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I N S T A B I L I T Y OF R E S O N A N T T O T A L L Y E L L I P T I C P O I N T S 

OF S Y M P L E C T I C M A P S IN D I M E N S I O N 4 

by 

V a d i m Kaloshin , John N. Mather & Enr ico Vald inoc i 

Abstract. — A well known Moser stability theorem states that a generic elliptic fixed 
point of an area-preserving mapping is Lyapunov stable. We investigate the ques­
tion of Lyapunov stability for 4-dimensional resonant totally elliptic fixed points of 
symplectic maps. We show that generically a convex, resonant, totally elliptic point 
of a symplectic map is Lyapunov unstable. The proof heavily relies on a proof of 
J. Mather of existence of Arnold diffusion for convex Hamiltonians in 2.5 degrees of 
freedom. The latter proof is announced in [Ma5], but still unpublished. 

Résumé (Instabilité des points totalement elliptiques résonnants d'applications symplec-
tiques en dimension 4) 

Un théorème célèbre de Moser établit la stabilité au sens de Lyapounov des points 
fixes elliptiques génériques des applications qui conservent l'aire. On étudie la sta­
bilité de Lyapounov des points fixes totalement elliptiques résonnants d'applications 
symplectiques en dimension 4. On montre que, génériquement, un point totalement el­
liptique résonnant convexe d'une application symplectique est instable au sens de Lya­
pounov. La démonstration s'appuie de façon essentielle sur celle donnée par J. Mather 
pour l'existence d'une diffusion d'Arnold pour les hamiltoniens convexes à 2,5 degrés 
de liberté. Celle-ci. annoncée dans [Ma5], n'est pas encore publiée. 

1. Introduction 

J. Moser investigated the smooth area-preserving diffeomorphisms / of the plane 

with elliptic fixed points. He showed [Mo] (see also [LM] for a simple proof) that, if 

the linearization df(po) of / at a fixed point /;0 has eigenvalues e x p ( ± 2 7 r / u ; ) , which is 
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not a small root of unity, then generic-ally po is Lyapunov stable(1). An application of 

such result is the stability of the planar restricted three body problem (see e.g. [MH]). 

Let R 2 " be the Euclidean space (x{ r„./yi yn) e R2" and Q be the stan­

dard bilinear skew-symmetric 2-form i} = J2"=l d*i A d/y.;,. A Cs smooth map / : 

R 2 " R2n is called symplectic if it preserves oj. i.e. f*Q = Q. Let / ( ( ) ) = 0 be a 

fixed point. We say that a fixed point is totally elliptic if all the eigenvalues of the 

linearization df(0) are pairwise complex conjugate, non-real, and of absolute value 

one, i.e. exp(±27r /L^7) , 2ujj £ Z , j — 1 //. A fixed point 0 is called Lyapunov 

stable if for any E > 0 there is S = 6(e) > 0 such that if \p - ()| < 6. then \ fnp - 0| < e 

for all 77. 

In the multidimensional case (i.e. n > 1). totally elliptic periodic points are the 

only possible stable periodic points. Indeed, since df(0) preserves the skew-symmetric 

form uo if one of eigenvalues A of df(0) is not 1 in absolute value, then A"1 is also an 

eigenvalue. So either A or A"1 in absolute value exceeds 1. say A. The approxima­

tion of the dynamics by linearization shows that po is unstable along the eigenspace 

corresponding to A. 

R. Douady [Dou] proved that the stability or instability property of a totally 

elliptic point is a flat phenomenon for Ctoc mappings. Namely, if a (7°° symplectic 

mapping / o satisfies certain non degeneracy hypotheses, then there are two mapping 

/ and g such that 

/o — / and /o — g are fiat mappings at tlic^ origin and 

the origin is Lyapunov unstable for / and Lyapunov stable for g. 

In the present paper we begin an investigation of totally elliptic fixed points in 

dimension 4. Let / : R'1 —> R'1 be a Cs smooth symplectic mapping with a fixed 

totally elliptic point at the origin 10 ^ .s ^ oc. Demote the eigenvalues of df(0) by 

exp(±27T'/'u,'(-), j = 1.2. We assume that: 

(HI, 'resonance) Let u{) — (UJ^.LJ^) have a resonance of order at least 10. i.e. for 

any k = (ko,ki,k2) e Z3. (A'i.A'2) / 0 such that A:0 + k ^ + k2Jj = 0 we have 

l^i I + |k<21 > 9 and there is at least one k with this property. Denote 

k^o = min{|À:i| + |A:2| : k{} + A:ICJ(/ + k-2^2 = 0} and d^o = ^ minjA^o, s}. 

In particular, (HI) does not exclude possibility of rational uo{) = (pi/q,P2Iq) with 

q > pi, P2 H i id \p\ I + \p2\ > 9. We shall not consider low order resonances here. 

Denote A/,. C R2 the line of a/s in the frequency space satisfying this equation. 

Notice that such line passes through LU{). As a matter of fact, we shall construct orbits 

diffusing "along" A/,.. 

(1)\Ve remark that earlier a weaker result was obtained by V. Arnold [Arl] . Lyapunov stability will 

be defined below. 
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INSTABILITY OF TOTALLY ELLIPTIC POINTS 81 

Let (.r i. ./••_>. //i. I)2) G M4 be Euclidean coordinates. Let us introduce "canonical 
polar coordinates": 

XJ 2r:j COS 2H0J, y.i = '2r3 s i n 2 7 ^ - , J = 1,2, 

where 03 is determined modulo 1 or simply 6j G T and r} ^ 0. Denote R+ = 
{x G M : x ^ 0} the positive semi-axis. To avoid degeneracy of transformation to 
polar coordinates, it is convenient to introduce cones. For any 0 < a < l , 0 < p 
denote 

Kp = { ( N , r2) : 0 < ar i < r2 < 0 < crr2 < N < P } . 

In the interior of K^, the transformation from Euclidean to polar coordinates is non-
degenerate. Denote by 

IC(; = {(9u02,ri,r2) €T2xR%: (n,r2) € A'"} 

the cone part of the /^-neighborhood of the origin. Its complement contains neighbor­
hood of the planes {r7 = 0};-=i,2, where polar coordinates are degenerate. 

Suppose we have a totally elliptic point at r = 0 satisfying (HI). Birkhoff Nor­
mal Form (BNF). e.g. [Ar2], App. 7A or [Dou], states that for small r the map 

ri, #2, r2) = (0i, 02, R2) can be written in the form: 

( 1 ) 

0j 
Rj 

0j + woj + Bjr+ dP{r) 

rj 
dr., 

(mod 1) 
+ Rem(0 , r ) , 

B = {Bj}j=l,2 {ßIJ}I.j<:2, 

where B : M2 —> M 2 is a symmetric matrix, P ( r ) is a polynomial in ( r i , r2) having 
zero of order at least 3 at the origin ( r i , r2) = 0. The remainder term Rem : U —» 
M2 is naturally defined near the origin 0 G U C M2 and is C,s smooth away from 
{rj — 0}7-=i,2- Since condition (HI) rules out resonances of order up to k^o — 1, 
the smallest term in Taylor expansion of Rem(0, r) at the origin is of order at least 
2du)o ^ 10 in ( . / ' 1 . / / 1 . .r2. //2 )• It implies that inside /C" all partial derivative with 
respect to (ri , r2) of Rern(0, r) of order d^n — l ^ 4 (resp. d^o ^ 5) tend to 0 (resp. stay 
bounded) as r —» 0. 

We also make the following assumption: 

(H2, positive torsion) Let B be symmetric non-degenerate positive definite and let 
it map degenerate planes {rj = 0}/=i /2 transversally to the resonant line i.e. for 
j = 1,2 the intersection B{rj = 0} D is exactly one point. 

Generically B is symmetric non-degenerate and satisfies image condition. However, 
B is not necessarily positive definite. M. Herman [Her] gave an example of Hamilto-
nian systems and symplectic maps arbitrarily close to integrable, which have elliptic 
fixed points with B not positive definite. The positive definiteness assumption on B 
is needed to recover fiber-convexity hypothesis required to apply Mather theory. 
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82 V. KALOSHIN, J.N. MATHER & E. VALDINOCI 

Let a > 0 be small enough so that the image cone cu° + B(Kfa) contains an 
nonempty interval of around cu°: 

( 2 ) (Akn{u0 + B(KÎa)}) / 0 . 

We shall restrict consideration of the remainder terms of BNF to the cone /C" for 

small p > 0. 

1.1. Genericity of totally elliptic points and the main result. — Here we 

shall formalize the notion of a generic totally elliptic point. Let Kcpx = Kp U { 0 } and 

1Cap = T2 x K«. We denote Csjl{K^) the space of Cs functions with the natural 

Cs- topology having all partial derivative of order d bounded and of order (d — 1) 

tending to 0 as r tends to 0 inside JCp and (0, r) G T2 x Kp = /C" coordinates. 

Fix CJ° satisfying (HI) and let d = ^{k^o. s}. Consider the canonical polar coordi­

nates. Denote 

(3) 

•dP(r) 

0r1 
dP(r) 

0r1 
(mod 1), r i , r"2 Rern((9, r) ft(0, i?) e T2 x 

R(0, r) (0i(6»,r),e2(é' .r).JR1(6'.r);i î1(6' ,r)) € T 2 xR2+. 

Denote the space of remainder terms Rem(0, r) in BNF (1) defined on K°p for some 

small p > 0 by TZ%tP- In a view of discussion after BNF (1) we have that TZsap C 

Cs<d(K°). With the above notations BNF (1) becomes 

(4) 
Ri. 

0j + woj + Bjr 

rj 
K(0, r). 

Let s be a positive integer. Let M be one of U,T2 xU,T2 xU x T, or Kf*. If / 
is a Cs real valued function on M, the Cs norm | |/ | |s of / 

| | / | | . s= sup \\daf(m)\\, 
rneAL\a\^s 

where the supremum is taken over the absolute values of all partial derivatives da of 

/ order ^ s. The Banach space of Cs real valued functions on M with the (7s norm is 

denoted CS(M). The topology associated to the Cs norm is called the Cs topology. 
Consider the space of remainders Tlsap. We endow it with the strong Cs topology 

on the space of functions on a non-compact manifold or the Cs Whitney topology. A 

base for this topology consists of sets of the following type. Let $ = Ul}ie\ be a 

locally finite set of charts on T2 x Kp, where Kp is the open cone. Let K = {Kl}ieA 
be a family of compact subsets of T2 x Kp, K% C U{. Let also e = {et}ieA be a family 

of positive numbers. A strong basic neighborhood J\fs(f, K, e) is given by 

\\(f<Pi)(x) - (g<Pi)(x)\U 

The strong topology has all possible sets of this form. 
The set of C°° (i.e. infinitely differentiable) real valued functions on M is denoted 

C°°(M) . The C°°-topology on C°°(AJ)(= nsCs(A/)) is the topology generated by 
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INSTABILITY OF TOTALLY ELLIPTIC POINTS 83 

the union of Cs topologies, and it may be also described as the projective (or inverse) 
limit of the Cs topologies. 

Definition 1.1. We say that a totally elliptic point satisfying (H1-H2) is of generic 
type if the remainder 71(0, r) belongs to a set Cs Whitney open dense set in 7Zs

ap. 

The main result, announced in this paper, is the following: 

Theorem 1.2. Suppose hypotheses (H1-H2) hold true, a > 0 and satisfies (2), p > 0 
is small, 10 ^ s $C oc . 7Z is a remainder term of f green by (3-4)- Then, for 
71(0. r) G of generic type, the elliptic fixed point 0 is Lyapunov unstable. More­
over, there is 0 < 4<5 — 45 (n. {Pj. Qt• } ; = i . 2 ) < P xuch that there is a pair of points 
(0±,r±) with \r^\ > S and / " (0^. r ^ ) —• 0 as n —> ±oe. respectively, and trajectories 
{f"(0±.r±)}nez+ belovf/ tolC$. 

Remark 1.3. As a matter of fact, in Theorem 8.1 below we shall give further de­
tails about diffusing trajectories {fn(0±.r±)}nez±. An important point is that these 
trajectories diffuse along the resonant segment A/,, (see (HI)) and, therefore, belong-
to ICi$ avoiding degenerate planes { r 7 = 0} i .2 • 

Remark 1.4. The above result can be viewed as a counterexample to a 4-dimensi-
onal counterpart to A loser stability theorem under hypotheses (H1-H2) of a resonance 
bet ween eigenvalues. 

Remark 1.5. As the reader will see. t lie proof essentially relies on Mather's proof 
of existence of Arnold diffusion for a cusp residual set of nearly integrable convex 
Hamiltonian systems in 2.5 degrees of freedom [Ma5, Ma4] . The latter proof is 
highly involved, long, and extremely complicated. Since it is still unpublished, we 
do not find it possible to describe it here in full details. This is the main reason 
why this paper is an announcement of Theorem 1.2. Below we just extract necessary 
intermediate results from Mather's proof. The application to our result is carried out 
in Section 9. 

Remark 1.6. We hope to get rid of resonant hypothesis (HI) in future work. How-
even-, positive torsion (112) is crucial to apply variational methods and Mather theory. 

Assumptions of high differentiability ,s ^ 10 and absence of low order resonances 
A'̂ .i) ^ 10 are required to extract sufficient differentiability of the remainder term 
71(0, r) with respect to r at r = 0 in "canonical polar coordinates"* inside a cone JC(

f]. 
More presicely. 7Z G C' s ' f / ( /C^) for d ^ 5. See representation of the remainder in the 
form (11). 

The proof is organized as follows. In Section 2. we suspend a symplectic map / sat­
isfying hypothesis (H1-H2) in the small cone JC(

f] near a totally elliptic point 0 to a time 
periodic fiber-convex Hamiltonian Hf(0. r.t) . i.e. we construct a Hamiltonian whose 
time 1 map equals / in /C^-. In Section 2.1. we recall how to switch from Hamiltonian 
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84 V. K A L O S H I N . .J.N. MATHER & E. V A L D I N O C I 

equations to Euler-Lagrange equations. Section 3 is devoted to an outline of the proof 
of Theorem 1.2, i.e. the proof of existence of "diffusing*' trajectories. In Section 4. we 
state Mather Diffusion Theorem [Ma5] in terms of Lagrangians. An important part of 
this result is an explicit list of non-degeneracy hypotheses which guarantee existence 
of diffusion. In Sections 5 7 we state these non-degeneracy hypotheses. In Section 8 
we restate1 Mather Diffusion Theorem in terms of existence of a minima for a certain 
Variational Principle due to Mather [Ma5]. Existence of such a minimum corresponds 
to existence of a "diffusing" trajectory. In Section 9. we verify that for small positive 
So and {Sj — 2 •'()[)}. in each annulus 0 < ^ |r| ^ Sj ^ /) « 1 intersected 

with K(26 the symplectic map (1) (resp. the suspending Hainiltonian Hf) is a small 
perturbation of an intcgrable map (resp. an integrable Hamiltoiiiaii). Therefore, we 
manage to apply the above mentioned Variational Principle in each of these annuli. 
In the final Section, we derive the main result (Theorem 1.2) by "gluing" the annuli. 
Namely, show existence of a minima to the aforementioned Variational Principle1 and 
conclude that it corresponds to one of "diffusing" trajectories from Theorem 1.2. Ex­
istence of the other trajectory can be proven in the same way. This would complete 
the1 proof. For the reader's convenience, this paper is provided with two appendices: 
in Appendix A we introduce? necessary notions and objects of Mather theory, while 
Appendix B contains proofs of auxiliary lemmas. 

Sections 2, 3. 9. and Appendices A <sz B are written by the first and the third 
authors. Sections 4-8 are written by the first author based on the graduate class of 
the second author [Ma4]. 

2. Suspension of a symplectic map near totally elliptic points of 
a t ime periodic fiber-convex Hamiltonian 

Moser [Mo2] showed how to suspend a twist map of a cylinder to a time 1 map of 
a time periodic fiber-convexity Hamiltonian. i.e. Hessian Of.rH in r is positive definite 
everywhere. To the best of our knowledge, there is no general extension of this result 
to higher dimensional case, even locally. We apply the1 standard method of generating 
functions to construct a required suspension. Even though the fact we need seems 
quite standard we could not find an appropriate reference. 

The following suspension results are known to the authors. Bialy and Polterovich 
(see [Go], sect. 41. A) proved existence of smooth suspension theorem with fiber-con­
vexity. However, this result makes use of the restrictive assumption that a generating 
function S(0.(-)) corresponding to / ( # . / ' ) = ((-)./?) bas to have a symmetric matrix 
Ofi (-)S(0. (-)). Since such condition is not satisfied in general, we can not apply this 
result. Kuksin-Poschel [KP] proved existence of global analytic suspension, which 
does not possess fiber-convexity. 

We propose here a way to construct a local suspension keeping fiber-convexity. Our 
proof, given in Appendix B. is a modification of the one by Gole [Go] (see sect. 41. B) . 
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It is based on the construction of a suitable family of generating functions and on a 

local analysis of it. 

Lemma 2.1. — Let f : R4 —> M4 be a Cs smooth symplectic map with a totally elliptic 

point f(0) = 0 at the origin satisfying hypothesis (H1-H2) of positive definite torsion 

and 10 ^ s ^ oo. Then for any 0 < a < 1/2 and a small positive p there is a 

smooth Hamiltonian, 'written in BNF (6,r)-polar coordinates (1) as 

(5) 
Hf(0. r. t) = um + uj2r2 + ^(Dr, r) + P ( r ) + r/(0, r, t) 

w1r1 + w2r2 + 1/2 (Br, r) + hf (O, r, t), 

where P(r) is a polynomial in r having zero of order at least 3 at r = 0 and r / (0 , r.t) 

belongs C*1 ' 1 (k.2f) x T ) , periodic in t of period 1 arui £^a£ £/ie time 1 map of 

Hamiltonian flow of H equals f in the cone K,2™. 

Remark 2.2. — By definition of Hf, we see that df.rH/• is positive definite for small r £ 

Kp and all (0.1) e T2 x T. Notice that one can not deduce that / / / is positive definite 

in a full ^-neighborhood of zero, since polar coordinates are degenerate along the 

planes {r.j = 0}J = i:2 and the origin. This hides the degeneracy of positive defhiiteness. 

This is the reason why we restrict our suspension to the cone JC'jf*, which does not 

contain those planes. 

The proof of this lemma is in Appendix B. 

2.1. Hamiltonian and Euler-Lagrange flows are conjugate. — In this Sec­

tion, which may be skipped by an expert, we exhibit the standard duality between 

Hamiltonian and Lagrangian systems given by the Legend/re transform. More explic­

itly, we state that if a Hamiltonian H satisfies certain conditions, then there is a 

Lagrangian L such that the Hamilton flow of H corresponds to the Euler-Lagrange 

flow of L after a coordinate change (see e.g. [Ar2]). Because of this construction, 

after this Section, we may consider only Euler-Lagrangian flows. 

We shall denote (O.c) £ T T " ~ T" x W. The Legendre transform associates 

to a Hamiltonian H(O.r.t). H : T*T" x T —> M. which is assumed to be positive-

definite in r, a Lagrangian L(0. v. / ) , L : T T " x T ^ l R , which is positive-definite in t\ 

according to the following scheme: 

(6) 

L(O.vJ) sup 
/•GT*T" 

(r,v)-H(0..rJ) 

where ( . ) : T T " x T*T" —> R is pairing between dual spacers. 

When L is related to H as above, we say that L is the dual of H. Let us consider the 

Euler-Lagrange flow associated to L. The latter is defined as a flow on the extended 

phase space T T " x T such that its trajectories (0(t). 0(t). t) = (dO(t)J) are solutions 
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86 V. KALOSHIN, J.N. MATHER & E. VALDINOCI 

of the Euler-Lagrange equation: 

(7) 
d 

dt 

dL 

dò 

dL 

dO 

The trajectories of the Euler-Lagrange flow can be also characterized as those which 

minimize locally the action J L(d-y(t),t)dt among absolutely continuous curves with 

the same boundary conditions. The standard (but crucial for our purposes) obser­

vation is that when we subtract a closed 1-form ?/, defined on T" x T, from the 

Lagrangian L, then both L — 77 and L have the same Euler-Lagrange equations (see 

e.g. [Fa]). 
Let us suppose the Hamiltonian H(0, r, t) satisfies the following properties: 

(1) Positive definiteness in r: For each (0,r) ^T*Tn and t G T the restriction of 

H to T*Tn x {£} is positive definite; 

(2) Super-linear Growth in r: For each (6,r) (=T*Tn and t G T 

H(0,r,t) 

\r\ 
+8 as r +8 

(3) Completeness: All the solutions of the Hamiltonian equations can be extended 

for all t e R. 

We need these conditions to be satisfied in order to apply Mather theory (see 

Appendix A and Section 9). Notice that the Hamiltonian H of the form (5) satisfies 

all these properties near r = 0. The standard result says: 

Lemma 2.3 (see e.g. [Ar2], § 15). If a C,s+1 Hamiltonian H(0. r, t) satisfies the above 

conditions (1-3) with s > 1 and L(O.v.t) is the dual of H, then the map C : (0.r\t) —> 

(6. i', t), qiven by 

(8) C(0.r,t) = (0.drH(0.r.t).t). 

is CS-smooth and invertible, and it conjugates the Hamiltonian flow of H to the Euler-

Lagrange flow of L, i.e. it provides a one-to-one correspondence between trajectories 

of both flows. Moreover, the Lagrangian L satisfies properties (1-3) above with r 

replaced by v and H by L. 

Let Hf be given by formula (5). Let be the integrable part Hj(r) — UJ\T\ + 

cj2^2 + ^ ( ^ r ? r ) + P(r). Namely, P(r) is the polynomial in r part of hf(0,r). Notice 

that Legendre transform of Hf has the form 

(9) Lf(O.r.l) = ({)(r - J]) - I>f(0. r ^()./). 

where £Q(V — a;0) is the Legendre transform of Hj(r) and Pf is a CS smooth remain­

der defined on T2 x {drHf{0. K22(p\t) - UJ0} x T. The form (5) of Hf shows that 

()rllf(0. r. t) = LJ° + Br + drhf{0. r. t). Therefore, for small p we have that B{K(px) C 

{drHf(0, K%™,t) - UJ0} so we could assume that Lf is well-defined on B(K%). More­

over, Pf has a zero in (v-cu0) of at least G-th order, i.e. Pf G CsJ+l (T2 x B{K(py) x T) 
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INSTABILITY OF TOTALLY ELLIPTIC POINTS 8 7 

for d ^ 5. We shall apply Mather's technology to the Lagrangian Lf and its Euler-

Lagrange flow. 

3. Scheme of construction of diffusing trajectories using 
Mather action functional 

In this Section, we outline a variational approach due to Mather [Ma5, Ma4, Ma3] 
to construct diffusing trajectories toward and outward from zero from Theorem 1.2. 

We concentrate on the one going toward zero first. Construction of the other one is 

very similar. 

3.1 . Rough sketch of the proof of Theorem 1.2. — Application of lemma 2 

for 7i = 2 to the symplectic map / , given by (1) provides the suspension Hamiltonian 

given in K,2$ near r — 0. We have that locally, i.e.. in /C^- Hf satisfies fiber-

convexity from hypothesis (1. Sect. 2.1) above. To meet hypotheses (2 3. Sect. 2.1), 

one may smoothly extend Hf for large r keeping convexity in r so that it is an 

integrable Hamiltonian. e.g. given by (3G). Thus. Mather theory is applicable (see 

Section 9). 

Let Lf(O.v.i) be the dual of Hf(O.r.t). given by (9). The Legendre coordinate 

change (8) in our case has the form C(0. r. t) = (0, u0 + Br + drhf{0, t\ t). t). Let us 

approximate it by its linearization T^\Q : r —-> v = u;0 -f Br. Denote Kp(uj0.B) = 

T^njj(Kp ) the image cone, whose complement we need to avoid. By (H2). for small 

ex > 0 the image cone K2cy(u;ü. B) contains a segment in A A- of length 2p/\\B^l\\ 

centered at ^,0. Fix n = a(k.B) > 0 with the above property. We shall "diffuse" 

inside K(f)(üü°. B). Denote by c/,. the unit vector parallel to A A- and fix a small 0 < ó < 

p/\\B~~l\\ (to be determined later). 

Put 26 = SQ and ój — 2 ™ M 0 for each j G Z + . Fix the sequence of annuli 

(10) AjU') = {2-'2Sj < \r - J]\ < 22Sj} C M ; . 

Denote Kg^.B) = K^S(J}.B) n Aj(uj0). By definition for each j G Z+ we have 

L¿° + 5J+ICA-. -f Sj('k. -h Sj-\(Jk G K¿ . B) and adjacent annuli AJ(UÜ°) and 

AJ+\(UÜ°) overlap, i.e.. AJ(LÜ{)) D AJ+\(UJ{)) ^ 0 . We now point out the aim of our 

constructions and the steps needed to reach it: 

The goal Construct a diffusing trajectory {(0.0){t)}t^o such that at time 0 its 

velocity 0(t) is approximately + 5QCA-: 

Stage 1. At a time T\ > 0. its velocity 0(T\) is approximately LU{] + ^CA- and. in 

between 0 and T,. we have 0(t) G K'sA{^[). B): 

Stage 2. At a time > T\. its velocity 0(T[) is approximately î '0 + S-2('k aild. in 

between T\ and we have 0(t) G A^\;(a;(). B) and so on: 
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Stage j . At a time Tj > 7~_i, its velocity 6(T\) is approximately u° + SjCk and, 
in between 7}_i and T7, we have 0(f) G K^^uj0. D). and so on for possibly infinite 
number of stages. 

If we could construct a trajectory with these properties, we would obtain a trajec­
tory for the symplectic map / which goes toward the origin. To construct a trajectory 
going out from the origin, the arguments involved are analogous. This would indeed 
prove Theorem 1.2. Formalization of this scheme requires some notions of Mather 
theory. 

3.2. A naive idea of Mather's mechanism of diffusion. — We start with 

A Model Example. Suppose1 / : AI AI be a smooth diffeomorphism of an 2n-
dimensional manifold possibly with a boundary. Let m be any positive integer and 
P\,...xpin be a collection of hyperbolic periodic points of the same index, i.e. the 
dimensions of stable and unstable manifolds are the same. Suppose that for each 
i = 1, . . . . in — 1 the unstable manifold \ Vu{pi) intersects the stable manifold IFs(y;/ + i) 
transversally and both belong to AI. Then, it is easy to show that Ws(p\) intersects 
H •"(/ ; ,„) . 

If AI = T2 x Kiy} 3 (O.r) and /--coordinates of p? arc1 close1 to ^/C/,., then there exists 
a trajectory whose r-coordinate change from nearby S\?k 1° nearby Stne^.. 

As a matter of fact, in Mather's mechanism of diffusion we use the following objects: 

the hyperbolic periodic points /;/s are replaced by Mather sets KA^. whose pro­
jection onto /'-component is localized near e^c/,.; 

the stable and unstable manifolds \Vs(])j) and W" (pi) are replaced by the stable 
and unstable sets \Vii(Mi) and \V"(Mi) respectively. \V"(Mj) and \Vu(Mi) are not 
necessarily manifolds and not even continuous: 

to verify the intersection of unstable and stable1 sets \\TS(A4j) and W"(J\Aj+\). 
respectively, we shall use the barrier function defined in Section 8 (sê e formulas (31-
32)): 

to show that the intersection of JLS'(M,) <uid\Vu (M-,+ \) for each / = 1 ///-1 
implies existence of a connecting trajectory between }A \ and A4m. we define a suitable 
action functional (24). As it was shown by Mather [Ma4]. under ccTtain hypotheses, 
the minimum of such an action functional is achieved on a trajectory of the Euler-
Lagrange (equation connecting M.\ and j\4m (sex1 Section 8). 

In Appemelix A. we define Mather sets, barrier functions, and related objects. The 
reader who is familiar the1 basics of Mather theory may go directly to next Section. 
Others may read Appendix A first. 

3.3. Detailed scheme of the proof of Theorem 1.2. — AW now continue our 
discussion, assuming that the reader familiar with basic notions of Mather theory 
(see Section 9). The1 diffusing trajectories we shall construct move along the resonant 
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segment Лд. from (HI). Consider a sequence of subsegments of Лд; given by Г̂ - = 
[Sj+iek, 53ek] С A/,-. j G Z+. Denote 

v5 = u ^ i i y 

On each of the segments Tj's we mark a sufficiently dense finite set of points 
{fij,Pek}p=-{ C Ty (we determine later how dense this set has to be). Each stage of 
diffusion described in Section 3.1 consists of ///, sub-stages. First, we enumerate 
marked points in r$. We set Mp = ]CY.=i / ; / ' a n ( l f ° r < ?' ^ -^p+i w e s e t 
CJ?; = UJ0 + 5PJ-Mi)ek. Loosely speaking, Mi as introduced in the previous Section, 
is an invariant set of trajectories with approximate rotation vector uor. We shall 
formalize this idea in Section 8. To give a precise definition of .Vf ,'s we need further 
discussion. 

Let Hf(0, r, t) be the suspension of the syniplectic map / under consideration given 
in ICp near r = 0 by lemma 2. We have that locally (i.e., near r = 0) Hf satisfies 
convexity condition (1. Sect. 2.1). To meet hypotheses (2 3, Sect. 2.1). one extends Hf 
for large r by an integrable Hamiltonian, e.g. given by (36) keeping convexity in r. 
Thus, Mather theory is applicable to our ease (see Section 9). 

Consider the Legendre transform of Hf, which would lead to a Lagrangian of the 
form (9). The first term of Lf corresponds to an integrable Lagrangian. Moreover, 
we show in Section 9 that for small So > 0 the second term Pf can be considered as a 
small perturbation. Therefore, we shall be able to apply Mather Diffusion Theorem 
(see Section 4). We shall write the remainder in the form (34) with ///.. = 3 and r 
replaced by (e — 

(11) Pf(0.v-J\t) 
3 

/>=« 

\r-jy;(v-J)):tl)Pl>(0-v-J\t). 

where (v — is i-th coordinate of (v — 0; 0 ) , / = 1.2. Let us denote Pf = 
(PQ. Pi. Po. Pi) and define4 the unit sphere for perturbations Pf 

Ss,3 Pf 3 

p = ( ) 

Pp 
( ' :MV : ! > iu Kfr ) - : ) " 

Since Pf e C*- ' / + 1 (T 2 x B(Kf;y) x T) with (1 ̂  5. by lemma B.l we have that C:] 

norm of Pf is well-defined. 
We denote also by C:jj- the Fcnchel-Legendre transform associated with L/• by (29). 

In the images of each marked frequency, we choose a cohomology class ct £ C,j_f(^jj) 

for each 1 = 1 Mp so that adjacent cv-\s are sufficiently close. We are now in 

position to define the sets {Mi}]7L1 from the previous Section to be Mather sets M('. 

We shall slightly modify t he choice of c/'s in Section 8. 
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Definition 3.1. — We say that Cpj has channel property with respect to a resonant 

segment T$ if there is a smooth connected curve OT C Cpj(Ts) such that for each 

IT/ £ the curve err intersects C^j(ujr). 

Lemma 3.2 ([Ma4]). Le£ 10 ^ s ^ oc. T/ien. for a Cs Whitney open dense set of 

Pf £ Ss'3, there is 5 = S(Pf) > 0 s?ic/i that £/ie Fenchel-Legendre transform Cpj has 

channel property with respect to T$. In particular, for any pair of positive integers 

i < i' the sets ) and C^j{uol') are connected by O~Y• 

Remark 3.3. — In Section 6.2 we introduce certain non degeneracy hypothesis (CI) 

(C3) and (C4)^ (C8)^, for perturbations of integrable Lagrangian systems and in 

Section 9 show how to adapt these hypothesis for remainder terms in BNF (4) of 

totally elliptic points. The Cs Whitney open dense set of remainders Pf £ 5's"3 

that satisfy adapted non degeneracy hypotheses (CI) (C3) and (C4)^ (C8)^ fulfills 

channel property of the lemma. 

We construct trajectories that diffuse along <rr inside the channel Cpj(Ts). To 

accomplish this, roughly speaking, we vary the cohomology c in order to vary the 

velocity 0. 

We shall apply the Mather method of changing Lagrangians [Ma5]. Mather applied 
this method in [Ma3] to show the existence of unbounded trajectories for generic 
time periodic mechanical systems on T2. We outline some of the key ideas of the 
method. For simplicity let 1.(0. r. t) = ^(c.v) + sP(O.v.t) be sufficiently smooth 
nearly integrable Lagrangian and if = c d.O be the standard closed one form on T2 x T 
for a vector c £ M2 ~ TQY2 . 0 £ T2. Then the following scheme can be exploited: 

(1) Euler-Lagrange flows of L and (L — if) are the same (see e.g. [Fa]). 

(2) Minimization of c-action \*(L — rjr)(d^(t).t)dt with cT-error leads to minimiza­

tion of 

(12) 
1 

2 
[0.6 -(0.c) 

1 

2 
(0 - c, 0 - v) - (c, c) 

Therefore, trajectories minimizing e-action have approximate velocity c. As a matter 

of fact, even if if is a closed one form with [//c]t2 = <"'• L is close to integrable and b — a 

is large enough, trajectories minimizing e-act ion still have approximate velocity c (see 

[Ma4]). From now on we consider if as a closed one form. 

(3) Suppose we can find an action functional 

(13) 

.7 

/ = 1 

ti+1 

ti 
(L-î,,)((h(t)-t)<it 

for a sequence of closed one forms {//,}-=i such that [tji}-2 — c, and [//•/+1]72 = 
where Q and cl+\ are close1 for each i — 1 j' — 1 and the minimum of such inte­

gral is achieved on a trajectory {{d^(t).t) : t £ [ti.tni]} of the Euler-Lagrange flow 
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of L^2\ Standard properties of action minimization give that this is indeed true for 

time t 7̂  FI, . . . , tm, but it is a delicate problem to show that this does not happen 

at connection times t — t\ tm. The corresponding minimizing trajectory 7(f) 

might have corners Ai{t~) 7̂  H^t)- Notice now that at time t in [¿1, /^] velocity is 

approximately c\ and at time t in [tw-i.tw] velocity is approximately c m . Thus, 

the key to the method is to find an action functional with the above property and 

justify absence of corners. In (13) we made only a rough attempt. This functional is 

defined in Section 8. Usually, this construction is quite involved and highly nontrivial 

[Ma5, Ma4, Ma3]. 

4. Mather diffusion theorem 

In this Section, we state Mather result about existence of Arnold diffusion in a 

generality we use for our application. See [Ma5] for the most general version. As a 

matter of fact, to prove our main result (Theorem 1.2) in Section 8) we shall refor­

mulate Mather Diffusion Theorem in terms of a certain variational principle and in 

Section 9 apply this principle to prove Theorem 1.2. 

In the subject of Arnold diffusion, one studies a time periodic or autonomous 

Hamiltonians/Lagrangians that are perturbations of integrable Hamiltonians/Lag-

rangians (see e.g. [AKN]). 

In the time periodic case, the Lagrangian takes the form 

L{0.0.t) = / ( )(l9) +sP(6.Ô.t). 

where (\) is a Cs smooth function on a convex closed set with smooth boundary 

U C M 2 . 5 is a small positive number. P is a Cs smooth function on T2 x U x T. 

and .s J> 3. In other words. P is periodic of period 1 in O1.O2, and t. The function 

/y is called the •//nperi/1 rbe.d integrable Lagrangian and the function P is called the 

perturbation term. 

Denote dfj(\) = O2

 f) (0 the Hessian matrix of second partial derivatives of (\). 

i.e. (Ipo — (02 -} / 0 ) . .}. We shall assume that (If)(0 is everywhere positive definite 

on [/. i.e. we hav(^ J2Íj=i 0 ^){V)¿¡¿¡ > ( ) - f°r a l l 0 G /" and all ( ^ 1 . ^ 2 ) G R2 \ 0. 

In the Hamiltonian case, the analogous assumption is that the unperturbed integrable 

Hamiltonian convex. 

Now. we briefly discuss the problem of Arnold diffusion. For the unperturbed 

integrable Lagrangian L = ({). the Euler-Lagrange (E.-L. for short in the sequel) 

equations reduce to d20/dt2 = 0. Every solution 0 lies on a torus {0 — where 

uu = (U/'I.U/'-J) G U. The UO'/'s are called the frequencies of the solution. 

By a trajectory of L. we mean a solution of the E. L. equations associated to L. 

Along a trajectory of L. 0 is constant in the case of the unperturbed integrable 

'•^Actually, summation could ho over infinito numhor of tonus, as formula (2-r)) shows. 
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system and varies slowly in the case of a small perturbation of the integrable system. 

The problem of Arnold diffusion is whether 0 can vary a lot over long periods of 

time. Recently a great progress has been achieved in proving Arnold diffusion in so-

called a priori unstable case by many different groups (see papers [Be]. [CY]. [DLS], 

[Tl, T2, T3], announcements [XI, X2], and work in preparation [KM]). The result 

below is for the a priori stable case. 

Recall that for a positive integer CS(M) denotes the Banach space1 of C s real valued 

functions on AI (see Section 1.1 for notations and definitions). Now let -s be oc. oí­

an integer ^ 3. We let Cs denote the topological space of Cs functions / ( ) : U —> M, 

such that. / is positive1 elefinite1 in 0, i.e. the Hessian dfjf'o is positive definite. Endow 

Cs with the Cs topology. We1 let Vs denote the topological space of Cs functions 

P : T 2 x U x T -> R endowed with the1 Cs topology. Denote 

Sl = {PeV«: | | P | | r. H-xrxT) = l } 

the unit sphere in the space of perturbations. The1 topology in Ss is induced from the 
ambient space Vs. 

Definition 4.1. A set \V£ C Vs is called d-cusp residual if 

A) there is a non-negative continuous function S on such that the set U£ — 

{P G S'l : S(P) > 0} is open and dense in Sf: 

B) there is a cusp scT = {sP G Vs : P G U£. 0 < s < S(P)}, which is a sul)set of 

homogeneous extension of which is defined by RUS = {XP G Vs : P G U\ A > ()}: 

C) there is an open and dense set W£ in V'/. 

Définition 4.2. If T C R 2 is a line1 segment, we shall say that it is lutioiied or 

résonant if there is a résonance^) k = (ko. k\. ko) G ^ such that T is contained in 
the1 line1 A/,.. 

We1 say that a curve F C M2 is a résonant piece irise linear curve if it is a finite1  

union of résonant segments T = U^iEs se) that end points of Fs bclong to end pe)ints 
of r,_i and r , + ,. for ail .s = 2 /// - 1. 

The following result is a modified version of the1 result announced by Mather [Ma5] 

for the time-periodic case: 

Mather Diffusion Theorem. Let F be a resonant piccaci se linear curve in U and let 

3 ^ .s ^ oc. There exists a non-negative continuous function S((Q. F) : Vs —* R-¡_. 

sudi that, for any perturbation sP in a ò(( {).F)-cusp residual set H^ s

( / ) r ) C Vs. 

tiiere is a trajectory (0.0)(t) of LE = (o + eP. whose velocity moves along F. Alore 

precisely, there is a constant C = C(({). P. F) > 0 and T = T( / ( ) . P. F) > 0 such that 

elist ( U()</<7' O(t).F) <J C\f~z~. where elist is the standard Hausdorff distance between 

sets in U. 

' '^Recall that saying that A' is a i-csoiiancc. \vr mean that k G 7.d and {k\.k-z) ^ 0. 
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Remark 4.3. — The function S(£Q,F) (and consequently the J(^o,r)-cusp residual set 

^6(£() r)) depends on the choice of resonant lines Ti , . . . , rm. However, they are 

independent of behavior of the diffusing trajectory (6,0)(t). 

In particular, this implies the following result. Consider a finite collection of non-

void open subsets Vt\... ., i~lin+\ of U, then there is a resonant piecewise linear curve T, 

consisting of rn resonant segments F = U^T^,. connecting distinct f^'s in any pre 

assigned order. Then, by Mather Diffusion Theorem there is a trajectory which visits 

the sets Hi , . . . , £lm+i in the pre assigned order. 

We point out that existence of a "diffusing" trajectory (0,0) (t) moving along any 

prescribed resonant piecewise linear curve is a strong form of Arnold diffusion. How­

ever, existence of such a trajectory is proved only for a (5-cusp residual set of pertur­

bations [Ma4]. 

The purpose of the next four sections is to define qualitatively the function S(£Q, F) 

and the sets I r̂  and U'^^ r̂  mentioned in definition 4.1 and Mather Diffusion 

Theorem. We start by defining two averaged mechanical systems L ^ . A and L^. For 

sake of brevity, we shall not say precisely in what sense the trajectories of L ^ A 

and Lu approximate certain trajectories of L. We also give an heuristic motivation 

of the notion of these averaged systems L^v\ and Lu. These averaged mechanical 

systems are used to define a Cs open and dense set U^f{) r̂  of "good directions11 of 

perturbations on the unit sphere Ss. In Section 7 we define 5(£Q< r)-cusp residual set 

Ws({{) r) using barrier functions. In Section 8 we restate Mather Diffusion Theorem in 

terms of a certain variational principle. Finally, in Section 9 we apply this variational 

principle to prove our main result (Theorem 1.2) . 

5. Averaged mechanical systems corresponding to single 
and double resonances 

5.1. A Single Resonance Averaged System or a First (a;, A)-Averaged Sys­
tem. — Let L(0, 0. t) = £o(0)+sP(0, 0. t) be a Cs small perturbation of an integrable 

Lagrangian /q on T2 x U x T, ,s ^ 3. Let us assume d2(o > 0 on U. Consider a res­

onant frequency vector UJ = (u?i, 002) £ M2 and its resonance k = (A'o, A*i, A'2). This 

means that A' e Z: \ (A'i, A'2) ^ 0 and A*0 + kiu\ + A;2̂ 2 = 0. If LO £ Q2, it admits 

two linearly independent resonances; otherwise, it admits at most one resonance up 

to multiplication by scalar. 

We denote by A = AA. the resonant line from (HI). Thus, A is the set of all CJGM2 

for which A* is a resonance. We set 

( 1 4 ) T | = {(01,02,*) £ T2 x T1 : A;i0i + A*202 + A'o* = 0 (mod 1 ) } . 

If 0(0) £ A, the trajectory of the unperturbed Euler-Lagrange of £o(0) either be­

longs to or to its parallel translation. Thus, the 2-torus T2 can be viewed as a 
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subgroup of T2 x T1. We set T\ = T2 x Tl/T\ (and we refer to it as the factor space). 

Since the unperturbed Euler-Lagrange flow is parallel to T2V. we call T\ torus of 

fast motion and T\ — torus of slow motion. 

Let (#i,#2,£) = ( ^ A , ^ A ) ^ ^A x ^A denote slow and fast coordinates on and 

T ^ , respectively. The product decomposition depends on an arbitrary choice. We 

shall specify our choice later (see lemma 6.3). Denote by dH\ the normalized Haar 

(Lebesgue) measure on the fast torus T\. Let P(0A.u) = P{0,u,t). Define the first 

(CJ, A)-averaged potential 

(15) ^ U A ( ^ A ) 

A f A 

P(<p*A.ip{,u) dHh{y{). 

So P^,5A : —> M is a real valued function on T A . 

To define the first (UJ, A)-averaged kinetic energy one needs some linear algebra. 

Actually, the precise form of this kinetic energy is not important for us. What really 

matters is that the kinetic energy is given by a constant quadratic form on T(T\). 

Consider the natural projection 7TA : T2 x T 1 —> T A along the fast torus T A . The 

definition of both slow and fast tori TA and TA depends only on the resonance k 

determining T C A^. The projection TT\ induces a linear map dn\ : R2 x R —> RA-

The restriction to R2 x 0 has a null space, denoted by NA C R 2 . Denote by the 

orthogonal complement of A^A with respect to d2£o(uj). Define 

( i 6 ) ^ , A = ( ^ o M / 2 ) j . v x . 

KUJ.A may be regarded as a constant quadratic form on T ( T A ) in a view of identifi­

cation of 7V"A and T ( T A ) given by d?r2\. 

Let 

LU,.A = A ^ . A + PLV.A O pr^.A : T (Tl) —> R . 

where pr^TA • T (TA) —> T A . We call L^A the first (UJ. A)-averaged system associated 

to UJ G A. which is an autonomous mechanical system whose kinetic energy is K^A 

and whose potential energy is — P^ .A ° PR^,A-

A classical idea of averaging consists in the fact that the trajectories of L with 

approximate frequency vector cu can be approximately described in terms of fast and 

slow variables. The fast variables correspond to the motion parallel to T A and the 

slow variables correspond to the motion normal (in a suitable sense) to TA. If we 

average with respect to the fast variables, we obtain a new Lagrangian system L^.A = 

KUJ.A + PUJ,A whose trajectories approximate the trajectories of L with approximate 

rotation vector uj. 

5.2. A Double Resonance Averaged System or a Second IJ-Averaged Sys­

tem Associated to a Rational Frequency. — Following the notation introduced 

here above, we let L(0.0J) = (:{)(0) + EP(6.0.t) be a C" small perturbation of an 
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integrable Lagrangian £0 on T2 x U x T, and we assume that d2£o > 0 on U. Con­

sider a rational frequency vector UJ = (uo 1,002) = (pi/q,P2/q) £ Q2 and assume that 

(pi/q,P2/q) is the reduced form, i.e. the greatest common divisor of integer p\,P2, 

and q is 1. For the unperturbed integrable system £0, every trajectory with rotation 

vector 8 = UJ is closed and parallel to the 1-torus 

(17) TÍ = { (Api , Ap2, Aç) G T2 x T1 : A G R}. 

Since T2 x T1 is an Abelian group, may be considered as a subgroup. Let T2 = 

T2 x Tx/T^ be the 2-torus obtained as a coset of T^. Similarly to the previous section, 

we call — fast and T2 — slow torus respectively. Let G T2 x denote 

slow and fast coordinates in T2 and T^, respectively. Let P(6,t,u) = P(6,w,t). 

Denote by dTi^ the normalized Haar (Lebesgue) measure on the 1-torus T^. Recall 

that P(0,t,uj) = P(0,UJA). Define the second UJ-averaged potential 

( 1 8 ) Pw (A ws) 
A wf 

P (Aws, Awf, w) dHw (Awf) 

Note that P^ : T2 —> R is a real valued function. We need now some linear algebra in 

order to define the second CJ-averaged kinetic energy. Consider the natural projection 

TT^J : T2 x T1 —> T2 along fast torus T^. The definition of both and TT^ depends 

only on (q,p\,P2) £ where UJ = (pi/q,P2/q)- The projection TT^ induces a linear 

map dn^j : R2 x R —> R2 . The restriction to R2 x 0 becomes an isomorphism. Since 

£0 is a C2 smooth function on R2, its Hessian d2£o(uj) can be regarded as a quadratic 

form on R2. We define 

(19) Ku = d2£0(uj)/2 

and we shall identify R2 with T (T2 ) via dn^. Let also define 

(20) L„ = + o pr^ : T (Jl) > R. 

where pr^ : T (T2,) —» T2 is the natural projection. We call the second UJ-averaged 

system associated with the rational frequency UJ = ( u i , ^ ) = (pi/q,P2/q) £ Q2- This 

is an autonomous mechanical system whose kinetic energy is and whose potential 

energy is —P^ o pr^. 

6. Definition of C7|^ R̂  

6.1. Part I: Building blocks. — In this Section, we begin the definition of the set 

of admissible directions {̂  on the unit sphere of perturbations SSL or, equivalently, 

qualitative definition of S((\).T). Later, we use this to define a S(£Q, T)-cusp residual 

set U Vy where Mather Diffusion Theorem holds. We need it for the application of 

Mather Diffusion Theorem to our main result Theorem 1.2. The set U^f{) r̂  implicitly 

appears in Mather Diffusion Theorem and it is defined as a set where a non-negative 

functional S(('o, T) is positive. We shall not give here a complete definition S(£o. T). 
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since this would need quite a long discussion. We shall only sketch some qualitative 

aspects of its definition. For the discussion of the size of S(£o,T) we refer to [Ma4]. 

Step 1. -— Consider a resonant piecewise linear curve T = U^^r^ C B2 consisting 

of rn resonant line segments T,s C A,s = {(UJ 1,002) £ B2 : k^ + kfuji H- fc|^2 — 0}? 

ks = (k^ kl G Z3 as in definition 4.2. 

Step 2. For each resonant segment r.s we associate a non-negative function 

S(£0SS) : SI -> R+, defined in the next Section. Then, S(£(hT) = min™=1 5(£0.TS). 

Now we discuss the qualitative part of the definition of 5(£Q.TS) for one segment. 

For the sake of simplicity, we omit the subindex ,s in the sequel, hence, in what follows, 

r will denote a single resonant segment. For one segment, we state a finite collection 

of non degeneracy hypotheses of two types. Each hypothesis turns out to be fulfilled 

generically [Ma4]. 

Type 1. Non degeneracy of the 1-parameter family of the first (UJ, r)-averaged 

mechanical system {Iw,r}wer on T (Tp). 

Type 2. F 11011 degeneracy of the second UJ-averaged mechanical system on 

T (T2 ) associated to a rational frequency UJ G T D Q2. 

There are count ably many rationals a/s in any resonant segment T. However, we 

need type 2 non degeneracy only for finitely many rational u/s. At the end of Section 

6.3, we define a marginal denominator </0 = <to((u- I}- I >) with the following meaning. 

Let UJ = (]h/q,P2/q) be in the reduced form, then we need to impose non degeneracy 

hypotheses of type 2 on UJ only if q < qo. In the next two Sections, we define the non-

degeneracy hypotheses of type 1 on the family {-L^.AICJGA of the first (u;, A)-averaged 

system and of type 2 on the second u;-averaged system UJ G A n Q2 along with 

T. IV) respectively. 

6.2. Part II: Non-degeneracy of averaged systems associated to a single 

segment T. — By means of Step 2 of the last section, we see that it suffices to 

define I V /(1 r) f°r one segment. Since £0 is fixed, we shall omit it from the notation 

and denote this set U^Vy 

Let A = A/,, be the line that contains a bounded segment T. For UJ G I\ we write 

P^.r for the averaged function P^.A defined in section, and Tp for T\ (i = 1.2). Thus. 

{Puj.r '• G T} is a Cs smooth 1-parameter family of functions defined on the circle 

Tp. For eP to be in U^v,. we require that the global minima of { P ^ . r : ̂  G T} are of 

generic type. More precisely, we require the following three hypotheses to be fulfilled: 

(CI) For each value w U G T, each global minimum of mw of P^,.r is non degenerate, 

i.e. P^v(nr-) > 0. 

(C2) For each UJ G T. there are at most two global minima of PLr-

Let ujo G T and suppose that P^0.r has two global minima m^() and We 

may continue these to local minima ///^ and of P^.r- for UJ G T near CJQ, in view 
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of (CI). Thus, rriuj and m'u depend continuously on UJ and they are the given global 

minima for UJ = UJQ. In addition to (CI) and (C2), we require that the following first 

transversality condition be fulfilled: 

(C3) 
dPu,s(mu) 

DUJ 
w = w0 

dPw,r (m'w) 

DUJ I UJ = UJ() 

Next, we require to and P to fulfill some conditions on the second cj-averaged 

systems associated to UJ G T D Q2, defined in Section 5.2. Such an UJ has the form 

UJ = p/q = (pi/q.p2/q), where p = (p\. /;•_>) G Z2, and q G Z, q > 0. If p/q is in the 

reduced form, i.e. 1 is the greatest common denominator of pi, p2 and q, then we say 

that q is the denominator of UJ. We shall require the remaining hypotheses only in 

the case u> has small denominator, i.e. q ^ </0, where </0 = ^ o ( ^ o - ^ R ) i« a positive 

integer depending on / Q . P . and T. The definition of q{) is the quantitative aspect of 

the definition of u^r) that we shall postpone to Section 6.3. 

The first condition we require Lu to fulfill is a condition on Pu alone: 

(C4)^ The function Pu on T2 has only one global minimum and it is non 

degenerate in the sense of Morse, i.e. the quadratic form d2PUJ(mUJ) is non singular. 

To state the remaining hypotheses, we need to define a special homology element 

hwS of HiiTliR): 
Since UJ G T H Q2, we have C T2. so T2 /T^ is a circle in T2 , and 

Z « i / i ( T ? 7 T ¿ ; Z ) C¿ / i (T*;Z) C # I ( T * ; M ) . 

We let h^x be a generator of H\ (T2,/T^: Z). In view of the inclusions above, this is an 

element of H\ (T2 ; ]R). Geometrically, the above situation has the following meaning. 

Consider a circ le J.^x C T2 in the homology class hwT and take TT^ÍL.V) C T 2 X I 
where the projection TT^ : T2 x T —> T2 is defined in Section 5.2. Therefore, h^x is 

such that TRJ^/^.r) is parallel to T2 C T2 x T. 

The Lagrangian describes a conservative mechanical system, i.e. it has the form 

kinetic energy potential energy. Here, the kinetic energy A"̂  is associated to the 

constant Riemannian metric g^ = d2(\)(uj) on T2 . The potential energy is —P^ opru. 

By a slight abuse of terminology, we shall shorten this to —P^. 

Next conditions that we require on are easily described in terms of the Mau-

pertuis principle: 

We let E^ = —P^(m^). where1 G T2 is the unique minimum of P^. as above. 

For any E ^ E^. we let 

(21) 
g E = 2 (Pw + E) Kw 

For E > E^j, the function P^ + E is everywhere positive on T2^. Hence, g^ is a CS 

Riemannian metric on T2^. For E — EU. the function P^ + E is positive except at 

m^j, where it vanishes and has a non degenerate minimum. 

The Maupertuis principle states that trajectories of having energy E are the 

same as geodesies of except for a time reparametrization. Carneiro [DC] has 
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extended the Maupertuis principle and shown that absolute niinimizers of having 

energy E correspond to class A geodesies of (JE (in the sense of Morse [Mor] and 

Hedlund [HED]) . 

Pick a large energy constant E* = E*(£Q,P, T) > 0. The next condition that we 

impose on L w concerns the shortest closed geodesies of QE in the homology class / i ^ j , 

for Eu + E* ^ E ^ Eu. Briefly, we require that these are of generic type. More 

explicitly, we ask that the following four hypotheses are fulfilled: 

(C5)UJ For E^ + E* ^ E ^ E^i each shortest closed geodesic of CJE in the homology 

class h^x is non degenerate in the sense of Morse. 

(C6)a; For Eu + E* ^ E ^ Eu, there are at most two shortest closed geodesies of 

QE in the homology class li^.r-

Let Ei > E^ and suppose that there are twTo shortest geodesies 7 and 7' of QEA 

in the homology class /zw.p. We may continue these to locally shortest geodesies JE 

and 7^ of (JE for E near E1]. in view of (C5)^. If // is a closed curve on T 2 , we 

let £E(p) denote its length with respect to CJE- We require that the following second 

transversality condition he fulfilled: 

( C 7 ) „ 
d{t.E{lE)) 

(IE E=E, 

d(lE (AE)) 

dE E = E1 

These are the hypotheses that we require (JE to fulfill when E^ -f E* ^ E ^ E^. 

Note that the case E — E^ is somehow special, because (JE^ is not a Riemannian 

metric, since it vanishes at m^S4K Nevertheless, we may define the length of a curve 

with respect to (JE^, just as 0110 normally defines the length of a curve with respect, 

to a Riemaimian metric. We defines a geodesic to be a curve that is the shortest 

distance between any two sufficiently nearby points. It is easy to see that there exists 

a shortest geodesic of gE^ in the homology class fi^.y. We require to fulfill the 

following condition: 

(C8)^ There is only one shortest geodesic 7 of CJE^ in the homology class ftw.r- and 
7 is non degenerate in the sense of Morse. 

In saying that a (JE shortest geodesic 7 is 11011 degenerate in the sense of Morse, 

we mean the following: 

Let /1 be a transversal to 7, intersecting 7 in one point, not m^, in the case that 

E = E^j. For each point P G //. let 7/5 be the (JE shortest curve through P in the 

homology class Ii^x and let fE{l'p) denote its (JE length. The function P —> £E{ip) 

is Cs near //, D 7 and the condition that 7 be 11011 degenerate means that its second 

derivative is positive. 

In the case that E > E^. this is the usual notion of 11011 degeneracy in the sense 

of Morse. 

This corresponds to a periodic trajectory for the Euler-Lagrangian flow of L = t'o + eP. 
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Definition 6.1. (7|(r) ( = U^£oS)) = {eP : e > 0 , P G Vs, and P satisfies hypothe­

ses (C1)-(C3) as well as hypotheses (C4)^ (C8)^ for UJ e T n Q2 with small denomi­

nator, i.e. such that q ^ qo(£o,P, r), where q denotes the denominator of UJ.} 

Remark 6.2. — This definition can be considered as an implicit definition of 5(£Q, T). 

6.3. What denominators are small?— In this Section, we define the marginal 

denominator q0 = q0(£0, P,T) from the previous definition. This would answer the 

question for which rational CJ'S we need to verify the non-degeneracy hypotheses 

(C4)a;-(C8)tl;. Recalling (14) and (17), we associate to a rational frequency UJ and 

a resonant segment T 3 UJ two decompositions of T2 x T1 into (the standard) direct 

product, and we denote the result of this operation by T2 x Tp and T^ x T2 . These 

decompositions can be defined by changing the basis on T 2 x T . Based on the lemma 

below we can define the following decomposition x r x T[ = T2 x T1 into a 

direct sum. 

Lemma 6.3. There is a choice of these decompositions so that Tr c T27 Tl C T2. 

Proof. It seems easiest to discuss this in terms of a short sequence of topological 

abelian groups. 

0 —> A —> B —>C —> 0. 

Thus, A is a topological subgroup of £>, and C is a quotient group of B. Denote the 
inclusion of A into B by i bad the projection of B onto C by j . To say that the 
sequence is short exact means that the kernel of j is i(A). 

A splitting of such a sequence is given by a continuous homomorphism k of C 

into B such that j o k is the identity. Equally well, it can be given by a continuous 
homomorphism I of B into A. such that I o i is the identity. The relation between k 

and I is that the kernel of / is k(C). 

Given k (resp. /) there is a unique / (resp. k) such that this relation holds. Given 
such a splitting, B is the direct sum of i(A) and k(C). 

There is a splitting, in fact many, for both of the short exact sequences in the case 
we consider (it suffices A to be a torus). Indeed, notice that when we consider Tp 
(resp. T2 ) as a subgroup T2 x T we choose a splitting of the appropriate one of the 
two exact sequences in question^5). This proves the lemma. • 

Below we present a test to determine qo. The idea of the test is to check how dense 

the unperturbed closed trajectory 0 — UJ in the 2-torus Tp. A precise definition is in 

terms of averaged systems L^x = K^x + ^Ur and = K^ + P^ on slow tori T (Tp) 
and T (T2 ) = T (T^ r x Tp), respectively. In the notation of the previous section, let 

rriu and m'^ be global (or local continuation of global) minima of Pu on Tp and let 

(5)Note that the inclusion of Tp in depends on the choice of splitting. One has inclusion for some 

splittings not for others. 
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^TOT :

 r x Tp —-> Tp be the natural projection. For each energy + E* ^ E ^ P^, 

we need that the shortest geodesies 7^ and 7^ (if it exists) of are contained in a 

small neighborhood of 7rjp(mu; U m J (or 7 1 7 ^ ( 7 7 ^ ) if does not exist). The precise 

definition is as follows. 

On the slow torus Tp, we define the 1-parameter family of first (a;, T)-averaged 

potentials {PUJX • Tp —̂  R j^p- Suppose hypotheses (C1)-(C3) are fulfilled. By 

the first transversality condition (C3), there are finitely many UJQ G T with P^o.r 

having two global minima rnUJo and m' . Mark these UJQ'S. By (CI) and (C2), for UJ'S 

nearby the marked c^o's, there is a smooth continuation and m'^ of mW ( ) and m' , 

respectively, to local minima nearby. Pick a small 7/ > 0, so that //-neighborhoods 

of the marked c^o's, denoted by TJJ , are disjoint. Moreover, in each neighborhood 

T^ o , there is a well defined continuation rn^ and rri^. Such rj will be called (£0, P, T)-

admissible. 

Consider now a small r > 0 with the following properties. For each UJ G T, 

consider two cases. In the first case is in one of TJJ . Then, we define a 2-tuple 

of r-neighborhoods and in Tp are centered at rn^ and ra^, respectively and 

disjoint. Denote = U D^. In the other case, u; is outside of neighborhoods 

of marked frequencies 's put to be a r-neighborhood centered at the global 

minimum rn^. 

Definition 6.4. A rational frequency UJ G Y n Q 2 is (£Q, P, I\ 77, r)-admissible with a 

small r > 0 if the family of first (UJ, V)-averaged systems {P^.r = P^,r + P^rj^er 

satisfy hypotheses (CI) (C3) and for an (£ 0, P, r)-admissible 77 > 0 and any P^ + P* > 

P ^ P ,̂ each shortest geodesic (resp. local continuation of a shortest geodesic) 7^ 
(resp. 7^ if it exists) of the Maupertuis metric CJE in the homotopy class /i^r belongs 

to K?R(DZ).<6) 

Recall that, for each double resonance of a rational frequency UJ = (pi/(I1P2/O) £ 

r n Q 2 in (20), we may define the double resonant mechanical system on the slow 

2-dimensional torus T 2 and the natural projection n^s T 2 —» T A onto the slow 

1-dimensional torus Tp C T 2 . Then, we have the following result: 

Lemma 6.5 ([Ma4]). Suppose the perturbation term P(6,6,t) satisfies hypotheses 

(CI)- (CS). Then, for any r > 0, there is an integer qo = qo^o, P, I\ r), such that, 

for any rational frequency UJ with denominator q > qo, we have that UJ IS (£0, P, T, 77, r ) -

admissible. Namely, a corresponding shortest geodesic (resp. local continuation of a 

shortest geodesic) JE (resp. 7^ if exists) of the Maupertuis metric QE, defined in (21), 

belongs to the strip 7rJp(P^,) C T 2 . 

( 6 )As a matter of fact the proof in [Ma4] requires a stronger form of admissibility which still fits 

into the proof of our main result (Theorem 1.2). 
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For further reference, we need to give a definition of rj and r-neighborhoods for 

double resonances. Let Lu and T2 be the mechanical Lagrangian on the 2-torus 

corresponding to a rational frequency UJ = (pi/q,P2/q) G T n Q2 as above. Let 

{gE}EelEu+E*,EU] he the 1-parameter family of Maupertuis metrics defined by (21). 

Suppose hypotheses (C4)CL,-(C8)U; are fulfilled. Mark parameters EQ where QE has two 

shortest geodesies in the homology class /i^p. By the second transversality condition 

(C7)^, there are finitely many EQ G [E^ + E*, EU] with metrics gE[) having two 

shortest geodesies 7#() and 7 ^ . By (C8)w, there is a smooth continuation 7 ^ and 

ry'Ei to locally shortest geodesies. Pick a small r]u > 0 so that r/^-neighborhoods of 

marked EQ'S (denoted by T^V) are disjoint. Moreover, in each neighborhood T7E{) there 

is a well defined continuation jE and jE. Such r/̂  is called (£0, P,T, UJ)-admissible. 

Pick a small TU > 0 with the following properties. For each E G[£^, EU + E*] 

consider two cases. Either UJ is in one of . Then, we define a 2-tuple of r-

neighborhoods DTE and DTE in T2 of the locally shortest geodesies 7#() and jE re­

spectively so that these neighborhoods and disjoint. Denote DTE = DTF U DTE. In 

the other case E is outside of these neighborhoods of marked energies, then DTE is a 

r-neighborhood of the shortest geodesic ryE. 

7. Definition of II r̂  using type 2 non-degeneracy 

(of Barrier functions) 

In this Section, we define the non-degeneracy hypotheses of the second type. They 

are formulated in terms of minima of certain barrier functions, restricted to what we 

call Poincaré screens. First, wre explain the meaning of Poincaré screens and we define 

them. Later on, we define required barrier functions and state the non degeneracy 

hypotheses that we need to define <5(4h F)-cusp residual set U"^^ r̂ . 
As mentioned in Section 3.2 diffusing trajectories stay most of the time close to the 

corresponding Mather sets JVit and from time to time make almost heteroclinic ex­

cursions along stable and unstable sets Ws(M.t) and Wu(j\Ai+\) from one set Ait to 

the next one Arz+i. hi order to keep track of those excursions, we pose a smooth hy-

persurface (Poincaré screen) 'in between" M., and A^+i- To give a precise definition 

we need further discussion. 

Recall that ML — TTM7 C T2 x T is the projected Mather sets. Suppose hypotheses 

(C1) - (C3) and (C4)a/-(C8)Co, for rational UJ'S with small denominator are fulfilled. 

Consider two different cases: 

(1) UJ is Cv^-close to a rational (pi/q,P2/q) with small denominator q < qo, where 

C is some positive constant depending only on 4), P, r, r and is closely related to the 

energy constant E*. 

(2) the opposite case. 
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Recall that, for any frequency U G T , we associate homology class in i^i(T2.R) ~ 

M2 equal to to. Each Lagrangian satisfying conditions (1-3) of section 2.1 has Fenchel-

Legendre transform Cp associated to it by (29). Using we associate to each 

homology class UJ any cohomology class inside C$(UJ). 

It turns out that, in the first case, for a sufficiently small e ^ 0 and a cohomology 

c E jCg(uj), there is reseating which relates c and E € [E^.E^ + E*], such that the 

projected Mather set Aic belongs to ir~l(Drg). In the second case, the projected 

Mather set Mc belongs to TT̂  1 (D^). In both cases, the projected Mather sets are 

localized in a r-neighborhood of one or two hypersurfaces on the base T2 x T. We 

shall distinguish these cases. 

Definition 7.1. — Let UJ E F and c E Cp(uj) be a cohomology class. Distinguish two 

cases: DTg (resp. D^) has one or two components. 

In the one component case, let us define Sc C T2 x T to be a smooth hypersurface 

(i.e., a codimension one closed smooth submanifold) topologically parallel 7rJ1(7^), 
which is transversal to class A geodesies with respect to 7^, and disjoint from its 

r-neighborhood n~1(DT^) in the first case and topologically parallel to 7Tp1(ma;), 

transversal to class A geodesies with respect to 7^ and 7^, and disjoint from its 

r-neighborhood 7rrT1(D )̂ in the second case. 

In the two component case: let us define Scì. S(_^ C T2 x T to be a pair of smooth 

hypersurfaces parallel and separating 7T~1(^E) and TTJ1(7^) in the double resonance 

case. "Separating" means that Si_ and S+ cut T2 x T into two disjoint parts each 

containing either K~1(^E) OT TTJ1(7^;)- In the single resonance case define C 

T2 x T to be of smooth hypersurfaces parallel and separating 7rrT1(mCi;) and 7T^l(m,u;). 

Call Sc (resp. Si_ and S+) Poincaré screen (resp. screens) associated with cohomology 

class c E Cp(uj). 

Hypotheses (C1-C8) we impose do not imply that the geodesic 7^ and the mini­

mum rriuj vary continuously with E and cu E F. Points of discontinuity are usually 

call bifurcations. However, (CI) and (C4^,) imply that 7^ and vary piecewise 

continuously. Therefore, we can choose Poincaré screens so that they are piecewise 

constant with respect to c. In other words, one could divide F into a finite number of 

subintervals, so that for all LO in a subinterval the Poincaré screen is the same. 

By construction, all Sc are topologically parallel. This property essentially relies 

on the fact that we have only one resonant segment F under consideration. Since Sc 

is piecewise constant in c, we shall treat the case of one Poincaré screen Sc for each c. 

The other case is analogous. 

Denote by St = Sc> Poincaré screens corresponding to the frequencies uou i = 

1,2,... related to c2, i — 1.2,... by Fenchel-Legendre transform respectively. We 

marked these frequencies UJÌ'S in Section 3.3. Consider a cyclic cover Tp x IR over T2 x 

Tp obtained by cutting along a Poincaré screen S and unrolling. Fix one representative 
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of T 2 x Tp in Tp x R and denote it by Tp x Tp(0). For each integer k, we denote by 

Lk ' Tp x R —> Tp x R the deck transformation along Tp-direction, and by Tp x Tp (k) = 

//,(T r x Tp(0)) its fc-th shift. Denote by S? an image of S{ in Tp x R under the natural 

embedding so that S® D (Tp x Tp(0)) 7̂  0. By construction, for each i = 1, 2 , . . . we 

have that the corresponding Si is topologically parallel to Tp and that tk(S7) f l / ^ (S^) 

are disjoint for any k 7̂  A7. Denote = ik(Si) for A;, z G Z and = 5-. Now we 

define the S(£o, T)-cusp residual set W | ^ o 

Consider a closed one form 77, with [77)̂ 2 = C and c G £^( r ) . Define the barrier 

function on Si 

(22) H1hT((0J),(0'j,')) =ini 
b 

a 

(L - ^n (dA (t), t) dt 

where the infimum is taken over all absolutely continuous curves 7 : [a, b] —• Tp x R 
such that 7(a) = 0, 7(6) = 0'', a = £' (mod 1), 6 = t (mod 1), 6 - a > T, (6,T) G 

(S',^) G 5^. 

For next definition, we need to introduce suitable curves L\(6,T) = (0 / , t / ) , which 

correspond to closed curves on Tp x Tp connecting a point on 5« with itself and 

making only one turn in Tp-direction. Notice that, in this case, H7]T is independent 

of the choice of 77 in [RJ]j2 = C and [77]t, because such curves are closed. For a Mane 

critical or subcritical form, the barrier function HT]T is finite and continuous [Ma5]. 
Let us consider 

(23) Hc{6,t) = lim miH,hT((0, t),(0,t)). 

This definition is a particular case of the definition of barrier function (32). In [Ma2], 
Mather proved that the limit exists. 

Lemma 7.2 ([Ma4]). Let P G f/|^0 r) ' £ be sufficiently small and positive, and T be 

a resonant line segment in U. Then, the Fenchel-Legendre transform Cß associated 

with L = £0 + eP by (29) has the channel property with respect to T. 

By lemma 7.2, there is a closed connected curve O~Y C Cß(T) with the channel 
property. We could parameterize this curve by a smooth parameter, say r, i.e. ar : 

[0,1] —> ar C Cß(T). Thus, we can define a family of barrier functions 

[HT : £ r —> R} r G[ 0 ,i] 

by cT = 5r(r) , ST = SCT and HT(8,T) = HCT : ST R. It turns out that, under our 

hypotheses, HT is continuous in r and even satisfies certain modulus of continuity 

(see [Ma4]). As we pointed out above, hypersurfaces ST can be chosen to be smooth 

in r. Recall that a closed subset D of a torus Td is called acyclic in Td if there is a 

neighborhood V of D in Td such that the inclusion map # i (V ,R) C H1(T
d,R) is the 

zero map. Since the ambient manifold Td is a torus, the above inclusion map is the 
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zero map if and only if any closed curve in V is contractible. Let 

DT 
(0J)eST: HT(0A) min Hr{0',t') 

(o\t')esT 

the set where minimum of the barrier HT on ST is achieved. Recall that ST is diffeo-

morphic to the 2-dimensional torus. The last non degeneracy hypothesis we require 

is the following: 

(C9) For each r G [0,1] the set DT C ST is acyclic. 

Suppose that there is a curve cir G Cfj(T) with channel property such that the 

family of barrier functions { # T } T E [o,i] satisfies hypothesis (C9); then, we denote the 

set of perturbation terms eP with this property by IF*^ r^ C WJ%^ Ty The following 

result is not trivial to prove: 

Lemma 7.3 ([Ma4]). The set r^ is CS open and dense in V^{) ry 

The application of Mather theory to the instability of elliptic points requires the 

following lemmas about the localization of the velocity of the minimizers. Recall that 

L(6,v,t) = £Q(V) + eP(9,v,i) is CS smooth nearly integrable Lagrangian, defined on 

T 2 x U x T. Let Cp be Fenchel-Legendre transform associated with L. Denote by 

7TV : T
2 x U x T ^ ( / the natural projection. 

Localization Lemma I. There is C = C(£Q,P) > 0 such that for any frequency 

UJ G U and any cohomology class c G £fi(uj) the Mane set j\fc(Z) MC) is contained in 

IIp-1 (B2C Ve (w)). 

In other words, velocity of minimizers with approximate velocity UJ may differ 

from UJ at most by Cy/e. 

Let the perturbation direction P G É7|̂ 0 ry then, for any frequency UJ G T and any 

cohomology class c G Cp(uj), the Poincaré screen ,S'r. the barrier function HC1 and its 

minimum set Dc C Sc are well defined. 

Localization Lemma II. — The property Dc being acyclic depends only on the values 

of L inside 7TI(B^^(UJ)) with the same C as in the Localization Lemma I. 

These lemmas are a restatement of Lemma 3 in [Ma5] and they follow from it. 

Their proof is based on a careful perturbation analysis. First, one proves that, with 

the standard identification of Hi(T2M) ~ R 2 . ^ ( T ^ R ) ~ R 2 , Fenchel-Legendre 

transform Cp is Cy^-close to the map V ^ o : U —̂  R2- Then, using a generalization 

of (12) to the case of arbitrary CS smooth convex unperturbed integrable Lagrangian 

£o(0) and the remark that (0 + c, 9 + c) is non-negative, one shows that, if C is too 

large, c-minimality would be contradicted. See also [BK] for similar results. 
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8. Variational principle and restatement of Mather diffusion theorem 

In this Section, we introduce a variational principle of Mather [Ma4]. We shall use 

the notation of the previous section. By lemma 7.2, we have that £.i(V) has a smooth 

connected curve ar C Cp(T) having channel property. Fix an orientation on ar toward 

Cfj(uj0) and a sufficiently dense ordered set of cohomology classes £ = {ct}tez+ C <JR 

so that they are monotonically oriented along ar and in between any two Q _ I and 

c 2 + i on ar there is only c z from (£. How dense this set needs to be will depend on how 

close the family of barriers { i 7 r } r G [ 0 , i ] defined above to fail hypothesis (C9). This 

collection of Ci's plays the role of the collection of uVs from Section 3.3. For each 

positive integer i, denote Poincaré screens by Si = SCi on Tp x Tp and by Si = SCi 

on Tp x R, Mather sets by Mi = MCi C T 2 x R 2 x T. Fix a sequence of closed one 

forms rji such that [r/]T2 = ch and positive numbers TL. For (0,t) G Si, (6*',£') G Sl+i 

and T > 0 define 

(24) Hifft-r^(M),(^0) inf 

.6 

tt 
(L-ni)(dA (t), t)dt 

where the infimuin is taken over all absolutely continuous curves 7 : [a, b] —» T 2 x R 
such that 7(a) = 6>, 7(6) = (9r, a = t (mod 1), b = t' (mod 1), b-a^ T%. This leads 

to a variational principle 

(25) 

ieJ' 

11,1, ( № , ^ ) , № + i , ^ + 1 ) ) . 

Here above, we understood the following notation: if J is a set of consecutive integers, 
we denote by J' the index set J without its largest element (provided it exists). 

If all one forms are critical or subcritical, then each Hi is finite and continuous. 
Therefore, we can define a minimizer of the variational principle to be a sequence 
{(();. \,) : i G J} such that if a < b and {(O^t^) : i G J} is any sequence satisfying 

(O'1-t1)= ((),.(,) for i ^ a and / ^ 6, then 

i E J' 

Hi,Ti ((Oi, ti), (0i+1, ti+1)) 

ieJ' 

Hi,Ti ((Oi, tià, (Oi+1, ti+1)) 

Since each H2 is finite and continuous, an elementary compactness argument shows 

the existence of a minimizer. 

Theorem 8.1. Let eP G ry Then, for any index set J, there are sequences of 

positive numbers {eiji^j and subcritical closed one forms {rji}i£j, such that [rji]j — 

<^L([^]T S ) < £i, and large positive numbers satisfying the following property: 

their, exists a minimizer {dj(t) : t G R} of the variational principle (25), which 

provides a smooth solution of the Euler-Lagrange equation (7). In other words, the 

minimizer {dj(t) : t G R} has no corners. 
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9. Application 

In this Section, we describe how to apply Theorem 8.1 in order to prove Theorem 

1.2. It does not seem possible to simplify arguments, because of degeneracy of polar 

coordinates at the planes r?- = 0, j — 1, 2. 
Consider the rough sketch of the proof from Section 3.1 and Lagrangian Lf defined 

in (9). We shall modify it by restricting Lf to the annuli {Aj(uj0)}jez+ and applying 

Theorem 8.1 to each of these restrictions. This will allow us to construct a modification 

of the variational principle (25) appropriate for our problem. 

Write the remainder Pf of Lf in the form (11). If T C A^ is contained in one of the 

axes, some terms might vanish, but not all of them. For a unit vector = (e\,e\) 

parallel to T, denote 

Pfx(0,v - U ; V ) 
3 

p=0 

(e1k) P(e2k) 3-p Pp (0,v - w0, t). 

To apply Theorem 8.1 to Lf in each of the annuli, we need to verify the following 

hypotheses 

- ( C 1 ) - ( C 3 ) for all CJ"S in T, 

(C4)u;-(C8)a, for u/s with small denominators in T, and 

- (C9) for all r s in Cf3(o-r). 

First we shall verify all hypotheses except (C9). For this purpose, we define the 

following Lagrangian 

(26) Lfir(0,v,t) 
1 

2 
B-1 (v.- w0), 

(v - UJ0) 
+ E Pf,r (O,v - wo, t), 

where e is nonzero and small. For this perturbation term Pf^ using (15) (resp. (18)) 
define the first (UJ, T)-aver aged potential, denoted by Pf^s : —> R (resp. the 

second cj-averaged one, denoted by P/,^ : T2 —» R). 

Rescale the annulus A3(UJ{)) to the unit size. Denote r*„ : v X(v - UJ°) + UJ° 

rescaling centered at UJ°. We have that T2J/Si)(AJ(UJ0)) = A{UJ°) = { 1 / 4 < \r\ < 4 } . 
Notice that A& is invariant under rescaling T^0 for any A > 0. 

Restrict the Lagrangian Lf to T2 x AJ(LJ°) X T. Consider the rescaling T^JS° in 

(v — UJ°) of T2 x Aj(U)°) x T to T2 x A(UJ°) x T. it gives the new "rescaled" Lagrangian 

(27) LJf(0,v,t) 
1 

2 
B-\v-w° v - UJ° 

+ S02-> 

3 

p=0 

(v-u,oX(v-uO)l-pPÌ(0,v-u,o,t), 

where {pi(6, v - w°, t) = Pp(0,T*/S"v - u°.t)}L=0 is <?s,rf~3 smooth and defined in 

T2 x K?U)°,B) x T. Denote the remainder 

3 

•p=0 
(v-w0)p1 (v-w0)3-p 2 P jp (O, T2j/Go w0 v - wo,t) 

by I'iill.r J'.h. 
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The definitions of all hypotheses except (C9) involves averaged kinetic and potential 

energies. Fix any positive integer j . Notice that the unperturbed integrable parts are 

the same for both Lf and L3^ r. These parts define the averaged kinetic energies (see 

(16) and (19)). Thus, the averaged kinetic energies of Lf and L r coincide. Now 

consider the perturbation terms. A direct calculation based on (15) and (18) shows 

that up to a constant the first cj-averaged (resp. the second (u;, T)-averaged) potentials 

of Lf and L/,r are coincide respectively. Therefore, for each j G Z+ we have that up 

to a constant 

T-averaged mechanical systems associated to Lf and L r coincide. 

Denote the first (j-averaged and the second (CJ, T)-averaged mechanical systems by 

Luj and L^jx respectively. The definition of a small denominator q0 involves only 

averaged mechanical systems. After qo is determined, notice that choosing small 

enough we need to verify (C4)w (08)^ only for at most one CJ° in the case CJ° is a 

rational with small denominator. Suppose Lf^ in (26) satisfies hypotheses (C1)-(C3) 

and (C4)w-(C8)u; (if the latter is necessary). Then, there exists 5 = S(£0, T, Pf:r) > 0 

such that the variational principle (25) is well-defined for the Lagrangian Lfyr and 

each 0 < \E\ < 5. In notations of Section 3.1, let S be given by 26 = So. Consider also 

the rescaling of the original Lagrangian Lf in (v — UJ°), in order to see that the above 

arguments is applicable to Lf too. 

The definition of all hypotheses except (C9) involves averaged kinetic and potential 

energies. The above verification shows that if Lj- satisfies hypotheses (CI) (C3) and 

(C4)u;-(C8)a; (if the latter is necessary) on Ts, then Lj- satisfies these hypotheses on 

Ts too. The only difference is that the constant in front of Pj decreases as j increases. 

This implies that if Pj G U^f() ry then Pj G Utfo ry 

In notations of Section 3.1 we now verify that, for a CS Whitney open and dense 
set of remainders (11), the restriction of Lf to any of T2 x K^J(LJ°, B) X T satisfies 
hypotheses (CI) (C3) on Ts and (C4)^ (CS)^ (if the latter is necessary). This implies 
that the variational principle (25) is well-defined. What is left to verify is hypothesis 
(C9), and the fact that velocity of minimizers of the variational principle (25) belong-
to the corresponding cones • (a;0, 5 ) . 

Suppose the first potential satisfies hypotheses (CI) (C3) on Yp — [CJ°,CJ° + pe^], 
where p is the radius of the ball such that (9) is defined on T2 x K^(CJ°, B) x T. 

Consider now the rescaling Lj- of the restriction of Lf on the annulus A3(uo). By 

lemma 3.2, there is a smooth curve o~r with channel property. Denote by a'l, a part of 

this curve which connects £fj(uj0 + S3ek) and Cp(u°-f o^+ie/e). We can apply Theorem 

8.1 with the curve as the curve with channel property. According to the variational 

principle (25) its minimizers velocity moves along T with a certain error. 

The Localization Lemma I shows that minimizers of the variational principle (25) 

for L = LJf have velocity C2~J'/2-close to T for some constant C. Therefore, after 
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the backward rescaling, the velocity has to be C2~~ÂJj/'2-close to Fr It implies that 
minimizing trajectory of (25) does not leave the cone T2 x K%7(CJ°, B) X T. 

The Localization Lemma II shows that non-degeneracy hypothesis (C9) holds for 
LJj taking into account that the velocity value is C2~J//2-close to F. By lemma 7.3, 
the set of restrictions of Lj. onto T2 x Kgj(uj0, B) x T, where hypothesis (C9) holds, 
is Cs Whitney open and dense. Therefore, there is a Cs Whitney open and dense 
set of remainders Pf in (9) such that for all positive integers j the corresponding Pj 
fulfills hypothesis (C9). This completes the proof of Theorem 1.2. • 

Appendix A . Mather minimal sets 

In this Appendix, we discuss basic objects of Mather's theory of minimal or action-
minimizing measures [Ma]. This theory can be considered as an extension of KAM 
theory. Namely, it provides a large class of invariant sets for a Hamiltonian (or dual 
Euler-Lagrange) flow. KAM invariant tori and Aubry-Mather sets are examples of 
these sets. We need to define these notions to give the detailed scheme of the proof 
of Theorem 1.2 (see Section 3.1). 

We start with a positive integer n, a smooth n-dimensional torus Tn, and a Cs-
smooth time periodic Lagrangian L : TTn x T ^ I , (6,v) e TTn, s ^ 2 which 
satisfies hypotheses ( 1 3 ) of section 2.1. Note that all definitions and results of this 
section can be given for any smooth compact manifold instead of Tn. Later we apply 
it for n = 2 and the Lagrangian L given by (9) near the zero section and extended 
outside to keep fiber-convexity. 

We say that /i is a probability measure, if it is a Borel measure of total mass one. 
Let VL be the space of probability measures on TTn x T invariant with respect to 
Euler-Lagrange flow (7). We shall consider probability measures only from VL- If V 
is a closed one-form on Tn x T, we may associate to it a real valued function rj on 
TTn x T as follows: express r/ in the form 

rj = rjj-ndO + r]Tdr, 

where rjjn is the restriction of rj to Tn and r\T : T —> M and set 

r] = T]T» + TJr O TT, 

where n : TTn x T —> Tn x T denotes the natural projection. This function has the 
property 

b 

a 

rj(d-f(t),t)dt 

(7-r) 

n, 

for every absolutely continuous curve 7 : [a, b] —> Tn with the right hand being usual 
integral over the curve (7,r) : [a, b] —• Tn x T defined by (j,r)(t) = (7(t),t mod 1). 
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If p is an invariant probability measure on TTnxT, its average action is defined as 

A(p) L(6,v,t) dii(0,v,t). 

Since L is bounded below, this integral is well defined, although it may be equal 
to + 0 0 . Next step is to define an appropriate notion which generalizes the rotation 
vector of a periodic trajectory. If A(p) < 00, one can define a rotation vector p(p) E 
i f 1 (Tn, M) of a probability measure p by 

(28) (P(AO> W T » > + [VÎT fj{6,v,t) dp(0pu,t) 

for every C1 closed one form 77 on Tn x T, where 

M = ( M T « , W T ) e H^T1 x T , R ) = H \ T \ R ) x M 

denotes the de Rham cohomology class and (, ) denotes the dual pairing Hi(Tn,R) 
xi71(Tn, R) —* R. The idea of a rotation vector is classical and goes back to Schwartz-
man's asymptotic cycles (see [Ma] in the time independent case), but in the time 
dependent case definitions and arguments are the same. In [Ma], by using a Krylov-
Bogoliuboff type argument, Mather proved the following result: 

LemmaA.l. — For every homology class h E 7^i(Tn,R) there exists a probability 
measure p E VL such that A(p) < 00 and p(p) = h. 

Such a probability measure /1 E VL is called minimal or action-minimizing if 

A(p) = min{A(i / ) : p{v) = p ( / i ) } , 

where v ranges in VL and A(y) < 00. If p(p) = h, we also say that p is h-minimal. 
Denote by Aih closure of the union of supports of all /i-minimal measures from VL-
This set MH C TTn x T is called Mather set. By the above lemma MH is always 
nonempty. 

A probability measure a E VL is c-minimal for c E i / 1 ( T N , I R ) , if it minimizes 

Ac(p)=A{p) - (p(p).c) 

over all invariant probability measures. Ac(p) as above is called c-action of a measure. 
Mather [Ma] also proved the following result: 

Lemma A.l. — For every cohomology class c E i71(Tn, R) there exists a c-minimal 
probability measure p E VL such that A(p) < 00. 

Denote by MC closure of supports of the union of all c-minimal measures from 
VL- MC C TTn x T is also called Mather set. By the above lemma MC is always 
nonempty. Mather [Ma] proved that 

UhEH1 (Tn, R) Mh = UcEH1 (Tn, R) Mc 

It turns out that A4C can be "nicely" projected onto the base Tn x T. 
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Graph Theorem. — Let TT : TTn x T Tn x T be the natural projection onto the base. 

Then, for any c G H^T71,^), the corresponding Mather set A4C is a Lipschitz graph 

over the base Tn x T, i.e. -K~%M<'- • nMc MC. 

Call TTA4c projected Mather set and denote Aic = TTM,C. 

Definition A3. — The function 

fh : i7~i(Tn, R) R, pL(h) = A(fi), 

where /1 is an h—minimal probability measure, is called Mather's (3-function. The 

function 

aL : ^ ( T N , R ) R, OLL{C) sup 
h£Hi{T",R) 

(h,c)-PL(h) 

is called Mather's a-function. 

Lemma A.4 ([Mai). — Both a-function and (3-function are convex and conjugate by 

the Legendre transform. 

By definition, 

0L(h)+aL(c)^ (h,c), fte i ï i ( T N , R ) , c G Hl{Tn,R). 

To distinguish from the standard Legendre transform (6) the map 

(29) Cp : # i (Tn ,R) —> {compact, convex, non-empty subsets of Hl(TP, R ) } , 

defined by letting Cp(h) be the set of c G i71(Tn,R) for which the inequality in (9) 
becomes equality, is called Fenchel-Legendre transform. In what follows, we shall 
identify each h—minimal invariant probability measure with a c—minimal invariant 
probability measure, provided that c G Cp(h). 

For an absolutely continuous curve 7 : [a, b] —> Tn, let us denote d^(t) = 

(7(t),7(t)). The above is well defined for a.e. t. For such 7 and a closed one form rj 

with [77] jn = c, we call c-action 

(30) Ml) 

b 

a 

(L-îj)(ch(t)j:)dt, 

where rj(9, 0, t) = rjT" (0, i)0 + r/riO, t) if 77 = rjTndO + rjrdt. Notice that c-action does 

not depend on a choice of 77 in the cohomology class c. A closed one form 77 on T n x T 

is called Mane critical if and only if 

min (L - fj)dfi = 0. 

Since each closed one form can be written as [77 J = (I^JT", [vU), by the definition of 

ce-function for Mane critical one form we have [rj]j — —a([r]]jri). We also say that 77 

is Mane supercritical if [77]T > —«L([^]T'0 and Mane subcritical if [rj]j < —ctL([7]]jn.). 

We shall explain geometric meaning of sub and super criticality in the next section. 
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We say that an absolutely continuous curve 7 : R —» T n is an absolute c-minimizer 
if, for any interval [a, b] and any absolutely continuous curve 71 : [d, e] —» T n such 
that d = a (mod 1) and e EE 6 (mod 1), we have 

b 

a 
(L-rj)(di(t),t)dt 

e 

d 
(L - n) (dA1 (t), t) dt, 

where 77 is a Mane critical closed one form on T n x T such that [r]]j» = c. Notice 
that the time intervals b — a and e — d are not necessarily the same. Completeness of 
the Euler-Lagrange flow (see property 3 of Lagrangian) implies that every c-minimal 
curve is C 1-smooth and, therefore, as smooth as L is. So it is Cs~^smooth. Denote 
the union of all sets of omininiizers {(d-y{t),t) : t G R} C TTn x T by j\fc and call it 
Mane set. This set is certainly a closed set. 

We now introduce the notion of barrier function and we deal with another set of 
trajectories associated to a cohomology class c G Hl(TT\R). The barrier function 
is introduced in [Ma2] and is a generalization of PeieiTs barrier. Let 81,82 G T n , 
77, T2 G T ^ 0, and 7] is a Mane critical one closed one form on T n x T such that 
[r]]jn = c. Define 

(31) V R ( ( 0 i , T I ) , ( 0 2 , T 2 ) ) = I N F (L-rj)(dj(t),t)dt, 

where the infinum is taken over all absolutely continuous curves 8 : [a, b] Tn such 
that a EE T 1 (mod 1), b EE r 2 (mod 1), 8(a) = 8U 8(b) = 82, and b-a^T. Define the 
barrier function 

(32) h„((0i-Ti).(0-2.T.2)) : L I M I U F V T ( ( 0 1 . R 1 ) , ( 0 2 , R 2 ) ) . 
T—> + OC 

In [Ma2], Mather has proved that the limit exists. He also introduced a pseudo-metric 

(33) Pc((8i^Tl),(82,T2)) = hn((8url),(82,r2)) + M ( 0 2 , r 2 ) , (0i, n ) ) . 

It turns out that this construction is independent of /7, provided 77 is Mane critical 
and [77]T" = c. One can show that pc ^ 0, satisfies the triangle inequality, and is 
independent of the choice of a Mane critical closed one form 7/. The set 

AC = {{0,t): pc((0,T)Ae.Ti) =0} 

is called Aubry set. One can show [Ma2] that 

MC C AC C JVC C T T 7 ' x T 

for all c G iJ1(T", M) and also satisfies the Graph Theorem stated above. 

Appendix B. Proofs of auxiliary lemmas 

Lemma B.l. — For positive p and 0 < a < 1 consider the space of Cs,d smooth 
function on JC(

p 3 (8,r) with the natural Cs Whitney topology in JCC*, where m ^ d ̂  
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s ^ oo, d. tri G Z+. Then for any Cs Whitney open dense set P6d_m of (rn + 1)-tuples 

(go,. . . ,gm) of CS}d~ni smooth functions on JC(* the set of functions of the form 

(34) . 0 (0 , r ) 

m 

p=0 

r{rirpgv{0,r) 

with (rn + I)-tuples (gih...,gm) G Vsd_m intersected with C's(/C2a) is Cs Whitney 

open dense. 

Proof of Lemma B.l. Pick r — (ri,r2) G K™. i.e. 0 < ar\ < r2 < p and 0 < 

or2 < ri < p. We find two functions f\\(0.r) and ,/2i(#.r) defined on /C" satisfying 

(35) n / i i ( 0 , r ) - r 2 / 2 1 ( 0 : r ) = / ( 0 , r ) . 

Consider two functions equalities: 

/ ( 0 , r ) - /((9, n , | n ) = r2 .92(0 , r). / ( 0 . r , . | r2) = rli9l (0. r ) . 

To define / i and /2 by explicit formulas inside A v̂ consider the coordinate change: 

r\ = ( r i ,o r i ) , 72 = (0.7*2 — o/ ' i) , and f(0.r 1.7-2) — f(0,ri,r'2). By Hadamard-

Torricelli's lemma 

/ 1 ( 0 . ñ , o ) 

1 

0 

0 / 

Gr1 
ill.tr .Dull 

/ ( 0 , ñ , o ) 

'1 

r1g1 (0, r1,0) f(o, r1, 0à - f (o, 0) / ( 0 . n , | n ) 

92(6, ri,r2) 
1 

0 

0 / 

¿F2 
{0,rut?2)dt 

f (o, r1, r2) - f(o, r1, 0) 

T'2 - § T*I 

This implies that for / u = gi + 77 #2 and /21 = #2 (35) holds true. 

Notice that fa and f2\ have zero of order (ra — 1) in r in the sense that they 

are Cs'd~l smooth. Application of Hadamard-Torricellrs lemma to f\\ and /21 gives 

explicit formulas for functions /02, ,/12, and /22, which have zero of order (ra — 2) in r, 

namely, functions belong to Cs'd~2(JC(^). After ra steps we get explicit formulas for 

functions /om,. . ., fmrn- Denote fprn = fp for p = 0,. . ., ra. These functions satisfy 

(34) which completes the proof. • 

Proof of Lemma 2.1. We start with an integrable truncation of / . Let / be defined 

by (1) with PJ<QJ = 0. Then, the time 1 map of the Hamiltonian 

(36) H{)(9. r) = cjin + u2r2 + 7>(Br^ r) 

coincides with fo, as an easy calculation shows. Construct a tune periodic deformation 

{H(-. t)}ter of Ho so that the time 1 map of H(-,t) coincides with / and so that H(-,t) 

is C,s+1 close to Ho(-) near r = 0 for all t G T. Since Ho is convex in s ^ 2, and wre 

are interested in small r, it implies the desired convexity of H(-,t) in r for each t G T. 

The construction of {H(-,t)}tej is done using generating functions. We recall 

a standard fact from Hamiltonian system (see e.g. Arnold [Ar2] sect. 48) for a Cs 
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smooth symplectic map g(0. r) = (6 , i?), 0, 6 G Tn, r, rlGlR^: one can define a Cs+1 

smooth generating function Sg(0,O) so that 

(37) 
r = -0eSs(6>,6) , 

ß = 3esfl(ö,e). 

The function Sg(0,Q) above is defined up to a constant. Direct calculation for / 

and f in a small r-neighborhood of zero show that 

(38) 
5 j ( 0 , 0) = ^(B-l(e - 0 - u),(G - 6 - u)) and 

Sf(eX 0) = 5 ^ ( 6 , 0) + 0(1(6 - 0 - LJ)\3). 

Consider a smooth family of generating functions { ^ } ^ [ o a ] given by 

S t ( 0 , 0 ) 

h(t) 

2 
(B-^e - 0 - uj/Mt)), ( G - 0 - uj/hit))) 

h(t)sV2(0,Q) + {i-h(t))Sf(0,e) 

for t G (0, \ ] 

for £ G [± ,1 ] , 

where /i is a smooth positive function away from zero, h(l) = h'(l/2) = 0, /¿(1/2) = 1, 

and l/h(t) — t near t = 0+. The choice of h is designed so that St is sufficiently 

smooth with respect to t for t G (0, 1]. By construction, St generates a smooth family 

{ft}te(o,i] °f exact symplectic twist maps (see [Go] sect 26 or [McS] sect 9.3). More 

precisely, ft(0,r) = (0 + (h(t))-1 (u + Br),r) for 0 ^ t ^ 1/2 and lim^0+ ft = Id-

Define st(0,r) = St(6.6 + (hft))-1^ + Br)) for 0 ^ £ ̂  1/2. It becomes 

st(0ìr) = (2h(t))-ì(Brìr). 

By assumption, l/h(t) = t near zero St can be smoothly continued for all t G [0, 1] 

with 50 = 0 and 6q(0,r) = S/(0,9(0,r)) , where 8(0, r) is given by / (0 , r ) = (B,i?) 

for some R. Now we can write: 

(39) f?(rd0)-rd0 = dst, t e [0,1]. 

It shows that [ft}te[o,i] *s a Hamiltonian isotopy. By standard results from 

symplectic geometry, obtained by combining homotopy formula and (39) (see 

e.g. Prop. 9.18 in [McS] or Thin. 58.9 in [Go]) this family generates Hamiltonian 

functions {H(',t)}t£[o,i] as follows. Denote by Xt vector fields generated by iso­

topy ft, i.e. given by Xt(0,r) — (dft/dt)(^(ft)~1(0,r)), by i y. n the interior derivative 

of a 1-form a by Xt, and by st(9.,r) a form of generating function, given by (39). 

Then 

Hf{.,t) = iztrdß-ur1T 
'd 
JtSt 

One can check that dHf(-,t) = -%x dr Ad0. 

By the construction, the time map of Hf(-,t) from time t = 0 to t = 1 equals / . 

However, {H(-, £)}te[o,i] is not necessarily periodic in t. To attain periodicity we 

slightly modify the above construction. For small t, say t G [0,(5], we have ft(0,r) = 
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(6 + tBr,r) and, therefore, Hf(-,t) = H(j(0,r). Let us define f\-T — f~l o / for 

r G [0, 5]. Let Si-T{9, 0 ) be the generating function of / i _ r with S i _ T ( 0 , 6 -f a;) = 0 . 

Consider the following family of generating functions 

st(o,e) 
St (0, O) 

(l-g(t))St(6,O)+g(t)S^t(0,O)) 

for t G (0, 1 - ¿1 

for í e [ 1 - ¿ , 1], 

where g{t) is a C s + 1 smooth function on [1 — (5,1], with g(l — S) = 0, #(1) = 1, 

and g{p)(l) = - (J) = 0 for p = 0,1, . „ , s + 1. By construction, S t defines 

a Hamiltonian isotopy {ft}te(o,i] with fx — fx — f. By the same token as above 

{/*}te(o,i] defines a Hamiltonian function Hf(-,t) which is C , s + 1 smooth and periodic 

in time t. 

In order to verify positive definiteness, we consider two cases: t G [0,1/2] and 

t G [1/2,1]. In the first case, near t = 0+, we have ft(0,r) = (6 + tBr,r) and, 

therefore, Hf(6,r,t) = Ho(6,r). Similarly, for 0 ^ t ^ 1/2, but not near zero, 

we have that Hf(6,r,t) = m(t)Ho(9,r), where m(t) is a smooth strictly positive 

function (explicitly computable from h(t)). Definition (36) of and hypothesis (H2) 

of positive definiteness of B implies positive definiteness of d2

rHf for 0 ^ t ^ 1 — 5. 

In the case £ G [1 — 5,1], by definition, S*(0,0) = Sjr(0, 6 ) + 0( | (6 - 0 - cu)\3). 

Explicit calculation gives that the underlying Hamiltonian has the form 

(40) H(6, r, t) = UJ\T\ + uj2r2 

1 

2 
(Br,r>+0( |r | 3 ) . 

It implies the Hessian d2

rH(-,t) is close to B and, therefore, positive definite. This 

proves the lemma. • 
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