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THE LOCAL LANGLANDS CORRESPONDENCE: 

NOTES OF (HALF) A COURSE AT THE IHP SPRING 2000 

by 

Michael Harris 

Abstract. — The article provides a reasonably self-contained account of the main re­
sults of the author's book with Richard Taylor, containing a description of the Galois 
representations obtained in the cohomology of certain Shimura varieties attached to 
unitary groups, and obtaining the local Langlands conjecture for GL(n) of p-adic 
fields as a consequence. The main steps in the proof of the local Langlands conjec­
ture are presented, and in some cases simplified. The bulk of the paper concerns the 
geometry of the Shimura variety at places of bad reduction, where good local models 
are nevertheless available, and the description of points in the special fiber in the 
manner of Langlands and Kottwitz. The article concludes with a section describing 
possible extensions of these results to other Shimura varieties, and an account of some 
of the work of Laurent Fargues along those lines. 

Résumé (La correspondance de Langlands locale). — L'article contient une description 
assez complète des principaux résultats du livre de l'auteur avec Richard Taylor, qui 
décrit les représentations galoisiennes réalisées dans la cohomologie de certaines va­
riétés de Shimura associées aux groupes unitaires, et qui obtient la conjecture locale 
de Langlands pour GL(n) d'un corps p-adique comme conséquence. Les principales 
étapes de la démonstration de la conjecture locale de Langlands y sont présentées, 
parfois simplifiées. Le gros de l'article concerne la géométrie de la variété de Shimura 
aux places de mauvaise réduction, où l'on dispose néanmoins de bons modèles locaux, 
et la description des points dans la fibre spéciale à la manière de Langlands et Kott­
witz. La dernière section de l'article décrit les extensions éventuelles de ces résultats 
aux variétés de Shimura plus générales, ainsi qu'un compte rendu des travaux de 
Laurent Fargues sur ces questions. 
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18 M. HARRIS 

Introduction 

The present notes cover 50% of the material presented in a course given jointly 
with Guy Henniart during the special semester "Formes Automorphes", held at the 
Institut Henri Poincaré in Paris between February and June 2000, as well as a little 
more material I didn't have time to present. The purpose of the course was to explain 
two proofs of the local Langlands conjecture for p-adic fields, due respectively to 
Richard Taylor and myself [HT], and to Henniart [He5]. My lectures were naturally 
concerned with [HT], the main burden of which is to construct a candidate for a local 
Langlands correspondence, and to prove that this putative correspondence is (nearly) 
compatible with the global correspondence realized on the cohomology of certain 
specific Shimura varieties. The techniques applied derive mainly from arithmetic 
algebraic geometry: we study the bad reduction of the Shimura varieties in question by 
interpreting them locally/infinitesimally as formal deformation spaces for p-divisible 
groups with additional structure of a kind already studied by Drinfel'd. This yields 
a stratification of the special fiber, with particularly nice properties, in terms of p-
rank of the universal p-divisible group.The cohomology of the Shimura varieties is 
then calculated by means of vanishing cycles on the bad special fiber. Thanks to 
Berkovich's work on étale cohomology of (rigid) analytic spaces, the vanishing cycles 
can be computed infinitesimally, which permits determination of their stalks in terms 
of certain universal representation spaces. An extension, to our situation of bad 
reduction, of the trace formula techniques perfected by Langlands and Kottwitz for 
calculating zeta functions of Shimura varieties at places of good reduction, provides 
the necessary compatibility of local and global correspondences. 

My goal in the course was to present a self-contained account of the main results 
of [НТ]. In so doing, I chose to sacrifice the description of the global structure of the 
strata in the special fiber, and of the vanishing cycles sheaves on the strata, in the 
first place because this would have been impossible in the eight three-hour sessions 
available, but also because no such description seemed likely to be available for other 
Shimura varieties/1) My presentation therefore diverged from that of [HT], in that 
I studied the vanishing cycles by means of formal completions along points in the 
special fiber, following the approach of Rapoport and Zink in [RZ], rather than along 
the strata. This was nearly successful: the geometric material was covered in detail, 
but I ran out of time and was unable to do justice to the detailed comparison of trace 
formulas. This was just as well, because I did not find a satisfactory approach to the 
latter - an approach likely to extend to other groups - until long after the semester 
had ended and all the visitors had gone home/ 2 ) This is the approach presented in 
the present notes. 

(^In the meantime, Elena Mantovan's Harvard Ph.D. thesis [Ma] has revealed this expectation to 
be unduly pessimistic. 
(2)TO be honest, talking to the visitors was much more interesting than perfecting the final stages of 
the argument. 

ASTÉRISQUE 298 



T H E L O C A L L A N G L A N D S C O R R E S P O N D E N C E 1 9 

We introduce the notation that will be used throughout these notes. Let p be a ra­
tional prime number. For any finite extension K of Qp and any positive integer n, we 
let A(n, K) denote the set of equivalence classes of irreducible admissible representa­
tions of GL(n, K), Ao(n, K) the subset of supercuspidal representations. Let Q(n, K) 
denote the set of equivalence classes of n-dimensional complex representations of the 
Weil-Deligne group WDK on which Frobenius acts semisimply, Qo(n,K) the subset 
of irreducible representations. We will frequently write Gn for GL(n). 

A local Langlands correspondence for p-adic fields is the following collection of data: 

(0.1) For every p-adic field and integer n > 1, a bijection TT —> O-(TT) between 
w4(n, K) and Q{n,K) that identifies Ao(n, K) with Qo(n,K). 

(0.2) Let x D e a character of KX, which we identify with a character of WDK via 
the reciprocity isomorphism of local class field theory. Then cr(7r(g)xodet) = cr(7r) ® X-

In particular, when n = 1, the bijection is given by local class field theory. 
(0.3) If 7r G A(n, K) with central character ^ G *4(1, K), then ^ = det(cr(7r)). 
(0.4) cr(7r v ) = <T(7T)V, where v denotes contragredient. 
(0.5) Let a : K —» K\ be an isomorphism of local fields. Then a induces bijections 

A(n,K) —• A(n,Ki) and Q(n,K) —> G(n,K\) for all n, and we have a(a (7r)) = 

a{a{-K)). In particular, if K is a Galois extension of a subfield KQ, then the bijection a 
respects the Gal^/ifoVactions on both sides. 

(0.6) Let K'/K denote a cyclic extension of prime degree d. Let BC : A(n, K) —• 
A(n, K') and AI : A(n, Kf) —* A(nd, K') denote the local base change and automor-
phic induction maps [AC, HH]. Let 7r G A(n,K), TT' G A(n, K'). Then 

(0.6.1) <r{BC(n)) = a(ir)\wDK, 
(0.6.2) a(AI(7r/)) = lndKf/Ka(7rf), 

where Ind^'/K denotes induction from WDK' to WDK-
Let n and m be positive integers, TT G A(n,K), irf G A(m,K). Then 
(0.7) 7r <g> 7T 7 ) = C T ( T T ) ® cr(7r ;)). 

(0.8) For any additive character I/J of if, s(s, 7r <S> irf, ip) = e(s, a(7r) <S> a{-Kf)^). 

Here the terms on the left of (0.7) and (0.8) are as in [JPSS, Sh] and are compatible 
with the global functional equation for Rankin-Selberg L-functions. The right-hand 
terms are given by Artin and Weil (for (0.7)) and Langlands and Deligne (for (0.8)) 
and are compatible with the functional equation of L-functions of representations of 
the global Weil group.In particular both sides have Artin conductors and (0.8) implies 
that a(<j(7r)) = a(7r). 

The local Langlands conjecture, established in [HT] and in [He5], is the asser­
tion that a local Langlands correspondence exists. The existence of some family of 
bijections A(n,K) <-+ Q(n,K), identifying Ao(n, K) with Q0(n,K), preserving con­
ductors and satisfying weakened versions of properties (0.2)-(0.5), had been proved 
by Henniart a number of years before [He2]. Henniart's main tools are a counting 
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argument for local fields of positive characteristic, based on Laumon's theory of the 
£-adic Fourier transform (the subsets of Ao(n, K) and Go{n, K) with fixed conductor 
are finite) and an "approximation" of local fields of characteristic zero by local fields 
of positive characteristic. The properties established in [He2] do not suffice to char­
acterize the correspondence uniquely. However, another theorem of Henniart ([He4]; 
cf. (A.2.5), below) guarantees that properties (0.1)-(0.8) do suffice to determine a 
unique correspondence/3) Nevertheless, the "numerical local Langlands correspon­
dence" of [He2] is a necessary ingredient of all proofs to date of the local Langlands 
correspondence in mixed characteristic. In the present notes, it is invoked in (5.3) 

The notes are divided into eight more or less fictitious lectures, following my orig­
inal plan which proved too ambitious; even the first seven lectures did not fit in the 
time allotted. The first lecture covers the arguments common to [HT] and [He5]: 
the construction of special families of cohomological automorphic representations of 
GL(n) of CM fields, corresponding to certain cases of non-Galois automorphic induc­
tion of Hecke characters. These arguments are mostly taken from [H2], which uses 
these special automorphic representations to reduce the local Langlands conjecture -
more precisely, property (0.8), the others being established by geometric means - to 
the local/global compatibility, asserted as Main Theorem 1.3.6. 

The next three lectures present an attenuated version of the geometric part of 
[НТ]. The main object of these notes is the Shimura variety attached to the unitary 
(similitude) group G of a division algebra of dimension n2 over a CM field F, with 
involution of the second kind fixing the real subfield F + of F. As complex analytic 
varieties, they are compact quotients of the unit ball of dimension n — 1. Lecture 2 
introduces these Shimura varieties as moduli spaces of abelian varieties with PEL 
type. Their regular integral models in ramified level, over a p-adic place w of F split 
over F + , are defined by means of Drinfel'd bases. The main properties of the latter 
are recalled in Lecture 3, which also carries out the thankless task of explaining how 
Hecke operators act on Drinfel'd bases. The stratification by p-rank of the special fiber 
at a split place is defined in Lecture 4: it is shown that there is one stratum, a union of 
locally closed smooth subvarieties, in each dimension /г = 0, l , . . . , n — 1. Infinitesimal 
uniformization, as in [RZ], is then combined with the results of Berkovich to show 
that the stalks of the vanishing cycles sheaves are constant along strata, and are 
isomorphic on the /г-dimensional stratum to a standard space Фп-h with canonical 
action of GL(n — h,Fw) x Jn-h, where Jn-h is a specific anisotropic inner form of 
GL(n — h) over Fw. 

( 3 ) O f course the local Langlands conjecture is originally due to Langlands! The form presented here 
became standard after it was understood that conditions (0.7) and (0.8) for m = 1 do not suffice to 
characterize the correspondence. 
( 4 ) ln his IHP lectures, Henniart replaced the counting argument in positive characteristic by a 
reference to Lafforgue's theorem which establishes the global Langlands correspondence for function 
fields, with the local Langlands correspondence in positive characteristic as a corollary. The original 
proof [LRS] of the local Langlands correspondence in positive characteristic used [He2]. 
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In Lecture 4, the course begins to diverge from [HT]. In the first place, we work 
directly with the strata, rather than with the Igusa varieties of the first kind of 
[HT]. These are modular varieties defined (in characteristic p) independently of the 
Shimura variety. The Igusa variety of the first kind is isomorphic as ringed space to 
the stratum, but not as a scheme over the (finite) base field. More importantly, we 
do not introduce the Igusa varieties of the second kind. These are pro-étale covers 
of the Igusa varieties of the first kind - for the fr-dimensional stratum, the covering 
group is the maximal compact subgroup of Jn-h ~ and their existence is combined in 
[HT] with a theorem of Berkovich to prove that the vanishing cycle sheaves are locally 
constant along the strata. Igusa varieties were first defined for the special fibers of 
integral models of elliptic modular curves, and were studied in detail in the book of 
Katz and Mazur [KM]. Their properties have been at the heart of many of the most 
important developments of arithmetic algebraic geometry of the last 30 years. It is 
likely that the more general Igusa varieties described in [HT], and their generalizations 
constructed by Mantovan [Ma], will also find applications to arithmetic. However, 
for applications to automorphic forms (with coefficients in characteristic zero!) the 
infinitesimal structure at points in the special fiber appears to suffice. 

The space $n-h is the "fundamental local representation," which also carries an 
action of the Weil group of Fw. It is universal in the sense that $ g occurs as the stalk 
of the vanishing cycles along the codimension g — 1-stratum for any of the Shimura 
varieties we study. In Lecture 5, we use a comparison of trace formulas to prove a 
conjecture of Carayol, showing that, for h = 0, $ n simultaneously realizes the Jacquet-
Langlands correspondence between representations of Jn and the discrete series of 
GL(n, Fw) and a bijection *4o(n, Fw) <-> Go{n, Fw) that satisfies properties (0.1)-(0.7). 
Here again we depart, slightly, from [HT]. In [HT], comparisons of trace formulas are 
established for all strata simultaneously, and in each case the comparison is between 
a Lefschetz trace formula for the action of Hecke operators on the special fiber and 
Arthur-Selberg trace formula, in its cohomological version [A], for the action of Hecke 
operators on the cohomology of the generic fiber. This comparison is carried out in 
Lectures 6 and 7, where it is called the Second Basic Identity. However, an alternative 
comparison is available for the minimal (0-dimensional) stratum, one that provides 
slightly stronger information for supercuspidal representations. Indeed, one can use 
the infinitesimal uniformization to derive CarayoPs conjecture from a comparison of 
the trace formula for G with that of an inner form attached to the (unique) isogeny 
class contributing to the minimal stratum. Such an argument was already used in 
[HI], in the setting of p-adic uniformization of the generic fiber, where it took the 
form of a Hochschild-Serre spectral sequence for rigid étale cohomology, since vastly 
generalized in the thesis of Laurent Fargues [Fa]. A more immediate precursor is 
to be found in the thesis of P. Boyer [Bo], which also contributed the fundamental 
observation, used here and in [HT], that the cohomology of the strata of positive 
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dimension is a sum of induced GL(n, Fw)-modules, hence has no intertwining with 

the supercuspidal part of the cohomology. However, the simplifications obtained in 

this way (arising from the degeneration of the supercuspidal part of the vanishing 

cycles spectral sequence (5.1.3) and from Clozel's purity lemma, cf. (5.1.6)) are not 

strictly necessary; the trace identities and dévissage suffice. Indeed, [HT] treats the 

more general case, not considered here, of discrete series representations. 

As mentioned above, the Second Basic Identity is stated and proved in Lectures 6 

and 7. But first it is shown that the Second Basic Identity, combined with the First 

Basic Identity - a summary of the geometric information contained in Lectures 2-4 -

suffices to prove Main Theorem 1.3.6. The strategy used in [HT] to prove the Second 

Basic Identity roughly follows Kottwitz' approach in [K5] to the zeta functions of 

Shimura varieties. One uses a version of Honda-Tate theory adapted to PEL types 

to "count" the points in the special fiber in a rough way, then one applies techniques 

from Galois cohomology to rewrite the result of this "count" in a form suited to com­

parison with the cohomological trace formula. However, our approach in [HT] differs 

from that of Kottwitz in three particulars. First, and most obviously, Kottwitz only 

considers the case of good reduction (hyperspecial level), which give rise to unramified 

local Galois representations, whereas the point of [HT] is to study ramification. Thus 

[HT] considers the cohomology of individual strata, rather than the full special fiber, 

with coefficients given by the vanishing cycle sheaves. Next, Kottwitz counts fixed 

points of Hecke correspondences, twisted by powers of Frobenius, over finite fields, 

and obtains formulas in terms of twisted orbital integrals. These fixed point formulas 

are then interpreted as traces in £-adic cohomology of the special fiber by means of 

Grothendieck's version of the Lefschetz trace formula. In [HT] we also use an ^-adic 

Lefschetz trace formula, specifically the one proved by Fujiwara [F], designed to apply 

to non-proper varieties such as the strata of our Shimura varieties. However, instead 

of counting points over finite fields we count fixed points of Hecke correspondences 

over the algebraic closure of the residue field of Fw - on a fixed stratum, a sufficiently 

regular Hecke correspondence already incorporates a twist by a power of Frobenius 

- and obtain formulas in terms of orbital integrals involving an inner twist of a Levi 

subgroup of GL(n, Fw). Finally, Kottwitz' formalism leads to an expression of the 

result of the point count as a sum over rational conjugacy classes in G modulo stable 

conjugacy, an expression well-adapted for comparison with the stable trace formula. 

The formalism in [HT] leads naturally to an expression as a sum of rational conjugacy 

classes in G modulo adelic conjugacy, adequate for application to local questions, at 

least for inner forms of GL(n) where the problem of local instability does not arise. 

The present version of the counting argument of [HT] features several technical 

simplifications, mainly in the treatment of inertial equivalence. The formulas in [HT] 
are complicated by the need to take into account the reducibility of the restriction of 

an irreducible representation of Jn-h to its maximal compact subgroup.The present 
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account avoids these complications by exploiting invariance properties of the funda­
mental local representation (cf. Proposition 5.5.9). This approach also eliminates the 
need for an intermediate expression of the point count in terms of orbital integrals on 

Jn—h' 

Lecture 8, for which there was no time at the IHP, contains some new material. 
The article [H3] outlines a possible extension of some of the techniques and results of 
[HT] to general Shimura varieties. Since it is not known how to generalize Drinfel'd 
bases, nor even whether such a generalization is possible, it is proposed in [H3] to work 
directly on the rigid analytic space associated to the Shimura variety in characteristic 
zero, decomposing it into rigid analytic subspaces according to a stratification of the 
special fiber in minimal (hyperspecial) level by isocrystal type. For Shimura varieties 
of PEL type, L. Fargues has carried out much of this program and more in his thesis 
[Fa]. As mentioned above, he has constructed a Hochschild-Serre spectral sequence, as 
in [HI], to determine the cohomological contribution of an isogeny class, and proved, 
as in [Bo] and [HT], that only the basic isogeny class intertwines non-trivially with 
the supercuspidal representations. Lecture 8 proves the assertions stated without 
proof in [H3] and provides an introduction to Fargues' results. 

Rather than provide complete proofs - one can find these in [HT] - the present 
notes aim to provide some understanding of the techniques used in [HT]. Generally 
speaking, when concepts give way to calculation, I have preferred to cut short the 
discussion and refer to [HT] or to the literature/5) Exceptions are made where the 
approach followed here diverges from that of [HT]; in such instances, I have tried to 
give enough details to convince the reader that the present approach is correct, or 
at least has avoided obvious pitfalls! On the other hand, I have included material 
not in [HT] that seemed appropriate at the the time of the course. In particular, § 2 
and §3 contain a brief review of the deformation theory of one-dimensional formal 
(9-modules, following Lubin-Tate and Drinfel'd. 

It remains to thank the audience at the IHP for having put up with my many blun­
ders; Guy Henniart for planning the course with me (and making no blunders what­
soever); Ariane Mezard and especially Laurent Fargues for having read and pointed 
out some of the errors in earlier drafts (all copies of which should be immediately 
destroyed!); and the fellow organizers of the automorphic semester - Henri Carayol, 
Jacques Tilouine, and Marie-France Vigneras - as well as the directors of the IHP, 
Joseph Oesterle and Michel Broue, and especially Annie Touchant of the Centre Emile 
Borel, for having made the semester an unqualified success. Finally, I am deeply grate­
ful to the referees for their meticulous reading of the manuscript. 

( 5 )The notes distributed during the semester, on which the present text is based, occasionally referred 
to the courses Clozel and Labesse gave during the automorphic semester. Although the notes of their 
courses are not being published, some of these references have been retained, as have other references 
to the time and place of my own lectures, as a reminder of the original context. 
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1. Galois representations attached to automorphic representations 
of GL(n) 

1.1. Cohomological, conjugate self-dual representations. — Fix a prime p. 
Let E be an imaginary quadratic field in which p splits, a totally real field of 
degree d, F = E • F+. Complex conjugation is denoted c. Choose a distinguished 
complex embedding TO of F, and let E denote the set of complex embeddings of F 
with the same restriction to E as To- This E is a CM type, and is in bijection with 
the set of real embeddings of F + . We consider automorphic representations II of 
GL(n, F) , or more precisely of GL(n, Ap). Any such representation can be factored 
II = IIoo (8) 11/, where 11/ is an admissible irreducible representation of GL(n, Apj) 
and IIoo is a Harish-Chandra module for G L ( n , C ) s ; i.e., an admissible irreducible 
(0[(n,C) d,C/(n) d)-module. 

We will only be concerned with II such that IIoo is cohomological. We will also 
restrict attention to cuspidal II, though general discrete cohomological II also play a 
role in the more detailed results of [HT]. Then II is generic, by Shalika's theorem. 
Let (£, W{) denote a finite-dimensional irreducible representation of GL(TI)F- This is 
equivalent to giving a pair of finite-dimensional irreducible representations (£<,-, £C ( T) of 
GL(n, C) for each a G E. For any representation T , we let T v denote its contragredient. 

(1.1.1) Fact. — For every irreducible finite-dimensional representation (S, W E ) = 
(f ® W ^ (8) W£c) of GL(n, C) x G£(n, C) such that 

(1.1.2) £ c - ^ £ V 

there is a unique generic (gl(n, C), U(n))-module l is such that the relative Lie algebra 
cohomology H*($l(n,C), U(n); l is (8) W E ) is non-trivial. Moreover, l is o c 11^. 

The above fact is a special case of the construction in [C2, 3.5], which covers nearly 
all generic cohomological (gl(n, C), {7(n))-modules. It will suffice for the purposes of 
the present notes. The relative Lie algebra cohomology is relevant to calculating 
the cohomology of the adelic locally symmetric space attached to GL(n)p, via Mat-
sushima's formula. Here and in what follows, we denote by *4o(G) the set of cuspidal 
automorphic representations of a reductive algebraic group G. 

(1.1.3) Matsushima'sformula. — Let G be a reductive algebraic group over Q (e.g., 
GL(U)F, via restriction of scalars), and (S, W E ) a finite-dimensional algebraic repre­
sentation of G. For any open compact subgroup K ofG(Af), let 

MK(G) = G(Q)\G(A)/ZG(R) K^K, 

where K runs over open compact subgroups of G(Af). Let £ s be the local system 

G(Q) \G(A) x WE/ZG(R) Koo-K 

over A4K(G) (this is a local system provided the central character ofE is trivial on the 
Zariski closure of a sufficiently small congruence subgroup of the global units, which 
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we assume to be the case). Then there is a G(Af)-equivariant subspace H*usp(Cs) of 

KmKH*(MK(G),£z) such that 

H*CUSP(C~) = 0 Z G ( R ) • tfoo; IIoo ® WE) ® UF 

n 

as G(Af)-modules, where U runs through Ao{G). 

(1.1.4)' — When G = GL(n)F, we assume S = 0 E 2 A , where each EA satisfies 

condition ( 1 . 1 . 2 ) ; recall that £ indexes embeddings of F + . Fact ( 1 . 1 . 1 ) shows that 

the sum runs over II such that 

IIoo ^ n H := 0 sn H , a , 

and this implies that IIoo o c —> EQ^. We also make an analogous global restriction: 

(1.1.5) n c-^->n v. 

This is necessary in order to attach compatible families of ^-adic representations to 

II, following Clozel's construction. 

1.2. Fake unitary (similitude) groups, descent and base-change. — The 

relation to cohomology of the symmetric spaces attached to GL(U)F plays no role 

in what follows. The Galois representations are instead constructed on the f-adic 

cohomology of Shimura varieties attached to certain unitary groups. This is the next 

theme. 

Let B be & central division algebra of dimension n 2 above F, and let ts : B —> F 

and UB : B —> F denote the reduced trace and reduced norm, respectively. Suppose 

B admits an involution of the second kind, i.e., an anti-automorphism * : B —> B 

restricting to c on the center F. This is a purely local hypothesis; i.e., it depends 

only on the completions BV of B at places of F. Let SB denote the set of places of 

F+ above which B is ramified. If v G 5 B , we assume that v splits in F. Then the 

existence of the involution implies that B ramifies at both places of F dividing B. 

We assume that, at every place v' dividing a v G 5 B , B is a division algebra. We will 

later be fixing a rational prime p and a place w of F dividing p. We assume B split 

at w but make no hypothesis regarding the invariants of B at the remaining divisors 

of p. We choose a maximal order OB C B such that the involution * restricts to an 

involution of OB,P = OB <8>z ^p-
Let BOP denote the opposite algebra, and let V be the F-vector space B, 

viewed as a B ®p £ o p -module. The involution * is assumed to be positive; i.e., 

T T F / Q ^ B G ? * 9*)) > 0 for all nonzero g G B. Let B~ c B denote the (—l)-eigenspace 

for the involution *. For any /3 G B~, we define an involution of the second kind 

# / 3 by x^13 = Px*^1 and a B — *-hermitian alternating pairing (i.e., alternating 

upon restriction of scalars to Q , and hermitian in the sense that (bv,w) — (v,b*w)) 

V x V Q by 

(Xi,X2)p = TrF/Q(tB{XlPX2)). 
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Then for be B, bop G £ o p , we have 

(1.2.1) ((b®bop)xux2)p = (xu(b* ® bf¿)x2)p. 

Let G/3 be the algebraic group over Q whose group of ii-points, for any Q-algebra R, 

is given by the set of g G (BOP ® Q R)X such that, for some A G i ? x , the following 

equation is satisfied: 

9-9**= A. 

Then G¡3 is connected and reductive, and g —> A defines a map v : Gp —» G m . The 

kernel G/3,1 of is the restriction of scalars to Q of a group G@ over F + . 

We identify 

(1.2.2) B ®Q R M(n, F r ) M(n, C)d. 

For each T G E, (•,•)/? thus defines a *-hermitian form ( « j » ) ^ on M(n, C). If n is 

even, we assume 1 + dn/2 has the same parity as \SB\- Then a calculation in Galois 

cohomology (cf. [C2, §2]; [HT, Lemma 1.1]) shows that (3 can be chosen in B~ such 

that G/3 is quasisplit at all rational primes that do not split in E/Q, and such that 

the form (•, • ) ^ ? r is of signature (n, n(n — 1)) (resp. (0, n2)) for r = To (resp. r ^ T O ) . 
Thus GpaQ is isomorphic to Í7(l, n — 1) but Ĝ J is a compact unitary group for all 

real places a ^ 0 0 . We fix such a (3 and drop it henceforth from the notation. 

We write K Sh(G) for the locally symmetric space denoted MK{G) above. It is in 

fact a hermitian locally symmetric space of (complex) dimension n — 1, hence a quasi-

projective variety by the theorem of Baily-Borel. Because B is a division algebra, 

K Sh(G) is in fact projective for all X , and smooth if K is sufficiently small (which we 

assume). Thus there is no distinction between H*USP and H* in Matsushima's formula. 

The representation (£, defined above gives rise to a representation of G (take the 

factors in E, and regard G(R) as a subgroup of unitary similitudes in GL(n, C ) s ) . 

We denote by C% the corresponding local system on Sh(G) = fini^ K Sh(G). 

If p splits in E, we can identify 

(1.2.3) G(QP) ^ nB°P'X X<^P 

v\p 

where the map G(QP) —> Q* is given by v. Thus if 

/ 

7T = TToo ( 8 ) ® 7 T p G AQ(G), 

p 

we can further factor 7rp as 

(1.2.4) 7T p = ®v\p7Tv 0 i\)v, 

where ipp is a character of Q*. 
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(1.2.5) Remark. — In practice, we will arrange that ipp always be an unramified char­

acter. We will moreover make a habit of suppressing the effect of ipp, which merely 

complicates the formulas while adding nothing of substance. 

The following theorem was originally considered by Clozel. The first complete 

proof of the base change in both directions was published in the appendix by Clozel 

and Labesse to Labesse's book in Astérisque [CL, L]. This book contains a much 

more general framework for proving theorems of this kind, by comparison of stable 

trace formulas. 

(1.2.6) Stable Base Change Theorem (Clozel, Labesse). — Let (£, WE) be as in (1.1.4). 

Let II C AO(GL(TI)F) be a cuspidal automorphic representation with central character 

and let ^ be a Hecke character of E. Suppose 

(a) lu 
(b) IT - ^ n v ; 
(c) For every place v € S(B), UV is in the discrete series. 

(d) ^ n \AI=^C№-

(«0 « l ^ ) " 1 = ^ c \E*-

Then there exists an automorphic representation TT of G whose base change to 
GL(U)F x Ex equals (II, - 0 ) . Moreover, 717 occurs in the cohomology of Sh(G) with 
coefficients in . 

Conversely, given TT £ AQ(G), cohomological for £, £/iere exists a pair (II, - 0 ) sa£-

isfying (a)-(e), with ip = | A x , sizc/i £Aa£ (II, ?/;) ¿5 £fte base change of TT at all 

unramified places and at all places that split in E. Moreover, if TTv is supercuspidal 

(or corresponds via Jacquet-Langlands to a supercuspidal if v G S(B)) for some v 

dividing some p that splits in E, then II is cuspidal 

(1.2.7) Remark. — Say II G CU(n,F) if it satisfies (a)-(c). Starting from II G 
CU{n,E), one sees easily that there is no obstruction to finding ijj satisfying (d) 

and (e). 

I need to explain the meaning of base change. The group RE/QGE is naturally 

an inner form of the quasi-split group RE/QGL(1)E X RF/qGL(n)F. Then the base 

change of TT to an automorphic representation TTE of RE/QGL(1)E X Rp/QGL(n)F can 

be regarded as a pair consisting of an automorphic representation II of GL(U)F and 

a Hecke character ip of E1*; this explains the notation above. To simplify, I assume 

all T/J'S are trivial, but denote them as (?). At places p that split as yyc in E, the base 

change is simple. Choose one y and write 

G(Qp) X B o p , X ) 

where By is of course a product of central simple algebras over the completions of F 

at places dividing y. Thus given TT, we can write TTP =7(8)%, and define UP = TTy^nf, 
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where 7r#(g) = -Ky((g#)~l). This doesn't depend on the choice of y . Moreover, we 

recover 7ry from Up. 

If p is inert, then G(QP) is a product of quasi-split unitary groups (up to the center). 

Local base change for representations of unitary groups is not known in general. But 

if 7T P is unramified, and if G is split over an unramified extension of Q p , let B C G be 

a Borel subgroup, T C B the Levi factor. We can identify 

T(QP) = { ( d 0 ; d i , . . . ,d„) | do = d» • d £ + 1 _ i ? i = 1,... , n } . 

If a is a character of T ( Q P ) , let 

BC(a) (do ;d i , . . . , d n ) = a(d 0 • do;do • di/d£,.. . . ,do • dn/df). 

If 7T P is the unramified representation 7r(a) corresponding to a, then ( I I p , ^ ) = 

BC(TTP) = ix{BC{a)). We leave it as an exercise to the reader to determine the 

Satake parameter of Up (as opposed to the unramified character tj)p). We have thus 

defined Up for almost all p, and by strong multiplicity one, this suffices to determine IT. 
Henceforward, to simplify the exposition and minimize notation, we assume S to 

be the trivial representation. No essential elements of the proof are lost under this 

assumption. However, for applications to the local Langlands conjecture, we need to 

be able to consider more general S. 

1.3. Kottwitz' theorem and its refinements. — We can identify complex coho­

mology with ^-adic cohomology, for example, by choosing an isomorphism C Q^. 

Thus if n is as above, we can choose a character ip and define TT such that 717 C 
ff*(Sh(G),Q^). It is known that Sh(G) admits a canonical model over F (recalled 

next week), and thus there is a virtual representation of IV = Gal(F/F) on the 

717-isotypic subspace 

Rl(u,G) = > l ) w - 1 + * H o m G ( A / ) ( 7 r / , i T (Sh(G), Qe)). 

(Warning: the sign (—l) n 1 will disappear later in the course.) Define 

Re(7r) = Rt(7r,G)®il>c |r> . 

Here is the relation between Re(7r) and n = BC(ir): 

(1.3.1) Theorem (Kottwitz, [K4]). — There is a constant a(7r) such that for almost all 

places p not dividing £, such that 7rp is unramified, and for all v dividing p, the local 

representation Re(n)v is isomorphic to a{ir) copies of 

a. (lit,)*1, 

where the v-component Hv of H is the unramified representation attached to the n-

tuple of characters (ai(Uv)). 

(Note: sign conventions differ in the literature.) 

Here is an argument, based on ideas of Clozel, to show that 717 occurs only in the 

middle degree n — 1. Kottwitz' theorem uses the theory of the zeta function of the 
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reduction mod v of Sh(G). In particular, the ai(ILv) are eigenvalues of Frobenius on 
fP(Sh(G), Qe) (up to sign). In particular, they are algebraic numbers whose complex 
absolute values are determined by the degree of cohomology in which they occur. 
However, n is cuspidal, hence Iiv is unitary for all v. It follows from the classification 
of unitary representations of GL(n,Fv) (Tadic) and Deligne's purity theorem that 
all ai(Uv) have the same complex absolute values. Thus 717 can only occur in one 
dimension of cohomology. By the hard Lefschetz theorem, this can only be the middle 
dimension. 

Taylor has given an argument (cf. [HT, § VII 1.8]) to show that the constant a (7r ) , 

an uncontrolled multiplicity that arises in the comparison of trace formulas, can be 
factored out of i?^(n); i.e., we can write 

(1.3.2) ^ ( n ) s s = ifc,o(n)a0r) 

for some n-dimensional semisimple representation R£^(IV) of IV; here the subscript ss 
denotes semisimplification, which is all we can understand via traces. The argument 
requires that Re(Ii) be Hodge-Tate. In our case, Re(H) is realized as a subquotient 
of the cohomology of a Kuga fiber variety, by the Leray spectral sequence. Since the 
Kuga fiber variety is smooth and projective over some number field, its cohomology 
is potentially semi-stable at all places, by Tsuji's theorem. Then any subquotient is 
also pst, hence is Hodge-Tate. So there is no problem. But even if there were, by 
controlling the local ramification at inert places, one can arrange to have a(n) = 1 
(joint work in progress with Labesse). We define 

(1.3.3) r£(U) = № , o ( H ) s s ) v 

Applying Kottwitz' theorem, we obtain 

(1.3.4) Theorem (Clozel [C2] + Taylor). — Let li G CU(n, E). Then there is a com­
patible family (r^(n)) of n-dimensional X-adic representations such that, for all finite 
places v outside a finite set S containing all ramified places, Kottwitz' theorem yields 

[rt(U) I r J s s ^ O M 

Remark. — We are always working with the unitary normalization of the Langlands 
correspondence. So the L-function of n has to be shifted by (n — l ) / 2 in order to 
obtain the L-function of a Galois representation: 

(1.3.5) Ls(s,U) = Ls(s + a=l, <7*(II)). 

where the left hand side is automorphic (in the unitary normalization) and the right 
hand side is the partial Galois-theoretic L-function, with the factors at the finite set S 
of bad primes removed. 

Here at is the local Langlands correspondence, so far defined for unramified rep­
resentations. A compatible family (r£(H)) as above is called weakly associated to n. 
The goal of my lectures is to present a proof of the generalization of this theorem, 
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contained in my article with Taylor, to all places v\ in other words, to show that 

(re(It)) is strongly associated to II (after semi-simplification locally). The remain­

der of today's lecture explains how to reduce the local Langlands conjecture to the 

statement that the representations (r^(II)) are strongly associated to II. 

But first, to make sense of this, we need to have constructed a family of local 

bijections TT <-> O~(TT) = (a¿(71)) between A(n, Fv) and Q(n, Fv) for all places v that are 

candidates for the local Langlands correspondence. We need to know that a comes 

from a correspondence Ao(n, Fv) <-+ Go(n, Fv), that cr(7r v) = cr(7r) v , that a commutes 

with character twists, Galois automorphisms, base change, automorphic induction: in 

short, that a satisfies all hypotheses enumerated in the introduction except, perhaps, 

compatibility with local ^-factors. In later lectures I will explain how to construct 

such a correspondence by algebraic geometry, such that 

(1.3.6) Main Theorem ([HT]). — Let U G CU(n,E). Then for all places v not divid­

ing £, 

[ry(II) |rjss ^ crE(UV).^ 

Now I have to explain how this theorem implies compatibility with e factors. 

1.4. Non-Galois automorphic induction. — The arguments in this section are 

taken from the article [H2], and were extended slightly in [HT]. Here and in what 

follows, we use the notation EE to denote Langlands sum. Let K be a local field, TT G 
A(n, K), TT' G A(m, K), and let P c G n + m be the standard parabolic subgroup with 

Levi subgroup Gn x G m ; the representation TT®TT' defines by inflation a representation 

of P. We define the representation 

TT ffl TT' G A(n + m, K) 

to be the Langlands subquotient of the normalized induction 

Indpn+rn TT ® TT'. 

We now consider a triple of CM fields F$ D F2 D F\ as before, all containing 

E, with totally real subfields i = 1,2,3. We assume F$/F\ is Galois and V = 

Gal(F 3 /Fi) is solvable. The goal is to show that certain algebraic Hecke characters % 

of F2 define by induction automorphic representations IF2/F1(X) °f GL(d,Fi), where 

d = [F2 : Fi]. The meaning is clear. If \ is associated to an ^-adic character ri(x) 

of TF2, then IF2/F1(X) should be weakly associated to lndF2/p1 r^(x), where I n d ^ / ^ 

denotes induction from TF2 to Ti?!. Concretely, let v be a place of F\, unramified in F2, 

such that Xw is unramified at all w dividing v. For each w \ v F2,w is a cyclic extension 

of F\,v of degree fw, and we define the representation Iw/vXw of GL(fw, FijV) by cyclic 

automorphic induction: it is the unramified representation associated to the fw-tup\e 

( 6 )Note added in proof: Taylor and T. Yoshida have just proved the expected strengthening of this 

theorem, in which semisimplification is replaced by Frobenius' semisimplification. 

ASTERISQUE 298 



T H E L O C A L L A N G L A N D S C O R R E S P O N D E N C E 3 1 

of characters Xw ° 7 as 7 runs through G a l ^ ^ / F i ^ ) . Then the v component of 
IF2/F1{X) must be the (Langlands) sum of the Iw/vXw for w I v. The problem is to 
show that these local components fit together into an automorphic representation. 

(1.4.1) Remark. — Regarding the archimedean constituents, recall that we are 
always working with the unitary normalization of the L-function. So in fact, 
X • | . | ( d - 1 ) / 2 , rather than is an algebraic Hecke character. 

Suppose we can do this for quite general just how general will become clear in 
a moment. Suppose moreover that IF2/F1(X) £ CU(d,Fi), so that we can apply the 
Main Theorem. Let F% D F2 D F\ be another triple as above, with [F2 : Fi] = d', and 
suppose we have a second character x'- Write II(x) = IF2/F1(X)I n(x') — ^ / F i (xO-
Consider the Rankin-Selberg L-function, with its functional equation [JPSS, Sh] 

(1.4.2) L(s,U(X) ® n(x')) = II£-(s'n^)" ® W ) v , i l > v № - s,n(X)v ® n( X') V). 
V 

The local e factors are those of the automorphic theory. On the other hand, we have 
n(x) weakly associated to I n d F 2 / F l r^(x), and likewise for n(x')- The tensor product 
I n d F 2 / F l

 re(x)®Ind•F,lFx rz(x') 1S a n ^-adic representation corresponding to a complex 
representation of the global Weil group of Fi, hence there is a functional equation 

(1.4.3) L(s, I n d F 2 / F l n(x) ® lndF>/Fl r*(x')) 

= Yl^v(s,lndF2v/Flv re(xv)®IridFitjFliV rt(Xv)^v) 

L(l - 5 , I n d F 2 / F l rt(x)y ® Ind F j / / F l rt(x!Y)i 

where the local e factors are those of Langlands and Deligne. By the technique 
explained by Henniart in his course, and recalled in Appendix (A.2) (cf. [Hel]), this 
implies identities of local e factors for all v: 

(1.4.4) ev(s, n ( x ) ^ n ( x ' ) „ ^ ) = ev(s, l n d F 2 v / F l v n(xv)®IndF>jFlv r£(Xv),il>v). 

Fix v of residue characteristic p split in E, as before, K = FijV and assume v 

is inert in Fs and F$. Let a and a1 be two representations of Yv factoring through 

Gal(Fs^v/K) and Gal(F^v/K), respectively, and let TT and TT' be the corresponding 

elements of Ao(n, K) (resp. Ao(n', K)). Note that for any a G Go(n, K) we can choose 

a local extension FsiV/K which is solvable and such that a comes from G&l(FsiV/K) up 

to an unramified twist, which we ignore. By Brauer's theorem, there are intermediate 

fields K c F2jlV C FsiV, characters Xj,v of Gal(F3^v/F2,j,v), and integers e3- such that 

G = Yl EJ LLIDF2,j,v/K Xj,v] 

3 

likewise for a'. Applying the above identity of e factors, and ignoring i\)v, one obtains 

ev(s, a ® a') = JJe v(s, U{Xj)v ® IL(Xj>)v)ei'ej' • 

3d' 
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Now we apply the Main Theorem. Say 

U(Xj)v = ffli7rifi; U(X

f

r)v = ffli'TrJ,,,.,, 

with the notation S3 defined as above. The Main Theorem states that 

a = eja(ui,j),i a'=E 

v ,3' 

ej'(u',jr) 

Write dij = a(7Tij), etc. On the other hand, by the additive properties of the 
automorphic e factors (cf. (A.2.2), (A.2.4)), 

Uev(s,u(xjàu * u(S'j)o} ej-ej' = U eu(s, ui,j x r'i'j') ej'ej 
i,3,i,3 

iJii' ,3' 

U eu(s, ui,j x r'i'j') ej'ej (a'i'j)}ej(ej-j 

= eu (s,o-1(o)) x = (s, u x o u'= 
This yields the identity (0.8) of e factors, which, assuming the Main Theorem (1.3.6), 
completes the proof of the local Langlands conjecture. Since a commutes with twists 
by characters, one sees that it doesn't matter if we only get a and a' up to unramified 
twists. 

By simple approximation arguments, we see that any local extension K'IK can be 
realized as an F^v/F\^v as above. In this way, we find that it suffices to prove that, for 
any intermediate ~2 in a solvable extension and any character Xv of F2lV, then (up to 
unramified twists) Xv can be realized as the local component of a Hecke character % 
for which IF2/F! (X) exists as an automorphic representation of GL{d, Fi). 

If F2/F1 is cyclic the existence of a global IF2/F1(X) is guaranteed by the base 
change theory of Arthur-Clozel. By induction, IF2/F1(X) exists when F2 is solvable 
over ~i, without any additional hypothesis on the fields or characters. On the other 
hand, if F2/F1 is cyclic and U2 is an automorphic representation of GL(d,F2) invariant 
under Gal(i~>/Fi), then Arthur and Clozel prove the existence of Hi on GL(d,Fi) 
whose base change to F2 is U2: this is the descent of n 2 to Fi. 

So one might argue as follows: let T2 = G a l ^ / i - * ) , and, motivated by the usual 
restriction/induction formula on the Galois side, replace x by 

n 3(x) := fflr/r2X 0
 N F 3 / F 2 . 

The result is invariant under T, by construction, so one should be able to descend to 
fixed fields of successive cyclic Galois groups of prime order. 

The problem is that descent is ambiguous. To simplify, assume there is an in­
termediate field field F± C E C F3 with F3/E and E/F\ cyclic of prime order; let 
C = Gal(F3 /F) . Let J(x, E) = ResTE I n d F 2 / F l re(X). Then 

Resr 3 J(x, E) = Resr 3(J(x, E) 0 (3) 

ASTÉRISQUE 298 



T H E L O C A L L A N G L A N D S C O R R E S P O N D E N C E 3 3 

for any character /? of C. There is a similar ambiguity in descent. Consider the first 

step: let II be an automorphic representation of GL(d,Fs) invariant under C, l i e a 

descent to GL(d, E). For any character /3 of C, the twist l i e ®/? (¡3 viewed as a Hecke 

character of GL(1, E)) is another descent of n. So the total number of descents is on 

the order of \C\ (some twists may be isomorphic). (Actually, there is more ambiguity: 

if He is not cuspidal, say He = EBjIIj, then each can be twisted separately by a 

character (3j of C.) On the other hand, locally everywhere Hc,p can be identified only 

up to twist(s) by character(s) apj of the decomposition group Cv,p C C at p. The 

general theory thus gives that for each p there is a character ap of Cp such that, for 

almost all p, 

o-E(UC,P) = J(X,E)P ®®P-

A priori, there is no way to prove that the local characters ap fit together to a global 

character (3 of C. 

On the other hand, if it is known that He has a weakly associated ^-adic repre­

sentation r^(IIc) of T^, then re(Hc) is a descent to E of Resp F 3 lndF2/Fl

 rz{x)- If 

moreover r^(IIc) is irreducible, then the only ambiguity in descents comes from twists 

by characters of C: 

rt(ILc) = J(x,E)®a 

for a global character a. So one can replace He by He ® a - 1 and continue with the 

descent. More generally, the analogous argument works if He = EBJIIJ with a weakly 

associated re(Uj) for each j . 

So it suffices by induction to show that there is a sequence of intermediate fields 

Fi = EQ C E\ c • • • C Er = Fs with each Ei/Ei-i Galois and cyclic of prime degree, 

and a sequence of descents U(x,Ei) of ^ ( x ) such that each U(x,Ei) = 5311^ with 

each Uij € CU(dj,Ei). 

Recall (1.2.7) that CU(dj,Ei) involves 3 conditions: conjugate self-duality, regu­

larity at co, and a local condition at some prime. We assume v is inert in F$/Fi and 

we assume there is a second prime w of F±, also inert in Fs and dividing a rational 

prime p(w) split in E. In practice, we have to allow p(w) = p, which is not a prob­

lem. We want Xv to be general, Xoo such that II^oo is cohomological for all i and j , 

and Xw such that every Uij,w is supercuspidal. Since p splits in E, v •=/=• vc, so the 

condition x - 1 = X° imposes no restriction on Xv The condition at w is a bit more 

subtle. By Mackey's theorem, the restriction Res F i IndF2/Fl rt(x) breaks up as a sum 

of constituents that may not necessarily be irreducible: 

Res£. I n d F 2 / F l re(x) = (&lndEita/Ei a(x) 
a 

where a runs through the double cosets r F i \r/T2, E^a is the fixed field of a(r2)a _ 1 Pi 

T F i , and a(x) is the restriction to a ( r 2 ) a _ 1 D TFi of x (conjugated by a). We need 

to choose Xw so that each of these Mackey constituents is locally irreducible at w. 
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This is true generically (exercise, cf. [H2, Lemma 4.7]). Then the base change theory 
implies that U(X,Ei) = EBHija, with H , a supercuspidal at w. 

Supposing we have Xw, we choose a global Hecke character xo, trivial at oc, such 
that xo,v = Xv, Xo,w = Xw, Xo,vc = 1 = Xo,w°> Let xi = Xo/Xo- T n i s h a s t h e r i S n t 

properties at v and w and satisfies Xi = Xi1-
To obtain Xoo? we work backwards. For any complex place r of F\, let r(fc), 

k = 1,... , d be the primes of i~> dividing r. Then 

n(x)oo = fflfcXr(fc)-

The regularity hypothesis requires that all Xr(fc) be distinct for fixed r, and conjugate 
self-duality requires that 

{X~(k)} = {XcT( fc ) } -

The coefficient system S determines the set {Xr(fc)} ^ o r each ~- This is again not 
a restriction. Let X2 be any algebraic Hecke character with xi — XJi1 -> with X2,r(fc) 
as just described for all r, and such that X2,v and X2,™ are unramified. By allowing 
sufficient ramification elsewhere, we can easily construct such X2- Then we let x — 
X i ' Xi- This has the right behavior at w and oo, is conjugate self-dual, and is the 
desired Xv up to unramified twist. It suffices to show that IF2/F1X i s automorphic for 
such x-

Here is the induction step. Suppose we have Tl(x,Ei) = EBn̂ a, with n^a super­
cuspidal at w, and with each n^a " CU{di, a); di is the dimension of the correspond­
ing Mackey constituent. We further assume that the set {n^ a} is invariant under 
Gdl(Ei/Fi). Finally, we assume that the sum of the corresponding Galois representa­
tions is ResEi Ind(r^(x)). Let Ci = Gal(J~i/^_i), of prime order q. We let Ci act on 
the set {n^ a}. The orbits are either fixed points or of order q. If n^a is a fixed point, 
it descends to a Hi-i^'fl, with local component supercuspidal at w (since this is true 
after base change). The cohomological condition is automatic, though the relevant 
coefficient system depends on the orbit of Ci on the r(k). We need to know that 

AAz-l,a',0 — AAi-l,a',0-

This is true after base change, so 

A Az-l,a',0 — n--l,a',0'?7 
for some character 77 of d. But Ei/Ei-i comes from a cyclic extension of totally real 
fields Ef /Ef_x, so 77 = 77+ o NEi_i^E+ ^ for some Hecke character 77+ of Ef_x, trivial 
at the archimedean places. This implies that 77+ extends to a finite Hecke character 
a of the ideles of Ei-\. Replacing n^ - i^o by Hi-i^' '•= N-i-i,af,o ® OL, we find that 

n v = TTC 

lli-l,a'-
Next, if {n* a I t e Ci} is a non-trivial orbit, the Langlands sum 133*11* a descends 

to a Hi-i^a'. Such a descent is unique, hence the conjugate-self duality is automatic, 
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as is the cohomological condition. The supercuspidality at w follows from the choice 

of generic Xw 

Finally, we need to know that the set {n^_i, a '} gives the right set of Galois rep­

resentations. But each corresponding a(i — l ,a ') is locally irreducible at hence is 

globally irreducible, hence is determined up to a twist by a character of G*. Looking 

at the Mackey decomposition, we see that by choosing the right twist, we get a con­

stituent of Res£;._1 Ind(r^(x)). In particular, the set of constituents is invariant under 

Gal(J~i_i/Fi), and this completes the induction step. 

(1.4-5). — Lectures 2-7 are devoted to the proof of Main Theorem (1.3.6) in the 

special case where Hv is the full induced representation from a supercuspidal rep­

resentation of the Levi subgroup of a parabolic subgroup of GL(n,Fv). This case 

suffices to establish the compatibility of local s factors, as one verifies immediately 

by inspecting the arguments presented above. Strangely, the more general version 

of the Main Theorem appears to be required to prove the modular local Langlands 

conjecture, due to Vigneras [V]. 

2. Shimura varieties as moduli varieties 

2.1. Shimura varieties attached to fake unitary groups: canonical models 

A Shimura datum is a pair (G, X ) , where G is a connected reductive group over Q 

and X is a G(R)-conjugacy class of homomorphisms h : Rc/mi^m^c) —> G R , satisfying 

a familiar list of axioms [Del]. We will always assume the weight morphism Wh, 

the restriction of h to G M ? R , is rational over Q. The centralizer of h contains the 

real points of the center ZQ of G, as well as a maximal compact subgroup K^, 

and the axioms imply that the connected components of X are hermitian symmetric 

spaces homogenous under the identity component of the group of real points of the 

derived subgroup G d e r of G. Upon extension of scalars to C, an h G X defines a 

homomorphism G m , c x ^m,c —• Gc whose first coordinate is a cocharacter denoted 

u = uh. 
The G-conjugacy class of ¡1 is independent of h and its field of definition is a number 

field denoted E(G,X)] we will write fix for any point in this conjugacy class. This 

is a cocharacter of some maximal torus of G, hence a character of a maximal torus 

T C G. The Shimura variety Sh(G, X ) , whose set of complex points is given by 

(2.1.1) Sh(G,X)(C) = lim S h ^ G , X ) ( C ) , 
UcG(AF) 

where 

(2.1.2) S M G , X)(C) = G(Q)\(X x G(Af)/U) ~ Mu(G) 

(notation as in (1.1.3)), has a canonical model over the field E(G,X). This is a 

general fact that will be derived for our specific Shimura varieties by interpreting 

them as solutions to a moduli problem. 
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Notation is as before: F = F+E, B, TO, 00, p = uuc, w | u, E , etc. 

Choose an R-algebra homomorphism ho : C —• B O P ® Q R such that ho(z)# = ho(z) 

for all z £ C. The image is contained in G and is centralized by a maximal compact 

subgroup of G(R) if and only if the map x i—• feo(i)_1a;^fto(^) is a positive involution. 

Since # is conjugate to 

g d iag(- l , 1,..., 1) V 1 d iag(- l , 1,..., 1) 

this means that ho(z) must be conjugate to diag(z,z, z,... ,z) (in the To coordinate) 

and z - In (in the remaining coordinates). Let (G,X) be the Shimura datum for 

which X is the G(R)-conjugacy class containing ho. Then the reflex field E{G,X) is 

isomorphic to F, identified with its image in C under To. 
Recall the Hodge-theoretic interpretation of h £ X. Any irreducible representation 

of jRc/R(Gm) is of the form z hPiq(z) = z~pz~q for p, q G Z. If ft G X and (p, V) is 

a representation of G, then po ft decomposes Vc as a sum of eigenspaces Vp,q for hPiQ. 

(Scholium: Vp,q = Hq(Y,QP) if V is the complex cohomology of a smooth complex 

variety Y.) 

Let V = B itself. Then 

BC = B <g>Q (C) = e r G E ^ r e £ C O T; 

moreover, is the v-eigenspace for the action of F for v G Hom(F, C). On the 

other hand, via ho, we have B(C) = 5 ( C ) - 1 ' 0 0 B ( C ) ° N o w BR has a positive 

involution *, defining (via the trace) a bilinear form that takes rational values on 

B(Q). Hence, choosing a lattice A G -B(Q), we find that 

A\B(R) = A \S (C) /B(C)° - 1 

is a polarized abelian variety Ao, with Lie algebra 5 ( C ) - 1 ' 0 . Decomposing Lie(Ao) = 

. 8 ( C ) - 1 , 0 as a sum of v-eigenspaces, we find 

(2.1.3) dimLie(A 0 )r 0 =
 ni d imLie(A 0 ) r = 0,r G E , T ^ T 0; 

and for all T, 

(2.1.4) dimLie(yto)r + dimLie(74o)cor —r? — dim/? 

This justifies the relation to moduli explained in the next section. 

2.2. The moduli problem. — If A is an abelian scheme over a base scheme S over 

Q, let Tf(A) denote the direct product of the Tate modules Te(A) over all primes £, 

Vf(A) = Q 0 Tf(A). Let U C G(Af) be a compact open subgroup. Consider the 

functor Au(B,*) on schemes over F, which to S associates the set of equivalence 

classes of quadruples (A,X,i,rj), where A is an abelian scheme of dimension dn2, 

A : A —» A is a polarization, i : B ^ End(A)<g)Q is an embedding, and rj : V^qAf 

Vf(A) an isomorphism of skew-hermitian (see below) B ® Q ^/-modules, modulo U; 

here V is the B <g> £ o p -module 5 , as in (1.2). 
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Here is the precise meaning of "modulo Un following Kottwitz [K5, p. 390]). We 

may assume S connected. The Tate module Tf(A) is a smooth Af-she&f on S. Fixing 

a geometric point s G 5, it is thus the A/-sheaf associated to the representation of 

7Ti (5 , s) on Tf(AS). Then a level structure modulo U is a [/-orbit of isomorphisms 

r] : V (£)Q Af ^+ Vf(AS) that is stable under the action of 7ri(S, s) on the right. It 

can be checked that this condition is independent of the choice of geometric point. 

We assume the Rosati involution on End(A) ® Q restricts to the involution * on 

i(B) and 77 takes the standard pairing on V to an A/-multiple of the Weil pairing 

for A on Vf(A). Most importantly, i induces an action ip of the center F of B on the 

(9s-module Lie(A). For each embedding r : F —> C, we let Os,T = Os ® F , T C, and 

let Lie(A)R = Lie(A) ®F,T C We then assume that 

(2.2.1) Lie(A)T = 0 , T G S , T / T 0 ; 

(2.2.2) Lie (A) COT is a projective Os,CoT module of rank n 2 , r ^ To; 

(2.2.3) Lie(A) r o is a projective Os,To module of rank n; 

(2.2.4) Lie (A) C O r 0 is a projective Os,coTo module of rank n(n — 1). 

Note - this is important - that the action of F on Lie(A)T is via the embedding r. 

Two quadruples (A, A, i, 77) and (A', A', if, rf) are equivalent if there is an isogeny A —» 

A' taking A to a Q x-multiple of X' and preserving the other structures. In particular, 

we may always assume |ifer(A)| prime to p. 

We assume U is sufficiently small; then Au{B, *) is represented by a smooth pro­

jective scheme over F, also denoted Au(B, *)• For B = Q this was proved over any 

base prime to the level of U by Mumford, using geometric invariant theory. The 

problem with B is relatively representable over the one without B "by the theory of 

the Hilbert scheme," as one says at this point. In fact, the complete proof is written 

down nowhere, except in Shimura's papers of the early 60s, which use the language 

of Weil's algebraic geometry. (However see [Hida].) 

2.3. Points over C. Hasse principle and connected components. — Using 

Riemann matrices, we show that Au(B,*) is isomorphic to |ker 1 (Q,G)\ copies of 

the canonical model of u Sh(G, X). I begin by explaining the source of the invariant 

ker^Q, G) = k e r ^ Q , G) -> ] X ^iQv, G)]. Recall that G is the group of automor­

phisms of the Rp/QB-module V that preserve the *-skew-hermitian pairing (#i ,£2)/3 

up to a scalar. Here and below, a *-skew-hermitian form on a 5-module is only con­

sidered fixed up to a (Q-rational) scalar. If V is a second skew-hermitian B-module of 

the same dimension, then V -̂ as skew-hermit ian B-modules, and this gives rise 

to a class in i^ 1 (Q, G ) . Now suppose we have a point x = (A, A, i, rj) G ATJ(B, *)(C), 

and let V = i J i (A,Q) . This defines a class c(x) G HX(Q,G). Now 77 defines iso­

morphisms VQP VQ p for all finite primes p, so c(x) becomes trivial in ii/" 1(Qp,G) 

for all finite p. Moreover, the conditions (2.2.1-4) imply that c(x) becomes trivial 
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in ^(R.G) as well. Thus c(x) G ker 1 (Q,G). Note that in any case, V and V are 
isomorphic as ^-modules, so only the polarization makes a difference. 

There is no reason to assume the class c(x) € ker 1(Q, G) vanishes. One can deter­
mine ker1 (Q, G) explicitly: it is a finite group, trivial when n is even, and isomorphic 
to 

k e r [ F + ' V Q X ^ / F + ( ^
X ) — A*+/A*NF/F+(AF)}. 

when n is odd. This is an elementary calculation (found on p. 394 of [K5]). We index 

the elements of ker1 (Q , G) by Q, i = 1,..., AC, with c\ = 0, and let 

Si(B, *)(C) = {xe Au(B, *)(C) I c(x) = a}. 

I will show that each S\j(B, *)(C) is the set of complex points of a canonical model 

of Shu(G,X). 

Indeed, suppose x G SJJ(B,*)(C). First set i = 1. One thus has Hi(A) ^ > V as 

skew-hermitian ^-modules, and we choose an isomorphism t : Hi(A) V. Via L, 

the datum rj defines a point in G(Af)/U. On the other hand, the complex structure 

on Hi(A,M) = Lie(A) defines a map h! : Rc/R&m —• GL(V). Since the complex 

structure commutes with B, h! takes values in BOP,X. Again, the conditions on the 

inaction on Lie (A) and the positivity of the Rosati involution imply that h! G X 

(= the set of polarized Hodge structures of a certain type). Thus we obtain a point 

X(L) G X x G(Af)/U. The choice of i is well-defined up to an element of G(Q), thus x 

gives a well-defined point in G(Q)\(X x G(Af)/U) = Shu(G,X)(C). We thus have 

a map 

Sh(B,*)(C)—»Sh(G,X)(C). 

By the theory of Riemann matrices, this map is a bijection. Indeed, one can recover 

the abelian variety A from the vector space V and the complex structure h!at least up 

to isogeny; then the point in G(Af)/U gives A in terms of a correct choice of lattice. 

On the other hand, every point in X xG(Af)/U corresponds to a polarization on V(M) 

and a lattice (with level structure) with respect to which the polarization is integral, 

hence to a complex abelian variety, and the additional structures are automatic, by 

the discussion above. 

For general i, we have to start with an isomorphism il : H\(A) Vl\ then the 

same argument goes through with G replaced by G% — AutJe(T^z, (, )*). Note that 

nothing changes except the set of £\ The procedure for relating abelian varieties 

over C to pairs consisting of an archimedean datum (in X) and a finite-adelic datum 

(in Gi{Af)/U = G(Af)/U), modulo a global datum (in G*(Q)) is worth recalling 

here, since it is the model for what will be used to study the points over finite fields. 

We note that in fact G% = G for all i. This is a consequence of the following lemma: 

(2.3.1) Lemma. — The natural map ker 1(Q, ZQ) —• ker x(Q, G) is surjective. 

Indeed, this implies that the twist of the hermitian space V is induced by a twist 

coming from ZQ, hence one that has trivial image in G a d = Aut(G) 0 , hence defines a 
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trivial twist of G. To prove that G% — G, we could also appeal to the Hasse principle 

for adjoint groups. However, lemma (2.3.1) will be used repeatedly in the second half 

of the course, so I sketch a proof here, due to Kottwitz. First, let D = G/Gder. Since 

G d e r is an inner form of SL(n), it satisfies the Hasse principle, and it follows from a 

simple diagram chase that ker 1(Q, G) —• ker 1(Q, D) is injective. Surjectivity is a bit 

trickier. Let T c G be a maximal torus, elliptic at some finite place, T s c = T f l G d e r . 

Then the short exact sequence 

1 — • T s c — • T —• D — > 1 

yields a commutative diagram of long exact sequences 

(2.3.2) 

—> H1 (Q, T s c ) —> H1 (Q, T) —• H" (Q, D) — • El(Q, T s c ) . . . 
I I I 

—> H1 (A, T s c ) —> H1 (A, T) —> H1 (A, D) —> H2(A, Tsc)... 

Now we have the following 

(2.3.3) Lemma ([K5, pp. 421-422]). — Let T be a torus over Q. The group 

ker 2 (Q,T) - ker[/ / 2 (Q,T) — . i / 2 (A,r)] 

vanishes if T is anisotropic locally at one place. 

In our situation, T s c is elliptic at some finite place, hence the Lemma applies. 
It follows that any y € ker 1(Q, D) comes from an x € / /" 1 (Q,T) whose image in 
f f 1 ( A , T ) comes from Hl(A,Tsc). Since i J x (Q ,T s c ) maps onto HX(R,TSC) (another 
well-known general fact, cf. [Ha, Thm. A. 12]), we can replace x by x' with trivial 
image in iJ 1(M, T) . Let z denote the image of x' in i ï 1 ( Q , G). Clearly it maps onto 
and it remains to show z G ker1 (Q, G). By construction, it has trivial component at R, 
and since i 7 1 ( Q v , G d e r ) = 1 (by Kneser's theorem, since G d e r is simply connected) it 
is in fact in ker x(Q, G). 

On the other hand, forgetting the B action yields a map of Shimura data (G% X) —• 

{GSp{V1)^ 6 ± ) , hence realizes S h ( G \ X ) as a canonical model defined over its reflex 
field F by the general theory of Shimura varieties. In particular, the subvarieties 
S\j{B, *) of Au{B, *) are defined over F. 

2.4. Discussion of the moduli problem in étale level. — Now choose a prime 

uoîE above p, and let w = w\, W2,..., wr be the primes of F above u. Write K = Fw 

Since p splits in E. we can identify 

(2.4.1) G(QP) ^ GL(n,K)> 
i>>1 

Bopxwi q xp 

(c/. (1.2.3)) where the map G(QP) Q£ is given by v. 

Henceforward, we write O = Ow. We assume U factors as Up x with Up 

sufficiently small, and we further assume Up = Y \ { UWi x Z * , with respect to (2.4.1). 
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Assume Uw = UWl = GL(n, O). Then Au(B, *) is represent able, hence has a model 

over Spec(O), also denoted Au(B,*), that represents a slightly modified version of 

the functor considered above. First, we always take A to be a prime-to-p polarization, 

and the equivalence is up to prime-to-p-isogenies. More importantly, Lie(A) becomes 

a module over Os <8>zp OB, p,hence over Os <8>zp Op,P- Then conditions (2.2.1-4) are 

replaced by 

(2.4.2) Lie(A) ®oF,p Om = 0,i > 1; 

(2.4.3) Lie(^4) ®oF,P O is a projective Os module of rank n, on which O acts via the 
structural morphism O —> Os-

The remaining ranks are automatically determined by the polarization condition. 

One verifies easily that on the generic fiber we recover the moduli problem defined in 

(2-2). 

As above, Au(B, *) is the union of | ker1(F, G)\ copies of a (9-model Su(G, X) of 

KSh(G,X). 

(2.4.4) Theorem. — The scheme Au(B, *) is smooth and projective over O. 

Proof. — We follow Carayol [Cal]. First, Au(B,*) is projective: since there is an 

embedding in the moduli space of polarized abelian varieties, it suffices to show it 

is proper. We prove this by the valuative criterion. Let R be a discrete valuation 

ring over O, S = Spec(i?), and suppose we have a quadruple (A, A, i,rj) over the 

generic point Spec(/C). We need to extend it to a quadruple over S. Let AR denote 

the Néron model of A over R. It makes no difference if we replace S by a finite 

cover, so by the semi-stable reduction theorem of Grothendieck the special fiber Ak 

is an extension of an abelian variety by a torus T. Now there is an isomorphism 

End(Afí) ^ > End^K;) (functoriality of Néron models). Thus OB acts on Ak, hence 

necessarily on T, hence on the character group X*(T). This group has Z-rank at 

most equal to the dim^4 = dn 2, whereas OB is of Z-rank 2dn2. Since B is a division 

algebra, any 0£-module must have rank a multiple of 2dn 2, which implies T is trivial. 

Thus AR is an abelian scheme, and we have already extended i. The extension of A 

follows similarly by functoriality. 

Finally, there is the question of extending rj. The components of n away from p 

extend, because the ^-division points are étale over S. So we need only worry about 

extending rjp. This is the right time to introduce the theme of ^-divisible groups, 

which will occupy the next two lectures and will recur in those that follow. Let ^ [ p 0 0 ] 

denote the p-divisible group associated to AR; it is the direct limit of the finite flat 

group schemes A/j[p n ]. The maximal order OB acts on i4#[p°°], and this extends to 

an action of OB <8>Z ^ P — 11» ®B ®OF 0 W I . Let OBÍ denote the corresponding factor. 

This is a direct product, hence we have a decomposition 

AR\P°°} ^ ®i(AR[w?>] e ARM'00]), 
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where ^ [ w f 0 ] is a p-divisible group with Ost action. The condition that the Rosati 

involution restricts to the involution * of the second kind on OB implies that the 

polarization identifies 

ARH'°°] AR[w,&], 

where ^ denotes Cartier dual. 

In general the data "polarization + rjp (mod Up)" is equivalent to "level structure 

on AR[W?°]'(mod Uw.) for all i + trivialization of the Tate module of G m " (mod a 

subgroup of Qp) . The fact that r\ is invariant under the factor Z * c Up implies 

that we only have to consider level structures on The condition on the Lie 

algebras implies is étale for i > 1, so the factor rjWi extends over S for i > 1. 

Finally, we have chosen Uw maximal, so there is no level structure at w, hence nothing 

to extend. 

Now to prove smoothness, we use Grothendieck's infinitesimal criterion. We let 

5 = Su(G,X) denote the special fiber of our model, and let x = (AX, XXlix,rjx) G 
5(F) be a geometric point. Let 5 be an Artinian local 0-algebra with residue field F. 

We need to show 

(2.4.5) Deformation property. — Let I c 5 be an ideal, and let x' be a lifting of the 

geometric point x G 5(F) to an S/1-valued point of Au(B,*). Then x' lifts to an 

S-valued point of Au(B,*). 

The deformation property (2.4.5) is in fact a property of the formal completion 

Au(B,*)x of Au(B,*) at x, a formal scheme over Spf(O). It therefore suffices to 

prove that Au(B,*)x is formally smooth. In fact, we will prove that Au(B,*)^ is 

isomorphic to the formal spectrum of a power series ring. The construction of this 

isomorphism will occupy the rest of the section. 

We reformulate the problem as follows. We consider the functor T\ on Art(0,F): 

5 i—• (A, A, i, rj)+j: (A, A, z, rj)¥ (AX, A x , i x , rjx) 

This is represented by the formal completion Au(B,*)x. Consider the second func­

tor To 

5 ^ ( E ? , A , z , ^ ) + j : ( ^ , A , z , ^ ) F >(Axn\xnixnv:) 
The terms need to be explained. Here Q is a p-divisible group scheme over 5, A an 

isomorphism G — + G, i an inclusion OR ®z^ p —> End(<?), and rjw a [/-level structure 

on the prime-to-w Tate module of A away from w (this makes sense because TW(A) 

extends uniquely to any 5 G Art(0,F) as an étale sheaf). 

(2.4.6) Serre-Tate Theorem. — The morphism T\ —> T2 is an isomorphism of functors. 

Thus to determine the infinitesimal structure of Au(B, * ) , it suffices to study the 

functor T2. Obviously, the structure nw is étale, as is the deformation of the data 

Arfw? 0] for i > 1. So it suffices to study the deformation of A ^ w 0 0 ] . Now ORW 
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M(n, 0 ) , by our original hypothesis. Thus there are n orthogonal idempotents in 

OBW which decompose A ^ w 0 0 ] into n mutually isomorphic p-divisible groups with 

O action; this argument is called "Morita equivalence". Let Qx denote any of these 

divisible 0-modules, ix : O —• End(Qx) the action and let T$ be the functor 

(2.4.7) S .— (£, t)+j: ( £ , OF ^ O -

Since the remaining data are étale, the natural map T2 —* T$ is again an isomorphism. 

Now the projective O^-module Lie(Ac) <&oB ®BW is isomorphic to the sum of n 

copies of Lie(Gx) (by Morita equivalence). It follows from the definition of the moduli 

problem that hie(Gx) is a projective (i.e. free) rank 1 C?s-module. On the other hand, 

the height of the p-divisible group Qx is n[K : Q p ] (because Ax \p] is a finite flat p-group 

scheme of rank 2dimAx. (Indeed, the polarization breaks up Ax\p] as A\\p] x A2¡p] 

each of height dim [A], with A\]p] = Ax\p] Pi Y l i Ax[wf°]. Since all but one of these is 

étale, the height of Ac[w] is determined, and one computes directly that the height is 

precisely n[K : Q p ] , as stated.) 

(2.4.8) Definition. — Let S be a scheme over O, and choose a uniformizer w of O. 

A p-divisible (9-module of height h is a p-divisible group scheme Q over S with an 

action i : O —• End(^) such that 

(i) for every pair of integers m\ > rri2, the natural sequence 

0 — • Q\w™*\ Gim™1} ) a[^m i-m 2] —> 0 

is an exact sequence of finite flat group schemes; 

(ii) the action of O on Lie(Q) is given by the structural morphism O —• Os-

The height of the p-divisible O-module Q is defined to be the h such that Q[w] is a 

finite flat k(w)-vector group scheme of rank h. 

Thus the height of Ax[w] as O-module is just n, and (2.4.7) is the functor classifying 

deformations of (GX,LX) as a 1-dimensional height n divisible 0-module. 

We consider the canonical exact sequence 

(2.4.9) 0 —+ Ql —* Qx —> gf — 0 

and let h denote the height of Qf, so Gx is a formal O-module of height n — h. 

For O = Z p , and when h = 0, the deformation problem was solved by Lubin-Tate 

in 1966 [LT]. The general problem was solved by Drinfel'd [Dr]. I will follow his 

account and that of Hopkins-Gross [HG] (Equivariant vector bundles on the Lubin-

Tate moduli space, Contemporary Math., 158 (1994), p. 23-88), skipping increasingly 

many details as the argument progresses. We begin with the case h = 0, and consider a 

1-dimensional formal O-module F over F of height n. Consider the category Art(0, F) 

of Artinian local O-algebras R with maximal ideal m = (containing w) and residue 

field F, and consider the functor of deformations of F on Art(0, F); i.e., p-divisible O-

modules G over Spec(R) given with isomorphisms j : Gp —•* F. Because Spec(R) is 
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infinitesimal, G is in fact a formal group, hence is given by power series: the addition 

law G(X,Y) and multiplication CLG{X) for a € O. To say that G is a deformation 

of F is to say that G = F (mod m) and ac = CLF (mod m) for all a G O. 

The difference is given by a 2-cocycle (A(X,Y),6A(X)). First, a cochain is just a 

collection of power series as above without constant terms. They form a (symmetric) 

2-cocycle for F if 

A(X,Y) = A(Y,X) 

A(Y, Z) + A(X, Y+FZ) = A(X + F Y, Z) + A(X, Y). 

(Here the symbol Y +F Z means F(Y, Z), etc.) 

Sa(X) + Sa(Y) + A(aF(X), aF(Y)) = aA(X, Y) + Sa{X +F Y) 

8a(X) + Sb(X) + A(aF(X), bF(X)) = Sa+b(X) 

aSb(X) + Sa(bF(X)) = Sab(X) 

Given a ip € with ip(0) = 0, we define the coboundary 

A ( V ) ( X Y) = V(F) - r/>(F(X, Y)) + 1>{X) 

5a{iP{X)) = oV(X) - 1>{aF{X)) 

Then H2(F,R), the symmetric 2-cocycles with values in R, modulo coboundaries, 
classify isomorphism classes of deformations of F to R, by 

( A A ) •—> G(X,Y) = (F(F(X,Y),A(X,Y)),aG(X) - F(aF(X),Sa(X))). 

The verification is by direct calculation, just as in Lubin-Tate. 

The problem is then to find an explicit basis for iJ 2(F, R). 

(2.4.10) Theorem (DrinfePd). — There is a functorial bijection between m^ - 1 and the 

set of deformations of F to R. 

Note that tn^ _ 1 is naturally equal to the set of continuous (9-algebra homomor-

phisms from the power series ring Rn,o = 0[[t\,..., £ n - i ] ] to R. Thus the functor of 

deformations of F is prorepresented (on the category of complete (noetherian) local 

O-algebras - by passage to the limit) by Sp f ( (9 [ [£ i , . . . , £ n _ i ] ] ) ; i.e., Tz is prorepre­

sented by a power series ring. In particular, taking F to be the formal group Qx 

above, we see that T% is formally smooth for ¿ = 1,2,3, which implies that Au{B, *) 

is smooth at any point x where = 0. 

The proof of Drinfel'd's theorem, like that of Lubin-Tate, is also a direct calculation. 

One shows by hand that any deformation can be written in such a way that A and 

Sa have the form 
n - l 

(A,Sa) = £ ( ^ , ¿ „ , 0 + ( d e g ^ - 1 + 1) 
1=1 

where A* and 8a,i are homogeneous of degree ql\ then one shows that each (A*, 5a,i) is 

unique up to an (arbitrary) scalar in m ,̂ for i = 1,..., n— 1, and that they determine 
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the remainder of the deformation. Explicitly, if (A, 6A) is a cocycle, congruent to 
(mod degn + 1), then 

(A, Sa) = (c(X + Y)n - X n - Yn, c(an - a)Xn) (mod degn + 1) 

if n is not a power of q (and hence is cohomologous to 0 (mod degn + 1)), whereas 

( A , i 0 ) = (c2-[(X + Y)n - Xn -Yn],c?—^Xn) (mod d e g n + 1 ) 

if n is a power of q. This is exactly as in Lubin-Tate except for the presence of the 5a. 
By writing down the power series, we obtain a universal deformation over 

Spf(i? n ,o)- Taking successive subgroups of H7m-division points, we obtain a p -
divisible O-module T>K,n over Spf(i?n,e>). It is not hard to see, because it is a direct 
limit of finite flat group schemes over Spf (Rn,o), that in fact Y,K,n is actually a 
p-divisible O-module over Spec(i?n?e>), and not merely over the formal completion. 
However, T,K,n is no longer formal (consider the pullback of the universal elliptic 
curve to the formal completion at a supersingular point). This is an elementary, but 
striking illustration of the difference between formal and algebraic geometry that 
creates most of the difficulty in the study of the bad reduction of the moduli space. 

It is known that up to isomorphism, there is a unique 1-dimensional p-divisible 
(9-module E ^ n of height n over F, with endomorphism ring isomorphic to On1/n, 
the maximal order in the central division algebra Di/n over K with invariant 1/n. 
This can be proved by explicit power series calculations, using the techniques of the 
Lubin-Tate theory; see Drinfel'd's paper for such a proof. One construction is by 
taking the reduction mod vo of (any) Lubin-Tate formal group for O n , the unramified 
extension of O of degree n. Another construction will be discussed next week. 

So much for the case h = 0. Now suppose h arbitrary. We have the universal 
deformation E^n-fc over S p f ( R n - h , o ) - Let R G Art(0,F) . Over F, we have an 
isomorphism 

F ^ F ° x (K/0)H 

where F° ^ T>K,n-h-

(2.4.11) Theorem (DrinfeFd). — The functor of deformations ofT,K,n-h x(K/0)H is 

prorepresented by a power series ring in n — 1 = (n — h — 1) + h variables, and 

canonically by the h-fold fiber product ofT,K,n-h over Spi(Rn-h,o)' 

Theorem 2.4.11, combined with the Serre-Tate Theorem 2.4.6, completes the proof 
of the deformation property 2.4.5, hence of the smoothness assertion of Theorem 2.4.4. 
As for Theorem 2.4.11, its proof is based on an argument due to Messing, that goes 
as follows. Evidently, any deformation G of E ^ n - Z i x (K/0)H to R has an exact 
sequence as in (2.4.9): 

0 — > G° —>G —>Gét — • 0. 

Here G° is a deformation of Ex ,n- / i and G é t is a deformation of (K/0)H, hence 
is isomorphic to (K/Q)h since the latter admits no deformations. So we have to 
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classify extensions of deformations G° of S^n -h , by (K/0)H. Formally, the short 

exact sequence 

(2.4.12) 0 —+ Oh —^ Kh = limOh — - ( K / 0 ) h —+ 0 
pn 

of sheaves yields a long exact sequence (of sheaves) with terms 

HmHomo(O f c ,G°) — • H o m o ( ( 9 \ G 0 ) E x t ^ K / O ) ' 1 , G°) —> Ext 1 ( l i m 0 \ G ° ) . 
p n 

Now Homc>(0 / l, G°) is represented by Homo(0 ' l ,m J R). Since multiplication by p is 

contracting on xiiR and is nilpotent, the inverse limit is zero. 

To conclude, it suffices to show that the map 

Ext1 (K/0,GP) —> E x t ^ l i m ^ G 0 ) 

is zero, in other words, that any extension Q of G° by an étale (9-module that is split 

at the closed point of R splits over R upon multiplication by a sufficiently high power 

of p . (Here and above, the arguments, apparently merely heuristic, can be made 

rigorous, as in the proof of Proposition 2.5 of the Appendix of [Me].) It suffices to 

show that the map 

Homo(ff, K/O xG°)<g>K H o m 0 ( & , K/O x XK,n-h) 0 K 

(restriction to the closed point) is an isomorphism. 

More generally, we have 

(2.4.13) Theorem (DrinfePd's theorem on rigidity of quasi-isogenies) 
Let S be a scheme on which p is locally nilpotent, and let So be the subscheme 

defined by a nilpotent sheaf of ideals. Let G\ and G2 be two p-divisible groups over S. 

Then restriction to So defines an isomorphism (of sheaves): 

Hom(Gi,G 2)(g>Qp Hom(Gi ,5o ,G 2 , s 0 )®Qp. 

In other words, any map from G\ to G 2 over So lifts uniquely to S after multipli­

cation by a sufficiently high power of p. 

This theorem, which we will use repeatedly, is also the basis of DrinfePd's simple 

proof of the Serre-Tate theorem. There is a very readable proof by Katz in LNM 868, 

Surfaces Algébriques, pp. 141-143. 

The above discussion is based on the uniqueness of T,K,9 up to isomorphism over F, 

and the isomorphisms of formal completions are so far only rational over F. Next week 

I will explain how to descend to ¥q. 
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2.5. Hecke correspondences away from p . — We continue to work over 

Spec(O). Suppose U D U' are two open compact subgroups of G(Af) with 

Uw = U'w = GL{n,0) as before and Uw = U* x UiUWi x Z * D U'*w (again 

U',p D Z * . Then there is a finite morphism Aw(B,*) —> Au(B,*). Since the 

prime-to-p torsion subgroups are étale and since level structures at W{ are also étale, 

this projection is étale. 

Define 

(2.5.1) G(AJ) = G(A»f)® J] ¿ C * > 
Í > 1 

so that 

(2.5.2) G(Af) = Gw x Qp x G(Aw

f) = GL(n,K) x Q p

x x G{Aw

f). 

Thus any admissible irreducible representation n of G(Af) can be factored 

(2.5.3) TT = T r ™ ® ^ ® ? ! - ™ , 

where irw G A(n, K), ip is a character of Q * , and TTW is an admissible irreducible 

representation of G(A^). In what follows, we will try to ignore ip. 

Now suppose g G G(A™). For JJ' we take U fl gUg~x. Then there are two maps, 

Pi,P2 • Au'(B,*) —+ v4f/(5,*), with pi given by the inclusion Uf C K and p 2 the 

composition 

•4c//(£,*) — > Agug-i(B,*) Au(B,*) 

There is then a map (Hecke correspondence) 

T(g) =P2,*Pl : H'(Au(B,*),Qi) —> jrCAc(B,.),Q*) 

The goal of next week's lecture will be to explain how to extend this to allow level 

structures at w and Hecke operators with non-trivial components at w. 

3. p-divisible O-modules and Drinfel'd bases 

Today I will deal with the most tiresome part of the construction (le point le 

plus fastidieux du manuscrit, as Carayol wrote in his Bourbaki report), namely the 

explanation of the models of Shimura varieties with bad reduction and the definition 

of the group actions. Rather than give all the details, I will try to explain why it 

works. For these varieties, the construction is relatively explicit and uses strongly 

that we are dealing with 1-dimensional formal O-modules. 

3.1. Dieudonné modules and formal O-modules. — Let K be a finite exten­

sion of Q p , O = OK its ring of integers with maximal ideal pK and residue field 

k — Fq, with algebraic closure F. Let W be the ring of Witt vectors of F, JC the frac­

tion field of W; i.e. JC is what is denoted KNR in [HT], and let a denote the Frobenius 

(relative to QP) acting on /C. We let ICK = JC • K and WK be the integral closure of 

W in JCK- For any positive integer g, we choose a one-dimensional formal O-module 
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^>K,G over F of height g. We write K/O for the étale height one p-divisible 0-module, 

and for any non-negative integer h we let T,K,g,h = ^K,G x {K/0)H. 

The uniqueness of T>K,G up to isogeny, at least, follows from the classification of 

Dieudonné modules up to isogeny (isocrystals) over F. For future reference (c/. (8.1)), 

we define an isocrystal to be a pair (iV, (ft) where N is a finite-dimensional /C-vector 

space and <j> is a cr-linear bijection N —» AT, in the sense that 

<j)(av) = <7(a)</>(v), a G /C, v e N. 

The category of isocrystals is semisimple; i.e., every isocrystal is isomorphic to a sum 

of simple objects. Moreover, the simple objects are classified by rational numbers r/s 

where s = dimNr/s and (f)s (M) = prM for some W-lattice M C N r / S . If N 

0AT r ./ s . then the r¿/s¿ are the slopes of AT. 

To any p-divisible group Q over F one can associate its (contravariant) Dieudonné 

module D(£), and its isocrystal N{$) = B(G) <S>w IC. B(G) is a W-iree module of 

finite type over the non-commutative ring W[F, V] with relations 

Fa = a(a)F] aV = Va(a)\ FV = VF = p . 

An isocrystal N is attached to a p-divisible group if and only if all its slopes are in the 

interval [0,1]. More precisely, the main theorem of Dieudonné theory (over perfect 

fields of characteristic p) is that the functor 

g o(a) 

is an anti-equivalence of categories with the category of W[F, V]-modules as above, 

and N(Q) N(Q') as isocrystals if and only if Q and Q' are isogenous. 

There is a similar classification of divisible O-modules. Let aq denote the lift of 

the Frobenius Frob g G Gal(F/fe) to GS1()CK/K), and fix a uniformizer w G O. Then 

a 0-Dieudonne module (resp. a ÜT-isocrystal) is a WK[F, V]-module where now the 

relations are 

Fa = aq(a)F; aV = Vaq(a); FV = VF = w. 

(resp. a /C-vector space N with cr^-linear bijective morphism $ ) . If Q is a divisible 

0-module, then H)(Q) has a natural ^-structure, and in this way it becomes a O-

Dieudonné module. The simple objects are again classified by slopes r/s; here Nr,s 

has FS(M) = wrM for an appropriate lattice. 

We have the relations 

(3.1.1) height(£) = rank o B(0) ;d im£ = dim¥ V3(g)/wB(g). 

In particular, if g is simple of slope r/s, then s — height(^) and r = dimC?. 

We can thus construct the 1-dimensional height g formal O-module as follows. Its 

slope is 1/g. We take N = JC9

K. For any linear map b G GL(N), one can define a 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2005 



4 8 M . H A R R I S 

erg-linear map </>& = b- aq. We take 

(3 .1 .2) b = 

' 0. 1 0 . . . 0 

0 0 1 . . . 0 

0 0 0 . . . 1 

i w 0 0 . . . 0 

Then (baq)
9 = w - a9 which implies that the slope is 1/g. This already shows unique­

ness of ^K,g up to isogeny, and it is not hard to show that any two ^invariant lattices 

are actually isomorphic. Or this can be done directly with power series, as in Drinfel'd, 

and we can arrange that 

U(X)=X«9, fc(X) = C. X 

for C e fiq-l. 

Drinfel'd proved the following results, generalizing the results of Lubin for one-

dimensional formal groups: 

(3.1.3) Proposition ([Dr, Prop. 1.7]) 

(i) The algebra End(iV, 0 ) o p = End(Ex^)(8)Qp is isomorphic to the central division 

algebra Dg = Dx,g over K with invariant 1/g. 

(ii) This isomorphism identifies End(Ex^) with the maximal order ODK,9 C DK,9-

Let N : D £ -> KX be the reduced norm, and let II G OK,9 '•= 0 D K G = 

End(E/<:,p) be an element such that v(N(TL)) = 1; we may even assume U9 = w. 

Then there is an isogeny II : E / ^ —• T,K,9 with kernel a one-dimensional O/vo vector 

space scheme. (The existence of such an isogeny, equivalent to (ii) of the Proposi­

tion, shows that any formal ^-module isogenous to E j ^ is isomorphic to E K ) P . ) On 

the other hand, because the action of O on the Lie algebra is just the natural map 

O —• O/vo = ¥q —> F, we see that the morphism Frobq : ^K,G —> ^K]9

 1S a m a P °f 

(9-modules. Thus kerProbQ = kerll, which means that 

(3 .1 .4) ^K,g - • E ^ / ( k e r n ; ^K,g-

We have already defined quasi-isogenies: If A G Art(0,F) and Hi, H2 are two p -

divisible O-modules over A, a quasi-isogeny between Hi and H2 is a global section / 

of the sheaf Hom^Cffi, H2) <8> Q such that paf is an isogeny for some / . If kerpaf is 

a group of order p b , the height of / is then the integer b — a. For any non-negative 

integer h, the group of self-quasi-isogenies of T>K,g,h is isomorphic to D* x GL(h, K), 

where Dg is the central division algebra over K with invariant 1/g. A self-quasi-

isogeny of height 0 of E ^ ^ is an invertible element of OK,9, hence an automorphism 

of Alternatively, every isogeny factors as a product of 11° and an isomorphism 

(isomorphism on Lie algebras, hence isomorphism), for some a. Here again, we are 

strongly using the one-dimensionality of E K , 5 . 
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We consider the functor QDef(EK,g,h) from Art(0,F) to {Sets}: 

(3.1.5) A — (H/AJ : EKtg9h - H¥) 

where j is a quasi-isogeny. This functor is represent able, as in [RZ], by a formal 

scheme Mg^h with infinitely many connected components. When h = 0 the compo­

nents are indexed by the height of the quasi-isogeny in Z, and indeed 

(3.1.6) Mg Mg(0) x Z 

where Mg(0) = Spf (R9,K) represents pairs (H,j) where j is of height 0, hence an 

isomorphism. 

This is the functor we studied in Lecture 2, represented by . . . , The 

additional étale part adds first h more variables to the power series ring; the connected 

components are indexed by Z x GL(h,K)/GL(h,0) (quasi-isogenies of (K/0)H are 

indexed by lattices in Kh). We let (T>K,g,hiJ) denote the universal pair over Mg,h-

We need something slightly more general: Let ^ denote Cartier dual, and consider 

^K,g,h ~ ^K,g,h x ^K,g,h' This p-divisible group has a canonical polarization I/J : 

^K,g,h
 x ^K,g,h

 l—* / V 5 0 ' where ¡jLpoo denotes the p-divisible group of G m . The functor 

QDef(E¿ g h ) classifies pairs (H+/A,j : h —> ifi") where j is required to respect 

the polarizations on the two sides up to a multiple in Z * . It is represented by a formal 

scheme M*h, which can be split canonically as Mg,h x Qp / Z * , with the second factor 

for the polarization. The universal pair over M*h is denoted ( E ^ By analogy 

with (3.1.6), there is a non-canonical isomorphism 

(3.1.7) M+h ^ M+h(0) x 1 x GL(h, K)/GL(h, O) x Q p * /Z p

x , 

where M^h(0) represents pairs (H+,j) such that j is an isomorphism and such that 
the polarization is exact. 

We have seen that, the formal completion of Au(B, *) at a point x of the special 
fiber is isomorphic to Mg,h for some g + h = n. This was proved over F. Today we 
will carry out three additional steps: 

(1) First, we show how this descends to Fq. This can be done first on the special 

fiber; the Galois action lifts uniquely. 

(2) Next, we add (Drinfel'd) level structures at w and obtain a local uniformization 

with these level structures. 

(3) Finally, we show how the Hecke correspondences at w extend to these integral 

models. 

3.2. Uniformization of isogeny classes. — We denote by Su the special fiber 

of Au(B,*). Let Su\ or just S^h\ be the set of points x G Su(F) such that Qf 

is of height h. It is easy to see that this is a (reduced) subscheme; next time we'll 

see it is smooth of dimension h. Fix x G and consider the set S(x) = Su{x) 

of points in the isogeny class of x. It is obviously contained in S^h\ Thus S(x) 
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consists of quadruples xf = (Af, \f,if,r]f) such that there exists an isogeny <j>: A —» A! 

respecting the other structures. The kernel of (j) breaks up into the ^-component 

and the prime-to-w component. The latter is a lattice in V^(A), isomorphic via rjw 

to V(Ay). Since 0 respects the other structures, this gives a well-defined point in 

G(A™)/UW. The w-component is the same as an isogeny of (9-modules Qx H-* Qx,. 

Taking Qx as our model for T>K,g,h, with g = n — fo, we thus obtain a point of M P j ^(F) . 

Thus xf corresponds to a pair (m,gw) G M^^(F) x G(A™)/UW. But this pair is only 

well-defined up to an element of IX(Q) — i"(A,A,i)(Q)> where IX = IA,\,I is the group of 

self-(quasi)isogenies of the triple (A, A, i), acting diagonally on the two data. In this 

way, we obtain a bijection (uniformization of an isogeny class): 

(3.2.1) 6 : Ix(Q)\M+h(F) x G(Aw

f)/U
w — S(x). 

Injectivity is almost obvious: if two pairs (m,gw) give the same point then the 

composition of one isogeny with the inverse of the other gives a self-isogeny of A 

respecting all the data, hence an element of IX(Q), by definition. 

The Serre-Tate theorem (2.4.6) then shows that this extends to an isomorphism of 

formal completions: 

(3 .2 .2) O : / x ( Q ) \ M + f c X G{Aw

f)/U
w — • Au(B,*)^y 

The meaning of this formal completion along an isogeny class in the special fiber is 

explained in Rapoport-Zink [RZ, 6.22]; it is something like the formal disjoint union 

of the formal completions at the individual points. 

Let me explain how this works on functors. Let R G Art(0,F) , and (m,gw) a 

point in Mg^(R) x G(Af)/Uw. Thus m corresponds to a pair (H/R,j : ^K,g,h -» 

iJp). Recall that ^K,g,h is identified with Qx for the fixed basepoint. Lift (A,\,i) to 

(Ai, Ai, ii) G Au(B, *)(W) (any lifting). This is possible; indeed, we can even arrange 

that (Ai, Ai, ¿1 ) comes from a certain CM type. Let Qx,\ be the corresponding lifting 

otgx. 
By rigidity of quasi-isogenies (2.4.13), the map j lifts to a quasi-isogeny 

ji • Qx,i —> H. The kernel of this quasi-isogeny defines a (virtual) subgroup scheme 

Sm C whereas gw defines a lattice TgW c V^(A{). Suppose for simplicity 

that Sm is a genuine subgroup scheme and Tgw D Tf(A\). Then the quotient by 

Sm x (Tgw/Tf)(Ai)) is a new abelian scheme over R, and this is the image of the 

point (m,gw). In general, one has to modify the construction to account for virtual 

subgroup schemes, but this is not difficult. At the end I will explain how this works 

on level w171 structures in characteristic 0. 

We want © to be rational over Fq in a certain sense. Rapoport and Zink construct 

a "Weil descent datum" on M9th, as follows. Let aq denote the (arithmetic) Frobenius 

automorphism in Gal(F/F 9), and let Frobq : £>K,g,h (^qY^K^h) denote the 

Frobenius morphism of the (polarized) p-divisible O-module as above. (We will need 

the polarization in what follows.) Let R G Art(0,F), with structure map <f> : R —> F; 

ASTÉRISQUE 298 



T H E L O C A L L A N G L A N D S C O R R E S P O N D E N C E 5 1 

let R\aq] be the same algebra R with structure map aq o </>. Let (H,j) be an R-valued 
point of Mg,h- Define Ha = H, and let j a be the morphism 

j o </>• (Prob- 1 ) : ( ^ ) * ( S + f l > f c ) F — ( E « : , 9 , H ) F — 

(Note that Prob" 1 is a quasi-isogeny, not a genuine morphism.) This gives rise to an 
isomorphism of functors a : M9lh — > °~q{Mg,h) via 

(3.2.3) Mg,h(A) —> M f l ) h ( A W ) ; (H,j) ( J P , j a ) . 

This morphism breaks up as a product of two factors: one on f^Kig,h and one on the 
polarization; the second factor is just multiplication by q (the action of aq on roots 
of unity). 

If Mg,h had a FQ-rational structure, then a would correspond to the action of o~q 

on points (say over F). The fact that 0 commutes with the action of aq comes down, 
after verification, to the fact that Frobenius on (A, A) corresponds to Frobenius on 
Qx x Qx together with the polarization. 

To any such deformation problem, Rapoport and Zink associate a pair of groups 
(G, J) over Q p , with J an inner form of a Levi factor of a rational parabolic subgroup 
of G. For M+_hh, the group G is GL(n,K) x Q * , and J = Jn-h,h,+ = D*/n_h x 

GL(h,K) x Q*. In any case, J is the group of self-quasi-isogenies of the relevant 
divisible O-module ^K,g,h preserving all additional structure (in the case of ^>^g /*» 
J is the group that preserves the polarization). Thus it acts on the moduli problem 
by sending j to j o 6. These actions commute with the Weil descent datum because 
Frobenius commutes with everything. 

3.3. Drinfel'd level structures: properties. — As before, n = g+h. Let m ^ 0, 
w G O a uniformizing parameter, and consider Drinfel'd vjm-leve\ structures. 

(3.3.1) Definition. — Let R G Art(0,F) , and (H,j) G Mgih(R)- A map of groups 

p : (m-^O/O)71 —+ Hlvo^R) 

is a Drinfel'd level structure if and only if there is a free rank g O /wmO-direct sum-

mand M C (zu'^O/0)GJRH such that 

(3.3.2) E L e M ^ 1 - T(p(x))) divides f^m(T), the power series representing multiplica­

tion by w m on H; 

(3.3.3) The induced map (w~mO/0)n/M -> H[wm](R)/H°[mm](R) is an isomor­

phism. 

Drinfel'd level structures were introduced in [Dr]. Another approach, developed 
by Katz and Mazur in [KM], is described in the following section. The present notes 
can only sketch the their basic properties. A complete discussion, with proofs of all 
properties used implicitly below, can be found in Chapter III.2 of [HT]. 
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The functor on Art((9,F) that takes A to the set of (H,j,p), with H and j as 
before and p a Drinfel'd level structure, is relatively representable over MQlh by a 
formal scheme Mg^m> We can do the same with +; however, we always consider 
polarizations only up to Z * -multiples. One of the main results of [Dr] is that 
the formal scheme M g ^ m is flat over Mg^h and is regular; however, it has bad 
singularities in characteristic p . Its rigid generic fiber is precisely u(m)^l% with 
U(m) C GL(g + hrO) the principal congruence subgroup of level m™. Note that the 
free rank g summand M in the previous paragraph is a discrete invariant of the triple 
(H,j,p)\ thus 

Mg,h;m = ] J Mglh;M 

M 

(the index m is implicit in M ) . When necessary, we say p is of "type M". 
The Weil descent datum on Mg,h lifts trivially to each Mg,h,m, and stabilizes each 

component Mg^M- Indeed, since Ha = H, we can define a : Mg^m —• Fr^Mg^m) 
(on A-valued points, as above) by sending (H,j,p) to (H,ja,p). Again, all these 
constructions go through in the variants with + . Similarly, the action of J on M9lh 

lifts to each Mg^m and each M9lh;M, inducing the action already defined on the rigid 
generic fiber. 

The action of G, previously defined on ooM^h, also extends to the family of integral 
models Mg^m- Here is the construction. Let (H,j,p) G Mg>h;m(A) for some test 
scheme A. Suppose moreover that p is of type M , and lift M to a rank g direct 
summand M 0 of Og+h\ let PM0 C G be the stabilizer of the if-subspace spanned 
by M 0 . First suppose that 7 - 1 G Mg(0) and that 7 • 0 9 + H C W™'-™09+H C 
w-mQ9+h Suppose in addition that 7 G PM0, and let (73 ,7 /1) denote its projection 
on GL(g) x GL{h). Then 7 takes the triple (H,j,p) over a test scheme A, where p 
is a Drinfel'd level m structure, to a triple ( # 7 , j 7 , p 7 ) , with p 1 a Drinfel'd level 
ra'-structure. Here 

i f 7 = ff/p(7 • 0 9 + H ) 

where ^ ( 7 • Og+h) is viewed as a finite flat subgroup scheme of H[vjm] with "full set of 
sections" ^ ( 7 • OgJth) C iJ[zz7 m ](A). (This notion will be defined more generally in the 
global setting.) Now let E(^g) = E K ^ , h / k e r ( F r o b ^ ( d e t ( 7 & ) ) ) . Then j ' 1 identifies 
H2 with 

k 

ZIc,g,H = ZK,g,H/teT(Frob-VKidet^») x { K h h h • Oh) 

where VK is the valuation on K. Indeed, this follows upon comparing orders from the 
fact that every finite flat subgroup of T,K,9 is of the form ker(Frob^) for some d. We 
obtain p by composing 

( F r o b ~ V K ( d e t ( 7 f f ) ) <yh) i 

x {K/Of ™L jpKt9tk x {Kh/lh • Oh) M HI. 

ASTÉRISQUE 298 



T H E L O C A L L A N G L A N D S C O R R E S P O N D E N C E 5 3 

Finally, p 1 is just p o 7 where 7 is viewed as an embedding 

w-m' QQ+h jQQ+h c w-m0g+h^ . QQ+h 

Letting m and ml vary, we obtain an action of 7 satisfying the above properties 

on the tower { M g ^ h . p - m M o / M o } This action obviously commutes with the action of 

J x WK, and it is easy to see that it coincides with the usual action on the relevant 

subset of the rigid generic fiber. We note that if x G O and then the element 

G PM0 x J acts trivially. Thus we may extend the partially defined action 

to obtain an action of PM0 X J X WK on the tower {Mg^.p-mM0/M0 }> factoring through 

(PM0 XJ)/KXX WK, where KX is embedded diagonally. Finally, we have the Iwasawa 

decomposition G = PM • GL(g -f h, O). There is no problem defining an action of 

GL(g + h, O) on Drinfel'd level structures (by the standard action on (vj-rnO/0)9^H) 

for all m; thus we can extend the action to (G x J)/KX x WK on the tower { M ^ ; m } , 

which we denote M p ^ ; o o and view as the projective limit of the Mg^m- Note that 

covering the isomorphism (3.1.7) (and ignoring the + ) we have an isomorphism of 

(ind-profinite) schemes over k: 

(3.3.4) M^oo.red ^ Z X GL(/l, K) 

Again, all these constructions go through with additional structures + . In the 

next construction we will include these structures, just for a change. For any m and 

any type M, there are natural morphisms n : M^h.M —+ M<£m. Here if (H,j,p) G 

M*h.M(A) for some test scheme A, we let n(H, j,p) = (H°,j°,p0), where H° is the 

connected part of H, j° the restriction of j to whose image is i f p and p° the 

restriction of p to M. We can factor 7r = ^ 3 0 ^ 2 0 7 T i . Here, letting Mg,h;m,o denote the 

moduli space over Mg,h of Drinfel'd level a7m-structures on the connected subgroup 

of the variable height g + /i-divisible O-module, we have 

Tri = TTI,M : M+h.M — • Mg,h,m,0 x M+h 

takes (if, j,p) to (H,j,p°,pet), with p é t the induced level structure 

(w-mO/0)9+h/M —+ H/H0[w-m]. 

Moreover, ^(H, j,p°,pét) = (H,j,p°) (forget pét), and 7r3 is the base change to Mg;h.0 

of an analogous map 7Tf

3 : —> M^0. (i.e., forget the étale part altogether). 

(3.3.5) Proposition. — The map n2 (resp. 7r'3, resp. TTI) is étale, (resp. smooth, 

resp. radicial over the special fiber). 

Proof. — The statement concerning 7T2 is easy. The smoothness of 713 follows di­

rectly from Theorem 2.4.11 (Drinfel'd's theorem has no 4- and K', but these just 

add profinite limits of discrete parameters). The assertion regarding n\ is left as an 

exercise. • 
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3.4. Drinfel'd level structures: global construction. — We will need a more 

general definition of Drinfel'd level structures on a 1-dimensional divisible 0-module 

if of height n over a general base scheme S. In particular, we do not know that 

the connected part is of constant height. The Katz-Mazur definition is as follows. 

Consider the finite flat group scheme if [r<7M] over 5, and consider homomorphisms 

of abelian groups p : (vj~MO/0)N —> if [zum](S). Every point p(x) is then an S-

subscheme of H[wm](S). The set {p(x),x G (vj-MO/0)N} is a "full set of sec­

tions" of if [tum] if, for any affine S'-scheme Spec(R) and every function </> G B = 

H°(H[mrn]R, OH[ZO™)R), there is the equality of characteristic polynomials in R[T]: 

det(T - 4>)(= N B [ T ] / R [ T ] ( T -4>))= J] ( T -
xe{vj-mo/o)n 

(Equivalently: if N(<j>) — <KiKx)) € R ~ these are equivalent by replacing R by 
R[T}.) 

(3.4.1) Definition. — p is a DrinfeVd basis if and only if the set {p(x)} is a full set of 

sections. 

We need three properties of this definition: 

(3.4.2) The functor S H-> p , where H is a fixed 1-dimensional divisible (9-module of 

height n over 5, is representable. 

(3.4.3) When if is étale, it is just the usual level m structure. 

(3.4.4) It coincides with Drinfel'd's definition when if is a formal group. 

The first property implies that it applies to S = Au(B, * ) , defining a moduli scheme 

Au(m) (B,*) over O. The second property implies that the generic fiber of Au(m) (B,*) 

(over Specif)) is isomorphic to the moduli space for level U(m) structure, where 

U(m) — Uw x Uw(m), with Uw(m) the principal congruence subgroup of GL(n, O) of 

level m™. Thus the notation is consistent. The third property implies that, in order 

to determine local properties of Au(m){B, * ) , it suffices to study Drinfel'd bases over 

Mg,h for general g and h. In particular, the results of Drinfel'd quoted above imply 

that Au(m)(B, *) is a regular scheme, flat over Au(B, *) for all m. 

We prove properties (3.4.2-3.4.4) in turn. 

(3.4.5) Lemma. — The functor is representable. 

Proof (as in Katz-Mazur). — The functor 

T i—> {p: (w-^O/O)71 -> H[wm](T)} 

is represented by S = if [tu771]9"™. So we need to show that the condition of being 
a full set of sections is represented by a closed subscheme. We may localize on S to 
assume that S = Spec(ft!), if [oo771] = Spec(£) with B free of rank M over R. Let 
bi, • • •, & M be an R basis of B. Let P i , . . . , PM be the tautological sections of H[m™] 

over S. The condition that they form a full set of sections depends on the choice of 
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a variable P-algebra R', but in fact any function over any algebra R' is of the form 
Yi Ubi, with U G R'. So it suffices to look at the universal case R' = R[Ti,..., T M ] , 
and the universal function $ = Yi Fibi. The condition that P i , . . . , PM is a full set 
of sections is the condition 

NormB[Tu...jTM]/R,($>) = f(Pi) 

i.e. 

Norm(53T 46 4) = I I ( E T ^ № ) ) . 

Both sides are homogeneous forms of degree M in Ti,..., T M , with coefficients in P . 
The equality comes down to equality of coefficients, and this is given by a set of 
equations in P , i.e. a closed condition on S. • 

(3.4.6) Lemma. — If C = H[wm] is étale over a scheme Z, then a Drinfel'd basis is 
just a level structure. 

Proof. — This is easy. We can trivialize C (by base change to C). Then Pi , . . ., P M 
is a level structure if and only if there is a basis bi of B with bi(Pj) = Sij. Then 
bi - bj = ôijbi, and for this basis, the equality of norms in Lemma 1 is obvious. (Taking 
as basis bi for P[Ti,..., T M ] / P ' , the matrix of Y Tih is diagonal with entries Ti.) • 

(3.4.7) Lemma. — The above definition coincides with Drinfel'd's when H is formal. 

Proof. — We admit the following elementary lemma ([KM], p. 42, Lemma 1.10.2): 

(3.4.8) Lemma. — LetR be a ring, F{X) G R[X] a monic polynomial of degree M ^ 1, 
a±,..., aM elements of R. Let B = R[X]/(F). Then the following two conditions are 
equivalent: 

(a) We have the factorization F(X) =Yli(X — ai). 
(b) For every à G B, we have the factorization 

det(T -( /)) = [ ( T - 0 ( a O ) . 

Sketch of proof. — The determinant is relative to the free extension B/R. Then 
(b) (a) because in B the characteristic polynomial of X is P, i.e. det(T—X) = F(T). 
Applying (b) to (j) = X , we thus get F(T) = Yii(F — Q>i) which is (a). In the other 
direction, we can regard the coefficients of <j> and the ai as independent variables in a 
big field K, and 

K[X]I Y[{X - ai) ^ n K[X]/(X - at) 

so the relation of characteristic polynomials is clear. • 
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Now condition (3.3.2) of Drinfel'd's definition is the one that applies to a formal 
group: 

Um(T)=g(T)H(T-T(p(x))), 
X 

for some power series g. Over F, we may assume / ^ m ( T ) = Tqmg (the height = g). 
Comparing degrees and leading coefficients, this implies that g(T) is a unit in i?[[T]] x 

with constant term 1 . Now in the lemma we may take 

B = R[[X]]/(M^R[X]/(F) 

for some monic polynomial, by Weierstrass preparation. Drinfel'd's condition is (a) 
of the lemma; the Katz-Mazur condition is (b). • 

Now by putting together the uniformization morphism 0 with Lemma 3.4.7, we 
obtain morphisms of all levels. Let x G \ and let S(x, m) denote the inverse image 
of the isogeny class S(x) in Au(m)(B, *)• Then because the Drinfel'd basis depends 
only on the p-divisible group, we can lift 0 to 

6 m : Ix(Q)\M+_h,h;m x G(Ay)/Uw Au(m){B,*)\Xm). 

This uniformization depends on Uw and on m, but they fit together in the limit to 
yield 

(3.4.9) Boo : / * ( Q ) \ M n

+ _ M ; 0 0 x G(AJ) lim Au(m)(B, . ) s ( X r a ) . 
Uw,m 

This commutes with the Weil group action, as before. Note that the action of 
Ix(Q)

 o n
 Mn-h,h;oo is given by associating to a self-quasi-isogeny of Ax a self-quasi-

isogeny of Qx. In other words, it factors through a homomorphism IX(Q) —> J = 
J n . M - D*/{n_h) x GL(h,K). Write G^{Af) = G(Aw

f) x Jn_h,h (an abuse of 
notation, because G^h\Af) is not the group of A/-points of something called G^). 
Then (3.4.9) can be rewritten 

(3.4.10) [M+_hMoo x (Ix(Q)\G^(Af))]/Jn-h,h lim Au(m)(B, *) s ( l r a ) . 

where the Jn_^5^-action on the left hand side is diagonal (on the left on Mn-/i,/i;oo 
and on the right on the adelic group). 

3.5. Action of adelic group with Drinfel'd level structures. — It is not 
difficult to define an action of G (Ay) on the right-hand side of (3.4.9) so that it 
coincides with the obvious action on the left-hand side; this is standard in the theory 
of Shimura varieties. On the other hand, we have defined an action of Gw = GL(n, K) 
on the left-hand side. It remains to define an action of GL(n, K) on the right hand 
side such that (a) 0 ^ is GL(n, K) equivariant and (b) the action extends the usual 
action on the (smooth) generic fiber. 
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The action is defined by analogy with the previous action. Let (go,g) £ Q* x 

GL(n, K). We let Q denote the one-dimensional height h divisible O-module attached 

to one of our abelian schemes A. First suppose that we have the following integrality 

conditions: 

(i) j - ^ M f n . O ) , 
(ii) g^geM(n,0), 

(hi) rom-m'^GM(n,0). 

(It is understood that m ^ m'. Note that if (go, 9) is any pair in Q* x GL(n, K), 

there exists a G Z such that (p~2ago, P~ad) satisfies the above inequalities for m—m' 

0. Under these assumptions we will define a morphism 

(90,9) 'AU{rn)(B,*) > Au(rn)(B,*). 

It will send CA,A, i , 7 f ,p) over T to (A/(C 0 C ^ p ^ ^ A , z, rf ,p o g), where 

(3.5.1) C\ C G{oJm] is the unique closed subgroup scheme for which the set of p(x) 

with x E g - (On)/On is a full set of sections; 

(3.5.2) C = (Olw ®Cf,w Ci) C A f c - ^ " ) ] ; 

(3.5.3) C- 1 is the annihilator of C C A[w~v^^) inside A[(uc)"valp(<?o)] u n d e r the 

A-Weil pairing; 

(3.5.4) pvalpO?o)A is the polarisation A / ( C 0 C^) - + (A/(C 0 C ± ) ) v which makes the 

following diagram commute 

- valp^o)̂  
A >AV 

A/(C 0 C x ) — • (A/(C 0 C x ) ) v ; 

(3.5.5) po g : m-™'\On)/On (C/[zum]/Ci)(T) is the homomorphism making the 

following diagram commute 

m-™'(On)/On — P ° 9 ) G^yC^T) 

w-^g(On)/g(On) > (0[t*~]/Ci)[t*m1(T) 

w~m '(On)/g(On) • (G[wm]/d)(T) 

m-m'(On)/On >£[^ m ](T); 
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This definition makes use of a number of properties of Drinfel'd bases that we have 
not made explicit here. For instance, the existence of a subgroup scheme C\ as in 
(3.5.1) is Lemma III.2.2 of [HT]. 

Over the generic fiber (i.e., over K) one checks that this coincides with the usual 
action. Thus (p~2,p~l) acts in the same way as p G G(AJ) - over the generic fiber, 
which is Zariski dense in the integral model, hence over the whole scheme. Indeed, 
the diagonal element p G ZG(Q) acts trivially on the Shimura variety, but it is the 
product of p G G(Af) and (p2,p) G Q * x GL(n,K). Thus (p~ 2 , jP _ 1 ) acts invertibly 
on the inverse system. In this way we see that this defines an action of the whole of 
Gw. We state this formally as follows 

(3.5.6) Proposition. — The formulas (3.5.1)-(3.5.5) extend to an action ofG(Af) on 
the tower of moduli schemes Ajj{m)(B, *) over O, in such a way that the uniformiza-
tion map (3.4-9) is WK X G(Af)-equivariant. 

Remark. — One can also avoid worrying about go] the action of Q* can be defined 
easily for general go, just by changing the polarization. Moreover, one can define an 
action of g that fixes the polarization, but then the polarization becomes a quasi-
isogeny rather than an actual homomorphism. This strategy was followed in [HT2]. 

4. Stratification and vanishing cycles 

The present lecture continues the study of the stratification of the special fiber sffl 
of our Shimura variety by isomorphism type of isocrystal, which in the present simple 
situation corresponds to stratification by p-rank of the universal family of abelian 
varieties with PEL structure. The cohomology of the generic fiber can be written, in 
the Grothendieck group, as the sum of cohomologies of strata of the special fiber with 
coefficients in the vanishing cycle sheaves. This is the First Basic Identity (4.4.4), 
which summarizes the contribution of vanishing cycles to the determination of the 
cohomology of the generic fiber. 

4.1. Strata in level prime to p: Proof of smoothness. — Let U = Uw x Uw, 
with Uw = GL(n, O), and Uw sufficiently small, so that Au(B, *) has a smooth model 
over O. We return to the stratum defined last time; this is the subset where 
is of height h. We prove that each is smooth of dimension h. 

In fact, we can replace Au(B,*)w by any smooth locally noetherian scheme S 
over F, and consider a one-dimensional divisible (9-module H/S of height n. We 
know that, when S = Au(B, * )F , then, for every s G 5(F), the formal completion 
is isomorphic to the universal formal deformation space (over F) of Hs (we apply the 
Serre-Tate isomorphism in reverse). We assume S has this universal property as well; 
it is used only in (c) of Theorem 4.1.1. Let S^ (F ) C 5(F) be the subset where the 
height of H6t is ^ h, S^h\¥) = 5 ^ ( F ) - S ^ - ^ F ) . 
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(4.1.1) Theorem 

(a) Under the above hypotheses, (F) is the set of ¥-valued points of a reduced 

closed subscheme . 

(b) Over S^h\ there is a short exact sequence 

0 — • H° —>H —• Hét — > 0 

where H° is a one-dimensional formal O-module of height n — h and Het is étale of 

height h. 

(c) For h — 0 , . . . , n — 1, = S''1' — S^- i ] is either empty or smooth of dimen­

sion h. 

Proof of (a) and (b) 

Step 1. — The proof is in several steps. We first note that (a) implies (b). Indeed, 
Messing observed in his thesis ([Me], Ch. II, Prop. 4.9) that if S is a connected noethe-
rian scheme of characteristic p (or even with p locally nilpotent) and H is a p-àivisible 
group over S with |il[p](fc(s))| constant, then H is globally an extension of a formal 
group by an étale group. (More generally, if X/S is a finite flat scheme with constant 
separable rank, then it factors uniquely 

x x' s 
with / radicial and g étale. This is first proved for fields, where it is obvious, then for 

complete local rings by Hensel's lemma, then for general local rings by faithfully flat 

descent, using the uniqueness over the completion, and then the uniqueness implies 

that these local morphisms patch together globally.) So if we have (a), then over S^ 

we have a short exact sequence with Het étale, and since both H° and Hét are still 

(9-modules, the height follows by counting the order of H\p] at any point. 

Step 2. — Now we prove (a). The argument is due to Oort [Oo]. The problem is 

local, so we may assume S = Spec(R) where R is a noetherian ring and Lie(iJ) is 

free over R. By induction, we drop the assumption that S be smooth (but it remains 

reduced) and we also drop the assumption that the complete local ring is isomorphic 

to the deformation ring at each point. We assume that generically, Hs\p)(k(s)) is 

of order p 9 for some g\ at this point the (9-action is irrelevant. First, we establish 

notation for Frobenius and Verschiebung maps. Let Frs : S —• S denote the absolute 

Frobenius morphism. The superscript ( p \ for schemes over 5, denotes pullback with 

respect to Frs. Let 
y . #v,(p) — v Hw 

denote the F-operator on Ji\ i.e., the Cartier dual of the Frobenius homomorphism 

FH : H -+ H<P\ Let H = L i e # [ p ] v = L i e # v (they are equal because p = 0 on 5 ) , 

and let denote the differential of V: 

Z * : n{p) —> H. 
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In this version, V.* is an CMinear map. We may also identify with Fr*s(H)] then 
composing V* with the Frobenius map 

Fn : H —> Fr*s(H) 

we obtain 

(4.1.2) V . = Z . o F w : « — > « , 

a Frob-linear version V* of V_ *: 

V+(ay) = a?V*(y), a G R, y G r(*,H). 

(4.1.3) Lemma. — For any geometric point s G 5 there is a canonical perfect pairing 

H?=1®H8\p](k(8))—*Fp. 

Proof. — This is apparently well-known, but we were unable to find a reference. Here 
is the proof. It is standard (cf. [Mu, p. 138]) that there is a canonical isomorphism 

(4.1.4) Hs Hom(# s [p] ,G a ) . 

With respect to (4.1.4), V* is identified with the map </> \-> <f)oF[Hs] = F&a o<f>. Applied 
to fc(s)-valued points, (4.1.4) yields a pairing 

Hs\p](k(s)) xHs-^ Ga(k(s)) = k(s), 

which restricts to a pairing 

(4.1.5) HB]p№s)) x Kv

s*=l —> k(s)F=1 = F p. 

If </> G HY*=1 and <j>(x) — 0 for all x G H8\p](k(s)) then (/> factors through the formal 
group of G a , hence by (4.1.5) 0 = 0. Thus we have an injection 

(4.1.6) H^=1 <—+ Hom(Hs\p](k(s)),Fp). 

To complete the proof of the lemma, it suffices to show the order of the left-hand 
side of (4.1.6) is at bounded below by that of the right-hand side. Suppose Hs\p](k(s)) 
has order ph\ equivalently, that there is an embedding c—• Hs\p)y. Then there is 
an embedding 

Lie(/x p) / l <—> Hs, 

compatible with K- But the p-linear map has slope 0 on /xp, hence 

dim F p W ^ = 1 > dim F p Lie(pp)h^=1 = h, 

which yields the desired bound. • 

Let Sa = {s G 5(F) | |ffa[p](fc(s))| ^ pa}. It suffices to show that each Sa is the set 
of points of a reduced closed subscheme. By the Lemma, 5 a = {s G 5(F) | | W y * = 1 | ^ pa}. 
Let? e\,..., em be a basis for H over R, and write V* as a matrix: 

K ( c . ) = 
v1jej. 
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Then Hv*~l is identified with the subscheme of A# defined by the equations 

Xj — V{jXP 

via (XJ) i—• XjCj', indeed 

V*(jjTxiei = ij, xp u+j ej. 

These equations define a quasi-finite etale covering of 5, since the Jacobian is the 

identity. Generically, the degree is p9; i.e., S = Sg. Then Sg-i is closed. • 

Proof of (c) 

Step 3. — Next, we prove that the codimension of Sg-\ is at most 1. Let T be the 

normalization of S = Spec(i?) in a finite separable extension of Prac(i?) where the 

etale covering is trivialized, so Hk(T) has p9 points, say x\,... ,xpg. Since T/S is 

finite, it suffices to prove the result with S replaced by T. Then Tg-i is the union of 

the loci Zi where the Xi are not regular. Since T is normal, each Z{ is of codimension 

< 1. 

Step 4- — It remains to prove smoothness. This is more subtle, and requires Drin-
feFd's theory. First, it follows from Step 3 that S^] \ s Q f dimension at least h for 
all h. On the other hand, the separable rank of H is constant over S^, so over S^) 
the connected part H° is a (smooth) formal group of height n — h. If 5 ^ ) [s empty 
there is nothing to prove. So let s G S^ be a closed point, and consider the maps 

Spf(Rk,n(h,h) 0/s Sa s(h) cl » Spf(RK,n-h)-

The map / is the natural immersion and cl is the classifying map attached to the 

deformation of H® over given by pullback of H° to 5 ^ 7 -
Let P be a minimal prime of Os^ and let dp denote the restriction of cl to the 

corresponding irreducible component. Then the map dp corresponds to a homomor-

phism of rings RK,n-h —> 0^S/P. 

Denote by t i , . . . ,tn-h-i the parameters of RK,n-h (parametrizing deformations 

of Hg) and izi , . . . ,Uh the remaining parameters in RK,n-h,h (parametrizing exten­

sions by {K/0)H). We will show that the parameters ¿ 1 , . . . ,tn-h-i of DrinfeFd map 

to zero in Os^/P. Assuming this, we conclude as follows. It follows that the canon­

ical classifying map clh : Spf(RK,n-h,h), corresponding to the deformation 

of H s over 5 ^ 7 , corresponds to a homomorphism 

RK,n-h,h/{tl, • • • ,tn-h-l) = 0[[ti,. . . ,£ n _h_i,^i , . . . >Uh]]/(ti, .. . ,tn-h-l) 

---->os(h),d 
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In the above diagram, clh = (f) o / ; in particular it is a closed immersion. It follows 

that is of dimension ^ h at s. But we know that it is of dimension at least h, 

hence the map above is an isomorphism, and 5^) j s smooth at s. 

It remains to show that the deformation of H° along 5^)7 is trivial. Let k be the 

field of fractions of the image of gp\ since is reduced, it suffices to show that the 

U map to zero in k. Suppose one of the U does not map to zero, with i minimal. 

Then the (^-coefficient of (= multiplication by w on H%) is non-zero, and this is 

the first non-zero coefficient. Thus is of height i < n — h. This contradicts the 

hypothesis that H° is of height n — h on S^h\ • 

We will see later, when counting points (Lecture 6), that the strata are non-empty. 

4.2. Generalities on vanishing cycles. — Let T = Spec(jR), R a Henselian 

discrete valuation ring, with generic point rj and special point t of characteristic p, 

and assume for simplicity k(t) algebraically closed. Let / : S —> T be a proper 

morphism of finite type, with fibers and St, and geometric generic fiber Sjf. Let T 

be a constructible sheaf on Sv in Q^-vector spaces, with £ ̂  p. The point of vanishing 

cycles is to calculate Hm{S^,T) as the hypercohomology of a complex Riff (J7) on St. 

There is an action of Gs\(k(fj)/k(r])) on i7*(5^,^r), hence one wants R9(P) to be 

endowed with an action of Gal(k(rj)/k(r])) (= inertia). The recipe is formal. One 

considers the canonical morphisms j : SJJ —> S and i : St —• 5; then 

RY(F) = f Rj+(F) 

(nearby cycles). Since / is proper, one knows by proper base change that 

HV{S,R?j*{F)) HV{Sui*RqUF)) = H*>{SuR
q*(F)). 

Then the Leray spectral sequence becomes 

E%q = Hp(SuR
q^(F)) => Hp+q{Srt,T). 

More generally, one starts with k(s) perfect (e.g. finite) and takes base change over T 

by the Witt vectors W(k(s)); then the spectral sequence becomes equivariant for 

Gal(k(rj)/k(rj)) covering the action of Gal(k(s)/k(t)). It is known that 

(4.2.1) Fact. — If F is constructible and f : S —• T is a proper morphism of finite 

type then the nearby cycle sheaf (OF) is constructible. 

The standard reference for vanishing cycles is [SGA7]; however, Illusie's article 

[II] provides an efficient introduction. 

This definition has the disadvantage that one is no wiser than before unless one 

can compute Rq^(F). In our setting, T = Spec(O), S = Au(m)(B, *)> a n d w e restrict 

attention for simplicity to F — Q^. Write Su(m) = Au(m)(Bi *)> t n e special fiber of 5, 
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and write Rq^ for Rqi$(Qt), and occasionally Rqty(m) when the level is indicated. 
Then there is a spectral sequence 

E2 = Hp (Su(m), Ryt= ==> Hp+q (Au(m) (B,*) k, ql) 
Passing to the limit over Uw, and ra, we find 

(4.2.2) lim №{Su{m),R!>9)=* lim H^(Au(m)(B,*)w,Qe). 
Uw,m 

Now the right-hand side is an admissible G(Af) module (admissible means just that 
at every finite level the cohomology is finite-dimensional). We consider a mod­
ified Grothendieck group of G(Af) x -modules: the objects are formal sums 

nn,crn 0 a with II an irreducible Q r valued representation of G(Af) and cr an 
irreducible continuous Q^-valued representation of WK\ the nn,<r £ Z. An admissi­

ble G(Af) x VFx-niodule is a G(Af) x W^-module that is admissible over G(Af) 

and continuous over WR- T O an admissible G(Af) x W/c-module 7r we associate 

^n,all 0 cr as follows. If UU ^ 0, then nu,a(^) is the multiplicity of UU 0 a in the 

semisimplification of ixu as module over the Hecke algebra H(G(Af)//U) tensored 

with WK- One checks that this is independent of U. Note that ^-adic monodromy 

in a has been eliminated. 

Write W\ = V nn aMH 0 cr, and define 

(4.2.3) [H(A(B,*))] = Hm W (Au{rn)(B,*)w,Q£) 

Recall (from §2.4) that 

Assumption (4.2.4). — The level subgroup is always assumed to contain Z * C Q * . 

Then the above spectral sequence yields 

(4.2.5) [H(A(B, *))] = Y(-ir+* \ lim H*(Su(mhR>9J\ 

Here we are making use of the fact [F] that the action of G(Af) extends canoni-

cally to an action on Rï& by cohomological correspondences, covering the action on 

l™UirnSu(m)-

Now recall the stratification of Sf/(m) by the Su^my These have been defined when 

m = 0, and for general m one takes inverse images. For any constructible sheaf <3> (on 

any base) there is always a long exact sequence: 

(4.2.6) > H*(st;}m),*) H*(S[Ì\m),*)- H*(S[Ì\m),*)-h-1o) 

where ih-i is the obvious closed immersion. By induction, we obtain a further de­

composition in Groth(G(A/) x WK)'. 

(4.2.7) [w , . ) ) ] = E H r lim Hpc(S(h) (m), sh Ryw))]. 
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We drop the U and m and just write the right-hand side 

p,q,h 

E (-1) p+q [hpe (S(h), Rw))]. 

The stability of each under G(Af) follows from the fact that G(Af) preserves 

isogeny classes, and the height of the connected formal group is an isogeny invariant. 

(4.2.8) Remark. — The above decomposition presupposes that each term is an admis­
sible G(A/)-module. The condition away from w is clear, so we may as well fix Uw 

and let m vary. Then admissibility comes down to the assertion that 

lim HpcS(h)Um+ihRqy))] lim HpcS(h)Um+ihRqy))] 

lib 
for any h, where T m C GL(n, O) is the principal congruence subgroup.For this we 

can replace the limit on the left by H P ( S ^ m f y i * h R q ^ ) ) r r n for all m' > m. More 

generally, if / : Z' —+ Z is a quotient by a finite group T, and if V is a constructible 

sheaf on Z' with compatible T-action, we have Hf!(Z, ( / * L ' ) r ) H£(Z', L')T. So it 

suffices to prove the 
(4.2.9) Continuity lemma. - i ï « * ( m ) ^ / m ' , m , . i ^ * ( m / ) r - . 

Here the notation is obvious. This follows formally from the definition of vanishing 

cycles, because / m ' , m is the special fiber of a proper flat morphism whose generic fiber 

is an etale covering with Galois group r m / T m / . 

4.3. Vanishing cycles and the fundamental local representation 

Now we return to the formal situation. If X is a "special" formal scheme over 

Spf(O), Berkovich has constructed a vanishing cycles functor R t y i o r m from etale 

sheaves over the generic fiber to constructible complexes on the special fiber, which is 

a scheme over ¥q. The hypothesis "special" is best expressed in terms of rigid geome­

try, but a finite flat covering of the formal spectrum of a formal power series ring over 

O is of that type. Again, the formal completion of a proper scheme of finite type over 

O along a subscheme of the special fiber is special. Thus the formal schemes Mn-fr,fc;m 
of Drinfel'd level structures are special in Berkovich's sense; we have seen that their 

connected components are isomorphic to the formal completion of Au{m){Bi *) along 

points in S^h\ When h = 0, the special fiber is just a point, or rather a union of 

points, indexed by Z (a connected component is of the form S p f ( i ? n _ ^ ; m ) ) . More gen­

erally, the special fiber is a union of connected components of the form Spf (Rn-h,h;m) 

indexed by Z x U(h;m)\GL(h,K), where U(h,m) C GL(h,0) is the principal con­

gruence subgroup of level m. In any case the vanishing cycles sheaves are just unions 

over the connected components of vector spaces with WK action. 

We define 

*K,£,n-h,h,m - h:m,redi Huloem Ql) 
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for the formal scheme Mn-h,h;m] here M n - / i , / i ;m,red is an ind-profinite scheme over k 

with GL(n, O) x Jn_/i^-action. (The "ind" comes from the fact that Gh C Jn-h,h 

is non-compact; in fact, M n - f c , / i ;m,red is just a countable disjoint union of profinite 

schemes.) We let 

(4.3.1) 

^K,e,n-h,h — * n - / i , h — l ^ * K , * , n - / i , / i , m 
^K,e,n-h,h — *n-/i,h — l^*K,*,n-/i,/i,m 

Then each ^ ^ . ^ ^ has an action oiGxJx WK- When ft = 0, we have G = GL(n , i f ) , 

J = -D*/ n, and then tyl

n = tyl

n0 is called the fundamental local representation of 

G x J x WV. More preciselv, the virtual representation 

[*»] = £ ( - i M 
% 

will be treated as the fundamental local representation. All information regarding 

supercuspidal representations of GL(n, K) is contained in the representation on 

Let ft = 0, and identify M n-/i,0;oo,red with Z as in (3.3.4); let #o £ ^ n - M ; o o , r e d 

correspond to 0 G Z (quasi-isogenies of height 0). The stalk # 2

n _ M , x 0 of i P * f o r m Q * 
at xo inherits a representation of the isotropy subgroup at XQ 

(4.3.2) AK,n-h C GL(n - ft, i f ) x Jn-h x WK. 

Writing g instead of n — ft, the group ^4K , p can be characterized as the kernel of the 

map 

5:GL(g,K)x JgxWK—+Z 

defined by 

(4.3.3) <J(7,J» = wjr(det(7)) - wK(N(j)) - w(a) 

where WK is the valuation on if, N : J —• i f x is the reduced norm, and i/;((j) is the 
valuation on WK induced by WK via the reciprocity isomorphism W$ KX • It is 
then clear that 

(4-3.4) *U,o = c - I n d ^ * ^ * ^ _ , , 0 , x o , 

where c-Ind denotes induction with compact support. 

For the sake of honesty, we will also need the version including polarization; this is 

*Sfn-h,h,+ starting from M^-h h . m . The action is now complicated by an extra factor 

of Qp in each of G and J, and we define 

Jn-h,h,+ = D*/{n_h) x GL(h, K) x <Qp

x. 

The vanishing cycles of Berkovich satisfy the same spectral sequence as in the 
algebraic setting: 

(4.3.5) = H*>(ZS, R^(Qe)) H***^,Qi)), 

where now Zjf is the generic fiber of Z in the sense of Raynaud-Berthelot - i.e. a rigid 

analytic space - and the cohomology on the right is Berkovich's etale cohomology of 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2005 



6 6 M . H A R R I S 

analytic spaces. But we don't need this. What we do need is Berkovich's comparison 
theorem, which we state in the case when the special fiber of A' is a single point 
x e ZS. 

Thus let / : Z —> Spec O as before, x G ZS a geometric point, and let X = Z^X. 
Then 

(4.3.6) Theorem (Berkovich, [BII, Theorem 3.1]). — There is a canonical isomorphism 

№form®£ ^ (R9Qe)x. 

In other words, the vanishing cycles in the algebraic category depend only on the 
formal completion. 

The canonicity of the isomorphism implies that it commutes with all correspon­
dences on Z in a natural sense. Thus, fix an isogeny class 

S(x) = lim Su,m(x) C lim Au(m)(B,*). 

This is a profinite set, and its cohomology is defined as the direct limit of cohomology 

of finite quotients. Via the local uniformization maps (3.4.10), as U and m vary, 

Berkovich's comparison theorem defines an isomorphism of G(Af) x Wx-equivariant 

sheaves on S(x): 

(4.3.7) [K-h,h,+ x (Ix(Q)\G{h)(Af))]/Jn-h,h,+ ^ R^Qe . 

(4.3.8) Remarks 
(i) When h = 0, the set S(x) maps bijectively to lim^ Su,o(x). This is because 

the group Gx is connected and because, over a reduced base, Gx[^
rn} has a unique 

Drinfel'd basis, namely the trivial one (exercise). Hence we may view R^Qi 

as a sheaf on the h = 0 stratum in ]imuAu(o){B,*), though the vanishing cycles 
themselves require m —> oo. 

(ii) For h > 0, this is no longer true. On the one hand, the set Mn-h,h]M maps to a 

product, as we will see, of Mn-h,o and Mo,fc- The second factor is just GL(/i, K), with 

G — J — GL(h, K) acting on right and left. This is the GL(fe)-factor of Jn-h,h,+- In 

the quotient, we have therefore an extra GL(h, if)-term in the limit. 

(4.3.9) Proposition. — Suppose h = 0. Then the fundamental local representation of 

G x J x WK on tyl

n is admissible as a G x J-module (or rather Z-admissible: see 

Remark (4-3.9.1), below) and satisfies the analogue of the continuity lemma: 

*k*,n,0,m = (n)^ 

where Tm C G is the principal congruence subgroup. 

Proof — The admissibility is a consequence of 

(1) Each £ n o m is constructible (i.e., the stalks are finite-dimensional). 

(2) The continuity lemma. 
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Consider (1) first. This follows from uniformization and the constructibility of 
vanishing cycles in the algebraic setting, provided we know the supersingular locus 
is non-empty. This we have already promised to prove later (by explicitly exhibiting 
points). As for (2), it follows again from the continuity lemma in the algebraic setting. 

• 
(4.3.9.1) Remark. — In fact, the above proposition is not quite true as stated, for 
elementary reasons: the center of G x J translates the connected components of MN 

and hence has no finite-dimensional invariant subspaces. The correct statement would 
be that, for any character £ of the center ZQ of G, the maximal quotient of tyl

n on 
which ZQ acts as £ is an admissible G x J-module. Perhaps this should be called 
Z-admissible. In any case, this is all we need for the applications. An analogous (but 
more serious) correction needs to be effected for general h below. 

Let g be a non-negative integer. Before continuing, we need to introduce a "com­
pactly supported" version of ^ ^ o - Let 

(4.3.10) *ig = c . i n d ^ * ) x - № ( ^ 0 x o ) v . 

Thus 
= l i m F 0 ( M s , 0 ; m ) r e d , ( i r * f o r m Q * ) v ) 

m 

is just the cohomology of the dual of Rl^formQe. The subscript c is included to 
reflect the fact that, for more general Shimura varieties, one obtains the analogous 
construction as the compactly supported cohomology, in Berkovich's sense, of the tube 
over a connected component of an isogeny class; cf. [H3] and [Fa]. In general, this 
dual construction behaves better in general with respect to the action of the center; 
here the difference is slight. 

I can now state one of the main theorems of [HT]: 

(4.3.11) Theorem ([HT]). — Let g be a non-negative integer. Let IT E Ao(g, K), and 
let JL(7r) denote the corresponding representation of J = D*/g under the Jacquet-

Langlands correspondence (A. 1.13). 

(i) We have 

[* 9(JL(TT))] ^ ^ ( - l r p o m j ^ , JL(TT))] ^ ( - 1 ) s - V ^ ( T T ) V ] 
i 

in Groth(G x WK), where 77(71-) is a g-dimensional irreducible representation ofWx-

(ii) (Cf. Proposition 5.2.18 below.) Letix1 ^ n E A(g,K) be a discrete series repre­

sentation. Then for all i, H o m j ( ^ ^ , JL(7r /)) contains no G-subquotients isomorphic 

to IX. 

(iii) Finally, ae(ir), defined by 

ai(ir) = r * ( 7 r ® | . | ( * ~ 1 ) / 2 ) , 
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satisfies all the conditions of the local Langlands correspondence (except possibly com­

patibility with e factors). 

This was conjectured by Carayol [Ca3], following earlier conjectures of Deligne. 

The proof of Theorem 4.3.11 is given in § 5, assuming some consequences of the point-

counting argument that will be completed in the subsequent sections. 

Now recall from Lecture 3 the notion of Drinfel'd basis of type M. Here M C 
vj-rnOn/On is a direct summand isomorphic to w-mOn-h/On~h, and p is a Drinfel'd 

level structure of type M on Qx if p \M is a Drinfel'd structure on Gx

 a n d P (mod M) 

induces a Drinfel'd level structure on the étale quotient. We have the decomposition 

M9,h,m = J Mg,h,M 
M 

We write 

^K,e,n-h,h,m = ®M^lK,e,n-h,h,M 

Fix one M = Mo(ra) (in standard position) and let Ph,o C GL(n) the standard 

maximal parabolic of type (n — ft, ft). Let Om = 0/wmO. There is an isomorphism 

(4.3.12) I n d p ^ ^ ^ ®K,i,n-h,h,Mo(rn) y ^%K,(>,n-h,h,rn 

that sends a function / : GL(n, Om) -* *k,*,n-/i,/i,Afo(m) satisfying f{pg) = pf(g) for 

P G PhA°m) t o 

[GL(n, Om) : Ph^Om)}-1 Yl 9~lfi9)-
9ePh,o(Om,)\GL{n,Om) 

It is easy to check that this is an isomorphism of GL(n, 0 m )-modules (on the induced 

representation, the action of ft takes / to fh(g) = f(hg), and 

Eg-1 fh(g) = E Q-\f(Qh) = ,hg-Lf(g).) 

Let Vm = *Wf€,n-/*,fclAfo(m)' #™ = *tf,*,n-/i,h,m> 7 - = ̂ P ^ O ^ ' . The denomina 
tor (which doesn't work integrally!!) makes the following diagram commute: 

lm Vm ----> Hm 

lm Vm ----> Hm 

for ra' > ra, where the right-hand side is just pullback and the left-hand side identifies 

ImVrn with functions on 0 m > that pullback from functions on O m and take values in 

the image of Vm in Vm' under the natural pullback. Thus in the limit this defines an 

isomorphism 

(4.3.13) limlmVm - • lïmHm = ^ n—h,h' 
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Let 

^K,£,n-h,h,M0

 — lH3^K,£ ,n - / i , / i ,M 0 (m) 
m 

(4.3.14) Proposition. — There is a canonical isomorphism of G x J x WK-modules 

maPh0(K) * K,i,n-hthtMo > K-h,h-

Proof. — Given the above constructions, it remains to identify the left-hand side via 

l i m / m y m 
Ind gl(n,k im Vm. 

But this follows from the Iwasawa decomposition 

GL(n, K) = Ph,o(K) • GL(n, O) 

which identifies the right-hand side with the locally constant functions in 

Inc 
GL(n,0) 
'Ph.o(O) 

lim V m , 
Ph,o(0) ^ r™' 

m 

and the fact that locally constant functions come from the left-hand side. • 

For convenience we have ignored the polarization datum (the + ) ; now we put it 

back. We consider an individual £ n_h h M 0 ( m ) + a s Ph,o(Om)-module. First note 

that it is finite-dimensional. This follows from Berkovich's theorem, once we can 

exhibit it as the stalk (at a point of the stratum S^) of the global vanishing cycles 

on the Shimura variety. On the other hand it follows as before, from the continuity 

lemma, that 

* K,£,n-h,h,Mo(m),+ " (^K,£,n-h,h,Mo 

Thus ^K£n-h h M0

 1 S a n admissible P^,o(^)-module. But by a standard lemma this 
implies that 

(4.3.15) Lemma. — The unipotent radical of Ph${K) acts trivially on ^Kye,n-h,h,Mo' 

For the reader's convenience, I include the proof, taken from Lemma 13.2.3 of 

Boyer's thesis [Bo], where it is attributed to Henniart. 

Proof. — We write P = Phto(K), N = RUP, L a Levi subgroup of P. We will show 

that, if V is any admissible representation of P, then N acts trivially on V. The 

proof has nothing to do with GL(n). Let v G V, and let U C P be an open compact 

subgroup such that v G Vu. By shrinking U if necessary, we may assume U = UL-UN 

where UL = U H L, UN = U D N. Choose an element z in the center of L such that 

ad(z) is expanding on JV; i.e., such that 

(4.3.15.1) • • • z~nUzn C • • • C z~xUz C U C zUz'1 C • • • znUz~n • • • 

and such that 

(4.3.15.2) U znUNz~n = N. 
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For n e Z, let VN denote the subspace of V fixed by z nUzn. Thus 

(4.3.15.3) VN C VN+1 

for all n, and v € VQ. On the other hand, the action of z on V defines an isomorphism 

VN Vn-i. In particular, all the VN have the same (finite) dimension. Thus the 

inclusions (4.3.15.3) are isomorphisms. Hence 

v0 = n vn C VN 

by (4.3.15.2). Since v was arbitrary, we find that V = VN, as claimed. • 

(4.3.16) Remark. — In [HT] we used the weaker fact that, if V is a smooth P-module 

which is admissible as an L-module, then the action of N on V is trivial. Proving that 

^ , n - / i , / i , M 0 '
 a s d e n n e d above, is an admissible Ph$(K)-module is straightforward, 

as we have seen; whereas proving admissibility as GL(n — ft, K) x GL(ft, K)-module is 

rather more complicated. The strategy followed in [HT] involves replacing the strata 

Su(m) °f the Shimura variety by the "Igusa varieties of the first kind," moduli spaces 

defined abstractly in such a way as to eliminate the action of the unipotent radical 

of Phto(K). As ringed spaces, the Igusa varieties of the first kind are isomorphic to 

the reduced strata ( £ [ ^ m ) ) r e d ; however, the structural maps to the strata of level 

zero differ by a power of Frobenius (precisely the power needed to annihilate the 

connected part of the Drinfel'd level structure of level m). The advantage of the 

present approach is that, once the adelic group action has been defined on the full 

integral model lim Au(m)(B, * ) , as in §3.5, it is not necessary to define a separate 

adelic group action on the inverse limit of the strata S^my By contrast, in the 

approach followed in [HT], the action on the Igusa varieties of the first kind had first 

to be defined separately, then shown to be consistent with the action on the strata. 

Now recall the Ph,o(Om) x J x W^-equivariant morphism 

TTl = *"l,M0(m) : ^n-hMMo{m) > ̂ n-fc;m,0 X M0,h;m-

This is the quotient by the unipotent radical of Ph$(Pm) (recall that the subscript 

m > o designates a Drinfel'd structure on the connected part only). By Proposition 

3.3.5 this morphism induces an isomorphism on reduced A;-subschemes. We write 

fii*^Jn-h,fc,M0(m),+ ( r e s P- R^KAn-h&rn) for Berkovich's vanishing cycles sheaf 

RltyiormQe over M^-h h-M0(m) red ( r e s P- o v e r
 ^n-h;m)' We drop m from the notation 

for the limit over m. The above lemma implies, as in the proof of the Continuity 

Lemma 4.2.19, that Rli&K,£,n-h,h,M0(m),+ l s the pullback via 7Ti of the formal van­

ishing cycles of M^_H.M x Mo,/i;m- But Mo,/i;m is etale (even discrete) and it follows 

from Proposition 3.3.5 that M^_H.M 0 is smooth over M+_H. But smooth morphisms 

preserve vanishing cycles. Let (Qe)o,h;m denote the constant sheaf over the discrete 

scheme Mo,/i;m- We write P = Ph,o(K), N = RUP, L a Levi subgroup of P, which we 
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identify with GL(n -h,K)x GL{h, K). Recall that J = Jn-h x GL(h, K). It follows 

immediately that 

(4.3.17) Proposition 

(i) For any m and any i, there is a canonical isomorphism of Ph,o(Om) x J x WK-

equivariant sheaves over Mn-h,h,Mo(rri) 

Rll$K,e,n-h,h,Mo(rn),+ • [{^l,Mo(m)TRl^K,£,n-h,0;m (Qt)o,h;m] + -

Here the action of the unipotent radical is trivial on the right-hand side, and IE! is the 

external tensor product over the product M^_h.m x Mo,fc;m-

(ii) In the limit, the isomorphisms above patch together to an isomorphism 

R%i&n-h,h,+ - [ ( 7 T i , M o ) * ^ n - M ^ ( Q ^ ] + 

of P x J x WK-equivarant sheaves. 

(iii) Define 

AK,n-h C GL(n -h,K)x Jn-h xWK C Ph,o(K) xJ*WK 

as in (4-3.2). Regard (AK,n-h x GL{h,K)) - N as a subgroup of P x J x WK by 

extending the natural inclusion of N in P by the natural inclusion of AK.U-H in 

GL(n-h,K)xJn-hxWK and the diagonal map GL(h,K) -» GL{h,K)xGL{h,K) C 
L x J. 

Then there is a canonical isomorphism of P x J x WK-modules 

^K,e,n-h,h,+ - * c-ind; ? x J x WK 

[AK,n-hXGL(h,K)).l 
-hXGL(h,K)).l 

Here c-Ind denotes compact induction, ^n-h,o,Xo ^s a s ^n (4-3-4)> and 1 is the trivial 
representation of GL(h, K); N acts trivially on the tensor product. 

Here the first two assertions follow from the previous discussion, and (iii) follows 

from (ii) and (4.3.4) by taking cohomology. Note that compact induction of 1 from the 

diagonal in GL(h, K) x GL{h, K) just gives rise to the two-sided regular representation 

on C™(GL(h,K)). 

(4.3.18)Corollary. — The Gx Jx WK module ^l

n_h h + is admissible and continuous 

and parabolically induced from an admissible (continuous) GL(n — h, K) x GL(h, K) x 

J x WK x Qp -module (add the extra factor ofQ* for the +). 

(4.3.19) Remark. — As in Remark 4.3.9.1, this is not quite literally true, and in this 

case the problem is more serious because of the presence of the GL(h, K) x GL(h, in­

action on C£°(GL(h, K)); one has to replace the assertion by one about the maximal 

quotient on which ZQ X GL(h, K) acts via any fixed finite sum of irreducible repre­

sentations. But this is again all we need for the applications. In the future, we will 

incorporate GL(h, K) with the adeles away from w in order to avoid this issue. 
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We pause to note what this implies for an isogeny class (lying above) S^: 

(4.3.20) Mft f m ^ n - M B (Q*)olfc)+) x (Ix(Q)\Gw(Af))]/Jn-h,h,+ 
_>Rs yqs ls(s). 

4.4. The first basic identity in the Grothendieck group. — We now want to 

apply this to the global cohomology. Just as in the formal setting, the stratum S^m^ 

is the disjoint union: 
S(h) U(m) = 

SUM 

(the h and m are determined by M). Then the above decomposition becomes 

(4.4.1) ^U(m) — 

jeGL(n,Om)/Ph,o(Om) 
7 ( # £ / , M 0 ( m ) ) -

(4.4.2) Lemma. — For each fixed Uw, the Ph,Q(K)-modul 

H = ifaH*(SUtMo(rn),IP9) 

is admissible. 

Proof. — Let Vm = HP(Su,Mo(rn),Rqi&), ^ m

 t n e principal congruence subgroup 
(1 + mmM(n, O)) H Ph,o(0). It suffices to prove : 

Vm = H^. 

As in the previous discussion, this follows from the appropriate continuity lemma: 

J F * ( m ) ^ / m , , m i , ¥ ( m , ) r " * . 

This is a stalkwise calculation, hence we are reduced by uniformization to the corre­

sponding continuity lemma for ^ q

n _ h h + . Proposition 4.3.17 reduces this to the case 

h = 0, which we have already proved. • 

(4.4.3) Proposition (cf. [Bo]). — There is a natural isomorphism 

Hpc(Sh) , Ru (q)= ,GL(n,K) 
lim fl?(5^M0(m),^*). 

(Note: this is non-normalized induction.) In particular, H^(S^h\ Rqty) is an admis­

sible G(Af)-module. 

Proof. — W e first observe that the action of Ph,o{K) on lim^ ffffim) stabilizes 

lim^ Su,Mn(m)' Indeed, recall that the action of GL(n,K) on Mn-h,h was defined 

by inducing from that of Ph$(K) (which was denoted Pj^) on {Mg h.p-mM/M}• ^ n e 

same argument works globally. On the other hand, for each level ra, the stabilizer 

in GL{n,0) of Su,Mo(m) i s PhfliPm) modulo 1 + mmM(n,0). In the limit, the 

stabilizer in GL(n, O) of hni m Su,Mo(rn) is Ph${Om). By the Iwasawa decomposition, 
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it follows that Ph,o(K) is the stabilizer in GL(n,K) of lim^ SV,M0(m)- Prom this it 

follows formally that Hf!(S^h\ Rq*&) is the representation compactly induced from 

the action of Ph$(K) on lim^ H%{SutMn(m),Rqi&)> Since the quotient is compact, 

this is the full induced representation. 

In more detail, the argument is just the same as in the proof of Corollary 4.3.18. • 

Write 

fl?(s£J,/P*)= hm H*(SU9MO(M),RW) 
Uw,m 

We thus obtain the following formula for the cohomology as G(Af) x Wx-module: 

(4.4.4) First Basic Identity. — The following identity holds in Groth(G(A/) x W K ) : 

[H(A(B, *))] = ^ c - i r ^ i n d ^ ^ ^ ^ ; , ^ * ) 
p,q,h 

We may consider an isogeny class in 5 ^ (with base point x, say); this means that 

the level structure is arbitrary away from w, but of type Mo at w. Let S(X)M0 denote 

this isogeny class. Then (4.3.20) yields 

(4.4.5) 

[ ( r f * n - M H (Q*)o,fc;m)+) x (IX(Q)\G^(Af))]/Jn^+ ^ R^Qe \S(X)MQ . 

Here Gh contains a factor GL(h,K), and Mo,h —-* GL(h,K), so S(X)M0 can also 
be written (c/. (3.3.4) 

(4.4.6) /*(Q)\(Z x GL(/>,#) x (QZ/Z*) x G(A?)) 

where the action of /^(Q) on Z x ( Q * / Z * ) x GL(h,K) is given by composing the 

inclusion of I X (Q) in J n_^^ > + = Jn_^ x GL{h,K) x Q* with the projection of the 

latter on Z x GL(h,K) x ( Q * / Z * ) whose first factor is j H+ w(N(j)). 

Remark. — To obtain admissibility, one has to work with Uw x C/^-fixed vectors, for 

Uh open compact in GL(h,K); then the finiteness condition holds for the action of 

^GL(n-h,K) ®s discussed above. 

For applications to point counting, it will be necessary to consider the stalks of 

Rl^Qi \s(x)Mo

 a t a P° i n t > s a y X->
 i n

 S ( X ) M 0 . Let Gn-h,h,+ = GL(n - h,K) x 

GL(h,K) x Q*. It follows from (4.4.5) that 

(4.4.7) tfVQt U - ^ K-h,o,Xo 

in the notation of (4.3.4). This is a module for the group Ai^n-h introduced in (4.3.4). 
Let 

J°n_h = kerwoN:D* /(n-h) * Ä-
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Then J„-h i s naturally a subgroup of AK,n-h] moreover, J®_h x {1} C Jn—h,h,+ IS 
the isotropy group of a point x G Mn-/i,n,+,red x Ix(Q)\Gw(Af) above x for the 
uniformization (3.4.10). It follows easily that 

(4.4.8) Lemma. — R^Qe is the sheaf on S(X)M0 associated to the representation of 
the isotropy group J%_h on ^_M,*0-

5. Construction of a local correspondence 

The present lecture contains most of a proof of Theorem 4.3.11, stated in the 
previous lecture: the fundamental local representation realizes the Jacquet-Langlands 
and local Langlands correspondence for supercuspidal representations, except (for 
the time being) for the compatibility with local epsilon factors of pairs. The proof 
roughly follows the lines of Boyer's thesis [Bo], but at some points, notably in the 
treatment of harmonic analysis, the point of view is closer to that of [HI]. An idea 
discovered by P. Boyer and exploited in his thesis shows that the local supercuspidal 
representations are concentrated in the zero-dimensional stratum. The construction 
of a local correspondence then follows by a comparison of trace formulas, as in [Bo] 
or [HI] (the latter in the case of p-adic uniformization). This construction is also the 
basis of the induction that permits us to determine the (virtual) contributions of all 
strata to the cohomology of the generic fiber. 

The proof of Theorem 4.3.11 depends on a weak qualitative consequence (Lemma 
(5.2.13.1)) of the point-counting argument that will be completed in §§ 6-7 (the Second 
Basic Identity, §6.1). Theorem 4.3.11 in turn is used to provide the strong version of 
the point-counting argument required to prove the Main Theorem (1.3.6). 

5.1. Applications to supercuspidal representations. — The following argu­
ment was first developed by Boyer, in the setting of Drinfel'd modular varieties, and 
is the starting point for our induction. 

We let [H(A(B,*))]o denote the formal sum of all G(Af) x WK modules in 
[H(A(B,*))] that are supercuspidal as GL(n, if)-modules. By definition, there is 
no intertwining with induced representations. Hence the First Basic Identity (4.4.4) 
has a supercuspidal version: 

(5 .1 .1) [H(A(B,*))]0 

E = (-1) p+q[Hpc (S(d) (Ry)0)} 

where the subscript 0 on the right also means supercuspidal, in this case under the 
action of GL(n,K)° = kerw o det C AK,U> Here we are using the fact that any 
supercuspidal representation of GL(n, K) restricts to a finite sum of irreducible rep­
resentations of GL(n, K)° that intertwine with no non-supercuspidal representation 
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of GL(n, K ) . Since S is of dimension zero, we just find 

(5.1.2) ^ ( - î n t f W , *))]„ = £ ( - l № ° ( S ( 0 \ (Rq*)o)]. 
i q 

Indeed, there is a stronger assertion. The spectral sequence for vanishing cycles, 
applied to the supercuspidal part, has the form 

( £ ™ ) o = Jim Hr(Su{m),R**)o. 
Uw,m 

But the same dévissage shows that 

(5.1.3) Hp(Su{mh RqV)o = Hp{(S(°\ {RqV)o) = 0 unless p = 0. 

Thus the spectral sequence degenerates at E2 and we have 

(5.1.4) H\A{B, * ) , Q , ) 0 ^ H ° ( ( S { ° \ ( i P * ) 0 ) , t = 1,..., 2n - 2. 

Now Matsushima's formula (1.1.3), plus the complex-analytic uniformization 

(2.1.2) of A(B, * ) , writes the left-hand side as 

(5.1.5) I ker x(Q, G) | • 0 JT( f l, ZG(R) • TT^) ® TT/. 
7T 

Here 7T runs through automorphic representations of G that are supercuspidal at w. 

Recall the base change map from the first lecture. From 7r, one can find a pair (II, i/)), 
with n C Ao (GL(n)i?), which is a base change at all unramified places (for TT) and 

all places that split in E. In particular, 11^ is supercuspidal, hence n is cuspidal. 

Clozel's purity lemma then implies that 7Too is in the discrete series, hence only has 

cohomology in the middle degree n — 1. Indeed, suppose this were not the case. Then 

by Lefschetz theory, there would be an integer 0 < i ^ n — 1 such that 

H
 a ( 0 , ZG(R) • Koo; TToo) ^ 0 <==> a € { n - l - i , n - l - i + 2 , . . . , n - l + i } . 

Thus Ha(A(B, *),Q^) contains 717 for at least two distinct a of the same parity. By 

Deligne's purity theorem (recall that A(B, *) is smooth and projective), the Frobenius 

eigenvalues on Ha(A(B, *),Q^) at unramified places v have complex absolute values 

$ 2 \ thus at unramified places v that split in E, say, the Satake parameters of Uv 

have several distinct complex absolute values of the form q^2. But n is cuspidal, 

hence every Uv is generic by Shalika's theorem. Moreover, Uv is unitary, up to twist 

by a character of the determinant. The classification of generic unitary representa­

tions of GL(n,Fv) (in fact, the Jacquet-Shalika estimates) shows that all the Satake 
1 / 2 

parameters have the same complex absolute value (the ratio is always ^ qj ) . This 

completes the argument. 

Thus we have 
(5.1.6) Hn-\A{B,*),®i)o ^ ^ ( ( ^ . ( f l " - 1 * ) , , ) ; 

(5.1.7) = 0, i ^ n - 1 . 
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Looking more closely at S and using a comparison of trace formulas, we can 
use this identity to construct a candidate for the local Langlands correspondence, for 
supercuspidal representations, on i? n - 1 \ I> n 5 o- This is how Boyer proved Carayol's con­
jecture in the equal characteristic case. The present lecture carries out the analogous 
constructions in the mixed characteristic situation. 

5.2. The basic locus and construction of a local correspondence. — We 
return to the basic, or super singular, locus S^°\ for two reasons. First, this will allow 
us to prove Theorem (4.3.11)(i) and (ii): we construct the local correspondence, as 
conjectured by Carayol, on the vanishing cycles in the basic case (h = 0). We have seen 
that this determines the stalks of the vanishing cycles at for all ft, and we use this to 
study the remaining strata. The other reason is that it provides a gentle introduction 
to the problem of counting points. The arguments generalize those of Carayol's thesis 
(in the case n = 2) and of Boyer's thesis (in equal characteristic). However, we have to 
contend with problems related to the failure of the Hasse principle, which complicates 
the argument slightly. 

Let x G S^°\ Recall the uniformization (3.4.10) of the isogeny class, in the case 
ft = 0 (in the limit over Uw): 

(5.2.1) 6 : [ / x ( Q ) \ M n , 0 , + (F) x G<0>(j4 /)]/Jn,+ ^ S{x). 

Here J n,+ = JnxQp and M n , 0 ,+ (F) is just Z x Q ^ / Z * , the first factor for the height 
of the quasi-isogeny, the second for the degree of the polarization. For ft = 0, Ix turns 
out to be an inner form of G. This is clearly explained in [RZ], from which we take 
the following Lemma: 

(5.2.2) Lemma. — Let (A, A) be a polarized abelian variety over Fq, with F c 
End°(^4), such that the Rosati involution induces complex conjugation on F. Let 
(N,F) be the rational Dieudonne module of A (overF). Consider the decomposition 
F (g> Qp = n FWi, [note change in notation: no more w\ 11] and suppose that in the 
corresponding decomposition of N = (BiNi, each Ni is isoclinic. Then some power of 
the Frobenius endomorphism Frob^ over Fq belongs to F. 

Remark. — The hypotheses of the lemma are verified for AX precisely when x G 

Proof. — For each i there is a W(F)-latice Mi a Ni, stable under F and V, such 
that FSiMi = priMi. We may assume that is fixed by O F W . (this is obvious in 
our case, since we are starting from an O-module at w and elsewhere it is etale, up to 
Cartier duality). Up to isogeny, we may also assume is the Dieudonne module 
of A and O K C End(A). Without loss of generality we may assume all Si = s and 
q = ps. So then FqMi = pTiMi. Let ord^ be the valuation on Ki with ord«(p) = 1. 
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Consider the following problem in algebraic number theory: Find an element u G K 

that is a unit away from p and such that 

oidi(u) = Ti\ uuc = q. 

We are allowed to replace q by g m , which replaces Vi by mrj. For m sufficiently large, 

the first equation can be solved. Now the existence of the polarization fixed by Fq 

implies Vi + = s for all i (and this is again obvious in our situation, by duality). 

Let u1 = qu/uc. Then 

ordi v! = s + n - ric — 2vi\ u'(v!)c = q2. 

So up to replacing q by q2, we have solved the equation. Now e = u~1FrobA is 

an automorphism of A (because it fixes 0fMi, by the first equation) that fixes the 

polarization (by the second equation). Hence by Serre's lemma we conclude that some 

power of e equals 1. • 

(5.2.3) Corollary. — Let (A, A) and (Af,Xf) be two abelian varieties overF satisfying 

the same assumptions. Then 

Hom°K(A, A') ® Q Qt ^ Hom K (VHA), Vt(A')). 

Proof. — This follows from the proposition and Tate's theorem 

Horn 0 (A A') 0 Q Hom Q £ [ F r o b ] (Vi (A) , Vi(A')). • 

Now return to (Ax, \ x , i x ) € S^°\ Recall the data (B, *, V) of our original moduli 

problem. Let C = End°B(V) = Bop, Cx = End°B(Ax). Recall that we have the 

involution # o n C , induced by the symplectic embedding of G; let # x be the involution 

on Cx induced by the polarization Xx. By the Corollary, we have that 

CX®Q£ -^EndB(V£(Ax)). 

Since £ 7^ p, there is a level structure, i.e. a ^-invariant symplectic similitude 

Ve(Ax) V <8> Qt, well defined (mod Ut). Thus 

( C x 0 Q , , # x ) ^ ( C 0 Q , , # ) 

as F <g> Q^-algebras with involution. Therefore there is an isomorphism 

( C * ® Q , # * ) ^ ( C ® Q , # ) 

which induces a Q isomorphism between G and 

(5 .2 .4) 4 = { 7 e C * | 7 - 7 # * € Q X } . 

Since Ix is compact at infinity (mod center), this can only be an inner twist. (An 
outer twist would be of the form GL(a, D) for some division algebra D of dimension 
b2 with ab = n.) 
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Note that Ix,p Ili^,™* x Q*, as usual. Each IXiWi is an inner form of 

GL(n,KWi), and IXiWi C GWi for i > 1, IXfW C Jn. It follows (by dimension con­

siderations) that these inclusions are isomorphisms. The group G^(Af) is then just 

Ix(Af), and (5.2.1) becomes 

(5.2.5) 6 : [J x (Q)\M n , 0 ,+(F) x Ix(Af)]/Jnt+ ^ S(x). 

How many basic isogeny classes are there? By the above corollary, we see that, 

if x, xf G S^°\ then Ax ~ Ax> as abelian varieties with 5-action. We may assume 

Ax — Ax' — A. But not necessarily as polarized abelian varieties with jB-action! In 

any case, Ix and Ix> are inner forms, isomorphic at all places (at p this is because the 

p-divisible groups are isomorphic as polarized .Bp-modules). Hence 

(5.2.6) Lemma. — Up to isomorphism, the group Ix is independent of the point x G 

5 ( 0 ) . 

Proof. — The proof of Lemma (2.3.1) applies to the group Ix. (See also Lemma 

(6.6.8), below.) • 

Two polarizations A and A' from A to Ay are equivalent (as B-morphisms induc­

ing *) if and only if there exists d G Cx = Cx> = Bop and a G Q x such that A' = ady \d 

(dv being the endomorphism of Av induced by d). But any two polarizations differ 

by an element 8 G C via A' = A o 5, and the symmetry of A; and A implies that 5 = 5* 

(* = Rosati involution); since A' is a polarization, 5 must be totally positive. Then 

A o 5 = advXd if and only if 

5 = a(\-1dvX)d = ad*d 

has a solution (a, d). The set of solutions of this equation is a torsor for the group Ix 

(acting on d on the left), and it has a solution if and only if the torsor is trivial. 

The set of torsors is parametrized by HX(Q, Ix). But there are solutions locally for 

all primes t ^ p, by the existence of the level structure; at oo because 5 is totally 

positive; and at p because 7 X ? P is a product of inner twists of general linear groups, 

hence has no H1 by Hilbert's theorem 90. 

So the set of basic isogeny classes is mapped by this construction to a subset 

of k e r ^ Q , ^ ) . We will see in Lecture 6, using Honda-Tate theory, that this map is 

surjective. (We still haven't shown that £ ^ is non-empty!) Assume this for now. 

(5.2.7) Fact. — The cardinality o/ker 1(Q, G) is unchanged under inner twist. 

This is proved by Kottwitz [Kl, §4]. 

Now recall the isomorphism (4.3.7) of vanishing cycles sheaves. In the present 

setting, this can be rewritten 

(5.2.8) [9*ni+ x (Ix(Q)Vx(Af))]/Jn,+ ^ H*9Qt . 
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It follows formally that 

(5.2.9) tfVQe Hom J n №,n,+,A(Ix/Ix(R),Qt)). 

Here A denotes automorphic forms on the group Ix that are trivial on 7X(M); again 
this has to be modified if we use twisted coefficients. Moreover, ^ c , n , + * s the compact 
version of ty%

n + (one adds a + to the definition (4.3.10)). 
In what follows, we let S(B, *) = S%(B, *) be the Shimura variety itself. For any 

admissible virtual G(A/)-module M, we let M[7r™] = H o m < 3 ( ^ ) ( 7 r ™ , M ) ; this is a 
virtual module over Gn. Similarly, we let M[TT] = Hom (7(^ /)(7r, M ) . 

(5.2.10)Proposition. — Let I = Ix for any x £ Let (p, be a representation of 

Jn^+ (with p £ Jn, ifr an unramified character o / Q * ) . Assume JL(p) is a supercusp-

idal representation of Gn. Consider representations TTw of G(AJ) I (A™). Then 

there is an isomorphism 

IT-^SiB, *),Qi)[irw 0 JL(p) ® ^ ] A(I/I(R),Qi)[nw 0 p0 

Moreover, for i ^ n — 1, 

H\S{B, *),Qt)[KW 0 JL(p) ® ^ ] = 0. 

This will be proved a bit later, by comparison of trace formulas. I remark that nw 

always determines irw by base change (to GL(n, F)) and strong multiplicity one. 

Now it follows from the remarks preceding the proposition that 

H0 (S(o), Hr u Ql) ]Horn, + (** , , A(IX/IX(R), Qt)) 
(5.2.11) 

H o m J n ) + ( * * C | n f + , * 4 ( / / J ( R ) , Q * ) ) " ^ W ^ l . 

Here J is any Jx for 

Recalling that i f ^ ^ B , *),<&) = Hn~1(S(B, * ) , Q ^ ) '
 K E R L(Q . G ) l ? it follows from 

the First Basic Identity (4.4.4) and (5.1.6) that, up to semi-simplification, 

(5.2.12) Hn-\S(B,*),Qe)0 H o m j B i + ( ( * ? - i + ) 0 ) ^ ( I / I ( R ) , O / ) ) . 

Here, as above, the subscript 0 on the left-hand side denotes the GL(n,K)-

supercuspidal subspace. On the right-hand side it's essentially the same thing, but 

one has to be a bit careful because the center does not act semi-simply. However, 

any J n 5 +-homomorphism from (\£™~\ )o to the space of automorphic forms factors 

through a quotient on which the center does act semi-simply, so (5.2.12) makes sense 

as written. Alternatively, one can define the supercuspidal subspace of any smooth 

GL(n, K)-module using the Bernstein center; in this way one sees it is always a direct 

summand. 

By Matsushima's formula (1.1.3), the left-hand side of (5.2.12) is 

TTGAGQ 

^ n - 1 ( 9 , Z G ( M ) X o o ; 7 r o o ) 0 7 r / . 
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Fix p as above and 717 with component JL(p) (supercuspidal) at w. For given p, 

this is always possible (see (5.2.15), below). Let /¿¿(717) denote the semisimplified 

representation of Gal(Q/F) on Hom G ! ( ^ / ) (7 r / , Hn~1(S(B, *),Q^)o)- As we saw in 

Lecture 1, Re(^f) is the sum of some copies of an n-dimensional semisimple represen­

tation Rififaf). Let 77(717) be the contragredient of Re^i^f), twisted by o Nx/qp 

as in § (1.3) to remove the contribution of ip. Combining the above identities, we find 

(5.2.13) Theorem. — Let p be a representation of Jn such that JL(p) is supercuspidal. 

Then as Gn x WK -modules, we have 

JL(p)®[r£(7rf) | G a l ( 7 r / K ) ] v
 [ H o m J n ) + ( ( * c ^ 

^ ^(-l)w- 1+ ipomj n i +((*j f n f +), p ® 1>) ® nty o N-}Qp)} 
i 

^ ( - l ) " - 1 + i [ H o m J n ( « „ ) , p ) ] . 
i 

Proof. — The first isomorphism is a summary of the preceding discussion; we simply 
apply [nw] to both sides of (5.2.12). Similarly, the isomorphism 

[Hom;„, + ( ( ^ ; + ) o , p ® V) ® r,(V ° ^ / Q p ) ] 

^ X ) ( - l ) B - 1 + i [Hoi i i J n i + ( (^ i n i + )o ,p® V) ® r ^ o N-}Qp)}, 
i 

follows from the vanishing of (^c,n,+)o for i ^ n — 1. The final isomorphism, showing 
that we can ignore the + , is a consequence of a simple calculation of the local Galois 
action on the polarization, already mentioned after (3.2.3). 

To complete the proof, we thus have to show that, for any t/;, the virtual G n-module 

[*»(*>)] = X)(-l)*[HomJ f„+((**,„,+), p® V)], 

i 

defined as in the statement of Theorem 4.3.11, is purely supercuspidal as a represen­

tation of Gn. Write 

[Mh\ = ̂ ( - l r+nind^^^c^; ,^*) ] . 
p,q 

To prove that [\Pn(p)] is purely supercuspidal, we will make use of the following weak 

version of the Second Basic Identity (Theorem 6.1.2): 

(5.2.13.1) Lemma. — Let TCw be an admissible irreducible representation of G(Ay). 

Let h > 0, and suppose [Mh}[nw] ^ 0. Then there exists a unique irreducible repre­

sentation TTw of Gn such that [H(A(B, *))][irw (8> TTW] ^ 0, and such that the Jacquet 

module {irw)Ruph of TTw relative to the unipotent radical of Ph is non-trivial. 

In other words, only "automorphic" irw can contribute to the virtual module [Mh]. 

However, neither this lemma nor the Second Basic Identity determines the individual 
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spaces [ Indp^^ 1 ^ Note that the uniqueness of TTW in the statement 
of the Lemma follows from the fact that, if [H(A(B, *))}[TTW ® nw] 0> then TTW ® TTW 

admits a base change to the finite part of a cohomological automorphic representation 
of GL(n,F); then as remarked above, strong multiplicity one for GL(n,K) implies 
that nw is determined uniquely. 

We admit Lemma 5.2.13.1 for the moment. For our given TTW, we thus have TTW = 
JL(p). Now the First Basic Identity yields 

(5.2.13.2) [H(A(B^))}[^] = Y^[Mh}K] 

h 
in Groth(G n ) . Since irw = ih{p) is supercuspidal, all the Jacquet modules (ITW)RUPII 

vanish for h > 0, thus (5.2.13.2) simplifies to yield 

(5.2.13.3) [H(A(B, *))}[irw] = [M0}[TTW]. 

Strong multiplicity one again implies that [M 0 ]^™] is isotypic for Gh of type JL(/s). 
Next, (5.2.11) implies that 

(5.2.13.4) 

[M°lK] = £ ( - i r - 1 + i [ H o m J n 
(«»,+), Qe)K\){ k e r l « - G ) l ] 

= £ ( - l ) " - 1 + i [ H o m j n , + ( (** > n > + ) 
i 

p ® ^ ) ® A(I/I(R), Qt)[7Tw ® p ® V]) 1 k e r l № G > l ] 

p ® ^) ® A(I/I(R), Qt)[7Tw ® p ® V])1 kerl№G>l] 

where the second isomorphism is a consequence of strong multiplicity one for base 
change, this time from J to GL(n). Combining (5.2.13.3) with (5.2.13.4), we see that 
[\I/n(p)] is purely supercuspidal, as required. • 

Theorem 5.2.13 implies that [77(717) \G&I(K/K)\ * s P u r e r y local at w; i.e., it depends 
only on TTW = JL(p). It also calculates the supercuspidal part of \I>™-1 (ignore the + ) 
and proves statement (i) of the local theorem (4.3.11). It remains to justify Lemma 
5.2.13.1. This will be obtained (see §6.1 and Remark 6.1.3) as a consequence of the 
Second Basic Identity (6.1.2)(i), whose proof occupies sections 6 and 7. 

For any 7T G *4o(n, i f ) , we write a^n) G G(n,K) for the representation 77(71-) ® 

I det | ( n - 1 ) / 2 of WK defined in this way. Not every n can be realized as a local 
component of a cohomological automorphic representation of G. Our hypotheses 
imply that the central character of TT is of finite order. Conversely, assume the central 
character of n to be of finite order. Then 

(5.2.14) An approximation argument shows there is no restriction on K; one can 
always realize K as some Fw for a CM field F of the appropriate type, and GL(n, K) 
as the local component of the right kind of G; 
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(5.2.15) Given such G and n G Ao(n, K), it follows from a theorem of Clozel [CI] 
that one can always find a cohomological representation II of G with local component 
7r at w, unramified outside some fixed (non-empty) set. 

(5.2.16) To extend the correspondence to general 7r, one notes that any 7r is of 
the form 7To ® ip o det, where 7To has central character of finite order and ip is some 
character of Kx. So one defines 07(71-) = 07(710) ® ip viewing ^ as a character of WK 
via local class field theory. 

To show that the latter construction is well-defined, one ought to verify that 

(5.2.17) 07(77 <S)ipo det) = 07(71-) <g> I/J 

when ^ is a character of finite order. This follows by applying Kottwitz' theorem to 
the representation 77(717) of Gal(Q/F). Indeed, Kottwitz shows that 77(717 (g> \ ) — 
rt(nf) ® X whenever x is a global Hecke character of finite order. More precisely, 
Kottwitz shows this is true at almost all unramified places. By Chebotarev density, 
it is true at w. This argument then shows that (5.2.17) is valid for any -0, not 
necessarily of finite order. We have thus verified that the correspondence at satisfies 
property (0.2) expected of the local Langlands correspondence. More such properties 
are verified, in a similar way, in the following section. 

Meanwhile, we have already reduced part (ii) of Theorem 4.3.11, which we restate 
here for convenience of reference: 

(5.2.18) Proposition. — Let IT' G A(g,K) be a discrete series representation which is 
not super cuspidal. Then for all i, H o m j ( ^ , JL(7r')) contains no G-subquotients 
isomorphic to a supercuspidal representation 7T. 

Proof. — Notation is as in Theorem 4.3.11. In view of (5.1.7), it suffices to prove 
the assertion for i = n — 1. The argument used in (5.2.15) applies to show that one 
can find TTW, as in the statement of Lemma 5.2.13.1, such that irw <g) ir' occurs with 
non-zero multiplicity in A(I/1(R), Qe). Suppose 7r does occur as a G-subquotient 
of Homj(\I>^, JL(7r')). It then follows from (5.2.12) that 7TW <g> 7r occurs with non­
zero multiplicity in Hn~1(S(B, *),Q^)o. Then as in the paragraph following Lemma 
5.2.13.1, 7r™(g)7r, resp. irw <S> 7r', admits a base change to the finite part of a cohomo­
logical automorphic representation II, resp. IT, of GL(n,F). By strong multiplicity 
one II = IT, hence 7r = 7r', contradiction. • 

(5.2.19) Remark. — Since it may not be evident from the order of the arguments 
above, I stress that this proof does not depend on the truth of Lemma 5.2.13.1. 
Although it is not strictly necessary, we will be using Theorem 4.3.11 (ii) in §7 as a 
step in the proof of Lemma 5.2.13.1. 
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5.3. Compatibility with cyclic base change and automorphic induction 

We have shown in (5.2.17) that oi : *4o(n, K) —• Q(n,K) is compatible with char­
acter twists. One shows similarly it is compatible with contragredients. Moreover, 
because the construction is purely local, &i commutes with automorphisms of K. 
These are three properties required of a local Langlands correspondence (cf. (0.6)). 

We also need to know that Of> commutes with cyclic base change and local automor­
phic induction. Having established these properties, it follows by an argument due 
to Henniart [BHK]^7) that at is a bijection Ao(n, K) —*• Go{n, K) for all K, and that 
it preserves conductors. In other words, it satisfies all the requirements of the local 
Langlands correspondence except preservation of e factors of pairs. Thus, as explained 
in Lecture 1, in order to obtain the local Langlands conjecture, it suffices to establish 
a form of compatibility of the local correspondence with the global correspondence. 

To prove compatibility with cyclic base change and local automorphic induction, 
we need to use a global argument again. The following discussion is based on my 
article [HI], in which I treated the analogous situation for Drinfel'd uniformization. 

Now global base change and automorphic induction are defined for automorphic 
representations of GL(n,F), not of G. So we need to use quadratic base change 
(from Q to E, as in Lecture 1) and descent. This works as follows: starting from a 
(global) 7T C -4(G), with fixed nw, let II denote its base change to GL(n, F) (ignoring 
the extra Hecke character of E). Let F'/F be a global cyclic extension of CM fields 
with only one prime dividing w, K' — F'W. The representation II G CU(n,F), and 
BCF'/F(U) G CU(n, FF), hence descends to a cohomological representation (or rather 
L-packet) in A{G'). Here we have to be careful: G' is attached to a division algebra 
with involution (B1', # ' ) and in general BF ^ B <S>F F'. We have to choose F' so that 
BCF'/F№)

 s t iU n a s a l ° c a l discrete series component at a place other than w (so that 
it descends to a twisted unitary group). We have to verify that the parity condition is 
satisfied, so that we can construct G' with the right signatures at oo. These are easy 
to verify [HI, §4]. Applying Kottwitz' theorem and Chebotarev density, we see that 

(5.3.1) <re(BCK*/K(irw)) = ae(7Tw) \wK, 

provided BCK'/K(KW) is supercuspidal (so that the left-hand side is defined). This is 
sufficient for Henniart's axioms. 

Automorphic induction is a bit more complicated. If we start with n G CU(n, F ' ) , 
it is not true that AI F / / F (n) G CU(n[F' : F] ,F) ; in fact, AIp// F(n) is no longer 
cohomological at oo. This can be remedied by twisting n by an appropriate Hecke 
character x of F'. If the infinity types of x are chosen appropriately, and ifx°c = X_15 

( 7 )Th i s is where Henniart's numerical version of the local Langlands conjecture [He2] is invoked, 

in the form of the following "splitting property" [He3]: given any supercuspidal representation TT of 

GL(n,K), there is a finite sequence of extensions K = KQ C K\ C • • • C K N , each step cyclic of 

prime degree, such that the image 7 T x n of n under successive cyclic base change is a principal series 

representation. T h e analogous property for Qo(n,K) is obvious. 
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then AlF,/F(Il ® x) € CU(n[F' : F],F). This has the inevitable effect of replacing 
the initial TTW by an unramified twist, which is not a problem. Again, the details can 
be found in [HI] (proof of Lemma 5). 

5.4. Comparison of trace formulas. — The proof of Proposition 5.2.10 is much 
easier than the comparison used to study the other strata, but it provides an excuse 
to introduce the trace formula that will provide one side of the comparison in the 
general case. We only need to work with anisotropic groups. 

For simplicity, we assume henceforward we are not in the case F+ = Q, n = 2, 
where the above comparison is a special case of Carayol's thesis. This special case 
complicates the formulas because the maximal compact subgroup is not connected. 

The trace in question is that of [H(S(B, *)] = ^ ( - l ^ j f f ^ j B , *)]> t h e represen­
tations [H%(S(B,*)] being admissible G(A/)-modules. One could also work with a 
fixed central character. 

If 7 E G(Q) and </> e C c

o c ( G ( A / ) ) , we define the orbital integral 

(5.4.1) O 7 ( 0 ) - / tdrtQ-^dg. 
JG(AF)/ZG(i)(AF) 

This integral depends on a choice of Haar measures (on G and on ZQ{I)) that will 
be specified. 

The global trace formula for the action of Hecke correspondences on cohomology 
was worked out by Arthur even in the non-compact case; he studied L 2-cohomology 
and had to allow for boundary terms. The compact case is of course much easier to 
explain. Needless to say, it is equivalent to the topological Lefschetz trace formula. 
However, we prefer to use Arthur's formulation, which allows a uniform treatment of 
isolated and non-isolated fixed points. Here is a version of Arthur's formula adapted 
to our groups G: 

(5.4.2) Cohomological trace formula ([A]). — Let <$> e C™{G(Af)). Then 

Tr(cf> | [H(A(B, *))]) = UKB c ( 7 ) № ) : 1 v o l ( Z G ( 7 ) ( M ) u ) - 1 O 7 ( 0 ) . 
7 

Note that we have written the formula for A(B, * ) , the union of | ker x(Q, G)\ copies 
of S(B, * ) , to simplify the formulas. Here the notation needs to be explained: 

(5.4.2.1) The measure on G(Af) is arbitrary (it appears on both sides). 

(5.4.2.2) e (7) = ( _ i ) ^ / [ I ? ( 7 ) ^ ] - i j s the Kottwitz sign; 7 is regular if and only if 
[^(7) : F] = n, and then e(j) = 1. 

(5.4.2.3) KB = 1 if 4 | [B : Q] and equals 2 otherwise. 

(5.4.2.4) 7 runs over a set of representatives of G(A)-conjugacy classes in G(Q) which 
are elliptic in G(R). In particular (N.B.!!!), even though we are working with the 
union of |ker 1(Q, G) | copies of a Shimura variety, the factor |ker x(Q, G) | has been 
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incorporated into the expression as a sum over adelic (rather than rational) conjugacy 

classes. See Lemma 7.1.3 for an explanation. 

(5.4.2.5) F ( 7 ) is the subfield of B generated over F by 7 . 

N.B. The fact that F ( 7 ) is always a field, because B is a division algebra, is extremely 

important! From the standpoint of the trace formula, this is one of the special features 

of the twisted unitary groups we are using; it guarantees that the stabilized trace 

formula contains no endoscopic terms. 

(5.4.2.6) ZG(7)(1R)O denotes the compact mod center inner form of Z G ( 7 ) ( R ) and 

ZG( 7)(R)J = ker M : ZG(7)(R)o — ^>o-

(5.4.2.7) Let ¿ 2 ( 7 ) / be the measure used to define the orbital integral, ( ¿2 (7 )00 )0 the 

measure used to define VO1(ZG(7)(R)Q ) ,
 a n d ( ¿2 (7 )00)0 the measure on Z<s(7)(R)o 

defined by ( ¿ 2 ( 7 ) 0 0 ) 0 and dt/t on R * 0 . Let ¿ 2 ( 7 ) 0 0 be the measure on Z G ( 7 ) ( R ) 

compatible with ( ¿2 (7 )00 )0 (this is well defined). Then ¿ 2 ( 7 ) / x ¿ 2 ( 7 ) 0 0 is Tamagawa 

measure. 

Of course I won't prove this. The usual trace formula in the anisotropic case is a 

sum 

J2v(zGh№)\zG(i)(A))oy(<f>). 
7 

Here 7 runs G(Q)-conjugacy classes. For the volume term one can take Tamagawa 
measure. To get cohomology, one takes (f)^ to be a sum of discrete series pseudocoef-
ficients (over the set of discrete series with cohomology in the trivial representation); 
this restricts attention to 7 elliptic at 00, and the orbital integral of 0oo is constant 
on elliptic conjugacy classes. Arthur's formulation of the cohomological trace formula 
in [A] takes roughly this form. The present version, adapted from [HT], involves a 
partial stabilization of Arthur's expression: we rewrite the sum over G(Q)-conjugacy 
classes as a sum over G(A)-conjugacy classes in G(Q) by counting the number of 
the former in the latter/ 8) This number turns out to be related to « B / k e r 1 ( Z c ( 7 ) ) , 
and Kottwitz' theorem on Tamagawa numbers gives the measure term in the stated 
formula. The remaining terms — n ( — l ) n / l F ( ^ ) : F l [ F ( 7 ) : F ] - 1 — all arise by rewrit­
ing the expressions in [A] coming from the archimedean place. They would be more 
complicated if F ( 7 ) were not a field (e.g., for untwisted unitary groups). In the next 
two lectures I'll use similar arguments in counting points. 

( 8)Full stabilization goes one step further, replacing G(A)-conjugacy by G(Q)-conjugacy. Apparently 
this is not really necessary for the point-counting argument. However it is necessary in the general 
situation for comparison with trace formulas for endoscopic groups, or the twisted trace formula in 
the setting of base change, as in (1.2.6). 
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One gets a completely analogous formula when G is replaced by / : 

(5.4.3) 

| ker^Q, G)\Trtf | A(I/I(R))) = KB £ [ F ( 7 ) : F}'1 v o l ^ ^ R ) * ) - ^ (</>')• 
7 

Indeed, this is the formula for cohomology of the O-dimensional Shimura variety 

attached to / , where the sum is again over adelic conjugacy classes in I(Q), and we 

have used the fact (5.2.7) that | ker x(Q, G)\ = \ ker x(Q, I)\. The only differences with 

(5.4.2) are that the n in front has disappeared (because the discrete series L-packet 

has only one element) and the signs have disappeared (because all centralizers are 

compact at oo). There is no restriction on 7 (all elements are elliptic in / (H)) . 

(5.4.4) Lemma. — The set of I (A)-conjugacy classes in I(Q) is in bijection with the 

set of G(A)-conjugacy classes in G(Q) elliptic at 00 and at w. This bijection preserves 

orbital integrals away from w, and takes 7^ G Jn to the conjugacy class in Gn with 

the same characteristic polynomial. 

Proof. — Let 7 G I(Q). It is elliptic at 00 and at w, hence transfers to a conjugacy 

class in G(A), and the question is whether it has a representative in G(Q). This is 

a consequence of a general principle: if G and G' are inner forms and T C G is a 

torus that transfers locally to G' everywhere, then T transfers globally to G provided 

a certain cohomological invariant, defined by Langlands and Kottwitz (cf. [Kl, §9]), 

vanishes (in H2). But this invariant vanishes if T is elliptic (cf. Lemma (2.3.3)). • 

To make effective use of pseudocoefficients, we fix a compact open subgroup Uw C 
G(A™) and consider the representations on [H(Suv(B,*)] and on A(I/I(R) • Uw). 

This means we have to restrict attention to [7^-biinvariant functions. This is not 

a problem, since we can take Uw arbitrarily small, but it has the advantage that 

Tu = UW n ZG(Q) = Uw H Z/(Q) is a cocompact subgroup of ZG(K) = ZGw. Hence 

we can take 4>w to be a pseudocoefficient of a chosen supercuspidal TTW , relative to the 

set Ad,fin (A. 1.3) of representations with central character trivial on IV. This has the 

effect on the trace side of isolating representations 717 with component TTW at w. As 

we have seen in (5.1.6), these occur only in i J n _ 1 , hence for such 0 , we have 

(5.4.5) Tr(<t>\[Hn-\A(B, *))}) = 

( - 1 ) " - W £ ( - 1 ) 9 ( 7 ) [ F ( 7 ) : F ] - 1 v o l ( Z G ( 7 ) ( R ) i ) - 1 0 7 ( ^ ) . 
7 

We take (j)1 = (j)w <S> 4>J

W, where < ŵ is a pseudocoefficient for 3L(7rw). The Jacquet-

Langlands correspondence (A. 1.13) has the following property (cf. [Ro], §3): 

(5.4.6)Fact. — O 7 ( 0 i ) = ( - l ) - - 1 e ( 7 ) 0 7 c ( ^ ) . 
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When 7 is regular, e(y) = 1, and in that case this relation is the defining property 
of the Jacquet-Langlands correspondence. (One defines matching functions to have 
matching orbital integrals; then the sign appears in the trace). 

The other terms are the same. Dividing by | ker1 (Q, G) | = | ker1 (Q, / ) |, this implies 
the trace on [Hn~1(Su^(B,*))]<KW equals n times the trace on ^4( / / / (E) • Uw)j^7rwy 
It then follows from linear independence of characters (A. 1.2) that the representations 
are as indicated in the proposition. 

5.5. Properties of the fundamental local representation. — In the appli­
cations to strata of positive dimension, the fundamental local representation ap­
pears as the stalk of the vanishing cycles at a point x in an isogeny class S(X)M0 

(cf. Lemma 4.4.8). We replace n by g and work with the version ^ c , ^ 1 - We write 
G = Gg = GL(g, K), J = Jg as before. Recall from (4.3.10) that 

^ / = C - I n d ^ f ^ ^ - x o ' 

Let A'GK be the subgroup of G x J x WK generated by A 9 ^ K and the center Z of 
G. It is the kernel of the composite of the map 5 : G x J x WK —> Z with the map 
Z —> Z /#Z , and also contains the center Zj of Jg. In particular, A'GK is of index n 
in G x J x W K . We let 

(5.5.1) T^ = A^Kn(GxJ); T0 = AG,K n (G x J) 

Recall from § 3.3 that the subgroup 

Z0 = {(x,x) eKx x Kx ~ Z x Zj} c T o 

acts trivially on the moduli space, hence on the stalks ^c,p,^ 0 °^ ̂ n e v a n i s n m g cycle 
sheaves for any i. The only representations r of To such that H o m r 0 ( ^ W o , r ) ^ 0 
are thus those on which Z0 acts trivially. Let G^o? (resp. J^,o), denote the kernel of 
3G • Gg —• Z (resp. ker^j) and let T0o = G^o x Jg,o C T 0 . We define an inertial 
equivalence class of representations of To to be a set of the form { r ® -0} where r 
is an irreducible representation of To, trivial on Zo, and ^ runs through the set of 
characters of To/Too • ZQ ~ Z /nZ. The set of inertial equivalence classes of To is 
denoted Xg. If r is a representation of To/Zo, we let [r] denote its inertial equivalence 
class. Then we have a discrete decomposition for each i 

( 5 - 5 - 2 ) * c , * * o = e * L * o M 
[r]exg 

where $J. ) 9 ) X o [r] is the sum of the Tj-isotypic components for Tj G [T]. 
We also define inertial equivalence for representations of J and G. Let p G A(J), 

with central character The inertial equivalence class of p, denoted [p], is the 
set of representations p ® -0 o det, where -0 runs over unramified characters. The 
strong inertial equivalence class of p is the set of p 0 ^ o det where -0 runs over 
unramified characters of finite order dividing g\ this is the set of representations of Jg 

inertially equivalent to p and with central character ipp. The same terminology is 
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used for discrete series representations of Gg. The cardinality of the strong inertial 

equivalence class of p is an important invariant of p: it equals g/c(p), where c(p) is the 

number of distinct unramified characters I/J of order dividing g such that p ® tp ~ p. 

The strong inertial equivalence class of JL(p) G A(G) has the same cardinality as that 

of p. The set of inertial equivalence classes of representations of Jg (resp. of discrete 

series representations of Gg) is denoted [^4](J^) (resp. [A]d(g, K))> 

We write p ~i p' if p and p' are inertially equivalent. Two inertially equivalent rep­

resentations of J, (resp. of G, resp. of To), have the same restriction to Jg$, (resp. of 

G9io, resp. of Too). These restrictions are not generally irreducible. It is known, and 

follows easily from Clifford's theorem, that the restriction of p to Jg$ is the sum of 

c(p) irreducible components, each with multiplicity one; the same holds for JL(p), 

when J is replaced by G. For want of better terminology, the irreducible components 

of the restriction to Jg$ (resp. G^o) of a fixed p will be called nearly equivalent, and 

we say they belong to the near equivalence class N(p) of p. 

(5.5.3) Lemma. — Let r be an irreducible representation OJTQ/ZQ, and suppose its 

restriction to Too/Too H Z$ decomposes as the (necessarily finite) direct sum 

T \T0O = ® ( ^ ) V ® Pi 

where each QLI (resp. Pi) is an irreducible representation of Gg$ (resp. Jg,o)- Then 

(i) The various oti (resp. Pi) are nearly equivalent. 

(ii) Suppose ^9

c~g]X0[r) 7^ 0, and n G Ao(g, K) is such that the Pi belong to the near 

equivalence class of JL(7r). Then the cti belong to the near equivalence class ofir. 

Proof. — Part (i) is obvious, and part (ii) follows from (4.3.4) and Theorem 4.3.11. 

• 
Let [r] and n be as in Lemma 5.5.3 (ii). Such a [r] will be called supercuspidal. 

It follows from 5.5.3 that ^ ^ ^ [ r ] can be described alternatively as the sum of the 

/^-isotypic components of ^ g

c ~ g ] X Q , for Pi G iV(JL(7r)), or as the sum of its a^-isotypic 

components, for oti G iV (7r v ) . This justifies writing 

(5-5.4) * £ , x 0 M = n*,UJL(*)] = * 2 , * * o M 

(note the dualization implicit in the notation relevant to G). One could just as well 

decompose with respect to general discrete series representations, or equivalently of 

general representations of Jg, but in that case it is better to work with the alternat­

ing sum of ^9

c~g]XQ[r\. Recall however (5.1) that the supercuspidal part of ^g^Xo[r] 

vanishes for i ^ g — 1. We thus put 

(5.5.5) [ * ] c , , , x „ = £ ( - l ) f e [ < s , J = 0 E * ] c , 9 , x „ M , 

i lp]€[A](Jg) 
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where p runs alternatively over [^4](J^), as indicated, or over [A]d{g,K). Strictly 

speaking, we have only proved this here for supercuspidal inertial equivalence classes; 

the complete result can be found in [HT]. 

Now fix a character £ of Kx, with restriction £o to Ox. The maximal compact 

subgroup Ox xOx C Z x Zj is contained in T 0 0 . Let tfg^Cfo) C 9^XQ denote 

the subspace on which (u, v!) G Ox x Ox acts as £o(^)~ 1 £o(^ / )- This is an invariant 

subspace for the action of Ag,Ki and the action of A9,K on ^ ^ ^ ( C o ) extends uniquely 

to a representation, denoted t j ' 1 ^ ^, of A'GK, such that (x,xf) G Z x Zj acts as 

^(x)~1^(xf). Let ^ c ~ g \ denote the maximal quotient of ^ c , ^ 1 ' o n which (x,xf) G 

Z x Zj acts as Then there is a canonical isomorphism 

(5.5.6) yo-1 sc,p GL(g,K)xJgxWK ^g-
dsdiejd 

Combined with (5.5.2) and (5.5.4), we thus obtain a canonical decomposition 

(5.5.7) c,p,£,scusp c,p,£,scusp 

(5.5.8) y g-1[p] —> c-Ind 3xJxWK yu9~l 
wl-1 dei[p} 

where the subscript "scusp" designates the G-supercuspidal part, and p runs over 

Ao(g,K)- By Proposition 5.2.18, the sum can also be taken over p G A(J) with 

JL(p) supercuspidal. The component ^ c ^ M 1 S non-trivial if and only if the central 

character £ p of p equals £. There is a similar decomposition for the alternating sum 

(5.5.9)Lemma. — Write G = GL(g,K), J = Jg. Let T$ = A'gK n (G x J). Let 

T£?o (resp. T%) denote the restriction to T$ of the representation of A'gK on i&g

c~g

1

XQ % 

(resp. of the representation of G x J on ^g

c~g\)- Then 

(i) The representations T£ and r^o ore admissible. 

(ii) For any a G G x J, the representation r £ 0 of TQ, defined by T^Q(X) = 

T^oiaxa"1), has the same character as r^o-

(iii) In the Grothendieck group of TL, we have 

ul = g . rl,0 

Moreover, the character of ^g

c g

1^, restricted to G x J, equals zero off To. 

Remark. — The relation (iii) requires an explanation. The characters in the formula 

are the actual characters of the group T^, defined as the traces of the operators defined 

by (A. 1.1). This yields a relation of the form 

(5.5.9.1) traced)(</>) = g • traceZ j^-i ( r ^ 0 ) ( ^ ) -

Here 0 is a compactly supported function on To, transforming with respect to ^ o ® ^ 1 

under Ox x Ox C Z x Zj, 4>£ the extension of 0 to a function on T$ transforming 

under £ ® ̂ Q1 under Z x Ox C Z x Zj. The left-hand side is as in (A.1.1), whereas 
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t r ace^ on the right is as in the discussion preceding (A. 1.9). Note that the function 

is non-compactly supported only on G, not J, and the modified trace only takes 

account of the center of G; but one can just as well replace the index Z by Zj in 

(5.5.9.1). 

Proof. — Since the central character has been fixed, (i) follows from Proposition 

4.3.9 (cf. Remark 4.3.9.1). Assertion (iii) is a simple consequence of (ii) and Clifford's 

theorem on induced representations; the factor g is the index of To in G x J. So it 

remains to prove (ii). The group TQ is generated by its subgroup To = AQ,K H (G x J) 

and the central subgroup Z (or Zj) of G x J; hence it suffices to prove (ii) for 

the restriction of the character r^so to TQ . Choose an element ip G WK such that 

5{(p) = 1 G Z; i.e., (p is an extension of Probenius to the algebraic closure of K. There 

is a homomorphism : G x J —• A9IK given by 

h<p(ry,j) = (j,j,<pd) where d = wK(det(j)) - wK(N(j)). 

The restriction of to To is the natural inclusion. It follows that the restriction to 

To of T£,o extends to a representation of G x J, hence that its character is invariant 

under conjugation by G x J. • 

(5.5.10)Remarks. — Fix a representation p G Ao(g,K) as in (5.5.8), with £p = p. 

Using (iii) and the description of the near equivalence class N(p) given above, one 

verifies easily that 

£ a. <8> Pj£ a. <8> Pj= 
CKP) id 

£ a. <8> Pj 

where a$ (resp. (3j) runs through N(pv) (resp. JV(JL(p))). In other words, each irre­

ducible component of the restriction of JL(p) to Jg$ occurs with each component of 

the restriction of pv to G9io with the same multiplicity. The same holds when J9IQ 

and G^o are replaced, respectively, by the subgroups Zj • J9IQ C J and Z • G9io C G, 

each of index g. However, each oti (g) /^-isotypic component carries a representation 
ri(PihJ) of the subgroup WK9 C WK-> the Weil group of the unramified extension 

Kg of degree g of K. One can also verify that the ^-dimensional representation rg(p), 

defined as in Theorem 4.3.11, decomposes as the sum of C(TT) distinct irreducible com­

ponents, each of dimension g/c(p), and that each one occurs as an re(p, with the 

same multiplicity. Thus the representation of Zj • Jg$ x Z • G9io x % f l on ^g

c~g]Xo^[p] 

refines the correspondence of Theorem 4.3.11, though it is not sufficiently fine to char­

acterize the local Langlands correspondence, including a description of L-packets, for 

SL(g). 

The full compactly induced (virtual) representation [^fc,g] also has a decomposition 

according to inertial equivalence: 

(5.5.11) [ * c , » ] ^ e [*c , 9 ] [p] , 
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where 

[ * c > , ] [ p ] = C - I n d ^ f W * [ * c , g , M 

with the components on the right-hand side as in (5.5.5); note that induction is now 
from Ag^K-

(5.5.12). — Finally, the same analysis can be applied to the subgroup 

S 0 = (Gg X WK) H AgiK CGgX W K . 

Let IK = WK H A9JK (the inertia group), and define a near equivalence class of 
(continuous ^-adic) representations of IK to be the set of irreducible components of the 
restriction to IK of a finite-dimensional continuous irreducible £-adic representation of 
WK- The decomposition (5.5.2) represents the G^o-supercuspidal part ( ^ c , p , x 0 ) o C 
№lc,g,x0)

 a s a d i r e c t sum of components ( ^ J ^ ^ J o H where [a] can stand for a near 
equivalence class of representations of IK. More precisely, if (^l

CigiXQ)o[o] = ^ ) f l ) S o M 
for 7r G Ao(g,K) (so i = g — 1), then it follows from Theorem 4.3.11 that the action 
of IK is given by the near equivalence class of representations of IK contained in a 
fixed irreducible ^-dimensional irreducible representation of WK, namely . Note 

that a need not be of dimension g as a representation of IK, but it will necessarily 
occur in the restriction to IK of an irreducible ^-dimensional representation of WK', 
thus the notation [a] can designate an irreducible ^-dimensional representation of WK 
up to inertial equivalence. 

For general discrete series 7r, it is shown in [HT] that the corresponding repre­
sentations of IK are contained rather in an indecomposable representation of WDK 
whose irreducible constituents are of degree strictly less than g. It then follows that, 
for 7r super cuspidal, ^ G

C ~ G ] X O [TT] is the sum of the isotypic subspaces of ^ g

c ~ g ] X Q for the 
representations in the corresponding near equivalence class [a] of representations of 
IK - and the same holds for ^ L

C ^ 9 I X O [TT] when i ^ g — 1, in which case the corresponding 
[a]-isotypic part is trivial. 

The identification of ^g

c~g]Xo[n] with a specific \I>l

CtgjXo[o~], even for IT supercuspi-
dal, is only possible after determination of the Galois representations occurring in 
S*(" l )**c,p,xo[ /°] f ° r a n P € However, as in (5.5.8), we have 

* 2 , * * o M = * 2 , » , x o [ J L M ] = E ( - 1 ) 9 " 1 + i < 9 , x 0 [ J L W ] 
i 

for supercuspidal 7r. 
Note that if U C GL(g,K) is a compact open subgroup such that iru ^ { 0 } , 

and if I (IT) C IK is an open subgroup that acts trivially on r^ (7 r ) v , then 
^9c~g)Xo[^)U = ^c7glx0[7r]UxI^ i s a finite-dimensional semisimple module for the 
Hecke algebra H(Z0//U x J(TT)). 
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6. The second basic identity and Isogeny classes in the special fiber 

This is where we begin to "count points," as in the Kottwitz' article [K5], following 

earlier work of Langlands and Ihara. More precisely, we use a refined version of 

Honda-Tate theory to describe them in purely group-theoretic terms, as point sets 

with adelic group (and Probenius) actions, as disjoint unions of certain double coset 

spaces. The stage is thus set for the calculation, in Lecture 7, of the Lefschetz traces 

of sufficiently regular Hecke operators, acting on the cohomology of each S^0. The 

principal application of this calculation is the Second Basic Identity (Theorem (6.1.2)), 

which compares these traces to the traces of the same Hecke operators acting on the 

cohomology of the generic fiber. The Second Basic Identity, proved in Lecture 7, is 

applied in section (6.2) to derive the main compatibility theorem (1.3.6). 

6.1. General strata: statement of second basic identity 

(6.1.1) Notation. — For any g, let Gg = GL(g,K); thus Gn = Gw. The center of 

Gg, (resp. Jg), is denoted Zg (resp. Zjg); both are canonically isomorphic to Kx, for 

any g. Henceforward, we write Nh = RuPh, ^ p the unipotent radical of the opposite 

parabolic. The modulus character for Ph is denoted Sh = Sph; it is the absolute value 

of the determinant of the adjoint action on Nh. We also let Jn-h be the twisted inner 

form D x

/ { n _ h ) of G n - h . 

Let Lh = Gn-h x Gh be the standard Levi subgroup of Ph. We let rcn,Lh • 

Groth(G n) —• Groth(jLh) denote the standard (normalized) Jacquet functor 

rGntLh* = *Nh®Sh 

The Jacquet functor for the opposite parabolic is denoted r£P L h . We define a renor-

malized Jacquet functor 

re-ryf r 
rGntLh* = *Nh®Sh 

since Sp^ = 5pU
2, this means it has been normalized twice. 

In what follows, we fix h and let p e A(Jn-h)' First assume JL(p) is supercuspidal. 

We define a map 

r e d ^ : Groth(G n) > Groth(G / l) 

as the composition of 

re-r° p

 r :GrothfGJ • Groth(G„-fc x Gh) 

and the map cp that sends [a (g) /?], with a € A(n — h, K) and (3 € A(h, K), to 0 if 

a ^ JL(p), and to [/3] otherwise. In other words, r e d ^ is the renormalized Jacquet 

functor followed by projection on the JL(p)-component in the first variable. 

For general p G A{Jn-h), we replace cp in the preceding definition by the map d 

that sends [a <S) /3} to 

Tr(a) (ojl(p)w. [B] 
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Here 0 j L ( p ) , u ;
 i s a normalized truncated pseudocoefficient for JL(p) given by formula 

(A. 1.11), relative to a sufficiently large interval u. 
In what follows, we fix a level subgroup Uw away from w, and write H^(S^Q, i ? 9 ^ ) 

for H*(§(£i,BW)uw, [Hc(S%l,Rn = EP,q(-^p+q[H?(S{MlRqn- For p 6 
A(Jn-h) we define [^ n _/ l (p)] by the alternating sum in Theorem 4.3.11, with 
g = n — h. The following identity is proved by an elaborate comparison of trace 
formulas: 

(6.1.2) Theorem 
(i) (Second Basic Identity, first version): There is a countable subset A( Jn-h)nn C 

A(Jn-h) such that 

(6.1.2.1) n-[Hc(&$0,R9)]= 0 TedW[H(A{B,*))]®[9n-h{p)\ 
peA(Jn-h)nn 

in Groth(G(A^)) x Lh x WK). 

Remark. — Here and below, the action of Gn-h x WK on the right-hand side is 
concentrated on the factor [^ n _/ l (p) ] ; the action of WK on [H(A(B, *))] is ignored. 

(ii) The set A(Jn-h)fin can be chosen so that, for any p € A(Jn-h)fin, the inter­
section 

A(Jn-hhn[p] = [p] n A(Jn-h)nn 

of A(Jn-h)fin with the inertial equivalence class [p] of p, defined as in § 5.5, is a finite 
set. 

Write A(Jn-h)fin = A^_H \]LA,

N_H where A^_H is the subset of p such that JL(p) 
is supercuspidal, and A'N_H are the others. Write 

ft*'0 = 0 ved^[H(A(B,*))] <g> [* n -h(p)]; 

(6 12 2) p e A ° n - h 

Uh>'= 0 redW[ff (^ (B, . ) ) ]®[* n - f c (p) ] 

(hi) (Second Basic Identity, second version): For any p € A(Jn-h)nm ^th JL(p) 
supercuspidal, we have the following identity in Groth(G(A™) x Lh x W ^ ) : 

(6.1.2.3) ft*'0 = 0 redW[ff(.A(B, *))] 0 [JL(p) 0 r , (p ) v ' + ] . 

Here r ^ ( p ) v ' + is r^(p) v twisted by the contribution ^ONK/QP of Q*, which we will 
simply ignore. 

Since we have fixed the level subgroup Uw away from w, the count ability assertion 
in part (i) is just a reformulation of the admissibility of H^(S^Q, F№) for all p, which 

S O C I É T É M A T H É M A T I Q U E DE F R A N C E 2005 



9 4 M. HARRIS 

in turn follows from Lemma 4.4.2. The assertion (ii) is also a consequence of admis­
sibility, since any unramified twist of JL(p) has fixed vectors for the same compact 
open subgroups as JL(p). 

Given the definitions, (6.1.2.3) is a direct consequence of (6.1.2.1) and Theorem 
4.3.11. Now (6.1.2.1) is a more precise version of Lemma 5.2.13.1. But in (5.2) we 
have seen a proof of Theorem 4.3.11, assuming Lemma 5.2.13.1. Thus it only remains 
to prove (6.1.2.1). 

(6.1.3) Remark. — Actually, to prove Lemma 5.2.13.1 it suffices to prove the identity 
(6.1.2.1) in Groth(G(A™)) x Lh), i.e. ignoring the Galois action. In §6.3 it will be 
shown that (6.1.2.1) in Groth(G(A™)) x Lh), in conjunction with Theorem 4.3.11 (i) 
for g < n, actually suffices to prove (6.1.2.3). 

Combining the first and second basic identities, we find: 
(6.1.4) 

n[H(A(B, *))] = £ [ 0 Ind%- ( / c ) (ved^H(A(B, *)) ® JL(p) ® r , 0 > ) v ' + ) ] 
h p^K-h 

e ind^(if)(redW[ff(^(B,.))]®[*„-h(p)]). 
h P£A'n-H 

Write 

[H{A{B,*))] = Y M f \ ® [ R ^ f ) \ 

where [#¿(717)] G Groth(Gal(F/F)). Now recall that two cohomological automorphic 

representations of G that agree away from w agree also at w, by strong multiplicity 

one for the base change to GL(n). Thus we can factor out the G(Af) representations 

and we are left with the following assertion. 

(6.1.5) Theorem. — Suppose n = TTW 0 irw is an irreducible admissible representation 

ofG(Af). Then in Groth(GL(n, K) x WK) we have 

n[irw] 0 [Re{7TF) \ W K ] 

= ( d i m i i ^ T r / ) )
 n - I n d P , LS) K )

 n - r e d £ ° [ 7 r w ] 0 JL(p) 0 r , (p ) v ' + ( - / i / 2 ) 

© E lndpn

h(K) W ° H o m G ( A y ) ( 7 r w , [H{A(B, *))]) 0 [*n-fc(p)l] • 

Here we define n-redj^ by replacing re-r o p by the normalized Jaquet functor r o p , 

— 1/2 
which is just a twist by Sp . Similarly, n-Ind is normalized induction. The twist of 

2 /2 

re-r o p by 6PH

 1 cancels the opposite twist in n-Ind but introduces a new twist in the 
second step of the definition of redp, which accounts for the twist by the unramified 
character \ ^ \ ~ h ^ 2 , which is the meaning of the final symbol (an easy calculation). 
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We apply Theorem 6.1.2 here, and in the subsequent applications, with a level 
subgroup Uw such that TTUW / 0. The proof of Theorem 6.1.5 is then very simple. 
The point is that 

redpV[H(A(B, *))] = 0 r e d ^ M 0 [^(TT/)], 
Ttf 

where here the term [ ^ (TT / ) ] is just a vector space without structure: all the Galois 
action is on the ?^(p) v ' +(—h/2)\ This explains the dimension factor. 

(6.1.6). — As stated in [HT, Theorem V.5.4] the Second Basic Identity is an explicit 
expression for the p-contribution to n • [ i J c ( 5 ^ , i i* ) ] for any p, including p G A'n_h. 
The simple form asserted in (6.1.2.3) is only valid for supercuspidal JL(p). The second 
summand on the right-hand side of (6.1.5), as in (6.1.4), is made more explicit in [HT, 
VII. 1.5]. For the cases treated in the present account the crude form presented above 
is sufficient. 

6.2. Proof of the main theorem, assuming second basic identity. — We 
expect that R^-Kf) equals the sum of |ker 1(Q,G)\ copies (for the different Shimura 
varieties in A(B,*) of a fixed representation i?o(7T/) of dimension n; this is equiv­
alent to the conjecture that the representations have multiplicity a(7r) = 1. Then 
(dimi?^(7r/)) = n\ ker 1(Q, G)\ and the formula in Theorem 6.1.5 becomes 

(6.2.1) [TTW} <8> [iiofr/) \wK] = E n - I n d P , V ) n - r e d ^ ^ ] 0 JL(p) 0 r ^ ( p ) v ' + ( - / i / 2 ) . 
h,p 

To simplify notation, we make the assumption that a(7r) = 1. The reader can verify 
that, in general, the same a(n) appears on both sides of the formula. The proof of 
the main theorem is now just a calculation of n-Indp™^ n - r e d ^ ^ ] , as h varies. 

We know nw is generic and unitary. Thus there is a parabolic subgroup P = P^, 
with v — ( m , . . . , n r ) , and an r-tuple of discrete series representations r±,..., rr such 
that 

(Split case) TTW = n-Indpn T\ 0 • • • <g> rr. 

As explained in (1.4-5), we restrict our attention to the case where each Ti is super-
cuspidal. The general discrete series is treated in §VII.l of [HT], and requires an 
explicit version of the Second Basic Identity in general, as mentioned in (6.1.6). The 
proof in the general case makes use of non-tempered cohomology classes as well as 
more precise information, due to Zelevinsky, on the decomposition of induced repre­
sentations. 

Warning. — The notation n-Ind and n-red designate normalized induction and re­
striction, respectively, whereas re-r o p denotes RE-normalized restriction!!! 

We first recall the following theorem due to Bernstein and Zelevinski: 
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(6.2.2) Geometrie Lemma (Bernstein-Zelevinski) 

№ r (n-Ind?-(ri®-..®rr))] = [n-Indp7

n
 h ®i € l / JTt ® n-Indp^ QjevuTj]. 

1uv1 [v+1 
Here Pj = PUI(K), likewise for PJJ. Note that this sum is in the Grothendieck 

group; a priori the Jacquet module is not semisimple. This is not a problem for us. 

Next, observe that the second summand on the right-hand side of (6.1.5) con­
tributes trivially to (6.2.1). Indeed, by the strong multiplicity one argument already 
used, every irreducible constituent in that summand is of the form 

I n d ^ f r e d ^ ® [ * n - * ( p ) ] ] . 

where JL(p) is not supercuspidal. By (A.1.4), (A.1.5. iii), the definition of redj^, and 
Lemma 6.2.2, such terms necessarily vanish (more details of the calculation can be 
found in the next two paragraphs). 

It remains to consider the first (explicit) summand. We have to compute 

M n d £ ; w n - r e d ^ n-Indpnri ® •••<8>rr]. 

First, apply the Jacquet functor relative to Nop to n-Indpn T\ ® • • • <8> rr. The result 

is described by the Geometric Lemma. 

The next step is to project this result on the JL(p)-isotypic component for Gn-h-

Our hypothesis that the induced representation TTW is irreducible (and unitary) implies, 

by the Bernstein-Zelevinski classification of the discrete series [BZ,Z], that the JL(p) v -

isotypic component of the term corresponding to v = vj \J vn is trivial unless 

(i) JL(p) is supercuspidal, and 

(ii) vj is a single element i. 

In other words, projection on JL(p) picks out those rii = n — h and those n = 

JL(p) v . Thus, letting v% — ( m , . . . , n ^ , . . . , n r ) . we have 

(6.2.3) [n-red^} n-Indpn n <g> • <g> rr] = [n-Ind^ (Sj&iTj] 

m=n—h 
n=JL(p) 

Now comparing this with our original formula, and using transitivity of induction 

(first from Gn-h x Pvi to Lh, then from Ph to Gn) we have 

(6.2.4) [irw]®[Ro(irf) \wK] = E E I 
h,p rii=n—h 

Ti=3Up) 

i -Ind^ JL(p)® <g) Tj ®r£(p)v>'(-h/2). 

But each term on the right hand side of (6.2.4) is of the form [nw] ® r£(p)v ,'(—/¿/2 

where [KW] is fixed, p runs through the Ti and each n occurs once (for n — h = rii 

Thus we can cancel the \TTW] from both sides and obtain 

(6.2.5) №>(*/) \wK] = Y,ri(«M^). 
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If we define 

(6.2.6) n{-KW) = ®i r e ( n ) v ( ^ ^ ) , 

then we conclude 

(6.2.7) [Rofa) \Wk) = [re(irw)} ® (V> o N?/Qp) 

where for a change I put back the contribution of Q*. This is the main theorem I 
announced in my first lecture, under the hypotheses of (1.4.5). 

The remainder of the course will therefore be devoted to proving the Second 
Basic Identity. The proof is a comparison of the Lefschetz trace formula, in Fuji-
wara's version, for the action of Hecke operators on the vanishing cycle cohomology 
[ff c(si2,iltf)], with Arthur's version (5.4.2) of the cohomological trace formula. 

To make these notes more readable, we will often proceed as if we already knew 
the local Theorem 4.3.11. The reader will check that this hypothesis is only used in 
the counting argument in determining the local terms in the trace formula in (7.5). 
At that point, as well as at other crucial points along the way, the calculation will be 
presented in two forms, labeled "pre (4.3.11)" and "post (4.3.11)". 

6.3. Overview of the point counting argument. — Point counting, which in 
our situation is really representation counting, has two components. The first is the 
partition of points among isogeny classes. This can be done to various degrees of 
refinement. We have already seen that an isogeny class, as point set with group 
action, looks like 

№ _ h t h x (Ix(Q)\G(A)W)]/Jn-h,h. 

For general Shimura varieties, the term M ^ _ h h is replaced by something much more 
complicated coming from Dieudonne theory, and we are fortunate that in our special 
case the Dieudonne theory gives something of dimension zero, which is in fact a 
homogeneous space for Jn-h,h- We will factor off the Gh term for simplicity. The first 
problem is to determine how many times the same set comes up. As we have seen for 
supersingular isogeny classes, this turns out to be a problem in Galois cohomology, 
and the answer, obtained by Kottwitz for general PEL type Shimura varieties at 
unramified places, is completely analogous to the problem of counting the number of 
Shimura varieties in the overall moduli problem: it is | ker x(Q, I x ) \ . This takes rather 
a long time to establish, and the proof is expressed in terms of hermitian forms on V 
regarded as a module over Bt&pM, where M is morally the extension of F generated 
by Frobenius acting on A x . Obviously such arguments cannot be extended to general 
Shimura varieties, and the solution was found by Langlands and Rapoport: instead 
of isogeny classes, they work with isomorphism classes of motives with additional 
structure. Since the theory of motives is mostly conjectural, their conjectures require 
further conjectures (Tate conjecture, standard conjectures for ^-adic cohomology) to 
make sense; however, for PEL types, they seem to be largely established (Milne). 
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Milne's article [Mi2] is a clear introduction to the Langlands-Rapoport conjectures, 
and formulates their extension to the case where the derived group is non-simply 
connected. His article includes statements of the main results of Langlands-Rapoport 
but not complete proofs in all cases. 

Once the isogeny classes have been determined, the Lefschetz formula, insofar as 
it is valid, calculates the trace of a Hecke operator on cohomology (with compact 
support) as a sum of local terms; this is the meaning of "counting points". It was 
first observed by Ihara, in the case of GL(2), that the local term corresponding to an 
isogeny class can be expressed in terms of orbital integrals. In Kottwitz' formulation, 
the goal is to compute the zeta function, and for this he needs to count points over 
individual finite fields ¥qr, where q = \k(w)\. The p-adic contribution is then a twisted 
orbital integral of a certain explicit function on G(Kr), where Kr/K is the unramified 
extension of degree r. In our approach, the Galois representation is entirely contained 
in the vanishing cycles, and the number of times a specific Galois representation occurs 
is determined as a sum of local multiplicities over all fixed points of the Hecke operator 
over F. The result is a sum of orbital integrals, indexed by elements of IX(Q) as x 
varies. It remains to solve new problems in Galois cohomology to relate these orbital 
integrals to orbital integrals of elements of G(Q). Since the orbital integrals are purely 
local, it is reasonable to classify these elements up to / c c(A)-conjugacy, resp. G(A)-
conjugacy; this is one sort of Galois cohomology problem. The next problem is to 
relate the two sets, especially to determine how many IX{Q) can give rise to a given 
7 € G(Q) up to G(A)-conjugacy. 

Kottwitz' Ann Arbor article is predicated upon taking the calculation one step 
further, classifying the contributions up to stable conjugacy (which is G(Q)-conjugacy 
in our setting). His articles on the subject are designed to fit into the development of 
the stable trace formula, and show how the stabilization of the trace formula, combined 
with his point counting, would completely determine the zeta functions of Shimura 
varieties (at least when there is no boundary). However, this turns out not to be 
necessary in our situation. We make only one explicit reference to the vanishing of the 
cohomological groups measuring obstruction to stability (the "endoscopic character 
groups") for our specific G; this is what leads Kottwitz to call these "simple Shimura 
varieties," and what allowed Clozel to attach Galois representations to automorphic 
representations of GL(ri). We also make two indirect references to the same fact. It is 
not clear to me whether one can still obtain a theory of bad reduction when endoscopy 
is present. 

(6.3.1) Lemma. — Let n G Ao(n — h, K), and define R1^[K\ to be the subsheaf of R1^ 
on which the action of Gn-h belongs to the inertial equivalence class of 7rv. Then 

(i) For all i Rl^[it] is a pro-constructible sheaf on S ^ Q , indeed is isomorphic to 
n g t R ^ n where Rt^f7r is constructible. Moreover, 

(ii) [TT] = 0 for i ^ n - h - 1; 
(hi) The stalks of i ^ n _ / l _ 1 ^ [ 7 r ] are isotypic for the inertial equivalence class of 

p = JL(TT) £A(J). 
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Proof. — Fix an open compact subgroup U C Gn-h such that 7TU ^ { 0 } , Now the 
subsheaves of [/-invariant vanishing cycles R%^U C R1^ are constructible, hence 
for any near equivalence class [TT] of representations of G n _^ , the subsheaf R1^U[TT\ 
defined stalkwise as in (5.5.12) by the corresponding action of the Hecke algebra 
H(G11/U), where G1 is the kernel of the character |det|, is a constructible sheaf. 
But then (ii) and (hi) follow from (5.1.7) and Proposition 5.2.18 (i.e., Theorem 4.3.11 

("))• • 
One of the main results of [HT] is that the stalkwise decomposition (5.5.2) extends, 

via the identification (5.5.4), to to a decomposition 

B** = ®\p]e[A](Jn-h)^lp] 

of lisse sheaves on S ^ . One of the purposes of the present notes was to prove the main 
results without reference to this global decomposition, which depends on a difficult 
theorem of Berkovich proved in the appendix to [HT]. Lemma 6.3.1 allows us to 
assert that, for any geometric point z € 

(6.3.2) &V[ir]xClV9x[JL{ir)] 

where the left-hand side is defined above and the right hand side is as in (5.5.4). 
Once we know (6.1.2.1) we will be able to apply Theorem 5.2.13, which implies that 
the inclusion in (6.3.2) becomes a (virtual) equality upon taking the alternating sum 
over i. In the absence of a complete determination of the individual tyl

c n _ h XQ[p] for 
any p, this is the best we can do. 

However, Lemma 6.3.1 does provide an important reduction: 

(6.3.3) Proposition. — Assume Theorem 4-3.11 (i) for g < n. Let n E Ao(n — h,K), 
for h ^ 1, p = JL(7r). Then as a virtual module for WK, [HC(S^M ,R^)\[TT] is isotypic 
for r ^ ( p ) v ' + . 

Remark. — As in §5.2, the hypothesis concerning Theorem 4.3.11 (i) follows from 
(6.1.2.1) applied to smaller Shimura varieties of the same type; i.e., to A(B, *) with 
dimB < n2. The case g = 1 follows without further ado from the compatibility 
between local and global class field theory for CM fields. 

Proof. — By Lemma 6.3.1 we can rewrite 

[Hc{sz,Rnw = [Hc(s{'Zm*]) --[HC{sia,

0,Kn-h-i*[*]))-
It then follows from (6.3.1)(iii) and (5.5.4) (which depends on Theorem 4.3.11 (i)) 

that [ i J c ( S ' ^ , i ? n - / l ~ 1 ^ ) ] [ 7 r ] is at least isotypic for the inertial equivalence class of 
yl(p) v+1. 

Since RN H 1^[K) is constructible for any open, SMO can be written as a dis­
joint union of locally closed subvarieties Xi, on each of which i ? n - , l - 1 \ I > [ 7 r ] is lisse. 
By dévissage - we are working in the Grothendieck group - we may replace S^0 
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in the statement by any of the Xi, say X . Over a pro-etale Galois cover 7 of X , 
i ? n _ / l _ 1 ^ r [ 7 r ] is isomorphic to a constant sheaf with fiber at any point x isotypic for 
the inertial equivalence class of 7r, and the covering group of Y over X commutes 
with the action of Gn-h x WK- On the other hand, by (6.3.2) this fiber is contained 
in the supercuspidal part of RN~H~1^ x[p] which, by (5.5.12), is So-equivariantly iso­
morphic to ( ^ c ^ j )o[p]- Let I(p) C IK denote a subgroup of finite index acting 
trivially on ( ^ c , n - f r , x 0 ) 0 M * ^ then follows tautologically that the fiber of the pull-
back to Y is isotypic for subquotients of the action of the Hecke algebra (double 
coset algebra) H(E0//U x I(p)) on ( * " ^ ) I O ) o [ p ] ' Applying the Hochschild-Serre 
spectral sequence for the covering Y of X , it follows that [HC(X, i ? n ~ ' l ~ 1 \ I / ) ] [ 7 r ] , and 
hence [ i / c ( 5 2 , J R n - / l - 1 ^ ) ] [ 7 r ] , is again H(EQ//U x 7(p))-isotypic for subquotients of 

yn-h-1p[p} 
Since this action is semisimple (cf. (5.5.12)), we can replace the word "subquotients 

by "quotients". Then by Probenius reciprocity, applied to c-Indg X l v*"(»), the actio] 

of the Hecke algebra H(G//U x WK/I(v)) on [ff c(s2^# w~ f c '~ 1*)M] i s isotypic fo 
quotients of the fundamental local representation. The proposition then follows fron 
Theorem 4.3.11 for g = n — h — 1 < n. L 

Thus the Second Basic Identity (6.1.2.3) is equivalent to the identity 

(6.3.4) (post 4.3.11) n - [HC(S{MIR*)]p = (n-h)- redWH(A(B, *)) 

in Groth(G(A™) x Gh)i for all p G A(J n - / i ) f in- Here the n — h on the right-han< 
side comes from forgetting the n — /i-dimensional representation r ^ ( p ) v , + of WK 
Corresponding to the version (6.1.2.1), we just have 

(6.3.4) (pre 4.3.ir .\Hr(sl!£,Rm] 

= ffi r e d № U ( » *))! 0 № n . f c (p ) l G Groth(G(A^)) x Gh): 
pEA(Jn-h)fin 

this is identical to (6.1.2.1), except that we are ignoring the Galois action. The latter 
form is (more or less) the form in which it is proved in [HT], and in which it will be 
proved in § 7, below. 

6.4. Honda-Tate theory. — I begin by recalling the Honda-Tate classification of 
isogeny classes of abelian varieties with 5-action over F. Proofs can be found in [Ta]. 
In what follows, a CM field will be either a totally real field or a totally imaginary 
quadratic extension of a totally real field. As usual, c denotes complex conjugation. 

By Tate's theorem on isogenics of abelian varieties over finite fields, we know that, 
up to isogeny, an abelian variety A over F is determined by its Probenius endomor-
phism ixA ' A —• A, where A is defined over some Fq and TTA is the g-th power of 
Prob : A —• A^p\ Since A is also defined over any extension of ¥ Q , TXA is only well-

defined up to powers; i.e., in the group Q X / / X Q O , where p^ denotes roots of 1. But we 
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also know that TTA is a g-number: it generates a CM field (or a totally real field), it 
is a unit away from p, all its complex absolute values equal q1/2. So 7r\/q is a p-unit 
all of whose complex absolute values = 1 . It is thus completely determined, up to 
roots of unity, by its p-adic valuations. Moreover, by Honda, every TTA is obtained (by 
reducing abelian varieties with CM). This justifies the following definition: 

(6.4.1) Definition. — Let M be a CM field, and let Q P P M ] be the Q-vector space with 
basis the places of M above p. For any fractional ideal I C M, we let [I] = Y^v\p V(I)' 
v £ Q P P M ] - A p-adic type for M is ann £ Q[9?M] such that r]-\-c*(r}) = \p\. Two pairs 
(M, 77) and (M',r}f) are isomorphic if there is an isomorphism of fields M ^+ M' 
taking rj to rj'. 

A finite extension of CM fields i : M —>• N induces maps in both directions 

U:Q[VM]^Q[VN]\ <*Q№*]—>Q[M. 
via i*(v) = Ylv'\v e v ' / v v l ' , i*(vf) = fv'/vv if v — v' \M- Let ~ denote the equiva­
lence relation on pairs (M, 77) generated by (M, 77) ~ (N,i*rj). A p-adic type is an 
equivalence class of (M, 77). 

(6.4.2) Exercise. — Every p-adic type has a unique minimal representative, up to iso­
morphism. 

If q = pr and 7r is a number, let b(n) be the p-adic type equivalent to (Q(7r), ̂ [7r]). 
Because TT is determined (mod roots of unity) by [n], it is easy to see that any suffi­
ciently divisible power of TT generates the minimal representative of b(?r). In partic­
ular, b(7r) is independent of r, provided r is sufficiently divisible (i.e., provided ¥ q is 
sufficiently big). The preceding discussion shows that 

(6.4.3) Theorem (Honda-Tate, [Ta]). — There is an equivalence between p-adic types 

and isogeny classes of simple abelian varieties over F. 

Moreover, we can determine the invariants of A\> as follows. Let b be a p-adic type 

with minimal representative (M, 77). Then: 

(6.4.3.1) End°(^4b) is the division algebra with center M and invariants ^ at real 

primes, 0 at finite primes away from p, and r)vfv/p for v dividing p; 

(6.4.3.2) dim Ab = \[M : Q][End°(A b) : M ] 1 / 2 

(6.4.3.3) For any v | p, ^ [ v 0 0 ] is a p-divisible group of height [Mv : Q j E n d V b ) : 
M ] 1 / 2 and its Dieudonne module is isoclinic with slope rjv/ev/p. 

The fact that the minimal M = Q[TTA] is the center of End°(A&) - note that these 
are endomorphisms over F - follows from Tate's theorem that TTA generates the center 
of End 0 (A) [Ta]and our choice of TTA over the field with pr elements, with r sufficiently 
divisible. 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2005 



1 0 2 M. HARRIS 

There is a similar theory for isogeny classes of simple abelian varieties with in­
action, for some CM field F. In this case, M runs through CM fields containing F, 
and equivalence is defined via equivalence of embeddings over F. A p-adic type over F 
is an F-equivalence class of p-adic types (M, 77) for CM fields M containing F. Again 
each p-adic type over F has a unique minimal representative. 

(6.4-4)' — Now let B be a central division algebra over F. We now consider the 
category of pairs (A, i) up to isogeny, with A an abelian variety over F and i : B c—• 
End 0 (A). This category has simple objects, and Kottwitz has shown a version of 
Morita equivalence: the simple objects (not necessarily simple abelian varieties!) are 
in bijection with p-adic types over F. Let b be a p-adic type over F with minimal 
representative (M,77), and let (Ab,ib) denote the corresponding simple object in the 
category of abelian varieties up to isogeny with B-action. Then: 

(6.4.4.1) End°(ylb) is the division algebra with center M and invariants \ — mvv(B<g>F 
M) if v is real, — mvv(B <g>pM) at finite primes away from p, and rjvfv/p — mvv(B®F 
M) for v dividing p; 

(6.4.4.2) dim A b = \n • [M : Q] • [End^(,4 b) : A f ] 1 / 2 

(6.4.4.3) For any v | p, Ab[v°°} is a p-divisible group of height [Mv : Qp] [B : F ] 1 / 2 

[End0(At,) : M ] 1 / 2 and its Dieudonné module is isoclinic with slope rjv/ev/p. 
Henceforward we fix an h G 0 , . . . , n — 1. The goal is to classify isogeny classes 

[x] C S^h\w). The first step is to classify isogeny classes of pairs (A, i) as above with 
the right divisible CVmodules for all v dividing p; say (A, i) is of type h. We may 
assume (A,i) = (Ab,ib) with minimal representative (M,77) as above. Let (A',if) 
be a simple factor, C — E n d ^ A ' ) ; it is a central M-algebra by minimality. Recall 
that B is chosen to be a division algebra at some finite place v other than w. Up to 
replacing v by vc (if v divides p), we may assume yl[7j°°] is an étale p-divisible group, 
by our standing Lie algebra hypothesis. Hence for any place vf of M above v, rjv> = 0 , 
hence 

inv v/(C") = -mvvr(BM) = -[Aft,/ : Fv]mvvB. 
Since C is a division algebra, [C : M ] 1 / 2 is at least the denominator of 
— [Mvt : Fv] inv v 5 , and since Bv is a division algebra, the denominator of mvv B 
equals n. So 

[ C : M] > (n/[Mv, : Fv})2 > n2/[M : F ] 2 ; 

dim A' = \n-[M : Q][C" : Q ] 1 / 2 ^ [ F + : Q]n 2 = dim A, 

where the first equality is (6.4.4.2). Hence 

(6.4.5)Lemma. — (A,i) is a simple object in the category of abelian varieties with 
B-action. Moreover, if C = End°B(A), then n = [M : F][C : M ] 1 / 2 . 

The last assertion just follows from equality in the above calculation, since C — C. 
The simplicity is very important: it implies that we only have to consider fields, not 
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products of fields, in classifying isogeny classes.. It is a reflection of the fact that G 
has no endoscopy. 

More generally, the p-adic type 77 is completely determined by h and the Lie algebra 
condition. We have rjv = 0 if v is a place of M dividing u but not w; and this 
determines r]vc. Moreover, ^ [ K ; 0 0 ] 0 is a simple object in the category of p-divisible 
groups with Bw = M(n, K) action. Its endomorphism algebra is just Dn-h- Hence the 
action of Mw on A[u>°°]0 comes from a unique divisor w of w in M. Thus ^ [ u ; 0 0 ] 0 = 
. A ^ 0 0 ] 0 is an isoclinic formal group equal to n copies of a formal group of height 
(n - h)[K : Qp], hence has height n[K : Qp](n - /1), which by Honda-Tate (6.4.4.3) 
equals 

[Afe : Q p p : F}^2[C : M}1'2 = n[K : Q p][M f f i : K][C : M ] 1 / 2 ; 

i.e. 

(6.4.6) n-h = [Mjs: K][C : M ] 1 / 2 . 

Combining this with the lemma, we find 

(6.4.7) (n - h)[M : F] = n[M$ : K\. 

Moreover, for v ^ w dividing w, A[v°°] is again etale. Next 

(6.4.8) Lemma. — M embeds over F in B (or in Bop). 

Proof. — We consider the invariants of C at places v of M. For finite v not dividing 
w or wc, A[v°°] is either etale or multiplicative, hence we have inv v (C) = — i n v v ( I ? M ) . 
Since M embeds in C, M embeds in B at such a v. But B splits at w and wc, so 
there is no condition. Since M is a CM field, it also embeds at E. • 

Finally, we obtain the following result: 

(6.4.9) Lemma. — There is a bisection betwen isogeny classes of pairs (A,i) of type h 
and pairs (M, w) where M/F is a CM extension that embeds over F in B, w is a 
place of M above w such that (n — h)[M : F] = n[M^ : K], and (M, w) is minimal in 
the sense that there is no intermediate field M D N D F such that w is inert over N. 

Two comments are necessary. First, the minimality of the pair (M, rj) translates 
into minimality of w, since rj is nonzero only for w and w°. Next, the construction of 
(A, i) from (M, w) follows the obvious recipe. We define the p-adic type (M, rj) over 
F with 

(6.4.10) = eyj/w/((n - h)fw/p); rjv = 0 if v \ u, v^w. 

This determines 77 uniquely, and one checks that the corresponding (A,i) is of type h. 
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6.5. Polarized Honda-Tate theory, following Kottwitz. — That was the easy 
part. The hard part is counting polarizations. 

(6.5.1) Proposition. — Suppose (A,i) corresponds to (M,w). Then there exists a po­
larisation Ao : A —> Ay whose Rosati involution stabilizes B <S> M and induces * ® c, 
and a finitely generated B ® M module Wo with * x c-hermitian alternating pairing 
(? )o • Wo <S> Wo —> Q , such that there are 

(1) An isomorphism of B ® M ®F A™-modules 

Wo®AJ-^Vw(A) 

taking ( , )o to an A™-multiple of the Weil pairing induced by \o, and 
(2) An isomorphism W O , R ^ + VR of B^-modules taking (, )o to an R x multiple of 

the standard pairing (,) onV^. 

Recall that this means in particular that the signatures of (, )o are (1, n — 1) at To 
and so on. 

The existence of such an embedding (a #-embedding of M in Bop) is proved 
following Kottwitz [K5, Lemma 14.1] (originally Zink [Zi, §4.4]). The main step 
is to show that (A, i) lifts to a CM point of A(B, * ) . This follows from compatibility 
of the polarization with the F action, and the condition on dimension of eigenspaces 
for different p-adic embeddings of F. 

Let # 0 be the involution on Bop = End#(Wo) induced by the pairing (, )o, Go = 
GU(Wo, #o)- Here and elsewhere, GU denotes the Q-similitude group. Then we have 
seen Go is isomorphic locally to G at all places except possibly p; but since p splits 
in E, one sees Go is locally isomorphic to G everywhere. So we may as well replace 
Go by G (or vice versa), since our starting point is A(B, *) rather than S(G, X). Let 
0o G i f x ( Q , G) denote the class of the difference between the polarized modules Wo 
and V. 

We only consider pairs (A,i) admitting prime-to-it; level structures, i.e. isomor­
phisms 

V 0 A™ VW(A) 

as B (g>F A^-modules, compatible with the polarizations as before. In particular, the 
*-hermitian B-modules Wo and V are isomorphic at all primes except possibly w\ but 
since w is split they are isomorphic as well. We have seen that our points lift to CM 
points on one of the Shimura varieties Sl(B, * ) , hence, after changing the polarization 
(in characteristic zero) we can assume (Wo, #o ) = (V, # ) . This hypothesis simplifies 
the following discussion. In particular, (j>o = 0. 

Let D = EndB®M(V), so D = Gent£o P(M), and let G[x] C D be the unitary 
similitude group of (£ ) , # ) . Thus G[x] C G. Let be the Rosati involution on 
C = Aut(Ax1ix), and let I[x] = A\it((Ax,ix,\x)) = GU(C,*[X]). Then I[x] and 
G[x] are inner forms of each other; indeed they are locally isomorphic everywhere 
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except p and oo, because WAP and VP(AX) are isomorphic as *0c-hermitian BM(AP^)-

modules, by the proposition. However, they are not isomorphic; in particular, J[X],R 

is anisotropic. 

What are the equivalence classes of pairs (V, ( , ) ' ) where V is a £?M-niodule and 

(, y is a * 0 c-hermitian Q-alternating form such that 

(6.5.2) ( V , ( , ) ' ) is equivalent to (V, ( ,)) 

as *-hermitian B-modules? On the one hand, the equivalence classes of pairs (F' , ( , ) ' ) 

without condition corresponds to (j)x G iJ^Q, G[ x]); the condition (6.5.2) means 

(j)x maps to 0 G i ^ ( Q , G). So the set is in bijection with the kernel of the map 

Hl(<Q,G[x]) -+ Hl(Q,G). We call this set HX(Q, G w ) ( 0 ) . On the other hand, this 

set is also in bijection with the set of F-embeddings j : M —• BOP such that #o j = joc, 

up to G(Q)-conjugation, where j goes to the B 0 B o p-module (V, ( ,)) considered as 

£?M-niodule via j . This is where Galois cohomology enters the picture. We call j a 

#-embedding. 

6.6. Adelic partial stabilization. — Ideally one would like to consider # -

embeddings j : M —> BOP up to G(Q)-conjugacy; this would lead to a stable formula 

in the point count. This is even possible in the present situation, but it is not 

necessary; it's enough to consider #-embeddings up to G(A)-conjugacy. 

(6.6.1) Lemma. — The baijection above induces a bijection between 

(1) G(Ap

c)-conjugacy classes of #-embeddings j : M —• BOP; 

(2) The fcemd #HQ,G [ x ] (A^) ) (0) of the map 

^ ( Q , G N ( A ^ ) ) -+H1(Q,G(ATf)). 

Proof. — It is clear from the preceding that elements of (1) correspond one-to-one to 

the images x G HX(Q, G[X](AP

F)) of elements y G JT1(Q, G[ x])(0). So we must show 

that the restriction to kernels of the localization map 

H\Q,G[x])(0) ff^Q,G[x](A!f))(0) 

is surjective. 

Now it follows from [K2, Prop. 2.6] that there is a commutative diagram with exact 

rows: 

0 — • ker^Q, G[x]) — > H^Q, G[x]) -U ffi(Q, G[X](A)) — • A(G[x]) 

(6-6.2) 1 1 1 

0 > kerx(Q, G) • # X(Q, G) — i J ^ Q , G(A)) > A{G) 

The group A(G) is what Labesse, in [L], calls H\B(A/Q, G), this at least makes the 

sequence plausible. We need to show that ker(/) maps onto ker(#). This follows by 

simple diagram chase, once we show that (a) ker1(Q, G[x]) —• kerx(Q, G) is surjective, 
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which follows from surjectivity of ker 1(Q, ZQ) ~• ker x(Q, G) since the center ZQ C 

G[x], and (b) A(G[X]) —> A(G) is injective, which follows from a computation. In 

fact both equal 0 if n[F+ : Q] is odd and both are Z / 2 Z if n[F+ : Q] is even and 

the natural map is the identity. (To compute A(G): it is the Pontryagin dual of 

7 T 0 ( Z ( G ) G a l @ / ® ) . ) • 

That is the calculation on the G[xj side. There is an analogous computation on the 

I[X] side. First, 

(6.6.3) Lemma. — The following five sets are equivalent: 

(1) Equivalence classes of polarizations X of Ax whose Rosati involution stabilizes 

BM and acts as * 0 c, where A ~ X' if there are 5 G G x and p G Q > 0 sitc/i £fta£ 

A' = pSwXS. 

(2) Equivalence classes of non-zero #[x]-fixed totally positive elements 7 G G (̂ Aws 

7 = oz;er CR^, where equivalence is given by the equation 7' = pS^WjS. (We 

have already seen this equivalence in the supersingular case, via 7 —> Ao o j.) 

(3) Same as (2), but where 7 is either totally positive or totally negative, and where 

u eQx. 

(4) ker[#WQ, >HHC/R,LX](C))} 
(5) k e r ^ H Q ^ N ) - ^ 1 ^ , ^ ] ) ] . 

Sketch of proof. — The last two are equivalent because, over E, I[X] is a product of 

inner twists of GL(r)'s, hence has no cohomology. The map from (3) to (4) takes 7 
to the value of a cocycle on c, bearing in mind that I[X](E) = Cx x Q x and that c 

acts on I[X](E) by sending (7,/i) to ( / i ( 7 ) # [ x ] , " \ ¿ 0 - D 

Thus there is a bijection between 

(1) Equivalence classes of polarizations A on Ax whose Rosati involution stabilizes 

BM and acts as * 0 c, and for which there is a prime-to-p-level structure compatible 

with the polarizations, and 

(2) ker[J^(Q,/w) - H^RJ^nH^QJ^fmO) where i f 1 (Q, 7 [ x ] (A^)) (0) = 

^ r l ( Q ) G [ x ] ( A j ) ) ( 0 ) via the isomorphism I[X]IAP ^ G[x],A
p

f-

Say A and A' are nearly equivalent if they are equivalent over A?f. 

(6.6.4) Lemma. — There are bisections between the following sets 

(1) Near equivalence classes of polarizations X on Ax whose Rosati involution sta­

bilizes BM and acts as * 0 c, and for which there is a prime-to-p-level structure 

compatible with the polarizations 

(2) ffi(Q,/W(3/))(0) 
(3) G(Ap

e)-conjugacy classes of' #-embeddings j : M —> BOP 

Proof — We have already seen bijections between (2) and (3), and (1) is in bijection 

with the intersection of (2) with ker[iJx(Q, —* iJ 1 (R, 7[ x]). So we have to show 
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that (2) is contained in ker[iJ1(Q, 1^) —> H1 (TSL, I[x]). This is another calculation 
with the exact sequence 

HL(Q,I[x](Ap

f))(p) = kev[HL(Q,G[x](A'f)) ^ HL(Q,G(Ârf))]. 

indeed, the local term at p is trivial, because p splits in E, hence I[x] is locally at p 
isomorphic to a product of GL(r)'s, as in the proof of Lemma 6.6.3. • 

(6.6.5) Definition. — A polarized Hodge type of type h (for B,*) is a triple (M, w, [j]) 
where (M,w) is a Hodge type of type h and [j] is a G(Ap)-conjugacy class of #-
embeddings j : M —> Bop. 

The above lemmas show that there is a surjective map from the set of isogeny 
classes [x] = [(Ax,ix, Xx)] to the set PHT^ of polarized Hodge types of type h. 

(6.6.6) Lemma. — Let [x] be an isogeny class. The fiber of this map over the image 
of[x] consists o/ker 1 (Q, 7[x]) isogeny classes. 

Proof. — The fiber is the set of equivalence classes in the near equivalence class. Re­
call that equivalence classes are identified with the set of elements of ker [if 1 (Q, 1^) —• 
H1 (R, )] whose localization in Ap lies in 

HL(Q,I[x](Ap

f))(p) = kev[HL(Q,G[x](A'f)) ^ HL(Q,G(Ârf))]. 

Two equivalence classes are nearly equivalent if they map to the same element of 
i f 1 ( Q , 7[ : E](A^))(0). But since they are already map to zero in i f 1 ( R , i] x ])] , and since 
(as in the proof of Lemma 6.6.4) there is no cohomology at p, we can say they differ 
by an element of ker x(Q, I[x]). On the other hand, ker x(Q, 7[x]) is a finite group (it 
can be identified with the image of ker1 (Q, Z / [ x ] ) , as before, for instance) that acts 
faithfully on i^ x (Q, I[x]), so the cardinality is as indicated. • 

Recall the fixed complex embedding r 0 of F. If z = (M,w, [j]) G PHT^ and 
j G [j], there is a unique distinguished To of To to M - except in the case of GU(2) 
over an imaginary quadratic field, which we have deliberately excluded - defined as 
follows: the embedding j endows V with a structure of *(g)c-hermitian i?M(R)-module, 
denoted Vj. This gives a set of signatures (a a , ba) for every real embedding a of M+. 
For only one such a 0 is this signature indefinite, it restricts to our chosen ao on F + , 
and we let TQ = To{j) be its extension to M lifting r 0. (Think of breaking up VTQ 

under the action of M <S>F,T0 C. It has [M : F] constituents and only one of them can 
be indefinite.) 

Now if j f G [j] with To(j) = To(f), then the * ® c-hermitian BM (R)-modules 
Vj(R), V}/(R) are isomorphic. Since these are the same real vector space, the isomor­
phism can be realized by conjugation in G(R). On the other hand, the fact that j 
and j ' are in the same G(Ay)-conjugacy class means that Vj(Ap

c) ^ > Vj^A^) (with 
their hermitian forms); and at p there is no possible difference. In the end, we have 
isomorphisms GJ,A — • GJ^A where Gj is the unitary similitude group of Vj, and 
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this isomorphism is canonical up to Gj/^-conjugation. Note that Gj is realized as a 

subgroup of G (the commutant of j(Mx) n G). 

(6.6.7) Lemma 

(1) The map j —> TQ{J) is surjective. 

(2) Ifro(j) = ro( j ' ) then the isomorphism GJ,A —> GJ^A comes from an isomor­

phism over Q. 

Proof — Part (1) comes from the same diagram chase as before; we find that the 

possible spaces V3; <g)R are in bijection with the set ker[i7 1(R, Gj) —• H 1 ( R , G)] which 

correspond precisely to the extensions of To to M . As for (2), the point is that the 

map ke r x (Q ,ZQ. ) —• ker1(Q,Gj) is an isomorphism. This proves in a standard way 

that the cocycle measuring difference between the hermitian vector spaces Vj and 

Vj> defines a trivial inner twist of the groups, and a similar cohomology calculation 

shows that the given isomorphism over A can be modified to give an isomorphism 

over Q. • 

It remains to carry out a similar analysis for the groups J^]. The result is 

(6.6.8) Lemma. — Suppose [x] and [xf] are two isogeny classes with the same image 

z E PHT^. Then the groups i*[x] and J[x/] are Q-isomorphic, and the isomorphism 

can be chosen compatible with the isomorphisms 7[ x/](Ay) Gj(Ap

e) —> 7[ x](Ay). 

The proof is completely analogous to that of Lemma 6.6.7, but simpler in that 

there is no possible difference at the real places: both 7[x] and 7[x/] are R-anisotropic 

(modulo the center). 

Let Iz = I[x] for any isogeny class [x] lying over z e PHT^h\ Fix a level subgroup 
Tjw,h c G(Ay) x Gh x Q£ (as always, the factor in Q* is Z * . We thus have a 

complete description of the F-points of S^: 

(6.6.9) S^lua,h(F)= T J ( [ M n _ f c ) + x ( / J t ( Q ) \ G W / t r » . f c ) ] / J B _ h > + ) , t o r l ( Q , / " ) l . 
ZEPHTW 

This decomposition is compatible with the action of Frobenius (on the pro-discrete 

set Mn-h,+, and it factors through a finite Galois group), and of the Hecke algebra 

of G(Af) x Ln-h,h x Qp • Here Ln-h,h = Gn-h x Gh acts as follows: Gn-h acts on 

M n _ j i j + on the first factor, whereas Gh acts on the G^-factor. This action of Ln-h,h 

commutes with Jn-h,+ -

We are now almost ready to count points. 

7. Comparison of trace formulas 

7.1. Counting transfers from IZ(Q) to G(Q), following Kottwitz. — We want 

to determine the trace of the representation of G ( A ^ ) x Ln-h,h,+ on the cohomology 
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[H-C(SMq, R^)]' Recall the description from the last time: 

S{MI(¥) = U ( [ ^ n - h l + x ( / 2 ( Q ) \ ^ ) ] / 4 - , , + ) | k e i l № J ! ) l . 
zePHTW 

We will treat the étale (Gh) part of the level structure on the p-divisible group together 

with the prime-to-tu-level structures. 

As in Clozel's course, one uses a version of the Grothendieck-Lefschetz trace for­

mula to calculate the trace as a sum over contributions of fixed points. Because we 

are dealing with cohomology with compact support, we need the formula proved by 

Fujiwara; in particular, we can only use Hecke operators that incorporate Frobenius. 

Because we have already determined the stalks of Rty, the Galois representation will 

come along for free. 

First, we work out the cohomological formalism for transferring conjugacy classes 

from IZ(Q) to G(Q), up to adelic conjugation. Recall that we are always excluding 

the case F+ = Q, n = 2. We begin with some definitions. 

(7.1.1)Definition. — An element j = (jn-hijh) G Jn-h,h is /i-regular if the p-adic 

valuation of every eigenvalue of jn-h is strictly less than the p-adic valuation of every 

eigenvalue of jh (i-e. \jn-h\ > \jh\)- An element 7 G IZ(Q) is /i-regular if its image 

in Jn-h,h is h-regular. 

Note that /i-regularity is a property of conjugacy classes. The same definition can 

be made for g — (gn-hi9h) G Ln-h,h C Gn. In that case, the parabolic associated to 

g (the expanding parabolic) is contained in P£p. We return to this later. An element 

is very h-regular if the difference in p-adic valuations is ^> N for some large integer 

TV determined by the problem. 

(7.1.2)Lemma. — Let 7 G IZ(Q) be h-regular, with z = ( M , w , [j]). Then F(j) D M. 

This is a simple argument with ramification groups of primes of F(*y) above w, and 

uses the minimality of M , and is related to (7.3.4) below. See Lemma V.2.2 of [HT] 
for details. 

Since JJS(R) is anisotropic modulo center, every element of IZ(Q) is elliptic; in 

particular, is semisimple. However, they are not necessarily regular. One could restrict 

attention to regular elements by using a trick due to Labesse, but this trick only works 

for forms of GL(n). Thus we work out the general case. The following analysis is 

based on Kottwitz' article [K2] 

(7.1.3)Lemma. — Let 7 G IZ(Q). The number of IZ(Q)-conjugacy classes in the 

IZ(A)-conjugacy class 0 / 7 equals \kerx(Q,Zix(l))\/\kerx(Q,Iz)\. 

Proof. — If 7 and 7 ; G IZ(Q) are conjugate over A, their centralizers in Iz are inner 

forms of one another that become isomorphic over A. In this way one sees that the 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2005 



1 1 0 M. HARRIS 

number is the cardinality of 

keríker1 (Q, ZIz ( 7 ) ) — ker1 (Q, / , ) ] . 

The Lemma follows from the surjectivity of this map, which follows from the fact 

(already used in § 6.6) that 

k e r ^ Q . Z , , ) — k e r ^ Q , / , ) 

is an isomorphism, and likewise for Ziz(
/y). • 

Recall that the group Iz depends only on z (up to isomorphism and G^h\A)-

conjugacy), whereas the inner forms G ¡ x ] C G depend also on the choice of an exten­

sion To of To to M (up to isomorphism and G(A)-conjugacy). We let Gz^0 denote 

this Q-group. 

(7.1.4)' — Now we discuss transfer from Iz to Gz^0 to G. Note that we can discuss 

/¿-regular elements in GZirQ(Q), since it comes with an embedding in Lh,n-h at w. 

Consider the following three sets: 

(7.1.4.1) The set j W of pairs (z,[a\) where z G PHT^ and [a] is an /¿-regular 

J z(A)-conjugacy class in IZ(Q). 

(7.1.4.2) The set of triples ( z , ? 0 , [7 ] ) where z = (M,w, [j]) G PHT^h\ r 0 is as 

above, and [7] is an /¿-regular G z^Q{A)-con]vig^cy class m
 GZ,T0(Q) that is M-elliptic 

and has elliptic image in Gn-h C Ln-h-

(7.1.4.3) The set F p W Q f equivalence classes of pairs (j,w) where 7 G G ( Q ) is an 

/¿-regular R-elliptic element and where w is a place of P ( 7 ) above w such that 

(7.1.4.4) (n - /¿)[P( 7 ) : F] = n[F( 7)™ : Fw}. 

The pairs ( 7 , 5 ; ) and ( 7 ' , wr) are equivalent if 7 and 7 ' are conjugate by an element 

of G(A) inducing an isomorphism F(j)w F(l')w identifying w with w'. 

Note that M has disappeared from (7.1.4.3). The decomposition into isogeny 

classes gives us elements as in (7.1.4.1), and we want to get to (7.1.4.3). Note also 

that elements of (7.4.1.3) can embed in G(h\A), as follows: The embedding of G ( Q ) 

in G(APc) is obvious. To get embeddings at primes other than w dividing p, embed 

G ( Q ) in G ( Q P ) , then project as in (2.4.1) on the factors other than w. Finally, to 

obtain an embedding in Jn-h x G^, it suffices to show that the field F(j)w embeds 

in Dn-h, and this follows from the equality of degrees (7.1.4.4). 

Recall that the group GZ^Q comes with an embedding in G. 

(7.1.5) Lemma. — The map Qw FP^h\ sending (z , r 0 , [ 7 ] ) with z = (Af,5J, [j]) to 

(y,w'), where w' is the unique place of M(^) = F(j) above the place w of M, is a 

bisection. 

Proof — First note that 7 being /¿-regular, M ( 7 ) = F(j). The Gn-^-ellipticity im­

plies that F ( 7 ) <8>M Mñ is a field, hence that w' exists. Let ( 7 , 1 ? ) G FP^h\ and let 
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M C F(^y) be the minimal subfield containing F for which w is inert from M to F(*y). 
(The existence of such an M is left as an exercise). Then (M, w) is a Honda-Tate pa­
rameter. To obtain the polarization, let j : M c—» BOP be the tautological embedding. 
This endows VR with the structure of BM <S>Q R-module, and since j comes from an 
element 7 already in G, this module has an * ® c-hermitian R-alternating pairing. The 
invariants (a T , bT) of this pairing, for r : M + —» R, pick out a unique complex place To 
except in the excluded case n = 2. This defines an element ((M, 5 ; , [7]), rb, [ 7 ] ) G 
above ( 7 , 5 5 ) , and it is clearly unique. • 

The other comparison is deeper. There is a map (f>: —• 1 ^ sending (z, rb, [ 7 ] ) 
to (z, [a]) where a G / Z ( Q ) is conjugate to 7 in Iz(Af) Gz^Q{Aj). The existence 
of such an a is the most difficult step in the counting argument. The following lemma 
asserts that a exists and is unique up to /^(A)-conjugacy. 

(7.1.6)Lemma. — The map 4> is well-defined; i.e., the A™-conjugacy class of^7 has a 
representative in IZ(Q). Moreover, the map 0 is surjective, and the fiber above (z, [a]) 
has cardinality [F(a) : F] = [ ^ ( 7 ) : F]. 

Proof. — We first associate a well-defined adelic conjugacy class a A C IZ(A) to 
(2, To, [ 7 ] ) . Away from 00 and w there is nothing to say. Since 7 is R-elliptic, it 
transfers to any inner form over R. More precisely, its transfer is well-defined as a 
stable conjugacy class (up to conjugacy over C). But IZ(M) is compact modulo center, 
so C-conjugacy and R-conjugacy coincide. Finally, at we need to show that the 
image of 7 in L n _ / l transfers to a well-defined conjugacy class in D * _ h x Gh- But 
this follows from the hypothesis that the image of 7 in Gn-h is elliptic. 

We view a A as an IZ(A) conjugacy class that contains a representative in IZ(Q) = 
GZ,T0 (Q)? namely 7 . The problem is now to determine whether or not it has a represen­
tative in IZ(Q). In [K2], for any connected reductive group H with simply-connected 
derived group, Kottwitz constructed an obstruction 06s([7], [aA]) where the first term 
is an #(Q)-conjugacy class and the second an iJ(A)-conjugacy class, whose vanishing 
is equivalent to the existence of a representative in H(Q). (The hypothesis that it be 
simply connected is removed by Labesse, and the connectedness is likewise replaced 
by the hypothesis that the group of components is cyclic.) This obstruction class 
belongs to the group Kottwitz denotes .ft(i~°/Q), the group of endoscopic characters; 
here 1° is the centralizer of the transfer to the quasi-split inner form of IZ (or of GZ^Q) 
of 7 . (By a theorem of Kottwitz, 7 always transfers to the quasi-split inner form.) 
But this is precisely the group that vanishes for every possible as Clozel showed 
in his course. (In [HT] the argument is given on p. 180.) If this were not the case, we 
would have to restrict to the set of ( Z , T 0 , [ 7 ] ) for which the Kottwitz obstruction 
vanishes. This would lead to a different formula in the end, but still presumably in 
the direction of the stable trace formula. 
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Remark. — More generally, the Kottwitz invariant for a triple coming from a polarized 
abelian variety should be related in a simple way to this obstruction invariant. 

In any case, we have shown the existence of (z, [a]) G X^h\ Now we have to 
determine the cardinality of its inverse image under <j). In the first place, its inverse 
image is non-empty. Indeed, the argument above applies just as well in the opposite 
direction, showing that [a] transfers to a rational conjugacy class in Gz^0> This 
already decomposes the inverse image into [M : F] subsets, one for each choice of 
To. It remains to show that each subset has [F(a) : M] = [M(a) : M] distinct 
elements (except in the excluded case). Remember that we are counting GZ^0(A)-
conjugacy classes, not G^rb (Q)-conjugacy classes! But the 72(A)-conjugacy class of 
[a] determines the Gz,r 0(^/)-conjugacy class uniquely. Indeed, the groups only differ 
at w, but there the transfer from D*_h to Gn-h is injective. So the only ambiguity is 
at oo, and indeed at To, since elsewhere GZ^Q is compact mod center. The question is 
then to count conjugacy classes in GZ^0(M) stably conjugate to a, and as before these 
are in bijection with extensions of To to M(a). Indeed, they are parametrized by 

ker[# 1 (R ,Z G , i , b (a)) — ff 1(R ,G, 1 ? b(a))], 
(kernel as map of pointed sets), and this set also parametrizes equivalence classes of 
*(g)c-hermitian £(g)M(a)(R)-modules that are equivalent to the given i?M(R)-niodule. 
So the calculation is as before. • 

7.2. Acceptable functions and Fujiwara's trace formula. — For the next step 
we need to work at finite level. Let U™ = Uw x Uh for some compact open subgroup 
Uh C Gh = L0,h- We introduce a class of acceptable functions 

<f> € C~(G(AJ) x Ln-h,h//Uh) 
where the symbol / / designates bi-invariance. These functions act as correspondences 
on Sul and on the complex Rty, hence define operators on [Hc(S^0yR^)]^u^\ We 
assume (j) factors as <\>w 0 0 ^ , with (j>w = (j)w,n-h®<l>w,h> Say (j) is fo-regular (resp. very 
Ti-regular) if (j)w is supported in the set of /^-regular (resp. very /^-regular) elements of 
Ln—h,h' 

The goal is to determine the trace of </> on [Hc(^^0,R9f)]^uh) for all <\>. This 
would suffice to prove the Second Basic Identity in the form (6.3.2), but this is both 
impossible and unnecessary. Here is one way of stating Fujiwara's trace formula [F] 
in our present situation: 

(7.2.1) Theorem. — Let (j) e C™(G(A™) x Ln-h,h//U%), and suppose (f> is very In-
regular (depending on Uw and Uh)- Then 

Tr(<P I [HE SZR*)}^) 

= E \ k e v \ Q , I z ) \ T i U | f f ° ( [ M „ _ h , + x (IZ(Q)\GW/Un]/Jn-H,+,№1))-
ZEPHTW 
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The above formula requires a few comments. The left-hand side being a trace 
on cohomology, the right-hand side must be a sum over fixed points. But the fixed 
points can be regrouped among (G(A™) x Ln-h,h//U™) x W#-invariant subsets, and 
we choose to regroup them according to isogeny classes, which are zero-dimensional. 
Then it is purely formal that the sum over fixed points in an isogeny class can be 
rewritten as a trace on cohomology: the Lefschetz formula is also valid for zero-
dimensional varieties. The groups 

H°{[tin-ht+ x ( J , ( Q ) \ G W / [ / ; ) ] / J n . a , + ) [ № y 

are smooth, but not generally admissible, representations of G^h\ However, under 
the hypothesis that (f) is very ^-regular, the set of fixed points of 4> on [ M n _ ^ > + x 
(IZ(Q)\G^/U™)]/Jn-h,+ is finite, so we formally define the trace to be the sum over 
the fixed points of local terms, whose definition is recalled below. This is a bit ad hoc 
but has the right formal properties for our present purposes; moreover, it is the form 
in which the trace formula will be used. 

Next, because the strata are not proper, Pujiwara's theorem requires that a corre­
spondence be twisted by a high power of Frobenius in order to eliminate wild local 
terms at the boundary. This is the reason for the condition that (f> be very /i-regular. 
Fujiwara's theorem is proved for varieties, i.e. noetherian schemes, hence we need to 
work at finite level; in principle, the degree of /i-regularity depends on the choice of 
level subgroup. One could have worked with a general 0 , twisted by a suficiently high 
power of Frobenius, but in fact the twist by Frobenius is built into the /i-regularity 
condition. This is a consequence of what Carayol calls the congruence formula for 
strata, which basically comes down to the formula (3.1.4). For details, see [HT, 
Lemma V.1.3]. 

Recall from (4.3.4) that the stalk of R1^ at a point in the /i-stratum is isomorphic 
to the representation of AK,n-h on ̂ l

cn-hQXo- Recall also the decomposition (5.5.2), 
(5.5.4), (5.5.5) of the alternating sum [^c,n-h,o,x0] as a sum over inertial equivalence 
classes [p] G [A](Jn-h), and the corresponding decomposition (5.5.11) for the coho­
mology. There is also a version [p, +] incorporating the action of the extra factor 
Q * / Z x , whose definition is left to the reader. This gives a decomposition of the vir­
tual sheaf of vanishing cycles [R9]z over the zero-dimensional pro-variety S(z), and 
hence an expression for the cohomology space on the right-hand side of (7.2.1): 

(7.2.2) H°{S{z), [!№]*) = 0 H°(S(z)9 [*][p]). 
[p}€[A](Jn-h) 

We rewrite Fujiwara's trace formula accordingly: 

(7.2.3) Corollary. — Under the hypotheses of Theorem 7.2.1, 

W I [Hc(S(ZRn(U^) = E E Iz)\tzM(<j>) 
zePHTW [p]e[A](Jn-h) 
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where 

t z M ( 4 > ) = Tr(<fi \H°{[Mn-h)+ x (Iz(Q)\G^/U^))/Jn-h¡+, [R9]z\p]))-

The meaning of the trace on the right-hand side is as above. 

(7.2.4) Remark. — As remarked following (6.3.1), [HT] obtains the corresponding de­

composition globally over the /i-stratum, as a sum of lisse sheaves indexed by inertial 

equivalence classes of representations of Jn-h> 

7.3. Expression for trace of acceptable functions, and transfer to G 

Our ultimate goal is to prove the formula (6.3.4), in its "pre (4.3.11) version, namely 

(7.3.1) n[Hc(S
{¿,Rn = 

0 0 r e d ^ t f (.4(5, *))] ® №n-k(p')] € Groth(G(A?)) x Gh); 
[p]e[A](Jn-h) p'eA(Jn-h)fin[p] 

Formula (7.3.1) is understood as an equality in Groth(G(A™) x Ln-h,h)- Notation 
is as in Theorem 6.1.2(h); in particular, the sums on both sides are finite. 

To prove (7.3.1), we prove the traces on the two sides are equal for a sufficiently 
large family of test functions <fi = <f)w ® (¡)w, with (j)w = 4>w,n-h ® <fiw,h as above. The 

functions (j)w and </>Wih are chosen arbitrarily, whereas (j)w,n-h has to be chosen so 

that the resulting <fi is very /i-regular. One verifies without difficulty that such a set 

of functions suffices to separate characters, the point being admissibility of the two 

sides; here the finiteness of the sets A(Jn-h)ñn[p] is crucial. For example, by Theorem 

A. 1.5 of the appendix, one can choose (j)w,n-h to be a pseudocoefficient for any fixed 

JL(p'), with p' G A(J n - / i ) f in[p] , relative to the set JL(A(J n -h) f in) C Ad(n - h,K) 

(cf. (A.1.3)). Moreover, the condition (A.1.11) guarantees that, for any pair (<frw, <¡>w>/l) 

the choice of 4>w,n-h can be made consistently with the condition that 0 be very h-

regular. 

Fix p' e A(Jn-h)ñn[p] and let 7r' = JL(p'). To fix ideas, and to simplify the 

formulas the first time around, we assume 

(7.3.2) Hypothesis. — irf is supercuspidal and (j)w,n-h is a pseudocoefficient for it', 
denoted (j)^-^ in the notation of (A.l). 

Here cu is an interval [a, b] C Z chosen to guarantee the /i-regularity condition, and 

long enough (i.e. m = € Z is sufficiently large) to guarantee that 4>n';uj picks 

out nf among its unramified twists occurring in JL(A( Jn-h)ñn)- Set §™ = (j)w (8) 4>h• 

A test function of the form (/> = </>™ <8) (j)^^ as above - in particular, satisfying the 

/i-regularity condition - will be called acceptable for p'. We verify (7.3.1) by proving 

equality of traces for all test functions acceptable for for all p' G A{Jn~h)ñn[p}- In 

the final paragraphs of § 7.6 we explain what needs to be modified when Hypothesis 
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(7.3.2) is relaxed; i.e., when <t>w,n-h is taken to be an arbitrary test function and p is 
an arbitrary representation of Jn-h-

For a G IZ(Q), define the orbital integral 

(7.3.3) tfa]№= [ Wigag-^dg. 
JZ(a)\G(Ay)xGh 

Here Z(a) is the centralizer of a in G ^ ( A / ) . In the applications, only /i-regular a 
contribute non-vanishing orbital integrals. We may thus assume a to be /i-regular. It 
is not too difficult ( 9) to see that this implies 

(7.3.4) ZG(a) = ZIz(a) 

[HT, Lemma V.2.2], so Z(a) is the adelization of the Q-group Ziz(a) (though 
G^(Af) is not adelic). Via the embedding of IZ(Q) in Jn-hi a defines a local 
conjugacy class [a] C Jn-h, necessarily elliptic. We let [7(a)] denote the transfer of 
[a] to a conjugacy class in Gn-h] i-e-> a n element 7 G [7(a)] becomes conjugate to 
an element a G [a] under an isomorphism Jn-h —> Gn-h over K. (All conjugacy 
classes in Jn-h transfer to the quasi-split inner form Gn-h)> 

To save space, volumes are denoted v rather than vol. Here is an expression for 
the contribution of z G PHT^ to the trace formula: 

(7.3.5) Theorem. — Fix pr G A( Jn-h)^n{p], and let (j> = <^ ® (f)^-^ be a test function 
acceptable for pr. Then 

Tr(0 \H°([Mn-h,+ x Sbjo(z)]/Jn-hi+,[R*]z[p]» 

= (n - h) E e ( 7 ( « ) ) O f a ] ( C ) • 0 ^ ( ^ ; . ) ^ ( Z / , ( a ) ( Q ) \ Z / 2 ( a ) ( A / ) ) . 
[a] 

ffere [a] runs through h-regular IZ(Q)-conjugacy classes in IZ(Q), and the volume 
v(Zjz(a)(Q)\Zjz(a)(Af)) is normalized as for h = 0. Moreover, [7(a)] C Gn-h is the 
transfer of the conjugacy class [a] G Jn-h, as above. Finally e(/y(a)) is the Kottwitz 
sign (A. 1.12 bis). 

The proof of this formula is based on a standard argument for translating point 
counting problems on double coset spaces into sums of orbital integrals, and will be 
our last order of business. We note here that this calculation presupposes Theorem 
4.3.11, as well as Hypothesis 7.3.2, and hence suffices to prove the strong version of 
the Second Basic Identity. In (7.6) we will first obtain the weaker version. 

( 9 )The point is subtle, however, and deserves to be stressed, as it lies at the heart of the difference 
between the approach to point counting in [HT] and that in [ K 5 ] . The proof in [HT, Lemma 
V.2.2], which simultaneously establishes Lemma 7.1.2, is elementary, but we have not yet seen how 
it generalizes to other Shimura varieties. 
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The first subtlety involves rewriting the volume factor, using Kottwitz' results on 
Tamagawa numbers [K3l. The formula is 

v{ZIz{a№)\ZIz{a){A})) = ^ k e r ^ , ^ ) ) ! " ^ ^ ) ^ ) 1 ) " 

where KB and the measures are as in our discussion of Arthur's formula; in particular, 
KB — |A(Z/ z ( a ) ) | = 2 if [B : Q] is divisible by 4 and 1 otherwise. This is an explicit 
computation (c/. p. 167 of [HT]). 

In particular, we can rewrite the expression in Theorem 7.3.5 as 
(7.3.6) 

= (n-h)KBJ2<^))°U^) 
[a] 

= (n-h)K= (n-h)KBJ2<^))°U^) 
L J 

Next, to rewrite Theorem 7.3.5 as a sum over J z(A)-conjugacy classes, we note that 
if a, a' G IZ(Q) are 7>2(A)-conjugate, then their centralizers are inner forms of each 
other that become isomorphic over A, and their Tamagawa measures agree under this 
isomorphism. Thus 

(7.3.7) O f a i « ) v o l ( Z / 2 ( a ) ( R ) 1 ) - --Otni^voliZMiR)1)-1. 

So it suffices to count the number of 7 z(Q)-conjugacy classes in an 7 z(A)-conjugacy 
class, and this is 

(7.3.8) Ikerpœr^Q.Z/^a)) ^ ker^Q, 7 2 ) ] | = | k e r 1 ( Q , Z / i ( a ) ) | / | k e r 1 ( Q , / 2 ) | 

because the map on ker 's is surjective, a fact we have already used several times. 

Write [a]/Q for Jz(Q)-conjugacy classes, [a] /A for 7z(A)-conjugacy classes, and write 

v(a) = vol(ZIz(a)(R)1). Then 
(7.3.9) 

Tr(4>\[Hc(sZ№]](un) = 

zGPHTW la]e[A]{J„-h 

i W f Q , ! , ) ! * , , ^ ) 

Iker^Q,/ , ) !* , ,^) 

= (n-h)KB Y I kerHQ,/,)!/! ker1! Q,^(a))|e(7(a))0fa ](O • O^-^-H) 

= (n — K)KB 

zAa] 

(et(a)ez(n) 
t;(a)-1e(7(a))0[l

a](C) • 

The first equality is (7.2.3), and the third is (7.3.5). The second follows from our 
choice of (j)w,n-h to be a pseudocoefficient for 7r', which by (5.2.18) eliminates all 
[a] ^ [p]. This is the step that will have to be treated in greater generality at the 
end of § 7.6. The final line summarizes the discussion following (7.3.5). Note that the 
passage from [a]/Q to [a]/A is just what it takes to eliminate the ker^s, thanks to 
Kottwitz' theorem on Tamagawa numbers [K3]. This is a central step in the point 
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counting argument, and more generally of the theory of the stable trace formula (this 
point was also made in ClozePs course). 

We now use the comparison with Q^h\ and then with FP^h\ to rewrite this as 

(7.3.10) (n - h)KB £ № ) : i T 1 e ( 7 ) O f o ] ( ^ ) • Ogp^^-hMo)- 1 

( 7 , £ ) e F P ( M 

This expression is a bit schizophrenic, because it involves a sum over 7 G G(Q), 
but two of the terms are still expressed in terms of the a G IZ(Q) which transfers 
to 7 . To remove all trace of a, we consider these terms in turn. First, v(a) = ^ ( 7 ) = 
VO1(ZG(7)(R)Q) where Z G ^ ) is of course the centralizer of 7 in G , Z G ( 7 ) ( M ) O is the 
compact mod center inner form of Z G ( 7 ) ( M ) , 

Z G ( 7 ) (R)5 = ker \v\ : Z G ( 7 ) 0 — • M* 0-

Moreover, ZQ(I) is given Tamagawa measure as before. Next, we can obviously 
replace the orbital integral over [a] in G(Af) x Gh by the orbital integral over [ 7 ] , 
since the two give rise to the same conjugacy class. Thus the product simplifies, and 
the final formula is 

(7.3.11) Tr{<j,\[Hc(S™,№lf)]) 

= (n-fc)« B E [ni)--F]-^r1e{1)0^]

A1\r)-0\;]-^{<S>w) 

We have removed the superscript because it is built into our choice of functions 
<j>. By definition of FP^h\ the 7 ' s that enter into the above sum have the property 
that their Gn-h components transfer to Jn-h>> hence are elliptic. 

7.4. Descent, comparison with global trace formula, and second basic iden­
tity. — Recall the cohomological version of the trace formula we used to obtain the 
comparison for the supersingular locus. 

(7.4.1) I [H(A(B, *))]) = UKB 5>(7)[F( 7) : F ^ v ^ O ^ ) 
7 

Here <I> = $ w ®</>w € C c °°(G n x G ( A J ) ) and we have written v(j) for vol(ZG(7)(R)S), 
as in .(7.3.11). To compare this with our final version (7.3.11) of the trace formula 
for the stratum S^Q, we need a way to compare orbital integrals on Gn with orbital 
integrals on Ln-h,h- This is provided by the following proposition. 
(7.4.2) Proposition (Descent of orbital integrals). — Letcf)w = (ftn-h^h € C£°(Ln-h,h) 

be an h-regular test function, and suppose the orbital integrals of (j)n-h are supported 

on the elliptic set. Then there exists a test function $w<£ C^°(Gn) that satisfies the 

following three properties: 

(7.4.2.1) / / 7 € Gn is a semi-simple element not conjugate to an element of Ln-h,h, 
thenOGn(<f>w)=0; 
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(7.4.2.2) For any 7 e L n - h t h , 

PmQ}/3[a<g>/?] <t>n-h ® (j>h 

where 5 ( 7 ) runs through the set of Ln-h,h~conjugacy classes in the Gn-conjugacy class 

of 7 (i.e., s G Gn takes 7 to Ln-h,h) such that the Gn-h-fo>ctor 0 / 5 ( 7 ) is elliptic; 

(7.4.2.3) Let 7r be an irreducible admissible representation of Gn, with 

Q}/3[a<g>/?] PmQ}/3[a<g>/?] 

for a e A(n - h, K) and /3 e A(h, K). Then 

T r ( 7 T ) ( ^ ) =Y^mc*,i3 !V(a)(i_JlVMW 

The ellipticity hypothesis in the above proposition is superfluous, but is satisfied 

in our present situation. The existence of $ w satisfying simultaneously the orbital 

integral conditions (7.4.2.1-2) and the trace condition (7.4.2.3) is a special case of 

descent of orbital integrals. Actually, the map in the other direction is called descent; 

the /i-regularity condition is required in order to prove existence of a map in the 

indicated direction. The proof of Proposition 7.4.2 is sketched in [DKV, Appendice 

1, 4.d] and (in more detail) in [HT, Lemma VI.3.2]. 

Applying (7.4.1) with this choice of $ w , for (f)n-h = <\>n';u a test function acceptable 

for p', we find 

(7.4.3) (n-h)Tr($\[H(A(B,*))]) 

= n(n - h)KB £ e ( 7 ) [ F ( 7 ) : F^v^y 
= n(n - h)KB £ e(7)[F(7) : F^v^y 

7 * 

Now note that there is a one-to-one correspondence between w as in (7.3.11) and s 

as in (7.4.2.2): each s defines the subfield ^ ( 7 ) c M n _ ^ ( i ^ ) - a subfield because of 

the ellipticity condition - hence a completion F(j)^ above w that satisfies the degree 

condition. 

Formula (7.4.3) does not require TT' to be super cuspidal. If we now return to 

Hypothesis 7.3.2 - in particular, TT' is supercuspidal - we can combine (7.4.3) with 

(7.3.11), and obtain 

(7.4.4) (n-h)Tr(* I [ T O * ) ) ] ) = n . T Y M [Hc(&&9R9)u\p]])-

The absence of [p] on the left-hand side should cause no alarm; 4>n-h,w has been 

chosen in (7.3.2) to cut out only the part of [H(A(B, *))] coming from [p]. Indeed, if 

[H(A(B,*))] = ] ]a(Tf)Ty®Tw E Groth(G(A/)) 
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where r runs through a set of cohomological automorphic representations, then the 
trace relation (7.4.2.3) implies that 

I [H(A(B,*))\) = I T?)TT(*W I rw). 

Here the symbol Ylr indicates that the sum is taken over those r such that 

t r Gn Lh(r™)] = Y^mcx,p[a ® 0] s u c n that, for some a that occurs, 

(7.4.5) T * ( a ) ( 0 w , ; w ) ^ O ; 

in other words, such that a is inertially equivalent to ir''. But since we are working 
at finite level, the set of all a's that arise in this way is finite. Hence, by expanding 
A(Jn-h)fin if necessary, we can arrange that (7.4.5) only holds for a = 7r', and in that 
case, as we know, T r ^ ' X c / v ^ ) = 1. It then easily follows that 

(7.4.6) Tr($ I [H(A(B,*))]) = 
p'eA(Jn-h)rm[p] 

Tr(4>w ® (j>w I JL(p') <8> red j? ) H(A(B, *)) 

Indeed, only JL(p') = 7r', for our chosen 7r', gives a non-zero contribution to the right-
hand side of (7.4.6). By varying p', we see that the identity (7.4.6) is valid for every 
p' £ ^n-h- Now the Second Basic Identity, or rather the identity of traces (7.3.1) for 
test functions satisfying (7.3.2), follows by combining (7.4.6) and (7.4.4). 

To obtain the pre-(4.3.11) version, we let </>n-h be arbitrary subject to the h-

regularity condition. As noted, Proposition 7.4.2 holds without the ellipticity hy­
pothesis, and we let $ w be the function constructed there. On the other hand, let 
$w(7r',uj) be the function of Proposition 7.4.2 associated to </v,a; ® <t>h- Then 

Tr(4>w ® 4>w | ved{^[H(A(B, *))] ® №n-h(p')}) 

= T r ( 4 > n - h | [ *„ - h (p ' ) ] ) • T r ( 0 № ® <^ I r e d ^ [ H ( ^ ( B , * ) ) ] ) 

= Tr (0 N _ F T | [¥ „ - h ( , t / ) ] ) • l r ( 0 № ® ^ ® <^ | r ^ B > L h [ H M ( B , * ) ) ] ) 

= I Y ( 0 „ _ H | [Vn-h(pf)]) • ^ ( ^ ( T T ' . W ) ® <T | *))]) 

Returning to (7.4.3), we thus have 

(7.4.3 (pre 4.3.11)) 
p'eA(Jn-h)na[p] 

Tr(<T ® <f>w I red^tf („4(5, *))] ® [9n-h((/)] 

= nnB V e ( 7 ) [ F ( 7 ) : F ] - 1 « ( 7 ) - 1 

>S A F ) (^)0 . L

( " 7 ) h , h (^,u, ® <M • W „ _ f t I [*»-*(//)]) 

To prove the Second Basic Identity under Hypothesis 7.3.2, once Theorem 4.3.11 
has been established, it thus remains to justify Theorem 7.3.5. For the general case, 
we need to show that the analogue of Theorem 7.3.5 holds, for any test function </> 
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with the term (n — h)0^~^{<l>ni.i(Jj) replaced by 

(7.4.7) ° h U • ^{<t>n-h | [*n-h(p')]). 

p'€A(Jn-h)nn[p] 

For a general function <\)n-h one also has to sum over all [p], as in Corollary 7.2.3. 

Calculation of the fixed point contribution is the subject of the two remaining 

sections. 

7.5. Fixed point formalism in double coset spaces. — We consider the follow­

ing abstract situation. We have three totally disconnected groups Y, G, and J, and 

a discrete group I that embeds (discretely) in Y x J. There is also a discrete abelian 

group A, and surjective maps 8Q G —> A, 8j : J —> A; the composite / —> J —> A is 

surjective. 

The group J is assumed to act continuously on a locally noetherian scheme M over 

the field F p , compatibly with a surjective map 8M ' M —• A. We assume M is given 

with a J-equivariant (open or closed) locally finite covering, and let Mi, i = 1,..., N, 

denote the disjoint union of the i + 1-fold intersections of this covering; the restriction 

of 8M to each Mi is also surjective. We assume the set of connected components of 

Mil J is finite for all i (equivalently, for i = 0), that the stabilizer Ja of any connected 

component Ma of any Mi is an open compact subgroup of J, and that the action 

of Ja on M a factors through a finite quotient. We also assume there is an action of G 

on M that factors through 8Q , compatible with 8M • It follows that the stabilizer in G 

of any Ma is exactly G(0) = ker 8Q-

Finally, we assume the action of G x J on M lifts to a G x J-equivariant 

constructible-admissible ^-adic complex \£* on M. This means that, for any open 

compact subgroup U C G(0), the sheaf W{^*)u is a constructible J-equivariant 

sheaf on M. Then the action of Ja on H # ( M a , \P
#) factors through a finite quotient. 

To simplify notation, and because this is the only case we need, we assume M = Mi, 

a principal homogeneous space for A, with fixed component Ma denoted Mo; we write 

J(0) for J a . In our applications, J is the compact mod center group D*^n_hy J(0) 

its unique maximal compact subgroup, M is zero-dimensional, and J/J(0) ^ > Z 

acts transitively on M . However, the arguments presented below can be applied 

simplicially to the Cech complex of the more general M discussed above. Similarly, 

we replace the complex \£* by one of the cohomology sheaves which we denote 

simply \£, or by the alternating sum [\I>] = 5 ^ ( — l ^ W 7 ' a virtual representation 

of G x J. Additional properties of satisified in the applications, will be specified 

below. 

For any open compact subgroup U C Y, let Su = [M x (I\Y x J/U)]/J, with the 

profinite topology. The group G acts on Su via the action on M . For simplicity, we 

write 8 instead of 8Q, 8J. Let y £Y, f the characteristic function of the double coset 

UyU. Let 0GC c °°(G). 
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First, assume </> supported on G(d) = 5 1(d) for some fixed d G A. The pair (/, <fi) 
defines a Hecke correspondence on Su x Su- it is the set of pairs of classes of points 

(7.5.1) ([S,xJ],[d-5,xyJ])eSuxSu, 5eM, xeY, j eJ 

modulo the groups acting on the right and left. Note that x is determined modulo 
U(y) := U fl yUy~x, so the correspondence is in bijection with the set of points 
s G Su (y)- We may as well take j = 1. A fixed point of the correspondence is a class 
[5, x, 1] such that [d • 5, xy, 1] = [S,x, 1]; i.e., such that there are u G U, a G J, and 
j € J such that 

(d • 5, xy, 1) = aj). 

Thus 

(7.5.2) a = j ' 1 = x{yu-l)x~l, 5(a)d = 1. 

Assume E7 is sufficiently small, in a sense to be determined momentarily; then the 
first condition in (7.5.2) determines a uniquely. Indeed, if (3 is another element of / 
satisfying the same condition, then x~l(3x and x~xax are both in y • [/, so 

P~xa G x-xyUy-lx DI = { 1 } , 

where the last equality is what we mean by "sufficiently small"; a standard argument 
shows that any open compact U contains a subgroup of finite index that is sufficiently 
small in this sense. On the other hand, we can replace [<5, x, 1] by [S(j)S, (3xv, fij] for 
some v G U D yUy'1, /3 G / , j = G J. Then a is replaced by /3a/?"1. So the 
conjugacy class [a] of a in / is a well-defined invariant of the fixed point 5, and we 
denote this invariant [a(s)]. 

Now given a G J, let Fix(/ 0 0 , a) denote the set of fixed points s with [a(s)] = [a]. 
If (J(a)d 1, the second condition of (7.5.2) shows that Fix(/ 0 <j>,a) is empty. If 
8{a)d = 1, one checks easily that 

(7.5.3) | F i x ( / 0 0 , a ) | = |M/(Zj(a)nC / (2 / ) )xZj(a) \A : i(( / ,a)] / t7( j / ) | , 

where Xi (# ,a ) = { x G F | x _ 1 a x G yC/} and [/(y) = U HyUy"1. 

Remark. — Suppose we are in the setting of §§6, (7.3); i.e., Y = G(A™) x G^, 
U = U™, G = Gn-h, J = Jn-fr, A = Z = J/J(0) acts simply transitively on the set 
M = Mn_/j,?_|_. The set on the right-hand side of (7.5.3) is then the same as 

(7.5.4) 2 i ( a ) \ { s G F x J I x ^ o x e yU x J(d)}/{U{y) x J(0)), 

where J(d) = S~1(d) for d = 5(g) as above, and J(0) acts on J(d) by right translation. 
Note that the condition that x~lax G J(d) is equivalent to the condition 5(a) = d, 
and imposes no restriction on x. 

Henceforward, we assume that we are in the situation (7.5.4), i.e., in the situation 
of the Second Basic Identity. In particular, notation is as in (7.5.4). 
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Now, since U is small, we find that any double coset Zi(a) x - (U(y) x J(0)) is the 

disjoint union over b G Zi(a) of b • x • (U(y) x J(0)). It follows that the cardinality in 

(7.5.4) equals 

(7.5.5) vol(U(y) J ( O ) ) - 1 • vol({x G Z / ( a ) \ ( r x J) | x _ 1 a x G j/ET" x J(0)}) . 

The Haar measures are arbitrary but have to be used consistently, and of course the 

discrete groups are given the counting measure. This is where the orbital integrals 

arise: the cardinality in (7.5.5) equals 

(7.5.6) vol(C%)J(O))" 1 • vo\(ZI(a)\ZYxJ(a)) • 0 ^ x J ( X y , u • Xd) 

where Xd is the characteristic function of J(0) and Xy,u is the characteristic function of 

y - U. This is obviously non-canonical, since it depends on the choice of y. One makes 

it canonical by summing over representatives of UyU/U and dividing by \(UyU)/U\, 

and we obtain finally that 

(7.5.7) Proposition. — Under the hypothesis that <j> is supported on G(d) and f is the 

characteristic function of UyU, the number of fixed points s G Su with [a{s)\ — [a] 

equals 

[vol(t/) v o l ^ O ) ) ] - 1 • vol(Z /(a)\Z y x J(a)) • Oja*
J{f • Xd)-

More generally, let co = [a, 6] C Z be an interval as in (A. 1.10), and assume (j) has 

support in G(<JJ) = ¿ _ 1(Ü;), and f G C%°(Y). Then the number of fixed points s with 

[a(s)] = [a] equals 

(vol(^)vol(J(O))]- 1 .vol(Zj(o)\ZyX J(a)) -Ol[a]U)0{a]{x¿). 

Here XCJ is the characteristic function of J(uf) = 8^1{UJ). 

The formula in the final paragraph follows by linearity. 

For fixed a and u, the orbital integral 0^(xu>) is given as follows: 

(7.5.8) Ofa](xw) = vol(J/Zj(a)),6(a) G Ofa](Xu) = 0, S(a) i cu. 

The measure on Zj = Kx is normalized by (A. 1.8), and one sees readily that 

(7.5.9) 

voKJ(O))- 1 vol{J/Zj{á)) = [J:Zj- J(0)] • v o l ( Z j ( a ) / Z J ) - 1 = g • vol(Zj{a)/Zj)'\ 

Thus the cardinality in (7.5.7) can be rewritten: 

(7.5.10) |Fix(/®0,a)|=0.vol(^ Fix(/®0,a)|=0.vol(^l(Zj{a)/Zj)'\-1 

Now the G x J-equivariant constructible ¿-adic sheaf ^ on M descends to a con­

struct ible £-adic sheaf, still denoted on Su- The function / 0 0 acts as a Hecke 

operator on \I> over Su- The normalization of / ® 0 as Hecke operator is given by 
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integrating over F x G ; one verifies easily that this amounts to multiplying the Hecke 

correspondence defined above by vo\(U). Let 

WSu,[Hf])] = 
Locs(/ 0 0, [*]) = traced 0 a 

In the application to (7.3.5), and indeed under our assumption that A acts transitively 

on M, only i = 0 contributes to the above sum. Assuming both sides are finite, the 

Lefschetz fixed point formula yields the following formula for the trace of / 0 </>, acting 

on the cohomology of \£: 

(7.5.11) Tr(/ 0 (/) I [H(Su, [*])]) = vo\(U) 

[a]€/(Q)s€Fix(/(g>0,a) 

L o c s ( / 0 0, [*]). 

Here as above, the sum is over conjugacy classes [a] in 7(Q). 

This is the framework in which we have stated Fujiwara's trace formula (Theorem 

7.2.1). Here L o c s ( / 0 0, [$]) is a local term that is in general quite complicated. In 

the situation discussed in the lectures, however, a non-trivial local term is just the 

alternating sum of local traces at an isolated fixed point of a (transversal) correspon­

dence on a smooth variety, hence is just given by the trace of / 0 0 acting on the 

(virtual) stalk of at s. One checks that this is independent of s E Fix(/ 0 0, a), 

and indeed is independent of / (since Y acts trivially on For fixed a, the local 

term is given by 

(7.5.12) L o c s ( / 0 0, [*]) = traced 0 a |[*] 0 ) 

where [\P]o» the stalk of [\&] at Mo, is a virtual representation space for To = 

(5G x £ / ) - 1 { 0 } c G x J. Note however that (f> is acting via an integral, hence the 

trace depends on a measure on G, whereas a is acting as an element of a translate 

of the compact open subgroup J(0). In this sense, the expression (7.5.12) is not 

symmetric in the two variables. 

Combining (7.5.12) with (7.5.9) and (7.5.10), we obtain (when both sides are finite) 

(7.5.13) Tt ( /®¿ I [Я(5с, [*])]) 

[a]G/(Q) 

vol(ZI(a)\ZYxJ(a)) • Oja](f) • v o l ( Z J ( a ) / Z J ) - 1 • trace(0 0 a \ [*]0). 

Remark. — Nowhere in the present section have we made use of Hypothesis 7.3.2 or 
Theorem 4.3.11. In particular, the formula (7.5.13) holds unconditionally. 

7.6. Completion of the calculation. — Now we specialize to the situation of 
(7.3), with g — n — h, taking <j> = ( / v ^ , / = </>̂ , as in (A. l ) , and taking the alternating 
sum [i?^][p] for We continue to write / for Iz and drop the subscript z elsewhere. 
Here [p] is an inertial equivalence class in A(Jn-h) such that JL(p) is supercuspidal, 
and 7r ; is inertially equivalent to JL(p). Once we have established (6.1.2.1) - hence 
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Theorem 4.3.11 - (5.1.6) implies we can replace [*][p] by ( - l ) N - ' L - 1 # N - > L - 1 [ / 9 ] , in 

the notation of (5.5). Thus it follows from (A. 1.12) and (5.5.9) that 

(7.6.1) (post 4.3.11)) 

(n - h) • traced <g> a \ ^n-h-l[p)0) = (-l)71'^1 trace Z j,¿(<^ <g> a | tf"-*-1^) 

for any appropriate central character £. Here the extension of the compactly supported 

function 0 0 a to the function </>£®a, compactly supported modulo Zg, is as in (5.5.9.1). 

Indeed, if £ ^ i /v , then 

trace(0®a | *[pfe) = 0 

because 0 is a pseudocoefficient relative to *4(n — /i, if )fin- On the other hand, if 

£ = i/jnf, then the formula above holds (cf. (5.5.9.1)) and the right hand side can be 

simplified: 

(7.6.2 (post 4.3.11)) t r a c e Z y , e ( ( ^ ; o , ) € ® a\Vn-h-l[p]z) = ! ^ X J L ( ^ - v ) ( a ) 

Here the coefficient (n — h)/m arises as follows. The denominator comes from the 

normalization (A. 1.11), and arises from the distinction between the modified trace 

of (A.1.9) and the unmodified trace; replacing <f>n']LJ by (07r';a>)£ amounts to undoing 

the truncation without compensating for the denominator. On the other hand, the 

numerator (n — h) is the coefficient on the right-hand side of the formula 

(7.6.3 (post 4.3.11)) Vn-h-1\p]z = (n-h) 0 p ' ' v 0 J L ( / / ) , 

as representation of Jn-h
 x Gn-h', this is just Theorem 4.3.11 with the action of WK 

forgotten. 

Comparing (7.6.1) and (7.6.2), the specialization of (7.5.13) to the situation of 

Theorem 7.3.5 becomes 

(7.6.4 (post 4.3.11)) 

T r ( / 0 0 I H°([Mn-ht+ x S^(z)]/Jn.ht+,[R9]z[p]) I [H(Su,[9])]) = 

(-iy~h-\n-h) J2 v o l ( Z / ( a ) \ Z y X J ( a ) ) . 0 ^ ] ( / ) . v o l ( Z J ( a ) / Z J ) - 1 . ^ X J L ( ^ . v ) ( a ) 
[a]€/ (Q) 

= (n-h) e ( 7 ( a ) ) v o l ( Z / ( a ) \ Z y X J ( a ) ) . O ^ ] ( / ) . O [ 7 ] ( 0 ) 

[a)ei(Q) 

where [7] G Gn-h transfers to [a] G J and e(j) is the Kottwitz sign. The last equality 

follows from Proposition (A. 1.12 bis); as indicated above, the truncation is no longer 

pertinent. 

Recalling our notation, we rewrite the last expression in (7.6.4): 

(n-h) ] T e ( 7 ( a ) ) O f o ( ^ l(Z/(a)\ZyXJ(a)).0^](/).vol(ZJ(a)/ZJ)-
1.^XJL(^.v)(a) 

[a ]€ l , (Q) 

By the choice of <\>w the sum runs over /i-regular conjugacy classes [a]. 
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This completes the proof of Theorem 7.3.5, assuming Theorem 4.3.11, i.e. (6.1.2.1). 
To complete the proof of the Second Basic Identity, we need to eliminate this as­
sumption and relax hypothesis (7.3.2). The calculation in §7.5 is valid without 
these assumptions, the only change coming in the determination of the local term 
trace(</>® a | [SS?]o). 

In (7.5.13) we take [i?*]^[p] for [\J>]0. It suffices to show that, for general (j> = ( / > n - / i , 

assumed to have zero trace on any ir £ A(n — h, K)&n with ipn ^ £, we have 
(7.6.5) 

(n - h) traced ® a | [¥]<>) = ] T " W " - ' * I l^n-h(p')}), 
[p] p'€A(J„-h)nn[p] 

where the right-hand side is the expression appearing in (7.4.7). But the special 
hypotheses have only been used in (7.6.3). In the general case we have 

(7.6.3 (pre 4.3.11)) № k = 0 p'y ® l*n-h(p')). 

Using Proposition (A.1.12 bis), we now find that 
(7.6.2 (pre 4.3.11)) 

truce(<l>n-h®a\[*]u\p]t) = - ^ X3L(^)(a)Tt((<l>n-h \ [Vn-h(j/)]). 

We conclude as above. This completes the proof of the Second Basic Identity. 

8. Strata in Shimura varieties of PEL type 

This final section, which does not correspond to any of the lectures given during 
the special semester at the IHP, describes possible extensions to general Shimura 
varieties of the geometric techniques presented in the previous lectures. The first two 
subsections elaborate on material contained in [H3], and prove some of the claims 
made there. The final subsection explains recent results of L. Fargues, who has proved 
a number of the results predicted in [H3] for Shimura varieties of PEL type. 

The reader is expected to be familiar with the basic properties of Shimura varieties 
over number fields (existence of canonical models and the like). A good general 
reference for Shimura varieties is the article [Mil] . 

8.1. Presentation of the problem. — As in (3.1), we denote by JC the fraction 
field of the Witt vectors of the algebraic closure of F p , and let a denote the Frobenius 
acting on /C. If G is a reductive group over Qp, let B(G) denote the set of cr-conjugacy 
classes in G(/C), i.e., equivalence classes for the relation 

b~h-b-o~(h)-\ heG(JC) 
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For any Qp-rational representation (r, V) of G, an element b G B(G) defines a struc­
ture of isocrystal on NT = V ® Q P K by defining 

(8.1.1) (j) = r(b) <SXT:V®QP1C —• V <S>qp K. 

If G = GL(V), then any isocrystal with underlying vector space V <S>Qp /C arises this 
way; b is the matrix of <j> with respect to some basis of V ® Q p /C, and the cr-linearity 
of (j) implies that changing the basis replaces b by a cr-conjugate matrix. For gen­
eral G and r, the isocrystal Nr has "additional structure" in the sense that invariants 
of G in tensor powers of V give rise to 0-fixed vectors ("crystalline Tate classes") in 
the corresponding tensor powers of NT. When G is the similitude group of a non-
degenerate bilinear form on V, then (NT,<f>) has a polarization of the corresponding 
type in the category of isocrystals; when V is a C-module for some Qp-algebra G, and 
G C GLc(V), then one obtains a map C —> End(7Vr, (j>). Combining these two kinds 
of structure, one obtains the sort of isocrystals arising from the Dieudonne modules 
of abelian varieeties of PEL type. The moduli spaces of such abelian varieties are 
Shimura varieties. The present lecture describes the stratification of the special fibers 
of such Shimura varieties at primes of E(G, X) dividing and the conjectural strat­
ification of the (conjectural) special fibers of general Shimura varieties, in terms of 
isocrystals. 

We briefly recall the formalism of Shimura varieties. Suppose G is a reductive group 
over Q. Let X be a G(R)-conjugacy class of homomorphisms h : Rc/R&m —> GR SO 
that the pair (G, X) satisfies the axioms defining a Shimura variety. Thus X is 
naturally a finite union of isomorphic hermitian symmetric spaces, and for every open 
compact subgroup K e G (A/) , where Af defines the ring of finite adeles, 

K S h ( G , X ) ( C ) = G(Q)\X x G(Af)/K. 

is the set of complex points of a quasi-projective algebraic variety, with canonical 
model over a certain number field E = E(G,X) (the reflex field). The reflex field 
does not depend on K, and the natural continuous action of G(Af) on 

Sh(G,X)(C) = l i m K S h ( G , X ) ( C ) 
K 

is rational over E. In particular, for any irreducible admissible representation TT 
of G (A/) , the 7r-isotypic component of the RomG(Af)(^^ Hl(Sh(G,X),Q^)) (etale 
cohomology) is naturally a representation space H1[K] for Gal(E/E), easily seen to 
be finite-dimensional. 

For any point h G X, we let jih : G m ? c —> Gc denote the (complex) cocharacter 
associated to h: identifying the complexification of Rc/R&m) with C x x C x , we have 

fjbh(z) = hc(z, 1). 

The conjugacy class of /ih depends only on X , and its field of definition is precisely 
E(G,X). We may regard / 2^ , or simply as a character of a maximal torus of the 
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complex dual group G of G, hence as an extreme weight, necessarily minuscule, of 

a certain irreducible representation of G. Let denote the representation of the 

L-group LG (relative to E(G,X)) constructed by Langlands [La]; its restriction to 

G is just the minuscule representations with extreme weight ¡1. In [La] Langlands 

expressed the expectation that most of the middle-dimensional £-adic cohomology of 

S h ( G , X ) would break up as a sum in Groth(G(A/) x G&\{E/E)): 

(8.1.2) HdimX(Sh(G, X),Qe) = 8717 ® ^(717) 0 endoscopic contributions 

where the sum on the right is taken over those admissible irreducible representations 

of G(Af) occurring in stable cohomological L-packets (the meaning of "most" above) 

and 7^(717) is a Q^-valued representation of Gal(E/E)) of dimension dim rM. Moreover, 

at a place v where 717 is unramified, the local component 7TV of 717 is classified, via 

the Satake isomorphism, by a semi-simple conjugacy class S(TTV) G L G ( Q ^ ) , and up to 

conjugacy, geometric Frobenius is given by the formula 

(8.1.3) r£(nf)(Frobv) = r^s{7rv)). 

For the Shimura varieties considered in the present article, and for those attached to 

twisted unitary groups with general signatures, this identity is established for almost 

all unramified places, up to multiplicities, by Kottwitz in [K4]. The article [K5] 

also contains results on general PEL-type Shimura varieties that strongly support the 

predictions of [La]. 

Assuming one has a 717 that contributes to the non-endoscopic part of the right-

hand side of (8.1.2), how can (8.1.3) be extended to ramified places? Naturally, one 

assumes the Satake parameter will be replaced more generally by a parameter given 

by the (in general still conjectural) local Langlands correspondence for G, but this 

begs the question of how ramified local representations arise in the cohomology of 

Sh(G, X). If v is a place of E dividing a rational prime p at which the group G is 

unramified (briefly: v is an unramified place for Sh(G, X ) ) , and if Kp is a hyperspe-

cial maximal compact subgroup of G ( Q P ) , then for sufficiently small compact open 

subgroups Kp C G ( A j ) , one expects KPKP Sh(G, X) to have good reduction at v 

(cf. [K5] for the PEL case). Let KPS denote the special fiber. Guided by our ex­

perience with the Shimura varieties treated in [HT], one would then expect KPS to 

have a stratification in terms of isocrystals. Moreover, assuming the K' .KP Sh(G, X) 

have reasonable integral models for open subgroups K'p C Kp, one would expect the 

stratification to lift to the corresponding special fibers K*S m s u c n a w a v ^ n a ^ the 

vanishing cycles are well-behaved along the strata. This latter hope is certainly too 

optimistic - no one knows how to generalize the theory of Drinfel'd level structures -

but it is reasonable to assume that different kinds of ramified contributions to re(irf) 

correspond to the different strata, just as one saw in (6.1) that the n — /i-dimensional 

irreducible representations of the local Galois group arise from the stratum S^H\ 
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What can we mean by "different kinds" of ramification? We need a concept playing 

the role for a general G that n — /¿-dimensional irreducible representations play for 

GL(n), as h varies from 0 to n — 1. In the preceding lectures, the n — /i-dimensional 

irreducible representation was attached to a supercuspidal representation of the factor 

GL(n — h) of a Levi subgroup of the maximal standard parabolic of GL(n) of partition 

type (n—h, h). Closer examination reveals that the same n—/i-dimensional irreducible 

Galois representation occurs for irreducible admissible representations of GL(n) in­

duced from standard parabolics of partition type (n i , . . . , n r ) , where at least one of 

the rij equals n — h. The following section describes a relation between stratifications 

- in most cases conjectural - of general Shimura varieties, and irreducible compo­

nents of restrictions of the Langlands representation rM to Levi factors of parabolic 

subgroups of LG. This relation serves in [H3] to motivate conjectures on the coho-

mology of Rapoport-Zink p-adic period domains, and their relation to the cohomology 

of Shimura varieties. Partial results in this direction, due to L. Fargues, are described 

in the final section. 

8.2. Classification of strata. — For the moment, we set aside the global arith­

metic motivation and concentrate on the formal properties of isocrystals with addi­

tional structure, as analyzed by Kottwitz in [K6, K7]. Let F be a finite extension 

of Q p , and let V = Gal(F/F) . Let G be a quasi-split reductive group over F, and fix 

an F-rational Borel subgroup Po of G, with Levi factor To and unipotent radical No', 

This determines an order on the root lattice of G and, dually, on that of the complex 

dual group G. Let A C To be a maximal F-split torus, with cocharacter group X*(A), 

and let $o C Hom(X*(^4), Z ) denote the set of roots of A in N0. Define 21, GQ C 21, 

as in [K7, pp. 267-268]: 

2l Q = X*(A) <g>z Q; a = X*(A) ® Z R; 

GQ = {x e 21Q I (a,x) > OVa G $ 0 } -

Let 

V : B(G) GQ 

be the Newton map, defined as in [RR] and [K6, loc. cit.]. When G = GL(n), V is 

the map that associates to an isocrystal its set of slopes with multiplicities, ordered 

in accordance with the choice of Po; for general G, one can obtain V by embedding G 

faithfully in an appropriate GL(n) and using Tannakian arguments. 

If P is a standard parabolic subgroup, let Ap C A be a split component, and define 

2lp = X*(Ap)(8)zM and 21P5Q as above. Then 2lp is naturally a subset of 21, and indeed 

the chamber GQ is a disjoint union over standard parabolics of the corresponding 

walls 2lp (see [K7, 5.1] for this notation; we omit the subscript Q for the walls). Let 

2lp D 2lp denote the corresponding closed chamber. 

Following Kottwitz [K7, §6], we let B(G,¡i) = B(GF,fj) be the set of 5 € B(G) 

satisfying the following condition: 
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(8.2.1) Under the natural map 

B(G) — X*(Z(G)R) = ff0(r,7ri(G)) 

(see [K6, §3] for the first version of the maps, [Mi2,Prop. B.27] for the second) the 

image of S is the negative of the class of — [xx (see [Mi2, 6.1.4] for an explanation), 

and such that 

(8.2.2) V{8) ^ m-

Here G CQ is what Kottwitz denotes ¿¿2, and the order ^ is the usual lexicographic 

order. The 6 G B(G,fj,) are precisely those such that, up to replacing ¡1 in its conjugacy 

class, the pair (5, /i) is weakly admissible in the sense of [RZ]. Equivalently, the filtered 

isocrystal induced by (6,11) on any p-adic representation of G is weakly admissible in 

Fontaine's sense. 

Recall that S G B{G) is basic if M(8) = G. Let B(G)b denote the set of basic 

classes. Condition (8.2.1) determines a unique element G B(G)b (cf. [K7, 6.4]). 

For ö G B(G), let Pg C G be the unique standard parabolic subgroup such that 

V(S) G Sl+;°. If P = LU is a standard parabolic, let B(G)L,R = {5 G B{G) \ Ps = P}. 

Then B(G) — ULB(G)L,r, where L runs through standard Levi subgroups of G 

(i.e., containing the chosen To). Here we are referring to [K7, (5.1.1)], but we have 

replaced his notation B(G)p by B(G)L,r- If L is a standard Levi subgroup, then 

there is a natural map %LG • B(L) —• B(G) [K6, §6]. Note that 2lp is a chamber in 

2lp, the 21 associated to M . Thus there is a Newton map V : B(L) —> 2lp; let B(L)£ 

(resp. B(L)^) C B(L)b denote the subset whose image under this Newton map is 

contained in 2lp (resp. in Sip). Then Z L G is injective on B(L)£, and B(G)L,r — 

^ G ( B ( L ) + ) . 

We now assume F = Q p , and let E be the field of definition of the conjugacy class 

of ¡1. Let r# = Gsl(E/E). Consider the Langlands representation rM of L G , taken 

relative to E. Let P = LU C G be a standard Qp-rational parabolic. The repre­

sentation rM decomposes, upon restriction to L L , as a sum of irreducible components 

Co(L, / / ) , each intervening with multiplicity one. Indeed, ¡1 is a minuscule weight, with 

stabilizer Wß = WQ for a certain parabolic subalgebra q C Q defined over Q . The 

irreducible components of are indexed by the set of T^-orbits in (Wp\Wc/Wq) 

where Wp is the absolute Weyl group of L, or equivalently of its Langlands dual L. 

The highest weight of the component corresponding to w, relative to the standard 

ordering induced by PQ, is the one in the orbit containing W/JL. Let WQ{L) C W(G) 

denote the subgroup of elements normalizing L. Since L is Qp-rational, the action 

of r on WQ stabilizes WQ(L). We identify two elements A, A' G CQ(L,h) if they are 

associate; i.e., if there is an element of WQ(L) that takes A to A'. Let C(L,/x) be the 

set of equivalence classes for this relation. 
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Remark 8.2.3. — By definition, 

r E = {aer\a(^eWG^)}. 

It follows that there is a bisection between the set of Ye orbits in Wq (AO and the set 

ofY-orbits in the Wq X T-orbit of ¡1 in X * ( T ° ) . Thus C(L , / i ) can be identified with 

the set ofWp tx (Wg{L) K V) orbits in the Wq K T-orbit of ¡1 in X*(T0). In particular, 

we can replace Te-orbits by T-orbits in the following discussion. 

We index the elements of C(L, fi) by their highest weights; if [A] G C(L, fi) consists 

of several elements of CQ(L, yu), we take the one with the highest weight relative to the 

standard ordering on X * ( TQ ) defined by Po (for which is a highest weight). Each 

component in Co(L,/i,) is obviously minuscule: its weights form an orbit under Wp. 

Now restriction to the center Z(L) defines a one-to-one correspondence 

(8 .2 .4) {minuscule highest weights of L} <-» X*(Z(L)). 

Indeed, for semisimple groups, this follows from Proposition 8 of [Bu, Ch. VIII, § 7 ] , 
and the generalization to arbitrary reductive groups is immediate. The bijection 

of (8 .2 .4) is Wg(L) IX T-equivariant (Wp acts trivially on both sides) and induces a 

bijection, which we denote between the set M(L) of T-orbits in the set of minuscule 

weights of L and X*(Z(L)T). We may identify C(L , / i ) with a subset of M(L). 

Lemma 8.2.5. — Let <S(L,/x) be the set of Wg(L)-orbits of elements x £ X*(Z(L)T) 

such that 

(!) X \x*(z(G)n =Pg(V); 

( 2 ) M \x*(z(Z)r) ^ x ; 

(3) x(Ha) £ { 0 , — 1 , 1 } for all roots a of (G, To); here Ha is the standard vector in 

Lie(To). 

Then the map (3l restricts to a bijection 

0L : C ( L , / i ) ~ S ( L , / / ) . 

Here the order in the inequality is that defined by Po on X * ( T o ) r . 

Proof — It is clear that (3l takes values in <S(L, /x). Thus we need to show that every 

element of S(L,jjl) comes from the Wg orbit of//. In other words, we need to show 

that, if A is a minuscule weight of L satisfying (1) , (2) , and (3) , then A = wfi for some 

w G Wg> But it follows from (3) and Proposition 6 of [Bu, loc. cit] that A = wfi' 

for some dominant minuscule weight / / of (G, T 0 ) . Then (1) and (8 .2 .4) imply that 

li = fi''. Condition (2) is in fact redundant. • 

On the other hand, let 

P(G, n)L = B(G, /i) H iLG(B(L)h) = B(G, /x) n iLG(B(L)+). 
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Note that B(G,JJL)L is not generally contained in B(G)L,R> Let 

aL:B(L)B^X*(Z(L)R) 

denote the bijection of [K6, Proposition 5.6]. To any element 5 G B(L)t we can 

associate its Kottwitz invariant a(6) = OLG{i<LG(S)) £ X*(Z(G)R). Then a(8) is the 

restriction of aL(S) to X*(Z(G)R). 

Lemma 8.2.6. — There is a natural bijection Strati, : C(L,/i) —• B(G,JI)L uniquely 

determined by the property that, if Strata(wfi) = ^LG(^L); then the pair (5L,W/J,) is 

weakly admissible for L. 

Proof. — The condition of weak admissibility is precisely the analogue of (8.2.1), 

namely that 

OLL(&L) = PUwfi). 
Since QL is a bijection on basic classes, this condition certainly determines Strata 

uniquely. It thus remains to be shown that OĴ  defines a bijection between B(L)£, 

which we identify with B(G, / / ) / , via iLG, and «S(L, /i). It follows from (2) of Lemma 

8.2.5 that <S(L,/i) c CXL(B(G, /X)L)- Moreover, every element of B(G,/i) satisfies (1) 

of Lemma 8.2.5. On the other hand, the order on B(L)^ defined by the Newton map 

is compatible with that on X * ( Z ( L ) r ) , i.e., by pairings with the vectors HA for simple 

roots a. Since /3G(A0 ^ OLL($L) ^ 0, for 5L G B(L)£, with ¡1 minuscule, it follows 

that OJL((5) satisfies (3) as well. This completes the proof. • 

We now let C(/x) = JJL C(L, / / ) , where L runs through the classes of standard Levi 
subgroups of G. 

Corollary 8.2.7. — There is a natural surjective map 

Strat :C(fj,) —>B(G,IJL) 

given on C(L,/x) by Strata. 

Indeed, the map is surjective because 

(8.2.8) B(G) = \JLiLG(B(L)t) 

as L runs over the set of standard Levi subgroups of G. Note, however, that the map is 

not generally injective. Indeed, the union in (8.2.8) is not disjoint in general. However, 

this is the only source of ambiguity. To b G B(G, / / ) , we let Rep(6) = Strat _ 1(6); it is a 

set of pairs (L, A), with A G C(L, / / ) , partially ordered by inclusion in the obvious sense. 

It contains a maximal element (M = M(b), A&) with the property that b G B(G)M{b)\ 

here M(b) is defined as above. 

Lemma 8.2.9. — With the above notation, there is a bijection between Rep(6) and the 

set ofV(b) of standard parabolics P C M = M(b) that transfer to the inner form J(b) 

of M defined by the basic a-conjugacy class b. 
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Proof. — We have seen that Rep(b) is in bijection with the set of pairs (P = LU, &L) 
where b^ G B(L)b is such that ILM^L) = b. Thus the lemma comes down to the 

assertion that b is cr-conjugate to an element of B(L)b if and only if P transfers to 

J(6). We let M a d be the adjoint group of M and 6ad the image of b in B(Mad)b-

There is a bijection 

(8.2.9.1) j : H\r, M a d ) ^ B(Mad)b 

(cf. [K7, 3.2]) and j - 1 ( 6 a d ) is the cohomology class defining the inner form J(b). 

One direction is simple. Suppose b — *LG(^L) as above. It follows that the inner 

form J(£>L) of L defined by &L transfers to J(b), hence is necessarily a Levi subgroup 

of a rational parabolic Pb C J{b). 

To construct a map in the other direction, we may as well assume M = M a d, since 

both sides of the purported bijection are unchanged when M is replaced by M a d. 

Thus b = 6ad. Let Q(b)o be a standard minimal parabolic subgroup of J(6), with Levi 

subgroup L(b)o and anisotropic kernel I(b)o- Let Qo be a standard parabolic subgroup 

of M that transfers to Q(b)o, and let IQ C QO be the reductive subgroup corresponding 

to I(b)o. It is standard that the cohomology class in i f 1 (r, M a d) defining the inner 

form J(b) is represented by a class in i? 1 (r, I0); i.e., b is cr-conjugate to 6/ G B(Io) fl 
j '7 0(ff 1(r, Jo))5 where for any reductive group H, there is a natural bijection 

(8.2.9.2) jH:H\T,H)—*B(H)h 

as in (8.2.9.1). Let P = LC7 be a standard parabolic subgroup of M a d that transfers 

to Pb C J(b), and let L& c Pb be a Levi subgroup, necessarily an inner form of L. 

Then Io C L. The obvious commutative diagram then shows that b = iiQM{bi) G 

7m[iJ 1(r, L) —> B(L)b —• £?(M)], hence a fortiori belongs to the image under ZLM of 

the image of 6/ in B(L)b. • 

(8.2.10) Example. — We work out the stratification in the case of a Shimura variety 

Sh(G, X) uniformized by the symmetric space associated to a unitary similitude group 

of signature (k, n — k)\ for some integer 0 ^ k ^ n. For simplicity, we assume G to be 

the unitary similitude group, as in (1.2), relative to a central simple algebra over an 

imaginary quadratic field E\ however, we now assume G(R) — • GU(k1n — k). For 

an appropriate choice of Shimura datum ( G , X ) , the corresponding representation 

rM of the dual group G = GL(n, C) x C x of G is of the form Ak St <g>i/, where St is 

the standard representation of GL(n) and v is a character which we simply ignore. 

We consider a prime p that splits in E, so that G(Q P ) = GL(n,Qp) x Q*. Let 

K = Kpx Kp c G ( i / ) b e a level subgroup, with Kp hyperspecial. The special fiber 

of K Sh(G, X) then naturally carries a family H of p-divisible groups of height n and 

dimension /c, generalizing the family considered in [HT]. (There is an "additional 

structure" coming from the character of Q£, but this plays no role in the following 

discussion.) 
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The strata correspond to the Dieudonné-Manin classification of isogeny classes of 

p-divisible groups in terms of the slope decomposition. The set B(G, ¡1) can then 

easily be identified with the set of partitions 
m 

(8.2.10.1) (fe,n) = 5^(r I ,5 I ) 

2=1 

where r*, Si are non-negative integers satisfying rz ^ Si for all i, and the rational 

numbers Vi/si are all distinct. The order in the sum is immaterial. The geometric 

point x € S belongs to the stratum 5({ ( r 2 , s^)}) if and only if the p-di visible group Hx 

is isogenous to a p-divisible group of the form Yli(Hri/8i)
di^ where /Hri/Si is a simple 

p-divisible group of slope Vi/si and di is the greatest common divisor of r t and Si. 

The centralizer in G(JC) of the corresponding slope morphism is then M({( r i , Si)}) = 

TYiLi GL(si,lC) x /C x , and the associated twisted form is 
m 

J({(N,si)}) = l[GL(dhDri/Si) x Q;, 

i—i 
where Dri/Si is the division algebra of dimension (si/di)2 with invariant ri/s*. The 

set of standard parabolics of M ( { r z , Si}) that transfer to J({(r*z, Si)}) is in one-to-one 

correspondence with the set of m-tuples (5$), where each Si is a divisor of d2. 

On the other hand, to each partition n = Y^j=i nj corresponds a standard Levi 

factor L = L({rij}) = n GL(rij,Qp)x Q x of G(Q P ) , and the Langlands dual of L has 

the same form. If we write G = GL(V) x C x , for some n-dimensional complex vector 

space V, then L is the stabilizer of a decomposition V = J^V^, with dimVj = rij. 

The restriction of AkV breaks up as the sum of the irreducible L-invariant subspaces 

e f c= f c l+...+fc t A f c l Vi 0 • • • 0 AktVu 

where k = k\ H \-kt runs through partitions of k. Thus C(fi) is the set of partitions 

(k,n) = Y?i=i(ki,ni), and the map Strat : C(/x) —> B(G,fi) consists in replacing 

the partition (k,n) = 5^* = 1 (fet , r i i) by the one obtained by adding together all pairs 

(ki,rii) with fixed ki/rii. It is easy to check that the above description of parabolics 

transferring to J ({( r 2 , s^)}) is compatible with Proposition 8.2.9. 

The book [HT] and the previous lectures are concerned with the specific case k — 1, 

and the classification is valid whether or not the base field E is imaginary quadratic. 

The partition (8.2.10.1) then has at most two terms: 

(8.2.10.2) (1, n) = (1, n - h) + (0, h) 

where the second term is present if and only if h ^ 0. The first term corresponds 

to the connected part of the p-divisible group, the second to the étale part. Then 

Strat - 1 ( l , n — h) consists of a single element, whereas Strat - 1 (0, h) consists of all 

partitions of h. In other words, Strat - x ( l , n — h) corresponds to of standard parabolic 

subgroups of GL(n) contained in and containing the GL(n — /i)-component of its 

Levi factor. 
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8.3. Results o f Fargues. — As at the end of (8.1), we consider the special fiber 

KPS at a place v of the reflex field E of the Shimura variety KPKP Sh(G, X ) with 

good reduction at v. Let GP = G Q p , and let ¡1 be the cocharacter of G associated to 

the Shimura datum (G, X), viewed as a Qp-cocharacter. Then one expects KPS to 

decompose as a disjoint union of locally closed reduced subvarieties 

(8-3.1) K P S = U "A*)-
beB(Gp,fj,) 

When (G, X) is a PEL type, KPS is a moduli space for abelian varieties with ad­

ditional structure (at least in the unramified cases considered in [K5]). Then the 

stratification (8.3.1) is known to exist: KPS(b) is the reduced subscheme whose geo­

metric points classify abelian varieties of the given PEL type and with isocrystal (with 

additional structure) of type b. That (8.3.1) defines a stratification is a consequence 

of Grothendieck's theorem on specialization of isocrystals, as generalized by Rapoport 

and Richartz [RR]. Let KPS(^ b) denote the closure of KPS(b) in the special fiber. It 

then follows from the results of [RR] that KPS(^ b) is a finite union of strata KPS(b'), 

for bf G B(GP,/J,) such that V(b') < 17(6) for a natural partial ordering (the Newton 

polygon associated to b' lies above that associated to b). 

For the rest of this discussion Kp will be fixed. We assume for simplicity that G 

is anisotropic (modulo center). For any open subgroup K'p C Kp, we consider the 

rigid-analytic space S h ^ , associated to the Shimura variety KPKP Sh(G, X) (Fargues 

considers various versions of rigid-analytic spaces, including Huber's adic spaces and 

Berkovich's analytic spaces; here we will not be precise). Let Sh^?'^ 6 C Sh^? denote 

the (open) tube over the closed subvariety KPS(^ b) of the special fiber: S h ^ ' ^ b 

is the set of points of Sh^ g whose specialization lies in KPS(^ b). For any open 

subgroup K'p C Kp, we define S h g P 6 to be the fiber product of ShT^b with ShJjS 

over Sh^?; note that this can be defined without reference to an integral model of 

KP-KP Sh(G,X). We let Sh£ g; b denote the complement of Sh^>h', for v{V) < 17(6), 

in 'shjp 6. 
j \ p 

Let nf be a representation of G(Af) contributing to non-endoscopic cohomology 

in (8.1.2). We will soon assume TTP to be super cuspidal, but for the moment we let 

P C GP be the parabolic subgroup, with Levi subgroup L, and assume that TTP is 

isomorphic to the representation induced from a discrete series representation rp of L. 

Then the Langlands parameter attached to TTP is (conjecturally) given by a homomor-

phism a (ftp) : WDEV —> LL(Q£). Compatibility of local and global correspondences, 

generalizing Theorem 1.3.6, amounts to the hypothesis that the restriction to WDEV 

of ri(iTf) to WDEV is equivalent to rM o a(np). In particular, by the discussion pre­

ceding Remark 8.2.3, 
(8.3.2) n(7TF)\WDEV = © ry(7r/)A, 

AGC(L,/x) 

where we have grouped together irreducible summands that are associate. 
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Let [iJ*(Sh(G, X ) , Q£)] denote the direct limit, over K'p'K
v, of the alternating sum 

of the ^-adic cohomology groups of K' KP Sh(G,X). We define [# c

# (Sh r i g ' b , Q,)] anal­

ogously, using this time the £-adic cohomology of the indicated rigid space. Roughly 

speaking, the stratification gives rise to an identity in the Grothendieck group of 

G(Af) x WDEV, analogous to the First Basic Identity (4.4.4): 

(8.3.3) [ t f - (Sh(G,X) ,Q, ) ]= K(Sh r i g ' b ,Q , ) ] . 
beB(G,v) 

The heuristic expectation is that, if b — Strata (A), then the representation ^ ( 7 T / ) A 

is realized on the compactly supported cohomology lim H^Sh^ ,Q^). In [HT] 

the partition (1, n) = (1, n — h) + (0, h) of (8.2.10.2) corresponds to the stratum here 

denoted S^h\ The Second Basic Identity, and more precisely the calculations (6.2.3)-

(6.2.7), show that the np that contribute to the cohomology of are precisely those 

for which TTW is induced from a parabolic subgroup of Ph corresponding to a partition 

of h. As indicated at the end of the previous section, this is just the fiber of Strat 

lying above the partition (1, n) = (1, n — h) + (0, h). 

In particular, if TTP is super cuspidal, there is only one A in the sum (8.3.2) ( 1 0 \ 

namely (L = G, wfi = fi), and Strat (A) is the basic stratum. The heuristic expectation 

is then the 

(8.3.4) Conjecture. — Let bo G B(G,[i) denote the basic class. If 7rp is supercuspidal, 

then r^nf) comes exclusively from the contribution o /[ i^*(Sh r i s ' b ° , Q^)] to the right-

hand side of (8.3.3). In other words, for b / bo, 

^ ( - l ) i H o m G ( A / ) ( 7 r / , / f c - ( S h r i ^ , Q , ) ) = 0 

mGro th (G(A/ ) ) . * 

This conjecture was verified in [HT] for the Shimura varieties considered there, 
and is asserted as (5.1.4) above. As we have seen, the proof of this conjecture is 
based on Boyer's trick, which proves that the cohomology of the non-basic strata is 
induced from parabolic subgroups, because the strata themselves are induced. For 
more general Shimura varieties this trick fails; it is easy to see that the strata are 
generally not induced. However, Fargues proves: 

(8.3.5) Theorem (Fargues). — Suppose G is the unitary similitude group of a division 

algebra B of degree n2 over a CM field of the form F = F+E, as in (1.1). Suppose 

B is locally everywhere either split or a division algebra. Let p be a prime unramified 

in F. Suppose either 

(1) p splits in E; or 

(2) p is inert in E and n = 3 

Then Conjecture (8.3.4) is true. 

( 1o) rphis does not mean the representation r ^ ( 7 r f ) \ w D E is necessarily irreducible, or even indecom­

posable. 
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In case (1) Fargues actually makes the slightly stronger assumption that p is inert 
in F, but this is merely to simplify the exposition. 

In the absence of Boyer's trick, Fargues proves Theorem 8.3.5 by proving 
vanishing of the trace of a supercuspidal matrix coefficient 4> against the sum 
Y^ii-lYH'iSh^iQt) appearing on the right hand side of the formula in (8.3.4). 
By (8.3.2), this is equivalent to showing that the trace of 0 on [H9(Sh(G,X),Qi)] 
equals the trace of 0 on [F c

# (Sh r i g ' b °, Qe)]]. 
The trace of 0 on [i7*(Sh(G, X), Q£)] is given by the cohomological trace formula 

(5.4.2). To compute the trace of (j) on [iJ£(Sh n g , b o , (Q^)]], Fargues carries out a prelim­
inary analysis of fixed-point contributions of isogeny classes, as in Lectures 6 and 7. 
However, for a variety of reasons, this analysis, unlike the analysis in Lecture 5, does 
not calculate the trace of a Hecke operator on cohomology, even of the basic stratum, 
unless the Hecke operator has first been twisted by a high power of Frobenius, as 
required by Fujiwara's trace formula. Since the cohomological trace formula (5.4.2) 
has no room for twisting by Frobenius, there seems to be an insurmountable obstacle. 
Fargues overcomes this obstacle by making use of the Galois representation 77(717), 
whose restriction to WDpw can be determined by combining the results of [K4] (at 
unramified primes away from p), the Main Theorem 1.3.6 (for a Shimura variety of 
signature ( l ,n — 1) attached to an inner form of G), and Chebotarev's density theo­
rem. In particular, he finds that Tt(/Kf)\wDFw depends only on 7r p , which allows him 
to "twist by Frobenius" for fixed TTP at the level of the cohomological trace formula. 

For general PEL types of type A and G, Rapoport and Zink have shown in [RZ] 
that the basic stratum Sh r i g ' b ° admits a rigid-analytic uniformization by a tower of 
moduli spaces M ( G P , \I)K>V \ a special case of this uniformization is (3.4.10). Using this 
uniformization, Fargues determines the trace of [if* (Sh r i g ' b ° , <Q )̂]] by constructing a 
Hochschild-Serre spectral sequence, simultaneously generalizing that of [HI] and the 
(much simpler formula) (5.2.11), in terms of the cohomology [H*(M(GP, / / ) , Q ^ ) ] , as 
defined by Berkovich or Huber. These cohomology groups are smooth modules for 
Gp x Jb0 x WDpw, where Jb0 is the inner form of Gp given as the group of self-
quasiisogenies of the p-divisible group attached to any point in the basic stratum. 
In Theorem 8.3.5 (1), Jb0 is the multiplicative group of a division algebra with invari­
ant r/n for some r prime to n. Using Theorem (8.3.5) and the existence of the local 
Langlands correspondence for GL(n), Fargues then proves 

(8.3.6) Theorem (Fargues). — Under the hypotheses of Theorem 8.3.5 (1), let TT be an 
irreducible admissible representation of Jb0 corresponding to a supercuspidal represen­
tation JL(7r) of Gp via the Jacquet-Langlands correspondence. Then 

J2(-iyKomJbo(Hi(M(Gp,riMeU) = [JL(TT)] ® r M o a * ( J L ( 7 r ) ) . 

i 
Here at is a certain normalized twist of the local Langlands correspondence. Far­

gues obtains similar results for C/(3), but the presence of L-packets complicates the 
statement. 
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Appendices 

A . l . Traces, pseudocoefficients, and the Jacquet-Langlands correspon­
dence. — In the present section, K is a finite extension of QP. Let g denote a 
positive integer, and let A(g, K) denote the set of equivalence classes of irreducible 
admissible reprsentations of Gg = GL(g,K), Ad{g,K) (resp.At(g, K)) the subset of 
discrete series (resp. tempered) representations. For any representation TT G A(g,K), 
the trace Tr(7r) is a distribution, defined on C£°(Gg) as the trace of the finite rank 
operator 

(A.1.1) п(Ф) = / Ф(9)п(9)ад. 
JG9 

Note that the trace depends linearly on the choice of Haar measure. It is known thanks 
to Harish-Chandra that Tr(7r) is represented by a locally Lx-function XTT, defined on 
the regular semi-simple elements Gr

g

e9. (Of course Harish-Chandra's theorem is valid 
for any reductive algebraic group over QP.) It is also known that 

(A. 1.2) Linear independence of characters. — Any relation J^neA a * TrC71*) = 0; where 
A C A(g, K) is a finite subset and a^ G C, is trivial. 

Let A*,fin C Ad{g,K) be any countable subset with the following property: 

(A.1.3). — For any IT G Ad(g,K), the set of unramified characters tp of Kx such that 
7r ® ip o det G v4d,fin is finite. 

In other words, for any 7r G Ad{g,K), the intersection A*,fin(7r) of Ad,fin with the 
inertial equivalence class of n is finite. Let If n G Ad,nm a pseudocoefficient for 7r, 
relative to Ad^n, is a function fa G C^°(Gg) such that 

(A.1.4) lbr(7r)(0 w) = 1; 

Tr(ir')(fa) = 0 if either TT' G AdM> * o r ^ € At(g, K),TT' £ A*,fm 

(A.1.5) Theorem ([DKV], [HT, 1.3]) 

(i) For any set Ad,fin satisfying (A.1.3) and any TT G Ad^n, a> pseudocoefficient fa 

for 7r (relative to Adfin) exists. 

(ii) If it is supercuspidal, then Ti^'^fa) = 0 for any TT' ^ n (not necessarily 

tempered). 

(iii) For general n G Ad^n, let 7r' G A(g, K) be a non-tempered representation such 

that Tr(/K,)((l)7r) ^ 0. Then ir' belongs to the block of IT; i.e., there is an unramified 

character of Kx, a proper standard parabolic subgroup P C Gg, and an irreducible 

admissible representation r of P such that n' 0 i\) o det and TT are Jordan-Holder 

constituents o/n-Indp f l r. 

The pseudocoefficients, and the block of 7r, can also be defined cohomologically, as 

Euler-Poincare functions; cf. [SS], Proposition III.4.1 and Corollary III.4.8. 
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Without the restriction to Adfin, the theorem is false, because a given TT can be 
twisted by an arbitrary unramified character, and the family of such twists is contin­
uous. For g = 1 the existence of pseudocoefficients without restriction would imply 
that the Fourier transform is defined on a discrete space, which is false. 

Pseudocoefficients are not unique. For the purposes of the present notes, we pri­
marily need them for supercuspidal 7r, in which case the construction is relatively 
simple. Let Zg denote the center of Gg. Let (j)v^v be any matrix coefficient of the 
contragredient 7 r v of 7r: 

<t>vA9) = (^V(g)v\v) 

for some v' G 7 r v , V G TT such that (v', v) ^ 0. Let T̂T denote the central character of 
7r; then 

(A.1.6) <j>v',v{zg) = i/j~1(z)(j)vfjV(g),z G Zg. 

Let C^°(Gg,ip~1) denote the space of functions compactly supported modulo Zg and 
satisfying (A.1.6). Since TT is supercuspidal, the matrix coefficient </>v'iV belongs to 
C?(Gg,1>?). 

If TT' is any admissible representation of Gg with central character t/> = , then any 
function / G C^°(Gg,ip~1) defines a trace class operator 7r'(/) on n' by the formula 

(A.1.7) TT'(/) = / f(gW(g)dg. 
JGg/Zg 

Here dg is an invariant measure on Gg/Zg. We write Tr^ g ) ^(7r) = Tr^ f l ) ^ w (7r) to 
distinguish the trace of the operator defined by (A.1.7) from that defined via (A.1.1). 
Once and for all, we choose our Haar measure dz on Kx so that 

(A.1.8) / dz = 1, 
Jo* 

and define dg to be the quotient measure dg/dz. Then (cf. [DKV], A.3.g) 

(A.1.9) T r z „ ^ (*•)(&,',«) = dW-Vt,',t,(l) 
where d(7r) is the formal degree (which depends on the choice of Haar measure onGg). 
Thus by choosing v' and v appropriately, we may assume Tr^ ?^ 7 r(7r)(0 v/ ? v) = 1; we 
then write (j>z = <j>V',v 

As above, we let 6 = WK ° det : Gg —> Z, with WK the valuation on K. Let a < b 
be a pair of integers, with b — a + 1 an integral multiple of say 

6 — a + 1 = mg. 

Let a; denote the interval [a, 6]. For any locally constant function / on G 9 , we define 
the ^-truncation tu(f) G C™(Gg) by 

(A.1.10) tu(f)(9) = f (9)^(9) 6 U/)(<7) = 0 otherwise. 
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Then it is easy to see that, for any interval [a, b] as above with m sufficiently large, 

relative to the set Af,fin, the function 

(A.1.11) ^ = fa^ = - t ^ z ) 
m 

is a pseudocoefficient for 7r relative to A*,nn- (In any case, fa]LJ has trace zero on any 

tempered representation not inertially equivalent to 7r, and for large enough m, fa;LJ 

separate elements of Ad,hn{^)') In particular, we can assume all fa have support in 

elements of arbitrarily small (or arbitrarily large) determinant. This is important in 

the applications of Pujiwara's theorem. 

Henceforward we drop the assumption that TT be super cuspidal. The truncation 

can be defined for any pseudocoefficient and has the properties indicated above. If 

7 G Gg is a semisimple element and / G C£°(Gg), the orbital integral 07(f) = 0 1

9 (/) 

is defined as in (5.4.1). The orbital integral 0 7 ( / ) depends on the choice of Haar 

measure dg on Gg, which has already been fixed (and is reflected in the choice of fa), 

and on the Haar measure on the centralizer Z(j) C Gg. Let dz7 denote the quotient 

measure on the quotient Z{^)/Zg (recall (A.1.9)). Then 

(A.l.12) Proposition. — The orbital integrals 01{(j)) of the pseudocoefficient 4> = fa;uj 

vanish on all non-elliptic semisimple regular 7 G Gg. For 7 G Gg regular elliptic, 

07(4>) = v o l ( Z ( 7 ) / Z f l ) - 1 l t ( „ ( x - v ) ( 7 ) , 

where 

vol(Z(7)/Zs) = / l d i 7 . 
JzM\Gg 

The vanishing of the non-elliptic orbital integrals is the Selberg principle. The 
expression of the elliptic orbital integrals in terms of the character is well-known; 
cf. [DKV], A.3, and the normalization (A.1.11) introduces the factor 1/ra as well as 
the truncation. 

The Jacquet-Langlands correspondence is a bijection 

(A.1.13) MGg)^A(Jg). 

The notation JL designates the bijection in either direction. It is characterized by the 

following character identity 

( A . 1 . 1 4 ) X(JL(TT))(O) = ( - 1 ) 9 - 1 X ( 7 T ) ( 7 ) . 

if 7 is an elliptic regular element and a G Jg transfers to 7 . Thus the expression in 
Proposition (A. 1.12) can be rewritten 

0 ^ 4 > ) = ( - l ) 9 - 1 ^ v o l ( Z ( 7 ) / Z 9 ) - 1 C ( X j L ( 7 r v ) ) ( a ) 
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for 7 elliptic regular; the truncation for Jg is defined by analogy with that for Gg. 

Both sides of this formula are defined for general elliptic elements, and the formula 

extends with the addition of signs: 

(A.l. 12 bis) Proposition. — For 7 £ Gg elliptic, a £ Jg an element whose conjugacy 

class transfers to the conjugacy class of 7 , the following identity holds 

O 7 ( 0 ) = ( - l ) » - 1 c ( 7 ) v o l ( Z ( 7 ) / ^ ) - 1 ^ ( , ( x j L ( . v ) ) ( a ) . 

Here e (7) is the Kottwitz sign (cf [L, 1.7.1]). 

We let .4( Jp)fin denote the image under JL of A*,fin- Then the analogue of Theorem 
A.1.5 holds for w4(J5)fin; indeed, the pseudocoefficients can be constructed starting 
from matrix coefficients just as for GL(g, K). 

If 7r is an admissible representation of G(A), or of then Tr(7r), defined just 
as in the local case, exists as a distribution on C£°(G(A)). If n = ® v 7 r v is irreducible 
and (/> = ®v(j)v is decomposed with (j)v £ C^°(G(QV)), almost everywhere equal to the 
characteristic function of a maximal compact subgroup, then 

(A .1 .14 ) Tr(n)(4>) = l[Tr(7rv)(4>v). 
V 

A.2. L and e factors, and some results of Henniart. — In this section F is 

a number field, v designates a (variable) place of F, and K denotes a local field of 

characteristic zero, generally arising as the completion Fv of F at v. The notation 

of (A.l) for K remains in force, except that K can now be an archimedean field, in 

which case the notion of "irreducible admissible representation" needs to be modified 

accordingly. By Ao(n,F) we denote the set of cuspidal automorphic representations 

of GL(n,F): i.e., the irreducible constituents of the space Ao(GL(n, F)\GL(n, Ap)) 

of global cusp forms. 

Let Age.n{p»> K) denote the set of generic irreducible admissible representations of 

GL(n,K). Let n and m denote two positive integers, n ^ m, and let n £ A(n, K), 

nf £ A(m, K). Let II £ Ao(n, F) , IT £ Ao(m, F). We fix an global additive character 

^ : adp / F —>CX, and a local additive character ' K —» C x ; if K — Fv we assume 

to be the restriction of ij) to K. 

We momentarily let N be a positive integer, and let o~o £ Q(N,K). Let L(s, o~o) 

denote the local Artin L-factor of 00, which is a product of Y-functions if K 

is archimedean. Langlands and Deligne {cf. [De2]) have defined local constants 

e(s, 00, ipic) which are entire nowhere-vanishing functions of s £ C, and which are 

compatible with the global functional equations of Artin-Hecke L-functions in the 

following sense. Let £ 0 be an iV-dimensional representation of the global Weil 

group of F, and let L(s, £0) denote its global L-function. For any place v of F, let 

^>o,v € 6(iV, Fv) denote the restriction of £o> and let i\)v denote the restriction of the 
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additive character tjj. Then there is a functional equation 

(A.2.1) L(*,£o) = e ( * , E 0 ) L ( l - * , E o ) ; e (« ,E 0 ) = J J e ( « , E 0 f f , , ^ v ) 

Note that the product of the local ^-factors is independent of the choice of additive 

character. 

The local factors are characterized by a number of appealing properties, described 

in detail in [De2]. We simply recall that, for N = 1, they are defined by Gauss sums 

as in Tate's thesis; they are multiplicative in the sense that 

(A.2.2) e(s,a0 0 a b f e ) = e(s,cr0,^K) • e{s, o\, ipx), 

hence define functions on the Grothendieck group of virtual representations of WDK] 

finally, they are inductive in degree zero: if Kf/K is a finite extension, and a' is a 

virtual representation of dimension zero of WDK' , then 

(A.2.3) e(8, </, ^ K o TrK,/K) = e(s, IndK,/K(a')^K). 

These properties are used in (1.4). 

Now suppose a G Q(n,K), a' G Q(m,K), and let N = nm. Then we can define 

e(s,a ® <r',ip), which arises as the local factor in a functional equation of the form 

(A.2.1) for the tensor product of two representations of the Weil group of F. Motivated 

by the expectation of a local Langlands correspondence, one would then expect to be 

able to attach analogous local factors to pairs of representations 7r, 7r' as above. This 

can be done, and with the notation introduced above, there is a global functional 

equation 

(A.2.4) L(s, n ® n7) = I J U v ® K ^ v W - s, n v ® n ;' v) 
V 

already encountered in (1.4.2). Moreover, the local epsilon factors of pairs satisfy the 

following analogue of (A.2.2): 

(A.2.4) e(s, 7T ffl TT', ipK) = e(s, TT, ipK) • e(s, TT;, ^ K ) , 

with notation as in (1.4). 

The two constructions of these local factors, respectively in [JPSS] and [Sh], char­

acterize them in terms of local harmonic analysis on general linear groups over K, 

or more precisely in terms of local functional equations generalizing those found in 

Tate's thesis for n = m = 1. However, the two characterizations look quite different, 

and in both cases apply only when Iiv and are generic, as is automatically the 

case when they arise as local components of cuspidal automorphic representations. 

In the general case, local factors can be defined ad hoc using the classification of all 

representations via induction from generic representations. 

With these preliminaries out of the way, we can now explain some results proved 

by Henniart long before [HT] and [He5], which are used in a crucial way in both 

proofs. 
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Henniart's numerical local Langlands correspondence [He2], and the splitting prin­

ciple it implies [He3], have already been invoked (cf. the Introduction and the footnote 

to (5.3)). The following theorem was mentioned in the introduction: 

Theorem A.2.5 ([He4, Theoreme 1.1]). — Let K be a non-archimedean local field and 

n ^ 2. Let 7Ti , 7T2 G Ao(n, K). Suppose for all integers m < n and all IT' G Ao{m, K) 

we have the equality 

e(s, 7n <8> 7r', \I>K) = e(s, n2 <8> 7r', ijjK). 

Then 7Ti and 7T2 are equivalent. 

As noted in the introduction, this theorem implies in rather straightforward fashion 

that there is at most one family of local correspondences satisfying properties (0.1)-

(0.8). The key property (0.8) is obtained in (1.4), for representations induced from 

characters, from a global identity of //-functions with functional equation. In the 

setting of (1.4), this yields the equality 

(A.2.6) J] 7 w ( s , U(X)W 0 n(x%, i/>w) 

^ = E[ ^ M n d ^ , ™ A F i , ™ rdXw) ®IndF>w/Flw rt(x'w),il>w)> 
w£S 

Here S is the finite set of primes where the data are ramified (including all places w 

at which either of the local ^-factors is non-trivial and all places where one doesn't 

know a priori that Lw(s,U(x) ® n(x')) = Lw(s,lndF2/Fl re(x) ® lndF^/Fl r*(x'))), 
and ^ 

m _ ew(s,?,ipw)Lw(l - g , ? )  
l w [ ' } ~ L ( 5 , ? ) 

In particular, the place of interest v, at which Fv = K, belongs to S. Using an 

argument originating in [De2], and applied in the automorphic setting in [Hel], one 

shows that one can twist by characters highly ramified at all w G S — {v} to simplify 

all the e factors on both sides except for the one at the place v of interest, at which 

Fv = K. It then becomes obvious that the e factors in (A.2.6) away from v match on 

the two sides. A weight argument serves to eliminate the local L-factors in (A.2.6), 

and all that remains is the equality (1-4.4) of e factors at v. 
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