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A GUIDE TO THE REDUCTION MODULO p OF 

SHIMURA VARIETIES 

by 

Michael Rapoport 

Abstract. — This is a survey of récent work on the réduction of Shimura varieties 
with parahoric level structures. 

Résumé (Un guide à la réduction modulo p des variétés de Shimura). — Cet article est 
un survol de résultats sur la réduction des variétés de Shimura à structure de niveau 
parahorique. 

This report is based on my lecture at the Langlands conférence in Princeton in 1996 

and the séries of lectures I gave at the semestre Hecke in Paris in 2000. In putting 

the notes for thèse lectures in order, it was my original intention to give a survey of 

the activities in the study of the réduction of Shimura varieties. However, I realized 

very soon that this task was far beyond my capabilities. There are impressive results 

on the réduction of "classical" Shimura varieties, like the Siegel spaces or the Hilbert-

Blumenthal spaces, there are deep results on the réduction of spécifie Shimura varieties 

and their application to automorphic représentations and modular forms, and to even 

enumerate ail thèse achievements of the last few years in one report would be very 

difflcult. Instead, I decided to concentrate on the réduction modulo p of Shimura 

varieties for a parahoric level structure and more specifially on those aspects which 

have a group-theoretic interprétation. Even in this narrowed down focus it was not 

my aim to survey ail results in this area but rather to serve as a guide to those 

problems with which I am familiar, by putting some of the existing literature in its 

context and by pointing out unsolved questions. Thèse questions or conjectures are 

of two différent kinds. The first kind are open even for those Shimura varieties which 

are moduli spaces of abelian varieties. Surely thèse conjectures are the most urgent 
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272 M. RAPOPORT 

and the most concrète and the most tractable. The second kind are known for thèse 

spécial Shimura varieties. Here the purpose of the conjectures resp. questions is to 

extend thèse results to more gênerai cases, e.g. to Shimura varieties of Hodge type. 

As a gênerai rule, I wish to stress that I would not be surprised if some of the 

conjectures stated here turn out to be false, especially in cases of very bad ramification. 

But I believe that even in thèse cases I should not be too far off the mark, and that a 

suitable modification of thèse conjectures gives the correct answer. My motivation in 

running the risk of stating précise conjectures is that I wanted to point out directions 

of investigation which seem promising to me. 

The guiding principle of the whole theory presented here is to give a group-

theoretical interprétation of phenomena found in spécial cases in a formulation which 

makes sensé for a gênerai Shimura variety. This is illustrated in the first section which 

treats some aspects of the elliptic modular case from the point of view taken in this 

paper. The rest of the article consists of two parts, the local theory and the global 

theory. Their approximate contents may be inferred from the table of contents below. 

I should point out that the development in thèse notes is very uneven and that 

sometimes I have gone into the nitty gritty détail, whereas at other times I only give 

a référence for further development s. My motivation for this is that I wanted to give 

a real taste of the whole subject — in the hope that it is attractive enough for a 

student, one motivated enough to read on and skip parts which he finds unappealing. 

In conclusion, I would like to stress, as in the introduction of [R2], the influence of 

the ideas of V. Drinfeld, R. Kottwitz, R. Langlands and T. Zink on my way of thinking 

about the circle of problems discussed here. In more récent times I also learned enor-

mously from G. Faltings, A. Genestier, U. Gôrtz, T. Haines, J. de Jong, E. Landvogt, 

G. Laumon, B.C. Ngô, G. Pappas, H. Reimann, H. Stamm, and T. Wedhorn, but the 

influence of R. Kottwitz continued to be ail-important. I am happy to express my 

gratitude to ail of them. I also thank T. Ito, R. Kottwitz and especially T. Haines for 

their remarks on a preliminary version of this paper. I am grateful to the référée for 

his careful reading of the paper and his helpful remarks. 

During the semestre Hecke I benefited from the financial support of the Ministère 

de la Recherche and the Humboldt Foundation (Prix Gay-Lussac/Humboldt). 
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1. Motivation: The elliptic modular curve 

In this section we illustrate the problem of describing the réduction modulo p 

of a Shimura variety in the simplest case. Let G = G L 2 and let (G, {h}) be the 
usual Shimura datum. Let K C G ( A / ) be an open compact subgroup of the form 
K = K p - K p where K p is a sumciently small open compact subgroup of G ( A ^ ) . Let 
G = G 0 Q Q P . We consider the cases where K p is one of the following two parahoric 
subgroups of G(QP), 

(i) K p = K p ^ = G L 2 ( 7 i p ) (hyperspecial maximal parahoric) 

(ii) K p = = {ge G L 2 ( Z P ) ; g = (5 : ) mod p} (Iwahori) 

The corresponding Shimura variety Sh(G, h)jç is defined over Q. It admits a model 

S h ( G , / I ) K over SpecZ( p) by posing the following moduli problem over (Sch/Z^): 

(i) an elliptic curve E with a level-ifp-structure. 

(ii) an isogeny of degree p of elliptic curves E\ —> E2, with a level-Kp-structure. 

The description of the point set Sh(G, h)j^(Fp) takes in both cases (i) and (ii) the 
following form, 

(î.i) Sh(G,/i)K(F p) - ] J M Q ) \ X ( ¥ > k p x X'/K*. 

Here the sum ranges over the isogeny classes of elliptic curves and 1^(Q) = EndQ(E)x 

is the group of self-isogenies of any élément of this isogeny class. Furthermore, XP/KP 

may be identified with G(AP

C)/K
P, with the action of i^(Q) defined by the £-adic 

représentation afforded by the rational Tate module. The set X(<P)KP is the most 

interesting ingrédient. 

Let O — W(FP) be the ring of Witt vectors over Fp and L = Pract O be its fraction 

field. We dénote by a the Probenius automorphism of L. Let N dénote the rational 

Dieudonné module of E. Then TV is a 2-dimensional L-vector space, equipped with 

a cr-linear bijective endomorphism F (the crystalline Frobenius). Then in case (i) 
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274 M. RAPOPORT 

(hyperspecial case), the set X(<p)K(i) has the following description 

X((p) a) = {A; pA g FA g A} 
(1.2) 
V } = {A;inv(A, FA) = fj,}. 
Here A dénotes a O-lattice in N. The set of O-lattices in N may be identified with 
G{L)/G(0). We have used the elementary divisor theorem to establish an identifica­
tion 

(1.3) inv : G(L)\[G(L)/G(0) x G(L)/G(0)] = G(0)\G(L)/G(0) ~ Z2/S2. 

Furthermore [i — (1,0) € Z 2 / S 2 is the conjugacy class of one-parameter subgroups 

associated to {h}. 

In case (ii) (Iwahori case), the set X(ip)K{a) has the following description, 

(1.4) X((p)K(ii) = {pA2 g Ai g A 2 ; pAi g FAi C A i ,M 2 g FA2 C A 2 } . 

Here again Ai, A 2 dénote O-lattices in N. 

In either case X((P)KP is equipped with an operator $ which under the bijection 
(1.1) corresponds to the action of the Frobenius automorphism on the left hand side. 

Let us describe the set X((p)K(u) in the manner of the second line of (1.2). The 

analogue in this case of the relative position of two chains of inclusions of CMattices 

in N, pA2 ^ Ai ^ A 2 and pA2 ^ Ai ^ A 2 is given by the identification analogous to 

(1.3), 

(1.5) inv : G(L)\[G(L)/G0(O) x G(L)/G0(O)} = G0(O)\G(L)/G0(O) —> Z 2 x S2. 

Here GQ{0) dénotes the standard Iwahori subgroup of G{0) and on the right appears 

the extended affine Weyl group W of GL2. It is now a pleasant exercise in the 

Bruhat-Tits building of PGL2 to see that 

(1.6) {pA 2 c À ! c Â 2 ) PK'2 c A ; C M2. p A l c A ; C A L , PA2 C A' 2 C A 2 } 

= {(9,g') € (G(L)/G0(O))2; mv(g,g') € A d m ( M ) } . 

Here Adm(/i) is the following subset of W, 

(1-7) Adm(/i) = {*(i,o),*(o,i),*(i,o) • « } • 

Here £(1,0) a n d ^(0,1) dénote the translation éléments in W = Z 2 x S2 corresponding 

to (1,0) resp. (0,1) in Z 2 , and s dénotes the non-trivial élément in S2. 

For w £ W and any cr-linear automorphism F of AT, let us introduce the affine 

Dcligne-Lusztig variety, 

(1.8) XW{F) = {g G G(L)/G0(O); inv(g, Fg) = w}. 

Then we may rewrite (1 .4) in the following form, where Fv dénotes the crystalline 

Frobenius associated to <p, 

(1.9) *(¥>)*(«> = U XW(FV). 
p w€Adm(n) 
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REDUCTION OF SHIMURA VARIETIES 275 

This is analogous to the second line in (1,2) which may be viewed as a generalized 

affine Deligne-Lusztig variety corresponding to the hyperspecial parahoric K p \ It 

should be pointed out that in this spécial case the union (1.9) is spurious: only one 

of the summands is non-empty, for a fixed isogeny class (p. For more gênerai Shimura 

varieties this is no longer true. 

The model Sh(G, h)jç is smooth over Spec Z( p ) in the hyperspecial case, but it has 

bad réduction in the Iwahori case. In the latter case there is the famous picture of 

the spécial fiber where two hyperspecial models meet at the supersingular points. 

Such a global picture is not known in more gênerai cases. The nature of the 

singularities in the spécial fiber in the Iwahori case can be understood in terms of the 

associated local model. 

We consider the lattice chain pA2 § Ai C A 2 in Q 2 , where A2 = Z 2 and Ai = 

pZp 0 Zp. Let Mloc(G,p)K(u) be the join of P(Ai) and P ( A 2 ) over Z p (= scheme-

theoretic closure of the common generic fiber P g p in P(Ai) X s p e c z p P ( A 2 ) ) . Then 

we obtain a diagram of schemes over Spec Zp 

Sh(G, / i ) K 

(1.10) 7T 

Sh(G, / i ) K Mloc(G,fj)Ktii). 

Here 7r is the principal homogeneous space under the group scheme G over Spec Zp 

attached to K p ^ (with G(ZP) = K p 1 ^ ) , which adds to the isogeny of degree p, E\ —• 

E2 over a base scheme S, and its level-Xp-structure, a trivialization of the DeRham 

homology modules, 

^ D R ( ^ I ) > HBR(E2) > HvR(Ei) 

(1.11) l l l 

Ai ® Z p Os • A 2 ^ Z p Os > Ai 0 Z p Os. 

The morphism À is given by the Hodge filtration of the DeRham homology. 

The diagram (1.10) can be interpreted as a relatively representable morphism of 

algebraic stacks 

(1.12) A : Sh(G, / i ) K — » [ A ^ l o c ( G , / i ) ^ ) / ^ ] . 

This morphism A is smooth of relative dimension dimC/ = 4. The analogue of A in 

the hyperspecial case is a smooth morphism of relative dimension 4, 

(1.13) A : Sh(G, h)K — [ P Z p / G X 2 Z p ] . 

At this point we have met in this spécial case ail the main actors which will ap-

pear in the sequel: the admissible subset of the extended affine Weyl group, affine 

Deligne-Lusztig varieties, the sets X(<P)KP (later denoted by X( / i , 6 )x ) , local models 
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276 M. RAPOPORT 

etc. Thèse définitions can be given purely in terms of the p-adic group GL2 and its 

parahoric subgroup Kp. This will be the subject matter of the local part (sections 

2 - 6 ) . On the other hand, the enumeration of isogeny classes and the description ( 1 . 1 ) 

of the points in the réduction are global problems. Thèse are addressed in the global 

part (sections 7 - 1 0 ) . 

We conclude this section with the définition of a Shimura variety of PEL-type. The 

guiding principle of the theory is to investigate the moduli problems related to them 

and then to express thèse findings in terms of the Shimura data associated to them. 

Let B dénote a finite-dimensional semi-simple Q-algebra, let * be a positive in-

volution on B, let V ^ ( 0 ) be a finitely generated left B-module and let (, ) be a 

non-degenerate alternating bilinear form (, ) : V x V —> Q of the underlying Q-vector 

space such that (bv, w) = (v, b*w) for ail v, w G V, b G B. We dénote by G the group 

of IMinear symplectic similitudes of V. This is an algebraic group G over Q. We 

assume that G is a connectée, hence reductive, algebraic group (this essentially ex-

cludes the orthogonal case). We let h : C x —> G(R) be an algebraic homomorphism 

which defines on VR a Hodge structure of type (—1,0) -h ( 0 , — 1 ) and which satisfies 

the usual Riemann conditions with respect to (, ) , compare [W], 1.3.1. Thèse data 

define by Deligne a Shimura variety Sh(G, h) over the Shimura field E. 
We now fix a prime number p, Let G — G 0 Q QP. We consider an order OB 

of B such that OB ® Z P is a maximal order of B <g> QP. We assume that OB <S> Z P 

is invariant under the involution *. We also fix a multichain C of OB <S> Zp-lattices 

in F (g) Q p which is self-dual for (, ) , [RZ2]. Let K = Kp be the stabilizer of C in 

G ( Q P ) . Most of the time K is a parahoric subgroup. 

Finally we fix an open compact subgroup Kp C G(A^), which will be assumed 

sufficiently small. Let K = Kp • Kp. 

We fix embeddings Q —» C and Q —• Q p . We dénote by p the corresponding place 

of E over p and by E = E p the complet ion and by K, the residue field of OE- We 

then define a moduli problem S h ( G , / I ) K over Spec0#, Le., a set-valued functor, as 

follows. It associâtes to a scheme S over OE the following data up to isomorphism 

([RZ2], 6 . 9 ) . 

( 1 ) An £-set of abelian varieties up to prime-to-p isogeny, A = {A\] A G £ } . 
( 2 ) A Q-homogeneous principal polarization À of the £-set A. 

( 3 ) A Kp-level structure 

rj:Hi(A,Ap

f)~V®Ap

f moàKp, 

which respects the bilinear forms on both sides up to a constant in ( A P c ) x . 

We require an identity of characteristic polynomials for each A G C, 

char(6;LieAA) = char(6; V^ 0 ' " 1 ) , b G 0B-
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REDUCTION OF SHIMURA VARIETIES 277 

This moduli problem is representable by a quasi-projective scheme whose generic fiber 

is the initial Shimura variety Sh(G, / I ) K (or at least a finite union of isomorphic copies 

of Sh(G,ft)K). 

However, contrary to the optimistic conjecture in [RZ2], this does not always 

provide us with a good intégral model of the Shimura variety, e.g. flatness may fail. 

However, if the center of B is a product of field extensions which are unramified at p 

and excluding the orthogonal case as above, then Sh(G, / Ï ) K is a good intégral model 

of the Shimura variety [Gl], [G2]. For most of the remaining cases there is a closed 

subscheme of the above moduli space which is a good model [PR1], [PR2]. However, 

thèse closed subschemes cannot be defined in terms of the moduli problem of abelian 

varieties. Still, they can be analyzed and can serve as an expérimental basis for the 

prédictions which are the subject of this report. 

PART I 
LOCAL THEORY 

2. Parahoric subgroups 

Let G be a connected reductive group over a complète discretely valued field L 
with algebraically closed residue field. Kottwitz [K4] defines a functorial surjective 

homomorphism 

(2.1) KG ' G(L) —• X*(Z(G)T). 

Here I = Gal(L/L) dénotes the absolute Galois group of L and Z(G) dénotes the 

center of the Langlands dual group. For instance, if G = G L n , then the target group 

is Z and KG (g) = orddetg; if G = G5p2n> then again the target group is Z and 

KG{Ç) = ordc(#), where c(g) € LX is the multiplier of the symplectic similitude g. 

Let B = B(G&d,L) dénote the Bruhat-Tits building of the adjoint group over L. 
Then G(L) acts on B. 

Définition 2.1. — The parahoric subgroup associated to a facet a of B is the following 

subgroup of G(L), 

Ka = Fix(a) D Ker KG-

If a is a maximal facet, Le. an alcove, then the parahoric subgroup is called an Iwahori 

subgroup. 

Remarks 2.2 

(i) We have 

Kga = gKag-\ geG(L). 

In particular, since ail alcôves are conjugate to each other, ail Iwahori subgroups are 

conjugate. 
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278 M. RAPOPORT 

(ii) This notion of a parahoric subgroup coincides with the one by Bruhat and Tits 
[BT2], 5.2.6., cf. [HR]. Let OL be the ring of integers in L. There exists a smooth 
group scheme G a over SpecOz,, with generic fiber equal to G and with connected 
spécial fiber such that 

Ka = GA(0L). 

(iii) Let G = T be a torus. Then there is precisely one parahoric subgroup K of 
T(L). Then 

K = T°(OL). 

Here T° dénotes the identity component of the Néron model of T. For the group of 
connected components of the spécial fiber of the Néron model one has^1) 

n0(T)=X*(T)I. 

2.3. Let S be a maximal split torus in G and T its centralizer. Since by Steinberg's 
theorem G is quasi-split, T is a maximal torus. Let N = N(T) be the normalizer 
of T. Let 

(2.2) KT : T(L) — X*(TT) = X . ( T ) j 

be the Kottwitz homomorphism associated to T and let T(L)i be its kernel. The 
factor group 

(2.3) W = iV(L)/T(L)! 

will be called the Iwahori Weyl group associated to S. It is an extension of the relative 
Weyl group 

(2.4) W0 = N(L)/T(L). 

Namely, we have an exact séquence induced by the inclusion of T{L)\ in T(L), 

(2.5) 0 — • X * ( T ) 7 — • W —• WQ — > 1. 

The reason for the name given to W cornes from the following fact [HR]. 

Proposition 2.4. — Let Ko be the Iwahori subgroup associated to an alcove contained 
in the apartment associated to the maximal split torus S. Then 

G(L) = K0 • N(L) • Ko, 

and the map KonKo » n G W induces a bijection 

Ko\G(L)/K0 ~ W. 

More generally, let K and K' be parahoric subgroups associated to facets contained in 
the apartment corresponding to S. Let 

WK = (N(L) H K)/T(L)U resp. WK' = (N(L) fl Kr)/T{L)i. 

^See Notes at the end, n° 1 
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REDUCTION OF SHIMURA VARIETIES 279 

Then 

K\G{L)/K' ~ WK\W/WK'. 

For the structure of W we have the following fact [HR]. 

Proposition 2.5. — Let x be a spécial vertex in the apartment corresponding to 5 , and 

let K be the corresponding parahoric subgroup. The subgroup WK of W projects 

isomorphically to the factor group WQ and the exact séquence (2.5) présents W as a 

semidirect product, 

W = W0 K X * ( T ) I . 

Sometimes for v G X*(T)i we write t v for the corresponding élément of W. 

Let Ssc resp. T s c resp. iV s c be the inverse images of SflGder resp. Tf lGder resp. Nf) 

Gder in the simply connected covering Gsc of the derived group Gder- Then Ssc is a 

maximal split torus of G s c , and T s c resp. Nsc is its centralizer resp. normalizer. Hence 

(2.6) Wa = N^/T^L^ 

is the Iwahori Weyl group of G s c • This group is called the affine Weyl group associated 

to S, for the following reason. Let us fix a spécial vertex x in the apartment corre­
sponding to S. Then there exists a reduced root System X E such that Proposition 2.5 
(applied to G s c instead of G) présents Wa as the affine Weyl group associated (in the 
sensé of Bourbaki) to 

(2.7) Wa = W{xZ)KQv(xX), 

cf. [T], 1.7, compare also [HR]. In other words, we have an identification Wo ~ 

W ^ E ) and X*(Tsc)i ~ QV(XY,) compatibly with the semidirect product décomposi­
tions (2.7) and Proposition 2.5. In particular, Wa is a Coxeter group. 

There is a canonical injective homomorphism Wa —* W which induces an injection 
from X*(Tsc)i into X*(T) j . In fact, Wa is a normal subgroup of W and W is an 
extension, 

(2.8) i _ f W - o _ > w r _ > x . ( T ) / / X . ( r 8 C ) , — 1 . 

The affine Weyl group Wa acts simply transitively on the set of alcôves in the apart­

ment of 5, cf. [T], 1.7. Since W acts transitively on the set of thèse alcôves and Wa 

acts simply transitively, W is the semidirect product of Wa with the normalizer Q of 

a base alcove, Le. the subgroup of W which préserves the alcove as a set, 

(2.9) W = Wa x n. 

In the sequel we will often identify SI with X*(T)I/X*(TSC)I. 
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Remarks 2.6 

(i) Let K = Ka be a parahoric subgroup and G = Ga the corresponding group 

scheme over Spec OL, cf. Remarks 2.2, (ii). Then WK can be identified with the 

Weyl group of the (maximal reductive quotient of the) spécial fiber G = G ®oL h °f 

the group scheme G-
(ii) Assume in Proposition 2.5 above that # is a hyperspecial vertex. In this case 

S = T and WQ is the absolute Weyl group of G. In this case we have 

W = W0 * X * ( S ) 

and, since WK = Wo, 

WK\W/WK = X*(S)/W0. 

3. /i-admissible and /i-permissible set 

We continue with the notation of the previous section. In particular, we let N 

resp. T be the normalizer resp. centralizer of a maximal split torus S over L. Let 

(3.1) W = N(L)/T(L) 

be the absolute Weyl group of G. Then HX{I,T) = (0) and W0 = W1 is the set of 

invariants. 

Let { / /} be a conjugacy class of cocharacters of G over L. We dénote by the same 

symbol the corresponding VF-orbit in X*(T). We associate to {/i} a Wo-orbit A = 

A ( { / / } ) in X*(T)i, as follows. Let 5 b e a Borel subgroup containing T, defined over L 

(which exists since G is automatically quasi-split). We dénote the corresponding 

closed (absolute) Weyl chamber in X * ( T ) R by CB- Let HB G { / /} be the unique 

élément in CB- Then the Wo-orbit A of the image À of JJLB in X*(T) j is well-determined 

since any two choices of B are conjugate under an élément of Wo. 

Lemma 3.1. — AU éléments in A are congruent modulo X*(Tsc)i. 

Proof. — Let us fix a spécial vertex x and let us identify Wo with W(XY,), cf. (2.7). 

We claim that for any À G X*(T) j and any w G Wo we have 

(3.2) w ( À ) - À G Q T E ) . 

By induction on the length of w (w.r.t. some ordering of the roots) we may assume 

that w = sa is a reflection about a simple root a £XT,. But 

(3.3) s a ( \ ) - \ = -(\,a)-a\ 

The assertion will follow, once we show that (À, a) is an integer. This follows, since 

the image of X*(T)i in X*(T a d)/ <S> R = X*(S8C) 0 R lies in the lattice of coweights 

P v for XE (this holds since P v acts simply transitively on the set of spécial vertices 

in the apartment and thèse are preserved under the subgroup X*(T)i of W, compare 

[HR]). • 
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REDUCTION OF SHIMURA VARIETIES 281 

We shall dénote by r = r({fjt}) G fi the common image of ail éléments of A. Let us 
now fix an alcove a in the apartment corresponding to S. This defines a Bruhat order 
on the affine Weyl group Wa which we extend in the obvious way to the semidirect 
product W = Wa xi fi, cf. (2.9). _ 

Using this Bruhat order we can now introduce the fi-admissible subset of W [KR1], 

(3.4) Adm(/x) = {w eW\ w < A for some A G A} 

Here we consider the éléments A G X*(T) j as éléments of W (translation éléments). 
Note that by définition ail éléments in Adm(//) have image r in fi. 

More generally, let a' be a facet of a and let K be the corresponding parahoric 
subgroup. Then the Bruhat order on W induces a Bruhat order on the double coset 
space WK\W/WK characterized by 

WKwxWK < WKw2WK 

^ ^ 4=4> 3w[ G WKw1WK and 3w2€ WKw2WK such that w[ ^ w'2 

<=$• the same holds for w[ and w'2 the unique éléments of minimal length 
in their respective double cosets. 

We then define the \i-admissible subset of WK\W/WK, 

(3.6) AdmicOx) = {w G WK\W/WK; w < WK\WK for some A G A } . 

Since the élément of minimal length in a double coset is smaller than any élément in 
it, the natural map 

(3.7) Adm(/i) — > Adm K ( / i ) 

is surjective. In other words, 

(3.8) Adm K ( / i ) = image of Adm(/x) under W —• WK\W/WK. 

We next introduce another subset of W. We first note that the apartment in 
23(Gad, L) corresponding to S is a principal homogeneous space under X * ( 5 a d ) R . Let 
A ad be the image of A under the natural map 

X*(T)i —• X ^ T a d ) / —• ^ * ( T a d ) / (8) R = X*(Sad)n-

We dénote by = Conv(Aad) the convex hull of A ad. Now we can define the \x-
permissible subset of W, 

(3.9) Perm(/i) = {w G W; w = r mod Wa and w(a) — a G V^, for ail a G a} . 

Note that by convexity it suffices to impose the second condition in (3.9) for the 
vertices ai of a. Again there is a variant for a parahoric subgroup K corresponding 
to a facet a' of a. Since WK C Wa [HR], the first condition in the next définition 
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makes sensé, 

(3.10) PevmK(fi) = {w G WK\W/WK; w = r mod Wa and w(a) - a G 7^, 

for ail a € a 7 } . 

Let us check that the second condition also dépends only on the double coset of w. 

Let us write W = Wo XI X*(T)I (corresponding to the choice of a spécial vertex which 

defines the inclusion of Wa in W). If x e WK, let x — XQ • t v with XQ G Wo and 

v G X*(T)i. Then for a e af we have x(a) = a which implies Xo(a) + ^o(^) = a. 

Hence 

xw(a) — a = Xow(a) + # o ( ^ ) — a = Xow(a) — Xo(a) 

= x 0 ( i y ( a ) - a) G x 0 P M = 

which proves our claim. 

There is a natural map 

(3.11) Perm(/x) — • PermK(/x). 

However, in contrast to (3.8) it is not clear whether this map is surjective, compare 

Proposition 3.10 below. 

An important question is to understand the relation between the sets Adm(/i) and 

Perm(/x). In any case, the éléments t\ for À G A are contained in both of them. In 

fact, thèse éléments are maximal in Adm(/x). The following fact is proved in [KR1]. 

We repeat the proof. 

Proposition 3.2. — Let G be split over L. Then 

Adm(/i) C Perm(/i). 

In fact, Perm(/i) is closed under the Bruhat order. 

Note that, by the preliminary remarks above, the second claim implies the first. 

The significance of the second claim becomes more transparent when we discuss local 

models in Section 6. Namely, in many cases Perm(/i) is supposed to parametrize the 

set of Iwahori-orbits in the spécial fiber of the local model and, since the latter is 

in thèse cases a closed subvariety of an affine flag variety, it contains with an orbit 

also ail orbits in its closure. The question of when Adm(/x) coincides with Perm(/i) is 

closely related to the flatness property of local models. In ail cases known so far, this 

flatness property was established by proving that the spécial fiber is reduced and that 

the generic points of the irreducible components of the spécial fiber are in the closure 

of the generic fiber. The property Adm(/z) = Perm(/i) is supposed to mean that the 

only irreducible components of the spécial fiber are "the obvious ones" indexed by t\ 

for À G A, for which the liftability problem should be visibly true (cf. Gôrtz [G1]-[G3] 
for various cases). 

Returning to Proposition 3.2, we note that when G is split over L, we have S — T 

and the action of / is trivial. Furthermore Wo = W. The reflections in the affine 
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Weyl group will be written as sp-m where j3 is a root in the sensé of the euclidean 

root System and ra G Z. The proposition is a conséquence of the following lemma. 

Lemma 3.3. — Let V be a W^-stable convex polygon in X * ( 5 a d ) R - Let x,y eW with 

x < y. Let v G a and put vx = x(v), vy = y(v). Then 

ifVy£v + V, then vx G v + V. 

Proof. — We may assume that x = sp-^y, with £{x) < £(y). Since fi — m séparâtes 
a from y (a), it weakly séparâtes v G a from vy. Now 

(3.12) (/3-m)(v) =0(v) -m 

(3.13) (/3-m)(vy)=/3{vy)-m. 

Hence we have 2 cases: 

- First case: (3(v) ^ m ^ f3(vy) 

- Second case: (3(vy) ^ m ^ (3(v). 

Now 

(3.14) Vx = Sp-m(vy) =Vy- [(3{vy) ~ ïu}^. 

Hence in either case, vx lies on the segment joining vy with vy — [@(vy) — /3(v)] • /3V. 
Hence it suffices to show that sp(vy) + f3(v)f3v ev + V. 

But vv = p + v, with p G V, hence 

(3.15) 
s(3(Vy) = Sp(p) + Spiv) 

= s0(p)+v-/3(v)./3\ 

Hence sp(vy) + (3(v)f3v = sp{p) + v e v + V. • 

The converse inclusion is not true in gênerai. We have the following resuit which 
gêner alizés [KR1] valid for minuscule /x. 

Theorem 3.4 (Haines, Ngo [HN1]). — Let G be either GLn or GSp2n> In the case 

of GSp2n assume that the dominant représentative of {/x} is a sum of minuscule 

dominant coweights. Then Adm(/x) = Perm(/i). 

It may be conjectured that we have equality in gênerai in Proposition 3.2, if fi is a 

sum of minuscule dominant coweights. Note that, in the case of GLn, this condition 

on /i is automatically satisfied. On the other hand, Haines and Ngo ([HN1]) have 

shown by example that for any split group G of rank ^ 4 not of type An, there exists 

a dominant coweight fi such that Adm(/i) ^ Perm(/i). In [HN1] the resuit for GSp2n 

is obtained by relating the sets Adm(/x) resp. Perm(/x) with the corresponding sets 

for the "ambient" G L 2 n - It would be interesting to clarify this relation in other cases 

as well. 
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In the sequel, until Proposition 3.10, we investigate the intersections of Adm(/i) 

resp. Perm(/i) with the translation subgroup of W. Thèse results are taken from un-

published notes of Kottwitz, as completed by Haines. They will not be used elsewhere. 

Proposition 3.5 (Kottwitz, Haines). — Let G be split over L. Then 

X*(T) H Adm(/x) = X*(T) fl Penn(/x). 

To prove this we need a few more lemmas which will also be useful for other 
purposes. For the time being we assume G split. We dénote by R the set of roots and 
by resp. A the set of positive resp. simple roots for a fixed ordering. 

Lemma3.6. — Let v G X*(S). Then 

£(U) = (u12w(g))1 

where g = | E a > o a and where w e W is such that w~l(v) is dominant. In other 

words, if v is dominant then 

l(tv) = (i/, 2g) and £(tw{u)) = £(U), ail weW. 

Proof —This is an immédiate conséquence of [IM], Prop. 1.23. • 

Lemma 3.7. — For any P G R+ we have 

e(8f,)<(0\2Q). 

Proof. — It sufRces to prove the weak inequality since the left hand side is an odd 

integer and the right hand side an even integer (twice the height of the coroot /3V). 

We use induction on £(sp), the case £{sp) = 1 being trivial. So assume £(sp) ^ 3. We 

first claim that 

(3.16) 3 a G A such that £(saspsa) = £{sp) - 2. 

Indeed, let a E A such that £(sasp) = £{sp) — 1. Then also £(spsa) = £{sp) — 1. Hence 

there are 2 possible configurations of saspsa, spSa, sas@, sp in the Bruhat order, 

(1) saspsa < sasp < sp and saspsa < spsa < sp 

(2) sasp < sp and sasp < saspsa and sps^ < sp and spsa < saspsa. 

It sufRces to show that case (2) does not arise. In case 2, by Lemma 4.1 of [H3] 
we have saspsa = s p. Hence /? and sa((3) are proportional, hence s a ( P ) = The 

minus sign cannot occur since a is the only root in R+ sent by sa into R~. Hence 

sa(/3) = P , le. (a,/3 v) = ( a \ /3 ) = 0. Hence sp(a) = ae R+. But for any 7 € R+ 

and w G Wo we have w-1^) > 0 w ^ s7w. Hence sp < sasp, a contradiction. 

Now start with a satisfying (3.16) and put /?' = s a ( P ) . Then by induction hypoth-

esis 

l(8p) - 2 = £(sp<) < (p'\2g) = (p\2g) - 2(p\a). 

Hence it sufnces to show that (Pv,a) ^ 1. But if (Pv,a) ^ 0, then sp(a) = a -

(Pv,a)P G Hence, arguing as before, sp < sasp, a contradiction. • 

ASTÉRISQUE 298 



REDUCTION OF SHIMURA VARIETIES 285 

Lemma 3.8. — Let v G X*(S) be dominant. Let (3 G iï + such thatv — pv is dominant. 

Then tv-pv ^ t v in the Bruhat order on W. 

[Here the Bruhat order on W is defined by the alcove a in X * ( 5 a d ) R with apex 0 and 

bounded by hyperplanes a = 0 for a G A.] 

Proof. — We use the identity 

(3.17) sp-1-sp = tpv, peR. 

Indeed, this follows from the expression 

(3.18) s0+k{x) =x- (I3,x)l3v - k(3v, x e X . ( 5 a d ) R . 

This last identity also shows 

(3.19) U - sp = sp-m • t v , PeR, veX*(S). 

Here m = (P, v ) . 

The assertion of the lemma follows from the following two statements. 

(3.20) tv ' Sp ^ t v 

(3.21) tu-(3^ ^ t u • S p. 

Let us prove (3.20), i.e. 

(3.22) sp-m m — ((3, v). 

It is enough to show that P — m séparâtes a from tu(a). But 

(3.23) 
(p-m){a) =p(a)-m 

(p-m)(t„(a))=p(a)c[0,1]. 

Hence it suffices to know that m ^ 1. But since v — Pv is dominant we have 

(3.24) (P, is-pv)> 0, i.e. m = (p, v) > (p, pv) = 2. 

Now let us prove (3.21). It follows with (3.17) that both sides of (3.21) differ by a 

reflection, since 

(3.25) U-pv = t v • tpl = (tv • sp) • sp-i. 

Hence it sufRces to prove that £(t„-pv) < l(tv • sp). But by Lemma 3.6 we have, since 

v and v — /? v are dominant, 

(3.26) HU-pv) = l(tv) - (2g,pv) < l(tv) - £(sp) ^ t(tvsp). 

For the first inequality we used Lemma 3.7. • 

Remark 3.9 (Haines). — In the course of the proof of Lemma 3.8 we proved the chain 

of inequalities 

tjy-pV ^ tVSp ^ tV 
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which is stronger than the assertion of the Lemma. Here is a simpler argument for the 

assertion of Lemma 3.8 which does not make use of Lemma 3.7. To prove tv-pv < t v , 

it is enough to prove the inequalities 

tv-fiv ^ Sptv-pv = Sp-\tv ^ t v . 

The middle equality follows from sp-i = tpvsp, cf. (3.17). The left inequality holds 

because v — (3V dominant implies £(sptv-pv) = £(sp) + £(tv-pv). We used that for 

any dominant À and any simple reflection s we have 

(3.27) £{stx) = E i 
a > 0 

s(a)<0 

(a, A) + l| + E 
a > 0 

s(a)>0 

K",A>| 

([IM], Prop. 1.23). For the right inequality, it is enough to show that a and tu(a) 

are on opposite sides of the hyperplane fixed by sp-±. But using m = (/?, v) = 

((3, (y - p y ) + /3V) ^ 2, we have 

( / ? - ! ) ( « ) C [-1,0] 

(P - l)(tvà) = m - 1 + p(a) C [m - 1, m] C [1, oc). 

Proof of Proposition 3.5. — Let v G X*(T) D Perm(/i) and let us prove that t v is fi-

admissible. Since v is /x-permissible we have \x-vE. X * ( 5 S C ) . Let us first assume that 
! 

v is dominant. Then ^ < //, i.e. — ^ is a non-negative sum with integer coefficients 

of simple coroots. Now if À and À' are dominant coweights, then 

£{tx+\>)=£(tx) + £{tx,). 

Hence if v, p and À are dominant coweights, then 

(3.28) t v ^ t^ tx+v < tx+jj,' 

Returning to our v ^ /i, there exists a séquence of coweights v = I/Q, V\, . . . , vr = 

such that consécutive terms look like À — / ? v , À, for some positive coroot P v . Adding 

a sufficiently dominant coweight to this séquence, we can assume that ail terms are 

dominant and even regular dominant.^ This reduces us to the spécial case of Lemma 

3.8 where both v and v — P v are regular dominant. Applying Lemma 3.8 we conclude 

(3.29) U^U^-'-^tf,, 

hence t v is a-admissible. 

If v is arbitrary there exists a conjugate under w G W which is dominant, and any 

such conjugate by Lemma 3.6 has the same length. By a gênerai lemma of Haines 

[H3], Lemma 4.5, éléments of W which are conjugate under a simple reflection and of 

( 2 )This argument, due to the référée, allows us to avoid Stembridge's Lemma, e.g. [R3], used in the 

original proof. 
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the same length are simultaneously //-admissible. The resuit follows by induction by 

writing w; as a product of simple reflections and using Lemma 3.6 repeatedly/3) • 

In the preceding considérations we looked at the situation for an Iwahori sub­

group. Let us now make some comments on the subsets Adm^(^) and Perm^/i) of 

WK\W/WK for an arbitrary parahoric subgroup K, cf. (3.6) and (3.10). First of ail 

we note that as a conséquence of Proposition 3.2 and the surjectivity of (3.8) we have 

the following statement. 

Proposition 3.10. — Let G be split over L. Then 

Adm^Qx) C Perm^(/i). 

// Adm(p) =Perm(p), and Perm(/f)—^Perm^//) is surjective, then also A d m ^ / i ) — 

P e r m ^ ) . 

We note that, as proved in [KR1], ail thèse statements hold true if G is equal to 

GLn or to GSp2n and p is minuscule/4) 

Let now G be split over L, and let K be a spécial maximal parahoric subgroup. 

We may take the vertex fixed by K to be the origin in the apartment. This identifies 

(3.30) WK\W/WK = X*(S)/W = X*(S) n C, 

where X*(S) fl C are the dominant éléments for some ordering of the roots. Let us 
choose p G W(p) dominant and introduce the partial order as before (3.28) (i.e., the 
différence is a sum of positive coroots). 

Proposition 3.11. — Let G be split over L and let K be a spécial maximal parahoric 

subgroup. With the notations introduced we have 
t 

AdmK(p) = PermK(p) = {v G X*(S) f lC; ^ p } . 

Proof. — Let v G Perm/^//). Then v and p have the same image in X*(S)/X*(SSc)' 
Hence the condition on v to be /i-permissible, which says that tv{G) G V^, is équivalent 
to 

(3.31) v^p. 

Hence it sufflces to show that (3.31) implies t v ^ t^. But this is shown by the proof 
of Proposition 3.5 above. • 

Corollary 3.12. — In the situation of the previous proposition assume that p is mi­

nuscule. Then A d m ^ / i ) consists of one élément, namely p G X*(T)/W. 

Proof. — Indeed in this case the set appearing in the statement of the Proposition 

consists of p only, cf. [Kl]. • 

<3)See Notes at the end, n° 2 

(4>See Notes at the end, n° 3 
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4. Affine Deligne-Lusztig varieties 

In this section we change notations. Let F be a finite extension of QP and let L be 
the completion of the maximal unramified extension of F in a fixed algebraic closure 
F of F. We dénote by a the relative Frobenius automorphism of L/F. Let G be a 
connected reductive group over F and let G be the group over L obtained by base 
change. Let B = B(G^L) be the Bruhat-Tits building of G ad- The Bruhat-Tits 
building of G ad over F can be identified with the set of (a)-invariants in B. 

We fix a maximal split torus S of G which is defined over F (such tori exist by 
[BT2], 5.1.12.) We also fix a facet af in the apartment corresponding to S which 
is invariant under (a). Let K = K{a') be the corresponding parahoric subgroup 
of G(L). The subgroup K = K fi G (F) is called the parahoric subgroup of G (F) 
corresponding to a'. [The subgroup K détermines a' uniquely, and hence we obtain 
a bijection between the set of parahoric subgroups of G (F), the set of cr-invariant 
parahoric subgroups of G(L) and the set of cr-invariant facets of B.] From Prop. 2.4 
we have a map (with obvious notation), 

(4.1) inv: G{L)/K xG(L)/K—>WR\W/WR, 

in which the target space can be identified with the quotient of the source by the 
diagonal action of G(L). 

Définition 4.1. — Let w G WK\W/WK and b G G(L). The generalized affine 
Deligne-Lusztig variety associated to w and b is the set 

Xw(b) = {ge G(L)/K; mv(ba(g),g) = w}. 

When K is an Iwahori subgroup, in which case WK is trivial, i.e. w E W, this set is 
called the affine Deligne-Lusztig variety associated to w and b. 

Let 
Jb(F) = {he G(L); h-lba(h) = b}. 

Then Jb(F) acts on Xw(b) via g hg. 

Remarks 4.2 
(i) If b' G G(L) is cr-conjugate to 6, i.e. bf = h~1ba(h), then the map g i-+ g1 = hg 

induces a bijection 
Xw(b) — • Xw(b'). 

Sometimes it is useful to indicate the parahoric subgroup K in the notation. If 
K' C K, then, denoting by w a représentative of w in WK \W/WK , there is a 
natural map 

Xw(b)K> — • XW(V)K-
(ii) One could hope to equip Xw(b) with the structure of an algebraic variety locally 

of finite type over the residue field F of OL-
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(iii) The name given to this set dérives from the analogue where F is replaced by 

the finite field Fq,L by the algebraic closure F of Fq and where K = B(F) for a 

Borel subgroup of G defined over Fq. Then W is the géométrie Weyl group of G 

and with b = 1 we obtain the usual Deligne-Lusztig variety associated to w [DL]. In 

this analogy, Jb(F) becomes the group of rational points G(Fq). If instead of a Borel 

subgroup we consider a conjugacy class of parabolic subgroups defined over Fq, we 

obtain the generalized Deligne-Lusztig varieties, compare [DM]. 

For the classical (generalized) Deligne-Lusztig varieties, there is a simple formula 

for their dimensions. For affine Deligne-Lusztig varieties such a formula is unknown. 

In fact, it is an open problem to détermine the pairs (w, b) for which Xw(b) ^ 0.^ 

Example 4.3. — Let G = GL2 and K = K0 = standard Iwahori subgroup. We 

associate to bo its slope vector À = (Ai, À2) G Q 2 . Then Ai ^ A2 with Ai + A2 G Z 

and Ai G Z if Ai / A 2 . If Xw(b) ^ 0 then the image of w in 

X*(T)I/X*(SBC) = Z 

coincides with Ai + A 2 . Conversely, let us assume this and let us enumerate the w G W 

for which Xw(b) ^ 0 . We distinguish cases. 

(a) 6 basic, i.e. Ai = A 2 . 

(al) Ai + A2 odd. 

In this case Xw(b) ^ 0 £(w) is even and then dimXw(b) = t(w)/2. 

(a2) Ai + A 2 even. 
In this case Xw(b) ^ 0 <=ï either the projection of w to Wa is trivial, in which 

case dimX^(6) = 0, or £(w) is odd, in which case dimXw(b) = (£(w) + l ) / 2 . 

(b) b hyperbolic, i.e. Ai ^ A 2 . 

In this case Xw(b) ^ 0 either w = £ ( A I ? A 2 ) ,
 m which case dimXw(b) = 0, 

or £(w) > £{t(\1,\2)), and £(w) = Ai - A2 4- 1 mod 2, in which case dimX^(6) = 
l ( w ) - ( À i - À 2 - l ) 

2 

Before going on, we recall some définitions of Kottwitz [K2], [K4]. Let B(G) be 
the set of cr-conjugacy classes of éléments of G(L). The homomorphism K ^ , cf. (2.1), 
induces a map 

(4.2) KG:B{G)-^X*(Z{Gf). 

Here T = Gal(F/F) dénotes the absolute Galois group of F. We also recall the 
Newton map, 

(4.3) V:B{G) — 

Here the notation is as follows. Let G* be the quasisplit inner form of G. Let B* be 
a Borel subgroup of G* defined over F and let T* be a maximal torus in B*. Then 

(5>See Notes at the end, n° 4 
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2t = X * ( T * ) R and 2 l + dénotes the intersection of 21 with the positive Weyl chamber 

in X 5 ( 5 ( T * ) R corresponding to B*. For instance, if G = G L n , then the Newton map 

associâtes to b G G(L) the slopes of the isocrystal (Ln,ba) with multiplicity of each 

slope equal to the dimension of the corresponding isotypical component, in decreasing 

order. An élément b G B(G) is called basic iiVb is central, i.e. if Vb G X * ( Z ) R . This 

is the analogue for gênerai G of an isoclinic isocrystal. At the opposite extrême of 

the basic éléments of B(G) are the unramified éléments. Namely, let G = G* be the 

quasisplit, and let A be a maximal split torus contained in T*. Let b G A(L). Then 

Vb is the unique dominant élément in the conjugacy class of ord(fr) G X*(^4) C 21 (this 

follows from the functoriality of the Newton map). 

Let now { / i} be a conjugacy class of one-parameter subgroups of G. Then { / i} 
détermines a well-defined élément / i * in X * ( T * ) R lying in the positive Weyl chamber 

(use an inner isomorphism of G with G* over F). Let 

(4.4) = F : 1 V ] - 1 . £ r ( / i * ) . 

r e r y r v 

Then /I* G 2 l + . On the other hand, {ji} détermines a well-defined élément $ of 

X * ( Z ( G ) r ) . 

We define a finite subset B(G, ji) of B(G) as the set of b G B(G) satisfying the 

following two conditions, 

(4.5) nG(b) = fjfi 

(4.6) Vb^Jt, 

cf. [K4], section 6. Here in (4.6) there appears the usual partial order on 21+, for 

which v ^ v' if z/ — v is a nonnegative linear combinat ion of simple relative coroots. 

The motivation for the définition of B(G,p) cornes from the following fact. We 

return to the notation of the beginning of this section. Let us assume that G is 

quasisplit over F and G split over L, i.e., G is unramified. Let K be a hyperspecial 

maximal parahoric subgroup. Then T = S and WK\W/WK can be identified with 

X*(S)/W0. 

Proposition4.4 ([RR]). — Let p G X*(S)/W0. For b G G(L) let [b] G B(G) 6e its 

a-conjugacy class. Then 

Xli(b)^0=^[b]&B(G,li). 

This is the group theoretic version of Mazur's inequality between the Hodge polygon 
of an F-crystal and the Newton polygon of its under lying F-isocrystal.^6) 

Example 4.5. — Let G = GLn and let T = S be the group of diagonal matrices, and 
K the stabilizer of the standard lattice Op in Fn. Then, with the choice of the upper 

( 6 )See Notes at the end, n° 5 
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triangular matrices for B*, 

21+ - ( R n ) + = {1 / = ( i / i , . . . , i / n ) G R n ; i/i ^ ^ S* • • • ̂  M-

For the usual partial order on 2 l + we have ^ v' iff 
r r n n 

]T < for r = 1,..., n - 1 and ^ ^ = ^ v[. 
i=l i=l i—1 i=l 

Let 6 G G(L) and let (AT, 3>) = ( L n , 6 • a) be the corresponding isocrystal of dimension 

n. If M is an C>L-lattice in N we have 

/x(M) = inv(M,$(M)) G ( Z n ) + . 

Here (Z n )+ = Z n H (R n )+ and /x(M) = ( /xi , . . . , /x n ) iff there exists a <9L-basis 

e i , . . . , e n of M such that 7r / X l e i , . . . , 7 r M n e n is a (9^-basis of $ ( M ) . By 7r we denoted 

a uniformizer of F. Denoting by Vb the Newton vector of the isocrystal (TV, $ ) , Mazur's 

inequality states that 

Vh ^ / i ( M ) , 

i.e. [b] G £ (G, /x(M)) . 

Conjecture 4.6. — T/ie converse in the implication of Proposition 4-4 holds. 

In this direction we have the following results/7) 

Theorem4.7. — The converse implication in Proposition 4-4 holds in either of the 
following cases. 

(i) [KR2] G = GLn orG = GSp2n. 

(ii) [R3] The derived group of G is simply connected, p G X*(S)/Wo is (a)-

invariant and b G A{F), where A dénotes a maximal F-split torus in G. 

Whereas the individual affine Deligne-Lusztig varieties are very difficult to under-
stand, the situation seems to change radically when we form a suitable finite union of 
them. This is the subject of the next section. 

5. The sets X(p,b)K 

We continue with the notation of the previous section. Let {/x} be a conjugacy 

class of one-parameter subgroups of G. Equivalently, { / /} is a VF-orbit in X*(T) 

where T dénotes the centralizer of S. We again introduce the subsets Adm^(/i) 

resp. Perm^Qu) of WR\W/WR and again set K = K H G (F). 

Let b G G(L). Then we define the following set, a finite union of generalized affine 

Deligne-Lusztig varieties, 

(5.1) X(/x, b)K = {ge G(L)/K; inv(#, ba(g)) G A d m ^ / x ) } . 

( ? )See Notes at the end, n° 6 
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Let E C F be the field of définition of { / i} . Let E0 = E il L and r = [E0 : F]. 

We note that a acts in compatible way on W and its subgroup X*(T) j , and that the 

map (4.1) is compatible with this action. 

Lemma 5.1. — The subset A({/x}) of X*(T)i (defined shortly after (3.1)) is invari­

ant under ar. Hence also the subsets Perm^(/i) and Adm^(/i) of WK\W/WK are 

invariant under ar. 

Proof. — Let v G X+(T) with image [i/]/ in X * ( T ) / . Then 

* r (M/) = [rM]/, 

for r G Gal(L/F) an arbitrary lifting of ar. We take for r an extension of the 

automorphism id (g>crr of EL = E®E0 L. Then r G Gsi(L/E) and hence préserves the 

orbit {/i} in -X*(T). Furthermore r normalizes Gal(L/L). Hence if p G CB H {/x} for 

a Borel subgroup defined over L , then r(/x) G C B ' H { / /} for another Borel subgroup 

defined over L. Hence if À G X*(T)i dénotes the image of /i, then crr(À) = wo(X) 

for some wo G Wo which implies the first assertion. The second assertion follows (for 

Adm^-(p) use that w\ ^ u>2 implies <J(W\) ^ &(w2)). • 

Using this lemma we can now define an operator $ o n by 

(5.2) $(<?) = (b<T)R .g.a-r = b- a(b) • • • a^b) • ar(g). 

Let us check that $ indeed préserves the set X(/JL, O)K- We have 

inv(*(5),M*(ff)) = mv(ar(g),ar(bo(g))) 

{ ' =ar(im(g,ba(9)). 

The claim follows from Lemma 5.1. 

In the context of Remark 4.2., (ii), the set X(p, b)x may be expected to be the set 
of F-points of an algebraic variety over F, and $ would define a Weil descent datum 
over the residue field KE of E in the sensé of [RZ2]. 

As mentioned at the end of the last section, whereas it seems dimcult to understand 
when the individual affine Deligne-Lusztig varieties which make up 6)x are non-
empty, their union seems to behave better, at least in the cases when {/i} is minuscule. 

Conjecture 5.2. — Let {p} be minuscule. 

(a) X(fji, O)K 7^ 0 if and only if the class [b] ofb in B(G) lies in the subset B(G, p). 

(b) For K c K', the induced map X(p, b)x —• X(p,b)x' is surjective. 

Remark 5.3 
Suppose that K is hyperspecial. Then, if X(p,b)x ^ 0, it follows that [b] G 

B(G,p), cf. Prop. 4.4. This holds even when {p} is not minuscule. In gênerai, it 
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is not clear whether the hypothesis that { / /} be minuscule is indeed necessary in 

Conjecture 5.2.^ 

In the direction of Conjecture 5.2 we first note the following easy observation. 

Lemma 5.4. — If X(p, O)K ^ 0, then 

«(&) = / À 

Proof. — We consider the composition K = KG of KQ and the natural surjection, 

(5.4) G(L) —> X*(Z(GY) — • X*{Z(Gf). 

The map KG induces KG on B(G). If gK G X(/x, &)#, then g~1ba(g) = kiwki with 

ki, k2 G K and with w G Adm^(/ /) . Since k\,k2 G K e r w e conclude that 

K,(b) = K,(g~1ba(g)) = K(k\wk2) = K(W). 

But 

WkwWR < WRt^Wk, 

for a conjugate p! of /x. Since W ^ C Wa and Wa C KeiK (since K(GSC(L)) = 0), we 

conclude that K(W) = If p! — WO(AO for wo G Wo we have 

£ ( V ) = ^(wot^WQ1) = K{t^), 

hence K(O) = = /i11. • 

Theorem 5.5 ([KR2]). — Conjecture 5.2 holds for minuscule p, in the cases G = 

Rpf/F(GLu) and G = Rp'/F{GSp2n), where F' is an unramified extension of F. 

In fact, in loc. cit. also the case when G is an inner form of GLN is treated. 

We also mention the following case when Conjecture 5.2a) holds. 

Proposition 5.6. — Assume that G splits over L and that the center ofG is connected. 

Let b G G(L) be such that [b] G B(G)basic- Let Ko be an Iwahori subgroup defined 

over F. Then X(p, b)Ko ^ 0 [b] G B(G, p). 

Proof — It is obvious that if [b] G #(G%asic> then [b] G B(G,p) iff K{O) = / À Hence 

one implication (=ï) follows from Lemma 5.4. Now let [b] G B(G,p) fl #(G)basic-

Claim. — Let N be the normalizer of a maximal torus S which splits over L, and let 

K C G{L) be a astable Iwahori subgroup corresponding to an alcove in the apartment 

of S. Then there exists a représentative b' of [b] in N(L) which normalizes K. 

(8)See Notes at the end, n° 7. 
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Proof of Claim. — Since the center of G is connected, the map G(L) —> G a c i (£) is 

surjective. Hence we may replace G by G ad, in which case £?(G)basic = H1 (F, G). 

Hence any représentative of b defines an inner form of G which splits over L. Assume 

that there exists a représentative b' of [b] in N(L) as in the claim. Then in the 

corresponding inner form of G there exists a maximal torus which splits over F u n 

and an F-rational Iwahori subgroup fixing an alcove in the apartment for this torus. 

Conversely, if the inner form of G corresponding to a représentative of [b] has this 

property, then this représentative normalizes this maximal torus and the Iwahori 

subgroup. Now, since any inner form of G contains a maximal torus which splits over 

F u n and an F-rational Iwahori subgroup fixing an alcove in the apartment for this 

torus, such a représentative must exist, which proves the claim. • 

Let g G G(L) be such that K = gKog"1. Then gbfa(g)~l G KQWKQ, where w G W 

normalizes KQ. It follows that the component of w in Wa is trivial, hence by Lemma 

5.4, w < V If V = hbaih)-1 then ghK0 G Xw(bcr) C X(p,b)Ko. • 

The following statement yields an inequality which goes in a sensé in the opposite 

direction to that defining B(G,p). 

Proposition 5.7. — Let G be split over F. Let S be a maximal split torus over F. Let 

b G S(L). Let Ko dénote the Iwahori subgroup fixing an alcove in the apartment of B 

corresponding to S. Let w G W such Xw(ba) ^ 0, i.e., 

3 ge G(L) : g-'baig) e K0wK0. 

Then for the translation by the Newton point v\> G X*(S) fl 2 l + of b we have 

tVh < w. 

Proof. — Let A be the apartment in B corresponding to S = S<8>F I>, and let ao C A 

be the base alcove fixed by KQ, and let a = gao, for g G Xw(ba). Let a be the 

automorphism of B induced by ba. Then we have for the component wa of w in the 

affine Weyl group 

(5.5) wa = inv(a, a(a)). 

Let C be any quartier corresponding to the positive vector Weyl chamber, after a 

choice of a spécial vertex of ao. Only the germ of C will be relevant to us, i.e. C up 

to translation by an élément of X * ( S ' S C ) R . Let QA,C be the corresponding retraction, 

QA,C = QA,a' for some alcove a' far into the quartier, compare [BT1], Prop. 2.9.1. 

Then we have the following two statements. 

(5.6) a o QA,c(a) = gAiC o a(a) 

(5.7) For any two alcôves a, a', i n v ( ^ ? c ( « ) , QAfi{o!)) ^ inv(a, a'). 

To see (5.6), note that a préserves A and the germ of C, hence 

(5.8) a o gA£ o a" 1 ( a ) = Qa(A)MC) ( a ) = &A,a(C) (<*)• 
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Since a also préserves the germ of C, it follows that QA,a{C)(A) = QA,c{o)> 
To see (5.7), let a = ao, a i , . . . , at = a' be a minimal gallery T between a and a'. 

This corresponds to a minimal décomposition of x = inv(a, a 7 ) , 

(5.9) x = si"-S£. 

Here s\,..., S£ are the reflections around the walls of type o o f l o i , . . . , a^_i fl a,£ of 

the base simplex ([BT1], 2.3.10). The image of T under g = QA,C is a gallery T 

between â — g(a) and ~â! = g(af). Furthermore, the type Si,... ,se of T is identical 

with that of T ([BT1], 2.3.4.) Let us replace T by a minimal gallery. Then we can 

write x — i n v ^ ë ï ' ) as 

(5.10) x = • "Sik 

([BT1], 2.1.9 and 2.1.11). Hence x ^ x, which proves (5.7). 

We now apply this to a and a(a). But for any a contained in A we have 

(5.11) inv(ô,a(S)) = (tv)a-

Here v = X*(5 ) . Hence using (5.6) and (5.7), 

(U)a = mv(g(a),ag(a)) = inv(^(a), g(a(a)) 

< inv(a ,a(a)) = wa. 

Taking into account the définition of the Bruhat order on W, the assertion follows. • 

Whereas Proposition 5.6 concerned the case of a basic élément 6, the following 

proposition treats the other extrême, namely, unramified éléments b. 

Proposition 5.8. — Let G , S , Ko and b G S(L) be as in the previous proposition. As­

sume that Gder is simply connected. Then X(/i,b)K0 ^ 0 O [b] € B(G,/i). 

Proof. — If X(p,b)K0 7^ 0 5 there exists w G Adm(/i) such that Xw(bcr) ^ 0 . This 
implies K(W) = tî(b) and tVh ^ w, by Lemma 5.4 and Proposition 5.7. Since w ^ t^ for 

some conjugate p' of p it follows that tUb ^ t^ which implies that Wot„b Wo < Wot^Wo 
! 

and hence v\> ^ p, i.e. [b] G B{G, p). 

Conversely, let [b] G B(G, p). Hence and p are both dominant éléments in X*(S) 

with v\> ^ p. However, for any alcove a in the apartment A corresponding to S, 

we have inv(a,ba(a)) = (tVb)a, hence Xtl/b(ba) ^ 0 . Hence it suffices to see that 
j 

tVh G Adm(/i). But ^ /i, hence since Gder is simply connected, v\>^p. Therefore 

by Proposition 3.11 tVh ^ i.e. ^ G Adm(/x). • 

As mentioned above, the sets X(p, O)K should have the structure of an algebraic 

variety over the residue field F of OL, at least when {p} is minuscule. For their 

dimension there is a conjectural formula when b is basic. To state it we first mention 

the following resuit. The set B(G,p) is partially ordered (a finite poset) by [b] ^ [b'] 
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iff z/[&] ^ i/^/] in 21+. That this is indeed a partial order follows from the fact that the 

map ( ï / ,«) : B(G) -> 21+ x X * ( Z ( G ) r ) is injective [K4], [RR]. 

Theorem 5.9 (Chai [C2]). — Assume G quasisplit over F. 

(i) ylra/ subset of B(G,p) has a join, i.e. a supremum. 

(ii) Tfte poset B(G,p) is ranked, i.e. any two maximal chains between two compa­

rable éléments have the same length. 

(ni) Let [&],[&'] G B(G,p) with [b] ^ [b']. Then the length of the maximal chain 

between [b] and [bf] is given by 

i 
length([6], [b'}) = ^2([(iVi,VM) - jT)] - [<W,,F [ 6 ]> - K jï*>]). 

2=1 
Here c ^ i , . . . , ^ are the fondamental F-weights of the adjoint group G ad, 

i.e. (ui,aj) = ôij for any simple relative coroot a j . Also [x] dénotes the great-
est integer ^ x. 

We note that B(G,p) has a unique minimal élément, namely the unique basic 
élément [bo] in B(G, p), and a unique maximal élément, namely the /i-ordinary élément 

= [6^] for which = p*. Given (i) and (ii) of Theorem 5.9, the formula in (iii) 
is équivalent to 

i 
(5.12) length([6], [ h ] ) = - > > -

2=1 
The dimension formula for X(p, V)K may now be given as follows. 

Conjecture 5.10. — Let K be a hyperspecial maximal parahoric. Let [b] = [bo] G 

B(G,p) be basic. Then X(P,O)K is equidimensional of dimension 

dimX(p,b)K = (2Q,JJ?) - length([6], 
i 

= ( 2 0 , r > + £ [ - K r > ] -
2=1 

Here g dénotes the half-sum of ail positive roots^. 

The motivation for this formula cornes from global considérations connected with 

the Newton strata of Shimura varieties, compare Theorem 7.4 below. It would be 

interesting to extend this conjecture to the non-basic case ( 1 0 ) and also to the case 

when K is no longer hyperspecial. 

( Q)See Notes at the end, n° 8 

(10)Added in October 2004: In the light of récent results of Chai and Oort, and of Mierendorff, the 

following formula seems reasonable, 

£ 
dimX(n,b)K = (2g,/Z* -V[b]) + ^ [ - ( u ; * , -V[b])] 

i = l 
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6. Relations to local models 

We continue with the notation of the last two sections. In particular, G dénotes 

a connected reductive group over F and { / /} is a conjugacy class of one-parameter 

subgroups of G Again E is the field of définition of { / i } . Let K be a parahoric 

subgroup of G (F) and K the corresponding parahoric subgroup of G(L). We dénote 

by G — QK the group scheme over Op corresponding to K, cf. Remark 2.2, (ii). 

To thèse data one would like to associate the local model, a projective scheme 

A4loc = Adloc(G, H)K over Spec OE, equipped with an action of GoE->
 a t least if {/i} is 

minuscule. It is not clear at the moment how to characterize A 1 l o c or how to construct 

it in gênerai. It should have at least the following properties. 

(i) Ailoc is fiât over Spec OE with generic fiber isomorphic to G/P^. Here P^ de-

notes the variety of par abolie subgroups in the conjugacy class of par abolie subgroups 

corresponding to { / i } . 

(ii) There is an identification of the géométrie points of the spécial fiber, 

MXOC{Ke) = {ge G(L)/K; KgK G Adm^(/x)}. 

(iii) Mloc(G, fiJK is functorial in K and in G. 

Examples 6.1 

(1) If K is hyperspecial, then we set Mloc(G, H)K = GoE/V^, where is in the 
conjugacy class of parabolic subgroups in GoE corresponding to { / i } . In this case 
Mloc(G,IX)K is smooth over SpecOp- Property (ii) follows from Corollary 3.12. 

(2) Let V be an F-vector space of dimension n. Let G = GL(V) and let 
{/JL} be minuscule of weight r for some 0 ^ r ^ n, i.e. ujr G { / / } , where 
u)r(t) — diag(t, . . . , t, 1,.. . , 1) with r times t and n — r times 1. Let e i , . . . , en 

be a basis of V and, for 0 ^ i ^ n — 1, let 

Ai = s p a n ^ l ^ " ^ ! , . . . , 7 r - 1 e i , e i + i , . . . , e n } . 

For a non-empty subset / of { 0 , 1 , . . . , n — 1}, let K = Ki be the parahoric subgroup 

of G (F) which is the common stabilizer of the lattices A^, for i E I. The local model 

Mloc = Mloc(G, H)K for this triple (G, { / / } , Ki) represents the following moduli prob­

lem on (Sch/ SpecOp) (in this case E = F). To S the functor associâtes the set of 

commutâtive diagrams of Os-modules, 

A*0,s —> Aius —> > AirniS Aio,s 

U U U U 

F[Q y J~ii y 'm ' y J~&m y J~i0. 

Here I = {io < %\ < • • • < im} and we have set Ai,s = Ai <8>e>F Os- It is required that 
Ti- is a locally free O^-module of rank r which is locally a direct summand of A ^ s . 
The main resuit of the paper [Gl] of Gôrtz is that Ailoc satisfies the conditions (i) 
and (ii) above. 
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(3) Let V be a F-vector space of dimension 2n with a symplectic form (, ) . Let 

G = GSp(V, (, )) and let { / /} be minuscule of weight n. Let e i , . . . , e 2 n be a symplectic 

basis of V, i.e. 

(ei,ej) = 0, ( e i + n , e j + n ) = 0, (e*, e 2 n - j + i ) = <$*j 

for z, j = 1,... , n. Let / be a non-empty subset of { 0 , . . . , 2n — 1} which with i ^ 0 

also contains 2n — i. Let i f = if/ be the parahoric subgroup of G (F) which is the 

common stabilizer of the lattices A; for i e L The local model MLOC = M1OC(G,^)K 

for the triple (G, {fjb},Kj) represents the moduli problem on (Sch/0F) which to S 

associâtes the objects {!FiQ,..., Tim) of the local model for (GL(V), { / i } , Ki) as in 

Example (2) above which satisfy the following additional conditions. If 0 G / , then 

is isotropic for the symplectic form on Ao,s, and for each i G / with i ^ 0, the 

composition 

fi • ~ A 2 n - 2 , 5 • Fln-i 

is the zéro map. Here "hat" dénotes the dual (Ds-module. 

By the main resuit of [G2], MLOC satisfies the conditions (i) and (ii) above. 

(4) Let G = RFr/F(GLn) or G = Rp>/F(GSp2n), where F' is a totally ramified ex­

tension. Let {/x} be a minuscule conjugacy class of one-parameter subgroups and let K 

be a parahoric subgroup of G (F). In [PR1] resp. [PR2] local models Mloc (G, P)K 

are constructed which satisfy conditions (i) and (ii) above. But in thèse cases it seems 

dimcult to describe the functors that thèse local models represent. 

In ail thèse examples, property (ii) for local models can be considerably strength-

ened by identifying the spécial fiber of A1 l o c (G , /I)K with a closed subscheme of the 

partial flag variety corresponding to K of the loop group over KF associated to G, 

[Gl], [PR2]. Here, to be on the safe side, we are assuming G split. Via this identifi­

cation there is a link between the theory of local models and the géométrie Langlands 

program of Beilinson, Drinfeld et al. [BD]. 

The true significance of the local models becomes more transparent when they 

appear in the global context of Shimura varieties, cf. (7.1). It is in this context 

that they were first introduced, originally by P. Deligne and G. Pappas [DP] for the 

Hilbert-Blumenthal varieties, then by J. de Jong [J] for the Siegel moduli space and, 

still later, in [RZ2]. Here we explain their relation with the sets X(p, O)K- Let 

Kx = kev(Ç(0L) Q{KE))-

Let 

X(»,b)Kl ={ge G(L)/ÎCi; mv(gK,b<j(g)K) G A d m * ^ ) } . 

In other words, X(p,6)^ is the inverse image of X(II,O)K under G(L)/K\ —• 

G(L)/K. We define a map 

(6.1) 7 : X(n, b)Kl — Mloc(G, P)K(KE) 
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by 

7 ( 0 * ï ) = 9-lba{g) • K. 

This is well-defined since K\ acts trivially on M1OC(KE)' Noting that K/K\ is a 
principal homogeneous space under G(KE), we may write 7 more suggestively as a 
map on géométrie points of algebraic stacks, 

(6.2) 7 : X(ji, b)K — > [Mloc/g ®oF OE\{KE). 

It should be possible, at least if {/x} is minuscule, to equip X(p, O)K with the structure 

of an algebraic variety over "RE and the map 7 should be induced by a morphism of 

algebraic stacks over ~R,E, 

Xfa b)K —> [Mloc ®oE KEIG ®OF 

Furthermore, this morphism should be compatible with Weil descent data over KE on 

source and target. 

After Gôrtz's theorems the most interesting question is the following conjecture. 

A variant was also proposed by G. Pappas [P], Conj. 2.12. 

Conjecture 6.2. — Assume that G is unramified over F. Let A4 l o c (G , JJL)K be the lo­

cal model over Spec OE, corresponding to a parahoric subgroup K of G (F) and a 

minuscule conjugacy class of cocharacters {fi}, with its action of G ®oF OE- Then 

there exists a G ®e>F Os-equivariant blowing up in the spécial fiber . M l o c ( G , / X ) K 
MXOC{G, H)K which has semistable réduction. 

In Example 6.1, (2) the conjecture above is trivial for r = 1 (in this case MLOC 

has semistable réduction). For r = 2, Faltings [F2] has constructed an equivariant 
blowing-up with semistable réduction, i.e., the conjecture holds in this case, compare 
also [L]. In Example 6.1, (3) the existence of a semistable blowing-up is due to de 
Jong [J] for n = 2 and to Genestier [Ge] for n = 3. 

PART II 
GLOBAL THEORY 

7. Geometry of the réduction of a Shimura variety 

In the global part we use the following notation. Let (G, {h}) be a Shimura datum, 

i.e. G is a connected reductive group over Q and {h} a G(R)-conjugacy class of 

homomorphisms from i 2 c / R . G m to G R satisfying the usual axioms. We fix a prime 

number p. We let K be an open compact subgroup of G (A/) which is of the form 

K = KP - K, where KP C G(A^) and where K = KP is a parahoric subgroup of 

G(Q P ) . We also assume that KV is sufficiently small to exclude torsion phenomena. 
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The corresponding Shimura variety Sh(G, {/I})K is a quasi-projective variety de­

fined over the Shimura field E, a finite number field contained in the field Q of 

algebraic numbers. It is the field of définition of the conjugacy class {/M}, where pt 

is the cocharacter corresponding to h G {h}. Let G = G ®Q QP and F — Q p . After 

fixing an embedding of Q into an algebraic closure of Q p , we obtain a conjugacy class 

{/ i } of one-parameter subgroups of G. It is defined over the complet ion of E in the 

p-adic place p induced by this embedding. We have therefore obtained by localization 

a triple (G, { / i } , K) as in the local part relative to F — Q p . 

We make the basic assumption that the Shimura variety has a good intégral model 

over Spec OE,P- Although we do not know how to characterize it, or how to construct 

it in gênerai, we know a good number of examples ail related to moduli spaces of 

abelian varieties. The "facts" stated below ail refer to thèse moduli spaces, and the 

conjectures also concern thèse moduli spaces or are extrapolations to the gênerai case. 

We dénote by Sh(G, /I)K the model over Spec 0 g which is obtained by base change 

OE,P —* OE from this good intégral model. 

The significance of the local model A4 l o c (G , /J,)K is given by the relatively repre-

sentable morphism of algebraic stacks over Spec OE, 

(7.1) A : Sh(G, h)K —* [A4 l o c (G, p)K/GoE]-

Here G is the group scheme over SpecZ p corresponding to Kp. The morphism À is 

smooth of relative dimension dimG. This statement is proved in those cases where 

an intégral model of the Shimura variety Sh(G,/I)K exists [PR2], [RZ2]. The crux 

is, just as in (1.11), to find a normal form for the DeRham homology modules of a 

polarized £-set of abelian varieties up to prime-to-p isogeny. Once this is established, 

the assertion is a conséquence of the theorem of Grothendieck-Messing. 

We now turn to the spécial fiber. By associating to each point of Sh(G, A)KOÊE) 
the isomorphism class of its rational Dieudonné module (again this makes sensé only 

for those Shimura varieties which are moduli spaces of abelian varieties), we obtain a 

map 

6:Sh(G,h)K(lîE) —>B(G). 

We note that by Proposition 4.4 the image of ô is contained in B{G, /x), provided that 

G is unramified and K is hyperspecial. 

Conjecture 7.1. — Im(<S) = B(G,p). 

In particular, we expect that the basic locus is non-empty. Let Sh(G, h)K = 

Sh(G, /I)K ®OE KE> The basic locus Sh(G, h)K b a s i c is the set of points whose image 

under ô is the unique basic élément [bo] of B(G,fj). More generally, for [b] G B(G), 

let 

(7.2) <%] =S~H[b]). 
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Proposition 7.2 ([RR]). — Each S[q is a locally closed subvariety of Sh(G, h)K. Fur-

thermore, for [6], [b'] G B(G), we have 

S[b] H c l o s u r e ^ ] ) ^ 0 = > [b] ^ [b']. 

This is the group-theoretic version of Grothendieck's semicontinuity theorem, ac-

cording to which the Newton vector of an isocrystal decreases under specialization 

(in the natural partial order on (R n )+, cf. (4.5)). The subvarieties are called the 

Newton strata of Sh(G, h)K. The Newton stratification of the spécial fiber is very 

mysterious. 

Questions 7.3. — Assume that Kv is hyperspecial. Let [b], [b']eB(G, /i) with [b] < [b']. 

(i) Is 5[5] H closure(«S[5/]) ^ 0 ? 
(ii) Is D closure(C) ^ 0 , for every irreducible component C of <S[&/j? 
(iii) Is S[b\ C closure(5[5/])? 

Obviously, (i) is implied by (iii). Here part (iii) has become known as the strong 

Grothendieck conjecture and (i) as the weak Grothendieck conjecture, although this 

dénomination is somewhat abusive. 

Theorem 7.4 (Oort [O]). — For the Shimura variety associated to GSp2n (the Siegel 

moduli space,), question 7.3 (iii) has an affirmative answer. Also in this case, each 

Newton stratum is equidimensional of codimension in Sh(G, / i ) K equal to 

codim<S[5] = length([6], 

compare Theorem 5.9. Here [6M] = [bi] dénotes the fi-ordinary élément of B(G, /z), 

cf. (5.12)W. 

Conjecture 7.5 (Chai [C2]). — Assume Kv hyperspecial. Each Newton stratum S^] is 

equidimensional of codimension given by the above formula. 

Since the basic élément in B(G,p) is minimal, the basic locus Sh(G, h)K b a s i c is a 

closed subvariety of the spécial fiber. This variety has been studied in many cases 

([LO], [Ka], [Ri]); it is conceivable that one can give a group-theoretical "synthetic" 

description of it in gênerai. At the other extrême is the //-ordinary élément [6^] G 
B{G,ji). It is the unique maximal élément of B(G,p), cf. (5.12). 

Conjecture 7.6 (Chai). — Let Kp be hyperspecial. The orbit of any point ofS[b] under 

G(AP

C) is dense in Sh(G, / i ) K . 

Here the action of G(A^) is via Hecke correspondences. In this direction we have 
the following results. 

Theorem 7.7 (Chai [Cl]). — The conjecture 7.6 is true for the Siegel moduli space. 

(n>See Notes at the end n° 9 
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Theorem 7.8 (Wedhorn [W]). — We assume that the Shimura variety Sh(G, /I)K cor­

responds to a PEL-moduli problem of abelian varieties. Let Kp be hyperspecial. The 

fi-ordinary stratum « S ^ j is dense in Sh(G, h)K. 

The hypothesis that Kp be hyperspecial in Wedhorn 's theorem is indeed necessary, 

as the examples of Stamm [S] relative to the Hilbert-Blumenthal surfaces with Iwahori 

level structure at p and of Drinfeld [D] relative to a group which is ramifîed at p show. 

We finally relate the maps 7 and À. Let [b] G B { G , n ) and let b G G{L) be a 

représentative of [b]. As in Définition 4.1, we let 

M Q P ) = {ge G(L) ; 9-^(9) = &}• 

The Newton stratum «S^j has a covering Sb, for which we fix an isomorphism of the 

isocrystal in the variable point x G S[b] with the model isocrystal with G-structure 

determined by b. Then Sb is a principal homogeneous space under Jb(QP) over «S^. 

The relation between 7 and À is then given by a commutative diagram of morphisms 

of algebraic stacks (over or even compatible with Weil descent data over KE), 

sb — > X { » M K P 

7 

6[6] • Mloc(G,n)Kp/ÇKE . 

Here M resp. G dénote the spécial fibers of the local model resp. the group scheme 

corresponding to Kp, and by À we denoted the restriction of (7.1) to S[b] • The commu-

tativity of the diagram above reflects the well-known compatibility between DeRham 

homology and Dieudonné theory. 

8. Pseudomotivic and quasi-pseudomotivic Galois gerbs 

In this section and the next one we wish to give a conjectural description of the 

point set of Sh(G, /I)K(^) with its action of the Frobenius automorphism. This 

description is modeled on the one given in [LR], but differs from it in an important 

détail, compare Remark 9.3. The idea is to partition the point set into "isogeny 

classes", as was done in the case of the elliptic modular curve in (1.1), and then 

to describe the point set of the individual isogeny classes in a manner reminiscent 

of (1.1) and (1.2) resp. (1.9) in the elliptic modular case. According to an idea of 

Grothendieck, the set of isogeny classes will be described in terms of représentations 

of certain Galois gerbs. In this section we introduce thèse Galois gerbs, following 

Reimann's book [Rel]. 

We first explain our terminology concerning Galois gerbs. Let A: be a field of 

characteristic zéro and let T = Gal(k/k) be the Galois group of a chosen algebraic 
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closure. A Galois gerb over k is an extension of topological groups 

(8.1) i — • G(k) —* g r — • i. 

Here G dénotes a linear algebraic group over k and is called the kernel of G- The 

topology on T is the Krull topology and the topology on G(k) is the discrète topology. 

The extension G is required to satisfy the following two conditions: 

(i) For any représentative ga G G of a G T, the automorphism g i-> g^gg"1 of G(fc) 

is a cr-linear algebraic automorphism. 

(ii) Let K/k be a finite extension over which G is defined. Let TK = Gdl(k/K) be 

the corresponding subgroup of T. We choose a section of G —> T over r # such that 

the automorphism 

01—'daggâ1^ g£G(k) 

defines the X-structure on G. Then the resulting bijection 

q-1(TK) = G(k)xTK 

is a homomorphism. 

A morphism between Galois gerbs (p : G —» (?' is a continuous map of extensions 

which induces the identity map on T and an algebraic homomorphism on the kernel 

groups. Two homomorphisms ipi and cp2 are called équivalent if there exists g' G G'{k) 

with y>2 — I n t(#) o y?!. A neutral gerb is one isomorphic to the semi-direct product 

GG = G(k) x r 

associated to an algebraic group G over k. Sometimes we will have to consider a 

slightly more gênerai notion. Let k' be a Galois extension of k contained in k with 

Galois group V = G d l ( k ' / k ) . Then one defines in the obvious way the notion of a 

k'/k-Galois gerb, which is an extension 

(8.2) 1 — - > G{k') —• G —+ r ; —-> 1, 

where G is an algebraic group defined over k'. A k! j k- Galois gerb defines in the 

obvious way a fc/fc-Galois gerb (i.e. a Galois gerb): one first pulls back the extension 

by the surjection T —• V and then pushes out via G(fc') —> G(k) = (G fc)(fc). 

In the sequel we will have to deal with projective limits of Galois gerbs of the previ-

ous kind. We transpose the above terminology to them. In particular two morphisms 

of pro-Galois gerbs will be called équivalent if they are projective limits of équivalent 

morphisms of Galois gerbs (in [Rel], B.l . l , this is called algebraically é q u i v a l e n t ) . 

An important example is given by the Dieudonné gerb over Q p , cf. [Rel], B.1.2. 

For every n G Z, n > 1, there is an explicitly defined Q£ n/Qp-gerb Vn with kernel 

group G m. For n' divisible by n there is a natural homomorphism Vn' —> Vn inducing 

the map x \—> xn ln on the kernel groups. Let 

(8.3) D 0 = limPn 
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be the pro-Qp n/Qp-Galois gerb defined by this projective System. Then in T>o there 

is an explicit représentative da of the Frobenius élément. The Dieudonné gerb V is 

the pro-Q p/Qp-Galois gerb defined by VQ. 

Another Galois gerb of relevance to us is the weight gerb W. This is the Galois 

gerb over R with kernel Gm which is defined by the fondamental cocycle of Gal(C /R) 
(VJQ,CT = —1 if Q = a = complex conjugation; otherwise we^ = 1). 

We now recall some pertinent facts about the pro-Galois gerbs appearing in the 

title of this section. We fix an algebraic closure Q of Q and for every place £ of Q an 

embedding Q C Q^. Let L/Q be a finite Galois extension contained in Q. 

There is an initial object (QL', z/(oo)L, v{p)L) in the category of ail triples (T, I / Q Q , VP) 

where T is a Q-torus which splits over L and such that Voo,vp G X*(T) satisfy 

( 8 . 4 ) [Loo : R ] " 1 • T[L/Q(uoo) + [Lp : Q p ] " 1 • T r L / Q ( i / p ) = 0, 

cf. [Rel], B.2.2. 

Similarly, assume that L is a CM-field and dénote by L$ its maximal totally real 

subfield. Then there is an initial object ( P L , z/(oo)L, v{p)L) in the category of ail 

triples (T, Z / Q Q , VP) where T is a Q-torus which splits over L and such that Z / Q O , VP G 
X*(T) are defined over Q and QP respectively and such that 

( 8 . 5 ) z/oc + [Lp : Q p ] " 1 • TrL/Lo(up) = 0, 

cf. [Rel], B.2.3. Since obviously condition ( 8 . 5 ) implies condition ( 8 . 4 ) , there is a 

canonical morphism 

( 8 . 6 ) (QL, v(œ)L, u(p)L) — (PL, v(œ)L, u(jp)L). 

If L C V then we obtain morphisms of tori in the opposite direction, 

( 8 . 7 ) Q V —> QL, P V —> P L . 

Let Q resp. P dénote the pro-torus defined by this projective System. Then there are 

homomorphisms of pro-tori over Q, 

( 8 . 8 ) i/(oo) : G m , R —> Q R , resp. v(p) : D — • QQp 

whose composite with Q —> QL is u(oo)L if L is totally imaginary resp. is 

[Lp : Qp] - v{p)L. Here D dénotes the pro-torus with character group equal to Q. 

Similarly, we obtain 

( 8 . 9 ) 1/(00) : Gm —> P R , i/(p) : D — > PQP . 

We can now introduce the pro-Galois gerbs which will be relevant for the theory of 

Shimura varieties. 
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A quasi-pseudomotivic Galois gerb is a pro-Galois gerb Ù over Q with kernel Q 

together with morphisms 

(8.10) 

Coo : W — > Û R 

Cp : V — • Û Q P 

C * : ! 1 * — > 0 Q £ , £^oo,p 

such that z/(oo) is induced by Coo resp. u(p) is induced by Çp on the kernel group 

G M R of the weight gerb W resp. the kernel group D of the Dieudonné gerb V. In 

addition, a cohérence condition on the family {Q; t ^ oc,p} is imposed, c/. [Rel], 
B.2.7. Similarly one defines a pseudomotivic Galois gerb ( ^} ,<^ ) . Thèse pro-Galois 

gerbs are uniquely defined up to an isomorphism preserving the morphisms Q up to 

équivalence for £ = oo,p and £ ^ p. Furthermore, thèse isomorphisms are unique up 

to équivalence. There is a morphism 

(8.11) Ù-^¥ 

compatible with the morphisms Q resp. Ç[ and inducing the homomorphism (8.6) 

above on the kernel groups. 

For a pair (T,/i) consisting of a Q-torus T and an élément fi e X*(T), there is 

associated a morphism of Galois gerbs 

(8.12) ^ : 0 — • GT, 

cf. [Rel], B.2.10. This morphism factors through £p if and only if the following two 
conditions are satisfied, 

(i) the image of v(oo) in X*(T) is defined over Q 
(ii) the image of i/(p) in X*(T) (8) Q satisfies the Serre condition, i.e., it is defined 

over a CM-field and its weight is defined over Q, cf. [Rel], B.2.11. This is the case if T 

itself satisfies the Serre condition, i.e., ( id -K ) ( r — id) = (r — id)(id+0 in End(X*(T)), 

where t dénotes the complex conjugation and r G Gal(Q/Q) is arbitrary. 

Remark 8.1. — The pseudomotivic Galois gerb was introduced in [LR] with the aim 

of describing the points in the réduction of a Shimura variety when (G, {h}) satisfies 

the Serre condition. When this last condition is dropped, the pseudomotivic Galois 

gerb cannot suffice for this purpose. However, the quasi-pseudomotivic Galois gerb 

in [LR], introduced there to cover the cases when the Serre condition fails, does not 

exist (there is a fatal error in the construction of loc. cit.). Two replacements have 

been suggested, one by Pfau [Pf] and one by Reimann [Rel]. We follow here the 

latter. 

9. Description of the point set in the réduction 

In this section we return to the notation used in section 7. Therefore Sh(G, /I)K 
is an intégral model over Spec0# of the Shimura variety associated to (G, {h},K = 
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Kp • Kp), and {fih} is the associated conjugacy class of cocharacters of the reductive 

group G over Spec Q. Our purpose is to describe the set Sh(G, /I)K(^£;) of our model 

over Spec OE of the Shimura variety Sh(G, h)j£. We make the blanket assumption 

that the derived group of G is simply connected. 

The description of the points in the réduction will be in ternis of admissible mor-

phisms of pro-Galois gerbs 

(9.1) <p : Ù —> GG-

Définition 9.1. — A morphism (9.1) of pro-Galois gerbs over Q is called admissible if 
it satisfies the four conditions a)-d) below. 

Let D — G/Gder and let fio be the image of {^h} in X*(D). The first condition is 

global: 

(a) The composition Ù —> (3G —> <£>D is équivalent to V V D >
 cf- (8-12). 

The next three conditions will be local, one for each place of Q. To formulate the 

next condition we remark that for h G {h} with corresponding weight homomorphism 

Wh : G M > R —> G R the pair ( ^ , ^ ( — 1 ) ) corresponds to a morphism of Galois gerbs 

over R, 

(9.2) Çoo : W —• Ç G R . 

(b) The composition (p o is équivalent to ^ . 

(c) For any £ ^ oo,p the composition (p o Q is équivalent to the canonical section 

Ù ofÇGQ£-
For the final condition we remark that (the équivalence class of) the composition 

(p o £ p : V —> GGQP defines an élément [b] = [b(<pp)] = [b(ip)] of B(G). More precisely, 

let T>o be the explicit unramified version of the Dieudonné gerb as in [Rel], B.2, 

compare (8.3). Then there exists a morphism 

(9.3) 0O : V0 —> G(Qp n ) x Z 

such that ip o ( p is équivalent to the pullback 60 of 90 to T. Then [b] is the class of 

b = 6o(da), where da G VQ is the explicit représentative of the Probenius cr. 

(d) The élément [b] lies in B(G,JJL). 

We note that, whereas the local components t p o ^ and (poQ (£ ̂  p) are uniquely 

determined up to équivalence by the Shimura data, the p-component ip o £ p is allowed 

to vary over a finite set of équivalence classes. 

To every admissible morphism (p we shall associate a set S((p) with an action from 

the right of Z(QP) x G(A^) and a commuting action of an automorphism Here Z 

dénotes the center of G. For £ ^ oo,p let 

(9.4) X£ = {g G G(Q<); ï * t ( g ) o & = <p o Q } . 
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By condition (c) this set is non-empty. We put 

(9.5) x p = TT 
" £ 7 * 0 0 , p 

X,. 

where the restricted product is explained in [Rel] , B.3.6. The group G ( A ^ ) acts 

simply transitively on XP. We also put XP = X([L,O)KP in the notation of (5.1), 

where b G G(L) is as above. It is equipped with commuting actions of Z(QP) and an 

operator $ (cf. (5.2)). Finally we introduce the group of automorphisms 1^ = Aut(</?). 

The group î (Q) obviously opérâtes on XP. Let gp G G(Qp) be such that 

(9.6) <PP°(P = ï n t 9P ° #o 

where the notation is as in the formulation of condition (d) above. Then we obtain 

an embedding 

(9.7) I<p(Q) — > J&(QP), h ^ g p h g - 1 

where Jb(QP) is the group associated to the élément b which acts on Xp = X(p, O)KP, 
cf. Définition 4.1. We now define 

(9.8) S{ip)Kp = U m / ^ ( Q ) \ X P x Xp/Kp, resp. S(<p)K = VQ) \* P x Xp/Kp, 
KP 

where the limit is over ail open compact subgroups KP C G(AP

C). On S(<P)KP we have 
commuting actions of the automorphism $ and of Z(QP) x G(Ap

e) from the right. 

Conjecture 9.2. — Assume that the derived group of G is simply connected. Then 

for every sufficiently small Kp there is a model Sh(G, {/I})K of Sh(G, {h})^ over 

SpecC?E(P) such that the point set of its spécial fiber is a disjoint sum of subsets 

invariant under the actions of the Frobenius automorphism over KE and of Z(QP) 
and G(Ap

f), 

S h ( G , / i ) K ( / ^ ) = I ] S h ( G , / i ) K ^ 

and for each cp a bijection 

Sh(G, / i ) K , , -%)K, 

which carries the action of the Frobenius automorphism over KE on the left into 

the action of $ on the right and which commutes with the actions of Z(QP) and 

ofG(Ap

c) (for variable Kp) on both sides. Here the disjoint union is taken over a set 

of représentatives of équivalence classes of admissible morphisms (p : Q —» QG • 

We remark that if D splits over a CM-field and the weight homomorphism Wh is 

defined over Q, every admissible morphism <p : 0 —> QG factors through ^3, cf. [Rel] , 

B.3.9. 
Note that we are not proposing a characterization of the model Sh(G, /I)K- In 

the case where Kp is hyperspecial, such a characterization was suggested by Milne 
[M2]. In this case we expect Sh(G, /I)K to be smooth over SpecC>E(P)- In [Re3], 
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Reimann gives a wider class of parahoric subgroups Kp for which one should expect 

the smoothness of this model, and he conjectures that this class is exhaustive. 

Conjecture 9.2 has been proved by Reimann [Rel], Prop. 6.10 (and Remark 4.9) 

and Prop. 7.7, in the following case: G is the multiplicative group of a quaternion 

algebra over a totally real field in which p is unramified, which is either totally indef-

inite or which is split at ail primes above p. Furthermore, Kv is a maximal compact 

subgroup of G(Q P ) . It has been proved for Shimura varieties of PEL-type by Milne 

[Ml], when Kv is hyperspecial. In [LR] it is shown how the conjecture is related to 

a hypothetical good theory of motives, compare also [M3]. 

Remark 9.3. — We note that if Conjecture 5.2 holds, then each summand in Conjec­

ture 9.2 is non-empty. In [LR] (apart from a very spécial case of bad réduction) it was 

assumed that Kp is hyperspecial, and the admissibility condition (d) was replaced by 

the condition that X(II,O)KP be non-empty. From Remark 5.3 it follows that then 

[b] € B(G,/j,), i.e. condition d) above holds. 

Remark 9.4.. — Assume Conjecture 9.2. In [RZ2] it was shown that in certain very 

rare cases the Shimura variety Sh(G, {/I})K admits a p-adic uniformization by (prod­

uct s of) Drinfeld upper half spaces. The proof in loc. cit. is a gêneralization of Drin-

feld's proof [D] of Cherednik's uniformization theorem in dimension one. From the 

proof in [RZ2] it is clear that this can occur only when ail admissible morphisms are 

locally équivalent, provided that ail summands in Conjecture 9.2 are non-empty. It 

cornes to the same to ask that (pp o ( p is basic for any admissible morphism (p. In [K4] 
it is shown that when G is adjoint simple such that B (G, / i ) consists of a single élément 

(which is then basic), then (G, p) is the adjoint pair associated to (D^n, ( 1 , 0 , . . . , 0)) 

or ( . D * ^ , ( 1 , . . . , 1,0)), where D^n resp. D^x^n dénotes the inner form of GLn asso­

ciated to the central division algebra of invariant 1/n resp. — 1/n. In other words, this 

resuit of Kottwitz implies in conjunction with Conjecture 9.2 and Conjecture 5.2 that 

there is no hope of finding cases of p-adic uniformization essentially différent from 

those in [RZ2]. In particular, in ail cases of p-adic uniformization the uniformizing 

space will be a product of Drinfeld upper half spaces. 

10. The semi-simple zeta function 

We continue with the notation of the previous section. One ultimate goal of the 

considérations of the previous section is to détermine the local factor of the zeta func­

tion of Sh(G, /I)K at p. Oui présent approach is through the détermination of the local 

semi-simple zeta function [R2]. We refer to [HN2], §3.1 for a systematic exposition 

of the concepts of the semi-simple zeta function and semi-simple trace of Frobenius. 

The décisive property of the semi-simple trace of Frobenius on représentations of the 

local Galois group is that it factors through the Grothendieck group. In the case of 

good réduction, the semi-simple zeta function coincides with the usual zeta function. 
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To calculate the semi-simple zeta function we may use the Lefschetz fixed point 

formula. Let Kg be the extension of degree n of KE contained in KE- For x G 

Sh(G, h)K(n%) we introduce the semisimple trace 

(10.1) Contrn(:z) = t r s s (Fr n ; mx(qt)). 

Here Rï&(Q£) dénotes the complex of nearby cycles. By Frn we dénote the géométrie 

Frobenius in GS1(KE/^E)' This * s ^ n e contribution of x to the Lefschetz fixed point 

formula over K%. In the case of good réduction, or more generally if x is a smooth 

point of Sh(G, h)jç, then Contr n(x) = 1. 

For an admissible homomorphism ip : Û —• QG as in Conjecture 9.2, we introduce 

the contribution of (p (or its équivalence class) to the Lefschetz fixed point formula 

over KE, 

(10.2) Contrn(</?) = ^ Contr n(:r). 

x€Sh(G,h,)K ) ¥,(K£) 

Définition 10.1. — A morphism cp : £} —» QG is called spécial if there exists a maximal 

torus T C G and an élément fi E X*(T) which defines a one-parameter subgroup 

of G in the conjugacy class {ph} such that (p is équivalent to i o ^ M , cf. (8.12). Here 

i • GT —> QG dénotes the canonical morphism defined by the inclusion of T in G. 

If KP is hyperspecial (and Gder is simply connected, as is assumed throughout 
this section), then every admissible morphism is spécial ([LR], Th. 5.3), at least if it 
factors through ty. 

Conjecture 10.2. — We have Contrn(<^) = 0 unless (p is spécial. 

For some cases of this conjecture related to G L 2 , compare [RI] and [Rel]. Note 
that this is really a conjecture about bad réduction. In the case of good réduction 
the cancellation phenomenon predicted by Conjecture 10.2 cannot occur since each 
point x in Sh(G, ^)K(^) contributes 1 in this case. This is compatible with the 
remark immediately preceding the statement of the conjecture, which says that the 
conjecture is empty if KP is hyperspecial. 

Let us explain how one would like to give a group-theoretic expression for 
Contr n(#). Let x be represented by (xp,x

p) € XP x XP/KP under the bijection (9.8). 
Let n' = n • r, where as shortly after (5.1) r = [KE - P P]. Since x is fixed under the 
n-th power of the Frobenius over KE, it is fixed under the n'-th power of the absolute 
Frobenius and we obtain an équation of the form 

(10.3) ($n'xp,xp) = h-(xp,x
p), 

for some h G /^(Q). By [Kl], Lemma 1.4.9, it follows that there exists c G G(L) such 
that 

(10.4) c / T 1 - $ n ' - c " 1 = a n ' . 
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This is an identity in the semi-direct product G(L) x (a), where L is the completion 
of the maximal unramified extension Q p

n of Qp. Let Q p n ' be the fixed field of an . 
Then the élément S G G(L) which is defined by the équation 

(10.5) c • (6a) • c~l = Sa 

lies in G(Q n ' ) - Here b G G(L) is the élément defined before (9.3). Also, always by 

[Kl], we have that x'p = c • xp lies in G ( Q p n ' ) / ' K ^ K To simplify the notation put 

Kpn, =Kp

>n'). Let 

(10.6) n = H(G(Qpn,)//Kpn>) 

be the Hecke algebra corresponding to the parahoric subgroup Kpn*. It may be 
conjectured that there exists an élément </>p G W with the following property. Let 
g'p G G(Qpn') be a représentative of x'p. Then 

(10.7) Contre) = ^(g'-'ôaig^)). 

Appealing to [Kl], 1.5, we therefore obtain that the contribution of the admissible 
homomorphism (p : 0 —> QG to the Lefschetz fixed point formula over Kg is a sum of 
terms of the form 

(10.8) v.Oh(4P)>TOs(<IÇ). 

Here Ohffl) is the orbital intégral over h G I<j>(Q) of the characteristic function of 
Kp and TOs((j>p

v) the twisted orbital intégral of (f)p over the twisted conjugacy class 
of S G G(Q p „/). Furthermore, v is a certain volume factor. 

For the function (j)p there is the following conjecture. 

Conjecture 10.3 (Kottwitz). — Assume that G splits over Qpn'. Let K°n, be an Iwa­
hori subgroup of G(Qpn') contained in Kpn>. Then (j)p is the image of pn''(e>ri • 
under the homomorphism of Hecke algebras 

H(G(Qpnl)//K°pn,) H(G(Qpn,)//Kpn,). 

Here z^ dénotes the Bernstein function in the center of the Iwahori Hecke algebra 
associated to fi, compare [H2], 2.3. 

Recall that the center of H(G(Qpn' )//K° n, ) has a basis as a C-vector space formed 
by the Bernstein functions z\, where À runs through the conjugacy classes of one-
parameter subgroups of G. 

In this direction we have the following facts. 

Theorem 10.4. — Conjecture 10.3 holds in the following cases. 

(1) (Haines, Ngo [HN2]): G = GLn or G = GSp2n-
(2) (Haines [H2]): G is an inner form of GLn and {/x} 3 LUI (the Drinfeld case). 

ASTÉRISQUE 298 



REDUCTION OF SHIMURA VARIETIES 311 

It would be interesting to extend the statement of Kottwitz' conjecture to the 

gênerai case. Once this is done (and the corresponding conjecture proved!) it remains 

to calculate the sum over ail équivalence classes of admissible homomorphisms up of the 

expressions (10.8). In fact, one would like to replace the twisted orbital intégrais in 

(10.8) by an ordinary orbital intégral of a suitable function on G(QP) and compare the 

resulting expression with the trace of a suitable function on G(A) in the automorphic 

spectrum. When the Shimura variety is not projective, one also has to deal with 

the contribution of the points on the boundary. Even when the Shimura variety is 

projective, the phenomenon of L-indistinguishability complicates the picture. But, 

at least thèse complications are of a différent nature from the ones addressed in this 

report. They are of a group-theoretic nature, not of a géométrie nature. 
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Notes added June 2003 

We give here some compléments and mention some récent development s. A list of 

supplémentary références can be found at the end. 

(1) The Iwahori subgroup of a torus, compare Remarks 2.2, (iii). At the request 
of the référée we give more détails. Let L be a complète discretely valued field with 
algebraically closed residue field. Let T be a torus over L. Then T has a lft Néron 
model over SpecC^ (cf. [BLR] = S. Bosch, W. Liitkebohmert, M. Raynaud, Néron 

Models, Springer Verlag; 10.1, Prop. 6). Let T 1 be the maximal subgroup scheme of 
finite type over Spec OL and let T° be its identity component. 

Proposition 

(a) TX(OL) is the unique maximal bounded subgroup K ofT(L) and K := T°(OL) 

is a subgroup of finite index in K. 

(b) K is the Iwahori subgroup ofT(L). 

(c) For the group of connected components of the spécial fiber T of T, we have 

7r0(T) = X*(T)I. 

Proof 

(a) By loc. cit., T1(OL) is a bounded subgroup, and hence is contained in K. On 

the other hand, K has a Néron model in the rigid-analytic sensé which is contained 

in T (cf. S. Bosch & K. Schlôter, Néron models in the setting of formai and rigid 

geometry, Math. Ann. 301 (1995), p. 339-362), and therefore contained in T 1 by 

maximality. Hence K C TX(OL\ This proves the first claim, and the second is 

immédiate. 

(b) If T is induced, then X * ( T ) 7 = Hom(X*(T) 7 , Z) , and hence 

K e r £ T = K = {xe T(L); |x(*)| = 1, V* G X*(T)7}. 

On the other hand, T is a product of tori of the form RFf/F(Gm) for a finite extension 

L' of L and then T 1 is a product of group schemes of the form RQf,/oF(^m) and 

hence is connected, whence T1(OL) = T°(OL) ~ K. 

In the gênerai case we choose induced tori R, S over L and an exact séquence of 

/-modules, 

—-+ X*(R) —> X*(T) — • 0. 

We obtain a commutative diagram with surjective vertical arrows, 

S(L) • R(L) y T(L) y 0 

Us KR KT 

X * ( 5 ) J y X . ( i î ) / y X*{T)i y 0 . 

Hence the map KerKR —> KerHr is surjective. On the other hand, the map on lft 
Néron models IZ(OL) -+ T(GL) is surjective and this implies that 11°(OL) - » T°(OL) 
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is also surjective, cf. [BLR], 9.6, Lemma 2. From KR = Kerïï# we conclude KT — 

Ker KT-

(c) This now follows easily from the surjectivity of the Kottwitz map KT- D 

If we replace L by an arbitrary complète discretely valued field F with perfect 

residue field k, then (a) and (b) are still true (with L replaced by F). In (c) the LHS 

has to be interpreted as the group of connected components of T X s p e c f c Spec k. 

(2) The equality X*(T) D Adm(/i) = X*(T) D Perm(/i) and the closure relations in 

affine Grassmannians, compare Prop. 3.5. As T. Haines pointed out, Lemma 3.8 can 

be used to give a simple proof of the closure relations in the affine Grassmannian (for 

the case of S X n , compare A. Beauville, Y. Laszlo: Conformai blocks and generalized 

thêta functions, Comm. Math. Phys. 164 (1994), p. 385-419). 

Let LG dénote the loop group associated to the split group G over a field k. We 

dénote by I C K the loop group versions of the Iwahori and spécial maximal parahoric 

subgroup. We obtain the natural morphism between the affine flag variety and the 

affine Grassmannian, 

7T : LG/I —• LG/K. 

We choose the convention of viewing éléments of the extended affine Weyl group W 

as éléments in LG by sending À G X*(T) to t~x := À(£ _ 1 ) , and w G Wo to any lift in 

the normalizer NQ(T) C G C LG. With this convention, we have the BN-pair axioms 

Iwlsl — Iwsl, if w < ws 

Iwlsl = Iwl U Iwsl, if ws < 

where the Bruhat order ^ is defined using the simple reflections s through the walls 

of the alcove fixed by I. (It is a subtle point, but it is important to use the élément 

t~~1 rather than t for embedding X*(T) c—• LG here.) 

Then we have the usual Demazure resolution 

ITI/I X J ISJ/I X J • • • x 7 IsrI/I —> Iwl/I, 

where w = rs\ • • • sr is any reduced expression. This being a proper morphism, and 

an isomorphism over the inverse image of Iwl/I, is ail we need to conclude that the 

closure relations are given by the Bruhat order, 

Iwl/I = ]J Iw'I/I. 
w' ^.w 

Now we want to use this information to deduce the analogous fact for affine Grass­

mannians: 

Kt^K/K = JJ KtxK/K. 

(Note that here £A = A ( £ - 1 ) as above.) 

Now Lemma 3.8 states that for dominant coweights À, / i , we have 

A < y, <=> wQtx ^ WQV 
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This follows since wot\ ^ wot^ t\ ^ t^. Now it follows easily that the set of 

éléments w' < wot^ is the set of ail éléments wit\W2, where w\,W2 G Wo, and À is 

dominant with À ^ / i . So we have from the closure relations in the affine flag variety 

Iwot»I/I= (J / t i / / / / = ( J ( U Iwr^I/I). 

Applying n to both sides, we deduce the analogous fact for affine Grassmannians 

Kt^KjK — (J KtxK/K, 

by using the following lemma. 

Lemma 

(1) n({JWl,W2eWoIwit\W2l /1) = Kt\K/K. 

(2) 7r(Iwot„I/I) = KtpK/K. 

Proof. — The first statement is easy. As for the second statement, the continuity of TT 
gives 

ir(lw0tpl/l) C 7r(Iw0t^I/I) C Iwot^K/K C Kt^K/K. 

On the other hand, since n is proper, n(Iwot^I/I) is a closed set containing each 

^(Iwt^I/I) = Iwt^K/K (for w e Wo), hence also the closure of their union Kt^K/K. 

• 

(3) The surjectivity of Perm(/i) —> Perm/<(/i) and the equality Adm#(//) = 

Perm/<(/i), compare Prop. 3.10. This has now been proved by U. Gôrtz [G3] for 

G = GLn and arbitrary \x (loc. cit., Cor. 7.6) and for G = GSp2n and \i a sum of 

minuscule coweights (loc. cit., Cor. 7.10). Also, the référée points out that it might 

be useful in this context to generalize Deodhar's Lemma (Lemma 6.3 in [HN1]). 
This might help to prove in gênerai the inclusion Perm^(/i) C Adm/<(//), compare 

[HN1]; here Perm^(/i) is the obvious generalization to the parahoric case of the 

strongly permissible set Perm s t(/i) of loc. cit. As T. Haines points out, this together 

with the equality Perm^(//) = Perm/<(/i) for G = GLn could be used to show that 

A d m £ 5 p ( / i ) = Perm£ L( / i ) fi W(GSp), compare [HN1]. 

(4) Structure of the affine Deligne-Lusztig varieties, compare Example 4 - 3 . The 

question for which pairs (w, b) the affine Deligne-Lusztig variety Xw(b) is non-empty 

has been investigated by D. Reuman in his Chicago PhD thesis [Reul] , for G = SL% 

and G = Sp4, and for various b (mostly 6 = 1 , but also for others). For the question 

on the dimension of affine Deligne-Lusztig varieties compare [Reu2] ; see also note (7) 

below. 

(5) Group-theoretic version of Mazur's inequality, compare Prop. 4-4- The proof 
in [RR] is by réduction to the usual Mazur inequality between the Hodge poly­
gon and the Newton polygon of an F-crystal. Recently R. Kottwitz [K5] has given 
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a purely group-theoretical proof by réduction to the inequality of Arthur-Harish-

Chandra. That paper also contains a group-theoretic version of the Hodge-Newton 

décomposition of an F-crystal. 

(6) Converse to Mazur's inequality, compare Conjecture 4.6. In [KR2] there is 

an abstract criterion (Prop. 4.6) for the non-emptyness of X^(b), valid for any split 

group. In [K5] this is generalized to the case of an unramified group. As to the actual 

converse to Mazur's inequality, this has been proved by C. Leigh [Le] in the case of 

an arbitrary classical split group. For G L n , there is a proof, différent from [KR2], by 

réduction to the converse to Fontaine's inequality, using Laffaille's theorem, cf. [FR]. 
For a gênerai unramified group J.-P. Wintenberger [Wi] deduces the converse, in case 

ji is minuscule, from his theorem mentioned in (7) below. 

(7) On the sets X(II,O)K, compare Conjecture 5.2 and Remark 5.3. In the light of 

récent developments, it seems that the hypothesis that ji be minuscule is not necessary 

for part a) of Conjecture 5.2. Indeed, Wintenberger [Wi], Th. 2 proves that if [b] G 
B(G, / / ) , then X(b,fi)K ^ 0 for any parahoric subgroup, in case G is quasi-split and 

{/ /} defined over L (in a slightly stronger form, replacing the usual Bruhat order in 

the définition of Adm(/i) by the weak Bruhat order). 

Now assume that G is unramified and that X(b, II)K ^ 0 for some Iwahori sub­

group K. Then, as pointed out by the référée, it follows conversely that [b] G B(G, fi). 

Indeed, let K' = Ka be the hyperspecial parahoric subgroup over F fixing a vertex a 

of the alcove a corresponding to K. Let w G Adm(/x) with XW(O)K ^ 0 - Put 

v = w(a) - a. Then Xv(b)K' ^ 0 - Since w G Adm(/x) C Perm(/i) (cf. Prop. 3.2), v 

lies in the convex hull of Wofi. By Prop. 4.4 it follows that [b] G B(G, v) C B(G, fi). 

(8) The dimension formula for X(JI,O)K, compare Conjecture 5.10. Note that 

dimX ( / i , O)K = dimX^(b)K (recall that K is hyperspecial). The dimension formula 

is easy to verify for G = G L 2 . It is compatible with the dimension formulae in 

Example 4.3 for Xw(b) for G = G L 2 and the Iwahori subgroup Ko in the following 

sensé. Denoting by n : G(L)/KQ —> G(L)/K the natural projection, we have for any 

dominant À 

7 r - 1 ( X A ( 6 ) x ) = U X w ( b ) K o , 
wew0txw0 

and dimir~1(X\(b)K) = d imX\(O)K + dimKjKo, compare [Reu2]. 
Let G be split, and assume that ji^ = 0. Then / ! * = / / and (a;*, fi) G Z V i = 1,.. . , £. 

The conjecture in this case then states 

dimXM(fc) = (Q,p). 

This formula was rediscovered by D. Reuman [Reu2] and proved by him for G = 

SL2,51/3, Sp4. He mentions work in progress with R. Kottwitz which seems to confirm 

this formula in gênerai (under the assumptions spelled out above). 

(9) On the generalized Newton stratification, compare Questions 7.3 and Theorem 
7.4- The strong stratification property of the generalized Newton stratification ((iii) 
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of Question 7.3) has also been proved for Shimura varieties associated to certain 
unitary similitude groups, as well as the codimension formula analogous to Theorem 
7.4, compare [O] and [BW]. Thèse questions are also addressed in the survey [R4]. 
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