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G A L O I S R E P R E S E N T A T I O N S , D I F F E R E N T I A L E Q U A T I O N S , 

A N D q -DIFFERENCE E Q U A T I O N S : 

S K E T C H OF A p-ADIC U N I F I C A T I O N 

by 

Yves André 

Abstract. — This is a broad introduction to the following, more technical, paper 
[AdV]. We explain how [AdV] relates to two major themes of J.-P. Ramis' work, 
which eventually become unified in the p-adic world. 

Résumé (Représentations galoisiennes, équations différentielles et aux ç-différences: esquisse 
d'une unification p-adique) 

Ce texte est une introduction développée à l'article suivant, plus technique [AdV]. 
Nous expliquons comment [AdV] est lié à deux thèmes majeurs de l'œuvre de 
J.-P. Ramis, et comment ceux-ci trouvent leur unification en passant au monde p-
adique. 

Introduction 

Two remarkable analogies haved played an important role in Jean-Pierre Ramis?  

work: 

the analogy between linear complex differential equations and coverings in char­
acteristic ρ (reported in D. Bertrand's contribution to this volume), 

the analogy between linear differential equations and -̂difference equations (re­
ported in J. Sauloy's contribution). 

Our aim is to explain the analogs of these analogies in the p-adic world. We will see 
that once transposed into that context, these analogies become much more precise, 
and eventually lead to some equivalences of categories! 

2000 Mathematics Subject Classification. — Primary 12H25; Secondary 34A30, 11S80, 14H30, 39A13, 
11S15. 
Key words and phrases. — Differential equations, g-difference equations, coverings, wild singularities, 
local Galois representation, overconvergence, p-adic local monodromy. 
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44 Y. ANDRÉ 

1. A mysterious analogy: linear complex differential equations and 
coverings in characteristic p, tame and wild 

1.1. A dictionary. — This analogy grew out of discussions between J.-P. Ramis 
and M. Raynaud during the "Nuit de la Musique 1993v^\ Let us recall it in the form 
of a "dictionary": 

Differential side 

X — X \ S affine curve / C 
(X complete) 
differential module / X 
singular point (in S) 
regular singular point 

irregular singular point 
local differential Galois 
group at s G S 
(global) differential Galois group G 
(a linear alg. group / C) 
torus in G 
L(G)\ normal subgroup 
generated by all tori 
monodromy map 
μ : m(X) -> G/L(G) 
μ has Zariski-dense image 
(Ramis condition for the existence 
of a cliff, module on X with cliff. 
Galois group G, all singularities s G S 
being regular but one) 

Characteristic-/; side 

X = X \ S affine curve / k C Fp 

(X complete) 
unramified Galois covering of X 
branch point (in S) 
tame branch point, i.e., 
the ramification index at s is 
prime to ρ 
wild branch point 
inertia group at s G S 

covering group G 
(a finite group) 
p-Sylow subgroup of G 
p(G): normal subgroup 
generated by all p-Sylow's 
monodromy map 
μ:π["'\Χ)^α/ρ(0) 
μ is surjective 
(Harbater condition for the existence 
of an unramified G-covering of X, 
all branch points s G S 
being tame but one). 

Comment. — In the right-hand column, F p denotes a fixed algebraic closure of the 
field F p with p-elements, and π\ (X) denotes the profinite group which classifies 
unramified coverings of X of degree prime to p. i.e., the prime-to-p quotient of 
Grothendieck's algebraic fundamental group πι (X) of X. According to Grothendieck, 

(1) Older sources, in the ̂ -adic context, will be evoked in the next section. 
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GALOIS REPRESENTATIONS, DIFFERENTIAL AND (/-DIFFERENCE EQUATIONS 45 

π[ρ (Χ) is a free prime-to-p profinite group on 2g-\- \S\ — 1 generators (g denotes the 
genus of X and S is assumed to be non-empty) (2) 

1.2. i-adic linearized variant (f φ ρ). — There is a somewhat older and more 
standard version of this dictionary (cf. e.g. the end of [K]) in which objects in the 
right-hand column are replaced by more linear ones (in fact Z^-linear^3^ ones, for 
some fixed (but arbitrary) prime number £ φ ρ). It consists essentially in considering 
at once the whole tower of unramified coverings of X of degree a power of L In that 
way, finite groups are replaced, in the right-hand column, by /-adic Lie groups, or 
even by algebraic groups over Q(> (by taking a suitable algebraic envelope). 

Differential side 

X = X \ S affine curve / C 
(X complete) 

differential module M on X 

differential Galois group 
(an algebraic group / C) 

local differential Galois group 

de Rham cohomology groups 

χ(Λ/) = £(-1)'«Uni H:m(X.M) 

Deligne-Malgrange irregularity 
irr(A/, s) at s 

Deligne's formula for χ(Μ) 
in terms of rk Λ/ and 
irregularities 

C har act er ist ic-p side 

X = X \ S affine curve / k C Fp 

(X complete) 

lisse £-adic sheaf C on X 
(£-adic continuous representation 
ofTTipO) 

monodromy group (image of 
πι (X) or its Zariski closure, 
an algebraic group / Q/) 

image of inertia group X 
(or its Zariski closure) 

étale cohomology groups 
H'vt(X,C) 

Swan conductor sw(A/, «s) at s G S 

Grothendieck's formula for x(C) 
hi terms of rk M and Swan 
conductors. 

Referee's remark. Earlier presentations of the Ramis-Raynaud dictionary can be found in M. van 
der Put's Bourbaki talk: Recent work on differential Galois theory (Exposé 849, Astérisque 252 
(1998), 341-367), as well as in van der Put and Singer's book Galois Theory of Linear Differential 
Equations, Springer-Verlag (2003). 
(3)Recall that the ring of -̂adic integers Z<< is the limit of the system ·•· —> Z/f" + 1Z —> 
Z/f"Z •••'L/Œ = Ff, so that any -̂adic integer can be expressed as a series an^n where 
a-,, e {0, 1, .. . J. — 1}. The field of fractions of Zl is Ql = In the sequel, we denote by Q(. a 
fixed algebraic closure of Qf. 

x(C) = ^{-l)idimHit(X,C) 

HidR (X, M) 
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46 Y. ANDRÉ 

1.3. The ^-adic local monodromy theorem (£ / ρ). — Let us recall the struc­
ture of the absolute Galois groups which play a role in the "characteristic-̂  side". We 
now assume that k = Fpn c k = F p is the field with pn elements. Then, 

Gk := Gal(fc/fc) =Z = Y[Ze> and 
r 

Gk((x)) ;— Gal (A:((:r))sep/A;((:r;))) can be unscrewed via two exact sequences: 

1 — y X —y Gk((x)) —> Gk —> 1 
and 

1 —> V —> X —>Zex Yl Zf> —> 1 
''//;.' 

where X = Gj,^a.^ is the inertia group, and V is a pro-p-group called the wild inertia 
group. 

This reflects the fact that in contrast to the char. 0 case, the algebraic closure of 
k((x)) contains many more elements than just Puiseux series. For instance, roots ζ of 
the Artin-Schreier equation z~p — z~l = x~l cannot be expressed as Puiseux series. 

Correspondingly, one has a tower of Galois extensions 

A;((.r)) C k((x)) Τ U H(*l/")) ^ (H(*WP, 

with respective Galois groups Gk,X/V and V. 

Theorem 1.1 (Grothendieck [G]). Every ί-adie representation of Gk((x)) is quasi-
imipoterit, i.e., a suitable open subgroup) of X acts (through its quotient in Έρ) by 
unvpotent matrices. 

This can also be formulated, in the •Tannakian vein"*, as an equivalence of <S>-
categories 

B.epq (X x GA) {continuous Q -̂reps. of X which extend to reps, of GF} 
where X appears in the left-hand side as a constant group-scheme (and representations 
are understood in the scheme-theoretic sense), and in the right-hand side as a profinite 
topological group. 

2. The j>adic analog of this analogy. An equivalence of categories. 

2.1. Some motivation. Frobenius and over convergence.— At least two as­
pects of the above dictionary 1.2 are unsatisfactory: the arbitraryness of the auxiliary 
prime number ί, and the very different natures of the cohomologies occurring in the 
left-hand (De Rham) and right-hand (etale) columns. 

Both drawbacks would disappear, and the analogy would become much closer, if 
one could replace £ by p, and étale cohomology by some appropriate cohomology of 
De Rham type. 
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It turns out that this is indeed possible, provided one lifts the geometric situation 
from characteristic ρ to characteristic 0 (p-adic lifting), and replaces £-adic sheaves 
by some analytic differential modules. The basic ideas here are due to Dwork̂ 4̂ . 

i) The relevant "lifting" of X is constructed as follows: one fixes a p-adic field Κ 
(a finite extension of Qp) with residue field k = Fpn, and one fixes a smooth complete 
curve X/K whose reduction modulo ρ is our given complete curve X/k. Removing 
the open disks of radius 1 in X which reduce mod. ρ to the points in 5, one gets a 
p-adic analytic curve X which lifts X. 

As was pointed out by Dwork, one should actually remove "infinitesimally more": 
the relevant space is the limit X^ of X deprived from disks of radius 1 — ε around the 
singularities, when ε — • 1 (X^ is a pro-ringed spaced). 

ii) According to Dwork again, the relevant p-adic differential modules should have 
two features: 

1) Frobenius structure: after change of variable χ ι—» xp , the new differential 
module is isomorphic to the old one, 

2) Overconvergence: the differential module (and its Frobenius structure) 
should be also defined in some annulus inside each singular disk; in other words, 
should be defined over 

Examples 
a) X = P|, S = {0}, X = outer unit disk \x\ ^ 1. Let π be Dwork's constant, 

i.e., a fixed root of the equation πρ_1 = —ρ in Q . Then the differential equation 
y' = —n/x2y has the required properties (overconvergence of Frobenius means that 
y{xp)/y{x) = e(7r/a;P)-(7r/a:) has a p-adic radius of convergence > 1 in l/x). 

b) Let us consider the differential module x~ae1/xO (endowed with the derivation 
where xd/dx) where Ο is some ring of analytic functions away from the origin. 

Let us first consider the complex case. The corresponding "period" is 

x-°e1'x dx—= 2ui ~Γ(α).<6> 
Γ(1-α) 1 > 

According to Ramis' precise Gevrey theory, an optimal choice for Ο is 

C[[l/:r]]_M- :={Σα„χ-η \3κ>0, 3r G ]0,1[; \an\ < Krn/n\}.^ 

(4)\Ve refer to [R] for a nice introduction to this circle of ideas. 
(5) Working with X instead of would provide unwanted infinite-dimensional cohomology spaces 
in general. 
(6)Here π is the usual one! The symbol ~ means equality up to some factor in Q . The chosen loop 
comes from — oo and returns to — oo after turning once counterclockwise around the origin. 
(7)( — 1, 1~) is a characteristic index for which diuiH1 = 1. 
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48 Y. ANDRÉ 

Let us now turn to the p-adic case. Overconvergence is satisfied after reseating 
1/x ι—> π/χ. However strange this condition may look at first sight, it is nothing else 
than a Gevrey condition: indeed, in the p-adic case, 

{ E anx" I 3 κ; > 0, 3r G ]0, 1[; \an\ <: Krn/\n\\} 
is precisely the ring of analytic functions on a disk of radius > |π|, which gives the 
ring of analytic functions on X^ after repealing 1/x ι—> π/χ. On the other hand, one 
can evaluate Frobenius, and it turns out that its eigenvalues in some appropriate sense 
are, up to some algebraic factor, special values ~ Γ ρ (α) of Morita's p-adic gamma 
function. 

This is a general phenomenon, and the new version of the dictionary, with p-adic 
right-hand column, now looks as follows: 

Differential side 

X = X \ S affine curve / 

differential module M on X 

//..,;·: Α. Λ/·. 

Characteristic-p side 

X = X \ S affine curve / k C Fp 

over con ver gent lifting X^ of X 
over a p-adic field 
differential module ΛΛ^ on X^ 
(admitting a Frobenius structure) 

H'<m(XKMv) 
eigenvalues of Frobenius. 

Remark. — At the referee's suggestion, let us mention that there exists a completely 
different approach to the Ramis-Raynaud analogies, also involving p-adic differential 
equations, namely the theory of iterative differential Galois groups developped by 
H. Matzat and M. van der Put ([MvPl, MvP2]). This variant of differential Galois 
theory applies to function fields of characteristic p, and relies on the notion of an 
iterative derivation (Hasse, F.-K. Schmidt). The differential Galois groups attached 
to iterative differential modules are linear algebraic groups (not necessarily finite) 
over the field of (iterative) constants k1 and one has a Galois correspondence. In 
special cases, Matzat and van der Put establish an iterative differential analog of the 
Abhyankar conjecture. 

Iterative differential modules can be lifted to global p-adic differential equations of 
a very special kind, but the relationship with the above theory remains unclear. 

2.2. The p-adic local monodromy theorem (Crew's conjecture). — Let 
again Κ be a finite extension of with residue field k = Fpn. 

The lifting process associates to X over the finite field k the p-adic pro-space X^ 
over Κ. In this process, localization around a point s G S becomes localization on an 
"infinitely thin annulus". 

periods 
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One is thus led to consider the so-called Robba ring, i.e., the ring of A"-analytic 
functions^8) on arbitrarily thin annuli .4μ_εί1[ : 1 — ε < \x\ < 1 (χ denotes a local 
coordinate in the singular unit disk above «s). 

1Z = ΊΖκ — U {A"-analytic functions on Α\\-ε 

The subring of bounded functions also plays an important role, because it turns 
out to be an henselian field with residue field k((x))\ in other words, giving a finite 
separable extension of k((x)) amounts to giving a finite unramified extension 
(and this provides a finite etale extension TV of TV). 

Theorem 2.1. Every differential module overTZ which admits a Frobenius structure 
is quasi-unipotent, i.e., has a basis of solutions in 7?/[logx'], where TV is the finite 
etale extension of ΊΖ attached to a finite separable extension ofk((x)). 

This is the p-adic (deeper) analog of Grothendieck's -̂adic local monodromy the­
orem 1.1, as the following "Tannakian formulation1' puts in evidence: 

Rep-q (Χ χ Ga) ——» {differential modules/T^Q admitting a Frobenius structure}. 

Example. The 1-dimension representation of X = G^T^ attached to Artin-Scheier 
equation z~v — z~l — x~l corresponds to the differential module y' = —-f^V-

2.3. Hasse-Arf filtrations. — There are several approaches to Thm. 2.1. My 
own approach [A2] is based on the notion of Hasse-Arf filtration in a Tannakian 
category Τ ^. 

Data. For every object M G Τ, a separated decreasing filtration (F>xM)\^>Q 
functorial and exact in M, satisfying 

F > A ( 1 ) = 0. F>X(M) = F>X(N) = 0 F>X(M ® N) = F>X(MV) = 0. 
One shows that every M then admits a canonical finite decomposition M — (BgrXi M, 
where grA' M is "of pure slope Λ,·"". This allows to attach to M its Newton polygon 
NP(M) following the usual recipe. The "height" of NP(M) is denoted by h(M). 

We say that the functorial filtration ( F > A ) is a Hasse-Arf filtration if VA/, 
h{M) G Ν (equivalently, if all Newton polygons have integral vertices). 

Examples 
1) The oldest example comes from arithmetic. Τ = RepGk^xyy Κ The classical 

theory of ramification provides a non-decreasing sequence of normal subgroups (7μ C 
Gk((.r)) (lh e higher ramification groups), and one defines a filtration as follows: 

F>XM = 0 <=^> Gfl acts trivially on M V/i > Λ. 

(8)\Ve refer to [R'] for a nice introduction to the theory of p-adic analytic functions. 
(9 Ŝee also [A4] for a more detailed introduction to this topic. 
(10)One could replace k((x)) by any local field. 
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50 Y. ANDRÉ 

In this context, h(M) is called the Swan conductor of M and is denoted by sw(M). 
Its integrality is a classical theorem by Hasse and Arf. 

2) Τ = {differential modules M/C[[χ*]]}. Every object is endowed with the 
Turrittin-Levelt slope filtration. In this context, h(M) is the irregularity ?>r(M), and 
its integrality follows from the definition. 

3) Τ = {differential modules Μ/ΊΖ admitting a Frobenius structure}. Looking at 
the growth of solutions toward the outer boundary of Λ\ι-ε^ Christol and Mebkhout 
have defined the (analytic) filtration by p-adic slopes of M. In this context, h(M) is 
called the p-adic irregularity of M and is denoted by irrp(Ai). Christol and Mebkhout 
have shown that irr p(M) is always an integer [CM]. 

It turns out that, despite their very different natures, examples 1) and 3) correspond 
to each other via the equivalence of categories 2.1: 

Theorem 2.2 (Matsuda, Tsuzuki; Crew [C]). The canonical ®-equivalence: 

Rcpq (T x Ga) {differential modules /7ZQ admitting a Frobenius structure} 

is compatible with the canonical filtrations (Hasse-Arf on the L.H.S., by p-adic slopes 
on the R.H.S.). 

This can be summarized by the slogan 

sw = irrr. 

3. Another analogy: 
linear differential equations and (/-difference equations; confluence 

3.1. The ç-world. — Let us provisionally abandon ρ in favor of q. The (/-calculus 
has a long history (Euler, Gauss, Jacobi, Heine, Ramanujan, ..S11)). It is based 
on the replacement of ordinary integers η by their (/-analogs 

[n]9 = l + (/ + (/2 + · · · + ( / η ~ 1 . 

The usual derivation d/dx is then replaced by the (/-derivation 

da : fix) 
fix) - Hqx) 

(1 - q)x 
which sends xn to [n]qxn~1 (and the (/-exponential ex

q = Y^xn/[n}q to itself). 
Differential equations are thus replaced by (/-difference equations. The phenomenon 

of confluence arises when q —> 1: then nq n, dq ^> d/dx, and (/-difference 
equations tend to differential equations under appropriate convergence conditions. 
Conversely, for q close to 1, (/-difference equations may be considered as deformations 
of differential equations. 

(n)See some highlights in [E]. 
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3.2. Non-commutative connections and g-déformât ions. — Let R be some 
'Ting of functions" stable under the dilatation aq : f(x) i—> f{qx)-

Recall that a more intrinsic version of differential equations is provided by differ­
ential modules, or even better, by connections. Similarly, a more intrinsic version of 
{/-differences is provided by q-difference modules: i?-module AI (projective of finite 
rank) + σς-linear automorphism. 

This setting has one drawback: it does not allow to obtain the limit differential 
module in the case of confluence (q —•> 1). However̂  one can also present differential 
modules as connections: 

V : M —> Ω J (g) AL (V(rra) = rV(m) + dr Θ m), 

Q}q = non-commutative bimodule of rank one: j .ω = ω · σ ς ( / ) , α\ : Β —> Ω*, 
f^uJ-dq(f). 

This gives rise to a unified theory of Galois differential groups in the differential 
and (/-difference cases [Al] , [A3], and a relevant setting for the algebraic study of 
confluence. 

3.3. Analytic theory. — Here, for many reasons (e.g., to avoid difficult problems 
of small divisors), one assumes \q\ φ 1. 

The analytic theory of (/-difference equations has been initiated by Adams, Birkhoff 
etc., and was revived by J.-P. Ramis in the early 90's. The analogy with differential 
equations is often straightforward at the formal/combinatorial level, but rather subtle 
at the analytic level, especially when wild phenomena or confluence are involved, 
cf. [S]. 

4. The j>adic analog of this analogy. 
Another equivalence of categories [AdV] 

4.1. Frobenius structure. — We fix η > 0, and a prime p. Recall that a Frobenius 
structure on a differential module is an isomorphism between 71/ and its "pull-back" 
by the change of variable φ : χ ι—> xp S12^ 

In the (/-difference case, one has the relation 

crq φ = φσ(1μ" . 

so that the pull-back of a af/-module M is a priori a σι/;/»-module. In order to make 
a σς-module out of it, it suffices however to iterate times the action of aqi/P-» . We 
denote by φ1 M this new σ -̂module AI. A Frobenius structure may then be defined 
to be an isomorphism between φ] AI and AIS1^ 

( 1 2 ) Actually, one also has to twist the coefficients by some power of the so-called Frobenius auto­
morphism of K, but we neglect this fact here. 
^'^Iii [AdV], another notion of Frobenius structure is also considered. 
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52 Y. ANDRÉ 

4.2. p-adic confluence and canonical g-deformation. — We corne back to the 
p-adic situation: K is p-adic field with residue field k C F p » . We fix q G K, q φ 
root of unity. We are interested in "confluence" (note that here \q—1| < 1 —>· \q\ = I, 
in contrast to the usual postulate in the complex case). Actually, it simplifies matters 
to assume 

|i -q\ <P~^ • 

Let M be a σς-module over the Robba ring ΊΖ — Ί1κ· 

Theorem 4.1. There is a canonical 'functor of confluence" 

{q-difference modules /ΊΖ-χ admitting a Frobenius structure} 
—> {differential modules /ΊΖ-χ admitting a Frobenius structure] 

which is an équivalence of tannakian categories. 

Its construction uses quasi-unipotemce (q-analog of Crew's conjecture), cf. [AdV]. 
In fact for any /̂-difference module over ΊΖχ admitting a Frobenius structure, there is 
a canonical sequence of qp' -difference structures on the same underlying 7̂ -module 
(with i —> oo, so that qp —» I) which converges to a differential structure. 

4.3. Another Hasse-Arf filtration?— This subsection is tentative. By looking at 
the growth of solutions toward the outer boundary of *4.]ι_ε,ΐ[, it seems (not all details 
have been checked) that one can define, à la Christol and Mebkhout, a filtration by 
p-adic slopes on AI, whence a notion of p-adic rpirregularity q-irrp(AI), and that one 
has the following ψ-analog of 2.2: 

Conjecture 4.2. The canonical 0-equivalence: 

Repj^ (Τ χ Ga) {q-difference modules /TZq admitting a Frobenius structure} 

is compatible with the canonical fiMrations (Hasse-Arf on the L.H.S., by p-adic slopes 
on the R.H.S.). 

This can be summarized by the slogan 

sw = q-ϊΐΤρ . 

Remark. In this context, it is interesting to notice that the formal slope filtration 
for complex (/-difference modules with \q\ φ I (cf. [S]) is not a Hasse-Arf filtration 
(in contrast both to the differential case and to the p-adic case), since negative slopes 
may occur, for instance. Once again, we see that the analogy is much tighter in the 
p-adic case. 
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