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ON THE STOKES GEOMETRY OF HIGHER ORDER 
PAINLEVÉ EQUATIONS 

by 

Takahiro Kawai, Tatsuya Koike, Yukihiro Nishikawa & Yoshitsugu Takei 

Abstract. — We show several basic properties concerning the relation between the 
Stokes geometry (i.e., configuration of Stokes curves and turning points) of a higher 
order Painlevé equation with a large parameter and the Stokes geometry of (one of) 
the underlying Lax pair. The higher-order Painlevé equation with a large parameter 
to be considered in this paper is one of the members of Pj-hierarchy with J = I, 
II-1 or II-2, which are concretely given in Section 1. Since we deal with higher 
order equations, the Stokes curves may cross; some anomaly called the Nishikawa 
phenomenon may occur at the crossing point, and in this paper we analyze the 
mechanism why and how the Nishikawa phenomenon occurs. Several examples of 
Stokes geometry are given in Section 5 to visualize the core part of our results. 

Résumé (Sur la géométrie de Stokes des équations de Painlevé d'ordre supérieur) 
Nous exhibons plusieurs propriétés fondamentales liant, d'une part, la géométrie 

de Stokes (i.e.. la configuration des courbes de Stokes et des points tournants) d'une 
équation de Painlevé d'ordre supérieur à grand paramètre et, d'autre part, la géomé­
trie de Stokes de l'une des paires de Lax sous-j acent es. L'équation de Painlevé d'ordre 
supérieur à grand paramètre considérée est l'une des équations de la hiérarchie Pj 
pour J = I, II-1 ou II-2 que nous détaillons dans le paragraphe 1. Les équations étant 
d'ordre supérieur leurs lignes de Stokes peuvent se croiser et l'anomalie connue sous 
le nom de « phénomène de Nishikawa » peut se produire aux points de croisement. 
Nous analysons le mécanisme par lequel ce phénomène de Nishikawa apparaît. Plu­
sieurs exemples de géométrie de Stokes sont donnés dans le paragraphe 5 en vue (hune 
visualisation de la partie centrale de nos résultats. 
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118 T. KAWAI, T. KOIKE, Y. NISHIKAWA & Y. TAKEI 

0. Introduction 

This paper is the first of a series of our papers on the exact WKB analysis of 
higher order Painlevé equations. For the sake of the clarity and the uniformity of 
the description we restrict our consideration in this paper to the Pi,Pn_i and PQ-2 
hierarchies with a large parameter 77, which are described explicitly in Section 1. 
Although these hierarchies are basically the same as those discussed by Shimomura 
([S2]), Gordoa-Pickering ([GP]) and Gordoa-Joshi-Pickering ([GJP]), we need to 
appropriately introduce a large parameter r\ in their coefficients together with the 
underlying systems of linear differential equations (the so-called Lax pairs) so that we 
may develop the WKB analysis of the hierarchies in question. As is evident in the 
series of papers ([KT1, A K T 2 , KT2, Tl]; see [KT3] for their resume), the relations 
between the Stokes geometry for (one of) the Lax pair and the appropriately defined 
Stokes geometry for the Painlevé equation play the key role in the WKB analysis of 
the traditional Painlevé equations, i.e., the second order differential equations first 
studied by Painlevé and Gambier. One of our main purposes of this paper is to show 
that the relations observed for the traditional Painlevé equations remain to hold for 
each member in the Painlevé hierarchies considered in this paper (Section 2 ) . Another 
main purpose of this paper is to analyze why the novel and interesting phenomena 
numerically discovered by one of us (Y.N.) should occur in our context (Section 3 ) . 
To analytically detect where the phenomena (the so-called Nishikawa phenomena) are 
observed, we introduce the notion of new Stokes curves in Section 4. In Section 5 we 
present several illuminating examples of Stokes geometry for higher order Painlevé 
equations and the Stokes geometry of their underlying Lax pair. Appendix A gives 
a proof of some properties of auxiliary functions JCj and K3 used in Sections 1 and 2 
to write down the Pn_i-hierarchy with a large parameter. In Appendix B we note 
that the Pi-hierarchy with a large parameter is equivalent to a hierarchy discussed by 
Gordoa and Pickering ([GP]) if a large parameter is appropriately introduced. 

As the discussion of [KT1] etc. uses a Lax pair of single differential equations, the 
results there may look pretty different from the results in this paper, where a Lax pair 
of 2 x 2 systems is used, that is, the framework of Flaschka-Newell ([FN]) and Jimbo-
Miwa ([JM]) is used instead of the framework of Okarnoto ([O]); in particular, the 
apparent singularities which played an important role in [KT1] etc. do not appear in 
this paper. Hence we end this introduction with briefly recalling the geometric results 
in [KT1] which are reformulated for a Lax pair of matrix equations. For the sake 
of simplicity we consider only the first Painlevé equation. Thus, following [JM], we 
start with the following Lax pair: 

( 0 . 1 ) 

0 
Ut­

il \ v 0. (O.l.a) 

d 
di 

nB v 0. (O.l.b) 
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STOKES GEOMETRY OF HIGHER ORDER PAINLEVÉ EQUATIONS 119 

where 

(0.2) A 
v(t.r,) 4 ( . I : - M ( M / ) ) 

x2 + u(t. ri)x + u(t. r/)2 + t/2 -v(t. >]) 

and 

(0.3) B 
0 2 

.r/2 f u(t.n) 0 

That is, we consider an isomonodromic deformation (with respect to the variable /) of 

the first matrix equation (0.1.a); the second equation (0.1.b) explicitly describes this 

deformation. To obtain (0.1) we have introduced a large parameter // to the equation 

(C.2) of [JM, p. 437] so that the resulting compatibility condition may become the first 

Painlevé equation with a large parameter rj in [KT1] etc. We have also interchanged 

the first component and the second component of the unknown vector fijj for the sake of 

uniformity of presentation in this paper. The compatibility condition of the equations 

(0.1.a) and (O.l.b). i.e.. 

(0.4) 
OA 

dt 
dB 

dx 
ï](AB - BA) = 0 

can be readily seen to be equivalent to the following system (H\): 

(0.5) (H1) 

du 

dt 
nv 

de 

dt 
fj{6u2 + t) 

We next construct the so-called 0-parameter solution (u.v) of (H\) which has the 

following form: 

(0.6) u(t.ri) = ûa(t) + ir '»,(/) + ••• . 

(0.7) v(t,r,) = ?0(t) + rr[v1(t) + --- . 

It is known that, although (w. ?) is a divergent series, it is Borel summable. Note that 

(0.8) GUQ + t = 0 and VQ = 0 

hold and that Uj and ?y (j > 1) are recursively determined. Substituting (u.v) into 

the coefficients of A and B, we let Ao and Bo denote their top degree part in //, that 

is. 

(0.9) A0 
0 4(:;:-M„(f)) 

.r2 + Ti\)(t)x + n)(tf + t/2 0 

(0.10) Bo 
0 2 

J-/2+«ü(0 0 

To consider the linearization of (Hi) at (v. v). we set it — ti+Att and v = v+Av in (0.5) 
and eonsider the part linear in (Au. Ac). (Although the terminology "linearization" 
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120 T. KAWAI, T. KOIKE, Y. NISHIKAWA & Y. TAKEI 

used here has a completely different meaning from that used in [JM], we hope there 

is no fear of confusions; in [JM] etc., the linearization of (H\) means the system (0.1) 

of linear differential equations.) Then we obtain 

(0.11) 
d 

dt 

'Au 

At;, 
- V 

0 1 
1212 0 

Au 

Av 

Let C and CQ respectively denote 

(0.12) 
0 1N 

12Û 0, 

and 

(0.13) 
0 1 

I2u0 ()/ 

Concerning the matrices AQ,B0 and CQ we find the following several relations. 

First of all, (0.8) immediately entails 

(0.14) Ai) = 2(x-ÏÏ0)B{). 

This relation leads to the following 

Fact A 

(i) The equation (0.1.a) has one double turning point x — Uo(t) if UQ ^ 0. 

(ii) It has one simple turning poi/nt x = — 2u0(t) if u0 ^ 0, and this point is a 

turning point of the equation (O.l.b). 

Here and in what follows we use the terminology "a turning 1)01111" for a matrix 

equation like (0.1.a) to mean, as usual, a point where eigenvalues of its highest degree 

part in // (i.e., the matrix A{) in the case of (0.1.a)) merge. In other words, a turning 

point is a zero of the discriminant of the characteristic equation of the highest degree 

part, and it is said to be simple (resp. double) if it is a simple (resp. double) zero of 

the discriminant. We next obtain 

(0.15) 12u(1(f)«o(f)' + 1 = 0 

by differentiating (0.8). Then this relation proves the following 

FactB. The eigenvalues \± of Ao (i.e.. ±2(.r — M())\JX + 2«o) and the eigenvalues 

LI± of B{) (i.e.. ±\/x + 2v?o) satisfy the following relation: 

(0.16) 
0 

dt 
a+- 0 

Ox / '±-

The following Fact C might look too trivial to note, but for the sake of later 
references we note it here. 
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STOKES GEOMETRY OF HIGHER ORDER PAINLEVÉ EQUATIONS 121 

Fact C We find 

(0.17) det ( i / -C0) = 4det(/i - B0) 
x = uii,fi=v/2 

In what follows a point is called a turning point of a non-linear equation when 

it is a turning point of the linearization of the non-linear equation at a 0-parameter 

solution. (Hence, logically speaking, we have to specify the 0-parameter solution to 

define the notion of a turning point. However, the situation is usually obvious and 

we omit the explicit reference to the 0-parameter solution unless it is confusing.) 

The following Fact D (actually together with Facts A, B and C) is observed for all 

traditional Painlevé equations with due modifications and it plays a crucially impor­

tant role in reducing each Painlevé transcendent to Painlevé I near its simple turning 

point. (Cf. [KT1, KT2] and [KT3].) 

FactD 

(i) At the turning point t = 0 of the equation (0.11), the double turning point 

x = uo(t) merges with the simple turning point x — — 2uo(t) in the Stokes geometry 

o/(0.1.a). 

(ii) We find 

(0.18) 
1 

2 

t 

o 
(v+ - v-)dt 

ûo (t) 

-2un(t) 
(À+ - A )dx. 

'where v± are the eigenvalues of the matrix CQ. 

Since a Stokes curve of (0.1.a) that emanates from a turning point a is, by definition, 

a curve defined by 

(0.19) Im 
' ll-

(A+ - A )dx = 0, 

and since a Stokes curve of (0.11) that emanates from its turning point r (actually 
r = 0) is given by 

(0.20) Im 
t 

T 
- v-)dt = 0, 

the relation (0.18) entails the following important 

FactE. ••— If t ( / 0) lies on a Stokes eurve of (0.11), the Stokes geometry r;/(0.1.a) 

becomes degenerate in the sense that its two turning points are connected by a Stokes 

curve. 

In this manner the Stokes geometry of (0.11), i.e., the Stokes geometry of (H\) is 

closely related with that of (0.1.a), one of the underlying Lax pair whose monodromy 

data (including Stokes multipliers) are preserved. 
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Remark 0.1. — As is common in the literature (e.g.. [V]) in the exact WKB analysis 

(i.e., WKB analysis based on the Borel resumrnation), we employ the above defini­

tion of a Stokes curve, that is, the definition making use of the imaginary part of 

the quantity in question; considering the imaginary part, not the real part, is most 

appropriate in view of the definition of the Borel resumrnation. 

Remark 0.2. Because of the simple character of the Stokes geometry of (0.1.a) its 

degeneracy occurs only when the parameter t lies on a Stokes curve of (0.11). As 

we will see in Section 3, this is not always the case for the higher order Painleve 

equations. However, Fact E, together with Facts A. B, C and D, will be confirmed 

with due modifications in Section 2 for each member in the Pj-hierarchy with J = I, 

II-1 or II-2. 

1. Pj-hierarchy with a large parameter (J — I, II-1 or II-2) 

The purpose of this section is to explicitly write down the Pj-hierarchy with a large 

parameter (J = I, II-1 or II-2) together with the underlying Lax pair. 

1.1. Pi-hierarchy with a large parameter. — The Pi-hierarchy with a large 
parameter r; is, by definition, the following family of systems of non-linear equations 
which are labeled by a positive integer rn. As one can readily see, the first member of 
the family, i.e., (P\)\ is reduced to (Pi), the Painlevé I equation with a large parameter 
q (in the notation of [KT3] etc.). This fact justifies the name uPi-hierarchy". It was 
introduced (in a form somewhat different from the expression below) by Shimomura 
([SI, S2]) in studying the most degenerate Gamier system. It is essentially the 
same as the Pi-hierarchy proposed earlier by Gordoa and Pickering ([GP]) through a 
particular reduction of KdV-hierarchy in a similar way as in the case of Pn_i-hierarchy 
discussed in the next subsection (ef. Appendix B). See also [KS]. 

Definition 1.1.1 (Pi-hierarchy with a large parameter ?/) 

( l . i . i ) (Pi),„ : 

(III j 

dt 
2i}Vj (j = l:....m). (1.1.1.a) 

dvj 

dt 
2r¡(ujjri + //1 a, + ir¡) (j = l.....rn). (1.1. 1.b) 

um+i = 0. 

where Wj is a polynomial of /// and vi (1 ^ / ^ j) that is determined by the following 

recursive relation: 

(1.1.2) Wj 
1 

2 

j 

k=1 
a h-Il j • I /,• 

.y'-i 

k=\ 

Uk Wj-k 

1 

2 

.7-1 

A - l 
l'kl\j-k + Cj + (\,ml (j = 1 rn). 
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STOKES GEOMETRY OF HIGHER ORDER PAINLEVÉ EQUATIONS 123 

Here Cj is a constant and djm stands for Kronecker*s delta. 

Remark 1.1.1 

(i) (Pi)i is equivalent to 

(1.1.3) </',' /p<;,/r • ir. +4t). 

(ii) (Pi) 2 is equivalent to 

(1.1.4) u"" = r]2{2{)ulu'l + 10('w.i)2) + //'( 10//'* - lGcym + lGc2 + 16f). 

(iii) (P\)ii is equivalent to 

(1.1.5) u[Ci) = 7/2(28z/i7/(

1

4) + + 42(///;) 2) - V

4(28()u2y; + 280iz1(?/'1)2 

+ lGcyu'D + / / 6 (280^ + 96r-iw2 - 0 1r_>//, - 32c 2 + (i lr;> + 64/;). 

To present the underlying Lax pair we first introduce the following polynomials in 
x with coefficients Uj. etc. 

(1.1.6) U(x) 
xm III 

j=1 

ujxm-j 

(1.1.7) K(:r) 
m 

./ = 1 

vrr"->. 

(1.1.8) ir(.r) 
m 

j=1 

wjxm-j 

We then let yl and B denote the following matrices: 

(1.1.9) A 
n O / 2 U(x) 

(2xm + i - xU(x) + 2ir(;r))/4 -V(.r)/2 

(1.1.10) B 
0 2 

//i + .r/2 0 

Now the required Lax pair is given by 

(1.1.11) (Li)m 

c) 
Dx 

nA tr = 0. 

0 

Of 
i)B r = 0. 

( l . l . l l .a) 

(1.1.11.1)) 

In order to prove that [P\)w is the condition for the compatibility of ( l . l . l l .a) and 
(1.4.11.1)). we first show the following 

Lemma 1.1.1. The system of equations (P\)m together with the relation (1.1.2) en­
tails 

(1.1.12) 
dwj 
dt 

2qiiiVj + ()jni U = 1 >»)• 
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Proof. When rn — 1 the conclusion is obvious. Hence, we suppose rn > 1. It. then, 
follows from (1.1.2) that 

(1.1.13) w1 1 
2 

U1+ c1 

Thus we find by (1.1.1.a) 

( 1 . 1 . 1 4 ) w[ = 2'rj'iiiVi. 

We, now, use the induction on j . Suppose that (1.1.12) holds for j — 1,.. ., jo < m. 
Then, by differentiating Wj() + \ determined by (1.1.2). we find 

(1.1.15) w'jo+1 
1 

" 2 

jo+1 

A = l 

u'k ujo + 2 - k + uk u'jo+2 - k 

Jo 

A-=L 
'"[«'.io• l A- i "a-";',,.1 

l 
2 

.70 

A-l 

lir.jn • 1 A' + ''A- ''y,, . i /,) + Gjo + 1.m. 

Then, the induction hypothesis together with (P\),n entails 

(1.1.16) w' jo+1 = 2n 
.70 + 1 

/=1 
' J U • 12 /"/ -

Jo 

A'=l 
uk wjo + 1 - k 

Jo 

A-=l 
u k u1 v jo + 1 - k 

Jo 

A-l 
"a- • i + "1 "a' + "'a-)'•/,, • 1 a- ^'o + l.m 

27/ ujo + 1 u1 
Jo 

/>=1 
'̂ .y'o + l -pup+1 

Jo 

A-=l 
'"A"'./,, • 1 A-

Jo 

A-=l 
uku1vjo+1 - k 

Jo 

L—1 
"a- • I ':/,, • l a' 

Jo 

/=1 

wjo + 1 -1 v1 

Jo 

A-=l 
" I " a - • 1 A- Gjo + 1.m 

2///;;,,. l '/i + à 
Jo + 1 • 

Thus, the induction proceeds, completing the proof of (1.1.12). 

We. now, prove the following 

Proposition 1.1.1. {P\)m. is the compatibility condition for ( l . l . l l .a) and (1.1.11 .b). 

Proof. The compatibility condition for ( l . l . l l .a) and ( l . l . l l .b ) is given by 

( 1 . 1 . 1 7 ) 
OA 
Ot 

DB 
O.r 

-//[.4.5] = 0 . 
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It follows from the definition of matrices A and B that 

(1.1.18) [A,B] 
u\U + xU - xm+1 - W 2V 

-uiV - (xV)/2 xm+1 - xU + W - UlU 

Writing down (1.1.17) componentwise, we find the following three relations. 

(1.1.19) T1 dV 
dt 

•f 2(UlU + xU - xm+1 - W) = 0, 

(1.1.20) T1 dU 
dt 

+ 2V = 0, 

(1.1.21) n-1 —x 
dU 
dt 

2 
dW 
dt 

- 2 ) AuxV -2xV = 0. 

Clearly, (1.1.20) is the same as (1.1.1.a). As the part of (1.1.19) with degree m + 1 
or m in x trivially vanishes, the relation (1.1.19) is reduced to 

(1.1.22) v-1 
Gvj 
dt 

- 2(-uiUj - Uj+i - Wj) = 0 (j = 1,..., rn). 

This is nothing but (1.1.l.b). Note that wm+i = 0 by the definition. Let us, next, 
write down the coefficients of like powers in x in (1.1.21). The coefficient of xrn is 

(1.1.23) v-1 Ou1 
dt 

2vi = 0, 

that of xni~J (1 ^ j ^ rn - 1) is 

(1.1.24) ri'1 du j A-i 
dt 

-2 
dwj 
dt 

— iui'Vj — 2vj+i = 0, 

and that of x° is 

(1.1.25) T 1 2 
dw1tl 
dt 

- 2 AuiVm = 0. 

Then, Lemma 1.1.1 proves that (1.1.24) is reduced to 

(1.1.26) n-1 dU j : 1 
dt 

= 2vj+1 (j • 1 /// - 1). 

The same lemma entails that (1.1.25) is a trivial relation. The combination of (1.1.23) 
and (1.1.26) is again the same as (1.1.1.a). Thus we have confirmed that (Pi)m. is the 
compatibility condition of ( l . l . l l .a) and (1.1.1 l.b.). • 

1.2. JPII-I-hierarchy with a large parameter. — The Pn-i-hierarchy (with a 
large parameter) is a hierarchy obtained by a similarity reduction of the KdV hier­
archy. As is shown by Gordoa and Pickering in [GP], this hierarchy together with 
its underlying Lax pair can be reproduced also by their scheme called "nonisospec-
tral scattering problems'1. Here, following the formulation of [GP], we define the 
Pn-i-hierarchy with a large parameter in the following manner: 
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Definition 1.2.1 (P\\.\-hierarchy with a large parameter r/) 

(1.2.1) (fil-l)m T1 d 
dt 

2v Km+g(2tv + rrl)+c = 0. 

Here, m is a positive integer that labels a member of the hierarchy, v = v(t) is an 
unknown function, g 0) and c are constants, and Kj is a polynomial of n and its 
derivatives defined by the following recursive relation 

(1.2.2) rfldtKJ+1 = vy;f - 4r/-1(D2 - irlv')dt - 2(2vv' - rf1v"))KJ 

for j ^ 0 with # 0 = 1/2 and = d/dt. 

Remark 1.2.1. — Although the differentiation dt appears in the left-hand side of the 
recursive relation (1.2.2), we can define each K3 so that it becomes a polynomial only 
of v and its derivatives and independent of any integrated terms like dt~lv. For the 
proof see Appendix A. For example, first few members of K3 are given as follows: 

(1.2.3) K0 = 1/2. 

(1.2.4) Ki = -v2+ri-1v', 

(1.2.5) K2 = 3v4 - 6 » r W + v~2((v')2 ~ 2vv") + rr3v{3\ 

(1.2.6) K3 = -lOv6 + ZOrj-Wv' + r/-2(l(h-2(f')2 + 20v3v") 

+r/-3( - 10(t/)3 - l u , / ' / " - 10t>2t>(3)) 

+e4{- (v"f + 2v'v& - 2w<4>) + r , -V5). 

Remark 1.2.2. By an induction we can also show that 

(1.2.7) Kj (-\Y2i-l(2j - 1)!! 
j! 

v*j +0(rf1). 

where (2j - 1)!! = (2j - 1) • (2j - 3) • • • • 3 • 1. 

Remark 1.2.3 
(i) (Pn-ih is 

(1.2.8) tf2v" =v3 -g^tv + lf1) -C. 

This is equivalent to (Pu), the Painlevé II equation with a large parameter r\. 
(ii) № 1 - 1 ) 2 is 

(1.2.9) iT4»w = î?"2(10v2t.-" + I0v(v')2) - 6i'5 - g(2tv + T/-1) - c. 

The underlying Lax pair of (1.2.1) is 

(1.2.10) (Lii-ilm : 

0 
Ox 

r,A w = 0. (1.2.10.a) 

0 
dt 

nB n< = 0. (1.2.10.b) 
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STOKES GEOMETRY OF HIGHER ORDER PAINLEVE EQUATIONS 127 

where 

(1.2.11) A 
1 

Axg 

-rrldtTrn 2Tm 

2qTni-rr2d2tT7ni1~ldtTm 
B 

0 1 

qO 

Here, Tm and q respectively denote the following functions: 

(1.2.12) Tm = gt 
m 

k=0 

(Ax)kKm_kl 

(1.2.13) q = x + v — r\ v'. 

Our Pn-i-hierarchy (1.2.1) is obtained from the hierarchy 

(1.2.14) (dt + 2v)JCm + g(2tv + 1) + c = 0 

discussed by Gordoa and Pickering through the scaling 

(1.2.15) vv-^rf'^+Vv, t ^ r f ^ l V ^ h , g ^ g , c^r)c. 

Here, JCj is a polynomial of v and its derivatives, satisfying the recursive relation 

(1.2.16) dtJCJ+l = (df + A{vf - v2)dt + 2{v' - v2)')JC3. 

Note that by the scaling (1.2.15) JCj is transformed to rj Jn ^~ 'Kj and each K3 can 

be written as 

(1.2.17) 
Kj = Kj[v,n] = Kj,o [v] + n-1 Kj,1 [v] + ... + n -2j+1 Kj,2j-1 [v] 

with Kjj being a polynomial of v and its derivatives independent of rj. As is ex­

plained also in [GP, III, pp. 5751 5755], (1.2.14) is the compatibility condition for 

the following system of linear ordinary differential equations: 

(1.2.18) 

Axg 
d 

dx 
il): -dtTm 2Tm 

d 

dx 
v, 

d2 

dt2 
I 2 

r — v — X 
il> = 0, 

or for the system equivalent to it: 

(1.2.19) 
d 

dx 
Ì1 

Av, d 

dt 
'0 B^. 

where 

(1.2.20) A 
1 

Axg 

-dtTm 2T 

2qTm - dfTm ¡1,1,,, 
B 

0 1 

9°. 

Here, 

(1.2.21) Tm = gt 

•tu 

k=0 

(Ax)kJCm.k and q = x + v2 - 1/. 
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As a matter of fact, by straightforward computations we readily find that 

(1.2.22) 
DA 
dt 

OB 
dx 

[A,B] 
0 0 
A 0 

with 

(1.2.23) A 
1 

Ax g 
(dt - 2v)dt{(dt + 2v)JCm + g(2tv + 1) 

Thus (1.2.14) is the compatibility condition for the Lax pair (1.2.19) with (1.2.20). 
Our Lax pair (1.2.10) and (1.2.11) are obtained from (1.2.19) and (1.2.20) through 
the scaling (1.2.15) and x i-> r)2^2rn+1)x. 

1.3. PiI-2-hierarchy with a large parameter. — The Pn-2-hierarchy with a large 
parameter is obtained from the hierarchy introduced by Gordoa-Joshi-Pickering in 
[GJP, p. 337] through an appropriate scaling of the variables and constants. Here, 
we content ourselves with explicitly listing up the final results and we refer the reader 
to [Nl] and [N2] for the details of the discussion. 

Definition 1.3.1 (Pn-2-hierarchy with a large parameter n) 

(1.3.1) (Pu-2)m 

Km + l 
m — 1 

J = l 
Cj Kj + gt = 0 

Lm+1 m -1 

j=1 
CJLJ 6. 

Here, g (7^ 0), c3 and S are constants, and K} and L3 are polynomials of unknown 
functions 7/. v and their derivatives defined bv the following recursive relation 

(1.3.2) rfldt K3 + l 
Lj+1 

1 
2 

'7/ 1uf -f- urj 1dt — rj 2d2 2ri~1dt 

2// lt'()t + // '/•/ ut] L0T + 7] 2df/ 

Kj 

Lj 
(j ^ 0) with K0 = 2 and L0 = 0. 

Remark 1.3.1. As in the case of Pn_i-hierarchy, we can show that K3 and L3 become 
polynomials of u, v and their derivatives. For the proof see [Nl] and [N2]. First few 
members of K} and L1 are given as follows: 

(1.3.3) 
K1 

L1 

U 

V 

(1.3.4) 
K2 

L2 

1 
2 

u2 - 2/' // V 
2uv + n-1v' 

(1.3.5) 
K3 

L3 

r 
2/ 

2 \c* \ 6uv - 3// '////' + // 211" 

3//'-/- -4-3/- ' 3// lurf - // 2v" 
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Remark 1.3.2 

(i) (Pu-2)1 is reduced to 

(1.3.6) rf2u" = 2u3 + 2g (2tu + r]"1) + 4J. 

(ii) (^11-2)2 is reduced to 

(1.3.7) тГ4и(4> 
1 

2w2 
ГГ4 -4 ( ? / ) V + 3u(u")2 + Wiz<3> 16r/ 3guv! 

+ rr2(-16r^(7i/)2 + 5u3(u')2 + 16flfW + l O u V ) - 24rf~1gu3 

+ (I6r/2t2ix - 16ci V - 48<Ji63 - 16#t7i4 - 2 4 C I Î X 5 - 5a7)] 

The underlying Lax pair of (Pn-2)m is 

(1.3.8) (¿11-2) m 

<9 

0a: 

nA 
V' = 0, (1.3.8.a) 

д 
dt 

,,B Ф = 0, (1.3.8.b) 

where 

(1.3.9) 
A = A (m) + cm-1 A(m-2) + cm-2 A (m-3) +... + c1A(0) 

(1.3.10) B -x + V2 1 
-1; x - и/2 

Here, A(J) denotes 

(1.3.11) AU) 1 

9 

-frx-^Tj-ri^dtTj 2Tj 

- 2r I ; 11 4), \(2x-u)T] 
+diTj + Kj+1} 

{2x - u)Tj + г)~лdtTj 

where 

(1.3.12) Tm 1 
2 

m 

j = 0 

xm~JKr 

2. Relations between the Stokes geometry of the (Pj)-hierarchies and 
that of their underlying Lax pairs 

In this section we prove that the relations, being similar to the Facts A ~ E for 
the traditional Painleve equations explained in Introduction, also hold between the 
Stokes geometry of a member in the (Pj)-lherarchies (J — I, II-1 and II-2) and that 
of its underlying Lax pair. 
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2.1. Case of the (Pi)-hierarchy. — As in the case of the traditional Painleve 

equations, we first construct what we call the O-parameter solution (UJ,VJ) of (Pi)m 

of the following form: 

(2.1.1) Ûj{t, 7]) = Ûj.o(t) + i] lûj.i(t) H , 

(2.1.2) Vj(t-V) =vho(t) +v lvJ.1(t) + -- - . 

Substituting these expansions into (1.1.1.a) and (1.1.l.b), we readily find that vho 

(j = 1,..., rn) identically vanishes and û;.o should satisfy 

(2.1.3) 2.7 + i,o + u\A)U3.{) + Wj.o = 0 (.7 = 1. . . . , m). 

We can also observe that uhk and v3^: (k > 1) are recursively determined once v3^ is 

taken to be zero and Uj$ is chosen so that it satisfies the algebraic equation (2.1.3). 
Note that the top order part w3^ of uij satisfies a recursive relation 

(2.1.4) 

wj,0 
1 

2 

j 

k=l 

ûk,oûj+1 - k,0 
3-1 

k = l 

///,•.i)/ry /,..„ + CJ + ôjrnt (j = 1,. . ., rn) 

corresponding to (1.1.2), and that (2.1.3) together with (2.1.4) recursively determines 

each UJ^Q (j = 1,. . . , ra) as a polynomial of UI.Q- In particular, as 2m+i,o = 0 by the 

definition, (2.1.3) for j = m provides an algebraic equation for u\^. Hence all Uj,o 

and t̂ -.o are determined algebraically and the O-parameter solution (UJ,VJ) of (Pi)m 

is thus constructed. 

Remark 2.1.1. — By using an induction on j we can verify that û o is a polynomial of 

u i .o with degree at most j . Furthermore, letting ( 1 )-/ 1 n y u\ 0 denote the top degree 

part of f/y.u. we obtain the following recursive relation for {oj} as a consequence of 

(2.1.3) and (2.1.4): 

(2.1.5) Aj+1 
Aj 1 

2 

j 

k=l 
<H-<\j • 1 A-

.7-1 

k=l 

(uA(\j. i k - <\j k) 0' = 1 rn) 

and ai — 1. Since 

(2.1.6) Aj 
( -2) ' ' 

(-1/2) (-1/2 - 1)... (-1/2 -j+1) 

j! 

1-3-5 ( 2 j - l ) 
j! 

satisfies the same recursive relation (2.1.5). we can conclude that o7 = a.j ^ 0. Thus, 

U\x) is a solution of an algebraic equation with degree exactly equal to m -f 1 and. 

roughly speaking, there exist m -f 1 O-parameter solutions of (P\)m-
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We, next, substitute the O-parameter solution (u^Vj) of (Pi)m into the coefficients 

A and B respectively given by (1.1.9) and (1.1.10), z.e., the coefficients of its under­

lying Lax pair. Then, their top order parts AQ and BQ become 

(2.1.7) 
Ao V0(x)/2 Uo(x) 

(2xm+1 - xU0(x) + 2W0(x))ß -V0(x)/2 

(2.1.8) B0 
0 2 

uuo+x/2 0 

where Uo(x), VQ(X) and WQ(X) respectively denote the top order parts (in 77) of U(x), 

V(x) and W(x), that is, 

(2.1.9) U0(x) xm 
rn 

j=1 

Uj,0xm-j, 

(2.1.10) Vo(x) 
rn 

3=1 

Vj,0X \ 

(2.1.11) W0(x) 
rn 

j=1 

wj,oxm-j 

Here, it follows from (2.1.3) that 

2xm+l - XUQ{X) + 2WQ(x) 

xm+1 rn 

3=1 

,-TT m-\-l—j I o 
m 

j=1 

wj,oxm-j 

(2.1.12) Xm+1 
rn 

3=1 

Ûi,oxm+1-*-2 
rn 

3 = 1 

(T2j + I 7 O + ui,oUjX))xrn 3 

xrn+1 + 2u1#xrn 
m 

3 = 1 

ujt0xm+1-j - 2Û!,0 
m 

j=1 

UjßX 

(x + 2uU0)Uo(x) 

holds. This immediately entails 

(2.1.13) Ao 
Uo(x) 

2 
Bo, 

and hence, as a generalization of Fact A for the traditional Painleve equations, we 

obtain the following 

Proposition 2.LI 

(i) The equation (1.1.11.a) has rn (generically) double turning points (which will be 

denoted by x = b\(t), ..., x — bnl(t) in what follows), and each double turning point 

is a root of UQ(X) = 0. 
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(ii) It has one (generically) simple turning point x = —2ui^(t), (which will be 

denoted by x — a(t) for short in 'what follows), and this point is simultaneously a 

turning point of the equation (1.1.1 l.b). 

We can also prove Fact B in a quite general context, that is, even for (Pi)rn we 

have 

Proposition 2.1.2. —• The eigenvalues \± of A0 and the eigenvalues /a± of Bo satisfy 

the following relation: 

(2.1.14) 
0 

dt 
A+- d 

dx 
µ+-

For the proof of Proposition 2.1.2 see [T2], where the method of diagonalization 

for the Lax pair (Li)m is used to prove the proposition in question. 

Now, to define the Stokes geometry of (Pi)m, we consider the linearization of (Pi)m 

at the 0-parameter solution (u3, Vj), that is, we take the part linear in (AUJ, Av3) after 

the substitution a1 = u3 + Au3 and v3 — v1 + Av3 in (Pi)m. We then obtain 

(2.1.15) 

d 

dt 
Au3 2r]Av3 (j = 1, • • • 

d 

dt 
Av3 2r¡ (Auj+i + u\Auj + UjAui + AWJ) (j = 1,... ,ra). 

This defines a system of first order linear ordinary differential equations for 

(AUJ,AVJ). We write this system as 

(2.1.16) 
d 

dt 

Aui ' 

Avi 

Au2 

Av2 

Avrn 

riC(t,ri) 

' Aui 

Avi 
Au2 
Av2 

Avrn 

As in the case of the traditional Painlevé equations, we then call a turning point 

(resp. Stokes curve) of (2.1.16) a turning point (resp. Stokes curve) of our non-linear 

equation (Pi)m. That is, if we let Co denote the top order part (i.e., the part of order 0 

in 77) of the coefficient matrix C(£, 7/) of the right-hand side of (2.1.16), a turning point 

r of (P\)m is a point where two eigenvalues Vj(t) (j — 1, 2) of Co merge and a Stokes 

curve of (P\)m emanating from r is given by Im \l(v\ — V2)dt — 0. To write down Co 

in an explicit manner, we note the following 

Lemma 2.1.1 

(2.1.17) AWJ — uii0Au3 + 0(r/ x) (j = 1,..., ra). 

ASTÉRISQUE 297 



STOKES GEOMETRY OF HIGHER ORDER PAINLEVÉ EQUATIONS 133 

Proof. — In parallel with the proof of Lemma 1.1.1, we use the induction on j to 

prove (2.1.17). In the case of j = 1 (1.1.13) immediately entails 

(2.1.18) Aw i = u\Au\. 

We now suppose that (2.1.17) holds for j = 1,..., jo(< rn). It follows from (1.1.2) 

that 

(2.1.19) Awjo+1 
jo+1 

k=l 

UjQ+2-kAuk 

Jo 

k=l 

(ûju+1-kAwk + Wj0+i-kAuk) 

Jo 

k=l 

vJQ+i-kAvk. 

Then by the induction hypothesis together with the fact Vj$ = 0 we find 

(2.1.20) Awjo+1 
jo+1 

k=l 

uJ()+2-kAuk 
Jo 

k=l 

(ûjo+i-kûifl + wjiì+i-k)Auk + 0(ï] l). 

Since we know by (2.1.3) that %+i,o + 2i,o%,o + Wj,o — 0 holds for j = 1,..., m, we 
obtain from (2.1.20) the following: 

(2.1.21) Awjü + i = ûii0Aujo+i + 0(Ï] X). 

This completes the proof of (2.1.17). 

In view of (2.1.15) and Lemma 2.1.1 we find that the explicit form of Co is given 

by 

(2.1.22) Co 

0 2 

6ui n 0 
0 

2^2,0 
0 

2û3,0 

2 

0 2 

4Ä1 n 0 2 

0 2 
4ui o 0 

This leads to the following 

Proposition 2.1.3. — We have the relation 

(2.1.23) det(u - C0) 4m 
rn 

3 = 1 

det(/x — Bo) 
x = bj(t)Jfi=i;/2 

rn 

3=1 
(i /2-4(2«i,o(*) + ^ (*))). 

where b3(t) denotes a double turning point of (1.1.11.a), z.e., a root of Uo(x) = 0 

(cf. Proposition 2.1.1). 
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Proof. — Expanding 

(2.1.24) det(2/x-C0) = 4rn 

\i —1 

-3Si,o µ 

0 

- ^ 2 , 0 

0 

-U3.0 

-1 

¡1 - 1 

-2uii0 µ - 1 

µ - 1 

-2 î i , o /1 

with respect to the first column, we find 

det(2M - Coh 4 " V ( M 2 - 2Û1,o)m-1 - 3ÛU0(p2 ~ 2ulfi)m-1 

(2.1.25) 

-M2.O(m2 - 2Si,o)m 2 Mm,o] 

= 4m[(/i2 - 2wi.o)m - «i.o(M2 - 2Ûi,0)m-1 ûrnfl] 

AmUo(fi2-2Û1<0). 

This immediately entails (2.1.23). 

Proposition 2.1.3 claims that ±2^2u i^{ t ) H- Oj(t) is an eigenvalue of Co for j = 
1,.. ., m. We can thus label each eigenvalue of Co by a combination of the index 
j and the sign; we let v3\± denote ±2y2?/i,o(£) +bj(t) in what follows. Note that 
vJi+ + v3\- — 0 holds for every j . 

It also follows from Proposition 2.1.3 that det(v — Co) = 0 has the form /(zy2,t) 
with some polynomial / of degree m. This implies that there are two kinds of turning 
points for (Pi)m'- (i) A turning point where the degree 0 part of / vanishes ("a turning 
point of the first kind"), and (ii) a turning point where the discriminant of / vanishes 
("a turning point of the second kind"). Then, as in the case of the traditional Painleve 
equations, we can obtain the following relations between the Stokes geometry of (Pi)m 
and that of its underlying Lax pair (L\)m. 

Proposition 2.1.4 

(i) Let t — r1 be a turning point of the first kind of (Pi)m. Then at t = r1 a double 

turning point x = bj(t) merges with the simple turning point x = a(t) = —2ui$(t) in 

the Stokes geometry of ( l . l . l l . a ) . Consequently the two eigenvalues v3i± of Co merge 

and vanish at t — r1. Furthermore the following relation holds: 

(2.1.26) 
1 

2 

•t 

r1 
(Vj, + -vj, -) dt 

bj(t) 

a(t) 
(À+ — \-)dx. 

(ii) Let t = r11 be a turning point of the second kind of (Pi)m. Then at t = r11 a 

double turning point x — b3(t) merges with another double turning point x = bj>(t). 

Consequently two eigenvalues v3^ and v3<.+ of Co merge at t — r11, and so do v3_ 
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and Vj>,-- Furthermore the following relation holds: 

(2.1.27) 
t 

T11 
(vj,+ - vj' +) dt 

t 

T11 
(^j , - ~~ vj' ,-)dt 

bj(t) 

bjf(t) 
(À+ — \)dx. 

Proof. — We first consider the case of a turning point t = r 1 of the first kind. Proposi­

tion 2.1.3 implies that 2ui^(t) + bj(t) vanishes at t = r 1 for some j . This immediately 

entails that x = b3(t) merges with x — —2u\$(t) at t = r 1 and that z/̂ -t- merge and 

vanish there. Note that Proposition 2.1.3 also implies 

(2.1.28) VjAt) - isj,-(t) = 2( / i + (x, t ) - »-{x,t)) 
x = bj(t) 

Hence it follows from Proposition 2.1.2 that 

(2.1.29) 
d 

dt 

bj(t) 

a(t) 
( A + — \-)dx 

bj(t) 

a(t) 

d 

dt 
[\+ -X^)dx 

bj(t) 

a(t) 

d 

dx 
(//+ - fi_)dx 

(/ i + - /i_) 
x = b.j{t) 

1 

2 
(vj,+ - vj,-). 

Integrating (2.1.29) from r 1 to t, we then obtain (2.1.26). 

We next consider the case of a turning point t = r 1 1 of the second kind. Proposition 

2.1.3 again implies that 2Si,o(£) + bj(t) coincides with 2u\$(i) + bj'(t) at t = r u for 

some j and This entails that x — bj(t) merges with x = b3>(t) &t t = r 1 1 and that 

Vj,+ and ^-',+ merge there. The proof of the relation (2.1.27) is similar to that of 

(2.1.26). • 

As an immediate consequence of the relations (2.1.26) and (2.1.27) we also observe 

the following important 

Proposition 2.1.5. - If t lies on a Stokes curve of ( P i ) m emanating from a turning 

point t — r 1 (resp. t = r 1 1 ) of the first (resp. second) kind, the Stokes geometry of 

( l . l . l l .a) becomes degenerate in the sense that its two turning points x — b3(t) and 

x — a(t) (resp. x = b3(t) and x = b3>(t)) are connected by a Stokes curve. 

Propositions 2.1.4 and 2.1.5 are natural generalizations to (P\)7n of Facts D and E 

for the traditional Painlevé equations explained in Introduction. 

2.2. Case of the Pii_i-hierarchy. — As in the case of the P[-hierarchy, by sub­

stituting 

(2.2.1) v = v{t,rf) =v0{t) + ri 1di(t) + ---
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into (1.2.1) and comparing like powers of 77, we can construct the O-parameter solution 
v(t,rj) of (Pn-i)m- In this case the top order part VQ satisfies 

(2.2.2) 2v0K7nio(vo) + 2gtv0 + c = 0, 

or more explicitly 

(2.2.3) 
(-l)m2m(2ra - 1)!! 

ml 
-2m+ 1 

0̂ 2gtv0 Hr c 0 

(cf. Remark 1.2.2). 
We then substitute the O-parameter solution v(t, rj) of (Pn_i)m into the coefficients 

A and B of the underlying Lax pair (1.2.10). Their top order parts AQ and BQ are 
given by 

(2.2.4) A0 
1 

2xg 

0 Trn,0 

QoTm,0 0 
Bo 

0 iN 

qo 0 

where 

(2.2.5) Trn.O gt 
rn 

k = 0 
(4X J\m-kX I V = V{) 

(2.2.6) qo = x + i?o-

Thus 

(2.2.7) ^0 
Tm,0 
2xg Bo 

holds and hence we obtain 

Proposition 2.2.1 

(i) The equation (1.2.10.a) has m (generically) double turning points (which will be 
denoted by x — b\(t), . . ., x = bni(t) in what follows), and each double turning point 
x — bj(t) is a root o/Tm?o = 0, that is, 

(2.2.8) 
Tm,0 22m — 1 rn 

j=1 
(x-bj(t)). 

(ii) It has one (generically) simple turning point x = —(vo(t))2, (which will be 
denoted by x = a(t) for short in what follows), and this point is simultaneously a 
turning point of the equation (1.2.10.b). 

The following proposition corresponding to Fact B also holds for (Pn-i)m-

Proposition 2.2.2. — The eigenvalues X± of Ao and the eigenvalues fi± of Bo satisfy 
the followinq relation: 

(2.2.9) 
d 
dt 

A± 
d 

dx 
fi±. 
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(For the proof of Proposition 2.2.2 see [T2].) 
Now we consider the linearization of (Pn_i)m at the O-parameter solution v. Let 

AK3 denote the linear (in Av) part of K3 after the substitution v = v + Av, then the 

linearization of (Pn_i)m is 

(2.2.10) (ri-ldt + 2v)AKm + 2Krn 
v=v 

Av + 2gtAv = 0. 

Since Kj is a polynomial of v and its derivatives, there exists a (formal) differential 

operator 

(2.2.11) Pj^rj-'durr1) = pj^rr'dt) + 7rlPjAt,rrldt) + • • • 

for which the following relation holds: 

(2.2.12) AKj=pj(tìrì-1dt-ìrì-l)Av. 

In terms of this operator Pj(t,rj~1dt',rj~1), the characteristic equation (i.e., the top 

order part (with respect to ?/) of the symbol obtained by replacing q~ldt by v) of 

(2.2.10) is expressed as 

(2.2.13) C(t, v) = (v + 2v0)p,nAti v) + 2ATm>o 
V = V() 

2gt. 

This C(t,h>) corresponds to the characteristic equation of Co in the case of P\-

hierarchy. 

Proposition 2.2.3. We find 

(2.2.14) C(Lv) 4m 
rn 

3 = 1 

det(/i - BQ) 
x = bJ{t)4i^v/2 

Proof. — We first note that the right-hand side of (2.2.14) becomes 

(2.2.15) 4m 
rn 

.7 = 1 

det(/./. - S,,) 
x = b j ,/i = z//2 

4rn 
ra 

j=1 

{li2-vl-x) 
x = bj ,f.i=v/2 

4m 
m 

3 = 1 

(v2/4 + vo2 - bj) 

2Tm,o 
x = (v2-4v02)/4 

To calculate the left-hand side of (2.2.14), we use the recursive relation (1.2.2). 

Considering the linear (in A?/) part of both sides of (1.2.2), we find that {pj,o} should 

satisfy the following recursive relation: 

(2.2.16) vpj+i^(t,v) (v3 - 4d2v)pJi0(t,v) 2v(v - 2v0)Kji0 
V = Vo 

that is, 

(2.2.17) pJ + i^(t,v) (v2 - \vi)vjX)(t. v) + 2(i/ - 2v0)Kji0 
V = Vq 
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By solving this recursive relation with the initial condition 

(2.2.18) Pi,o(£, v) = v - 2v0, 

we obtain 

(2.2.19) Pm ,o(^) = 2(i/ - 2v0) 
m -1 

k=0 

(^_4~m-.?-l)A^o 
v=vo 

It then follows from (2.2.13) that the left-hand side of (2.2.14) becomes 

(2.2.20) 2 
m 

k = 0 
(v2-4v*)m-kKk,o 

v = v0 
•igt, 

which coincides with 2Tn0 r = (//2-4^)/4- This completes the proof of Proposition 

2.2.3. 

Thus the same propositions as Propositions 2.1.1 ~ 2.1.3 in the case of the P\-

hierarchy hold for the Pii_i-hierarchy also. In particular, since it follows from Propo­

sition 2.2.3 that C(t,v) is of the form f(v2,t) with some polynomial / of degree m, 

we can define a turning point of the first kind and that of the second kind also for 

the Pu-i-hierarchy in a manner similar to the case of the P[-hierarchy. For both kinds 

of the turning points we can verify the following relations, similar to those for the 

Pi-hierarchy, between the Stokes geometry of (Pn-i)m and that of its underlying Lax 

pair (Pn-i)m. 

Proposition 2.2.4 
(i) Let t = rl be a turning point of the first kind of (Pn-i )m • Then att = r1 a double 

turning point x = bj(t) merges with the simple turning point x = a(t) = — (^o(^))2 

the Stokes geometry of (1.2.10.a). Consequently the two roots vJr± of' C(t,v) merge 

and vanish at t = r1. Furthermore the following relation holds: 

(2.2.21) 
1 

2 

t 

T1 
(vj,+ -vj,-) dt 

bj(t) 

a(t) 
(A+ - X-)dx. 

(ii) Let t = r11 be a turning point of the second kind of (Pn-i)m- Then at t = r11 

a double turning point x = b3(t) merges with another double turning point x = b3>{t). 

Consequently two roots v,j^+ and ^?',+ of C(t, v) merge att — r11, and so do v3^- and 

Vj>-. Furthermore the following relation holds: 

(2.2.22) 
t 

TII 
(vj,+ - vj',+)dt 

t 

TII 

(vj,- - vj',-)dt bj(t) 

by (t) 
(A+ - \-)dx. 

Proposition 2.2.5. If t lies on a Stokes curve of (Pu-i)rn emanating from a turning 

point t = r1 (resp. t = T11) of the first (resp. second) kind, the Stokes geometry of 

(1.2.10.a) becomes degenerate in the sense that its two turning points x — bj(t) and 

x = a(t) (resp. x = b3(t) and x = b3'(t)) are connected by a Stokes curve. 
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We omit the proof of Propositions 2.2.4 and 2.2.5 as it is the same as that of 

Propositions 2.1.4 and 2.1.5 . 

2.3. Case of the Pii_2-hierarchy. — As is discussed in [Nl] and [N2], the re­

lations between the Stokes geometry of each member of the hierarchy and that of 

its underlying Lax pair, similar to those for the Pj-hierarchy and P\\-\-hierarchy, can 

be confirmed also for the Pn_2-hierarchy. We refer the reader to [Nl] and [N2] for 

their precise formulation and the details of the proofs. Here, we only explain the core 

part of the discussion. For the sake of simplicity of the notations, we restrict our 

consideration to the case where CQ — c\ — • • • = cm_i — 0. 

Substituting the O-parameter solution 

( 2 . 3 . 1 ) û (t,n) = ûo(t) + n-1 û1 (t) + ..., 

( 2 . 3 . 2 ) v(t,ri) =V0(t)+T]V0(t)+T] H 

of (Pn-2)m m^o the coefficients A and B of the underlying Lax pair (1 . 3 . 8 ) , we find 

that their top order parts A0 and PQ become 

( 2 . 3 . 3 ) Ao 
1 

9 

-(2x - uo)Trn^0 2TM 0 

-2vo Tm,o (2x - u0)Tmß 

(2 .3 .4 ) Bo 
-x + uo/2 1 

- vo x — uo 12 

where 

(2 .3 .5 ) îm,0 
1 

2 

m 

3=0 

xm-j Kj,o 
U = U{),V = V0 

This immediately entails that 

( 2 . 3 . 6 ) Ao 
2Trn 0 

9 
Bo-

Hence, if we let x = b3(t) (1 ^ j < m) denote a root of Tm,o = 0, each bj(t) becomes 

a (generically) double turning point of the equation (1.3.8.a). Note that in this case 

there exist two (generically) simple turning points, denoted by x = a\ (t) and x = 02 (0 
in what follows, since the characteristic equation of Po is a quadratic polynomial in x. 

We, next, consider the linearization of (Pn-2)m at (u,v) = (u,v). Letting AK3 

and AL3 respectively denote the linear part of K3 and L3 in (A^, Av) after the 

substitution (u,v) = (u,v) + (An, Av), we find that the linearization of (Pn_2)m is 

(2 .3 .7 ) AKm+1 ALm+1 0. 

Let C(t, v) denote its characteristic equation, then we obtain 

(2 .3 .8 ) CM (t,v) ( - l )m 
rn 

j=1 

det(/i — BQ) 
H=v/2,x = bj 
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As in the preceding two subsections, (2.3.8) enables us to define a turning point of the 

first kind and that of the second kind also for the Pn-2-hierarchy. The key relation 

(2.3.8) can be proved in a similar manner as in Section 2.2; That is, since K3 and L3 

are polynomials of u, v and their derivatives, there exists a 2 x 2 matrix of differential 

operators 

(2.3.9) Dj{t,r1-1dûV-1) = Djio{t,ri-ldt) +... 

satisfying 

(2.3.10) 
AK3 

AL3 

Dj (t,n-1 At; n-1) Au 

Av 

Then, in terms of D3(t1rj 1dt;r] 1)1 C(t.u) is expressed as 

(2.3.11) C{t,v) ; del /;,„.,.„(/.,/). 

On the other hand, considering the linear (in (Au. Av)) part of both sides of (1.3.2) 

and taking its top order term, we find 

(2.3.12) 
Dj+1,o (t,v) (So - v)lî 1 

S0 (u0 + v)j2 
DM*,") 

1 

2 
Kj,0I2, 

where I2 stands for the 2 x 2 identity matrix. By solving this recursive relation under 

the condition D\ o(t, v) = I2, we obtain 

(2.3.13) Dm+1,0 1 

2 

771 

3=0 

Krn-j,0 
(So - v)/2 1 

S0 (Û0 + iy)/2 

3 

Hence (2.3.5) and (2.3.13) entail that 

(2.3.14) An+i,o(£, v) 
771 

j=1 

(So - i/)/2 1 

vo (ûo + v)/2 
bjl2 

771 

j=1 

\u0 - v)/2 - bj v)/2 - bj 1 

S0 (S0 + u)/2 - b3 

The relation (2.3.8) immediately follows from (2.3.4), (2.3.11) and (2.3.14). 

3. The inevitability of the Nishikawa phenomenon 

In a computer-assisted study of the Stokes geometry for (Pn-2)2 Nishikawa ([N1]) 
found the following intriguing phenomenon: 

There exist points outside the union of all Stokes curves for (Pn-2)2 where the 

Stokes geometry of (1.3.8.a) degenerates. Furthermore the totality of such points 

forms a curved ray emanating from the intersection of two Stokes curves for (Pn-2)2-

The purpose of this section is to show why and how such a phenomenon, which is 

now known as the Nishikawa phenomenon, should be observed. To fix the notations 
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we consider the case (Pi)2, although the reasoning equally applies to (Pj)m with 

m ^ 2 and J = I, II-1 or II-2. We note that the phenomena studied below are 

not observed when rn = 1, i.e., for the traditional Painleve equations. One important 

reason for this is the fact that the number of the double turning points of the equation 

(1.1.11.a) is 1 when rn = 1; at least two double turning points seem to be needed for 

the occurrence of a Nishikawa phenomenon. 

Let T be a crossing point of two Stokes curves of (Pi)2- Suppose that, when t lies on 

one of the Stokes curves of (P[)2, a (double) turning point A is connected with a (sim­

ple) turning point C by a Stokes curve in the Stokes geometry of the linear equation 

(1.1.11.a) and that another (double) turning point B is similarly connected with C by 

a Stokes curve of (1.1.11.a) when t lies on the other Stokes curve of (Pi)2; the (topo­

logical) configuration of the Stokes curves of (1.1.11.a) when t = T is seen in Figure 

3.1. (As we study the configuration of Stokes curves both for the Painleve equations 

(i.e., in t-variable) and for one of the underlying Lax pair (i.e., in x-variable), we 

put throughout this article a sign or to each figure for the convenience of the 

reader.) In what follows, having these geometrical situations in mind, we label the 

two Stokes curves of (Pi)2 crossing at T as [AC] and [BC] respectively. 

FIGURE 3.1 

Let us move around the point T from t\ to £4 as designated by the arrows shown 

in Figure 3.2. 

\ЛС] 

[ВС] 

FIGURE 3.2 
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To fix the notation let us suppose that the configuration of Stokes curves of 

(1.1.11.a) at tj (j = 1,2,3) is as in Figure 3.3.j. The letters a ~ g label the di­

rections into which Stokes curves asymptotically flow. Such configurations are really 

observed, for example, near the crossing point of Stokes curves of (Pi)2 shown in 

Figure 5.1.2(1) in Section 5. 

FIGURE 3.3.1 FIGURE 3.3.2 FIGURE 3.3.3 

Note that we can detect the configuration in Fig. 3.3.3 by the relation (2.1.26) 

without resorting to the computer-assisted numerical computations; the Stokes curve 

emanating from B and flowing to the direction b in Fig. 3.3.1 should now go to some 

direction looking at C on the left side, but the number of directions to which Stokes 

curves of (1.1.11.a) flow is 7 and they are exhausted by a ~ g. Since (1.1.11.a) is a 

2 x 2 system, its Stokes curves do not cross. Hence the only direction to which the 

Stokes curve in question flow is the direction a. The same reasoning applies to the 

Stokes curve emanating from C and flowing to the direction e in Fig. 3.3.1. Thus 

Fig. 3.3.3 is a logical consequence of Fig. 3.3.1 and Fig. 3.3.2. 

Now, is it possible to reach a point £ 4 in [AC] with keeping the topological con­

figuration designated in Fig. 3.3.3 ? For the convenience of the reader we give the 

configuration of Stokes curves of (1.1.11.a) when t = ¿4 in Fig. 3.3.4. 

FIGURE 3.3.4 

The answer to the above question is clearly "No", because no Stokes curve can 

connect A and (7; if such a Stokes curve existed, it should cross the Stokes curve 
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emanating from B and flowing to the direction a or d, and it should contradict the 

requirement that no Stokes curves should cross for 2 x 2 systems. Thus the Stokes 

curve emanating from B and flowing to the direction a should swing further and hit 

the turning point A as in Fig. 3.3.5 at some point t = ¿5 during the journey of t from 

£ 3 to £ 4 . 

FIGURE 3.3.5 

We can then smoothly continue our journey; we find the configuration shown in 

Fig. 3.3.6 after t passes through ¿5, as is detected by (2.1.26). Then it is natural to 

find the configuration shown in Fig. 3.3.4 as we continue our journey to reach t — ¿4. 

FIGURE 3.3.6 

Summing up, during the journey from ¿2 to £ 4 , unanticipated degeneracy of the 

Stokes geometry of (1.1.11.a) inevitably occurs at some point, and the totality of such 

points is a (curved) ray emanating from T. This explains why and how the Nishikawa 

phenomenon should occur. 

We note that the above discussion makes essential use of the fact that, although 

(Pi)2 is equivalent to the fourth order equation (and hence its Stokes curves may, and 

really do, cross), the Lax pair associated with it consists of 2 x 2 systems. 
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4. Introduction of a new Stokes curve to explain the Nishikawa 
phenomenon 

The purpose of this section is to introduce a "new" Stokes curve so that the 
Nishikawa phenomenon may be naturally interpreted as the occurrence of degeneracy 
of the Stokes geometry of the underlying Lax pair when the parameter t lies on the 
new Stokes curve. Introduction of a new Stokes curve was first done by Berk-Nevins-
Roberts ([BNR]) for a linear differential operator with holornorphic coefficients so 
that the connection formula for WKB solutions may be consistently written down near 
crossing points of Stokes curves. Because of the complexity of the equation in question, 
the reasoning of Berk et al. cannot be applied to our case. Instead, in introducing 
new Stokes curves for the linearization of (Pj)m such as (2.1.16) we use the graph-
theoretical structure of the Stokes curves of the linear equation (1.1.11.a),(1.2.10.a) 
or (1.3.8.a). 

Now, as Nishikawa ([N1]) has numerically observed, it is not always the case that 
we encounter Nishikawa phenomena near a crossing point of Stokes curves for the 
linearization of Painleve equations, or for short, Frechet derivatives. To characterize 
a crossing point of Stokes curves near which we observe Nishikawa phenomena we 
make some preparatory discussions. 

Let us suppose that two Stokes curves for a Frechet derivative cross transversally 
at a point T. By the Fact E for (Pj)m (cf. Proposition 2.1.5 and Proposition 2.2.5) 
each of the Stokes curves corresponds to a pair of turning points of (1.1.11.a) (or 
(1.2.10.a) or (1.3.8.a)) which are connected by a Stokes curve. Then either one of the 
following two situations is observed at t = T: 

Case I: These two pairs share one turning point. 
Case II: The four turning points are mutually distinct. 

In what follows, we say in Case I that the two Stokes curves of (1.1.11.a) etc. (each of 
which connects a pair of turning points) are hinged by the shared turning point. We 
also call the shared turning point a hinging turning point (cf. Fig. 4.1). Using these 
terminologies, we further classify the situations in Case I. 

Case la: The hinged two Stokes curves of (1.1.11.a) are adjacent at the hinging 
turning point. 

Case lb: The hinged two Stokes curves of (1.1.11.a) are not adjacent. 
Note that, if the hinging turning point x(T) in Fig. 4.1 is simple, then Case lb is 
never realized; in fact, only 3 Stokes curves emanate from a simple turning point, and 
hence two Stokes curves are always adjacent there. 

A crossing point T is said to be Lax-adjacent, or for short, LA if the configuration 
of Stokes curves of (1.1.11.a) etc. at t = T is classified as in Case la. Otherwise, it 
is said to be non-Lax-adjacent or non-LA for short. An important property of two 
adjacent Stokes curves of (1.1.11.a) etc. is that the dominance relation of each of 
the Stokes curves is opposite (if the angle formed by the two Stokes curves does not 
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Case la Case lb Case II 

FIGURE 4.1. Example of configurations of relevant Stokes curves of 
(1.1.11.a) etc. in Cases la, lb and II. In Cases la and lb x(T) designates 
the hinging turning point, while the pairs are not hinged in Case II. 

contain the cut that fixes the branch of the characteristic values of (1.1.11.a) etc.) . 

In what follows we use this property in a substantial manner. 

A new Stokes curve is, by definition, not introduced at a non-LA crossing point. 

At an LA crossing point T we introduce new Stokes curves that pass through T, 

following the rules given below. Here and in what follows, we attach the symbol 

u{ji + ) > ~~)" ê c-̂  f° each (ordinary) Stokes curve to mean 

(4.1) Re 
t 

T 
(vj,+ - vk,-) dt>0 

holds on the Stokes curve in question. Here, vh+ (resp. Vk,~) designates the relevant 

characteristic root of the Fréchet derivative which is labeled by (j, + ) (resp. (&,—)), 

that is, and v^,- are solutions of the equation 

(4.2) det(/y - C0) = 0. 

(Cf. (2.1.23), (2.2.14) and (2.3.8)) We choose the lower end point of the integral 

in (4.1) to be the turning point from which the Stokes curve emanates. We also 

note that two symbols like (j, + ) > (£;, —) and (k, +) > (j, —) are attached to a 

Stokes curve which emanates from a turning point of the second kind; this means 

that two Stokes curves determined respectively by Im Ĵ '(z/7-,+ — Vk,-)dt — 0 and 

Im Ĵ (zy/e5+ — Vj^_)dt = 0 sit on one and the same curve. 

Rules for introducing new Stokes curves 

Case A. — At a Lax-adjacent crossing point T of two Stokes curves C\ and C2 re­

spectively emanating from turning points T\ = r\ and T2 = r\ of the first kind. 

In this case, using the Fact D for (Pj)rn (cf. Proposition 2.1.4 and Proposition 

2.2.4) and the assumption that T is an LA crossing point, we can find a simple turning 

point a(t) and two double turning points b3(t) and bk(t) for which the configuration 
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of relevant Stokes curves of (1.1.11.a) etc. contains the following portion at t = T 
(Fig. 4.2). 

FIGURE 4.2 

Here, the wiggly line designates a cut to fix the branch of A/— det AQ. Since T\ is 
a turning point of the first kind, we can find characteristic roots v^± so that they 
satisfy 

(4.3) vj,- = - vj,+ 

and 

(4.4) 
vj, + (T1) = vj, - (T1) = 0 

(Cf. the remark after Proposition 2.1.3.) Letting Qo denote — detAo, we may assume 

(4.5) 
1 
2 

t 

T1 
— Vj )dt = 2 

bj(t) 

a(t) 
Qo dx 

by replacing and z/?-5_ if necessary. To fix the notation let us suppose that the 
Stokes curve C\ is labeled by (j, + ) > (j, —). We then find 

(4.6) Re 
bj(T) 

a(T) 
Qo dx 

1 
4 

T 

T1 
(y3^ - Vj-)dt > 0. 

With a similar reasoning we find characteristic roots Vk,± satisfying 

(4.7) Vk,- = - Vk,+, 

(4.8) Vk,+ (T2) = Vk, - (T2) = 0 

and 

(4.9) 
t 

T2 
K , + - Vk-)dt = As 

•bk{t) 

a(t) 
Qo dx 

with e = ± 1 . In view of the location of the cut in Fig. 4.2, we find from (4.6) 

(4.10) Re 
•bk(T) 

a(T) 
Qo dx < 0. 
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Hence the Stokes curve C2 is labeled as (A:,+) > —) (resp. (k,—) > (/c,+)) if 

e — — 1 (resp. e = l). Then we introduce a new Stokes curve by the following: 

(4.11) Im 
t 

T 
(z/j5+ - Vk-)dt = Im 

t 

T 
- v3_)dt = 0 

if e = — 1, and 

(4.12) Im 
t 

T 
- vk,+)dt = Im 

t 

T 
(Vk,- - vj,-) dt = 0 

if £ = 1. At this moment we label a new Stokes curve by just the pair(s) of indices 

of the characteristic roots appearing in the definition of the curve, that is, we do not 

use the inequality symbol. To be concrete, the curve defined by (4.11) (resp. (4.12)) 

is labeled as (j, +; /c, —). (k, —) (resp. (j, +; + ) , (/c, —; j , —)). Thus the resulting 

configuration of (ordinary and new) Stokes curves near t = T is either one of the 

following two graphs given in Fig. 4.3. 

(k,+)> (k, -) 

(j,+) > (j,-) 

(j, + : k,-) 

(i) 

> (/-+) 

(.7- +) > Ü- - ) 

(j,+: l, k, + 
(k, -: j,-) 

(Ü) 

FIGURE 4.3 

Case B. — At a Lax-adjacent crossing point T of two Stokes curves C\ and C2 re­

spectively emanating from a turning point T\ = r\ of the first kind and from a turning 

point T2 = r2n of the second kind. 

By the same reasoning as in Case A we find a simple turning point a(t) and two 

double turning points bj(t) and bk(t) for which the configuration of Stokes curves of 

(1.1.11.a) etc. contains the portion designated in Fig. 4.4 (or its mirror image) at 

t = T. 

Let us choose characteristic roots vh± so that they satisfy (4.3) ~ (4.6). To fix the 

situation we assume the Stokes curve C\ is labeled as (j, + ) > (j, — ). By the Fact D 

for (Pj)ni (cf. Proposition 2.1.4 and Proposition 2.2.4.), we find Vk,± f°r which the 
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i{T) 
k (T) 

МЛ 

FIGURE 4.4 

following relation holds with appropriate a = ± and e — ±1 : 

( 4 . 1 3 ) 
t 

T2 
{"k,* - Vj,+)dt = 2e 

Ok (t) 

bj(t) 
Qodx. 

Hence we find 

(4.14) Vk, G - Vj, + 2s 
d 
dt 

a(t) 

bj(t) 
(Jo dx 

>bk(t) 

a(t) 
Qo dx 

On the other hand, (4.3) and (4.5) entail 

(4.15) Vj,+ 2 
d 
dt 

•bj(t) 

a(t) 
Qodx. 

Thus we conclude e = +1 in (4.14). Then, as a is rather conventional in our current 
context, we consider both situations. (If we consider the problem globally, not local­
izing the problem near T. a should be fixed in concrete problems. See [NT] for this 
point.) Since we have labeled C\ as (j. +) > (j. —), we find 

(4.16) 
bj (T) 

a(T) 
Qo dx > (). 

Hence the Lax-adjacency assumption implies 

(4.17) 
Gk (T) 

bj (T) 
Qodx > (). 

This means that C2 is labeled as 

(4.18) (k. +) > (.;. +) and (j. -) > (k. - ) if er = + 

(4.19) (k. -) > (j. +) mid (j. -) > (k. +) if a = -. 

The required new Stokes curve is then given by 

(4.20) Illl 
t. 

T 
K . + -^-.-)rfr = 0. 
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Thus the resulting configuration of (ordinary and new) Stokes curves near t = T is 
either one of the following two graphs given in Fig. 4.5. 

(k,+) >(j, +) 
(j,-) > (k, -) 

(k, + : k, -) 

(j, +) > (j, -) 

(i) 

(k, -) > (j, +) 
(j, -) > (k, +) 

(A-,-;A-.+) 

0\+) > (.;•-) 

(Ü) 

FIGURE 4.5 

Case C. — At a Lax-adjacent crossing point T of two Stokes curves C\ and C2 re­
spectively emanating from turning points T\ = r\l and T2 — T 1̂ of the second kind. 

In this case, using the Fact D for (Pj)m {cf. Proposition 2.1.4 and Proposition 
2.2.4.) we find three double turning points bj{i),bk{t) and bi{t) for which the config­
uration of Stokes curves of (1.1.11.a) etc. contains the following portion at t = T: 

h AT) 
\I>IAT) 

b,(T)\ 

FIGURE 4.6 
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To fix the situation, let us choose characteristic roots v^± and Vk,± so that they 
satisfy the following: 

(4.21) i/j- = -Vj,+ and vk- =vK, +, 

(4.22) VJATI) = ^ , + ( n ) ^ 0, 

(4.23) 
t 

T1 
[y3^ - vki+)dt 

t 

T1 
(i/j - - vk-)dt 

2 
bj (t) 

bk(t) 
Qo dx. 

We also assume 

(4.24) Re 
bj{T) 

bk(T) 
Qo dx > 0. 

Otherwise stated, the Stokes curve C\ is labeled as (j, + ) > (fc, + ) and (A:, —) > (j, —). 
In parallel with the argument in Case B, we find characteristic roots u^± for which 
the following relation holds with appropriate a = d= and s = ±1 : 

(4.25) 
t 

r2 
- Vk,+ )dt 2s 

bi(t) 

bk{t) 
Qo dx. 

Then we have 

(4.26) vl, g - vk, + 2e 
d 

dt 

gj (t) 

gk (t) 
Qo dx 

gt (t) 

bj(t) 
Qo dx 

2s 
d 
dt 

bi{t) 

b.j{t) 
Qo dx E (vj,+ - vk, +) 

Hence we conclude s = +1. Again in parallel with Case B, we do not fix a. Since we 
have assumed (4.24), the Lax-adjacency assumption entails 

(4.27) Re 
bi{T) 

bk(T) 
Qo dx < 0. 

As s — +1 in (4.25), we find that the Stokes curve Ci is labeled as 

(4.28) (fc, + ) > (I, + ) and (/, - ) > (fc, - ) if a = + 

or 

(4.29) (fe, + ) > (/, - ) and (/, + ) > (fe, - ) if a = 

Then the required new Stokes curve is given by 

(4.30) Im 
t 

T 
- vL(7)dt = 0. 

Thus the resulting configuration of Stokes curves near t — T is either one of the 
following two graphs given in Fig. 4.7. 
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№,+)>(/.+) 
(/,-)> (A-.-) 

0-+) > (/••• • ) 
(*••-) > 0',-) 

(j,+;l+) 
(l, -:j, -) 
(i) 

(A-.+)>(/.-) 
(/•+) > (A'.-) 

0',+)>(A-.+) 
( A - . - ) > 0\-) 

0'.+;/,-) 
0'.+;/,-) 

(ii) 

FIGURE 4.7 

There exist crossing points of an ordinary Stokes curve and a new Stokes curve 
introduced above. However, no Nishikawa phenomena have been observed near them, 
at least in the examples so far studied. (Cf. [Nl]; see also §5.4). Hence we do not 
try to define the "secondary" new Stokes curves in this article. At the same time we 
surmise that we need such new Stokes curves in some more complicated examples. 

Now, the importance and the naturality of the notion of new Stokes curves are 
shown by the following 

Theorem 4.1. — If t lies on a new Stokes curve introduced above, then the imaginary 
part of the integral \/Qo~dx vanishes for appropriately chosen turning points 
x\(t) and x2(i) of the equation ( l . l . l l .a) , (1.2.10.a) or (1.3.8.a). To be more concrete, 
we find the following: 

(i) In Case A, xx(t) = bk(t) and x2(t) = b3(t). 
(ii) In Case B, x\(t) = a(t) and x2(t) — bk(t). 
(in) In Case C, x1(t) = bj(t) and x2(t) = b3(t). 

Proof. — As the reasoning is the same for all cases, we prove the theorem only in the 
case (i). In what follows we use the notations in Rules above. Let us consider the 
case where e — — 1 in (4.9). Then, summing up (4.5) and (4.9), we find 

(4.31) 
t 

ri 
(/yy. • - l/J-

t 

r-2 
K , + - Vk.-)dt = 4 

•bj(t) 

M*) 
Qo dx. 

Since T is a crossing point of Stokes curves C\ and C2, 

(4.32) Im 
T 

ri 
(^•,+ — v]s-)dt — Im 

T 

T-2 
(vk+ - Vk-)dt = 0 

holds. Therefore we obtain 

(4.33) Im 
t 

T 
(lyj. • ~ vh- + /'/,.. f - Uk, )<H 4 Im 

M*) 

M*) 
Qo dx. 
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Since the left-hand side of (4.33) vanishes by the definition (4.11) of a new Stokes 
curve, we find the required fact. • 

Remark4.1. — If x\(t) and X2(i) are connected by a Stokes curve of ( l . l . l l .a) etc., 
then we find 

(4.34) Im 
x2(t) 

xi(t) 
Qodx = 0, 

but not vice versa. The point is that a Stokes curve of ( l . l . l l .a) etc. is, by definition, 
an integral curve of the vector field Im y/Qodx that emanates from a turning point. 
(Cf. [AKT1, p. 80]) 

As a matter of fact, Rules stated above are somewhat loose. A more precise 
description of a new Stokes curve should be as follows: 

If the (real 1-dimensional) curve defined by (4.34) is non-singular, 

(4.35) Re 
x2(t) 

xi(t) 
Qo dx 

is monotonically decreasing or increasing along the curve. In particular, we can always 
find a point UJ in the curve where the integral 

(4.36) 
x2(t) 

*i(t) 
Qo dx 

vanishes at t = uo. Then, in an analogy with the case of linear differential operators 
with holomorphic coefficients (cf. [BNR],[AKT1]), the part of the new Stokes curve 
which contains UJ should be designated by a dotted line (near t = T) in the precise 
definition of a new Stokes curve. As a matter of fact the dotted part of a new Stokes 
curve is irrelevant to the degeneracy of the Stokes geometry of ( l . l . l l .a) etc.. This 
can be confirmed by a similar reasoning as is given in § 3 once concrete description of 
a new Stokes curve is given. As a typical example we analyze the example we studied 
in §3. This time we consider the configuration of the Stokes curves of ( l . l . l l .a) etc. 
at t = tj (j = 6, 7, 8) designated in Fig. 4.8. 

[AC] 

[ВС] 

FIGURE 4.8. (Cf. Figure 3.2.) 
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If we move from £2 to ¿6 along [PC], we cross [AC] at T. Hence it follows from 

(2.1.26) that the Stokes curve emanating from A and flowing to the direction e and 

the Stokes curve emanating from C and flowing to the direction a in Fig. 3.3.2 should 

interchange the directions to which they flow when t reaches t$, as shown in Fig. 4.9.6. 

FIGURE 4.9.6 FIGURE 4.9.7 

Again by (2.1.26) and the comparison of Fig. 3.3.1 and Fig. 3.3.2, we find from 

Fig. 4.9.6 that the configuration of Stokes curves at t = ty is given in Fig. 4.9.7. 

Now we know that the unanticipated degeneracy of Stokes curves occurs at ¿5 
(of. §3), and we can confirm that the point tr> lies on the new Stokes curve described 

in Fig. 4.3. As the unanticipated degeneracy at £5 means that A and B are connected 

by a Stokes curve (cf. Fig. 3.3.5), we label the curve as [AB\. Is it, then, possible to 

reach a point t% where A and B are connected by a Stokes curve with keeping the 

topological configuration designated in Fig. 4.9.7? The answer is clearly "No'? by the 

same reasoning as in §3, i.e., by the fact that no Stokes curves arc allowed to cross 

each other for a 2 x 2 system, like ( l . l . l l .a) . Otherwise stated, if A and B were 

really connected by a Stokes curve at / — either (A and C) or (B and C) should 

be connected by a Stokes curve before t reaches t$. But, neither Stokes curve [AC] 

nor [BC] exists between tj and t$. This means that A and B are not connected by a 

Stokes curve at t$, although 

(4.37) Im 
• 13 

A 
Q0 dx = 0 

holds at / - /;S. As a matter of fact, some numerical computation shows that (4.36) 

vanishes at some point UJ near f8. Thus the precise description of the Stokes curves 

would be as in Fig. 4.10. 

Finally we note that we can actually label a new Stokes curve not by just a pair 

like (A*, +; A:. —) but by a more informative label like (k, + ) > (A;, —); the sign of 

(4.38) Re 
•'•2( V) 

•r-i(T) 
Qo dx 

can be effectively used for this purpose. Concerning these subtle issues we will report 

in our forthcoming paper. 
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[ВС] ли 

FIGURE 4 .10 

5. Examples of Stokes geometry 

5.1. As the simplest example of the linearization of a higher order Painlevé equation, 
we study (Pi)2 in this subsection. In this case the configuration of the Stokes curves 
are shown in Figure 5.1.1. However, if we want to understand the global structure 
of the configuration, we should take into account the Riernann sheet structure of the 
coefficients of (PO2; the coefficients contain a multi-valued function uiA) defined by 

(5.1) 5 ^ 0 + 2ciSi,0 - 2c2 -2t = 0. 

Hence we first prepare three sheets which describes the Riernann sheet structure of 
z/i7o, and we then draw the Stokes curves of the linearization of (Pi)2 on each sheet. 
The resulting configurations are described in Figure 5.1.2(j) (j = i, ii, iii) where we 
have chosen c\ — 1 — 1.7i and c2 = 0. We note the singular points of 1/4.0 are given 
by the zeros of discriminant of (5.1). which are coincident with the turning points r\ 
and r\ of (Pi)2 of the first kind. The wiggly lines in Figure 5.1.2(j) designate the 
cuts to describe the global structure of u \.(, with the additional information that the 
singularity of ui^Q is of the square-root type. We note that, if we take into account 
the sheet structure of Si,u? the points T\1 and r̂ 1 on the first sheet (i.e., in Figure 
5.1.2(i)), for example, are not the turning points (of the second kind). 

We next draw the new Stokes curves in Figure 5.1.2(j) to find the following Figure 
5.1.3(j) (j = i,ii.iii). Here, we employ the precise definition of a new Stokes curve 
given in Remark 4.1; we will see below that the dotted part is irrelevant to the 
topological change of the configuration of the Stokes geometry of the linear equation 
( l . l . l l . a ) . In Figure 5.1.5(i).j (resp. Figure 5.1.5(h).k). we concretely describes the 
configuration of Stokes curves of ( l . l . l l .a) when t moves around the crossing point 
t = T(j) (resp. P(ii)) of Stokes curves in Figure 5.1.3(i) (resp. Figure 5.1.3(h)). The 
configuration for t = (resp. t = P(ii)) is also given in Figure 5.1. l(i) (resp. Figure 
5.1.4(h)). The specific points to be considered are labeled by / — / , (j — 1.. . . 12) in 
Figure 5.1.3(i) and by t = tk (k = 13.. . . 18) in Figure 5.1.3(h). The reader readily 
finds that the topological changes occur only at t = tj or t = tk that lies on an 
ordinary Stokes curve or on the solid line part of a new Stokes curve. 
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FIGURE 5.1.1 

(the first sheet of //u,) 

FIGURE 5.1.2(i) 

(the second shoot of ¿/1.0) (the third sheet, of ii\,o) 

FIGURE 5.1.2(ii) FIGURE 5.1.2(iii) 

5.2. Since the number of double turning points of ( l . l . l l .a) is 2 for (Pi)2« we need 

to try to study (Pi);u for example, to find a crossing point of two Stokes curves 

both emanating from a turning point of the second kind. (Case C in Section 4.) 

Fortunately we can really locate it in the Stokes geometry of (Pi)a (with c\ = 1.2+0.8/', 

c 2 = —1.7—1.5/ and C3 = •/'). The Stokes geometry (without the detailed consideration 

of the sheet structure) is given in Figure 5.2.1. We concentrate our attention to the 

turning points T\1 and r^1 specified in Figure 5.2.1 and we present in Figure 5.2.3 

the configuration of Stokes curves of ( l . l . l l .a) at the crossing point T of the Stokes 

curve for (Pi),3 emanating from r\l and that from T\1 . The configuration of the Stokes 

curves for t — tj specified in Figure 5.2.2 is given respectively by Figure 5.2.4.J. 

5.3. In studying (Pn-i)m- one might wonder there would be any effect of the singu­

larity at x = 0 in the equation (1.2.10.a). As some Stokes curves of (1.2.10.a) flow 
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(the third sheet of 7/1.0) 
(the second sheet of 1x1.0) 

(1. -г) > (1.-) 

(2.+) > (2.-) 
(l.+-:2.-) 
(l.-:2.4-) 

( ! . - )> (2. - ) 
(2. -г) ^ (1. - ) 

(2. г: 2. -) (1. i ) > (1. 

FIGURE 5.1.3(H) FIGURE 5.1.3(i) 

(the first sheet of U\{]) 

FIGURE 5.1.3(iii) 

into the singular point x = 0 besides the points at infinity, the appearance of the 
Stokes geometry of (1.2.10.a) is somewhat different from that of the Stokes geome­
try of ( l . l . l l . a ) . But, nothing peculiar is observed concerning the relation between 
the Stokes geometry of the linearization of (Pn_i)m and that of the linear equation 
(1.2.10.a). In order to show7 this we present the Stokes geometry of (Pi 1-1)2 with 
g = - 1 / 2 and c = 0.5 - 0.8/. again ignoring the detailed sheet structure (cf. [NT]). 
We concentrate our attention to turning points r 1 and r 1 1 in Figure 5.3.1, and we 
present the enlarged figure1 of the Stokes curve emanating from r 1 and that from r 1 1, 
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FIGURE 5.1.4(i) FIGURE 5.1.4(ii) 

FIGURE 5.1.5(i).l FIGURE 5.1.5(i).2 FIGURE 5.1.5(i).3 

FIGURE 5.1.5(i).4 FIGURE 5.1.5(i).5 FIGURE 5.1.5(i).6 

FIGURE 5.1.5(i).7 FIGURE 5.1.5(i).8 FIGURE 5.1.5(i).9 
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FIGURE 5.1.5(i).10 FIGURE 5.1.5(i).ll FIGURE 5.1.5(i).12 

FIGURE 5.1.5(ii).13 FIGURE 5.1.5(ii).14 FIGURE 5.L5(ii).15 

FIGURE 5.1.5(H).16 FIGURE 5.1.5(ii).17 FIGURE 5.1.5(ii).18 

together with the required new Stokes curve at the crossing point T. The configura­
tion of the Stokes curves of (1.2.10.a) for t = T is given by Figure 5.3.3 and that for 
t = tj, (j — 1,..., 6) is given respectively by Figure 5.3.4.J. 

5.4. In connection with a remark before Theorem 4.1, we show an example of a 
crossing point of a new Stokes curve and an ordinary Stokes curve. The example 
is observed for (/11-2)2 with c = 9.8 — 0.1?', g — 7, 6 + 6.6z and 6 = —6.2 — 5.6z, 
as we show below. The Stokes geometry of the linearization of (P\\-2)2 is given by 
Figure 5.4.1, and we concentrate our attention to the portion of Figure 5.4.1 that is 
enlarged in Figure 5.4.2; we focus our attention to the Stokes curve C3 (j = 1,2,3) 
respectively emanating from the turning point r} (j = 1,2,3). the new Stokes curve 
C4 emanating from the crossing point TQ of C2 and C3 and the crossing point T of 

ASTÉRISQUE 297 



STOKES GEOMETRY OF HIGHER ORDER PAINLEVÉ EQUATIONS 159 

FIGURE 5.2.1 FIGURE 5.2.2 FIGURE 5.2.3 

FIGURE 5.2.4.1 FIGURE 5.2.4.2 FIGURE 5.2.4.3 

FIGURE 5.2.4.4 FIGURE 5.2.4.5 FIGURE 5.2.4.6 

the Stokes curve C\ and the new Stokes curve C4; the configuration of Stokes curves 
of (1.3.8.a) at t = T is given by Figure 5.4.3. Although we do not include the figures 
of the configuration of Stokes curves when the parameter t moves around T, we note 
that the topological change is observed only when t lies on C\ or C4. 
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(1.+) XI.-) 

(2. > (2. -) 

(2.-1X1. + ) 
(!.-)> (2.-) 
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Appendix A 

Some properties of JC3 and K) 

Let us first consider {J-j} defined by the following recursive relation: 

(A.l) d,T:j+l = (Of + 4udt + 2u')7j 
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FIGURE 5.4.1 FIGURE 5.4.2 FIGURE 5.4.3 

with To — 1/2. Here and in what follows, ' denotes the differentiation with respect 
to the variable t. Then, as is proved in [DT, Introduction], the following lemma holds 
for {T3} thus defined. 

Lemma A.l. If {Tj} satisfy (A.l) and each Tj does not contain a constant term, 
then the following relation holds: 

(A.2) ^71+1 
n-l 

3 = 0 
Fn jTj . I + 1// 

n 

3=0 
J 71— )J j 

2 
71 

3=0 
-J 71— J Ut <J J 

71 

3=0 
dtFn-jdtfFr 

Once the relation (A.2) is confirmed, we can readily find that all Tj are polynomials 
of a and its derivatives by using an induction. Note that the recursive relation (A.l) 
itself does not fix integration constants in each step; here, we fix them to be 0. 

In what follows we present a proof of Lemma A.l along the line of [DT] for the 
reader's convenience. (See also [L] for another proof different from below.) 

Proof. Multiplying both sides of (A.l) by Tn-3- and taking the sum from j = 0 to 
n, we obtain 

(A.3) 
71 

3=0 
T,> j *h -Pj . i 

n 

3=0 
fn-jdffj 

71 

3=0 
Tn ,( \al), -f 'la')^,. 

The left-hand side of (A.3) can be written as 

(A.4) 
Fo At Fn+1 l 

2 
di 

n-l 

3=0 

Fn-jFj+1 1 
2 

Ot Fn+1 
71—1 

3=0 
TjJ~,i 

On the other hand, since 

(A.5) 
n 

j = 0 

Fn-j At3 Fj Ot. 
71 

3=0 

Fn-jAt2Fj 1 
2 

71 

3=0 

DffFn-jOtfFj 
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and 

(A.6) 
n 

3=0 
Jrn-J{4udt + 2uf)JrJ = 2dt u 

n 

3=0 
Tn-3T3 

the right-hand side of (A.3) becomes 

(A.7) dt 
n 

3=0 
J~n-jd't Tj 

1 
2 

n 

3 = 0 
dtTn-3dtT3 + 2u 

n 

3=0 
T T 

This proves the lemma. 

Straightforward computations show that 

(A.8) F1 = u, 

(A.9) T2 = 3u2 + li". 

(A.10) T?> = 10?? + 5(u')2 + lOuu" + «(4). 

(A. l l ) TA = 35u4 + 70(«(«')2 + «2"") + 21(«")2 

+ 28u'«.(3) + 14mi (4>W6). 

The polynomials {Tj} of u and its derivatives have the following scaling property: 

Lemma A.2. ••- Under the scaling u H-> X2u, t H-> A 4 . {.Fj} v's transformed as 

(A.12) JF; i—> X2jT3. 

Employing what is called the Miura map u = v' — v2, we now define a new family 
{JCj} of polynomials by 

(A.13) 
Kj = Fj 

u = v' - v2 

Then we can readily find that {JCj} satisfies the recursive relation (1.2.16). Hence 
these polynomials {JCj} coincide with those introduced in Section 1.2 to define the 
hierarchy (1.2.14) of Gordoa and Pickering. The following scaling property of {JCj} 
is also an immediate consequence of Lemma A.2: 

Lemma A.3. Under the scaling v ^ Ac. t ^ X lt, {JCj} is transformed as 

(A.14) JC3 i—> X2jJC3. 

Finally, as is explained in Section 1.2. {Kj} defined by the recursive relation (1.2.2) 
is obtained from {JCj} through the scaling v ^ 7/i/(2"> + i),,s t ^ r/2m/(2m+i)t and 
JCj i • i]2-i^2m^Kj. Hence Kj also becomes a polynomial of v and its derivatives. 
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Appendix B 

Another formulation of the Pi-hierarchy 

In [GP] Gordoa and Pickering discuss the following hierarchy of differential equa­

tions: 

(B.l) Gm+i +gt= 0, 

where g is a non-zero constant and {Gj} is defined by (B.2) below in terms of constants 

{Sj} and {J~j} given in Appendix A. 

(B.2) Gj Fj+G1Fj-1 + ... + Gj Fo j 

k=0 
Skfj-k (So = !)• 

Remark B.l. — We may assume S\ — 0 without loss of generality. We also note that 

g may be changed to be an arbitrary non-zero constant by an appropriate scaling of 

u and t. 

Remark B.2. — {Gj} satisfies 

(B.3) dtGj+i (Of + 4udt + 2uf)Gj. 

Note that each Gj contains the constant term Sj/2. Hence an argument similar to 

that employed in the proof of Lemma A.l entails that 

(B.4) Gn+i 
n-l 

3=0 

Gn-jGj+i + Aa 
n 

3=0 

Gn-jGj 

•2 
n 

J=0 

Gn-j A2t Gj 
n 

3=0 

dtGn-jdtGj 

1 

2 
Gn+1 1 

4 

n-l 

3=0 

Sn-jöj+i. 

We now introduce a large parameter r] to (B.l) through a scaling 

(B.5) U l > T]2aU, t l > ift, X l > 7]2aX, g l > ^(m+l)«-^^ g, , > tfoLJ^ 

Here, a and j3 are arbitrary constants satisfying a + ¡3 = 1. Under this scaling {Gj} 

is transformed as 

(B.6) Gj n2ja Gj, 

where 

(B.7) 
Gj 

j 

fc=0 

àkFj-k-

We thus obtain from (B.l) the following hierarchy of differential equations with a 

large parameter r/: 

(B.8) Gm+l +gt = 0. 
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We now claim that the hierarchy (B.8) is equivalent to the Pj-hierarchy formulated 
in Section 1.1. That is, we can prove the following 

Proposition B.l. — Assume that g = 22rn+1 and that S\ = 0. Then, for a given 
solution u of (B.8), if we let u3 and v3 (1 ̂  j ^ m) be respectively given 

(B.9) uj = -2 1-21 Gj, 

(B.10) vj = - 2-2jn-1AtGj, 

(uj,Vj) satisfies (P\)m with 

(B. 11) c3 
2-2J-2 Gj+1 1 

2 

j-1 

k=0 

Gj - kGk+1 (1 ^ j ^ m). 

Proof. — If we define w3 by 

(B.12) Wj 
2-2j-1 (Gj+1 -2G1Gj-V-2d?Gj) (1 < j < m - 1), 

2~ 2ra— 1 (2GiGm+r/-2^2Gm) (j = m), 

we readily find that ii7, and w3 satisfy the system (1.1.1). Thus what remains to be 
verified is that u3, v3 and w3 thus defined should satisfy the recursive relation (1.1.2). 
Note that it follows from (B.4) and (B.6) that G3 satisfies the following relation: 

(B.13) 
Gn+1 n-1 

3=0 

Gn-jGj+1 + 4u 
n 

3=0 
G„-;,Gj 

• 2rr2 
.7=0 

n 
Gri-3dtlG3 v-2 

n 

3=0 
<),Gn 30,G3 

1 
2 
Gn+1 1 

4 

n-l 

3=0 

Gn-Gj j+1 

Using this relation (B.13), we obtain 

(B.14) L.H.S of (1.1.2) - R.H.S of (1.1.2) 

2 -2j-2 Sj+i 
1 

2 

j-1 

k=0 
(\) /À-- l ~C3 (j # m), 

- 2 — 2m— 1 Gm+i 2 (2m + 1t) 

•2 -2m-2 tfm + 1 
1 
2 

m — 1 

k=0 

Gm-kGk+1 Cm (j = rn). 

Hence (B. l l ) entails (1.1.2). This completes the proof of Proposition B.l. 
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Each member of the hierarchy (B.8) has the following Lax pair: 

(B.15) 
0 

dx 
4' T,A4K 

d 

dt 
v riBiP, 

where 

(B.16) A 
1 

9 

-rrldtTrn TV 

2(x - u)Trn - // 2()fTm T]-ldtTrn 
B 

0 
1 

x — a 0 

and 

(B.17) T 
m 

j=0 

(4x)j Gm - j. 

As the form of this Lax pair is similar to that of (Ln-i)m (i.e., the underlying Lax 

pair of the P\i-\-hierarchy), we can develop a similar argument as in Section 2.2 also 

for the hierarchy (B.8). This gives us another proof of Propositions 2.1.1 ~ 2.1.5 for 

the Pj-hierarchy. 
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