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O N A N A L Y T I C FAMILIES OF I N V A R I A N T T O R I F O R P D E S 

by 

Boris D u b r o v i n 

Dedicated to J.-P. Ramis on the occasion of his 60th birthday 

Abstract. — We propose to apply a version of the classical Stokes expansion method 
to the perturbative construction of invariant tori for PDEs corresponding to solutions 
quasiperiodic in space and time variables. We argue that, for integrable PDEs all but 
finite number of the small divisors arising in the perturbative analysis cancel. As an 
illustrative example we establish such cancellations for the case of KP equation. It 
is proved that, under mild assumptions about decay of the magnitude of the Fourier 
modes all analytic families of finite-dimensional invariant tori for KP are given by 
the Krichever construction in terms of theta-furictions of Riemann surfaces. We also 
present an explicit construction of infinite dimensional real theta-functions and of 
the corresponding quasiperiodic solutions to KP as sums of an infinite number of 
interacting plane waves. 

Résumé (Tores invariants pour certaines EDP). — Nous proposons d'appliquer la mé­
thode des développements de Stokes à la construction perturbative de tores invariants 
associés à des solutions d'EDP quasi-périodiques en les variables d'espace et de temps. 
Pour les EDP integrables, nous nous intéressons à la compensation de presque tous 
les petits diviseurs apparaissant dans l'analyse pertubative, z.e., la compensation de 
tous sauf un nombre fini. Nous traitons de cette compensation en détail sur l'exemple 
de l'équation KP et nous montrons que dans ce cas, sous des hypothèses faibles 
portant sur la décroissance de l'amplitude des modes de Fourier, toutes les familles 
analytiques à tores invariants de dimension finie sont données par la construction de 
Krichever en termes de fonctions thêta de surfaces de Riemann. Nous donnons une 
construction explicite de fonctions thêta réelles de dimension infinie et des solutions 
de KP quasi-périodiques correspondantes comme somme d'une infinité d'ondes planes 
en interaction. 

1. Introduction 

Quasiperiodic solutions of the equations of motion 

ù = f(u) 

2000 Mathematics Subject Classification. — 35Q53, 37K10, 37K20, 14H70. 
Key words and phrases. — KP equation, Stokes expansion, theta-functions. 
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36 B. DUBROVIN 

in the form 

u(t) = U(01........0n), 0J= wi+0jn = j=1,.....n 

for a 27r-periodic in each 2P-. . ., 0n function U has been studied in the classical me­

chanics since 19th century. The associated geometric image of linear motion on an 

n-dimensional torus became widely accepted after creation of K A M theory and of the 

Arnold-Liouville theory of completely integrable Hamiltonian systems [2], although 

it was already familiar in the physics literature after the A. Einstein's treatment of 

the Bohr-Sommerfeld quantization rules for integrable systems with many degrees 

of freedom [14]. In particular, the Arnold-Liouville theory applied to a completely 

integrable Hamiltonian system on a 2n-dimensional syrnplectic manifold u G M2n 

establishes existence of families of /¿-dimensional invariant tori depending on n pa­

rameters I = {Ii,..., In.) 

(1.1) U(t I I) = E/(0i, . . . , (j)u I / ) , <f>j = 0Jj(I)t + j = l , . . . , n . 

Changing the values of the action variables I\,. . . , In one represents a 2n-dimensional 

domain in the syrnplectic manifold as a torus fibration. Under the nondegencracy 

assumption [2] the frequencies CJI(7), . . . ,ojn(I) run through all possible directions in 

an open set. In particular, for generic values of the parameters / the solution (1.1) is 

a quasiperiodic function in time. 

Systems of evolutionary PDEs 

(1.2) < = fa(u,ux,uxx,... ) , x = (xi . , r2. • • .*xd), a = 1 , . . . , r 

can be considered as an infinite-dimensional analogue of dynamical systems define on a 

suitable space of functions of d spatial variables x\ Xd- Although in certain cases it 

is possible to develop an infinite-dimensional analogue of the Arnold-Liouville theory 

of completely integrable Hamiltonian systems and to construct families of infinite-

dimensional invariant tori for certain nontrivial examples of nonlinear evolutionary 

PDEs and, moreover, to develop an infinite-dimensional analogue of K A M theory (see 

[28, 7, 24, 35]) and the related theory of Birkhoff normal forms (see [15, 21, 22]), 

in the most physical applications families of low dimensional invariant tori for PDEs 

play a prominent role. 

For linear PDEs families of one-dimensional invariant tori can be readily found in 

the form of plane waves 

(1.3) u(x, t) = A cos(/ci.xi + • • • + kdxd - üüt + (/>[))• 

The wave numbers k\,.... kd take arbitrary values within some domain of the 

d-dimensional space, the frequency 

(1.4) uj = u(ki . kd) 

is determined from the so-called dispersion relation substituting the ansatz (1.3) into 

the equation (1.2). It will be assumed that all branches of the dispersion relation (1.3) 

are real-valued functions. For any such branch A is a r-component vector determined, 
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INVARIANT T O R I FOR PDES 37 

in the generic situation, up to a scalar factor called the amplitude. The phase shift 

0o can also take an arbitrary value. The solution (1.3) in general is quasiperiodic 

both in space and time variables. Multidimensional invariant tori for linear PDEs are 

obtained as linear superpositions of plane waves 

u(x, t) 

n 

2=1 

Ai cos(fci#i + • • • + k'(l.v(i - u)H + (p'l0) 

with arbitrary amplitudes, phases and wave numbers, the frequencies determined as 

above 

uol = u(k{,. . ., k'ld), 2 = 1 , . . . , n. 

Note that, in the discussion of invariant tori for PDEs, we will not specify the class 

of functions (1) to be considered. 

In many cases families of one-dimensional invariant tori can also be obtained for 

various nonlinear PDEs as travelling wave solutions 

(1.5) u{x, t) = U(4>\A), (f) = kix\ H h kdXd - out + 

Here U((j)\A) is a 27r-periodic function in <p depending on some number of parameters 

A = ( ^ 1 , ^ 2 , . . . ) that determine the shape of the wave. The wave numbers and 

phases take arbitrary values. The shape of the wave does not depend on the phase 

shifts but it may depend on the wave numbers. It is convenient to subdivide the 

parameters A in two parts 

(1.6) A — ( & i , . . . , kd] a) 

where the parameter a is a nonlinear analogue of the amplitude. The frequency is 

to be determined from a nonlinear analogue of the dispersion relation. The latter 

involves also the amplitude parameters a, 

(1.7) LU = uj(k\,. . . , kd \ a). 

For fixed t the solution (1.5) takes constant values along the hyperplanes 

k\j'i + • • • + kdxd — const. 

The points on the hyperplanes move in the orthogonal directions with the constant 

phase velocity 

7; 
\k\-

\k\ A;2 H + A:(2. 

Example 1.1. —• The periodic travelling wave for the Kadomtsev-Petviashvili (KP) 

equation 

(1.8) 
1 g . 3 

'/.,-/ + - ( 3 / / + //.,.,.),•,• + -Uyy = 0 

(^The dynamic on a suitable class of almost periodic functions would probably be the appropri­
ate framework for considering the families of finite-dimensional invariant tori with arbitrary wave 
numbers. 
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38 B. DUBROVIN 

(here d = 2, x — x\, y — x^) can easily be obtained in terms of elliptic functions 

u(x, //. / ) -- i:(o). è = kx + ly — cut + 0o 

U(à) = 
2k2 

IT2 
K2 K2cn2 

K 

7T 
0: K 

c 

+ 6 
(1.9) 

w -c4k + 3/2 

4 fc 
jfc3 

K2 

7T2 
3 -f K2 - 2^ 

7 
E 
k - 1 + K2. 

Here cn[z; is the Jacobi elliptic function with the modulus 0 $J « ^ 1, K = K{K), 

E — E(K) are complete elliptic integrals of the first and second kind resp., c is an 

arbitrary constant. 

The functions (1.9) are periodic travelling waves propagating with constant speed 

in the (x, t)-plane. For / = 0 the above formulae reduce to the so-called cnoidal waves 

for the Korteweg-de Vries (KdV) equation 

(1.10) Ut + 7(3l/2 + ll,:r).r = 0. 
4 

The K d V equation is known to arise in a fairly general setting of one-dimensional 

weakly nonlinear waves with small dispersion (see. e.g., [33]). In particular it de­

scribes one-dimensional shallow water waves of small amplitude. The ^/-dependence 

of solutions to the KP equation (1.8) describes^2) slow transversal perturbations of 

the K d V waves [23], [33]. 

The elliptic modulus K plays the role of the amplitude parameter. At the limiting 

value K — 0 one obtains trivial solution u = 0; the frequency takes the value uo = 

— \{ck + k3). For small positive values of the parameter 

C 2 = k 
1 

W + 4 

/2N 
<-k \ / / : 5 - 3 V 

k / 
> 0 

one obtains approximately the plane wave solution 

u, ~ - + Acos(kx + ly — cut + 0o) . 
6 

U = i ( s £ - c t - * ) 

with the small amplitude 

A - 2 3t-

More accurate idea about the shape of the solution (1.9) for small amplitudes can be 

obtained by using Stokes expansion method [37]; see also Chapter 13 of the Whitham's 

book [39]. We will represent this classical method of the theory of water waves in a 

(2)The equation (1.8) is often called KPII to distinguish it from the KPI case. The latter equation 

differs from (1.8) by the sign in front of the second derivative in y. It also has physical applications 

but not within the theory of water waves [23]. 
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INVARIANT TORI F O R PDES 39 

slightly modified version. Let us look for the solution to the KP equation in the form 

of Fourier series 

( L U ) 
c 

u(x, y, t) = - + Ai cos 4> + A2 cos 2(p + A:i cos 3(f) + . . . , (p = kx + ly — cut + 0O 
6 

depending on a small parameter £ assuming that 

(1.12) Ak = 0(ek), k = 1 , 2 , . . . . 

Also the dispersion law must be expanded in a series with respect to the small pa­

rameter 

(1.13) 
1 

W = 4 

/2 
3 - - c k - k 3 

k 

+ w1 + w2 + ... wk = O (Ek) 

The KP equation must hold for an arbitrary 0O as an identity for formal series in e. 

Without loss of generality one can use the small amplitude A = A\ of the plane wave 

as the expansion parameter. Substituting the ansatz (1.11) (1.13) into (1.8) yields, 

after simple calculation 

(1.14) 
c A2 

u{x, y, t) = - + A COS 0 + — 
1 A2/8k1 + O(A1)) 

cos 2(f) 

3A3 

16 k4 
+ 0{A5) cos 3(j) + 

A4 

V 16 A;6 
+ 0(Ae) cos 40 + . . . 

(1.15) 
1 

W = 4 

' /2 
3 - - c k - k 3 + 

3 ^ 2 

8fc 

3yl4 

128 /c5 
- 0 ( y l 6 ) . 

For small amplitudes (1.14) (1.15) gives a reasonably good uniform approximation to 

the cnoidal wave (1.9). 

Multidimensional invariant tori for PDEs is still a not completely understood phe­

nomenon, although there are quite a few nontrivial examples of PDEs where a fam­

ilies of finite-dimensional invariant tori have been constructed, mainly by applying 

the methods of algebraic geometry (see, e.g., [12, 26, 10]). One can think of them 

as of the result of nonlinear interaction of travelling waves solutions, although this 

operation in general has to be defined. We suggest the following approach to the 

definition of the nonlinear interaction. 

Let the P D E (or a system of PDEs) possess a family of travelling wave solutions 

of the form (1.5) depending on some vector parameter 

A = ( f c i , . . . , f cd ; a ) . 

It is assumed that the wave vector k\,..., k(i assumes arbitrary values in some domain 

of wK 
( fc i , . . . , fcd) G/CcMd. 

The amplitude parameter a belongs to a ra-dimensional domain 

aeV c Rrn. 
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4 0 B. DUBROVIN 

Denote 

A := JC x V C r / + m 

The solution (1.5) must satisfy the P D E identically in 0° . Let us assume that, on a 

certain submanifold of codimension 1, 

a e C C V, d imC = m - 1 

the solution (1.5) becomes constant. We will only consider the local situation where 

V belongs to a small neighborhood of the manifold of constant solutions. Denote e 

the distance of a point on V from C. So, the amplitude parameter is subdivided into 

a = (e, c ) , c G C. 

For small e the solution (1.5) must become close to the plane wave 

( i . i 6 ) 
u ~ uo(c) + A(e, c) cos (j). 

(j) = kixi + + kdxd - wt + 0o, w — wo(k i , . . . , kd, c ) ) 

where u;o(&i, • • • , c ) is the dispersion law of the linearized P D E near the manifold 

of constant solutions c G C, A(0, c) = 0. 

Definition 1.2. We say that the family of n-dimensional invariant tori of the form 

(1.17) 
u = U(^1...^n\A^1\...,A^). 

= k\x\ + k'2X2 + • • • + kdx(i — ult + i = 1 , . . . , n 

is obtained as the result of (nonlinear) interaction of n plane waves if the following 

conditions are fulfilled. 

(i) The functions (1.17) are 27r-periodic in o\ <pn. 

(ii) As functions of (A (1), . . . , A(n)) they are analytic on a complement in Ax xA 

(n factors) to a collection of finite number of algebraic subvarieties R1,..., RN 

(1.18) (A(1), ..... A(n))E A x x A \ UNk-1=1Rk c R n ( d + m ) . 

(iii) Near the manifold of constant solutions the Fourier expansion of the functions 

(1.17) has the form 

c / ( 0 1 ? . . . ,0n|A(1),.. .,A(n)) = M d , . • • A i ^ i , • • • , £ n ) 

+ , cx) cos 0i H h A(en, cn) cos 0n 

+ 
M £ Z " . J M J > 1 

A J ( M I ^ H h M „ , ( / > „ ) 
1 RRX ' 

(1.19) 
0; = /.••(•>•, + • • • + A-/,/-,/ - - j i o(;. j = 1, . . . ,72 

= u;0(/^, . . • ,k3d,Cj) + 

k>1 

wjk 

u 0 ( c i , . . . , c n ; £ i , . . . ,£n) = ?io(ci) H h ?io(cn) + 0(e). 
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INVARIANT TORI FOR PDES 41 

The Fourier coefficients 

Am = Am(k\ , . . . , £n, Ci . . . . , Cn) 

must be analytic functions on (1.18). Their Taylor expansions in e\, ...e7i near 

C x • • • x C must begin with the terms of the order |m|, 

(1.20) Am = 0(C^). |m| = K| + --- + |»»„|. 

Also in the expansion of the dispersion law the k-th term 

(1.21) ^k ~ ^ki^'i • • ' • ' Kl 5 £1 • • • • • £n. I C L ; • • • I C " ) 

must be of the order A* in s. The coefficients of the leading Fourier modes must 

coincide with the leading coefficients of the plane wave expansions (1.16). 

We believe that existence, for any // ^ 1. of the analytic families of //-dimensional 

invariant tori satisfying the assumptions of the Definition 1.2 implies integrability 

of the PDE. It would be interesting to prove precise mathematical theorems in this 

direction. 

In this paper we pursue a more modest goal. For the example of KP equation 

we want to prove that, indeed, the analytic families of invariant tori satisfying the 

conditions of the Definition 1.2 exist for any n. Actually, we will prove that the fam­

ilies of invariant tori obtained by the I.M. Krichever's construction [25]) satisfy the 

assumptions of the Definition. Moreover, we will prove that all such analytic families 

of invariant tori must be given by the Krichever's construction. Our main motiva­

tion was the mathematical understanding of the remarkable physical experiments of 

J. Hammack et al. [20, 19]. In these experiments the propagation of small amplitude 

shallow water waves was studied. In a water tank of the size approximately 13 x 27 

m and depth 20 cm the waves were generated by a wavemaker programmed to create 

a superposition of two cnoidal waves with different directions of propagation and dif­

ferent amplitudes. The measurements of the resulting wave profile proved to be in a 

remarkable agreement with the two-dimensional invariant tori for KP given in terms 

of thet a-functions (see below). Also some oceanic observation were analyzed in [19]; 

again the agreement with the theta-fimctional invariant tori looked encouraging. 

To our opinion the experimental results suggest the following main question to be 

addressed: why the multidimensional invariant tori for KP created by Krichever [25] 

with sophisticated algebro-geometric technique are observable in the physical exper­

iments? Putting this in a different way, the mathematical questions to be answered 

are 

does the Krichever's construction cover all finite-dimensional invariant tori for 

K P ? 

are 1 hese tori stable? 

One of the difficulties in proving exact statements in this direction is quasiperi-

odicity of the solutions with respect to the spatial directions. The extension of the 
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42 B. DUBROVIN 

finite-dimensional Arnold-Liouville and K A M theory to the infinite-dimensional sit­
uation developed in [28, 7, 24, 35] mainly refers to the space of spatially periodic 
functions. 

In Section 2 we prove a simple uniqueness statement (see Theorem 2.2 below): all 
finite-dimensional invariant tori for K P obtained as a result of nonlinear interaction 
of plane waves in the sense explained above are expressed in terms of theta-functions 
of Riemann surfaces via the Krichever construction. 

In the last Section we extend the technique developed in the proof of Theorem 
2.2 to the explicit construction of the moduli space of the KP theta-functions of 
infinite genus. They are obtained as infinite superpositions of plane waves satisfying 
certain requirements to ensure convergence of the infinite sums. The KP solutions 
given in terms of these theta-functions will be quasiperiodic in both space and time 
variables. For the case of hyperelliptic Riemann surfaces the theory of theta-functions 
of infinite genus and associated K d V periodic and quasiperiodic solutions was initiated 
by H. McKean and E. Trubowitz [31]. For the KP case, where arbitrary Riemann 
surfaces can appear in the finite genus case, the infinite genus theory for the doubly 
periodic in (x.y) KP solutions was created by I. Krichever [27] (see also [6]). The 
state-of-the-art of the theory of the associated infinite genus theta-functions can be 
found in the monograph of J.Feldman, H. Knorrer and E. Trubowitz [17]. Observe 
that our approach does not require any assumption about spatial periodicity. 

2. Can one see the shape of a Riemann surface looking at the water 
waves? 

The question in the title of this Section clearly alludes the famous problem, due to 
M. Kac, regarding the possibility of hearing the shape of a drum. In the situation of 
the theory of water waves, however, one does not know a priori whether a "drum". 
i.e., a Riemann surface determining the shape of the wave profile, is hidden behind 
the sufficiently rich class of the water waves. In this Section we suggest an analytic 
approach to this problem based on a uniqueness theorem for analytic families of 
invariant tori for the KP equation given by the Krichever construction. 

Let us begin with some preliminaries of the theory of KP equation. Although (1.8) 
is strictly speaking not an evolutionary PDE, our definition of nonlinear interaction 
of plane waves makes sense also for the KP case. Observe that the mean value 

J u(x.y.t)dx 

is a first integral. We will always consider the solutions with zero mean value. This 
is not a serious constraint. Indeed, the KP equation is invariant with respect to the 
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INVARIANT TORI FOR PDES 43 

action of the group of scaling/Galilean transformations 

x = cx' + ac2y' - 1/2bc3t' 

(2.1) 
y = c2y' - -ac3t' 

t = c3t1 

u = c-2 U1 + 1/2a2-1/3b 

depending on three arbitrary parameters c # 0, a, b. Using these transformations one 

can always kill the mean value. 

Technically it is more convenient to work with the so-called bilinear form of KP. 

The substitution 

(2.2) u = 2d2 log R(:R, y, t) 

reduces (1.8) to 

(2.3) 3r2x - 4rxrxxx -4 R-„,„„. + 3(TyyT - Ty) + 4(TxtT - rxrt) + 2br2 = 0 

Here b is an integration constant. Actually what will be studied is the invariant tori 

for (2.3) of the form 

(2.4) 
T{x,y,t) = A0 + 

m#0 

K A ^(mi4)i-\ \-mn(/)n) 
f /vrn( ? 

0j= kjX + l3y - LUjt + , j = 1, . . . , n 

Without loss of generality one can assume 

A0 = 1. 

Moreover, doing if necessary suitable shifts along 0 ^ , . . . , c/>̂  one can normalize the 

leading coefficients in such a way that 

(2.5) A (-1,0,...,0) — A(1,0,...,o), • • • A (0,...,0,1) = A(0,...,0,1). 

Let us first recall the construction of the algebro-geometric invariant tori for KP. 

They are parametrized by quadruples (En, oo, a) where En is a Riemann surface of 

genus n with a marked point oo G En, ( is a 3-jet of a local parameter on En near 

oo, C(°°) — 0- Finally, o~ must be an anticomplex involution 

(2.6) a : En —> En, cr(oc) = oo, a*C = ( 

such that the fixed-point set of the involution a consists of n + 1 components. Call 

a i , . . . , an the (homology classes of) the suitably oriented components not containing 

the point oo. These will be the basic a-cycles on the Riemann surface En. The 

conjugated b-cycles can be chooser! arbitrarily provided that 

(2.7) cr* (cLj ) = a j, cr* (bj ) = — bj, j = 1,..., n. 
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44 B. DUBROVIN 

The Fourier coefficients of the algebro-geometric solutions have the form 

(2.8) A — ir{mJ3m) 

where ¡3 = (f3tJ) is the real symmetric positive definite n x n matrix given by the 

periods of holomorphic differentials 

(2.9) 
Bij = - i fbj wi, faj wi = 8 ij. 

The wave numbers and frequencies are given in terms of the coefficients of expansions 

of the basic holomorphic differentials near oc G £n, 

(2.10) 
WI (P)=1/2 

ki + h( + c^C2 + 0(C3)) d(, P oo. 

The phase shifts (p® can be arbitrary real numbers. 

The formulae (2.8) (2.7) is nothing but the Krichever's construction [25] of the 

algebro-geometric solutions to KP (see also [10, 13] regarding the reality conditions). 

We will refer to the class of quadruples ( £ n , o c , (,a) described above as the KP 

Riemann surfaces, and their theta-functions as to the KP theta-functions. Recall 

that, besides the reality conditions no other constraints are to be imposed on the 

triple ( £ , o o , £ ) . More precisely, the following statement holds true [13]. 

Theorem 2.1. — For any KP Riemann surface (En, oo, C, o~) the formulae (2.2), (2.4), 

(2.8)-(2.10) with arbitrary real phase shifts (j)®, • • •, <fin define a real smooth solution 

to the KP equation (1.8). Conversely, if the real smooth KP solution u(x,y,t) of 

the form (2.2), (2.4), (2.8) (2.10) for some triple (En ,oc , Q remains smooth under 

evolution along all flows of the KP hierarchy then the Riemann surface En must admit 

an involution a with the above properties. Moreover, all the phase shifts must be real. 

Let us call the wave numbers k\,. .., k7l, l\,.... ln resonant if, for some i ^ j 

(2.11) kh = ±kj and I ,k, = /,//,. 

If this is not the case and k\ ^ 0 , . . . , kn / 0 the wave numbers will be called non-

resonant. From the definition of plane waves it follows that one can assume all wave 

numbers k3 to be positive. 

Theorem 2.2. — Let (2.4) be a family of solutions to (2.3), for arbitrary phase shifts 

0 ? , . . . , cj)^, depending analytically on the small parameter e and on the "amplitudes" 

(2.12) ai = ^a,o,.. . ,o) > 0, °2 = -4(o.u) o) > 0 , . . . , an = A(0.o,...,i) > 0 

and on arbitrary nonresonant wave numbers k\ ^ 0 . . . . , kn ^ 0. Zi,. . . , ln such that 

(2.13) A m = 0 ( e l m i l + - + l m » l ) . 

Then this family is given by (2.8) (2.7) for some KP Riemann surface ( £n ,oo ,£ , c r ) 

of the above form. 
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INVARIANT TORI FOR PDES 45 

Proof. Let us begin with algebraic preliminaries. Denote 

R=C z1+-1......,zn+-1 

the ring of Laurent polynomials of n variables. The degree of a monomial in 7Z is 

defined by 

d e g ^ . . . 4 » = L ^ L + . - . + L ^ L . 

Denote lZm the subspa.ee of Laurent polynomials of the degree m. The product of 

Laurent polynomials satisfies 

(2.14) RiRj C Oi+j k=0 Rk 

The ring of trigonometric polynomials in c/>i,..., <fin is naturally identified with 1Z 

by putting 

z:j = ei(t>>, j = l , . . . , n . 

So. the above definition and properties of the degree holds true also for trigonometric 

polynomials. 

We can now reformulate the assumptions of the Theorem in the following way. We 

are looking for a solution to the equation (2.3) in the form 

(2.15) t = 1 + s 

71 

J = l 

cij(zj+zjl) + 

n,Z>2 

£m-T[m] 

where 

(2.16) T[»'l = 

711 

k = 2 

r|ml, r|m] enk. 

In these formulae we use the superscript [m] for labelling the terms of the order m 

with respect to e. The coefficients of these trigonometric polynomials along with the 

coefficients of the expansions 

(2.17) = \ (3*/AJ - kj) + 

rn^ 1 

C lUj . J 1 • // 

(2.18) b = 

m>2 

Em b (m) 

are to be determined from the KP equation (2.3). Here we introduce the notation 

Aj : = lj/kj, j = 1,.....n. 

Let us now7 describe more precisely the result of substitution of the ansatz (2.15) 

to the KP equation (2.3). We need to introduce the following notations. Put 

0,- = 

n 

j = 1 
kja/a0j, 

ay= 
n 

j=1 

kj Aj a 

a0j 
at = 

n 

j=1 

1/4 (k3j-3kjA2j) O 

AOj ' 
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We also introduce operators 

At m n 

j = 1 

wj[ml 0 

Aoj 
m >1. 

Finally, the fourth order linear differential operator L will be defined by 

(2.19) L = &l + 3d* +4dx0t. 

Using these notations one can rewrite the result of substitution of the ansatz (2.15) 
to the KP equation at the order rn ^ 2 approximation as the following equation: 

(2.20) LtM +b[m] + 

k + l = m 

! 4At k ArT1 + 2b k T l 

+ 
i-j-j = rn 

' 
3 d l r ^ d l r ^ - 4 < 9 , . T ^ T ^ ~Tr<)JT->- • •{-' ()r()iTJ- \()a.t' ()tT-> 

+ 
i+ j + k =m 

' 4At k Ax t i T j - 4 Ax T i At k T j + bk Ti T j 
= 0. 

In this formula it is understood that, in the sums ^ a^ the summation indices are 
distinct from zero. 

The left hand side of this equation is a trigonometric polynomial in 0^ . . . . , <p°n. Be­
cause of the property (2.14), the degree of this differential polynomial is less or equal 
to in. Since 0{{.. . . , (p^ are arbitrary variables, we can determine the unknown coef­
ficients just equating the coefficients of the trigonometric polynomials. More specifi­
cally, in order to determine the coefficient a["^ of the trigonometric polynomial 

T [m] = 

2^| / ' i H h I/„ K m 

(l '.">'. ( 'do" i „<:>"„ ) 
i 1 •••In 

one is to collect the coefficients of zl{ . . . zl" in (2.20). Clearly the resulting expression 

will depend linearly on i . It will also depend on the lower order coefficients 

a^"' ^Jt), b^'m 1 with in' < m, and on C J | M ^ with in' < rn — 1. Here we use the assumption 

+ ••• + \in\ ^ 2. Similarly, in order to compute the coefficient J1"1 ^ of the 

expansion (2.17) one is to collect the terms containing the monomial zj. Again, it is 

easy to see that all the coefficients of this monomial depend at most linearly on oJ1"1 ̂  

and also on a-" . b^m ^ with in' < in, and on ujm ^ with in' < in — 1. Finally, to 

determine it suffices to collect the constant term of the trigonometric polynomial 

(2.20). 
We obtain a recursive procedure for computing the coefficients of the expansions 

(2.15) (2.18). This procedure is an analogue of the classical Stokes expansion method 
explained in the introduction; it also resembles the Lindstedt series method of the 
classical mechanics (see Chapter XIII of the Poincaré book [34]). Let us prove that 
this procedure works to produce a unique solution for any in. 
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It is easy that the equations for and ujj have unique solutions. Indeed, 

from the first line of (2.20) it follows that the coefficients of these unknowns are equal 

to 1. Let us prove that the coefficient of a\"1^ hi is not identically equal to zero. 

Let us introduce the polynomial in 2n variables k\,..., kn, A i , . . . , An depending 

on n integer indices . . . , ?'n, 

(2.21) D{h, in) : = 
n 

S—L 

k.Js 

4 
- 3 

n 

v S=L 

ks\sis 
2 

_ 

n 

s=l 

ksis 

n 

s=l 

(k3s — 3ks L2s) is 

Clearly, the following identity holds true 

(2.22) L ^ ( m 1 ( P l + . . . + ^ , 0 „ ) = D(^ll....mn)el{mì(pì^--^m'l(p'') 

if 

Oj = kjx + kjXji) + -{k* - :U;;Aj)/ -|- olj. j 1 n. 

For example. 

D ( ± 1 , 0 , . . . , 0 ) = ••• - D(0 , . . . , 0 , ± 1 ) = 0 

D ( l . 1. 0 . . . . . 0) = 3fcifc2 [(ki + k2)2 + (Ai - A2)2] 

D( 1. - 1 • 0 0) = - 3 M ; 2 [(fci - fc2)2 + (Ai - A2)2; 

etc. Let us prove that, for arbitrary integers . . . , /n satisfying 

(2.23) + ••• + !/,« I 2 

the polynomial D(ii,...,/„) is not an identical zero. Indeed, collecting the terms of 

the polynomial that contain the third and fourth powers of the variables k\..... kn 

yields 

Z ? ( / i . . . . ; / : „ ) = 
71 

i2M-l)kì + ijt(4i2s-l)k*kt + ... 

where the periods stand for the terms of lower degree in k3. If at least one of the 

indices ¿1, . . . in is not equal to zero or to ± 1 , then the sum of the fourth powers of k3 

does not identically vanish. If this is not the case, at least two indices, say is and it, 

s / t do not vanish, due to the assumption (2.23). In this case the coefficient of k^kt 

is not equal to zero. 

From the above arguments it follows that, all the coefficients ajm' • , (j[m-1', b^ 

for rn ^ 2 are uniquely determined from the equation (2.20) in the form of polynomials 

in a i , . . . , an with the coefficients being rational functions in & ] _ , . . . , kn. 

We are now to prove existence of the analytic families of invariant tori of the 

described form. This will imply, last but not least, the proof of cancellation of all the 

divisors D(z ' i , . . . . in) with \i\ | + • • • + |/r71 > 2. 

To prove existence of the families of invariant tori with needed analytic properties 

we will use the Krichever construction [25] of algebro-geometric solutions of KP. 

According to this construction an arbitrary Riemann surface T,n of genus n with an 
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arbitrary marked point oc G E„ and a 3-jet of a local parameter £ near oc, C ( O C ) — 0, 

gives rise to a family of solutions of KP of the form 

u (x,y,t) = A2x log O + c/6 

0 = 

m E Zn 

^ — 7r(m.ijm) pi( ni i Oi H Vm,,0,,) 

(2.24) 07 = A*rr • Ijij x ft • or j — 1 . . . . , ?i. 

In this formulae ft = (/%•<,•) is the period matrix (2.9) of holomorphic differentials on 

£ „ with respect to a basis of cycles a\ anbi bn £ Hi(T,.n. Z) normalized by 

the standard form of the intersection pairing matrix 

(2.25) at O a} = b, O b} = 0. a,j O bj = (57J. 

the wave numbers k}, lj and frequencies ujj are given by the expansions (2.10) of the 

normalized holomorphic differentials Wj near oc. ĉ ,1 o(]n are arbitrary phase shifts. 

c is a certain constant. The constant c can be killed by the Galilean transformation 

c c 
a i—> ii . ./• i—> ./• H—/ 

G 4 

corresponding to a suitable change of the 3-jet of the local parameter C 

c >—> c - —C3-
12 

We will always assume r = 0. 

The solution (2.24) in general is a complex valued meromorphic function of the 

variables y, t, c . . . . If the triple (S/ ; . oc.Q admits an antiholomorphic in­

volution a satisfying (2.6) such that the fixed-point set of the involution consists of 

n + 1 ovals, then the period matrix fir) and the wave numbers and frequencies are 

all real provided the basis of cycles is chosen in the way described in the Theorem. 

Moreover [16], the theta-function in (2.24) takes positive values for all real phase 

shifts . . .and the solution u(x.yj) is real-valued and smooth. Therefore, in 

this case, the Krichever formulae (2.24) define a n-dimensional invariant torus for KP. 

It will also be invariant for all the flows of the KP hierarchy. Conversely, from reality 

and smoothness of the solution (2.24) on the torus generated by the flows of the KP 

hierarchy it follows that (En.oc. Q must admit the antiholomorphic involution with 

the above properties (see the Theorem 2.1 above). 

We will now produce the needed analytic family of n-dimensional invariant tori for 

KP considering the families of solutions (2.24) with "smair a-cycles. 

Let us consider the family of Riemann surfaces of the above form depending on n 

sufficiently small parameters .sq,. . . , sn such that, in the limit Sj —> 0 the j - t h cycle 

a7 is squeezed to zero such that 

(2.26) En(*)U,=o 
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is a genus n — 1 curve with an ordinary double point. Construction of such a deforma­

tion can be found in the Chapter III of the Fay's book [16]. The following statements 

proved in [16] will be essential for us. 

First, denote E-/t the normalization of (2.26) and Pj the two points of the nor­

malization to be identified on the nodal curve. The basic normalized holomorphic 

differential Wj(s) on E„(,s) in the limit Sj —> 0 goes to the normalized third kind 

differential on with simple points with the residues ±l /27r / in the points Pj 

resp. Other normalized holomorphic differentials wk on £.„(#) go to the normalized 

holomorphic differentials on . The same claim holds true for limits of normalized 

2nd and 3d kind differentials on £n(.s) with pole away from the pinched cycle. The 

diagonal entry .1,, has logarythmic behaviour as s, —> 0, 

lijj = - l o g . s , + 0 ( 1 ) . 

other matrix entries have regular expansions in Sj. 

Iterating this procedure, in the limit ,s'i — > ( ) , . . . . sn —» 0 the Riemann surface? En 

goes to the rational nodal curve with n pairs of identified points zf, . . . < . The 

basic holomorphic differentials take the limiting values 

(2.27) W3 = 
1 

2m. 

1 

Z - Zj 
_ 1 

Z - Zj+ 
dz, j = 1,. . . , ii. 

We will assume that the marked point oo G Yln(s) corresponds to the point z = oo of 

the limiting Riemann sphere and that the local parameter ( on £.„(/>) goes to 

c = 1/z 

on the Riemann sphere near infinity. Comparing the expansions 

«j = - ¿ 7 [(=7 - = / ) + ((=j)2 - ( S / ) 2 k + ( ( ^ - ) 3 - (~;>3)c2 + o k 3 ) ] ck 

with the formulae (2.10) expressing the wave numbers and frequencies in terms of 

expansion near oc of the basic normalized holomorphic differentials we conclude that 

the identified points must have the form 

(2.28) zf = ^ ± 1 ^ j = l , . . . , n 

Observe that the nonresonance condition (2.11) means that all 2n points (2.28) are 

pairwise distinct. 

The crucial point in proving cancellation of all small divisors but those correspond­

ing to the resonances (2.11) is in proving that arbitrary configuration of the pairwise 

distinct double points (2.28) on the Riemann sphere can be obtained by the above 

n-parametric degeneration procedure within the family of KP Riemann surfaces. 

Let .i,i (.s) be the period matrix (2.9) of the family of Riemann surfaces with re­

spect to the basis of cycles that will be assumed to be continuosly depending on the 
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parameter s. Denote 

(2.29) 
aj (s) = e-PBjj (s), j = 1, ....., n. 

At s — 0 one has 

a i (0) = . . . = an(0) = 0. 

The off-diagonal entries of the matrix f3l3(s) admit finite limits at s —» 0 and 

(2.30) 
e-2PBij (^) (hi - kj)2 + (\i -

(kz + k:j)2 + (\, - \3)2 
i # j. 

The wave numbers k3(s)J3(s) and the frequencies UJ.J(S) defined from the expansions 

(2.10) also admit the limits as s —» 0 of the form 

(2.31) kj{0) = kj,lj (0) = kj Aj, u>,(0) = ± ( 3 ^ - f c ? ) , j = l , . . . , n . 

We are now to prove that, for arbitrary nonresonant real numbers k\,. .., /cn and 

arbitrary real numbers Z i , . . . , Zn and for arbitrary sufficiently small positive numbers 

a i , . . . , a n there exists a family of triples (Eu, o c , £ ) of the above form depending 

analytically on the parameters « i , . . . . n n . A*i / . • „ . /1 Zn. To this end we are to 

introduce theta-functions of the second order. 

Let v — (z/i,. . . , vn) be a vector with all components v.-} — 0 or 1. Such a vector 

will be called characteristic. Define second order theta-function 6[u]((j)\f3) with the 

characteristic v by 

(2.32) 0[v](4>\t3) 

= 

m E Zn 

n 

i=1 

2(rrij+mji/i ) 
ai 

i<j 

r/lnii m.j +-miVj+m , v, ?.((2mi -\-v>i )à\ H h(2m.M + ^r, )</>.„ ) 

Here 

(2.33) 
aj = e-PBij ; Zij = E-2PBij, i#j. 

Our definition of the second order theta-functions differs from the standard one (see, 

e.g., [16]) by the factor 

1 

2 

n 

i=1 

-VF/2 
AI 

i<j 

Zij -vivj /2 

The advantage of our normalization is that, the functions (2.32) are real analytic in 

the variables Zl3 > 0, a3 ^ 0. cpk G M provided that the lowest eigenvalue p of the 

symmetric off-diagonal matrix 

log Ztj 

satisfies 

(2.34) p < 2tt log a • 2. j = 1.. . . , n. 
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Actually, (2.32) are even functions in « i , . . . , an. In particular, 

(2.35) 6>[0] = 1+2 
n 

1=1 

a2 cos <pi + 0(a4) 

(2.36) fl[nj = cos + 

j # i 

a2 Z%3 cos(20j + 0?.) + ^ -1 cos(20j - 02) + 0 ( a 4 ) 

(2.37) 0[ni:j\ cosfo, + 0j) + cos(o, - Oj) 

+ 
k # i, j a2k ZikZjk cos(20fe + 0i + 0j) + Zik1 Zjk-1 cos(2^ - 0z - 0j) 

+ 7"1 [ZlkZjkl cos(02 - 0, + 20fc) + Z~klZjk cos(0, - 07 - 20fc))] 

+ 0 ( a 4 ) 

In these formulae nl stands for the characteristic with the z-th component 1 and all 
others 0. 

nij = ni + nj, i # j. 

The following statement was proven in [8] (cfi also [32], [10]). 

Lemma 2.3. — The function 

T(:r.y.t)=0(m = 

m E Zn 

— 7r(m,(3m) ( /'( hi i0i H | -m„ </>„ ) 

0y = ///./' + - ^jt + 0y • j = 1, • • n 

satisfies (2.3) for arbitrary phase shifts 0(1\...,0^ iff' the vectors k = {k\,. .., kn), 
I — (Ii. . . . . ln). uj — [uJ\. . . . .uju) and the matrix ft — (fttJ) satisfy tlic following 
system of equations 

(2.38) f[v](kj,ujji) := (^ + 3 9 f - 4 ^ + f o ) % ] ( 0 | / 3 ) U = o = 0 

for some constant b = b(k, Llv\ ft) and for arbitrary characteristic v G (Z/2Z)n. Here 

Ak : = 
kj A/AOj, Ai : =  

lj A/AOj, Aw : = wj A 

AOj 

In particular, the equations (2.38) remain valid for the values 

k = k(,s). Z = / ( . s ) , w = w ( . s ) , 0 = [3(s) 

of our family of Riemann surfaces for a suitable constant b = 6(,s). Indeed, it can be 
readily checked that, at the limit s = 0 the equations (2.38) hold true by substituting 
« f = • • • = dln = 0 and the values Zij, kj, L, uij from (2.30), (2.31) and b = 0. 
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We will now prove that the system (2.38) has unique solution of the form 

Zij = Zij (a2. . . .. a2. ki,.... kn. /1 /.„ ) . 

ujj — ujj (a2..... a2. k \. . . . . A>,. /1 / „ ) . 

b = b(a2.....a2.k[.....kn.ll /.„) 

(2.39) 
zij O. /M A:NJ1 / , , ) = 

(A:,- - kj)2 + (\j - \j)2 
(kj + kj)2 + (A, - Xj)2 

w j ( 0 . . . , ( ) , A ' i . . . . . A:n, / ] . . . . . /,J = ^ (3A'yA2 - A;'y ) 

o ( 0 . . . . . 0 . A - 1 . . . . . A - „ . / 1 / „ ) = 0 

analytic for sufficiently small a2 a2 and for arbitrary nonresonant vectors k and /. 
Let us first construct such analytic solution for the subsystem 

(2.40) /[()] = o. f[m] = o. y = i n. f[nr)] = (). l ^ / < j ^ n. 

To this end let us fix the nonresonant vectors A,() and A° and choose a real positive 
number A such that the symmetric matrix if^ with 

/ ^ • = - l l o g « j . 'I' . ' l»v. 
(A-;.' - A-«>)'2 + (A? - A")2 

(k0i + k0j)2 + (A0i + A0j)2 i # j 

is positive definite4 for 

0 < Oj < A. .y = l //. 

Then the functions / [ 0 ] , f[n-i], fWiij] will l)e real analytic in a, Z. A:, A, vJ, b for 

0 ^ aj < A'. .y = l // 

for some A' < A and for Z. k. /. UJ, b sufficiently close4 to 

7 ° 
( A f - A ^ + ^ - A * ; ) 2 

(fc? + ^ ) 2 + ( A ? - A 5 ) 2 
A-(). A°. woj 

k0j/4 
(3 (A0j)2 - (k0j)2 bo- 0 

respectively. For aj = • • • = a„ = 0 the system (2.40) has unique solution given by 
(2.39). We derive existence of such solution to (2.40) for positive small a by applying 
the implicit function theorem (cf. [9]). Indeed, from the formulae (2.35) (2.37) it 
readily follows that, at a\ = 0 a2 = 0 

0f[0] 
db 

= 1, 

A [0] 
Awj 

= 0. 
Af [ni] 

Awj 
= k^arj. 

(2.41) 
0f[0] 
0Zpq 

= 0. 
0f [ni] 

ozpq 
= 0. 

df[nu] 
ozpq 

= 3Zr2AvA;; [(A:,- - A;,)2 + (A,- - A7)2] SipSjq. i < j . i> < q. 
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We obtain a triangular Jacobi matrix with the nonvanishing diagonal. This proves 
existence of the needed analytic solution. 

Explicitly, the expansion of the needed solution reads 

(2.42) Zij = Pij-

Pij+ 
1 + 32 

kikj 

[Pij+Pij-]2 
[a-kfpij + tftfpji} 

+256 
k.kj 

PijPii kM.j 

a2kk4k qijk 

pfkpikpikpjk 
+ 0 ( „ 4 ) 

where 

(2.43) ptj = (ki±kj)2 + (Xi-Xj)2, i * j 

(2.44) PU = (M - + 2 {3k2 - k2) (A, - A/)2 - 3(A, - Aj)4 

(2.45) <Ujk = [(A. - Xj)(kf - 3A?) + (A, - Xt)(k2 - 3A2) + (A, - Xk)(k2 - 3A2)] 

x [(A,: - Xj)(Xj - AA.)(AA. - A,) 

+X,(k2 - k2) + A;(A-2 - kj) + A,(A:2 - A;2)] 

(2.46) LO, = ' I •''>/••.. .V; - kf) +6k, a2kf + 8 
j #i 

a2jk4j (Ai - Aj)2 

PijPu 
+ 0 ( « 4 ) 

(2.47) b = - 6 «2A:4 + 0 ( « 4 ) . 

Let us now prove that the solution (2.42) (2.47) to the subsystem (2.40) also sat­
isfies the whole system (2.38). 

Lemma 2.4. Let Zf- be the value of the functions (2.42) at a point a{). A:°. /" (non-
resonance of №. l{! is assumed). Then the system of equations 

(2.48) Zu(o2..... afr A - , . . . . , kn,lu.... I„) = Z%. 1 < / < j < n 

for sufficiently small 

( « ^ ( « " ) 2 ) 2 + (k:l - A:")'2 + (A, - A")'2 

h a.s three-dimensional variety of solutions. 

Proof Let us first establish validity of the claim of the Lemma for — • • • = a®2. 
Let us rewrite the formula (2.30) in the form of the? cross-ratio 

(2.49) 
(kj - k,)2 + (A, - Xj)2 
(k, + kj)2 + (A, - Xj)2 

(zuf.z-.zf.z-) 
zi+ - zj+ 

zj+ - zi-

zj--zi-

zi+ - zj-

where the complex numbers z} are defined in (2.28). Because of invariance of the 

cross-ratio with respect to the Mobius group 

z az + b 
cz + d' 

ad - be # 0. 

S O C I É T É M A T H K M A Ï I Q U K DE F R A N C E '2004 

http://zf.z-.zf.z-


54 B. DUBROVIN 

the space of complex solutions to the system 

(ki - kj)2 + (Ai - Aj)2 

(ki + kj)2 + (Ai-Aj)2 

( A : o _ ^ o ) 2 + ( A o _ A o ) 2 

(fc? + fc^)2 + ( A ? - A°)2" 
1 ^ i < j ^ n 

is at least three-dimensional. The subgroup P ^ Z ^ M ) of the Môbius group preserves 
reality of the numbers kj, Xj. So the dimension of the space of real solutions is also 
greater or equal to three. It is easy to see that this dimension cannot be greater 
than 3. This proves the Lemma in the limiting case c/° = 0. 

Let us now extend the P.SX2(M)-symmetry onto the whole space of solutions to 
the equations (2.40). We first rewrite the symmetry in the infinitesimal form with the 
generator 

(2.50) X0 = ^p[X2 - k2) + qX:] + r 0 

OX, + -pXjkj ~qk, 0 
dkj • 

Here p, q. r are arbitrary real parameters. The one-parameter subgroups correspond­
ing to q and r have a clear meaning: these are the groups of scaling transformations 
of k and A and diagonal shifts of A respectively. 

(2.51) 
kj ckj. Xj cXj. j - 1. . . . . / / . r / 0 

A, A, + a, j ~ 1 /7. 

They are clearly also symmetries of the full system inducing the transformation 

lj lj -; ilk,. uJj 
wj + 3/2 alj + 3/4a2kj, j = 1,....., n. 

The generator of the one-parameter subgroup corresponding to p can be recast into 
the form 

(2.52) Y(P) 
1/2lj A 

Akj +Woj 
0 

0l j woj= 1/4 
(3kjA2j - k3j). 

Remarkably, in this form the transformations (2.52) yield symmetries of the full sys­
tem (2.38) when LU[- is replaced by the exact solution Uj of the system. This deep 
result is one of the important steps in the proof of the Shiota theorem [36]. It follows 
from the following claim [36]: compatibility of the system (2.38) implies compatibility 
of the system 

(2.53) {2Sidi + 40,0^ - W, n, + b) 0M (</>!/?) U=0 = 0 

for some vector CJ and some constant b. From uniqueness of such a vector it follows 
that Co coincides with the derivative of u along the vector field 

(2.54) 
X(P) = 1/2lj A 

Akj + wj 
A 

Alj 
The lemma is proved. 
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We are now ready to complete the proof of the Theorem. According to Lemma 

2.4 combined with Torelli theorem [18], the dimension of the space of solutions to 

the system (2.38) is equal to the dimension of the moduli space of (real) Riemann 

surfaces of genus n plus 3. i.e.. it is equal to 3'/? for // ^ 2. We have described the 

37?-dimensional manifold of solutions (2.42), (2.46) to the subsystem (2.40) that by 

construction contains the solutions of the form (2.9) (2.7) for Riemann surfaces with 

sufficiently small real ovals a i , . . . , a n . The dimension counting proves coincidence 

of these two families. In particular this implies that all the remaining equations 

of the system (2.38) hold true on the space of solutions (2.42) (2.47). Therefore the 

unique solution to KP defined in (2.15) (2.17) starting from a given nonresonant wave 

numbers ki,....kn, l\ ln and arbitrary sufficiently small amplitudes a\ an 

must have the form (2.8) (2.7). Uniform convergence of the series (2.24) for theta-

functions together with cancellation of all the divisors but D{ni ±rij). i ^ j implies 

analyticity of the family of invariant tori. The Theorem is proved. • 

Remark 2.5. Explicitly, the extension of the symmetry (2.52) onto the full space of 

solutions to (2.38) reads 

(2.55) X(P) = ' A,/,\. 
2 J 

d 
Ok, 

1 

f 4 
A2j - k2j 0 

OAj 

+ 6 ai2ki2 + 8 

j # 1 

a2jk4j (Ai - Aj)2 

PUN 
+ 0(a4) 

0 

OAj 

Together with the fields 

X (q) = 
kj A 

Akj 

+ Aj 0 

ox, 

and 

X{r) = d 

AAj 

it generates the action of P5X2(M) on the space of solutions of the system (2.38): 

[xiq\xip)] =x{{)). [x{rlxip)] = \x{q). [x{r),x{q)] =x{r). 

The vector field X^ generates infinitesimal changes of the marked point oc £ T,n. In 

other words, integrating the vector field (2.55) one obtains, for n > 1, the Riemann 

surface with the parameters a2..... a2r A q , . . . . kn, X\ A„ . This construction gives 

an answer to the question put in the title of the Section. It would be important 

however to elaborate more practical tools in the analysis of the experimental water 

wave data in order to measure the moduli of the Riemann surface ••hidden" behind 

the water wave profile. For the case of two interacting plane waves such tools has 

been developed in [20, 19]. 
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3. Infinite genus theta-functions of Riemann surfaces without Riemann 

surfaces 

The invariant tori for KP identified in the previous Section as the result of nonlinear 

interaction of n plane waves with small amplitudes 2a i , . . . , 2an can be represented 

as infinite sums of homogeneous polynomials in a a7l of various degrees with 

coefficients depending on the phases 0 i , . . . , cpn and on the wave numbers k\,..., kn, 

11 = k\ \ \,. . ., ln = knXn. Let us recast this sum in the following way. For any subset 

/ - {/'i / , , } C { 1 . 2 / , } . g > 0 

denote 

(3.1) 01 = ai1... aig A 01 

the sum of all monomials that contain only a, for / G / . We put 

00 = 1. 

Denote also 

0/ = {on otii). (I I = {an (l.J. 

ki — {kn , kin}. X, - {A/; X/:i}. 

Lemma 3.1. - The genus n KP theta-function described in the Theorem 2.2 can be 

represented in the form 

(3.2) 0((i)l....,(j)n\(j) = 

I 

6/|/|(0y|a/. fc/, A/) 

where the summation takes place over all subsets I C { 1 , 2 . . . . , / / , } . The functions 

0\i\(è[\ai,ki.Xi) are real arialytic for all real nonresona/nt vectors kj. A/ and for 

sufficiently small nonnegative amplitudes aj. The terms of this expansion can be 

uniquely determined from the system of the form (2.'38) ir/fh n i—> | / | by requiring that 

the sum 

(3.3) 

.id 

O.i (o.juij.kj.Xj) 

with 

O, = /.Vf./' + X,y) jj]l ! Oy. / (:: I 

with some vector uj1 satisfies KP. 

Here | / | is the cardinality of the set / . It should be emphasized that the radii of 

convergence 

ai1< ri1 . aig < rig 

of the series depend on Ä7. Xj. 

Proof This statement is almost obvious since, supressing all the amplitudes ai = 0 

for j £ { 1 . 2 . . . . . n} \ / one reduces a theta-function of the genus n to another one of 

the genus | / | . • 
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We will also redenote the functions AOj by A6> with q = 1/1. Explicitly, from 

(2.42) (2.45) it follows that 

(3.4) A 0 ! ( 0 | a ) = 2 

n>() 

an2- 1 cos no 

(3.5) Aé>2(<î>l? 0 2 I " l - « 2 - ^ 2 - / ] • ' 2 ) = 2 
P l 2 

COS(0i + 02 ) 
P12 
^12 

C O S ( 0 1 - 02 ) 

+ 64 A-^2 

[P12+P12-]2 
((t'lk'lpvz + ̂ 2̂ 2̂ 21) 

/̂ 12 

PÎ2 
C O S ( 0 1 + 02 ) — 

tf2 
^ 1 2 

cos(</>i — (62) 

+ 0(«(1) 

(3.G) A/9,s(0i, 02, 0:*|ai, a2, a3, A:j, A>2, A:3, / 1 , / 2 , / 3 ) 

= 2 PviPvòP'.U 

/W^P.tl 
C O S ( O I + 02 + 0 3 ) + 

/^12/4^31 

Pi2P2:iP:n 
C O S (01 + 02 — 0 3 ) 

PwPtzP'M 

P\2P2>J>-M 
C O S ( O i (>2 1 0 3 ) 1 

P\2P2*P'M 

P12P2:\P:\\ 
C O S ( - 0 1 + 02 + 0:0 

+ 512 
A'i A'2A'3 î23 

/^12/; 12/43^23/^31^31 
(llk'\ P2X 

pt. 
C O S (02 + 0 3 ) — 

/ 4 

^2:s 
C O S ( 0 2 — (pa) 

+ « 2 ^ 2 
l>:n 

/4i 
COS (03 I Oi ) 

/4l 

P:u 
cos(o/>3 - 01 ) 

+a3k33 P12 
/42 

C O S ( 0 1 + 02) — 
PÌ2 

P\2 
C O S ( 0 i — 0 2 ) 

+ O(a3) 

In these formulae, we use the same notations as in the previous Section, i.e.. the 

polynomials pf-. p-tj. q,j^ in the variables A'i, . . . . kn. Ai Xn with 

Aj = lj/kj 

are defined in (2.43) (2.45). Recall that, in order to obtain a solution r(x,y,t) to the 

KP equation (2.3) one has to substitute in (3.2) 

O, = A:,./' + Ijij - ujjt + 0y 

with arbitrary phase shifts 0(- and the frequencies represented by a decomposition 

similar to (3.2) 

(3.7) ujj = J](kj, Xj) + A u ] {(ij. kj) + 

i # j 

Au;2 (ay. ay. A:,-. k,. Av. A ; ) • . . . 

In this expansion. 

w0j(ki.Aj) =1/4 (kjA2j- k3j) 

is the dispersion law of the linearized KP, 

(ai (hi 1 ki,..., kn, A 1 . . . . , A„) 
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is the "pure genus n" contribution into the nonlinear dispersion law (3.7) to be found 

from the system (2.40) of the genus n and then subtracting the lower genera contri­

butions. Explicitly, 

(3.8) oj] = 6 A : f ( a 2 + 3 ^ + 0 ( a ^ ) ) 

(3.9) w2 = 48A:., 

j # i 

a2,kHX, - Xj)2 

Pij+ pij-
+ 0(a4) 

etc. The genus a term 

an . . . a,u AO,,(0,] o/;!\al{..... a/;j. kn ki;i. Xn Xlg) 

Oj = kjX + kjXjij - + o(] 
(3.10) 

xj - ^{kj.Xj) 

+ Aujj(aj, kj) + • • • + Awf (an . . . . . , / , v A - , : , • • . • kifj, A 2 l , . . . , A? J 

is created as the result of interaction of g plane waves 

(3.11) 2ah cos[A;2l (x + Xny) - ^ (klx . AM )* + 0° ] + • • • 

+ 2a2-y cos[fcify (:r + A.^;(/) - CJ^(A;^, A/J f + $ J 

and their harmonics. If the amplitudes of the plane waves are of order e then their g-

tuple interaction is of the order eg. In other words, to compute the solution T(x. y, t) 

of (2.3) of genus TV > > 1 with the accuracy e11 for n < N it suffices to sum the 

expansions of the form (3.10) with g $C n truncating them at the order n. The result 

of the truncation will give uniform in the whole plane (x. y) £ M2 approximation of 

the genus N solution for the times \t\ < 0(E~U). Observe that the representation 

(3.2) resembles the virial expansion wellknown in the statistical mechanics (see, e.g.. 

[29]. §72) . 

We want to generalize the expansion (3.2) to the case of interaction of infinite 

number of plane waves. Given infinite sequences of real numbers 

(3.12) a = (a i . a2 )• a-j > 0, k = (Aq. k2 ) . k, > 0. A = (Ai. A2 ) 

we can construct a formal Fourier series of infinite number of variables (j) — ((pi, 0 2 , . . . ) 

representing it as the following power series in a 

(3.13) 6(4>\a.k.X) = 

8 

g=0 |I| = g 

ajAO^Oi (ii.ki.Xi). 

The summation takes place over all finite subsets I C N. This formal expression 

makes sense for finite sequences of amplitudes a, i.e.. assuming that a3 = 0 for j ^ N 

for some big N. In that case it reduces, for sufficiently small ci\.... . f i v - to the KP 

theta function of genus N. 
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If all the amplitudes ai , a 2 do not vanish, then, at each order in a one is to summate 

infinite series. E.g., at the order one ( 3 . 1 3 ) gives 

2 
oo 

i=1 
ai cos (/>,,, 

at the order two 

2 

i<j 

aiaj 
Pij-

Pij+ cos(0i + <ßj) + 

Pij+ 

Pij-
cos (Oi - Oj) 

etc. We will now give simple sufficient conditions for convergence of the series ( 3 . 1 3 ) 

for infinite sequencies of the data ( 3 . 1 2 ) . To this end we are to recall some important 

points of the theory of infinite dimensional theta-functions, following the book [17]. 

Let P = PtJ be an infinite symmetric matric with real values, i, j — 1, 2 , . . . . We 

say that the matrix /3 satisfies the F K T condition if there exists a sequence of positive 

numbers a = (<7i, <r2,. . .) and a number K satisfying 

0 < K, < 7T 

such that 

(i) the following series converges 

( 3 . 1 4 ) 

OG 

j = 1 

( i:cT< < oo; 

(ii) for all finite sequencies of integers rn = (mi , r n 2 , . . . ) , \m\ = \m\\ + \m21 + • • • < 

oo the following inequality holds true 

( 3 . 1 5 ) (m, ßm) = 

ij 
•iijliiilllj > 

j 

u3m). 

For a given sequence a introduce the Banach space Ba given by 

(3.16) Ba = Z = ( 2 i ! 2 2 , . . . ) ) e C 0 ° lim Nil 

°3 
= 0. 

with the norm 

( 3 . 1 7 ) \\z\\= sup 
j 

|zj| 
Gj 

According to the Theorem 4 . 6 of [17] for a symmetric matrix /3 satisfying the F K t 

condition for some a the theta-series 

(3.18) 0(<P\ß) = ç — TT(m,[3m) i(m,(f)) 

\m\<oc 

converges absolutely and uniformely on a sufficiently small ball around any point 

(p G Ba to a holomorphic function. 

It is clear that, for a given symmetric matrix /i2J satisfying the F K T condition, 

another symmetric matrix • i]- with the same off-diagonal terms [3[ • = 3,} for i / j 
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and with arbitrary diagonal terms satisfying ft'yj ^ ft3J for all j = 1 ,2 , . . . will also 
satisfy the F K T condition with the same a. 

Let us first give a simple sufficient condition for an off'-diagonal symmetric matrix 
to ensure a possibility to choose positive numbers ftn, • • • in such a way that 

the whole symmetric matrix . i,} satisfies the F K T condition for some sequence a. 

Lemma 3.2. Lei the real Symmetrie off-diagonal rnatrix ßl} satisfies the condition 

(3.19) µ2i : = 

j>i 

B2ij < 8, I = 1, 2, .... 

Let a be any sequence of positive numbers satisfying the convergence condition (3.14) 
with some positive K, < TT. Let /3̂ - be another sequence of positive numbers defined by 

B0jj = Gj + 2 J 

k=1 
ßk' 

j > 1 

(it is assumed that all numbers fi3 are nonnegative). Then, for any choice of the 
diagonal entries satisfying 

(3.20) ßn>ß{ir i>1 
the matrix ß satisfies the FKT condition. 

Proof. Because of the obvious inequality 

i, j 
• h j m / m j ^ 

j 

jinm) - 2 
i 

mi 
j>i 

ßtJnij 

it suffices to obtain upper estimate for the second term. Let us consider the Hilbert 
space of square summable sequencies 

4 " = {(xt.Xl + !,.-.) j>i x2j < 8 

Applying the standard inequality 

\(x,Ax)\ ^ WAWiJ^-x). xe 4 ° 

valid for an arbitrary Hilbert-Schmidt operator A to the rank one operator 

(xl,xl+u.. . ) 

j>i 
ßijxj.0.... 

we obtain 

Xi 

j>i 

ßl3Xj <: tit 

3>i 

9 
xr 

Finite sequencies of integers give vectors in L2lK Applying to these vectors the last 

inequality yields 

i, j 
Bijmimj> ^ 

j 

Bijm2j _ 2 

. / = 1 

oc 
µj 

k>j 
m2k. 

This proves the Lemma. 
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Using the Lemma, we will give a simple sufficient condition for an infinite sequence 

of plane waves to generate, via the formula (3.13), an infinite genus KP theta-function 

for arbitrary sufficiently small amplitudes a-, and given wave numbers kn l}. 

Lemma 3.3. Let zj = 1/2 (Aj + ikj), kj > 0 j > 1 

be a sequence of complex numbers satisfying the following conditions. 

(i) There exists a small positive number r > 0 such that 

(3.21) |zi - zj| > r, i # j , |zi-zj|> r, i , j = 1 . 2 , . . . . 

(ii) The series 

(3.22) 

oo 

j = 1 

|ZJ| _ 2 < 8 

converges. 

Then there exists a sequence of positive numbers .i(-J such that the niaffix ¡3 with 

the off-diagonal entries 

(3.23) B0ij 
- 1 

2TT 
log 

(A', - k})'2 + (A, - Xj)2 

(ki + kjF + iXi-Xj)*' 
i # j 

satisfies the FKT condition for arbitrary diagonal entries such that 

Bij>B0ij j = 1 , 2 , . . . . 

Proof The formula for can be rewritten in the form 

if - = -
1 

2TT 
log 

zj - zi 

zj - zi 

2 

Using the elementary inequality 

log 
z — w 

z — w 

2 

< 

4 

z 
llm w\ for 

w 

z 

1 

< 2 

we derive that 

|B0ij| 
< 

2 

7T k2j + A2j 

ki 

for a fixed i and any sufficiently large j > > /. Applying Lemma 3.2 we complete the 

proof of the Lemma. • 

We are now ready to prove convergence of the series (3.13) for a suitable class of 

parameters a. k. X. Let the vectors k, X satisfy the conditions of the Lemma 3.3. 

Choose positive numbers o3 in such a way that the series (3.14) converges for some 

positive K < TV. Choose numbers . in such a way that 

(3.24) B0jj>Gj+2 

j 

k = 1 
µ0k .j = 1.2.... 
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where 

(3.25) 
µ0i : = 

j>i 

(B0ij)2 1/2 

and the off-diagonal matrix — ̂ {k. X) is defined in (3.23). 

Theorem 3.4. — Le£ t/ie number's kj, Xj. j ^ 1, satisfy the assumptions of the Lemma 

3.3 and the numbers (i0-- satisfy the conditions (3.23)-(3.25). Then for arbitrary 

positive numbers a — (a.\, a2-••• ) satisfying 

(3.26) a, < ( 77 ^ . j 1 .2 . . . . 

the series (3.13) converges absolutely and an if orna I g on a sufficiently small ball 

around any point (p G Ba to a holomorphic function. The series expansion (3.7) 

also converges to a sequence of frequencies (u)\. O>2. • • • ) • The theta-function (3.13), 

after the substitution 

à, = kj(x + Xj-y) - ujjt + 0° j = 1. 2. . . . 

for arbitrary real phase shifts, yields a quasiperiodic solution to the KP equation (2.3) 

for some constant b = b(a. k. X). 

Proof. Let us consider the space of off-diagonal matrices firj satisfying the following 

inequalities 

(3.27) 

k 

.7 = 1 j > i 
far 

1/2 
< \ { i i k - ° k ) . k = 1,2. 

For any a satisfying (3.26) and any off-diagonal 3tJ satisfying (3.27) the theta-series 

(3.18) converges to an analytic function on Da. It will also depend analytically on 

the period matrix, moreover, it satisfies the heat equations 

ak AO 

Aak 

d20 

A02k 
Zij DO 

OZij 
- Ge0 

G0iA0j 

One can also prove analyticity of the theta-functions of the second order (2.32). Like 

in the proof of the Theorem 2.2. we consider the system of equations (2.40). The 

functions f[v] vanish at a = 0 for 

frj = i^r i < j< = -^kjX2 - kj). b = 0. 

The inverse to the Jacobi matrix (2.41.) is a bounded operator due to our assump­

tions about the wave numbers. Applying the implicit function theorem we obtain 

convergence of the series (3.13). (3.7). The Theorem is proved. • 

Example 3.5. Let Ay = 0 for all j ^ 1 and kj be arbitrary positive numbers satis­

fying 

ki - kj 
> r, i#j 
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for some positive r. Then the assumptions of the Theorem 3.4 are fulfilled. In this 
way one obtains the theta-functions of the hyperelliptic Riemann surfaces of infinite 
genus (cf. [31], [17]). In particular, if k3 grows linearly with j , then the series (3.13) 
will converge for all a with exponential decay 

a3 < e c* 

for some positive constant c. The formulae (3.13), (3.7) define quasiperiodic solutions 
to the K d V equations. 

More generally, our approach describes some neighborhood of the manifold of 
hyperelliptic Riemann surfaces of infinite genus. In particular, assuming that the 
points z3 satisfying (3.21) belong to a strip of a finite width along the imaginary axis, 
one obtain slow transversal perturbations of the K d V quasiperiodic solutions. The 
condition (3.22) in this case holds automatically true. It would be interesting to prove 
that the intersection with this neighborhood of the so-called heat curves of [27], [6], 
[17] associated with doubly periodic in x, y solutions u{x,u,t) of KP form a dense 
subset. For the case of finite genus density was proved in [5]. 

Some of our assumptions about behaviour of the sequence of wave numbers can in 
fact be relaxed. We will consider more general situation in a subsequent publication. 
The assumption (3.21) that prevents the interacting waves to be close to resonant 
seems however to be essential. For example, as it was shown by S. Venakides [38], 
the limits of hyperelliptic theta-functions with the parameters kj accumulating in 
the interval [0,1] are weird functions described by a minimization principle of the 
Lax-Levermore type [30]. It would be also interesting to prove that our infinite genus 
theta-functions (3.13) come from a parabolic Riemann surfaces in the sense of Ahlfors 
and Sario [1]. 

We also plan to study in subsequent publications the relationship of our approach 
to the approach of V. Zakharov and E. Schulman to the problem of classification of 
integrable PDEs. 
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