representations.

(1) pn x 7, where n is an automorphic character of U;(Ar) and py, is the character
of A}, defined by p,(z) = n(z/Z). The representation 7 is on GL2(Ag), and it is
irreducible, automorphic, and cuspidal such that 7* = 7, w, Ap = 1 and L%(7' ®
~, Asai, s) has a pole at s = 1. The representation oy(u, x ) is an irreducible,
automorphic, cuspidal, generic representation of Us(Ar), which lifts to py, x .

(2) pny X png X fins, where {n1,n2,m3} are three different automorphic characters
of Ui(Ar). The representation oy (fy, X ty, X ig,) is an irreducible, automorphic,
cuspidal, generic representation of Us(A ), which lifts to i, X pn, Xn,,. See [G.J.R.],
[Ge.Ro.Sol, Ge.Ro.S02, Ge.Ro.So3].

In the remaining part of this paper, we will illustrate the proof of Theorem 12
through (low rank) examples.

4. Illustrations of Proofs in Low Rank Examples

4.1. An observation on unramified factors of residual Eisenstein series

Fix the group G. Let N = Nj, as in Table (3.1). Let 7 be an irreducible, au-
tomorphic, cuspidal representation of GLy(Ag), such that ™ = 7, w, =1, and

As
L5(7, BHe 20 » 8) has a pole at s = 1. Consider the residue at s = 1 of theFEisenstein
series on Hg 2, (Ar) induced from 7/ ®+~-| det -|*~1/2. Denote this residual representa-
tion by E,. (In all cases, except case (5) in Table (3.1), v = 1. Also 7’ = 7 in all cases
except cases (3), (5).) We abuse notation and think of E, also as the space of auto-
morphic forms spanned by the residues. So, for example, when we refer to a constant
term of E,, we mean that we consider this constant term applied to all automorphic
forms in (the space of) E;. It is easy to check that E, consists of square integrable
automorphic forms. Indeed, E, is concentrated along the Siegel parabolic subgroup
(i.e. all constant terms, with respect to unipotent radicals of standard parabolic sub-
groups, other than the Siegel parabolic subgroup, vanish on E;). The constant term
of E, along the Siegel radical has one exponent, which is negative. Now use Jacquet’s
criterion for square integrability [J]. Consider an unramified factor m, at a place v
of (an irreducible summand of) E;. By our assumption on 7, we have 7 = 7, and
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Wr, = 1. Since 7, is unramified, we see that 7, is the unramified constituent of

F;
a representation of GLy(E,) induced from the Borel subgroup and an unramified
character of the torus of the form

t t
diag(tl,...,tzn)n—»,ul(_—l)---,u,n(_—n), if N=2n
ton tn+1

diag(ts, . . . tant1) — “1(z tn ) un(_t_") it N =2+ 1.
2n+1 lnt2

Recall that if E = F, t =t, for t € E. If [E : F] = 2 and v is a place which
splits in F, then E, = F, @ F,, (a,b) = (b,a) and the characters yu; are given
by pairs of characters of F;. Let @ be the standard parabolic subgroup of H =
Hg,2n, whose Levi part is isomorphic to (Resg,r GL2)™ in cases (1),(2),(4),(5) of
Table (3.1), or to (Resg,/r GL2)" x Ho where Hy = Us in case (3) and Hy = SLs
in case (6). (In case (6) we should really take the inverse image in §f>4n +2, at each

place v: GLa(F,)™ x SLa(F,)). Denote by 7, ... 4, the unramified constituent of the
representation p,, ... .. of H(F,) induced from Q(F,) and the character (u; - det) ®
-+ @ (in -det). (In cases (3) and (6) of Table (3.1), it is trivial on Ho(F,). In case (6)
we also have to multiply by 7). Denote u/;(t) = p;(t). Denote by w the simple Weyl
reflection in Oy, which flips the two middle coordinates in the diagonal subgroup.

(4.1)

Proposition 15. — Using the notation above, let 7, be the unramified representation of
GLN(E,), corresponding to the unramified character (4.1). Then m, = myr .y, sy,
ezcept in case 1 of Table 3.1, with n odd, where we have m, = my = (outer conju-
gation).

Proof. — Denote by pr/ g, the representation of H(F,) induced from the Siegel
parabolic subgroup and 7/, ®1, | |*/2. (We have to modify by -, in case (6).) Consider
first cases (1),(4),(5) in Table (3.1). In case (1), assume for simplicity that n is even.
Here pr/ g, is induced from the following character of the Borel subgroup

s 1 -1
(42) dlag(tl, ey tzn, t2n yoos 7t1 )

t t
— #’17u(——1)|t1t2n|1/2 """ P Yo (:‘L)ltntn+1|1/2
t2n tn+1
This character is conjugate, under a suitable Weyl element of H, to the character

——1

(4.3)  diag(ty, ... ton,fgn, .- 51 )

tl tn '1/2
tzn tn+1
and this character is conjugate, under a suitable Weyl element of GL, to the char-

acter

— ullvu(tlt2n)

Iy

""" N:;'YV (tntn+1 ) |

(4.4) diag(ts, ... tan, Ty s.. .51 0)

ty |1/ ton—
HM;VU(tltZ)‘é’ ..... N:z7n(t2n—1t2n)‘ 2tn 1

1/2

2n
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Thus 7, is the unramified constituent of the representation I, Aoty Yo induced from
the character of the Borel subgroup defined by (4.4). Clearly 7,;+,,...,u 4, maps onto
Pry v reoorttl - Since the last representation is still unramified, we conclude that =,
is the unramified constituent of pu:o,,.  ur~,- (If nis odd in case (1), we get that
Tt ...ty WheTe w is as above.) In case (2) the proof is the same, only that
in (4.2)-(4.4), the left hand side is diag(ti,...,tan,1,t5",...,t; ") and in the right
hand side there is no change except that u, = u;, 7, = 1. In case (4) the proof
is the same, only that in (4.2)—(4.4) the Lh.s. is diag(ty,.. .,t2n+1,52_n1+1, LB,
The r.h.s. of (4.2)-(4.4) remains the same. In case (6), the Lh.s of (4.2)—(4.4) is
diag(t1, ..., tent1, tz_an, ...,t7"), and in the r.h.s. we have to multiply by vy (t1 -+
tan+1) (and take p) = p;, v, = 1). a

T, =

4.2. Nonvanishing of oy (7): Case G = Uz, H = Us, 7 — on GL3(AEg)

Let 7 be a irreducible, automorphic, cuspidal representation of GL3(Ag), such
that 7 = 7, w, Ap = 1, and L5(7’, Asai,s) has a pole at s = 1. (Actually, the
last condition is equivalent to the first two conditions). The proof that oy (7) # 0
consists of two steps. First, we introduce (in (4.8)) a unipotent group V of Ug, and
a certain character 1y of Vp\Va,, and prove that the Fourier coefficient along V/,
with respect to 1y, is nontrivial on (the space of) E, (Proposition 16). To do so,
we prove that this nontriviality is equivalent to the nontriviality of another Fourier
coefficient on E,. This last Fourier coefficient is along a unipotent subgroup U, and
with respect to a character ¥y of Up\Ua,. The group U is almost the maximal
unipotent subgroup of Us. It ”misses” just one root subgroup, namely the simple
root which lies in the Siegel radical. The character ¥y is the restriction to Uy, of
the standard nondegenerate character determined by . Thus, the nontriviality of
the (U,%y) coefficient on E, follows from the fact that 7 is (globally) generic. In
the second step we show that the nontriviality of the (V,1y) coefficient on E; is
equivalent to the nonvanishing of o,(7). We develop for these proofs (and for the
sequel) a tool that we call, for lack of a better name, "exchanging roots”. In practice,
it enables us to conclude that an automorphic representation, realized in a given space
of automorphic forms, has a nontrivial (V1,y, ) Fourier coefficient, if and only if it
has a nontrivial (V2,1y,) Fourier coeffiecient, where the unipotent groups Vi, V, are
generated by root subgroups, and the passage from V;j to V3 is by “deleting” a certain
root subgroup, and "replacing it, in exchange”, with another certain root subgroup
(outside V7). The characters 9y, are equal on the subgroup generated by the roots
common to Vi and V3, and extend trivially to ”the rest of” V;.

Let H = Us, and let P be the Siegel parabolic subgroup. Let p, =
IndgiiAF ) |det-|s‘1/ 2. and consider for a holomorphic, K-finite section &,/ s of

pr,s, the corresponding Eisenstein series E (&, s,h) on Ug(Ar). We know that
E(&;.5,h) has a simple pole at s = 1, as data vary. Recall that the space of oy(7)
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is spanned by the 9 % — Fourier coefficients of Ress=1 E(§;s,-) along N;. Let us
repeat the definitions in this case

(4.5) N1={u=(1r?i;'> eUa}.

1
For u € N1(Ar) as in (4.5),

(4.6) Y11(u) = YE(y2 — Y3)-
The stabilizer of 11 ; inside (1 Uy 1) is

1 0 0
p={ (") euln( %)= (1)}
1 0 0
We fix an F-isomorphism i : U3 — L. The representation oy (7) of Us(Ar) acts in
the space of automorphic functions spanned by

(@) g— / Resomt B(Err o, ui(0)) 07 (u)du.
Ni(F)\N1(AF)

In this section we show that (4.7) is not identically zero. Consider the following
subgroup of Us

(4.8) v={v= (Izi:'> €Us},

Iz

and the following character of Vp\Va,
Py (v) = Ye(an — a2).
Let us denote by E; the residual representation of Us(A ) acting in Span{Res,=1 E(&; s-)}.

Proposition 16. — The Fourier coefficient of E, with respect 1y along Vp\Va, is
nontrivial, i.e.

/ Ress=1 E(&+,s, v)w;l(v)dv Z0.

VF\VAF
Proof. — Let
1
0007
w= 1000
0010
1
Write v in (4.8) in the form
10ab *x =
lcd *_ *_
— 10-d-b
(4.9) v= 1-t-a
10
1
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Then
la x 0b *_
. 1-d 0-b
(4.10) wow = |, 1 0
0-¢ 1-a
0 1

(zeroes elsewhere). Let V/ = wVw™!. Then by (4.10), the elements of V' have the
form

(4.11) v' = (g 5) € Us,
where z is upper unipotent, z, y are upper nilpotent (such that ze3 = Z12, Y23 = —U12)-
The conjugation (4.10) takes the character v to the character 1y of VL \Vj ., defined
by
Yy (v') = Ye(212 + 223)
(v' is of the form (4.11)). Since Ress=1 E(&;s,w - v) = Ress=1 E(&,s,v) and
Reso=1 E (€0, whto ™) = Er(w™) (Resemt E(érrs, 7)) (h),

what we have to prove is equivalent to
(4.12) / Ress=1 E(&,5,v' )0y (v))dv' # 0.
VE\Vip

We will now “exchange roots” in V' in (4.12), in the sense that (4.12) is equivalent to

(4.13) / Ress=1 E(&r/ s, r)wgl(r)dr £ 0,
Dp\Dap
where
laxy B *
1600 -3
(4.14) D= {T‘ = 1 (1) _03 = € Uﬁ}, Yp(r) = ¢Ye(a+9).
1 -a

1
Note that D is obtained from V'’ by exchanging c and —¢ with the zeroes in coordinates
(1,4),(3,6) in (4.10). This is done as follows. Let

2 (155) <Ror Gt @ = (<11 <] 7}
on{(oé-oz)lew:o}, X = {& € Resg/p Msxs | wsz +!(wsz) = 0}
Z(X)={(13;;)‘xex}, ?(X)z{?(z):(’jls)lxeX}.
Denote

._12:{'2(08—06)}, 713___{2(08§)‘e+§=0}, X11={€(t0__)}

C =m(2)0Xo)Y".
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Then it is easy to check that C is a group, (it is a subgroup of V') and that the
following properties are satisfied.

(i) Let v = yv/| Cap Then Y'? and X! normalize C and (their adele points)
preserve Yc.

() (X1, 7% co

(iii) The characters ¢o(zyz~'y™!) on X\ XL (resp. on 7},2\?;217) as y (resp. )
varies in ?};2 (resp. X ') are all characters of X3'\ X3! (resp. 7}3\7};).

V/Xu —

DpY”
y <

(4.15) V! = 0712 cxX\1=p
% %
C

Let us check (iii), for example. We have

I I. I I3 — Iz—
(4.16) (Bn)®5)(5n) () = (8 o)
c O

Now, for y = (0 0 —OE), T = (t 0{), yzy = 0, and hence (4.16) equals (note that

Ly) € 712, {(x) € X1) (#,+), where z = (1 B (3). Hence ¢ applied to the
Lh.s. of (4.16) equals 15" (ct), which represents a general character of ¢ (resp. c), as ¢
(resp. t) varies.

Let us explain now the equivalence of (4.12) and (4.13). Put e¢(h) = Ress=1 E(& s, h).
We have

/ ec (W WL )dv' = / / ee(cy) b5 () dedy
valvi, PR CriGh

_ / > / / ec(et (*0_) u)us" My (Odtdedy

—12. — AEE
Yr\Ya, €% E\Ap Cr\Cap

. > [ etruwaioya.

D=Ccx1l 12,12 AEE
Yp\Yap Dr\Dap

Here, for r = ¢/ (t 02) € CX = D, Yo(r) = ve(M)Yc(c). Let yo € 7;«2. Then
ee(ry) = ee(yory) = ec(yoryy ‘yoy). Recall that yo normalizes Da,, and it preserves
Dp. Also, for r = c-z, z € X1, ¢ € Cap, yo teyo = (g, x)z € Car X4k, and
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Yo teyo € C, with ¥e(c) = vo(yg 'eyo). Thus, for each yo € 7}72, we have

[ ecwrvirmar = [ ermnvehos o

DF \DAF change vixna.bleDF \DAF
™Yo T TY0

= [ ecommvii (et aleyis (deds.

X},l\XAl; CF\CAF

We could take even a variable yx € _)7;2, A € E, and get the same results. Take
—/0-A0

=14 ( ) Then for z = ¢ (t ) we have seen in (4.16) that yc A ([y3 ', z]z) =

YeE(— )\t)d)E(/\t) = 1. Put ¥p(zc) = Yc(c). We get that the Lh.s. of (4.12) equals

> / ec(ryay)yp ' (r)drdy = / / e(ry)yp' (r)drdy.
YF \?12 y)\EYF DF\DAF 12 DF\DAF

Thus, we have shown that
(4.17) / ee(V )yt (V)dv' = / / ee(ry)yp’ (r)drdy.

Vi\Vip V,2, Dr\Dap
We claim that the r.h.s. of (4.17) is not identically zero, if and only if

[ et o,
Dp\Daj,

which is (4.13). Indeed, assume that the r.h.s. of (4.17) is identically zero. Apply
the convolution operator |, ap PO E: (¢ (t 0 —f) )dt, for ¢ € S(Ag). We get (denoting

o ("0 )=o)
0= / / / é(x)ee (rly, z]zy)vp! (r)drdydz

Xx11 12 Dp\D
Ap Yan F\Dap

= [ [ sawolueias [ ecrowpoyiray

7;";‘ XA;‘ Dp\Dap
_ / 3w [ ety rydrdy.
7}‘2 DF\DAF

In the one before last integral, we changed variable r — r[y,z] 'z~1. Recall that
7,Z)D|X11 = 1. In the last integral, ¢(y) = fXA“ ¢(z)¢¥p(ly, z])dz. This is a Fourier
AR F
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transform of @, since z — ¥p([y,z]) is a general character of z, as y varies. Thus,
(for all &)

/ 3) / ee(ry)¥5 (r)drdy = 0,
Yin Dp\Dag

for all ¢ € S(X1). This is equivalent to (4.13). In the passage from (4.12) to (4.13)

we “exchanged” ¥~ and X!!. (see (4.15)).
We have to prove (4.13). Let

X o) [147=1)

Then X22 normalizes D and preserves ¥p. Put D = D - X22, and extend ¢p to D,
by making it trivial on X?2. Denote this extension by 15. Let

X {e(358) 1=

Then one can check that X3 normalizes D and preserves ¢ 5- Let Dt = D- X3,
and extend 15 to a character p+ of D, by making it trivial on X 3_1. In order to
prove (4.13), it is enough to prove

(4.18) / Ress—1 E(&r s, 7)Y 4 (T)dr #0

+\ p+
Dp\Dy .

000y |-
xe={e(§58) =1}
We can “exchange” in (4.18) v by X?2!. More precisely, this is done as follows. Let
Ct =m(Z)¢(X)X3". This is a subgroup of D*. Put o+ = ¥p+|,,- Then
(i) Y'° and X2 normalize C* and preserve c+.
(i) [x2,Y"% c ot
(iii) The characters Yo+ (zyz~'y~!) on X2 \X2, = (resp. on 7}?\7;\?;) as y

(resp. x) varies in ?};3 (resp. X?I) are all characters of X2;\ X2}, _ (resp. 7;3\711;).

Let

DtX2 =y "

y &13

D+ = C+7" U=0rxz

C+
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Extend ¥c+ to a character ¢y of U by making it trivial on X2!. As before, (4.18) is
equivalent to

(4.19) / Reso—1 B(Er,e, )05 (r)dr 2 0.
Ur\Unp

Note that r € Uy, has the form

—e
- ¥

—O% *
* KK *

€ Us(Ar)

T

|
8l

ey

and
Yu(r) =v¥e(a+b).

U is a subgroup of the standard maximal unipotent subgroup N of Ug. Extend
Yu to to YN on Na, by making it trivial on the Siegel radical S. Clearly (4.19)
will follow from the nonvanishing of the Fourier coefficient of Ress;—1 E(&; s, ) with
respect to ¥y along Np\Na,.. This last Fourier coefficient is just the constant term
of Ress=1 E(& s, ) along S, followed by the Whittaker coefficient for the Levi part
of the Siegel parabolic subgroup. Writing the constant term of Ress=1 E(&;s,) in
terms of the intertwining operator, we see that the last Fourier coefficient is just
a Whittaker coefficient applied to 7/ with respect to the standard nondegenerate
character defined by g, which is, of course, not identically zero. This completes the
proof of Proposition 16. O

We now conclude that o (7) # 0. For this, let
1
_ (11,
¥ = ( 2 1 ) .
-11

(420) / Ress=1 E(ET',Sa’Y—lU’Y)d)‘_/I(U)dU 3_"6 0.
VF\VAF

Then, by Proposition 16,

Note that for v € Vi, of the form

10ab * =*
lcd * x_
— 10 —-d -

(4.21) v= 0-d-b ),
a

10 a b * *

1 c—-ad-b =* *

lyy = 1 0 —d+b-b

TuY 1 —-c+a -a

Y
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Change variables in (4.20), c+— c+a, d — d+b. Let ¥ be the character, which takes
v in Vi, of the form (4.21) to ¥(a — b — d). Thus
(4.22) / Ress=1 E(&T/,s,'u){l;'l(v)dv £0.

Vr\Vap

Change variable in (4.22), ¢ — ¢+ d (v of the form (4.21)). Consider the following

subgroups.
I z y
J={<212z’>€ x=(gg)}
Iz

Put 97 = %|,. Then

i) The subgroups K, L normalize J and preserve 1.
(i) The subgroups K, L lize J and "

(ii) [K,L] c J

(ili) The characters ¢ (zyz~'y~!) describe general characters of z in Kp\Ka,
(resp. y € Lr\La,) as y varies in Ly (resp. as x varies in Kp).

Note that V = J- K. Denote U’ = JL, and extend v  to a character of U’, by making
it trivial on L. Now “exchange” K and L in (4.22). We get that

(4.23) / Rese_1 E(€r.s, P52 (r)dr £ 0.
Up\vs,

Note that 7 € Uy, has the form

—
s

= e
= O Qo
* %

|
- * %
S
|
Q| o

-
o+

and

Yur(r) = Ye(a —b) - Ye(d).
This means that the L.h.s. of (4.23) is the integration (4.7), which defines oy (7),
followed by the Whittaker coefficient with respect to ¥ g along i(IN), where N is the
standard maximal unipotent subgroup of G = Us. In particular o4 (7) # 0, and we

also showed that the 1 g-Whittaker coefficient of oy (7), as a representation of Us(Ar)
is nontrivial.
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4.3. The tower property: Case H = Spg, 7— on GL4(AF), G = §f)4

Let 7 be an irreducible, automorphic, cuspidal representation of GL4(AF), such
that L9(7,A2,s) has a pole at s = 1, and L(7, %) # 0. (This implies in particular
that 7 = 7 and w, = 1). Let H = Spg, and let P be the Siegel parabolic subgroup
of H. Let p;s = Indg:: 7| det-|*~1/2, and consider the corresponding Eisenstein
series E(;,s, h) on Spg(AF), for a holomorphic, K-finite section &, s. E(ér,s, h) has a
simple pole at s = 1, as data vary. Recall that the space of oy(7) is spanned by the
Fourier-Jacobi coefficients of type (11,1, d) of Ress=1 E(&;s, ) along No. We repeat
the definitions in this case

Yia ik
(424) N2 = v = Is yll * (S Sps
—1:1:
For v € N2(AF) as in (4.24),
¥1(v) = ().
The group N; surjects onto the Heisenberg group H in five variables by
J(v) = (y;1),

for v € N3, as in (4.24). Let w,-1 be the Weil representation of §f>4(AF) X Hap,
acting on S(A%), corresponding to the character ¥ ~!. Denote, for ¢ € S(A%), the
corresponding theta series by 0:2_1(-). The representation o, (7) of Sp4(Ar) acts in
the space of automorphic functions spanned by

(4.25) § — / Res,—1 E(f‘r,.ﬁ 'Uj(g))ofz—l (J(v)mlﬁfl (’U)d’U.
N2(F)\N2(AF)

Here g is the projection of g in §I)4(Ap) onto Sp,(AF), and we extend j to an em-
bedding of Sp,(Ar) - Ha, inside Spg(Ar) by j(g) = (IZ s ).

In order to prove that oy (7) is cuspidal, we have to shovfr that the constant terms
along unipotent radicals (of parabolic subgroups of Sp,) vanish on oy (7). The tower
property that we reveal when we compute these constant terms is that they are
expressed in terms of “deeper descents” afpk)(T) (k < n = 2), which in our case

means k = 0,1. Here e 9(r) is simply the “space” of 1¥-Whittaker coefficients on
¥

the group “§f)0(Ap)” which by definition is {1}, of the residue representation E-
(acting on Span{Ress=1 E({r,s,°)}). Since the 1-Whittaker coefficient of E({;s,-) is
holomorphic at s = 1, the last space is zero dimensional, i.e. afbo) (t) = 0. The space

ofpl) (7) is the space of automorphic functions on §f)2(AF) =SL, (AFr) spanned by

gr— Ress=1 E(&r,s, uj'(g))eif_, (Jl(“))¢2_1 (u)du.
N3(F)\N3(Ar)
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Here ¢ € S(AF), and 02)”_1 (-) is the theta series corresponding to the Weil representa-
tion “’a/p—l of SL, (Ar) x H'(AF), where H’ is the Heisenberg group in three variables.

The group Nj is
Ty 1% %
(4.26) N3={u=( Izm’:)ESpg‘ZEZ,g:( 1{)}
For u € N3, as in (426), ng(u) = v,b(zlg + Z23), and j’(u) = (11331,.’1,‘32;3/31) (the

I
surjection N3 — H'). Finally, for g € SL2(AF), j'(9) = ( g . )
3
There are two standard unipotent radicals of maximal parabolic subgroups of Sp,:

1z
e {('2) 5o 5-(Cew

Proposition 17

(a) The constant term of elements of oy (7) along R is a sum of certain integrals
of elements of afpl)(v').

(b) The constant term of elements of oy (T) along S is a sum of certain integrals
of elements of afpo) (7).

We conclude that if 01(;)(7') = 0, then the elements of oy (7) are cuspidal, in the
sense that their constant terms along unipotent radical are all zero. Note, as we
explained before that ag))('r) is zero. In general, we may consider Ufpk)(T) for k < 2n.

This is a representation of é;)?k (AF). The constant terms of the elements of af/)k)(‘r)
along unipotent radicals turn out to be sums of elements of af/,j ) (1), for j < k. The
tower principle says that there is a first index kg, such that afpkO) (7) # 0, and then
afpk'))(r) is cuspidal. We actually prove that ko = n.

Proof of Proposition 17(a). — Put, for short e, (h) = Ress=1 E(&:,s, h). We consider

dend)= [ [ i) (@ o)dvar
Rp\Rap N2(F)\N2(AF)
1
Since R splits in Sp,, we identify R as a subgroup of Sp,. Let v = ( ‘' n E )
2
Denote the right «-translate of e, by « - e,. We have '
(4.27)  cler,¢) = / / v - er(yi(r)y™)0% -, (5 ()r)e;  (v)dvdr.
RF\RAF N2(F)\N2(AF)
Consider the group yN2j(R)y~!. We have
YN2j(Ry'=T-L-Z - X,
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1 10 x 0 =
L={("": €S X = B0 )es
= 2121 ps , = 212(]:.. p8 .

The integral (4.27) becomes

/ / / / v-er(t-£-2-2)0% . ((0, t3a, t35, tas; tae) (€a1, 0, 0,0; 0)j())

XF\Xap Zr\Zap Lr\Lap Tr\Tap

(4.28) )~ (223)dtdldzdz.

Here 3 is an isomorphism of X with R. It is the inverse to the conjugation by -~y
composed with j. The theta series in (4.28) equals

429) > 3 wy-1((m,0,0,050)(0, tsa, tas, tas; tas) (€51, 0,0, 0;0)5(2))$(0, 72).
MmeEF n€F

The inner sum in (4.29), as a function (%34, t35,t3s,t36), is left T invariant, for fixed
M, €31, . In (4.28), we may interchange the Tr\Ty, integration and the summation
over 71 € F. Now change variable t - £, 't{,, , where

by, = I; € Lp.
1
-m 01
In (4.28), ver(t- £ - z - x) becomes ve,(t - ({n,£) - z - x), and in (4.29), the inner sum

becomes Y-, - wy-1((0,t34,t35, t38; t36) (M1 +£31,0,0,0;0)5(z)p(0,72). Now collapse

fLF\LAF Ymer into fL}.*\LAF, where

L1={<i1141 )eSpg}.
We get "
wawy [ [ [ [ et w7

XF\XAF ZF\ZAF L}:-\LAF TF\TAF

: Z wy-1((0,ta4, 35, t3s; t36)(£31,0,0,0; 0)5(x))¢(0, n)dtdedzdz.
neFr

Note that
Wyp=1 (]'(.Z‘))QO(O, 77) = 90(0’ 77)~
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We can conjugate x “back to the left” in (4.30) to get

/ / / ’ye,-(u l- Z) Z w,,, 1( 0 u34,U35,U33,U36) (£31,0 0 0 O))
Zr\Zprp Ly\Lap Ur\Urg nek
(4.31) $(0, )t~ (223)dudldz,
where U = T - X. Now take ¢ = ¢ ® ¢2, ¢; € S(Ar). Denote by w:p_l the Weil
representation of éfg(Ap) -'H'(AF). Then
wy-1((0, usa, uss, uss; use) (€31, 0,0,0;0))p(0,7) = ¢1(£a1)wy,-1 ((u3a, uss; uss))P2(n)-
For such ¢, (4.31) equals
/ o1(y) / / / ’yef(uélzéy)ﬂffl((U34,u35;U36))¢_1(z23)dud€1dzdy.

Zr\Zap LY\L}, Ur\Uap

Denote

b1x (e)h) = [ 61(6)- (rer) bty
Then '
(4.32) cler, b1 ® é2)
/ / / (61 % (ver))(ul 2)8192, (i(u) )~ (225)dudtdz
Ze\Zap LY\LL, Ur\Urg

Here i(u) = (us4, uss; uge). As we did in the previous section, we can exchange in

4.32) the subgroups L! and
( group
10 %
{
V= Lo, € Spg
1

Denote Z' = VZ and let 9z denote the character of Z) »» Which is trivial on Vj,
and takes z in Za, to ¥(z23). As in (4.17), we get that

(433) cler, 1 ® 62)
= [ [ [ siredws ez (dudeae

LY, Zp\Z;, Ur\Uap

Consider the function on F\Ap

(4.34) t— / / o1 * ('ye,)(uz'mtfl)e,'ffl (i(u))p 7! (2")dudz’,
2p\Z,, Ur\Usg
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1t
1I
Ty = 4 .
¢ 1
—t1

Write the Fourier expansion of (4.34) (evaluated at zero)

(4.35) S [ e ae)@e G @)
AEF™ No(F)\Na(Ar)

where

~ A
where A\ = ( I ) See the paragraph before the statement of Proposition 17 for
\-
notation. Note that in (4.35) we did not include the constant coefficient, since it will
contain as an inner integration the constant term of ¢; * (ye,) along the radical of
the standard parabolic subgroup of Spg, which preserves a line. This constant term
is clearly zero. Note that the summand in (4.35), corresponding to A, is an element

of 01(/)1)(7') evaluated at . We proved
(4.36) cler, ¢ ® ¢2)
-3 / g1 % (ver) (WAL, (7 (u))py " (u)dude’.
ACFT LA, Na(F)\Ns(Ar)

This completes the proof of Proposition 17a. O

4.4. Vanishing of a,(pk)(T), for k < n: Case H = SOg, 7 — on GL4(AF)

Let 7 be an irreducible, automorphic, cuspidal representation of GL4(AFr), such
that LS(r, A2, s) has a pole at s = 1. Let H = SOg, and let P be the Siegel parabolic
subgroup of H. Let p,, = Indg:: 7| det -|3"%, and consider, as before, the corre-
sponding Eisenstein series E({;s,h). It has a simple pole at s = 1, as data vary.
Recall that the representation oy (7) of SOs5(AF) acts in the space spanned by the
functions

(4.37) gr— Ress=1 E(&rs, ui(g))ip;il(u)du,
N1(F)\N1(AF)
where
1 v %
(4.38) Ny = {u = ( Io v ) € sos}
¥1,-1(u) = Y(vs — vq) (for u € N3, as in (4.38)). The isomorphism i sends SO5 onto
0 0
(1h1) eSOg’h L=
0 0
0 0
As explained in Section 1.2 and in the previous section, the constant term on

0y (7) with respect to the radical (in SOs) R = {(1 I {’) € 805} is expressed in

terms of o' (r , and the constant term on o (7) with respect to the Siegel radical
P ¥
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(in SOj5) is expressed in terms of al(po) (1), which is just the Whittaker coefficient on
(Ress=1 E(&r.5,+)), and is known to be trivial. See the guidelines to the proof of
Theorem 4. We will show

Proposition 18. — For T as above, H = SOg, we have
1
aP(r) =o.
Proof. — The proof is using just the fact that at one unramified place v, 7, is self-
dual, and has a trivial central character. Fix such a place v. By Proposition 15, the
unramified constituent m, of pr, 1 = Indg: v 7,| det -|'/2 is the unramified constituent

of a representation of the form p,, ,, = Indgi v p1 © det ®pg o det. Here pu, po are
unramified characters of F};, such that 7, is the unramified constituent of the rep-
resentation of GL4(F,) induced from the standard Borel subgroup and its character
defined by

diag(ti,...,ty) — p1 (t—1—>u2 (22—)

ta t3

Q@ is the standard parabolic subgroup of H, whose Levi part is isomorphic to
GL(2) x GL(2). If Jfbl)(T) is nontrivial, then the Jacquet module with respect to
(N2(Fy), (Wu)2,-1)s INa(F), ()2, -1 (Pu1,uz) is montrivial. Thus, the proposition will
be proved if we show that

(4'39) JNz(Fu)v(wu)z,—l(thMz) =0.

We use Bruhat theory. Let ()2 be the standard parabolic subgroup of H,
whose Levi part is isomorphic to GLgz x SO4. We first analyze Jn,(F,)(y,)2 1
(ReSQ2( F")(Indg: (F)M® 77)), where 7 = p; o det and 7 is an irreducible repre-
sentation (later to be specified as Ind pg o det). We apply Bruhat theory to study
Resg,(r,) (Indg: (F)"® 7r). This restriction has a filtration of Q2(F,) — modules,
with subquotients parametrized by Q2\H/Q2. The quotient @Q2\H is isomorphic
to the variety Y2 of two dimensional isotropic subspaces of the (column) space F®
(equipped with the quadratic form preserved by H). Let {e1,...,e4,€e_4,...,€6_1} be
the standard basis of F®. Let X(® = Span{e;,e;} be the standard two dimensional
isotropic subspace. The isomorphism Q2\H 2 Y; is given by Q2h — h~!. X (). The
orbits of Q2 in Y, are parametrized by r = dim(X N X)), and s = dim(X N(X@)1),
X €Y;. Note that 0 <7 < s < 2. A representative is

Xr,s = Span{ela < €r3€3y . €245 € (pf1)y e ’e—(2+r—s)}'
Choose (a Weyl element, for example) wy,; € H, such that w;}X @ = X, ,. The
corresponding subquotients for Resg,(r, ) (Indg: (F) MO 7r) are

_ Q2(F,) 3 \wr,  s—1/2
' = Ind® w;;Q2(Fy)wr,an2(FV)(n®7r . 552)10 .5m1/2,
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(The factor §~1/2 appears in order to make the induction normalized.) Consider, for
example, the case r = 1, s = 2. Here, we have
(4.40)

a11 a2 11 12 T13 Ti4 Y11 Y12
’
aze 0 x22 T23 T24 Y21 Yy
!
b11 bi2 biz bia Ty, Ty
/ !
c11 c12 by Taz Tis

-1 — —
w1,2Q2(FU)w1,2 n QZ(FV) = c21 C22 b’121 Tho Tiho (S HF,, = Lio
by 0 =y
‘Iz—zl a’ul
an

The representation {120 = (@ - 6&{2 ?)w12 takes elements of the form (4.40) to

ci1 0 zh3 ciz2
(4.41) |a11b11 /21 (a11b11)7 (zgz 0 at 133> :

c21 0 x5, co22
Let us prove that Jn,(r,),(4,)s . (F1,2) = 0. Fit I'; 2 into an exact sequence 0 —
Sy — I'1,2 — S1 — 0, where S; is the subspace of functions in I'; 2 supported inside
Q, which consists of all matrices (az :*) in Q2(F,), such that a lies in the open
Bruhat cell of GL2(F,). The support of these functions (in T'y2) is compact modulo
L12(F,). S; is the space of smooth functions on the complement of 2 inside Q2(F,),
where left Ly o(F,) — translations act by (4.41), and the support is compact modulo
L15(F,). Thus, we have to show that Jy,(r,),(y, (S;)=0;i=1,2. Let f € S1.
We show that

(4.42) / @)ata@f (220 ("% Ym)an =0,
No(Pr M)
for all k € SO4(OF,),t € F,;

)2,-1

1
The support of the integrand in ¢t depends on f, so we may take M large enough so
that, in the support of f,

(I2 k 12) z2(t) (Iz k! 12) € No(P;M),

for all k € SO4(OpF,). Making a change of variable in n, we may assume that ¢ = 0
in (4.42). Consider now the subintegration in (4.42) on z1(2), |2| < ¢}, where

11
z1(z) = ( Ia ) .
1 -2
1
It gives

[ (e (" )mae= ([ wted)s(("e, )n) o

|z|<qd! |z|<q}
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Here we used that & 2(z1(2)) = id. This shows that Jn,(r,) (). T1,2) = 0.
Let f € So. We have to show that

(143 [ @t (eao (7 ) axo)n)in =0,
No(Py ™M)

where w = (;1). As before, we may assume that t = b = 0. Now consider the

subintegration on
1
1u *
y(u)z( 1411' )
1

The corresponding du-integration (with b = 0) is

Lgukr 0
U (P U3)f( ( I 0

ug(P;M)4

This proves that Jy,(F,),(y,).—, (S2) = 0. Similar arguments imply that r cannot be
1 or 2. Thus, r = 0. Similar arguments imply also that for r = 0, s cannot be 0 or 2.
Put wo,1 = w;y. Then

a;; 0 0 0 O x4 O

a1 a22 0 =z22 T23 T24 Y
b1y biz biz bis o, ziy

c11 c12 by Thg

Ty

(444) wlezwl N Qz = c21 c22 b,

-1
azy O

’ -1
a21 @11

The representation ;1 = ((n® m) - 55/2 ®)1 takes an element of the form (4.44) to

b b a22 23 T22 Y
115/2 11\ _w 22 C21 Thy
(4.45) |—I 231 ("")7‘- c1z e11 zo3 | -
a11 ai 1
22
1
Herew= (1

1
As before, we consider appropriate analogs S}, S5 of the spaces S;, S2, and it re-
mains to show that

(4.46) / (wy);l_l(n)f( (a" o ) n)dn =0,
Nz (Po M)

for k € SO4(OF,), and oy = Iz, a2 = (; 1); f isin S7, S} (respectively). In case i = 2,
we consider the subintegration on x;(2), |z| < ¢¥, and we get (flzlqu ¥, 1(2)dz) -
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a2
f ( ( k iy ) n) = 0. In case i = 1, again consider y(u), and the subintegration
2

(4.47) / ¥ (ug — u3) f ((12 k 12) y(u)n) du
ug(Py M)4
- [ - wr( ) (" )n)du

ue(PyM)4

Now take in (4.47) the subintegration on u = (0, ug, us, ua)k, |ui| < gM. We get

(4.48) | / ¢;1(u & <_§1) )7r“’ (1 T :E;g) f( (12 k Iz)n)du.
ui|<gM

*
*

0
We must have k (_11 = *>, otherwise the duy4-integration results in zero.

0 0
For such k, the vanishing of (4.48) follows from the fact that, by induction, 7 =

IndsQ(Z?g;) w2 odet has zero Jacquet modules with respect to Nj = {( 'y 1;:' ) € 304},

1 v %
and characters ( I v’) — 1(avy — a”tvg) (which in this case is easy to see, since
1

these are Whittaker characters). This completes the proof of Proposition 18. O

4.5. Unramified parameters of oy(7): Case H = SOg,G = SOs and 7 on
GL4(AF). — We keep the notation of Section 4.4. From the explanations at the
beginning of Section 4.4, it is clear that the next proposition determines the unramified
parameters of (any summand of) oy (7) at the place v.

Proposition 19. — We have an isomorphism of SOs(F),)-modules

INL(F), ()11 (Indgj{m(ul o det ®uz 0 det)) =~ Indp)* "™ i © o

Here B is the standard Borel subgroup of SOs.

Proof. — The method is the same as in Section 4.4. Again consider n = 11 o det on
GLo(F,) and 7 = Ind%c,:?g')’) uo o det. Let @1 be the standard parabolic subgroup of

H which preserves an (isotropic) line. We analyze Resg, (r,) (Indg: (F)N® 7r) using

Bruhat theory. So consider @2\ H/Q:. Identify, as in Sec.4.3, Q2\H = Y. The orbits
of Q1 in Y3 are determined by f = dim(XNX®), and s = dim(XN(XM)1), X € Ya.
Here X(1) = Fe;. Note that 0 <r <1< s<2.

If » =1, then e; € X, and since X is isotropic, we get that X C (X(l))l, and
so s = 2. Thus, we may take as a representative X = X?). The corresponding
subquotient of Resq, (r,) (Indg:(Fu) ne 7r) is

c F, _
Tiz = Ind" Q0 ) ) (n® ) - 67672,
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We have
ay * *x * *
az * * *
(4.49) QiNQy= ”%il * | €eH|beS0syp,
al_1

and (n®) - 65/22 takes an element of the form (4.49) to
laraz|®/? 1 (a1a2)m (D).
Clearly, for f in the space of T} 2, and M > 0,
-1 1 _
(4.50) / (wu)l,_l(n)f( ( K 1) n)dn =0,
Ni(P; ™M)

for any k € SOg(F,). Indeed, f( (1 k 1) n) =f (1 k 1), for any n € Ny(F,). This

shows that Jn, (r,), ()11 (T1,2) = 0. Thus, we may assume that r = 0. If s = 2, we

may take the representative X = Span{es, e3}. The corresponding representative in
I

3
Q2\H/Q; can be taken to be wy = (1 . 1) (so that wy; ' X @ = X).
3

Let T = Ind® @1(») (n® W)égzz)“’?é_l/z. We have

wz Q2 (F,)w2NQ1(F,)
cE 802
cH ’ :
1) be GL, }

a0z 2

1 by v

(451) Wqy QawaNQq = { ( cy
The representation & = ((n ® 7r)¢51Q/2 %)w2 takes an element of the form (4.51) to

*
o8 X o

b

a

(4.52) | det b|5/2 1y (det b)m* (“ p ;i’l ) ,

1
where w = (1 1 ) Consider, for f in the space of T2, M > 0, and k € SO(0,),
1

(4.53) / @t ((Tx ) n)dn.
Ny(P;M)

1 v *x

Consider the subintegration of (4.53) on n(v) = ( Is vl' ), where v = (0,0, us, . . ., ug)k,
lu;| < ¢M. By (4.52), we get
0

1 uz ug —uzug

(4.54) / w;l((o,o,ug,...,uﬁ)k i )w‘“( Lo :5;)f((‘kl)n)du.

1

[uil<gM
0
We must have o
. *
. *
1 _ *
k -1 - * )
0
: 0
0

SOCIETE MATHEMATIQUE DE FRANCE 2005


file:///CL1a2

388 D. SOUDRY

otherwise the d(us, ug)- integration results in zero. For such &,

0
. *
. *
kl == ] lal=1
0
: 0
0

Thus (4.54) becomes (up to ¢2M)

1 ug uqg —ugug
(4.55) / ¥y (aus — a”ug)n ( T o —u )f( (k) n)d(us, us),
lui|<gd! !
which is zero for M large enough, exactly as in the end of Sec.4.3. (This is a place
to apply induction. Recall that 7 = Indz(;zg')’) uo o det.) Note that k,n,a may be

taken in compact sets, which depend on f only. Finally, let » = 0, s = 1. Here, a

. o 1 [
corresponding representative is wy = (1 Is ) L . Let
I3
_ cQ1(Fy) L 51/2\wy 5—1/2
T =Ind® Lo g, (h sy (k) (1 ® ) - 0, )™ 71
We have
a00 x 0
by z '
(456) wl‘lewl n@, = c y'l 0 €eH I c € SOy
b= o
-1

a

The representation §; = (n® w) - (5(12/2 %)w1 takes an element of the form (4.56) to
b|5/2 (b
wsn ()
1
where 7¢(c) = w(ece™1), e = ( = ) Using the same methods as before, we prove
1

~ 1. 1505(F,)
TN E 2 (T1) ZIdg et i @ 7[5 s

where @] is the standard parabolic subgroup of SOs, which preserves an isotropic
. . . s ~ T.. 1503(F,) _ 1..1S04(F,)

line. Finally, it is easy to see that 7°| s0s(F,) = Ind B, " p2, for m= IndQ’zzF.,) U2 O
det. Here B’ is the standard Borel subgroup of SO3. This completes the proof of

Proposition 19. O
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